
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Theses and Dissertations

5-2020

Simulation Modeling of Cross-Dock and Distribution Center Based Simulation Modeling of Cross-Dock and Distribution Center Based

Supply Chains Supply Chains

Ghewa Al Chall
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Industrial Engineering Commons, Industrial Organization Commons, Industrial Technology

Commons, Operational Research Commons, Operations and Supply Chain Management Commons, and

the Technology and Innovation Commons

Citation Citation
Al Chall, G. (2020). Simulation Modeling of Cross-Dock and Distribution Center Based Supply Chains.
Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3597

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please
contact ccmiddle@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.uark.edu%2Fetd%2F3597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/347?utm_source=scholarworks.uark.edu%2Fetd%2F3597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1062?utm_source=scholarworks.uark.edu%2Fetd%2F3597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1062?utm_source=scholarworks.uark.edu%2Fetd%2F3597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.uark.edu%2Fetd%2F3597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=scholarworks.uark.edu%2Fetd%2F3597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=scholarworks.uark.edu%2Fetd%2F3597&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3597?utm_source=scholarworks.uark.edu%2Fetd%2F3597&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu

 Simulation Modeling of Cross-Dock and Distribution Center Based Supply Chains

 A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Industrial Engineering

by

Ghewa Al Chall
Lebanese International University

Bachelor of Science in Industrial Engineering, 2017

May 2020
University of Arkansas

This thesis is approved for recommendation to the Graduate Council.

Manuel Rossetti, Ph.D.
Thesis Director

__________________________________ _____________________________________
Payam Parsa, Ph.D Shengfan Zhang, Ph.D.
Committee Member Committee Member

Abstract

Companies are implementing new strategies to meet the customer requirements in terms of

quality, timing, and cost. One of these strategies is cross-docking, which can be defined as the

process of consolidating the products coming from different suppliers, but having the same

destination, with minimal handling and almost no storage between loading and unloading of the

goods. The purpose of this research is to investigate the benefits of having a cross-docking facility

in a supply chain.

In this research, we focus on developing discrete event simulation models using the open-

source Java Simulation Library (JSL). Also, we work on augmenting an object-oriented library for

simulating supply chains to include the modeling of cross-dock facilities. The modeling of a cross-

dock facility includes the receiving, staging/sorting, and load building activities. Because the

operational performance of the inner workings of the cross-dock is not needed, detailed modeling

of the resources within the cross-dock such as the number of workers, and pieces of equipment are

not included in the modeling. However, the flow, time delays, and inventory aspects are modeled

because the key emphasis is on how the cross-dock affects the performance of the supply chain.

Simulation experiments are conducted to test the performance of the object-oriented library

and to compare the performance of two multi-echelon inventory networks with and without cross-

docking to identify the significant factors which affect the performance of the two types of supply

chains.

Table of Contents

1. Introduction ... 1

2. Literature Review .. 2

3. Research Methodology .. 8

3.1 Conceptualization ... 8

3.2 Analysis... 8

3.3 Design ... 9

3.4 Implementation and Testing ... 9

4. System Definition .. 11

4.1 Cross-Dock Based Multi-Echelon Inventory Network (CD-MEIN) Characteristics ... 11

4.1.1 Order Processing ... 12

4.1.2 Cross-dock Operations .. 13

4.2 Distribution Center Based (DC-MEIN) Multi-Echelon Inventory Network 14

4.2.1 Order Processing ... 15

4.2.2 Distribution Center Operations ... 15

4.3 Input Parameters ... 18

4.4 Key modeling issues ... 18

4.4.1 Outbound trucks departure .. 19

4.4.2 Transportation resources ... 19

4.4.3 Number of item types and warehouses ... 19

4.4.4 Demand Filling ... 20

5. Modeling .. 21

5.1 Conceptual Modeling .. 21

5.2 Detailed Modeling .. 23

5.2.1 Modeling of a Location using LocationIfc and LocationAbstract class 25

5.2.2 Modeling of a Facility using FacilityIfc and FacilityAbstract class 27

5.2.3 Shipment and Shipment Builder Classes .. 32

5.2.4 Shipments Carrier Class .. 33

5.2.5 Generating Demands using DemandGenerator and GroupDemandGenerator Classes

 34

5.2.6 Network Class ... 35

6. Performance Measures, Test Cases and Validation ... 37

6.1 Performance Measures .. 37

6.2 Testing Cases and Results ... 39

6.2.1 Total Time to Fill Demand by Each Warehouse Results .. 39

6.2.2 Aggregate Fill Rates, Item Type Fill Rates and Inventory on Hand Results 42

6.2.3 Total Waiting time and Inventory in Shipment Building Area Results 45

6.3 Validation .. 46

6.3.1 Scenario One: Increasing the Warehouses Re-order Quantity 47

6.3.2 Scenario Two: Assessing the Effect of Multiple Factors on Total Cost 49

7. Conclusion and Future Work ... 54

7.1 Conclusion .. 54

7.2 Future Work .. 54

8. References ... 56

9. Appendices .. 58

9.1 Appendix A ... 58

9.2 Appendix B: Experimental Design Model for Scenario 2 .. 63

List of Figures

Figure 1: Cross-Dock Based Multi-Echelon Inventory Network ... 12

Figure 2: Conceptual System Description for CD-MEIN ... 13

Figure 3: Distribution Center Based Multi-Echelon Inventory Network 14

Figure 4: Conceptual System Description for System 2 ... 15

Figure 5: Class Diagram of LocationAbstract class ... 25

Figure 6: Class Diagram for FacilityAbstract Class ... 28

Figure 7: GroupDemandGenerator Class Methods ... 35

Figure 8: Network Class Methods .. 36

Figure 9: Main Effects Plot for Total Cost of DC-MEIN ... 51

Figure 10: Interaction Plots for Total Cost of DC-MEIN ... 51

Figure 11: Main Effects Plot for Total Cost of CD-MEIN ... 52

Figure 12: Interaction Plot for Total Cost of CD-MEIN .. 52

List of Tables

Table 1: Parameters of the Cross-Dock Multi-Echelon Inventory System (Rossetti & Xiang, 2014)

... 12

Table 2: Distribution Center Parameters ... 15

Table 3: Activities Distribution Forms ... 17

Table 4: List of Classes ... 24

Table 5: List of Interfaces ... 25

Table 6: Total Time (in days) to Fill Demands by Each Warehouse in Both Systems 41

Table 7: Hand Calculation for Total Time to Fill Demand by Warehouse B 41

Table 8: Fill Rate for Every Warehouse per Item Type for CD-MEIN .. 43

Table 9: Fill Rate for Every Warehouse per Item Type for DC-MEIN .. 43

Table 10: Average Inventory on hand for Every Warehouse per Item Type for CD-MEIN 44

Table 11: Average Inventory on hand for Every Warehouse per Item Type for DC-MEIN 44

Table 12: Aggregate Fill Rate for Each Warehouse in Both Systems .. 45

Table 13: Total Time (in days) in the Shipment Building Area per Item Type 46

Table 14: Total Time in the Shipment Building Area per Item Type ... 46

Table 15: Warehouses Aggregate Fill Rates after Scenario 1 for CD-MEIN 47

Table 16: Warehouses Aggregate Fill Rates after Scenario 1 for DC-MEIN 48

Table 17: Total Time to Fill Demands (in days) after Scenario 1 in CD-MEIN 49

Table 18: Total Time to Fill Demands (in days) after Scenario 1 in DC-MEIN 49

Table 19: Threshold Time, Lead Time and Time Between Demand Levels 50

List of Exhibits

Exhibit 1: Creating Item Type, External Supplier and Setting the Lead Time 27

Exhibit 2: Creating and Adding the Distribution-Center to the Model .. 30

Exhibit 3: Creating and Adding the Warehouse to the Model .. 31

Exhibit 4: Creation and Addition of Cross-Dock to the Model .. 32

Exhibit 5: Creating Shipment Carrier for External Supplier .. 34

 1

1. Introduction

 Companies use several product distribution networks to transport various types of goods.

Most of these networks have distribution centers, which store products coming from different

suppliers, and then provide the retailers with their needs. To eliminate the storing activity and

reduce costs associated with it, cross-docking facilities are being utilized in many big companies

like Walmart, which considers cross-docking as one of the key reasons for having high customer

service (Galbreth et al., 2008).

 The purpose of this thesis is to investigate the benefits of having a cross-docking facility

in a supply chain. This research will focus on the development of discrete event simulation models,

which will be used to compare the performance of a cross-docking facility versus the performance

of a distribution center in a supply chain. The performance of the two systems will be assessed

under different conditions such as demand changes. The Java simulation library (JSL) will be used

to develop the simulation models and calculate the different performance metrics, which will be

analyzed and evaluated through statistical analysis.

 This thesis is divided into seven sections. Section two covers the literature review and

background. The third section highlights the research methodology used. Then, the fourth section

describes the case study, which will be modeled for each of the systems. Later, the modeling of

the simulation framework is discussed in detail in section five, and its testing is presented in section

six. Finally, conclusions and future work are presented in the last section.

 2

2. Literature Review

Supply chain performance is essential for the success and the competitiveness of any

company. Thus, companies are implementing new strategies to meet the customers’ requirements

in terms of quality, timing, and cost. One of these strategies is cross-docking, which can be defined

as the process of consolidating the products coming from different suppliers, but having the same

destination, with minimal handling and almost no storage between loading and unloading of the

goods (Belle et al., 2012).

Different types of cross-docking can be distinguished based on several features. One of the

aspects mentioned in the literature is the number of touches. In one-touch cross-docking, products

are directly moved from an inbound to an outbound truck. While in multiple or two-touch cross-

docking, products are unloaded and staged in the dock before being loaded in an outbound truck

(Cross-docking trends report, 2008). Moreover, the distinction can also be made based on the stage

where the customer is allocated to the products. In pre-distribution cross-docking, the supplier

assigns the customer to the product and perform the labeling and processing activities. However,

in a post-distribution cross-docking, the products are assigned to the customers and labeled at the

cross-dock (Yan & Tan, 2009).

All types of cross-docking can have positive effects on the supply chain performance if

implemented under the right conditions. A cross-docking facility has the ability to eliminate both

storing and picking operations; thus, reducing the labor costs, inventory holding costs, and material

handling costs. In addition, cross-docking decreases the delivery lead time of the products by

enabling faster product flow (Galbreth et al., 2008; Ertek, 2005).

On the other hand, the implementation of cross-docking in a supply chain generates

different decision problems either at the cross-dock or in the whole supply chain network. These

 3

decision problems can be divided into three groups: strategic, tactical, or operational. For example,

the design of the cross-dock and the network is a strategic problem, their planning is a tactical

problem, and their scheduling is an operational problem (Buijs et al., 2014). A considerable

amount of research has been done to address the different problems which exist locally at the cross-

dock, and different methods were used to solve these problems like simulation and optimization.

