Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Featureless discovery of correlated and false intrusion alerts

Kidmose, Egon; Stevanovic, Matija; Brandbyge, Sgren; Pedersen, Jens Myrup

Published in:
IEEE Access

DOl (link to publication from Publisher):
10.1109/ACCESS.2020.3001374

Creative Commons License
CCBY 4.0

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Kidmose, E., Stevanovic, M., Brandbyge, S., & Pedersen, J. M. (2020). Featureless discovery of correlated and
false intrusion alerts. IEEE Access, 8, 108748-108765. [9113304].
https://doi.org/10.1109/ACCESS.2020.3001374

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 25, 2020

https://doi.org/10.1109/ACCESS.2020.3001374
https://vbn.aau.dk/en/publications/48411b4b-adc9-4dd6-8a1a-81b25a053cd4
https://doi.org/10.1109/ACCESS.2020.3001374

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON EMERGING APPROACHES TO CYBER SECURITY

Received April 30, 2020, accepted May 30, 2020, date of publication June 10, 2020, date of current version June 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3001374

Featureless Discovery of Correlated

and False Intrusion Alerts

EGON KIDMOSE"“1:2, MATIJA STEVANOVIC"”12, SOREN BRANDBYGE 2,

AND JENS M. PEDERSEN !

! Department of Electronic Systems, Aalborg University, 9220 Aalborg @st, Denmark
2LEGO System A/S, 7190 Billund, Denmark

Corresponding author: Egon Kidmose (egk@es.aau.dk)

This work was supported by the Innovation Fund Denmark, Industrial Ph.D. Programme, under Grant 5016-00018.

ABSTRACT Malware and cyber-attacks cause substantial damage to corporations. A common counter-
measure is Intrusion Detection Systems (IDSs). Unfortunately, IDSs typically raise many alerts on a single
incident, with redundant information, and false alerts that are only noise to analysts. For out-of-the-box
performance, the impact is so large that alerts are of limited practical use. Existing solutions rely heavily on
domain expertise, in feature engineering procedures and explicit algorithms. This has substantial negative
impact on the costs of development, deployment, and maintenance. Using feature engineering as part of
a method boosts classification metrics, but requires substantial investment, of data science and security
expertise, for each deployment. We find that reliance on domain expertise and feature engineering severely
inhibits the feasibility of applying existing correlation and filtering methods in practice. To address this,
we propose a novel approach for correlating and filtering, with the constraints that methods must be without
feature engineering and methods must consume alerts as text strings. Two implementations are presented
and evaluated on a partly private and on a public data set. Our implementations are unable to compete with
existing methods on common detection metrics, suggesting that investing feature engineering pays of towards
those. Measured on practical metrics for filtering and correlating, our implementations are promising, while
at the same time cutting the cost of deployment, according to the constraints. Consequently, we find it of
practical relevance to consider methods, like ours, that are much easier and cheaper to deploy, compared to
the existing ones.

INDEX TERMS Alert correlation, alert filtering, clustering, intrusion detection system, latent semantic

analysis, malware detection, recurrent neural network.

I. INTRODUCTION

Over the past decades we have seen tremendous advances in
information technology, coupled with a widespread adoption.
While bringing many benefits, this has also made society
and corporations vulnerable to a multitude of attacks. Crim-
inals have identified a large range of illicit but financially
rewarding schemes based on this, of which many involve
infecting victims with malware or otherwise intruding on
networks. Such schemes include harvesting credentials from
victims, and abusing resources for sending spam e-mails,
or launching Distributed Denial of Service (DDoS) attacks,
and often rely on running malware on victim hosts. Malware
often implements a Command and Control (CnC) channel

The associate editor coordinating the review of this manuscript and

approving it for publication was Luis Javier Garcia Villalba

108748

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

back to infrastructure controlled by the criminals, and the
victim host is then referred to as a bot, which is part of
a botnet. A single botnet has been measured to encompass
180, 000 victims [1], while estimates on their size range in
millions [2], [3]. An estimate of 500 million computers are
infected and enrolled in botnets every year, causing a global
loss of 110 billion US dollars/year [3]. The cost of cybercrime
in general have been estimated as high as 445 to 608 billion
USD [4].

A prerequisite for efficiently applying countermeasures
is the ability to detect intrusions. Detection capabilities can
be provided by Intrusion Detection Systems (IDSs), which
in essence observe activity and raises alerts on malicious
activity. We discern between Host-based IDS (HIDS) and
Network-based IDS (NIDS), with the former having access
to more detailed information internal to the host, and the

VOLUME 8, 2020

https://orcid.org/0000-0003-0542-5334
https://orcid.org/0000-0002-9579-4901
https://orcid.org/0000-0002-5745-6573
https://orcid.org/0000-0002-1903-2921
https://orcid.org/0000-0001-7573-6272

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

IEEE Access

latter being less intrusive, and with a potential to cover
multiple hosts. Prior work suggests that the information
available in the network is sufficient, and thus NIDSs are
preferred [5]-[8]. Examples of NIDSs that have had com-
mercial breakthroughs are Snort [9], Bro IDS [10], and Suri-
cata [11]. However, the usefulness of IDSs is limited by poor
quality of alerts. From a theoretical point of view this is
unsurprising, as perfect malware detection is impossible [12].
In practice, this problem has shown to be substantial, [13]
reporting that three instances of snort deployed in large finan-
cial institution on average produce 411, 947.18 alerts per day.
It is obviously unfeasible to process so many alerts manually,
and the vast number of low-quality alerts causes alert fatigue
as well as waste of resources.

In order to address the problem of poor alert quality,
we observe that the problem is compounded by two under-
lying problems. A substantial share of alerts are false alerts,
where no malicious activity occurred, but imperfections in the
IDS still lead to an alert being raised. As an example, nine
in ten alerts are found to be irrelevant in [13]. To security
analysts this is pure noise, and false alerts should be filtered
out prior to any manual investigation. We refer to the problem
of false alerts being present in IDS output as the filtering
problem. The other problem is that alerts with correlated
information are raised as separate alerts. This leads to waste,
when multiple investigations are initiated independently, and
also when the analyst has to search for correlated alerts in
order to gain understanding of a multistage intrusion. Num-
bers reported by [13] tells that they received roughly 40, 000
relevant alerts per day. Even with a conservative (high) esti-
mate of hundreds of incidents per day, the number of alerts per
incident is in the hundreds. Ideally, links between correlated
alerts should be identified for the analyst, and only one alert
should be raised per incident. We refer to the problem of cor-
related alerts being present in IDS output as the correlation
problem.

A naive approach to address the problems is to assume
that IDSs are overly sensitive and tune them accordingly.
This conflicts with the requirement that IDSs should not
miss any incident, and the need for detailed information in
post-detection analysis. Furthermore, it leads to expert time
being wasted on tuning at setup and during daily operations.
It seems a more prudent approach to let IDSs be overly sensi-
tive, and then address the filtering and correlation problems in
a pre-processing step. This is supported by such approaches
achieving good results [6]-[8], [13]-[20], and by existence
of commercial products such as Cisco Security MARS and
FireEye.

Existing methods for correlation and filtering that use
Machine Learning (ML) all rely on feature engineering,
which is the art of (semi-)manually designing transfor-
mations for available data, before applying ML algo-
rithms. It is a generally proven method for improving
performance, but it comes with some drawbacks, which
needs to be considered. Severyn and Moschitti states
that feature engineering is a tedious task, and it reduces

VOLUME 8, 2020

adaptability by requiring substantial re-engineering [21].
Anderson et al. refer to it as a pain point in building trained
systems, which require, yet challenge, computer scientists
with PhD-level training, and note that it requires dramati-
cally more iteration and adjustment than what is immediately
apparent [22]. Khurana et al. is a third example of similar
position, stating that feature engineering is largely manual,
a complex exercise, iterative, based on trial and error, and
often the most time-consuming step in a data science work-
flow [23]. Gauging the exact cost of feature engineering is
hard, and likely impossible to do in general, but there are
examples where the effort or cost related to ML and feature
engineering has been reported:

The Netflix Prize was an open competition to improve per-
formance on a movie recommendation problem, based on a
fixed data set [24]. It shows that a 10% incremental improve-
ment over a working system was worth at least a million dol-
lars, and that a lead time of years was acceptable. The effort
made by contestants during the first third of the competition
(11 months) is indicated by numbers reported in [24]: 20.000
teams registered, 2.000 teams submitted results, and 13.000
different results were submitted.! We judge that a large effort
must have been made, also considering that the contest con-
tinued for a total of 33 months. The IBM DeepQA project [25]
had the goal of creating a system named Watson, capable
beating human grand masters at the Jeopardy quiz show.
The project had a core team of 20 scientist and engineers
and lasted 3 years. Watson applies more than 100 different
techniques and a principle of many experts to find answers,
indicating that feature engineering is a key aspect. 5.500
experiments were conducted, consuming a staggering 30.117
CPU-years, which supports the claim that many iterations are
required. The man-hours and compute resources spent must
have been substantial.

Like feature engineering, expertise from the networking
and security domains can aid in correlating and filtering
alerts, but again the drawbacks prompt for some attention.
Applying heuristics and domain expertise can potentially
improve performance, but adaptability and maintainability
might see significant negative impact. Consider as an exam-
ple a correlation and filtering method that relies on com-
paring source and destination IP addresses. This reflects the
domain knowledge that network intrusions have a source and
destination, which might boost performance under certain
conditions, and appears to be sensible. Consider then an
attack where the source can be spoofed, such that it can
be chosen freely by the adversary. This would prompt for
redesigning the method, redoing feature engineering, and
changing the implementation, as the assumption is broken.
Similar arguments can be made about swapping NIDS with
HIDS, changing or updating IDS, different attackers having
different methods of operation, etc. The essence of the issue is
that domain experts make assumptions about the conditions,

1We use the

108749

IEEE Access

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

so the inevitable changes in conditions can invalidate the
assumption, the method and, the implementation.

We believe that feature engineering and domain expertise
can provide a performance improvement, but the price to
pay is substantial resources and loss of adaptability. The loss
of adaptability means that the returns of invested resources
is limited, which can make methods unfeasible and explain
limited adoption by practitioners. Or in other words, it is not
worth it for corporations to invest in developing a method and
doing feature engineering when adaptability inhibits reuse.
We propose a shift from seeking excellent performance on
classification metrics with methods that are unfeasible in
practice, towards sufficient practical performance with meth-
ods that are feasible due to significantly decrease implemen-
tation costs and improved adaptability.

Our contributions are 1) to question if feature engineering
and embedded domain expertise is the right approach to
the filtering and correlation problem, 2) to present a novel,
general approach that is free from feature engineering and
embedded domain expertise, 3) to present two implementa-
tions of the general approach, and 4) to evaluate the methods
on two different data sets.

The paper is structured as follows: We survey related work
in Section II. Our general approach is presented in Section III,
along with our own method based on Neural Networks and
our adaption of Latent Semantic Analysis (LSA) to the
present problem. In Section IV the two data sets and relevant
procedures are described, along with a proposal of metrics
to capture performance for practical purposes. Results of
applying the two methods to the two data sets are presented in
Section V, and discussed in Section VI, before we conclude
on this work in Section VII.

Il. RELATED WORK

In this section we survey existing work on solving the cor-
relation and filtering problems. First, we outline the idea of
submitting IDS alerts to a pre-processing step, highlighting
relevant prior art. Then we survey approaches and techniques
that have been used, and we pay particular attention to feature
engineering. As data for evaluation poses some interesting
challenges, we summarise the options, reasoning, and choices
found in related work. As this work builds on the claim
that there is a mismatch between practical application and
commonly used metrics, we finally highlight prior work sup-
porting this.

A. PRE-PROCESSING

Leaving out the details of correlating and filtering for a start,
we introduce the notion of pre-processing. As discussed in
Section I, and as evident from the extent of existing work
in Table 1, IDSs raise too many alerts for manual process-
ing. One solution is to introduce a pre-processing step prior
to manual processing. A pre-processing step takes alerts as
input, and outputs hyper alerts, which represents one or more
lower level alerts. Fig. 1 illustrates this, with individual alerts
on the left, and the result after pre-processing on the right;

108750

Hyper alert 1
Alert 5 : ypr\lcrl 5 :
Alert 4 Alert2 © Alert4 Alert2
Alert 3 : Alert 3
Pre-processing e
U Hyper alert 2T
Alert 7 Alert 7
Alert 6
Alert8 " Afert | Alert 1

FIGURE 1. Pre-processing alerts into hyper alerts.

Alert 6 and 8 are filtered out and the remaining alerts form
two hyper alerts. If done correctly, pre-processing solves the
filtering and correlation problem. In the related work, hyper
alerts are also referred to as meta alerts or reports.

A simple pre-processing method is to fuse alerts by apply-
ing the atom model, where incoming alerts are compared to
existing hyper alerts; Alerts are fused with the hyper alerts
that they most probably belong to, unless the highest proba-
bility is below a given threshold; then the alert forms a new
hyper alert [16]. In [16] the hyper alert is simply represented
by the most recent alert, while [14] applies a complex struc-
ture that enables heterogeneous information sources. Fusing
multiple correlated alerts into fewer hyper alerts, addresses
the correlation problem, and brings down the number of items
requiring manual investigation. Fusing alerts into graphs has
also been proposed, providing some insights to how attacks
develop [15].

The filtering problem can be addressed when fusing, by fil-
tering out alerts that fail to meet some criteria for being fused.
This relies on the assumptions that false alerts fail to fuse,
while true alerts are fused. An evaluation of this approach,
using 10 incidents in a fully controlled lab network, was
found to produce hyper alerts on all incidents [6]. Filtering
can also be done at the hyper alert level, i.e. after fusing,
as suggested by [16]. The assumption behind this is that false
alerts are fused together, and that false hyper alerts are easier
to filter than individual false alerts. Approaches for filtering
only have also been proposed, and could be combined with
subsequent correlating [13], [31].

Having clarified the ideas of pre-processing, correlating,
and filtering, we now move on to a study of the approaches
found in prior work.

B. EXISTING APPROACHES

A commonly used technique in existing methods is to
implement a function for estimating similarity of alerts,
or alternatively estimating the probability that two alerts are
correlated. Naive implementations, relying on human heuris-
tics to estimate correlating probability, have been demon-
strated by [14]-[16]. Applying human heuristics, both [16]
and [14] constructed functions to estimate correlation prob-
ability. Formal parameter optimisation was applied by [16].
Probability of correlation was estimated with two supervised
ML algorithms in [15]. Rather than labelling real samples for
training, this work relies on manually crafted training sam-
ples, and is therefore fully dependent on human heuristics.

VOLUME 8, 2020

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

IEEE Access

TABLE 1. Overview of related work.

Paper [26] [14] [16] [27] [17] [15] [6] [18] [13] [28] [29] [30] [31]

Correlating X X X X X X X X X X

Filtering X X X X X X X X X

Similarity X X X X X

Rules X X X X

Graph-based X X

Machine Learning X a X X X X

Prototype available X X

Qualitative X X X X X X

Quantitative X X X X X X

New metrics X X

Real world traffic X X X b b b X
2000 2000 2000 1999

Controlled attack X [32] [33] [33] [34] 2010 2013 2012

Controlled Malware X [29]

Columns are publications, sorted by increasing year of publication. The first two rows, (Correlating and Filtering), show which
problems are addressed. The following four rows, (Similarity, Rule, Graph-based, Machine Learning), indicate the techniques used.
The next four rows, (Prototype available, Qualitative, Quantitative, New metrics), pertain to prototype availability and evaluation
method. The last three rows, (Real world data, Controlled attack, Controlled malware), describe the data used for evaluation, where
a reference indicates that the data is available, and the year indicate when the data was created or recorded. ®Machine Learning is
not used for filtering or correlating (But in the two IDS plug-ins SLADE and SCADE). PBackground traffic only.

Another approach to handling the correlation problem, is to
rely on rules that describe relations between different attacks
steps and assume that alerts represent distinct steps. Gen-
erally, correlating is implemented by associating necessary
prerequisites, and potential consequences to alert classes. The
rules can be manually defined, as suggested by [17], or mined
from data as in [15], [27]. The latter two also encompasses
varying degrees of correlation, as opposed to binary, and [15]
involves continuously adjusting probabilities when in oper-
ation. Hyper alerts are formed according to the given rules,
with associativity enabling more complex scenarios to be
captured. The procedure of [6] also relies on predefined rules,
describing that certain types of alerts must have been raised
if a hyper alert is to be produced. With rules, and in particular
with a notion of varying degrees of correlation between alerts,
hyper alerts are naturally expressed as graphs, and some work
specifically apply graph-based methods or modelling [15],
[27], [30].

While some of the earlier discussed methods include ML,
they also rely heavily on heuristics based on domain exper-
tise. However, correlating and filtering can be left to ML to a
large extent. Clustering corresponds well with the correlation
problem, and classification with filtering. An example of how
ML can learn to solve the correlation and filtering problem
from data, without embedding domain expertise, is presented
by [18]. The method is composed of Self-Organising Map
(SOM) and k-means clustering. SOM is an unsupervised
application of Neural Network (NN) that learns to map sam-
ples into a space of lower dimensionality, so that similar
samples are close, and dissimilar samples are disparate in
the output space. The k-means clustering algorithm is used to
obtain well defined clusters in the output space. Each of two
stages applies SOM and then k-means, first to group alerts by
correlation, and second to filter out groups of false alerts.

VOLUME 8, 2020

C. FEATURE ENGINEERING

Some feature engineering methods applies to ML problems
in general, while others embed domain expertise and are
thus limited to the given domain. Feature selection and
transformations are examples of general feature engineering.
Selection is widely used, but we highlight [13], who select
features that only applies to network traffic, and a feature
that does not exist for anomaly-based IDSs, leading to a
method that only applies to rule-based NIDS. Mean/variance
normalisation is an example of a general feature transforma-
tion applied by [18], which mitigates that some ML methods
have bias towards features with high variance or mean. The
use of domain expertise for feature engineering appears to
be most impacted by the challenges outlined in the intro-
duction, yet all found examples of correlation and filtering
with ML make use of this. A common example is a feature
transformation that produces a distance between two Internet
Protocol (IP) addresses. The distance is computed as the
number of most significant bits that the two addresses have
in common [14]-[16]. This method only applies when source
and destination is known, meaning that it fails for HIDS alerts
on activity not involving the IP layer, or if a source IP cannot
be obtained reliably. A more specific example is that [16]
recognised that source, and destination IPs were swapped
for a certain class of alerts. Part of their feature engineering
was to compensate for this IDS error, by swapping source
and destination IPs back, when an alert was of the given
class. The implications of this is that time has been wasted on
debugging the IDS, and the method is tailored to the specific
situation. BClus, the ML method proposed by [29], relies
on complex aggregations over time and low-level network
features. Finally, all existing methods rely on fixed attributes
to be extracted from alerts, which again create strong ties to
specific IDSs and their output format.

108751

IEEE Access

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

D. DATA SETS AND EVALUATION

Evaluation of filtering and correlation methods is commonly
carried out on obsolete or private data sets. As attacks, mali-
cious traffic, and the noise from benign traffic, evolves over
the years, evaluations with the DARPA 1999 and 2000 data
sets [33], [34], or the DEFCON 8 CTF data set [32], becomes
obsolete. The malicious activity in these data sets is bluntly
obvious by current standards. The malicious activity includes
well known attacks launched over plain text protocols, DDoS
attacks and attacks during a CTF game, where the actors
have limited motivation to act stealthy. Current attacks in
the real world are expected to be significantly stealthier and
more difficult to detect. One example is that malware is now
often trying to hide among legitimate user activity, such as
web browsing and e-mailing, with both malicious and benign
traffic being encrypted. While the data set of [32]-[34] are
obsolete, they have the benefit of being publicly available,
which allows for verifying and comparing results. At the
time when [16] and [14] was published, their used data
sets where likely still relevant, but noting that [15], [18]
and [28] used 6-, 11- and 13-year-old data sets, suggests
a challenge with data availability within our field. This is
supported by the observation that all surveyed evaluations
with real world traffic, include no references to the data sets,
suggesting that it is not available to the public. We suspect
that these highly valuable data sets are kept private to avoid
privacy issues. The impact of this is evident from work such
as [6]. The used data sets appear substantial and realistic,
but others are hindered in assessing the data, reproducing the
results, or reusing the data for comparison, as the data is not
available. Furthermore, part of the evaluation ignores false
positives, as it is not feasible to thoroughly inspect the data
in order to label it. The return of investing in labelling data
increases with reuse, so sharing data could potentially make it
feasible.