For instance, one study focused on the scheduling problem of the different trucks and shop

floor activities at a cross-dock. This study proposed a mixed integer linear programming model

which was used to schedule truck arrivals and departures, and cross-dock-floor activities. The main

objective of this study was to minimize the operation and transportation costs (Serrano et al., 2016).

Similarly, the mixed integer linear programming method in conjunction with Lagrangean

relaxation were used to solve the door assignment problem inside a cross-dock, and the main

purpose was to reduce material handling costs (Nassiefa et al., 2016).

Examples on the use of modeling and simulation to solve different problems inside a cross-

docking facility, include the use of discrete event simulation to determine the right size of a cross-

dock, number of forklifts, number of receiving doors, and the doors layout in a certain cross-

docking facility (Yang et al., 2011). Likewise, the simulation approach was used to model a generic

cross-dock with all its features, and this model was used to assess the effect of demand increase

on the performance of the cross-dock (Magableh & Rossetti, 2005). In addition, two simulation

models were used to compare the effect of having a global staffing policy versus dedicated staffing

policy on the operations of a post-distribution cross-docking facility (Cox & Rossetti, 2017).

Literature reviews were done to summarize the different studies done to solve a certain cross-

docking problem. More knowledge about this area can be found in (Belle et al., 2012) and (Buijs

et al., 2014).

 4

 A supply chain can be defined as a network of facilities and distribution options, which

operate together to make and deliver a product to the final customer (Rossetti & Xiang, 2014;

Rajgopal, 2019). Cross-docking is considered as one of the most promising distribution options,

which can be used to enhance the performance of the whole supply chain. As previously

mentioned, existing studies have focused on solving different problems, which occur inside a

cross-docking facility. However, little attention was paid to the importance of assessing the

performance and the feasibility of a cross-dock as part of the whole supply chain.

 One study done in this area focused on eliminating the traditional warehouse step found in

a global manufacturing firm’s technical consumer product supply chain; thus, improving the level

of service and reducing the overall costs of the company. To achieve this end, Suh (2014) assessed

the feasibility of implementing cross-docking strategy, where incoming shipments from suppliers

are unloaded and sorted and directly loaded to the outbound trucks available at the dock (Suh,

2014). Suh (2014) also focused on optimizing the performance of this cross-dock by controlling

different input and output parameters, using a hybrid of discrete-event and agent-based simulation

model. The input parameters were: stock keeping units (SKUs) wait time, distributer order wait

time, trailer full fraction and trailer wait time. While, the output parameters were: number of

trailers used, SKU throughput time, less than trailer load (LTL) fill grade and percentage of LTL

trailer leaving the dock. Many assumptions were made so that the simulation results can reflect the

real case. For example, the demand and supply patterns were assumed to be constant. The

simulation was done for 15 retailers and 20 different SKUs, with each SKU represented by a

supplier. The combination of the different input parameters levels resulted in 500 different

simulation runs. These simulation results helped the author in understanding the effect of the

variation of each input parameter on all the output parameters. Besides, the author identified five

 5

different cases where the cross-docking performance metric values were optimized. In one of the

cases, all the output parameters were optimized, where the total number of trailers, SKU

throughput time, and percentage of LTL trailer leaving the dock were minimized, and the LTL fill

grade was maximized. To further interrogate the results of this case, two simulation scenarios were

performed to assess the effect of different variations on the optimized performance metrics. In the

first simulation, the total average wait times and trailer full fractions varied 1 or 2 days within their

tolerances. Based on the simulation runs, a regression model for each performance metric was

obtained, and these models highlighted that all the output parameters showed normal distributions

except LTL fill grade. In the second simulation, demands from the distributors varied with ±10%

and Any Logic’s simulation was used to assess the effect of this variation on the output parameters.

The results of 200 simulation runs showed that the cross-dock can perform close to the optimal

setting when the demand varies within this range. The results of all the simulation runs and

sensitivity analysis provided the decision-makers with the impact of each input parameter on the

different output parameters. This can help in choosing the best combination of parameters needed

to optimize the performance of the cross-dock, which can replace the traditional warehouse facility

and enhance the performance of the whole supply chain. The methodology used in this study helps

optimize and assess the performance of a cross-dock, and the Monte Carlo simulations with the

sensitivity analysis performed are useful for evaluating the effect of different variables on the

performance of a certain cross-docking facility. However, this study didn’t show the performance

measures of the distribution center facility under the same parameters and conditions. The

comparison between the performance measures of the two systems is very essential for measuring

the benefits of shifting from the traditional warehouse step to cross-docking.

In this paper, we discuss the development and the use of discrete event simulation models

 6

to represent the performance of a cross-docking facility in a supply chain. The models can be used

to assess the impact of demand variation and other parameters on the performance of the cross-

dock. Java simulation library (JSL), which is an open source simulation library that enables

discrete event simulation modeling in the Java programming language (Rossetti & Xiang, 2014),

is used to model the system. More knowledge about the JSL is provided in (Rossetti, 2008).

 This JSL library has packages that facilitate the modeling of multi-echelon inventory

systems, which consists of two or more echelons where locations at the top serve as suppliers to

locations at lower echelons. Xiang & Rossetti (2014) used these packages to highlight two key

modeling issues, which can arise while modeling a multi-echelon inventory system. This study

addressed the different methods, which can be used to fill backlog demands for an inventory, and

this is usually referenced as backlog policy. It also assessed the different load building strategies,

which can be used to fill demands waiting for transportation. The main objective of their work was

to model these two processing rules suitably; thus, reducing waiting times (Xiang & Rossetti,

2014). Using these packages, similar work is done to model and assess the performance of

distribution center based supply chains, and to handle the two key modeling issues mentioned in

the previous study. Moreover, additional objects are developed to model a cross-dock based supply

chain and evaluate its performance measures under certain conditions.

Another study completed in this area, focused on building a generic cross-docking model

using ARENA software, which can be used to assess the efficiency of an individual cross-docking

facility within a company’s distribution network, and to examine the effect of demand increase on

the performance of the cross-docking facility (Magableh & Rossetti, 2005). The performance

measures used in this study were: different resources utilization, throughput times (time to process

orders at cross-docking facility) and percentage of having delayed orders. This study described

 7

different multiple modeling assumptions such as: availability of resources, inbound and outbound

doors assignment, shipments characteristics, and demand variation. In this research, similar

modeling assumptions and performance measures are considered. However, modeling resources

like material handling equipment’s and human resources, and assessing their impact on the cross-

dock performance is beyond the scope of our research.

 8

3. Research Methodology

A research methodology is a set of specific procedures or techniques, which are used to

perform research. Since our main focus was to design a simulation framework for cross-dock and

distribution center based supply chains, we followed a standard object-oriented modeling and

analysis approach, which consists of:

• Conceptualization

• Analysis

• Design

• Implementation and Testing

3.1 Conceptualization

 The first step was to conceptualize the models required to simulate the cross-dock and

distribution center based supply chains. This step included creating a problem definition for the

two systems, which can clearly define what is being modeled. It involved describing the objects

and activities that are included in the two systems. Once the problem definition was recognized,

we started thinking about the input factors and performance measures, which can help us analyze

the efficiency and the differences between the two systems. The next step of this research was to

analyze the problem definition to identify the potential classes needed to model the systems. This

step will be described in the next section.

3.2 Analysis

 In this step, we focused on identifying the major classes of the objects. Each of these objects

has its attributes, behaviors, and relationships with other objects in the system. An object attribute

can be described as a property or a characteristic, which should be stored and remembered. The

 9

behaviors of the objects can be modeled using methods that either work alone or collaborate with

other objects or methods to perform a specific responsibility. The collaboration between the classes

can be highlighted using UML diagrams. Therefore, in this research phase, we developed basic

UML diagrams to identify the major collaborations between the classes, determine the essential

attributes of each object, and highlight the important methods of each class. Besides, we identified

some key modeling issues that need to be addressed in the coming phases. At the end of this phase,

we had enough understanding of the models and the necessary classes, which are essential to

design the simulation frameworks.

3.3 Design

 In this phase, we performed a deep analysis of the classes and their characteristics. The

methods and their signatures were defined clearly, and the collaboration between the classes was

defined and illustrated using the necessary methods. In addition, some key modeling issues were

addressed in this phase to find a suitable approach for modeling them using the defined classes

and relationships. After this phase, we had the conceptual basis of the simulation framework,

which needs to be translated into a Java code. This was done in the implementation phase that will

be described in the next section.

3.4 Implementation and Testing

 The implementation phase was the most crucial in this research. We worked on mapping

the system design to code, which will help us develop the simulation frameworks. The code was

developed in Java, using the Java Simulation Library. After implementing the Java code, we

defined test cases and validated them using text statements to track the flow of entities in the

system and verify that it is working in the right way.

Throughout this research, we revisited the phases more than once, especially during the

 10

implementation phase. For example, we had to go back to the design phase to make the necessary

changes needed to handle modeling certain scenarios. The modeling of the classes and their

characteristics will be described clearly in the modeling section of this document.

 11

4. System Definition

 In general, four supply chain configurations exist, and they differ by the locations that

products visit before reaching the end customer. For example, in a distribution center supply chain

network (DC-SCN) products are sent from the external supplier to the distribution centers and then

to the customers. While in a cross-dock supply chain network (CD-SCN) products are sent from

the external supplier to the cross-dock and then to the customers. In this research, the focus is on

comparing the performance of these two configurations by modeling two inventory systems and

assessing their performance based on common supply chain metrics.

4.1 Cross-Dock Based Multi-Echelon Inventory Network (CD-MEIN) Characteristics

As shown in Figure 1, the CD-MEIN system consists of an external supplier, a cross-docking

facility, and 6 warehouses. The cross-docking facility is the location where items are received from

the supplier, sorted and then sent to the different retailers. For simplicity, assume that 4 product

types are stocked at the external supplier and the warehouses, and each of the products has certain

weight and volume. Each of the warehouses use reorder point reorder quantity (r, Q) inventory

policies, with different reorder points and reorder quantities based on item characteristics. Demand

quantities vary by product type at each warehouse. The different parameters of the warehouses in

this system are mentioned in Table 1, where the time between demands parameter refers to the

duration between two consecutive demand requests.

 12

Figure 1: Cross-Dock Based Multi-Echelon Inventory Network

Table 1: Parameters of the Cross-Dock Multi-Echelon Inventory System (Rossetti & Xiang,
2014)

Warehouse A B C

Item Type 1 2 3 4 1 2 3 4 1 2 3 4

Reorder Point 200 4 3 2 50 1 2 450 500 5 10 350

Reorder Quantity 180 7 6 5 131 2 3 329 462 8 27 405

Time between

Demands (days)

35.18 1.93 1.23 0.75 19.1 0.44 0.5 61.7 69.5 2.19 5.18 44.9

Warehouse D E F

Item Type 1 2 3 4 1 2 3 4 1 2 3 4

Reorder Point 500 150 15 20 250 1200 1220 650 50 300 250 300

Reorder Quantity 458 126 29 101 336 399 483 377 156 150 300 322

Time between

Demands (days)

69.95 24.7 6.39 14.12 38.9 111.9 134.7 82.1 19.9 33.9 40.1 40.2

4.1.1 Order Processing

When demand occurs at any warehouse, the stock on hand is checked to determine whether

the demand can be fulfilled or not. If the stock on hand is not enough, the entire order is back-

ordered. The external supplier is responsible for filling the demand for a certain product and

Supplier

Cross-
docking
Facility

Warehouse A Warehouse B Warehouse C Warehouse D Warehouse E Warehouse F

 13

supplies the warehouse when a backorder or replenishment order is placed. This order flow

between the different locations can be shown in Figure 2.

The orders from a warehouse will not necessarily fill an entire truckload, so the shipment

cannot be sent directly from supplier to warehouse due to the high transportation costs. As a result,

the supplier sends orders going to multiple warehouses on the same truck. This truck goes to the

cross-dock, where sorting of the products going to the same warehouse takes place. The lead time

between the cross dock and the supplier is the sum of production time and transportation time,

which has distribution denoted by F1 in Table 3. All subsequent references to distributions can be

found in Table 3.

Figure 2: Conceptual System Description for CD-MEIN

4.1.2 Cross-dock Operations

When an inbound truck arrives, it is assigned to a receiving door where unloading of the

products takes place. We have 5 inbound doors, and the vehicles are assigned to the doors based

on FIFO rule. Once a vehicle is assigned to a door unloading starts and the unloading time has

distribution F2. When the truck is fully unloaded, the employees start sorting the products based

on their destination, and this activity has distribution F3. Then, loads of the sorted products are

SUPPLIER

Truck loading

Sending orders to supplier

CROSS-DOCK

Unloading
inbound
 trucks

Sorting &
load building

Loading
outbound

trucks

Warehouse

Receiving SKUs Storing SKUs

Sending orders
to retailers

Sending orders
to cross-dock

 14

built where each load has a maximum volume, and this loads building takes time of distribution

F4. Once a full load is built, it is either moved to the staging area or directly loaded to an outbound

truck going to the proper warehouse. There are 5 outbound doors available, and each one can be

assigned to one truck at a time. The loading process takes the time of distribution F5. An outbound

truck leaves the cross-dock when it has a full truckload, or after waiting for a maximum of 48

hours. For simplicity, assume that in all the steps, enough employees are available to perform the

tasks.

4.2 Distribution Center Based (DC-MEIN) Multi-Echelon Inventory Network

As Figure 3 and Figure 4 shows, the only difference between the cross-dock network and

the distribution center network is having a distribution center instead of a cross-docking facility.

In this case, the warehouses place their backorders and replenishment orders to the distribution

center, which uses an (r, Q) policy for each item type. The policy parameters are listed in Table 2,

and the warehouses’ parameters are identical to the warehouses’ parameters mentioned in Table

1.

Figure 3: Distribution Center Based Multi-Echelon Inventory Network

Supplier

Distribution
Center

Warehouse A Warehouse B Warehouse C Warehouse D Warehouse E Warehouse F

 15

Table 2: Distribution Center Parameters
Item Type Reorder Point Reorder Quantity

1 250 600

2 400 500

3 200 300

4 550 800

4.2.1 Order Processing

When an order is placed at the distribution center, and the stock on-hand is enough to fulfill

this order, different activities take place. First, order picking happens where the product is picked

from its storing location and moved to the dispatching area. The picking and moving activities take

time, which has distribution F6. Then, dispatching takes place where products are packed and

loaded to the outbound vehicle, and this takes the time of distribution F7. The transportation time

between the distribution center and each of the warehouses is assumed to be of distribution F8.

Figure 4: Conceptual System Description for System 2

4.2.2 Distribution Center Operations

Once a vehicle arrives at the facility, the vehicle details will be checked against the booking

reference, and the vehicle will be allocated a location where unloading happens. Assume this

SUPPLIER

Truck loading

Sending orders to DC

Distribution Center

Unloading
inbound
 trucks

Loading
outbound

trucks

WAREHOUSE

Receiving SKUs Storing SKUs

Sending orders
to warehouseSending orders

to distribution center

Storing SKUs

Order Picking and load building

Sending orders to supplier

 16

activity takes the time of distribution F9. Then, unloading the vehicle takes place at the allocated

location, and this activity has distribution F10. After unloading, a checking activity may occur

based on each supplier. For simplicity, assume the checking activity is not required for all the

suppliers. As a result, put away activity occurs after unloading where each product is stored in a

suitable location and moved through the appropriate material handling equipment. The put-away

activity takes the time of distribution F11.

The probability distributions for all the activities, which occur in the two systems, are described in

Table 3.

 17

Table 3: Activities Distribution Forms

Distribution

Number

Activity Description Distribution Source

F1 Transportation time between the

cross dock and the supplier

UNIF(2,4) days (Xiang &

Rossetti, 2014)

F2 Inbound vehicles unloading time TRIA(5,25,40) minutes (Magableh &

Rossetti, 2005)

F3 Sorting time TRIA(10,30,60) minutes

F4 Load building time TRIA(15,30,60) minutes

F5 Outbound vehicle loading time at

CD

TRIA(7,26,46) minutes (Magableh &

Rossetti, 2005)

F6 Picking and moving time TRIA(10,20,30) minutes

F7 Outbound vehicle loading time at

DC

TRIA(7,26,46) minutes

F8 Transportation time between

warehouses and DC

UNIF(2,4) hours (Rossetti &

Xiang, 2014)

F9 Vehicle checking time TRIA(5,10,15) minutes

F10 Unloading time for inbound

vehicle at DC

TRIA(5,25,40) minutes

F11 Put away time (per order and each

order has multiple items)

TRIA(30,45,60) minutes

 18

4.3 Input Parameters

The simulation model developed is designed to allow the variation of several input

parameters, which can affect the performance of a cross-docking facility and a distribution center.

Examples on these parameters are:

• Time between demands and demand amount: In this research, we use the word “demand” to

represent the request for a certain quantity of a product placed at a warehouse. Different studies

mentioned that cross-docks are suitable for products with high and stable demand (Gue, 2007).

To further investigate this conclusion, different values for the time between demands, and

demand amounts for each product are considered, noting that as the time between demands

increases the demand level decreases because less demands are entering the system in a certain

period of time.

• Number of item types: previous studies done on multi-echelon inventory systems paid little

attention to the effect of the number of item types moving between the different locations on

the performance of the system. This study investigates this issue to assess whether CD or DC

system is better for a specific number of item types under certain conditions.

• Load building policy: processing filled demand based on different rules was also examined by

Rossetti and Xiang (2010) for distribution center-based supply chain. Similarly, this research

will assess the effects of these rules on both DC and CD-based supply chains to investigate the

effect of the rules on the recommended configuration.

The levels for each factor will be determined later in the study after running the base case

simulation.

4.4 Key modeling issues

Different key modeling issues will arise during the modeling of both systems. The most

 19

critical ones are summarized below.

4.4.1 Outbound trucks departure

Determining when an outbound truck leaves a cross-docking facility is essential and is

affected by many factors like the warehouses’ rules and full truckload weight and volume limits.

In this document, we assume that an outbound vehicle leaves the cross-docking facility when the

lower weight or volume limit of the truckload is reached. The volume limit of the full truckload

ranges between 960 ft3 and 2000 ft3 and the weight limit ranges between 5000lbs and 45000lbs.

(Parsa et al., 2017). We will also assume that an outbound vehicle leaves the facility if the vehicle

waiting time reaches 48 hours. Whichever case occurs first will trigger the departure of the vehicle.

4.4.2 Transportation resources

Moving products between the different locations are done using vehicles. Each location

can have its transportation system, or vehicles can be shared by the different facilities. We assume

that each warehouse has its vehicles responsible for transporting the products to it, and each

supplier has vehicles responsible for moving products to DC or CD. We also assume that there is

an unlimited number of vehicles assigned to each facility.

4.4.3 Number of item types and warehouses

A high number of warehouses, and item types can increase the complexity of the

simulation. As a result, choosing the right numbers is essential for handling this issue. In this study,

we will start the simulation with the numbers listed in the system description section. Then we will

calibrate the model to determine the suitable numbers needed to get a significant flow of products

in the systems.

 20

4.4.4 Demand Filling

When demand occurs, and orders are placed to the external supplier or DC, in certain cases,

stock on hand is not enough to fill the entire demand. This scenario can be handled in different

ways. In this study, we assume that partial filling is allowed, so the available stock on hand will

be used to fill part of the order, and the remaining part is back-ordered.

 21

5. Modeling

In this chapter, we first describe the conceptual model of cross-dock and distribution

center-based supply chains framework, and then discuss the framework development in detail by

describing all the system elements, their roles, attributes, and relationships with each other. We

will also highlight the key modeling issues faced during the development of this framework.

5.1 Conceptual Modeling

To model the cross-dock and distribution center-based supply chains, we first identified the

basic elements required to build the two supply chain systems. These basic elements were

determined as demand fillers, demand senders, shipment receivers, locations, facilities, demand

generators, shipment builders, and shipment carriers. Each of these elements may have

relationships with other elements within the framework. Most of these elements were identified

either as interfaces or abstract classes in the framework, which are later used to model more

concrete classes. In this section, we describe the major basic elements of the framework and

highlight their major roles.

A demand filler is an object that can handle demands and fill them. While, a demand sender

is an object that requests demands from other objects, and a shipment receiver is an object, which

can receive shipments from other objects. In our framework, we represent a location as a place in

the supply chain, which can fill the demands requested by other locations. A facility is a location

that can also send demands and receive shipments; thus, a facility is a location with additional

functionalities. In other words, a location is a demand filler, while a facility is a demand filler,

demand sender, and shipment’s receiver. For example, an external supplier is a location because

it is only responsible for filling demands placed by other locations. However, a distribution center

is a facility because it can send demands, fill demands, and receive shipments from other locations

 22

or facilities. Another two major elements in the framework are shipment builders and shipment

carriers. A shipment builder is responsible for building shipments of multiple demands going to

the same destination. The shipment builder can build shipments based on many rules, which will

be discussed in detail later in this chapter. Besides, a shipment carrier is responsible for

transporting the shipments from one location to another. A demand generator is an object

responsible for generating demands in the framework.

In any distribution-center or cross-dock based supply chain, there is a sequence of events,

which occurs to fill the customer demands. For example, the sequence of events which occur in a

cross-dock based supply chain can be described as:

• The demand for a specific number of items is generated using a demand generator.

• The demand arrives at a specific facility, which is the assigned filler for the demand

generator.

• The facility’s inventory is checked to determine whether demand can be filled directly or

not. If there is enough inventory on hand, the demand will be filled immediately. If not, the

demand will be back-ordered, and a replenishment order will be placed to the filler of the

facility, which is, in this example, a cross-dock.