Only one example of recent, publicly available, and sub-
stantial data on real malware is known to the authors [29].
This particular data set contains traffic traces of real malware
executed in a controlled environment. The omission of real
benign user activity eliminates privacy concerns in relation to
publishing the data. However, in reality benign activity will
be present, and an evaluation should reflect this to provide a
reasonable representation of real conditions.

An approach to generate current data sets that can be shared
without compromising privacy is presented in [35]. The idea
is to model benign activity, so that it can be emulated in a lab,
along with controlled attacks, or execution of malware, such
as that of [29]. The reasoning is that model descriptions and
data generated from models are not problematic with regards
to privacy, hence data generated in the lab can be shared
freely. It is unclear exactly how the method can guarantee
that sensitive information is not captured by the model and
made evident in the generated data, and the method appears
to be susceptible to bias through design choices, as is the case
for other methods relying on synthesising data. A recent data
set has been produced according to the approach, including

108752

raw traffic capture and details about the attacks that enable
labelling [36].

Another solution is to record data on real activity and then
remove the sensitive information before sharing. This can
be implemented by e.g. removing network traffic payloads,
pseudonymisation by randomising IP addresses, and by trun-
cating traffic to flows. We are not aware of any substantiated
claim that this can be done without losing information that
can be of use to some methods, and indeed this would seem
counter-intuitive. It remains unclear, what notion of privacy
is guaranteed, and data labelling remains an extensive task.

Yet another solution is to evaluate existing methods on
a private data set, but this requires implementation to be
available or to be re-implemented. We are only aware of two
examples of work where publicly available implementations
are referenced [6], [26], and re-implementing requires sub-
stantial effort, without much assurance that it will match the
original implementation sufficiently well. This would still not
enable reproducing results, as performance likely depends on
the data.

E. PERFORMANCE EVALUATION

As evident from Table 1 there are examples of both quanti-
tative and qualitative evaluation in the related work. Qualita-
tive evaluations provide some interesting details of results,
but without quantitative metrics it is challenging to com-
pare performance of different methods or variation thereof.
For quantitative evaluations, it is common to apply metrics
for detection and classification, such as accuracy, precision,
recall, F1-score, etc. A gap between these established met-
rics and the application domain is noted in [29], which also
includes a proposal for a set of new metrics to address this.
The new metrics include timeliness of detection and correct
detection of infections, rather than correct detection of sam-
ples. Also focusing on real-world applicability, [31] takes the
view that an organisation has a finite bandwidth, or daily
investigation budget, and measures performances in terms
of bandwidth versus recall. This suggests that the classifica-
tion/detection metrics are mostly of academic interest, and
less relevant for evaluating the feasibility and relevance of
a method in practice. None of the related work reports on
the effort invested in feature engineering, the dependence of
domain expertise, or the adaptability.

In this section, we have surveyed existing methods for
correlating and filtering. One important finding is that feature
engineering and domain expertise are fundamental to all the
existing methods. Another important point is that there is
support for rethinking how performance is measured, as the
classification and detection metrics are somewhat discon-
nected from the application domain.

ill. METHOD

In this section we present a novel approach to how correlating
and filtering of IDS alerts can be automated. The novelty of
the approach is that there is no use of feature engineering
and no use of domain expertise. The approach relies on data

VOLUME 8, 2020

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

IEEE Access

for learning how textual alerts can be “read”, i.e. encoded in
meaningful way. The section consists of four main parts;

« First, we present a general approach that captures the
concept. In essence, alerts are considered text, and ML
is used to learn a mapping function for encoding alerts.

« Second, we present our implementation of the concept
using Long Short-Term Memory (LSTM) Recurrent
Neural Network (RNN).

o Third, we present how we have used LSA, a well-known
information retrieval method, as another implementation
of the general approach.

o Finally, we introduce DBSCAN clustering, another
existing method, which we extend to provide labelling
of found hyper alerts.

A. GENERAL APPROACH

Having established in the Introduction that using feature engi-
neering and embedding domain expertise can yield methods
that are not feasible in practice, we strictly avoid using such.
Feature engineering and embedding of domain expertise are
examples of making assumptions about the problem, which
are translated into optimisation in implementations. Prob-
lems arise when these assumptions are broken. We allow only
two assumptions about the problem and build our general
approach on that. First, we assume that alerts carry suffi-
cient information to determine which are false and which are
correlated. We expect no loss of generality from this, as it
follows naturally from the assumption that the filtering and
correlation problems for a set of alerts can be mitigated. As
for the second assumption, we observe that alerts must be
consumed by a machine so a general machine-readable rep-
resentation for alerts is required. Applying a schema implies
feature selection and is out of the question. Clearly, it would
degrade adaptability to only be compatible with IDSs produc-
ing alerts that can fill the schema and by requiring a parser
to be maintained. We note that all IDSs familiar to us are
capable of presenting alerts as human readable text strings.
Also, all representations of alerts that we know of are a subset
of all text strings. Consequently, the second assumption is that
alerts can be represented as human readable text strings.

To only build upon these two assumptions, we propose an
approach, consisting of three phases, as outlined in Fig. 2.
In the first phase, a mapping function is learned from alerts.
The mapping function must be capable of mapping alerts, rep-
resented as text strings, into a vector space, which we refer as
the auto-encoded space. In the seconds phase, the mapping
function is used to map alerts into the auto-encoded space.
Finally, in the third phase, clustering is applied in the auto-
encoded space to obtain hyper alerts that represent incidents.
This approach requires that a method is capable of learning
a discriminative mapping function in the first phase, such
that applying it in the second phase yields a representation
where alerts can be discriminated by incident, such that the
clustering in the third phase is meaningful. If a discriminative
mapping function can be obtained with ML, it will be able

VOLUME 8, 2020

Training alerts Validation alerts

|

Learn mapping Map to auto- Cluster mapped
function (1) encoded space (2) alerts (3)
Hyper alerts

(Clustered alerts)

FIGURE 2. Overview of the general approach; First a mapping function is
learned from training alerts (1), then it is applied to validation alerts (2),
and finally the mapped alerts can be clustered (3).

y e R eg. [140 06 07 0.0 1.0 08 01 02 0.0 OAO}

N
e e

A € A, e.g. “Something is wrong at 192.168.1.2”

FIGURE 3. A Long Short-Term Memory (LSTM) Recurrent Neural Network
(RNN) implementation of the function (A1), mapping Intrusion Detection
System (IDS) alerts into an auto-encoded space of size n = 10. [37, Fig. 1].

to replace manual feature engineering and domain expertise
as known from existing work. If possible, this eliminates the
need for investing in feature engineering, as there is none,
and eliminates the issues of adaptability, because the same
implementation can be reused as-is in other settings, requiring
no manual adaptions, but only data and machine resources for
learning the parameters of the mapping function.

Having described the overall proposal, two examples of
how a mapping function can be obtained will follow: One
using LSTM RNN and one using LSA.

B. LSTM RNN: MAPPING FUNCTION

LSTM RNN is a well-regarded method in the area of Natural
Language Processing, and therefore a good candidate for
being able to produce a discriminative mapping function.
As a neural network-based method, it is computationally
efficient and benefits from recent developments in hardware,
including utilisation of GPUs for computation. We propose to
implement a mapping function (M) with a single layer of n
LSTM RNN neurons, as illustrated with » = 10 in Fig. 3.
The input is an alert from the set of all alerts that can be
represented as text (A € A) and the output is a real-valued
vector (y € R"), i.e. the auto-encoded space.

M: A— R e

The NN can be trained efficiently on data consisting
of input/output pairs, using the Backpropagation algorithm.
However, given that no security domain expertise can be
embedded in the method, the output part of training data
(the auto-encoded representation) is not available. Taking
alerts (Input) and creating corresponding points in the auto-
encoded space (Output), would produce the required data,

108753

IEEE Access

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

but would also be a clear violation of the independence from
domain expertise and feature engineering. Consequently,
the mapping function cannot be trained directly.

C. LSTM RNN: TRAINING A MAPPING FUNCTION

To obtain a ML-based approach, without heuristics or fea-
ture engineering, for learning a mapping function from data,
we elaborate on the meaning of discriminative. To this end,
we introduce an indicator function for correlation (Z), which
outputs 1 for two alerts ((A;, Aj) € (A, A)) if they are raised
on the same incident, and O otherwise;

Z: (A A)— {0,1} (2)

and we define a similarity function (S), which is similar to
S in structure, but instead applies to alerts mapped into the
auto-encoded space ((R", R")), and outputting a real value
for similarity of the alerts (R);

S: (R",R") > R 3

The mapping function and the corresponding auto-encoded
space is said to be discriminative iff. uncorrelated alerts are
very dissimilar (Cf. eqnarray (4)), and correlated alerts are
very similar (Cf. eqnarray (5)). Equation (4) states that the
problem of detecting false alerts is equivalent to finding out-
liers in the auto-encoded space. Correspondingly, (5) states
that the problem of grouping correlated alerts is equivalent to
clustering in the auto-encoded space.

S(M(AD, M(A2) K ¢
S(M(AD), M(A2)) > ¢

iff. Z(A1,A2) =0 (4)
iff. Z(A1,A) =1 (5)

An NN for calculating the similarity of two alerts,
as expressed in the left-hand side of (4) and (5), can be imple-
mented as illustrated in Fig. 4. Assuming that similarity in the
auto-encoded space can be approximated by the output of the
indicator function, this architecture enables us to learn a map-
ping function. For a data set of alerts labelled with incident
IDs, it is trivial to create pairs of alerts, for which correlation
is known. The NN can then be trained, with Backpropagation,
using the alert pairs as input, and Z(A1, Ay) as target output.
NN weights make up all the trainable parameters, and they are
all within the two instances of M. By tying the parameters of
the two instances together during training, the result is a set of
parameters that can be read out and reused in a single instance
of M. Thus, a mapping function can be learned from data,
based on these very general assumptions and the proposed
training architecture. The evaluation will show if the learned
mapping function is discriminative.