• The filler receives the replenishment order, and directly sends it to the external supplier

because, in our framework, we assumed that a cross-dock does not have inventory stored

in it.

• The external supplier will fill the demand and form a shipment of this demand and other

demands going to the cross-dock based on the shipment building rule provided.

• The carrier will transport the shipment to the cross-dock after loading takes place.

• The cross-dock will dispatch the shipment, and consolidate the demands going to the same

 23

destination to build a shipment and send it to the destination.

• The carrier will be loaded and then transport the shipment to the facility.

• The facility will receive the shipment, unload and dispatch it, and fill the back-ordered

demands.

In the next section, we will describe the modeling of the framework objects in detail to

highlight how this flow of events can be modeled.

5.2 Detailed Modeling

 In this section, we illustrate the development of the framework in a more detailed way

based on the conceptual model elements described in the previous section. We describe how this

framework can be used to model user specific cross-dock and distribution center based supply

chains. This can be easily done by implementing interfaces and abstract classes, since they allow

the users to design their own supply chains by sub classing from them and overriding the methods.

Throughout this section, we discuss the objects in the supply chain systems, their roles, behaviors,

attributes, and relationships with other objects. We also present the implementation of specific

cross-dock and distribution center based supply chains, to illustrate how this framework works and

to provide a better understanding of how to use the framework.

 We describe the modeling of a simple multi-echelon inventory system to illustrate the use

of the framework to model this system, which consists of an external supplier, a distribution center

and a warehouse. For simplicity, we assume that there is only one item type stocked at each

location within this system, and both the warehouse and the distribution center, have reorder point

reorder quantity (r, Q) inventory policies. The distribution center supplies the warehouse when a

replenishment request is placed, and the external supplier satisfies any order placed by the

distribution center. The lead time, which is the sum of the production time and transportation time

 24

between the external supplier and the distribution center, is assumed to be 5 days. The mean time

between demands arrival to the warehouse is 0.5 days. The re-order quantity for the warehouse is

3, and the reorder point is 2. While, the reorder quantity for the distribution center is 5, and its

reorder point is 3. We will also describe the way to model this exact system, but with a cross-dock

instead of a distribution center.

In this framework, we assume that the system is empty (at time=0), which means that no
demands are flowing in the system. Besides, the initial level of inventories is set to the sum of the

reorder quantity and reorder point, and all carriers are available at their facility. The simulation
framework consists of thirteen classes and four interfaces, in addition to another two interfaces
and four classes, which were presented in (Rossetti et al., 2008). All of these classes are shown

in Table 4, and the interfaces are shown in

Table 5. This section is divided into subsections, where each subsection explains the

modeling of a specific class in detail.

Table 4: List of Classes

New Classes Previous Classes

CrossDockFacility DistributionCenter Shipment InventoryHoldingPoint

ExternalSupplier FacilityAbstract ShipmentBuilder Demand

LocationAbstract GroupDemandGenerator ShipmentsCarrier DemandGenerator

ReceivingDock ShippingDock Network ItemType

WarehouseFacility StorageFacilityAbstract

 25

Table 5: List of Interfaces

New Interfaces Previous Interfaces

FacilityIfc DemandFillerIfc

LoactionIfc DemandReceiverIfc

ShipmentFormingRuleIfc DemandSenderIfc

ReceiveShipmentsIfc

5.2.1 Modeling of a Location using LocationIfc and LocationAbstract class

 In this section, we discuss the modeling of a location using LocationIfc and

LocationAbstract class. We will also give an example on a LocationAbstract subclass, which is

ExternalSuplier, and highlight its functionality. As mentioned before, we represented a location

as a specific place in the supply chain responsible for filling demands requested by other locations.

Thus, LocationIfc extends DemandFillerIfc, which was developed previously (Rossetti, Miman,

& Varghese, 2008). This DemandFillerIfc allows the objects that implement it to handle demands,

and be able to fill them eventually. A LocationAbstract class implements LocationIfc and extends

SchedulingElement, which is a ModelElement that allows the scheduling of events.

 26

Figure 5: Class Diagram of LocationAbstract class

 LocationAbstract class allows classes that extend it to have multiple characteristics. Any

location can have multiple customers, which request demands from it. Each of these customers is

assigned to the Location using one of the addCustomer() methods, which provide flexibility in

determining the shipment building rule for this specific customer. Besides, each of these customers

will have a shipment builder at the level of the Location responsible for building shipments based

on the provided shipment building rule. Moreover, any location can have a carrier assigned to it

responsible for transporting the shipments to the customers. In our model, we decided to collect

multiple statistics for any location, which will be illustrated later in this document. Examples of

these statistics are total time an item type spend inside shipment builders, and the total inventory

for an item type in the shipment builders’ area.

 ExternalSupplier class is an example of LocationAbstract subclass, which is responsible for

filling the demands requested by cross-docks and distribution centers. This class overrides the

receive() and fillDemand() methods of the DemandFillerIfc to inherit its behavior. In addition to

receiving and filling demands, the ExternalSupplier class has methods, which allow it to send

demands to their suitable shipment builder, and then receive shipments back and direct them to the

carrier to transport them. For simplicity, we assumed that the ExternalSupplier has enough

inventory to fill all the demands, and have enough carriers to transport a shipment once it is built.

 27

 Error! Reference source not found. illustrates how an external supplier can be added to

the model. In the hierarchy of JSL, there is a top-level model element, which is a parent for all the

other model elements, so we start by creating this simulation model. Then, we create an item type

using the ItemType class developed previously. Each item type needs a parent model element and

a name. It can also take the volume and the weight of this item type. Later, we create an external

supplier, which is an instance of the ExternalSupplier class that also needs a reference to the parent

model element. We then define the distribution for the lead time of item type1 and assign it to the

external supplier using the addLeadTime () method, which takes the item type and its lead time as

parameters.

public static void Test(){
 Simulation e = new Simulation();

 Model m=e.getModel();

 ItemType myItemType1=new ItemType(m,"Type 1");
 ExternalSupplier myExternalSupplier=new ExternalSupplier(m);
 RandomVariable myLeadTime1=new RandomVariable(m, new ConstantRV(5));
 myExternalSupplier.addLeadTime(myItemType1,myLeadTime1);
}

Exhibit 1: Creating Item Type, External Supplier and Setting the Lead Time

5.2.2 Modeling of a Facility using FacilityIfc and FacilityAbstract class

In this subsection, we discuss the modeling of FacilityIfc, FacilityAbstract class,

StorageFacilityAbstract class, and give an example on subclasses of each. As mentioned before, ,

we represent a facility as a location that can also send demands and receive shipments from other

locations. Therefore, a FacilityIfc extends DemandSenderIfc, which allows classes that implement

it to send demands to other locations, and extends the ReceiveShipmentsIfc, which allows facilities

to receive shipments from other locations or facilities. As a result, FacilityAbstract class extends

 28

LocationAbstract, since it is also a location, and implements FacilityIfc, which differentiates it

from a location. The LocationAbstract class structure can be illustrated in the class diagram

presented in Figure 6.

Figure 6: Class Diagram for FacilityAbstract Class

 FacilityAbstract class allows each of its subclasses to have a receiving dock and a shipping

dock. A receiving dock is an area where incoming shipments are unloaded and dispatched into

individual demands, while a shipping dock is an area where shipments are loaded to carriers to be

transported to their destination. In this framework, the connection between the facility,

ShippingDock, and ReceivingDock classes is facilitated using methods, which can be overridden

by subclasses to model their specific activities.

 StorageFacilityAbstract class is a subclass of FacilityAbstract class, which can handle the

modeling of facilities that can also have inventories for each item type. Examples on these facilities

are distribution centers and warehouses. The StorageFacilityAbstract class allows a facility to have

relationships with the InventoryHoldingPoint class previously developed (Rossetti, Miman, &

Varghese, 2008). The InventoryHoldigPoint class holds instances of inventory for item types, and

provides behavior that allows the inventories to be replenished. More description about the

 29

InventoryHoldingPoint class can be found in (Rossetti, 2008). To facilitate the connection between

the StorageFacilityAbstract class and InventoryHoldingPoint (IHP), we used inner class inside

StorageFacilityAbstarct class that extended DemandFillerIfc and acted as the demandFiller for the

IHP. We faced a lot of challenges while trying to integrate IHP and other previously developed

classes with our framework, which made us change some of our framework design. More

information about this issue will be presented later in the recommendations part of this document.

 DistrbutionCenter class is an example of StorageFacilityAbstract subclass, which has

inventories for each item type stored inside the IHP. In this research, we used (r,Q) inventory

policy for all inventories. When demand is requested, the DC delegates the demand to the

inventory to check whether there is enough stock on hand or not. If the stock on hand is enough,

the demand will be filled immediately and sent to the shipment builders’ area. If not, the demand

is backlogged and waits until a replenishment demand arrives to be filled. In this research, we

assumed that partial filling is allowed, which means that any available stock on hand will be used

to fill part of the demand, and the remaining part is back-ordered.

 Exhibit 2 shows how a distribution center can be created and linked to the ES. First, we

create an instance of the DistributionCenter class, then we add the item type to it, using

addItemType() method. This method will communicate with other protected methods in the model

to facilitate statistics collection for this specific item type. Then, we add the inventory for this item

type using the addInventory() method, which takes the item type, re-order point, re-order quantity,

and initial level of inventory as its parameters. Once a distribution center is added to the model, it

should be linked to the external supplier that will function as its demand filler. This is done using

the addCustomer() method of the external supplier, which internally creates a shipment builder for

the DC, where its shipments are formed. As we mentioned before, there is more than one method

 30

that can add customers to a specific location. These methods have different signatures since they

add customers with different shipment building rules. In this exhibit, we used the default

addCustomer() method with no shipment building rule, so we will always form shipments going

to the DC regardless of the shipment weight or volume.

public static void Test(){
 Simulation e = new Simulation();

 Model m=e.getModel();

 ItemType myItemType1=new ItemType(m,"Type 1");
 ExternalSupplier myExternalSupplier=new ExternalSupplier(m);
 RandomVariable myLeadTime1=new RandomVariable(m, new ConstantRV(5));
 myExternalSupplier.addLeadTime(myItemType1,myLeadTime1);

 DistributionCenter myDistributionCenter=new DistributionCenter(m);
 myDistributionCenter.addItemType(myItemType1);
 myDistributionCenter.addInventory(myItemType1,3,5,8);
 myExternalSupplier.addCustomer(myDistributionCenter);
}

Exhibit 2: Creating and Adding the Distribution-Center to the Model

Another example of StorageFacilityAbstract subclass is the WarehouseFacility class,

which represents a warehouse. The main difference between the warehouse and distribution center

in this framework is the type of customers for each. A distribution center can have multiple

warehouses requesting demand from it, while a warehouse will be connected to demand generators

that will generate demands. Demand generators will be discussed in detail later in the

GroupDemandGenerator subsection.