D. LSTM RNN: DETAILS OF THE MAPPING FUNCTION

The mapping function is implemented with a single layer
of 10 LSTM neurons (n = 10, c.f. Equation (1)) with tanh
non-linearities. A single hidden layer is used as it is the
simplest RNN, while it in theory still is enough to estimate
any functional mapping [38, pp. 130-131]. Multiple sources

108754

S(M(A1), M(Az)): Similarity of A; and Ay
4

t
Aj: “Something is wrong at 192.168.1.2”

Asy: “Problem at 192.168.1.2”

FIGURE 4. LSTM RNN for estimating similarity of two alerts in an
auto-encoded space. Two alerts are mapped by two instances of the
mapping function (M), to two points in the auto-encoded space. The two
points are compared by the similarity function (S) [37, Fig. 2].

AehAheg“S o m e -~ . 1

FIGURE 5. Long Short-Term Memory (LSTM) Recurrent Neural Network
(RNN) reading an alert, letter by letter. Letters at the bottom: Input
example. Vertical arrows: Input and output connections. Horizontal
arrows: Recurrent connections across elements in the input. Rectangles:
Network as seen in Fig. 3, repeated per element in the input, all having
the same parameters.

suggest limiting layer size to what yields adequate perfor-
mance [39, pp. 22.11-22.12], [40, part 3], [41, p. 158]. In
previous work we experienced that using 10 neurons per-
formed adequately, while keeping the execution time under
a practical limit of 2 days [37]. Consequently, the layer size,
and thereby the dimensionality of the auto-encoded space,
is set to n = 10. Input is One-Hot encoded as encouraged
by [39, p. 22.5]. Forward recurrence is used rather than bi-
directional, for the improved performance. Finally, cosine
similarity is used as the similarity function S.

Alerts are sequences of letters, hence M is implemented
with an RNN. This is illustrated with Fig. 5, which is a more
detailed view on Fig. 3. Each letter of the alert (A) is read in
sequence, from left to right, and fed to the LSTM network
(each rectangle represent the network, consisting of a single
layer of n neurons). This connection is depicted with the
row of vertical arrows. Each rectangle represents the same
network, but each with a new internal state, updated for each
step. Recurrence is implemented with the horizontal arrows,
signifying that the previous state (along with the current
letter) is the inputs to determine the new state. The network
output is ignored until the last step, in which it is used as
the overall output (vertical arrow, upper right). The output at
the last step encodes the entire alert in a vector (R"). Each
recurrence step is a fixed set of matrix multiplications and
additions, thus the computation of M scales well, i.e. linear
in the length of the alert. The length is expected to be limited
as alerts are intended for human interpretation.

The training procedure used is illustrated with Fig. 6, with
the following details and considerations; Pairs of alerts are
built by making all possible combinations of the relevant sets
of alerts, (Cartesian product in Set Theory or cross-join with

VOLUME 8, 2020

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

IEEE Access

Training
alerts
Build
pairs (1)
Mini Repeat
¢ | batching (2) | pr. epoch
Hyper R " i
Arameters Train (3 epeat pr.
parameters rain (3) minibatch

“)

Mapping function

FIGURE 6. Procedure for training the network depicted by Fig. 4. Training
alerts, labelled per incident, are used to build pairs of alerts with known
correlation(1). Pairs are divided into mini-batches (2), and each
mini-batch is used for training by repeatedly applying the Back
Propagation algorithm (3), using a set of hyper-parameters (4).
Mini-batching (2) and training (3) is repeated for each epoch to produce
the mapping function (l.e. the weights for the LSTM RNN).

self on a constant attribute in Relational Algebra). It is noted
that if n,es 1S the size of the training alerts set, then the set of
training pairs will be of size nz%lerts’ thus adding training alerts
has a big impact on the memory and computation needed for
training.

Training is repeated for 10 epochs, each epoch utilising
the entire data set, and each incrementally improving perfor-
mance. For each epoch, training is done with randomly sam-
pled mini-batches of 10000 samples, in order to add noise and
to match computations to hardware. Experience is that noise
aids in avoiding bad local optima. Training on a mini-batch is
done with the Back-Propagation algorithm, meaning Stochas-
tic Gradient Descent (SGD) towards a locally optimal loss
(Binary cross entropy), controlled by a learning rate of 0.003.
Back-Propagation with SGD is generally not guaranteed to
find a global optimum.

E. LSA

LSA is an well-known and widely used Information Retrieval
method for learning a transformation from unlabelled
data [42).%2 Put shortly, LSA is to count word occurrences
per document to obtain a Term Frequency (TF) matrix and
apply Singular Value Decomposition (SVD) to it. From the
SVD, one can construct a transformation that maps a vector
of word counts into a space of lower dimension, where the
basis vectors are those that account for the most variance
in the TF matrix. The assumption is that this compression

2LSA is also well supported in scientific computation
toolkits, cf. https://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.TruncatedSVD.html

VOLUME 8, 2020

preserves and extracts the most useful information, while
removing noise. The output of the transformation is typically
much smaller size than the input. We are not aware of any
previous examples of LSA being applied to IDS alerts, but
it appears obvious to consider alerts as documents. Further-
more, the derived transformation corresponds perfectly to our
mapping function, and the output space to our auto-encoded
space, making LSA appear as a viable implementation of our
general method.

The details of our LSA implementation, and corresponding
considerations are as follows: Alerts often contain more than
words, e.g. IP addresses, timestamps, or rule IDs, hence we
count N-grams in place of words. To limit computation and
memory usage, only 1-, 2-, and 3-grams are considered.
N-grams found in only one or more than half of the alerts are
expected to convey little information, so they are discarded.
N-grams that are found in few alerts are assumed to be par-
ticularly relevant for describing those alerts, and conversely
those N-grams found in many alerts are expected to convey
little information. To implement this, the Term Frequency
weighted by Inverse Document Frequency (TF-IDF) is used
in place of plain TF. To limit computation and memory usage,
the top 10.000 N-grams by term frequency across the corpus
are used, the rest are discarded. Finally, the SVD is truncated
to the top 100 largest components, i.e. the most significant
topics, and they form the auto-encoded space (n = 100). n is
chosen such that there can be multiple topics per incident,
while not allowing too many, as the less significant topics
carry more noise. Truncating also decreases the size of the
model.

F. CLUSTERING PROCEDURE
Second and third phases of the general approach (Recall
Fig. 2) are captured by Fig. 7. The second phase applies the
learned mapping function to alerts to obtain their representa-
tion in the auto-encoded space.

The third phase implements the DBSCAN clustering algo-
rithm to the alert representations. In accordance with S being
the cosine similarity, DBSCAN uses cosine as distance.

To gain an understanding of the partitioning of the auto-
encoded space in a systematic way, clusters are labelled with
incident IDs in the following way: Core points are used to
represent clusters, and thereby the partitioning. The most
frequent incident ID for alerts in a cluster is taken to be the
incident ID of the cluster. To handle varying frequency of
alerts from different incidents, the majority vote is weighted
by the inverse frequency of alerts from each incident in the
whole data set. By imperfections in the learned mapping func-
tion, or in the used clustering algorithm, some clusters can
be labelled as holding mostly false alerts. This is accepted,
as grouping false alerts in a cluster still removes redundancy
in the final result, although filtering them out altogether is
preferred. Using the partitioning and the concepts of close-
ness from DBSCAN, it can be predicted to which incident in
the training data a new alert belongs to, or if it is a false alert.
Validation alerts are mapped into the auto-encoded space and

108755

IEEE Access

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

Training Mapping Validation
alerts function alerts
Mapping Mapping
function (1) function (2)
Clustering Parameters
(3) 5
Label Evaluation
clusters (4) (6)
1
Yy
(4
Validation
results

FIGURE 7. Data flow for clustering. The mapping function (C.f. Fig. 6)
encodes both training (1) and validation alerts (2). DBSCAN clustering is
applied (3), and clusters are labelled as detailed in Section IlI-F (4), using
the same DBSCAN parameters (5). Finally, the labelled clusters, from
training alerts, are applied to the encoded validation alerts to label them
with incidents (6).

compared to the core points found in the training data set. If
a point is within eps of a labelled core point, the validation
point is classified as belonging to the same incident as the
core point. If a point is not within eps of a labelled core point,
it is an outlier, and the alert is predicted to be a false alert.

G. SECTION SUMMARY

To summarise, we have presented a general approach for
extracting useful information from IDS alerts, to automate
correlation and filtering without any feature engineering or
expert knowledge, and with no ties to particular IDSs. Addi-
tionally, we have proposed two methods for learning mapping
functions. The first employs a LSTM RNN architecture and
learns from labelled alerts. The second is LSA applied to
unlabelled alerts. Note that the implementations are available
as open source.> We now turn to the methodology used for
evaluating the two methods.

IV. EVALUATION

In this section, we describe how we evaluate our proposal.
Our null-hypothesis is that correlation and filtering methods
only can perform adequate for practical application if feature
engineering, domain expertise, or both are used in the meth-
ods. To test this, the two methods presented earlier are applied
to two data sets and scored by metrics capturing practical
performance. In this way we seek to demonstrate that our pro-
posed approach and implementations are counterexamples,
leading us to reject the null-hypothesis, and conclude that
adequate filtering and correlation can be achieved without
feature engineering and embedding of domain expertise. To

3 https://github.com/kidmose/lstm-rnn-correlation.

108756

TABLE 2. Overview of alerts raised on the MCFP bot traffic (Part of Data
Set 1).

Bot (I.e. Incident) Alerts Alerts (%)

1 100 4.36 %
2 184 8.53 %
3 317 14.69 %
4 328 15.20%
5 390 18.07 %
6 395 1830 %
7 444 20.57 %
Total 2158 100.00 %

this end, we here introduce the two data sets, a view on
practical alert processing, and a set of metrics that capture
practical performance.

As already discussed in Section II, data for evaluation
poses a challenge when working with correlation and filter-
ing. The training procedure for the LSTM RNN and the need
for hard evaluation metrics further constrains the possible
data set to those where labels are available. We have iden-
tified two usable data sets, one from the Malware Capture
Facility Project (MCFP) [29] and the other being the CIC IDS
2017 data set [36].