Exhibit 3 shows how a warehouse facility is made by creating an instance of

WarehouseFacility class. Similar to the distribution center, inventory is added to the warehouse

through the addInventory() method discussed before. The warehouse was linked to the distribution

 31

center method using the addCustomerWithWeightShipmentBuildingRule() method. This notifies

the distribution center should form shipments going to the warehouse based on the weight

shipment building rule that has a minimum and maximum weight for shipments. This framework

allows the addition of many warehouses and connecting them to the distribution center.

public static void Test(){
 Simulation e = new Simulation();

 Model m=e.getModel();

 ItemType myItemType1=new ItemType(m,"Type 1");
 ExternalSupplier myExternalSupplier=new ExternalSupplier(m);
 RandomVariable myLeadTime1=new RandomVariable(m, new ConstantRV(5));
 myExternalSupplier.addLeadTime(myItemType1,myLeadTime1);

 DistributionCenter myDistributionCenter=new DistributionCenter(m);
 myDistributionCenter.addItemType(myItemType1);
 myDistributionCenter.addInventory(myItemType1,3,5,8);
 myExternalSupplier.addCustomer(myDistributionCenter);

 WarehouseFacility myWarehouseA=new WarehouseFacility(m,"Warehouse A");
 myWarehouseA.addInventory(myItemType1,2,3,5);
myDistributionCenter.addCustomerWithWeightShipmentBuildingRule(myWarehouseA,25,40);
}

Exhibit 3: Creating and Adding the Warehouse to the Model

 An example of a subclass of FacilityAbstract is the CrossDockFacility class. In this

research, we assumed that a cross-dock facility doesn’t have previously-stored inventories, which

can fill the demands requested by other facilities. Instead, it acts as a location where products going

to the same destination are consolidated into a shipment based on specific rules. We mentioned

before in the system description that warehouses send demand requests to the external supplier,

which later sends the shipments back to the warehouses through the cross-dock. To make the

modeling easier and make the framework more flexible, we assumed that the warehouses will send

demand requests to the cross-dock, which will directly send them to the external supplier. This

modeling approach allows us to easily add inventories later to the cross-dock and be able to fill

demands from stock on hand inside it if necessary.

 32

 Error! Reference source not found. shows how a cross-dock facility can be created and

added to the model. We start by creating an instance of CrossDockFacility class, then, we add the

item type to it, using the addItemType() method. The cross-dock is linked to the external supplier

using the addCustomer() method, which was used to connect the distribution center to the external

supplier too. Adding warehouses and linking them to the cross-dock facility can be done similarly

as presented in Exhibit 3.

Exhibit 4: Creation and Addition of Cross-Dock to the Model
5.2.3 Shipment and Shipment Builder Classes

 A shipment is a group of demands or products consolidated together since they have the

same destination. In this framework, the shipment entity is represented by the Shipment class,

which extends the QObject class and holds the shipment characteristics. These characteristics

include the total weight and cube of the shipment and its set of demands. Also, each shipment has

a specific origin and destination, which are either facilities or locations The Shipment class has

methods, which return all of these characteristics; thus, making it easy to access them in the

framework. Besides, extending the QObject class allows the shipments to be placed in queues

when needed. It also permits the attachment of other objects or important attributes to any

public static void Test(){
 Simulation e = new Simulation();

 Model m=e.getModel();
 ItemType myItemType1=new ItemType(m,"Type 1");
 ExternalSupplier myExternalSupplier=new ExternalSupplier(m);
 RandomVariable myLeadTime1=new RandomVariable(m, new ConstantRV(5));
 myExternalSupplier.addLeadTime(myItemType1,myLeadTime1);

 CrossDockFacility myCrossDock=new CrossDockFacility(m);
 myCrossDock.addItemType(myItemType1);
 myExternalSupplier.addCustomer(myCrossDock);
}

 33

shipment.

 A shipment builder, as described before, is the object responsible for building shipments

going to a specific destination based on certain shipment forming rules. In this framework, we

defined three different shipment forming rules: Count, Weight, and Cube. Besides, we added the

ShipmentFormingRuleIfc, which allows the user to define any new shipment forming rule by

implementing this interface and overriding the formShipment() method. The Count shipment

forming rule refers to forming shipments when a minimum number of items is reached. While the

Weight and Cube shipment forming rules, allow shipment forming only when a minimum weight

or cube is reached. The ShipmentBuilder class has the receiveDemand() method, which receives

the demands from the facilities and puts them in the demand queue. Then, checking occurs to

determine whether a shipment can be formed or not based on the shipment forming rule set. This

class also has methods to set the parameters for the forming rules, and methods to provide the logic

for shipment forming based on a specific rule.

5.2.4 Shipments Carrier Class

 Every location needs a carrier to transport the shipments to their destination once they are

ready. To model this carrier, we implemented the ShipmentCarrier class, which extends

SchedulingElement. This class has two main methods: transportShipment(), and addDestination

method. The transportShipment() method is used to connect the location with the shipments carrier

once a shipment is built and ready to be transported. While, the addDestination() method is used

to add the destinations, where the carrier can reach with the associated transportation time. In

Exhibit 5, we can see how a shipments’ carrier is created for the external supplier location by

defining an instance of the ShipmentsCarrier class. This exhibit also shows how the

addDestination() method was used to set the distribution center as a destination for this carrier and

 34

assign the transportation time between the external supplier and distribution center. The same

strategy can be used for creating shipment carriers and assigning destinations to them for any

location.

public static void Test(){
 Simulation e = new Simulation();

 Model m=e.getModel();

 ItemType myItemType1=new ItemType(m,"Type 1");
 ExternalSupplier myExternalSupplier=new ExternalSupplier(m);
 RandomVariable myLeadTime1=new RandomVariable(m, new ConstantRV(5));
 myExternalSupplier.addLeadTime(myItemType1,myLeadTime1);

 DistributionCenter myDistributionCenter=new DistributionCenter(m);
 myDistributionCenter.addItemType(myItemType1);
 myDistributionCenter.addInventory(myItemType1,3,5,8);
 myExternalSupplier.addCustomer(myDistributionCenter);

 WarehouseFacility myWarehouseA=new WarehouseFacility(m,"Warehouse A");
 myWarehouseA.addInventory(myItemType1,2,3,5);

myDistributionCenter.addCustomerWithWeightShipmentBuildingRule(myWarehouseA,25,40
);

 ShipmentsCarrier myExternalSupplierCarrier=new
ShipmentsCarrier(myExternalSupplier,"ES carrier");
 RandomVariable myTransportTime=new RandomVariable(m, new UniformRV(2,4));
 myExternalSupplierCarrier.addDestination(myDistributionCenter,myTransportTime);
}

Exhibit 5: Creating Shipment Carrier for External Supplier

5.2.5 Generating Demands using DemandGenerator and GroupDemandGenerator Classes

 A demand generator, as mentioned before, is an object that generates demands and sends

them to its associated filler. Thus, a demand generator must implement the DemandSenderIfc. In

this framework, we modeled the warehouses to be the fillers for the demand generators. To

simplify the creation of many demand generators assigned to the same filler, we implemented the

 35

GroupDemandGenerator class, which has only two main methods, as shown in Figure 7. The

constructor of the GroupDemandGenerator class takes three parameters, which are the model

element, the filler of the demand generators, and a map that has the item types with their associated

time between demands. Once an instance of GroupDemandGenerator class is created, the

createGroupDemandGenerators() method is called internally, which calls the

createDemandGenerator() method to create a demand generator for each item type found in the

given map.

Figure 7: GroupDemandGenerator Class Methods

5.2.6 Network Class

 To simplify the modeling of complex inventory systems, we implemented the Network

class, which can build the systems more easily. This class models a network of facilities and

locations based on user preferences. The top-level of this network is always an external supplier

that has an infinite supply of item types and can function as a demand filler for both cross-docks

and distribution centers. Figure 8 shows that the Network class contains public and protected

methods, which models the relationships between this class and other objects in the framework.

The first step in building the network is the addition of item types to the system using the

addItemType() method. This method allows the addition of the item type with its name, weight,

and volume. Once all item types are added, it’s time to add the cross-dock and distribution center

facilities using addCrossDock(), and addDistributionCenter() methods. As mentioned before, the

top level of this network is the external supplier, which is internally created in the Network class.

After adding cross-dock and distribution center facilities, they should be attached to the external

supplier using the attachCrossDockToES(), and attachDistributionCenterToES() methods. The

 36

signatures of these methods have the facility and the transportation time between the facility and

the external supplier. Once we have the cross-dock and distribution center added to the network

and attached to the external supplier, warehouses can be added and attached to their demand filler.

This can be done using the suitable addWarehouse() method, depending on the shipment building

rule. After adding any warehouse, the addInventory() method should be used to add the inventories

found in this warehouse. This method should also be used to add the inventories for the distribution

centers. When all the warehouses with their inventories are added to the system, group demand

generators or demand generators can be attached to the warehouses using

attachDemandGenartor(), and atttachGroupDemandGenerator() methods. Whenever the user adds

a new facility to the network, multiple checks are done internally to verify that this facility can be

added to this system normally. For example, when the user uses the attachCrossDockToES()

method, checks are done to determine whether the distribution center exists or not and whether it

was attached before to the external supplier. These checks and others help in confirming that the

right network is built.

Figure 8: Network Class Methods

 37

6. Performance Measures, Test Cases and Validation

In this section, we first describe the performance measures we use to assess the

performance of the two systems. Then we focus on testing the framework and the network class to

prove that all the objects are working as desired in the inventory systems. The data presented in

the system definition section is used to model the cross-dock and distribution center multi-echelon

inventory systems. Later, in the validation sub-section we discuss the reasons, which make these

results reliable and validate that the modeling is working as intended.

6.1 Performance Measures

• Fill rate and aggregate fill rate: fill rate is the percentage of customer’s demand that can be

fulfilled with stock on hand without the need to backorder. This rate is considered as one of

the most important customer service measures, and it can be measured for individual products

in a facility and for the facility itself. In this research, we reference the fill rate of the facility

as the aggregate fill rate, which is a demand weighted fill rate. In other words, the aggregate

fill rate is the summation of the fill rates per item type multiplied by the weight of the demand

of each item type. In this study, we focus on the fill rates of the warehouses in each of the

systems; thus, we arel be able to compare the performance of the two systems and determine

which system will achieve higher fill rates under specific conditions.

• Inventory on hand: is the amount of products present for sale or use in a facility (warehouse or

distribution center) at a particular time. In this research, we measure the inventory on hand for

every warehouse to determine its effects on other performance measures.

• Waiting time per item type in the shipment building area: is the time each item type spends in

the shipment building area of the cross-dock or distribution center waiting to be shipped to its

destination. This performance measure can help us determine how long the item types are

 38

staying in the shipment building area before being shipped to their destination.