A. DATA SET 1: MCFP BOT TRAFFIC MERGED WITH
BENIGN

Complete traffic traces of bot malware operating in a lab
is provided by the MCFP* [29]. This data set is interesting
because holds data on real bot malware samples, that have
been allowed to execute in a lab, to simulate an incident. As
traffic traces are provided per execution of individual bot mal-
ware sample and without benign traffic, labels can be applied
efficiently to each incident before merging. On the other
hand, the absence of benign activity and the resulting absence
of false alerts pose a challenge to the representativeness of the
data. To overcome this, we propose a procedure for obtaining
false alerts and for merging all the alerts, as outlined in Fig. 8.
The procedure can be reused by others, resulting in a data set
that is available to anyone for the parts where privacy allows
it, and where the private part can be created according to the
following description. This offers a not previously described
point in the trade-off between representativeness, privacy, and
availability of data.

The per bot traffic traces are processed with the Snort IDS?
resulting in alerts, which are labelled with incident. Table 2
provides an overview of the data. For further details, see our
previous work [37].

False alerts are obtained by monitoring the traffic of tens of
office user PCs for 35 days, using a Snort instance configured
as above. It must be asserted that the alerts are indeed false,
which is done by asserting three independent conditions. The
first condition is that the monitored hosts/network is part

4 Available from:https://mcfp.felk.cvut.cz/publicDatasets/

5Using Snort version 2.9.7.6, DAQ version 2.0.6, built in rules
and https://snort.org/rules/snortrules-snapshot-2976.tar.gz, accessed Octo-
ber 6th, 2015.

VOLUME 8, 2020

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

IEEE Access

Yy Yy
| |
Real world MCFP
false alerts alerts
Typ. corp.
methods
- — Select
Discard elec Mz{lwgre
samples criteria
Heuristics l l
- — Benign IPs
. EXtracF ********** Rewrite IPs
information
Time\fl\':chA l
Rewrite
timestamps
Merge
Stratify
Split
Validation Training
alerts alerts

FIGURE 8. Data flow graph for data preparation.

of a well-managed corporate infrastructure, with fundamen-
tal information security mechanisms in place, such as user
rights management, firewalls, antivirus, patch management,
etc. This is believed to decrease the likelihood of a machine
being infected. The second condition is that typical corporate
methods and procedures, for identifying infected hosts are
in place. This involves various solutions in the categories
of both HIDS and NIDS, beyond what is part of the data
collection setup described herein. The third condition is that
heuristics are applied to screen for alerts that are likely to
be true. Manual inspection is applied to the heuristically
selected subset of alerts, with the goal of determining if the
alert is false. Any host identified by an alert that cannot be
confirmed to be false, is handled as if it was infected. The
first heuristic is based on infections likely causing at least
one priority 1 alert, thus all priority 1 alerts are inspected.
The second heuristic is that any mention of the keywords
malware,malicious, blacklist, trojan, and bot
in the alert is a strong indicator of a true alert, thus alerts
matching any of these keywords are inspected. The manual
inspection involves the interpretation of alerts, the collection
of relevant information, (exploit description, host name look-
up, the presence of exploited service and patch level, other
alerts on either source or destination host, interview with
system owner, blacklists), and finally a conclusion on whether

VOLUME 8, 2020

TABLE 3. False alert data set in numbers, with details of what was
discarded.

Alerts Prio. 1 Prio. 2 Prio. 3 Hosts Corp.

hosts

Recorded data set ~ 5.548.539 104 4.028.411 1.520.024 10.907 1.552
Discard list 1 251.904 0 251.880 24 - -
Discard list 2 713.737 37 607.293 106.407 - -
Used data set 4.582.898 67 3.169.238 1.413.593 9.333 1.236

Discard list 1: Alerts with source or destination IP flagged by typical corporate
methods and procedures. Discard list 2: Alerts with source or destination IP that
was found in a priority 1 alert which could not be rejected as false. Note that alerts
can be counted in both discard lists, hence summing across rows will not add up.

there is reason to suspect that any host was infected. In cases
where suspicion remains, both source and destination hosts
implied by the alert are considered infected. Consequently,
alerts involving confirmed or potentially infected hosts are
discarded.

During 35 days, 5.548.539 alerts were raised, involving
10.907 different IP addresses, of which 1.552 belong to
unique hosts in the corporate domain. The existing corporate
methods and processes had detected infections leading to
251.904 of the alerts being excluded (O priority 1 alerts,
251.880 priority 2 alerts, and 24 priority 3 alerts). No alerts
matched the keywords. 104 alerts of priority 1 were raised and
inspected manually. Among these, 71 alerts were confirmed
to be false alerts. The remaining 33 suspected true alerts
lead to 713.737 alerts being excluded, (37 priority 1 alerts,
607.293 priority 2 alerts and 106.407 priority 3 alerts).
Combining the above different grounds for discarding alerts,
produces the used set of false alerts. Table 3 summarises
the discarded alerts and the distribution across the different
priorities.

Simply pooling the true and false alerts into a single data set
will introduce artefacts, where it is trivial to discern intrusions
in time and in IP space. To avoid this, the alerts are rewritten
to fulfil the following statements:

1) First alert of each incident is after first false alert.

2) Last alert of each incident is before last false alert.

3) Alerts of the same incident maintain their relative dif-

ference in time.

4) IP address of each incident victim is replaced with one

appearing in the false alerts.

5) Resulting IP address must be unique for each incident

victim.

The ambiguity that remains from the above is handled
by randomising, using independent continuous uniform dis-
tributions across the possible time span, and independent
uniform discrete distributions, across the set of possible IP
addresses. To control the training time, (O(ngl orts)) the data
set is stratified by discarding false alerts, so that they make
up 50% of the data.

B. DATA SET 2: CIC IDS 2017
The CIC IDS 2017 data set® [36] stands out from other recent
data sets because it includes traffic traces, which can be

f’http://www.unb.ca/cic/datasets/ids—2017.htm1. Access kindly provided to
the authors upon request.

108757

IEEE Access

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

TABLE 4. Alerts raised on the CIC IDS 2017 data set (Data Set 2).

Alerts Alerts (Stratified)
Incident Count % Count %
False alerts 172447 39.93 1894 43.88
Bot 2812 0.65 200 4.63
DDoS 23111 5.35 200 4.63
DoS GoldenEye 2200 0.51 200 4.63
DoS Hulk 223760 51.81 200 4.63
DoS Slowhttptest 2172 0.50 200 4.63
DoS slowloris 162 0.04 162 3.75
FTP-Patator 441 0.10 200 4.63
Heartbleed 92 0.02 92 2.13
Infiltration 3312 0.77 200 4.63
PortScan 596 0.14 200 4.63
SSH-Patator 387 0.09 200 4.63
Web Attack BF 195 0.04 195 4.52
Web Attack SQLi 15 0.00 15 0.35
Web Attack XSS 158 0.04 158 3.66
Total 431860 100.00 4316 100.00

Break-down by labels. The second and third columns are before
stratification. The fourth and fifth columns are after.

passed to Snort, and because the accompanying homepage
describes the incidents with sufficient details to label alerts
by incident. This enables use of the data set for evaluating
our filtering and correlation methods. Furthermore, the data
is presumable available to anyone, is not subject to privacy
constraints, and represents contemporary incidents.

Alerts are again obtained by processing the individual
traces with Snort. Labels are applied to alerts by comparing
the timestamp of the alert to the time interval of incidents
and by comparing the IPs of both. An alert is labelled with
a given incident when both of two conditions are met: First,
the alert timestamp must match the time interval of the inci-
dent. Second, either source or destination IP of the alert must
match either the attacker or victim of the incident. A network
device performed Network Address Translation (NAT) in the
data collection setup, which makes is meaningless to match
both source and destination to attacker and victim. Lack of
comprehensive details on port usage for incidents and details
of the NATing process makes it impossible to reconstruct
the translations. This also leads to the exception that both IP
addresses of the NATing device are ignored when matching.
There are no cases where multiple labels match an alert. If
an alert fails to match on either or both of the time and IP
conditions, it is labelled as a false alert.

The number of total alerts amounts to 431860, which
compares poorly with the 4361 alerts in the final Data Set
1. A stratified down sampling of Data Set 2 to approxi-
mately one hundredth of the previous size will mean that
some incidents are going to have only one or zero alerts,
which is problematic. Instead, only incidents with more than
200 alerts are down-sampled to 200 alerts, and then false
alerts are down-sampled to match the total size of Data Set 1.
A summary of the alerts and their labels is shown in Table 4.

C. METRICS
A set of commonly used metrics for detection and classifica-
tion problems, are used for evaluating performance. We use

108758

accuracy, precision, recall, and F1 score as defined by (6)-(9):

TP + TN
accuracy = ——— (6)
FN + FP
- TP)
recision = ———
P TP + FP
TP
recall = ———— (®)
TP + FN
precision - recall
Fl=2-——FF—)

precision + recall

True Positive count (TP) refers to the count of correct
positive outcomes/class assignments, False Negative count
(FN) to the count of incorrect negative outcomes/assignments
to other classes, False Positive count (FP) to the count
of incorrect positive outcomes/class assignments and, True
Negative count (TN) to the count of correct negative out-
comes/assignments to other classes.

The use of these metrics enables comparison with other
works within the field, and they are well suited to describe
performance on detection and classification problems in gen-
eral. However, they fail to capture the actual value gained
from applying correlation and filtering methods, as also men-
tioned in Section II. In the following, we propose a set of
metrics to address this, motivated by a model of operation
and by general costs associated with a Security Operations
Center (SOC).

Any corporation or other large organisation is expected to
have some unit handling (hyper) alerts and incidents, which
we refer to as a SOC. Automatically reacting to every (hyper)
alert, including the false, will clearly cause too many dis-
ruptions, hence it is assumed that (hyper) alerts are pro-
cessed manually, before any action is taken. The processing
of an (hyper) alert, by an analyst, is assumed to have a unit
cost. In reality, the required time and level of expertise varies,
and thereby so does cost, but with large volumes this simplifi-
cation is reasonable. Given a hyper alert, we assume that one
alert is picked at random from the hyper alert, and used to
determine what has happened, and what action is to be taken.
The analyst is assumed to be perfect, meaning that when
analysing an alert, the analyst correctly identifies the victim,
the incident, and whether it is a false alert. Assuming that
the alerts of a hyper alert are sufficiently homogeneous, i.e.
hyper alerts mostly hold alerts of the same incident, this can
be expected to work well. Given this model of a SOC, the ratio
of alerts to hyper alerts is also the ratio between cost of analyst
workload, with and without filtering and correlating. In the
following, this will be formalised as the Alert Reduction
Factor (ARF).