• Total inventory per item type in the shipment building area: is the total inventory found in the

shipment building area of cross-dock or distribution center waiting to be consolidated into a

shipment to be shipped to their destination. This performance measure allows us to determine

which inventory system has a higher inventory per item type in the shipment building area.

• Total time to fill a demand in a warehouse: is the total time taken to fill a demand requested

by the customer. If the warehouse has enough inventory on hand, then this time is zero. This

performance measure is sensitive to the inventory level of the warehouse and the distribution

center, since having higher inventory means being able to fill the demand immediately more

frequently.

• Total cost: the main reason for shifting from traditional warehousing to cross-docking, is

reducing the overall costs. The simulation model will determine the different costs needed to

calculate the final total cost for the two systems, which is measured in $/year. These costs are:

o Manufacturing location (supplier) cost: it is the sum of the average inventory cost, and

the cost of loading orders to either a DC or CD.

o Total transportation cost: transportation cost is the sum of shipping cost and average

in-transit inventory cost. This cost is calculated for each route; for example, there is a

transportation cost for moving products from supplier to CD. Similarly, there is a

transportation cost for moving the products from CD to warehouses. The sum of the

transportation costs for all the routes forms the total transportation cost.

o Cross-dock or distribution center cost: this cost is the sum of average inventory cost,

cost of replenishment ordering, and cost of loading and unloading replenish at the

cross-dock or distribution center.

 39

Warehouse cost: it is the sum of average inventory cost, cost of replenishment ordering,

and cost of unloading replenish at the warehouse.

6.2 Testing Cases and Results

 The network class is used to build two multi-echelon inventory systems. The first one is

CD-MEIN, and the second one is DC-MEIN. Each of these systems consists of an external

supplier, a cross-dock or a distribution center, and six warehouses. The values of the warehouses

re-order quantity, re-order point and demand rates are presented previously in Table 1.Appendix

A shows how the network class is used to model the systems. The simulation time is 10 years, with

5 years warm-up period, and the number of replications is 10 for both systems. For simplicity, we

assume that every two days, all products waiting at the shipment building area, are consolidated

into a shipment based on their destination. The results of these simulation runs are presented in

sections below, where in each section the results of a specific performance measure for both

systems are presented and analyzed.

6.2.1 Total Time to Fill Demand by Each Warehouse Results

 Table 6 shows the difference between the total times to fill the demand at the level of the

warehouses in the two systems. The results show that the cross-dock system has higher times to

fill the demands, and this is normal due to the high inventory stored in the distribution center in

the second system For example, warehouse B in the CD-MEIN has the highest time to fill the

demands because it has a high demand rate, specifically for item types 2 and 3, as shown in Table

1; thus, requesting a high number of replenishment orders. However, since there is no inventory

stored in the cross-dock, warehouse B is waiting for a longer time to receive replenishment orders,

which is leading to a very low level of inventory on hand for item types 2 and 3 as shown in 10

and Table 11. Warehouses D, E, and F have zero time to fill demands in both systems since they

 40

have high inventory on hand levels, as presented in 10 and Table 11 , to immediately fill the

demands requested during the simulation period. To further validate the time values, a hand

calculation was used to calculate the total time for warehouse B in the CD-MEIN. The total time

to fill demands at warehouse B can be calculated using the following equation:

Total time to fill demand by warehouse B= lead time + waiting time at ES shipment builder +

loading time + transportation time between ES and CD + unloading time + waiting time at CD

shipment builder + loading time + transportation time between CD and warehouse B + unloading

time.

The values of the equation components are collected from the statistics provided by the simulation,

and from the input values given to the simulation like transportation, loading, and unloading times.

And since these times follow certain distributions, we used the average of each distribution to

calculate the total time to fill the demand by warehouse B. Table 7 summarizes the times, which

when added together, give the total time to fill the demand by warehouse B in the CD-MEIN. The

hand calculation gives 17.892 days as the total time to fill the demand by warehouse B, which is

almost the same as the result given by the simulation that is 15.9 days. The difference between the

two results is due to the variability in the times, which follow certain distributions.

 41

Table 6: Total Time (in days) to Fill Demands by Each Warehouse in Both Systems

 CD-MEIN System DC-MEIN System

Warehouse A 10.90061 0.563512

Warehouse B 15.918521 2.484848

Warehouse C 1.476519 0.001339

Warehouse D 0 0

Warehouse E 0 0

Warehouse F 0 0

Table 7: Hand Calculation for Total Time to Fill Demand by Warehouse B

Description Time in days

Lead time between ES and CD 9.63

Waiting time at ES 0.99

Loading time 0.017

Transportation Time between ES and CD 3

Unloading time 0.018

Waiting time at CD 1.049

Transportation Time between CD and

Warehouse B

3

Total Time to Fill demand by Warehouse

B

9.63+0.99+0.017+3+0.018+1.049+0.017+3+0.018=

17.892

 42

6.2.2 Aggregate Fill Rates, Item Type Fill Rates and Inventory on Hand Results

Table 12 presents the aggregate fill rates for the warehouses in the two systems. As

mentioned before, having more inventory stored in the system leads to having higher fill rates,

since, the warehouse can immediately fill the demands from the inventory on hand. For example,

the fill rates for warehouses D, E, and F are one for both systems because they have enough stock

on hand to fill all the demands for all item types requested during the simulation, as shown in 10

and Table 11. For warehouses A, B, and C, the aggregate fill rates are higher in the DC-MEIN,

and this can be justified by looking at the fill rates for each item type and inventory on hand for

each warehouse in each system. For example, for warehouse A, Table 8 shows that the fill rates

for item types 2, 3, and 4 are almost zero in the CD-MEIN, while Table 9 shows that the fill rates

of these item types are considerably higher in the DC-MEIN. The difference in the individual fill

rates is caused by the difference of stock-on hand for each item type in each system. This can be

shown in Table 10 and Table 11 where the inventory on hand for item types 2, 3, and 4 are higher

in the DC-MEIN; thus making the fill rates per item type, and aggregate fill rate higher. Therefore,

the low aggregate fill rates for warehouse A, B, and C in the CD-MEIN are justified by having low

fill rates and low inventory on hand for the item types, especially the ones with high demand levels

like item type 2 and 3.

 43

Table 8: Fill Rate for Every Warehouse per Item Type for CD-MEIN

 Item Type 1 Item Type 2 Item Type 3 Item Type 4

Warehouse A 1 0.268 0.0022 0

Warehouse B 1 0 0 1

Warehouse C 1 0.6 1 1

Warehouse D 1 1 1 1

Warehouse E 1 1 1 1

Warehouse F 1 1 1 1

Table 9: Fill Rate for Every Warehouse per Item Type for DC-MEIN

 Item Type 1 Item Type 2 Item Type 3 Item Type 4

Warehouse A 1 0.97 0.84 0.39

Warehouse B 1 0.007 0.06 1

Warehouse C 1 0.998 1 1

Warehouse D 1 1 1 1

Warehouse E 1 1 1 1

Warehouse F 1 1 1 1

 44

Table 10: Average Inventory on hand for Every Warehouse per Item Type for CD-MEIN

 Item Type 1 Item Type 2 Item Type 3 Item Type 4

Warehouse A 294.73 0.68 0.047 0

Warehouse B 111 0 0 738.2

Warehouse C 924.91 2.45 19.41 696

Warehouse D 920.31 205 28 77

Warehouse E 504 1577 1684 988.81

Warehouse F 110 371 486 558

Table 11: Average Inventory on hand for Every Warehouse per Item Type for DC-MEIN

 Item Type 1 Item Type 2 Item Type 3 Item Type 4

Warehouse A 294.73 7.1 4.4 1

Warehouse B 110 0.007 0.13 738.2

Warehouse C 924.9 8 24 695

Warehouse D 920.3 204.9 25.96 76.69

Warehouse E 504.4 1577 1684 988.81

Warehouse F 109 371.82 486.07 558.32

 45

Table 12: Aggregate Fill Rate for Each Warehouse in Both Systems

 CD-MEIN System DC-MEIN System

Warehouse A 0.075293 0.654438

Warehouse B 0.015306 0.054064

Warehouse C 0.718423 0.998583

Warehouse D 1 1

Warehouse E 1 1

Warehouse F 1 1

6.2.3 Total Waiting time and Inventory in Shipment Building Area Results

 Table 13 and Table 14 present the total waiting time and total inventory per item type in

the shipment building area of distribution center and cross-dock. The results show that the waiting

time in both areas for all item types does not exceed 2 days, since we set the threshold for the time

between building shipments to be two days. Similarly, the results show that the inventory levels

are almost identical in the two systems. This is also due to the time shipment building rule we

assigned in this simulation.

 46

Table 13: Total Time (in days) in the Shipment Building Area per Item Type

 Cross-Dock Shipment Builder

Area

Distribution-Center Shipment Builder

Area

Item Type 1 1.020071 1.135274

Item Type 2 1.011533 0.996525

Item Type 3 1.01182 1.001151

Item Type 4 1.009509 0.99581

Table 14: Total Time in the Shipment Building Area per Item Type

 Cross-Dock Shipment Builder

Area

Distribution-Center Shipment Builder

Area

Item Type 1 0.162437 0.177072

Item Type 2 3.362807 3.329918

Item Type 3 3.220339 3.191171

Item Type 4 1.399239 1.395677

6.3 Validation

 The results presented in the previous sections validates our model in multiple ways. First,

the total waiting time in the shipment building area does not exceed the threshold time, so this

proves that the shipment building is working as needed. Also, the fill rates of warehouses D, E,

and F are one, which is expected since their inventory on hand levels are high to immediately fill

the requested demands in the simulation. Besides, the fill rates for the other warehouses are smaller

in the cross-dock system, which is realistic due to having smaller inventory on hand since

 47

replenishment orders take longer time to arrive to the warehouses as explained in the previous

sections. Similarly, the total time to fill the demands is smaller in the distribution center system

due to having a higher level of stock on-hand. All of these results show that the models are working

as required. However, additional scenarios are tested to verify that the model is working as needed.

The scenarios with their associated results are presented below.

6.3.1 Scenario One: Increasing the Warehouses Re-order Quantity

 Increasing the re-order quantity for the warehouses in the CD-MEIN and DC-MEIN

systems means having more inventory available at the level of the warehouses. This should

increase the fill rates of the warehouses, and decrease the total time taken to fill the demands. In

this scenario, we double the re-order quantity for all the warehouses and item types. Table 15 and

Table 16 shows that the fill rates for the warehouses in both systems increased after doubling the

re-order quantities. For example, the fill rate for warehouse A in CD-MEIN increased by 139%

from 0.07 to 0.18. The reason behind the higher increase in fill rates in the DC-MEIN is again the

higher level of inventory on hand in this system as described in the previous sections.