The other side of operating a SOC, is the risk of missing
incidents altogether. Setting the cost of this is extremely hard,
as incidents might be stopped from causing harm through
other mechanisms than those initiated by the SOC, or in
worst case they can potentially be the end of the corporation.
Acknowledging that the cost of an incident is impossible
to describe in general, we propose to consider the rate at
which incidents are missed. This provides insights as to the

VOLUME 8, 2020

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

IEEE Access

probability that a random incident will be missed and can
be used as an input to risk management, where uncertain-
ties already need to be handled. A metric named Incident
Miss Rate (IMR) is defined to capture this.

For use in the formal definitions, the following sets of
alerts, hyper alerts and incidents are defined:

Ajy, @ Set of all alerts, before pre-process (10)
A,y Set of all alerts, after filtering by pre-process (11)
i, : Set of all incidents, before pre-process (12)
I,z : Set of hyper alerts, produced by pre-process (13)

|X]| : Number of elements in set X

As already stated, ARF describes ratio from all input alerts
to the number of hyper alerts:

ARF: Ay, 1o — R

A.
Aim Hout = M
|]Iout|
ARF < |Am| ARF = |Am| — |H0ut| =1
ARF > 1 ARF =1 < |Ajp| = |Lu| (14)

IMR captures how likely it is that an incident will be missed
altogether. By comparing how many incidents are in the input
data, against how many are represented in the output, it can
be measured how often the method makes an error leading
to an incident being missed altogether. Ideally this metric is
zero, as that means no incidents are missed, while a value of
one, means all incidents are missed.

IMR: Ty, I — R (15)
Ly \ I
Ly, s+ n \Lor] (16)
“Iinl
IMR>0 IMR=0 < |L;;\Iow| =0 (18)

The above definition of IMR in (15) provides for the
understanding of how the metric is relevant, but the notion
of an incident not being represented in the output hyper alerts
(I \ Ipur) is impractical. Instead, we recall that the analyst
picks an alert at random, correctly identifies the incident of
that alert, and associates the hyper alert with that incident.
The probability that the ID of a given incident, i, comes out as
the ID of hyper alert o, is equal to the count of alerts in o that
have the given ID, divided by the number of alerts in the hyper
alert (C.f (19)). The likelihood that a certain incident ID is not
present in any of the produced hyper alert, is the product of the
probabilities of not being in each of the individual hyper alerts
(Cf. (20)). Based on this, IMR is calculated as the expected
rate at which an incident is not being found by the described
“oracle analyst” (Cf. (21)).

P(ID|o) = Z]l(a € i)/|ol (19)
P(—=ID|Lyy) =]_[1 — P(ID|o) (20)
o€lyy

VOLUME 8, 2020

TABLE 5. Classification metrics.

Implementation Dgztta Acc. Prec. Rec. F1
LSTM RNN 1 0.737 0.731 0.737 0.720
LSTM RNN 2 0.403 0.401 0.403 0.381
LSA 1 0.826 0.865 0.826 0.793
LSA 2 0.694 0.748 0.694 0.649

Accuracy, Precision, Recall and Fl-score for predicting incidents of
validation alerts based on clustering of training alerts. Broken down by
implementation applied and by data set. The reported numbers are the
mean of 10 executions with non-overlapping validation cuts of the data.
Higher is better.

IMR = " P(=ID|Tpu)/ Tin]

iel;,
=3 11 (1—21<aei>/|o|)/|ﬂm| 1
i€l o€lpy: aco

V. RESULTS

Both of the two implementations (LSTM RNN and LSA) has
been applied to both of the two data sets (Data Set 1, MCFP
merged with false alerts, and Data Set 2, CIC IDS 2017).
Each of the four combinations of implementation and data
set was executed ten times, each time learning a mapping
function and finding clusters from training cuts that consists
of 9/10" of the data. The remaining 1/10” made up the non-
overlapping, left-out validation cut for each execution.

To enable comparison with prior work, classification met-
rics for using the labelled clusters to predict incidents of are
presented in Table 5. Numbers are the mean over the ten
executions.

Table 6 holds the domain specific metrics that we have
proposed, also for both implementations and both data set. As
this is the measuring point that we argue is relevant for prac-
tical purposes, worst- and best-case performance is included
in addition to the mean. Fig. 9 holds a scatter plot of IMR
and ARF for all four combinations and the ten executions of
each, i.e. the data aggregated in Table 6. Data set is encoded
by the shape using dots for Data Set 1 and squares for Data
Set 2. Implementation is encoded by the colour using Blue for
LSTM RNN and red for LSA. Performance increases when
moving up (Higher ARF) and to the left (Lower IMR).

As a mean to identify and understand systematic errors
confusion matrices are included for each combination of
implementations and data sets with Figures 10, 11, 12, and 13.
Note that the numbers are normalised according to support for
each label to avoid suppressing the incidents with few alerts.
Ideally, diagonal values are one and off-diagonal values are
zero, as this would indicate no confusion among incidents.

VI. DISCUSSION

Two implementations have been presented and evaluated,
which calls for a comparison. By the common classification
metrics of Table 5, LSA beats LSTM RNN on all metrics
(Fixing data sets for a fair comparison). The picture is similar

108759

IEEE Access

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

TABLE 6. Application domain metrics for performance of LSTM RNN and
LSA implementations on Data Set 1 and 2.

IMR ARF

Implemen.® DSP min mean max min mean max

LSTMRNN 1 0.00e? 6.18¢73 1.79¢=2 8.31e0 9.25e0 9.82¢Y
LSTMRNN 2 0.00e® 6.12¢72 1.09e~1 2.44¢° 3.00¢° 3.39¢0
LSA 1 0.00e® 7.26e717 1.33¢716 2.16¢! 2.33e! 2.54e!
LSA 2 8.93¢72 9.93e~2 1.64e~! 4.19€° 4.55e0 5.07e"

Aggregation spans 10 non-overlapping validation cuts of the data.
Incident Miss Rate (IMR) describes how likely it is that an incident
is missed, so lower is better. Alert Reduction Factor (ARF) describes
the reduction in manual effort, so higher is better. * Implemen. is an
abbreviation of “Implementation”. ® DS is an abbreviation of “Data Set”.

25

n
o
.
00 o

o
1

Alert Reduction Factor

o
L

] = L] & .. = -

T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150
Incident Miss Rate

FIGURE 9. Application domain metrics plotted for LSTM RNN (Blue) and
LSA (Red) implementations, applied to Data Set 1 (Dots) and Data Set 2
(Squares). Each point represents one of 10 non-overlapping validation
cuts of the data (10 cuts for each of the four combinations, 40 points
total). Incident Miss Rate (IMR) describes how likely it is that an incident
is missed, so left is better. Alert Reduction Factor (ARF) describes the
reduction in manual effort, so higher is better.

False(1) 0.00 0.00 0.00 0.01 0.05 0.02 0.06

1(2) 1 0.37 0.01 0.00 0.01 0.02 0.05 0.03

2(3)70.15 0.00 0.14 0.01 0.00

3(4) 10.01 0.00 0.00 0.00 0.00

True label

4(5) 10.03 0.00 0.00 0.02 0.00

5(6) 10.07 0.00 0.00 0.00 0.00

6(7) 10.46 0.02 0.02 0.00 0.01 024 0.20 0.05

~
=
s
o
'S
©
o
o
S
o
o

.02 0.00 0.01 0.02 0.04 0.42

Predicted label

FIGURE 10. Normalised confusion matrix for detection based on
mapping function learned with LSTM RNN on Data Set 1. Diagonal values
of 1 and off-diagonal values of 0 is ideal.

for domain specific metrics of Table 6 with the exception of
IMR on Data Set 2. For IMR on Data Set 2, LSTM RNN beats
LSA, but the values are less than an order of magnitude apart.
These metrics clearly ranks LSA over LSTM RNN, while
the domain specific metrics largely agree, but on one point
they disagree or at least turns out inconclusive. One possible

108760

0.00 0.00 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.01 0.00 0.00

0.29 0.00 0.00 0.12 0.00 0.00

0.00 0.00 0.00 0.00

True label

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.20 0.17 0.00

0.00 0.00 0.00 0.00 0.00 NeX:j!

Predicted label

FIGURE 11. Normalised confusion matrix for detection based on
mapping function learned with LSA on Data Set 1. Diagonal values of 1
and off-diagonal values of 0 is ideal.

interpretation is that classification metrics are better suited for
capturing performance differences, while the domain specific
metrics fail to separate the two implementations. Another is
that the domain specific metrics show the right picture in
the light of practical application value, while the conclusion
drawn on classification metrics is wrong due to a disconnect
from the application domain. The missing link between clas-
sification metrics, the correlation and filtering problems, and
the values and risks of the application domain is an interesting
topic to explore even further.

To better understand the difference in performance
between LSTM RNN and LSA we inspect the per execution
performance as plotted in Fig. 9. It is noted that for Data Set 2
(Squares), which unanimously is the most difficult of the
two, the implementation appears to behave different. While
LSA (Red) consistently outperforms LSTM RNN (Blue) in
terms of ARF (High is better), the picture for IMR is more
complex (Left is better). LSA is most consistent with a single
outlier, while the performance of LSTM RNN spans a larger
range in what appears as four different steps. The single
outlier for LSA can be explained by inspecting the confusion
matrices of each execution, and their aggregate which is pre-
sented in Fig. 13. The aggregated and nine of the ten confu-
sion matrices are similar in that they have non-zero diagonal
values, except for DoS Hulk alerts. This indicates that in
general the procedure of learning a mapping function with
LSA, applying it, clustering the result, and making prediction
using the clusters will capture at least some alerts from all
incidents, except DoS Hulk. The one exceptional execution,
represented by the outlier red square in Fig. 9, differs in that
the diagonal value for SQL Injection is also empty, indicating
a failure to capture this incident. So where nine executions
of LSA on Data Set 2 failed completely to capture exactly
one specific incident, the tenth execution stands out by failing
for an additional incident, which explains the increased IMR
of the outlier. We note that 58% of the errors for DoS Hulk
are due to confusion with another volumetric DoS attack
happening two days later. It is unsurprising that the SQL

VOLUME 8, 2020

IEEE Access

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

False alert (1) 0.01

FTP-Patator (2) 10.33 0.15

0.01 0.00 0.01 0.03 0.00 0.06 0.01 0.02

0.04 0.00 0.02 0.26 0.00 0.00 0.04 0.05

SSH-Patator (3)40.31 0.02 0.17 0.03 0.00 0.02 0.29 0.00 0.00 0.08 0.03

DoS slowloris (4)10.20 0.01 0.28 0.06 0.01

0.00 0.00

0.02 0.41 0.01

0.31 0.01 0.01 0.03 0.03

DoS Slowhttptest (5)40.03 0.00 0.02 0.00 0.01 0.01 0.01

DoS Hulk (6) 10.41 0.00

DoS GoldenEye (7 0.03

Heartbleed (8)10.46 0.02

0.01 0.00 0.01 0.01 0.01

0.00 0.26 0.04 0.01 0.00 0.01 0.01 0.03

0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.04

True label

Web Attack - Brute Force (9)10.14 0.01 0.03 0.00 0.01 0.32 0.00

0.01 M 0.00

0.13 0.13

0.04 0.03

Web Attack - XSS (10)40.27 0.00 0.01 0.00 0.03

0.07 0.00

0.02 0.01 0.01

0.05 0.02

Web Attack - Sql Injection (11)40.00 0.00

Infiltration (12) m 0.01

Bot (13) 0.46 0.01

0.00 0.00

0.05 0.00 0.05 0.03

0.01 0.00 0.00 0.03 0.00 0.01 0.04

PortScan (14)10.44 0.01 0.01 0.01 0.00 0.35 0.00 0.07 0.04
DDoS (15)@0.03 .02 0.01 0.01 0.01 0.02 0.03 0.06 0.01 0.00 0.02 0.03 0.06
T T T T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Predicted label

FIGURE 12. Normalised confusion matrix for detection based on mapping function learned
with LSTM RNN on Data Set 2. Diagonal values of 1 and off-diagonal values of 0 is ideal.

False alert (1)-Jle]3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FTP-Patator (2) -Jelsk] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SSH-Patator (3) 5] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DoS slowloris (4)10.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

DoS Slowhttptest (5)40.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DoS Hulk (6) 10.41 0.00 0.00 0.00 0.00

0.00

0.00 0.00 (X0 0.58

DoS GoldenEye (7)0.03 0.00 0.00 0.00 |0.42 0.00 N3

Heartbleed (8)70.04 0.00 0.00 0.00 0.00 0.00 0.00

True label

Web Attack - Brute Force (9)40.36 0.00 0.00 0.00 0.00 0.00 0.01

Web Attack - XSS (10)10.34 0.00 0.00 0.00 0.00 0.00 0.00

Web Attack - Sql Injection (11)0.13

0.00

0.00 0.00 0.00 0.00 0.00

Infiltration (12)
Bot (13)

PortScan (14)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.22

0.00

0.00

0.08

DDoS (15)

.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
T T T T T T T T T

6 7 8 9 10 11 12 13 14 15
Predicted label

FIGURE 13. Normalised confusion matrix for detection based on mapping function learned
with LSA on Data Set 2. Diagonal values of 1 and off-diagonal values of 0 is ideal.

Injection incident triggers the second failure, as it is by far
the incident with the lowest number of alerts (15 alerts or
0.35% of Data Set 2, as per Table 4). With 13 or 14 alerts
in the training data and only one or two in the validation data
we find it somewhat surprising that our approach was able to
capture this very imbalanced class in nine of ten executions.

Returning to the topic of classification metrics vs. the
proposed domain specific metric, one noteworthy point is that

VOLUME 8, 2020

LSTM RNN only achieves 40.3% accuracy on Data Set 2. As
per Table 4 43.88% of the alerts are false, so crude “Filter
out all alerts” or “Label all alerts by most common label”
implementations would beat LSTM, and it is therefore tempt-
ing to state that LSTM RNN fails for Data Set 2. However,
the domain specific metrics in Table 6 shows that LSTM
RNN is still capable of reducing the number of alerts to a
third. We claim that any practitioner or manager responsible

108761

IEEE Access

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

for a SOC would find it adequate to cut a large workload
down to a third, which is a point that the classification
metrics misses completely. The results also indicate that the
implementation can be expected to miss 6.12% of incidents.
This has to be weighed against the benefits, in particular
the limited cost of deployment and maintenance. In settings
where it is important to lower the resources invested, and
where there is willingness to accept a higher risk, this could
very well be acceptable. Where it is crucial to minimise risk,
and where large investments are of no concern, this might
not be sufficient. In the end, finder the optimal point in this
trade-of requires known costs which are not general, and we
leave it to practitioners to pass judgement on this. Again,
the classification metrics of Table 5 fail to capture the above,
while the proposed domain specific metrics describes the
gain (ARF) and risk IMR), which can be used in a practical
setting to determine if the implementation is relevant. The
domain specific metrics proposed are therefore the best way
to capture correlation and filtering performance for practical
purposes.

Both domain specific metrics (Table 6) and classification
metrics (Table 5), are remarkably better on Data Set 1 com-
pared to Data Set 2. Fig. 9 generally confirms that executions
running on Data Set 1 (Dots) exhibit better performance than
executions with Data Set 2 (Squares). The one exception is
one of the ten executions of LSTM RNN on Data Set 2 which
exhibits an IMR of 0, which is on par with the best executions
on Data Set 1. This suggests that Data Set 1 is significantly
less challenging than Data Set 2. To explore this, one could
evaluate more methods on the same data to understand if it is
only less challenging for the implementations of our approach
orif it is generally easier. Being able to observe this difference
in the first place highlights the value of evaluation on multiple
data sets, as the common practice of using 10 validation cuts
does not identify this issue. Possible reasons that Data Set
2 is harder than Data Set 1 includes: It holds more incidents
(14 vs 7), it spans a shorter period of time (5 days vs 35 days),
the incidents are more diverse, the incidents are more contem-
porary, and the incidents are perhaps more random as they are
driven by human rather than software (bot malware).

Inspecting the confusion matrices for the two implemen-
tations and the two data sets (Fig. s 10, 11, 12, and 13),
provides for some interesting observations. We find three to
be particularly interesting. First, most of the outcomes are
on the diagonal, meaning that ground truth label matches
the predicted label. If the output of the mapping function,
which is the input for clustering and classification, is random
and without relevant information this pattern is extremely
unlikely. Therefore, this proves success on learning a map-
ping function without feature engineering or embedding of
domain expertise. If the performance is adequate is discussed
below. The second observation is that the first column, which
indicates a prediction of “false alert”, is also substantial.
This indicates that a true alert was mistakenly classified as
false, i.e. filtered out. Keep in mind that due to the nature
of the filtering and correlation problems such an error is not

108762

equivalent to missing an incident, but it contributes to the
risk of that happening. It does however show that the map-
ping function, clustering, and classification in combination
are less than perfect solutions, which makes it relevant for
further exploration. A specific direction could be to explore
if it is possible to adjust the aggressiveness for filtering and
correlating, in order balance the trade-of between IMR and
ARF in practice. It is also possible that some of this is due
to bad labelling. False alerts might have occurred on the
malicious parts of Data Set 1 due to e.g. background activities
of the operating system, and malicious activity in the benign
part might have slipped through our procedure described in
Section IV-A. For Data Set 2 we did observe some incon-
sistencies in timestamps between the descriptions and the
labelled flow data that is distributed along with the raw traffic.
The flows were not used for this work, but it indicates that
errors are present, in this particular case perhaps due to human
involvement. Thirdly, there are some significant deviations
from the above two types of observations. In Fig. 10 there
are few errors (70% to 99% are correct) for incidents 2-5,
and the errors made are not confusions towards false alerts.
This can be due to the LSTM RNN implementation being
well suited for capturing the relevant information, as the LSA
implementation (Fig. 11) are much more prone to filter out
incidents 2 and 4. Both implementations have a tendency to
confuse 12% to 14% of the alerts on incident 2 and 20% to
24% of alerts on incident 6 as being incident 5. This might be
explained by similarity in the raised alerts, which is possible
as it is two examples of bot malware. In Fig. 12 we see many
deviations from the diagonal and the first columns. The most
significant is 67% of alerts on Web Attack — Sql Injection (11)
being confused as DoS Slowhttptest (5). As both incidents are
using the HTTP protocol to deliver application level attacks
this confusion is not very surprising, and with only 15 total
alerts on (11) it is expected that the bias is towards (5),
cf. Table 3. Other significant deviations are other DoS attacks
being confused as DoS Slowhttptest (5). In Fig. 13 the only
substantial deviation from the diagonal and the first column is
that 58% and 56% of DoS Hulk (6) and DoS GoldenEye (7)
are confused as being DDoS (15). This is can be explained
by all three being DoS attacks, and in particular by DoS
Hulk also spoofing random sources thereby mimicking the
distributed nature of DDoS. Furthermore, both DoS Hulk
and DoS GoldenEye use randomly generated data (User-
Agent and Referred in HTTP) and similar techniques (HTTP
Keep-Alive and no-cache also in HTTP). In summary, many
outcomes are on the diagonal, meaning that they are correct,
many are in the first row, meaning they are incorrectly filtered
out, and the remainder of errors have possible explanations
based on deeper understanding of the data.

Having discussed the implementations, the metrics, and
the data sets, we now turn to the most important ques-
tion: Can the proposed general approach be used to filter
and correlated alerts with adequate real-world performance
without investing time and resources in feature engineering
and without depending on domain expertise? Our general

VOLUME 8, 2020

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

IEEE Access

approach, and thereby the LSTM and RNN implementation
are done without any feature engineering or domain expertise,
so the question can be rephrased to: Do the evaluation results
indicate that the implementations perform adequately to be of
practical relevance? The factor of eliminated manual analysis
effort can be expected to be in the range from 3.00 to 23.27
(Mean AREF, Table 6). As already argued, we are confident
that cutting a substantial task to a third is indeed valuable and
worth doing. Especially as the proposed approach provide
implementations that are easy to apply compared to other
methods that demand substantial investments in feature engi-
neering and domain expertise which can make them unfeasi-
ble in practice. Incident miss rates are ranging from 7.26e—17
to 9.93e — 02. In the best case, the risk is practically none.
In the worst case, missing one in ten incidents might appear
concerning but let us consider the alternatives. Manually pro-
cessing all alerts is practically impossible for large network,
and should one choose this approach it will still be subject to
risk of missing incidents due to error and alert fatigue Existing
methods have poor adaptability and require insurmountable
investments for feature engineering and domain expertise,
making them unfeasible. Even if the investments should be
deemed acceptable existing methods are still not flawless, but
for obvious reasons no prior work have reported their IMR
for comparison. Taking a step back, the IDSs are not flawless
either as is the case for many other applied security mecha-
nisms. This is why practitioners apply the principle of layered
security such that multiple mechanism can complement each
other. As IDSs together with filtering and correlation methods
are intended to fit in such a setting, we believe the worst IMR
is acceptable.