Table 15: Warehouses Aggregate Fill Rates after Scenario 1 for CD-MEIN

 Initial Fill Rate Scenario 1 Fill Rate
Warehouse A 0.075293 0.180499

Warehouse B 0.015306 0.016

Warehouse C 0.718423 0.855982

Warehouse D 1 1

Warehouse E 1 1

Warehouse F 1 1

 48

Table 16: Warehouses Aggregate Fill Rates after Scenario 1 for DC-MEIN

 Initial Fill Rate Scenario 1 Fill Rate

Warehouse A 0.654438 0.804448

Warehouse B 0.054064 0.123665

Warehouse C 0.998583 1

Warehouse D 1 1

Warehouse E 1 1

Warehouse F 1 1

 Error! Reference source not found. and Table 18 shows that doubling the re-order

quantity of the warehouses for all item types decreased the total time to fill demands in both

systems, but the time to fill demands in the CD-MEIN is still considerably high. We mentioned in

previous sections that this high time is due to the low inventory on-hand and a longer time to

receive replenishment orders. To further investigate this, we take warehouse B in the CD-MEIN

as an example since it has the highest time to fill demands. Item types 2 and 3 have the highest

demand rates in this warehouse (Time between demands are 0.44 and 0.5 days considerably), but

also have very low re-order quantities. A high increase in the re-order quantities of these item types

must cause a big decrease in the total time to fill demands. To prove this, we increased the re-order

quantities from 2 to 40 for item type 2, and from 3 to 60 for item type 3. This led to a decrease in

the total time from 15.91 to 6.62 days. This illustrates that the total times in the CD-MEIN are very

high only due to the re-order quantity setting of our testing case and that they can be decreased by

having more inventory on hand at the warehouse level.

 49

Table 17: Total Time to Fill Demands (in days) after Scenario 1 in CD-MEIN

 Initial Total Time to Fill Demands Scenario 1 Total Time to Fill Demands

Warehouse A 10.90061 8.64977

Warehouse B 15.918521 15.332512

Warehouse C 1.476519 0.721276

Warehouse D 0 0

Warehouse E 0 0

Warehouse F 0 0

Table 18: Total Time to Fill Demands (in days) after Scenario 1 in DC-MEIN

 Initial Total Time to Fill Demands Scenario 1 Total Time to Fill Demands

Warehouse A 0.563512 0.304493

Warehouse B 2.484848 2.016644

Warehouse C 0.001339 0

Warehouse D 0 0

Warehouse E 0 0

Warehouse F 0 0

6.3.2 Scenario Two: Assessing the Effect of Multiple Factors on Total Cost

In this scenario, we examine the effect of more than one factor on the total cost of the

inventory systems. These factors are the lead time of all item types, the time between demand for

all item types, and threshold time, which is the minimum waiting time needed before sending a

shipment to a certain location. The levels of the factors are summarized in Table 19, and the base

case values for lead time and time between demand for all item types can be found in Table 1.

 50

Table 19: Threshold Time, Lead Time and Time Between Demand Levels

 Level 1 (Low) Level 2 (Medium) Level 3 (High)

Threshold Time 2 days 5 days 8 days

Lead Time Base case +10% +25%

Time Between demand Base case -20% -40%

To perform this analysis, we designed a full factorial experimental design with a total of

27 runs. The duration of each simulation run was 10 years, and the warm-up period was 5 years.

The total cost of the inventory system was calculated based on the components presented in the

performance measures section. The total cost calculation is modeled in the network class; thus,

allowing for the calculating of the total cost for any inventory system with any parameters. Minitab

software was used to perform the experimental design and generate the plots. The full experimental

model is found in Appendix B.

The effect of each factor on the total cost of DC-MEIN is presented in Figure 9. This figure

shows that the threshold time and the time between demand has significant effects on the total cost

of DC-MEIN. For example, as the threshold time increases the total cost decreases, which is

logical, since increasing the threshold time means sending fewer shipments; thus, decreasing the

shipping cost and the total cost. However, as the time between demand decreases, which means

increasing the demand rate, the total cost of the DC-MEIN increases. This change in the total cost

is also expected since the number of orders submitted is increasing; thus, increasing ordering costs

and other costs. Figure 9 also shows that the lead time change doesn’t affect the total cost, and this

can be due to many reasons. One of these reasons is having a small number of examples. To further

investigate the effect of these factors on the total cost of the DC-MEIN, we examined the

 51

interaction between them. The interaction plots presented in Figure 10 show that there is no

significant interaction between the three factors.

Figure 9: Main Effects Plot for Total Cost of DC-MEIN

Figure 10: Interaction Plots for Total Cost of DC-MEIN

Figure 11 shows the effect of the factors on the total cost of the CD-MEIN. Similar to the

DC-MEIN, the variation of the threshold time and the time between demand has significant effect

on the total cost. For instance, the total cost decreased from $220,000 to around $75000 when the

threshold time increased from 2 to 8 days. However, the plot shows that the lead time has small

 52

effect on the CD-MEIN when it changes from level 1 to 2. As mentioned before, the lead time

effect is not highlighted in this experiment maybe due to the small number of runs. The interaction

plots presented in Figure 12 show that also in the CD-MEIN there is no significant interaction

between the three factors.

Figure 11: Main Effects Plot for Total Cost of CD-MEIN

Figure 12: Interaction Plot for Total Cost of CD-MEIN

 This scenario helped us validate that our model is reacting to the variations as desired and

 53

identify that increasing the threshold time can decrease the total cost of the two systems in a large

percentage.

 54

7. Conclusion and Future Work

7.1 Conclusion

In this research, we designed and developed object-oriented simulation elements for

generic cross-docks within a supply chain framework. The main purpose of this research was to

analyze and identify the elements needed to model a cross-dock multi-echelon inventory network;

thus, being able to assess the benefits of having a cross-dock in a supply chain. To achieve this,

we organized the modeling elements into a set of objects, which have attributes, behaviors, and

relationships with other objects, to form the simulation framework. We also modeled the network

class, which simplify the simulation modeling of any inventory network.

To assess the performance of our framework, we used real cases of cross-dock and

distribution-center inventory networks to test the elements of the framework. The performance

statistics indicate that the simulation framework is working as needed and can be used to simulate

real inventory networks and give reliable results.

7.2 Future Work

 The future development will focus on determining under which conditions the cross-dock

multi-echelon inventory network can achieve better performance measures than the distribution-

center multi-echelon inventory network. This task will be done by conducting multiple

experiments, which can identify the significant variables that improve the performance of the

cross-dock based supply chain.

 We mentioned in the modeling section that we faced multiple challenges in integrating the

previous JSL objects with our framework. To prevent such challenges in future research, we will

also focus on updating the previous JSL structure. One of these updates will be removing the

listeners attached to the demands, which are used to determine the demand state changes and track

 55

the flow of the demand. The use of these listeners added more challenges to the modeling of the

cross-dock system because demands are not immediately filled by the cross-dock; thus, making it

hard to follow the demand state changes order. Another update will be, adding more flexibility to

the demand state changes order, but at the same time making sure that the right processing for the

demands occurs. Besides, another important update will be, changing the way different objects are

interacting together. For example, in the previous JSL design, the communication between

inventory class and inventory holding point class is mainly triggered by the demand listeners. To

enhance this interaction after removing the listeners, methods will be needed to improve the

connection between class in the framework.

 56

8. References

Belle, J., Valckenaers, P., & Cattrysse, D. (2012). Cross-docking: State of the art. Omega, 827-
846.

Buijs, P., Vis, I., & Carlo, H. (2014). Synchronization in cross-docking networks: A research
classification and framework. European Journal of Operational Research, 593-608.

Cox, D., & Rossetti, M. (2017). Simulation modeling of alternative staffing and task prioritization
in manual post-distribution cross docking facilities. Winter Simualtion Conference.

Ertek, G. (2005). A Tutorial On Crossdocking. 3rd International Logistics & Supply Chain
Congress.

Galbreth, M., Hill, J., & Handley, S. (2008). An investigation of the value of cross docking for
supply chain management. Journal of Business logistics , 225-240.

Gue, K. (2007). Warehouses Without Inventory. Springer.

Magableh, G., & Rossetti, M. (2005). Modeling and analysis of a generic cross-docking facility.
Winter Simulation Conference, (pp. 1613-1620).

Nassiefa, W., Contrerasa, I., & As’ad, R. (2016). A mixed-integer programming formulation and
Lagrangean relaxation for the cross-dock doorassignment problem. International Journal
of Production Research,, 494–508.

Parsa, P., Rossetti, M., Zhang, S., & Pohl, E. (2017). Quantifying the benefits of continuous
replenishment program for partner evaluation . Int. J. Production Economics , 229-245.

Rajgopal, J. (2019). Supply Chains: Definitions & Basic Concepts.

Rossetti, M. (2008). JSL: An open source object oriented framework for discrete event simulation
in Java. International Journal of Simulation and Process Modeling, 69-87.

Rossetti, M., & Xiang, Y. (2014). The effect of backlog and load-building processing in a multi-
echelon inventory netwrok . ELSEVIER, (pp. 54-66).

Rossetti, M., Miman, M., & Varghese, V. (2008). An object-oriented framework for simulating
supply systems. Journal of Simulation, 1-14.

Serrano, C., Moral, J., Delorme, X., & Dolgui, A. (2016). Cross-docking Operation Scheduling:
Truck Arrivals, Shop-Floor Activities and Truck departures.

Suh, E. S. (2014). Cross-docking assessment and optimization using multi-agent co-simulation: a
case study . Springer, 115-133.

 57

Xiang, Y., & Rossetti, M. (2014). The effect of backlog queue and load-building processing in a
multi-echelon inventory network. Simulation Modeling Practice and Theory, 54-66.

Yan, H., & Tan, S.-l. (2009). Pre-distribution and post-distribution cross-docking operations.
ELSEVIER, 843-859.

Yang, K. K., Balakrishnan, J., & Cheng, C. H. (2011). An analysis of factors affecting cross
docking operations. JOURNAL OF BUSINESS LOGISTICS, 121-148.

 58

9. Appendices

9.1 Appendix A

public class NetworkTestWithCD {
 public static void buildNetworkWithDC(Model m) {
 Network n = new Network(m, "Network");
 Map<ItemType, RandomVariable> myMapA=new HashMap<>();
 Map<ItemType,RandomVariable> myMapB=new HashMap<>();
 Map<ItemType,RandomVariable> myMapC=new HashMap<>();
 Map<ItemType,RandomVariable> myMapD=new HashMap<>();
 Map<ItemType,RandomVariable> myMapE=new HashMap<>();
 Map<ItemType,RandomVariable> myMapF=new HashMap<>();

 //Lead Times
 RandomVariable myLeadTime1=new RandomVariable(m, new ConstantRV(7.56));
 RandomVariable myLeadTime2=new RandomVariable(m, new ConstantRV(10.28));
 RandomVariable myLeadTime3=new RandomVariable(m, new ConstantRV(8.98));
 RandomVariable myLeadTime4=new RandomVariable(m, new ConstantRV(10.41));

 //Item Types
 ItemType myItemType1=n.addItemType("Type 1",myLeadTime1);
 ItemType myItemType2=n.addItemType("Type 2",myLeadTime2);
 ItemType myItemType3=n.addItemType("Type 3",myLeadTime3);
 ItemType myItemType4=n.addItemType("Type 4",myLeadTime4);

 //Loading and Unloading Time in days
 RandomVariable myUnloadingTime=new RandomVariable(m,new
TriangularRV(0.003,0.017,0.027));
 RandomVariable myLoadingTime=new RandomVariable(m,new
TriangularRV(0.004,0.018,0.032));

 //Add the cross-dock facility
 CrossDockFacility myCrossDock=n.addCrossDock("Cross-Dock");
 myCrossDock.setUnLoadingTime(myUnloadingTime);
 myCrossDock.setLoadingTime(myLoadingTime);

 //Attach CD to ES
 RandomVariable myTransportTime=new RandomVariable(m, new
UniformRV(2,4));
 n.attachCrossDockToES(myCrossDock,myTransportTime);

 59

 //Add warehouse facility A and its inventories
 WarehouseFacility myWarehouseA=n.addWarehouse("Warehouse
A",myCrossDock,myTransportTime);
 n.addInventory(myWarehouseA,myItemType1,200,180,380);
 n.addInventory(myWarehouseA,myItemType2,4,7,11);
 n.addInventory(myWarehouseA,myItemType3,3,6,9);
 n.addInventory(myWarehouseA,myItemType4,2,5,7);

 //Add warehouse facility B and its inventories
 WarehouseFacility myWarehouseB=n.addWarehouse("Warehouse
B",myCrossDock,myTransportTime);
 n.addInventory(myWarehouseB,myItemType1,50,131,181);
 n.addInventory(myWarehouseB,myItemType2,1,2,3);
 n.addInventory(myWarehouseB,myItemType3,2,3,5);
 n.addInventory(myWarehouseB,myItemType4,450,329,779);

 //Add Warehouse facility C and its inventories
 WarehouseFacility myWarehouseC=n.addWarehouse("Warehouse
C",myCrossDock,myTransportTime);
 n.addInventory(myWarehouseC,myItemType1,500,462,962);
 n.addInventory(myWarehouseC,myItemType2,5,8,13);
 n.addInventory(myWarehouseC,myItemType3,10,27,37);
 n.addInventory(myWarehouseC,myItemType4,350,405,755);

 //Add warehouse facility D and its inventories
 WarehouseFacility myWarehouseD=n.addWarehouse("Warehouse
D",myCrossDock,myTransportTime);
 n.addInventory(myWarehouseD,myItemType1,500,458,958);
 n.addInventory(myWarehouseD,myItemType2,150,126,276);
 n.addInventory(myWarehouseD,myItemType3,15,29,44);
 n.addInventory(myWarehouseD,myItemType4,20,101,121);

 //Add warehouse facility E and its inventories
 WarehouseFacility myWarehouseE=n.addWarehouse("Warehouse
E",myCrossDock,myTransportTime);
 n.addInventory(myWarehouseE,myItemType1,250,336,586);
 n.addInventory(myWarehouseE,myItemType2,1200,399,1599);
 n.addInventory(myWarehouseE,myItemType3,1220,483,1703);
 n.addInventory(myWarehouseE,myItemType4,650,377,1027);

 //Add Warehouse facility F and its inventories

 60

 WarehouseFacility myWarehouseF=n.addWarehouse("Warehouse
F",myCrossDock,myTransportTime);
 n.addInventory(myWarehouseF,myItemType1,50,156,206);
 n.addInventory(myWarehouseF,myItemType2,300,150,450);
 n.addInventory(myWarehouseF,myItemType3,250,300,550);
 n.addInventory(myWarehouseF,myItemType4,300,322,622);

 //Warehouse A demand times
 RandomVariable myTimeA1=new RandomVariable(m,new ExponentialRV(35.18));
 RandomVariable myTimeA2=new RandomVariable(m,new ExponentialRV(1.93));
 RandomVariable myTimeA3=new RandomVariable(m,new ExponentialRV(1.23));
 RandomVariable myTimeA4=new RandomVariable(m,new ExponentialRV(0.75));
 myMapA.put(myItemType1,myTimeA1);
 myMapA.put(myItemType2,myTimeA2);
 myMapA.put(myItemType3,myTimeA3);
 myMapA.put(myItemType4,myTimeA4);

 //Warehouse B demand times
 RandomVariable myTimeB1=new RandomVariable(m,new ExponentialRV(19.15));
 RandomVariable myTimeB2=new RandomVariable(m,new ExponentialRV(0.44));
 RandomVariable myTimeB3=new RandomVariable(m,new ExponentialRV(0.5));
 RandomVariable myTimeB4=new RandomVariable(m,new ExponentialRV(61.68));
 myMapB.put(myItemType1,myTimeB1);
 myMapB.put(myItemType2,myTimeB2);
 myMapB.put(myItemType3,myTimeB3);
 myMapB.put(myItemType4,myTimeB4);

 //Warehouse C demand times
 RandomVariable myTimeC1=new RandomVariable(m,new ExponentialRV(69.51));
 RandomVariable myTimeC2=new RandomVariable(m,new ExponentialRV(2.19));
 RandomVariable myTimeC3=new RandomVariable(m,new ExponentialRV(5.18));
 RandomVariable myTimeC4=new RandomVariable(m,new ExponentialRV(44.88));
 myMapC.put(myItemType1,myTimeC1);
 myMapC.put(myItemType2,myTimeC2);
 myMapC.put(myItemType3,myTimeC3);
 myMapC.put(myItemType4,myTimeC4);

 //Warehouse D demand times
 RandomVariable myTimeD1=new RandomVariable(m,new ExponentialRV(69.95));
 RandomVariable myTimeD2=new RandomVariable(m,new ExponentialRV(24.68));
 RandomVariable myTimeD3=new RandomVariable(m,new ExponentialRV(6.39));
 RandomVariable myTimeD4=new RandomVariable(m,new ExponentialRV(14.12));
 myMapD.put(myItemType1,myTimeD1);
 myMapD.put(myItemType2,myTimeD2);
 myMapD.put(myItemType3,myTimeD3);

 61

 myMapD.put(myItemType4,myTimeD4);

 //Warehouse E demand times
 RandomVariable myTimeE1=new RandomVariable(m,new ExponentialRV(38.95));
 RandomVariable myTimeE2=new RandomVariable(m,new ExponentialRV(111.92));
 RandomVariable myTimeE3=new RandomVariable(m,new ExponentialRV(134.71));
 RandomVariable myTimeE4=new RandomVariable(m,new ExponentialRV(82.15));
 myMapE.put(myItemType1,myTimeE1);
 myMapE.put(myItemType2,myTimeE2);
 myMapE.put(myItemType3,myTimeE3);
 myMapE.put(myItemType4,myTimeE4);

 //Warehouse F demand times
 RandomVariable myTimeF1=new RandomVariable(m,new ExponentialRV(19.94));
 RandomVariable myTimeF2=new RandomVariable(m,new ExponentialRV(33.98));
 RandomVariable myTimeF3=new RandomVariable(m,new ExponentialRV(40.14));
 RandomVariable myTimeF4=new RandomVariable(m,new ExponentialRV(40.18));
 myMapF.put(myItemType1,myTimeF1);
 myMapF.put(myItemType2,myTimeF2);
 myMapF.put(myItemType3,myTimeF3);
 myMapF.put(myItemType4,myTimeF4);

 myWarehouseA.setUnLoadingTime(myUnloadingTime);
 myWarehouseB.setUnLoadingTime(myUnloadingTime);
 myWarehouseC.setUnLoadingTime(myUnloadingTime);
 myWarehouseD.setUnLoadingTime(myUnloadingTime);
 myWarehouseE.setUnLoadingTime(myUnloadingTime);
 myWarehouseF.setUnLoadingTime(myUnloadingTime);

 //Attach the demand generators
 n.attachGroupDemandGenerator(myWarehouseA,myMapA,"Group generators
A");
 n.attachGroupDemandGenerator(myWarehouseB,myMapB,"Group generators B");
 n.attachGroupDemandGenerator(myWarehouseC,myMapC,"Group generators C");
 n.attachGroupDemandGenerator(myWarehouseD,myMapD,"Group generators
D");
 n.attachGroupDemandGenerator(myWarehouseE,myMapE,"Group generators E");
 n.attachGroupDemandGenerator(myWarehouseF,myMapF,"Group generators F");
 }
 public static void testExperiment() {
 // create the experiment to run the model
 Simulation e = new Simulation();
 SimulationReporter r = e.makeSimulationReporter();
 buildNetworkWithDC(e.getModel());

 62

 // set the parameters of the experiment
 e.setNumberOfReplications(1);
 e.setLengthOfReplication(3650);
 e.setLengthOfWarmUp(1825);

 e.run();
 r.printAcrossReplicationSummaryStatistics();

 }

 63

9.2 Appendix B: Experimental Design Model for Scenario 2

StdOrder RunOrder PtType Blocks

Threshold

Time

Lead

Time

Time between

Demand

Total Cost of

DC-MEIN

Total Cost of

CD-MEIN

9 1 1 1 1 3 3 211294.37 206142.88

21 2 1 1 3 1 3 99866.30 87614.04

4 3 1 1 1 2 1 170557.15 185523.87

24 4 1 1 3 2 3 99781.31 88208.93

3 5 1 1 1 1 3 211379.69 283838.05

23 6 1 1 3 2 2 85584.37 76103.27

5 7 1 1 1 2 2 188133.60 193357.74

6 8 1 1 1 2 3 211294.37 205973.60

26 9 1 1 3 3 2 85499.37 75678.28

11 10 1 1 2 1 2 109467.96 100156.78

1 11 1 1 1 1 1 170557.15 244718.25

20 12 1 1 3 1 2 85669.39 76103.53

12 13 1 1 2 1 3 124683.19 112307.05

7 14 1 1 1 3 1 170557.14 185563.73

14 15 1 1 2 2 2 109467.96 100071.69

18 16 1 1 2 3 3 124853.17 112431.75

8 17 1 1 1 3 2 188133.60 193017.37

25 18 1 1 3 3 1 76977.88 68949.33

2 19 1 1 1 1 2 188049.76 261102.48

 64

10 20 1 1 2 1 1 100436.41 92363.30

22 21 1 1 3 2 1 76892.88 69204.49

15 22 1 1 2 2 3 124768.18 112476.93

17 23 1 1 2 3 2 109467.95 99776.60

13 24 1 1 2 2 1 100436.41 92578.26

27 25 1 1 3 3 3 99781.31 88123.75

16 26 1 1 2 3 1 100436.42 92708.14

19 27 1 1 3 1 1 76977.88 69204.52

	Simulation Modeling of Cross-Dock and Distribution Center Based Supply Chains
	Citation

	Microsoft Word - Al Chall-Ghewa-Thesis-Final Version.docx