In our future work we will explore hyper-parameter opti-
misation. For the LSTM RNN implementation there is a large
space to explore; More layers, other RNN neurons, other
activation functions, and in general any variation of the archi-
tecture. For LSA, it is also relevant to explore if the used set of
N-grams and the number of topics can be modified to improve
performance. In both cases, it is important to keep the overall
goal of being free from feature engineering and embedded
domain expertise in mind, so algorithmic hyper-parameter
space exploration is most relevant. We will also focus on
exploring other variations under the general approach that
we have proposed and evaluated here, seeking to improve
the performance(Probabilistic LSA being one option). We
also find it highly relevant to apply the two implementa-
tions on other IDSs, HIDSs, and other sources that produce
human-readable message, even outside the security domain.
This will potentially only require data and machine resources,
for learning new mapping functions, because our proposed
general approach, and thereby the two implementation, are
inherently de-coupled from the used IDS, and the security
domain in general. As always, more extensive evaluation
on more data will contribute to our understanding, thus we
will pay attention to such possibilities. Experience shows that
the need for raw traffic and the labelled alerts is difficult
to fulfil. One possible way to overcome this is to relax the

VOLUME 8, 2020

condition that the same IDS must be used for all data sets,
effectively requiring raw traffic. The drawback of this is that
the IDS then becomes another unknown when comparing
performance on different data sets. It would also be very
interesting reproduce some of the existing methods and apply
them to the same data as ours, but preliminary efforts have
proven that this is difficult. Curiously, this is very much in line
with our reasoning that feature engineering and embedded
domain expertise degrades adaptability.

VII. CONCLUSION

In this work we have described the correlation and filtering
problems, which are that Intrusion Detection Systems (IDSs)
raise false alerts and alerts that carry redundant information.
The implication is that alerts needs to be pre-processed to be
of any practical use for detection. Existing solutions apply
feature engineering and embed domain expertise. We argue
that this approach breaks adaptability and cause a need for
substantial investments in expert time for each deployment,
resulting in the approaches currently being unfeasible in prac-
tice. To overcome this, we propose a novel approach that is
free of feature engineering and embedded domain expertise.
In our approach a mapping function is learned from data,
such that any alert can be mapped into an auto-encoded space
of limited dimensions. In this space, alerts can be clustered
according to the incident, removing redundant information,
and filtering out false alerts. We propose a set of metrics
that measure the value of applying a filtering and correlation
in practice. The evaluation results show that correlation can
be done without feature engineering or domain expertise
embedded in the method. The key contribution is an approach
that is feasible for widespread practical use and provide ade-
quate performance, as opposed existing methods that require
substantial investments for each deployment, making them
unfeasible. We conclude that this method is relevant for prac-
tical purposes and will pursue further development.

REFERENCES

[1] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna, “Your botnet is my botnet:
Analysis of a botnet takeover,” in Proc. 16th ACM Conf. Comput. Commun.
Secur., 2009, pp. 635-647.

[2] J. Finkle. (Feb. 2013). Exclusive: Microsoft and Symantec Disrupt
Cyber Crime Ring. [Online]. Available: http://www.reuters.com/article/us-
cybercrime-raid-idUSBRE91515K20130206

[3] J. Demarest. (Jul. 2014). Statement Before the Senate Judiciary Committee,
Subcommittee on Crime and Terrorism: Taking Down Botnetss. [Online].
Available: https://www.tbi.gov/news/testimony/taking-down-botnets

[4] J. Lewis. (2017). Economic Impact of Cybercrime—No Slowing Down.
Accessed: Aug. 31, 2018. [Online]. Available: https://www.mcafee.com/
enterprise/en-us/assets/reports/restricted/rp-economic-impact-
cybercrime.pdf

[5] P. O’Kane, S. Sezer, and K. McLaughlin, “Obfuscation: The hidden mal-
ware,” IEEE Secur. Privacy, vol. 9, no. 5, pp. 41-47, Sep. 2011.

[6] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “Bothunter:
Detecting malware infection through IDS-driven dialog correlation,” in
Proc. 16th USENIX Secur. Symp. Berkeley, CA, USA: USENIX Associ-
ation, 2007, p. 12.

[7] G.Gu,R.Perdisci,J. Zhang, and W. Lee, ‘‘Botminer: Clustering analysis of
network traffic for protocol- and structure-independent botnet detection,”
in Proc. USENIX Secur. Symp., 2008, pp. 139-154.

108763

IEEE Access

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

[8]

[9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting botnet command and
control channels in network traffic,” in Proc. 15th Annu. Netw. Distrib.
Syst. Secur. Symp. (NDSS), 2008, pp. 1-19.

M. Roesch, “Snort: Lightweight intrusion detection for networks,” in
Proc. LISA, 1999, pp. 229-238.

V. Paxson, “Bro: A system for detecting network intruders in real-time,”
Comput. Netw., vol. 31, nos. 23-24, pp. 2435-2463, Dec. 1999.

V. Julien. (2015). Suricata IDS Open Information Security Foundation.
[Online]. Available: http:/suricata-ids.org/download/

D. M. Chess and S. R. White, “Undetectable computer viruses,” in Proc.
Virus Bull., 2000, pp. 107-115.

R. Vaarandi and K. Podins, “Network IDS alert classification with frequent
itemset mining and data clustering,” in Proc. Int. Conf. Netw. Service
Manage., Oct. 2010, pp. 451-456.

A. Valdes and K. Skinner, ‘‘Probabilistic alert correlation,” in Recent
Advances in Intrusion Detection. Berlin, Germany: Springer, 2001,
pp. 54-68.

B. Zhu and A. A. Ghorbani, “Alert correlation for extracting attack strate-
gies,” J. Netw. Secur., vol. 3, no. 3, pp. 244-258, Nov. 2006.

0. Dain and R. K. Cunningham, ““Fusing a heterogeneous alert stream into
scenarios,” in Proc. ACM Workshop Data Mining Secur. Appl., vol. 13,
2001, pp. 1-13.

F. Cuppens and A. Miege, “Alert correlation in a cooperative intru-
sion detection framework,” in Proc. IEEE Symp. Secur. Privacy, 2002,
pp. 202-215.

G. C. Tjhai, S. M. Furnell, M. Papadaki, and N. L. Clarke, “A pre-
liminary two-stage alarm correlation and filtering system using SOM
neural network and K-means algorithm,” Comput. Secur., vol. 29, no. 6,
pp. 712-723, Sep. 2010.

P. Ning and D. S. Reeves, “Correlating alerts using prerequisites of
intrusions: Towards reducing false alerts and uncovering high level attack
strategies,” DTIC, Fort Belvoir, VA, USA, Tech. Rep. 43709.13-CI, 2005.
[Online]. Available: https://apps.dtic.mil/sti/pdfs/ADA436839.pdf

R. Shittu, A. Healing, R. Ghanea-Hercock, R. Bloomfield, and
R. Muttukrishnan, “OutMet: A new metric for prioritising intrusion
alerts using correlation and outlier analysis,” in Proc. 39th Annu. IEEE
Conf. Local Comput. Netw., Sep. 2014, pp. 322-330.

A. Severyn and A. Moschitti, “Automatic feature engineering for answer
selection and extraction,” in Proc. Conf. Empirical Methods Natural Lang.
Process., 2013, pp. 458—-467.

M. Anderson, D. Antenucci, V. Bittorf, M. Burgess, M. Cafarella,
A. Kumar, F. Niu, Y. Park, C. Ré, and C. Zhang, “Brainwash: A data
system for feature engineering,” in Proc. CIDR, 2013, pp. 1-4.

U. Khurana, D. Turaga, H. Samulowitz, and S. Parthasrathy, “Cog-
nito: Automated feature engineering for supervised learning,” in Proc.
IEEE 16th Int. Conf. Data Mining Workshops (ICDMW), Dec. 2016,
pp. 1304-1307.

J. Bennett and S. Lanning, “The Netflix prize,” in Proc. KDD Cup Work-
shop, New York, NY, USA, 2007, p. 35.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur,
A. Lally, J. W. Murdock, E. Nyberg, J. Prager, N. Schlaefer, and C. Welty,
“Building Watson: An overview of the DeepQA project,” Al Mag., vol. 31,
no. 3, pp. 59-79, 2010.

H. Debar and A. Wespi, “Aggregation and correlation of intrusion-
detection alerts,” in Proc. Int. Workshop Recent Adv. Intrusion Detection.
Berlin, Germany: Springer, 2001, pp. 85-103.

P. Ning, Y. Cui, and D. S. Reeves, “Constructing attack scenarios through
correlation of intrusion alerts,” in Proc. 9th ACM Conf. Comput. Commun.
Secur. (CCS), 2002, pp. 245-254.

G. P. Spathoulas and S. K. Katsikas, “Enhancing IDS performance
through comprehensive alert post-processing,” Comput. Secur., vol. 37,
pp. 176-196, Sep. 2013.

S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical compari-
son of botnet detection methods,” Comput. Secur., vol. 45, pp. 100-123,
Sep. 2014.

R. Shittu, A. Healing, R. Ghanea-Hercock, R. Bloomfield, and
M. Rajarajan, “Intrusion alert prioritisation and attack detection using
post-correlation analysis,” Comput. Secur., vol. 50, pp. 1-15, May 2015.
K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li, “ALZ:
Training a big data machine to defend,” in Proc. IEEE 2nd Int. Conf.
Big Data Secur. Cloud (BigDataSecurity), Int. Conf. High Perform. Smart
Comput. (HPSC), IEEE Int. Conf. Intell. Data Secur. (IDS), Apr. 2016,
pp. 49-54.

108764

(32]

(33]

(34]

(35]

(36]

(371

(38]

(391

(40]

(41]

[42]

The Shmoo Group. (2000). Defcon 8 CTF Data Set. [Online]. Available:
http://web.archive.org/web/20080623064229/http://cctf.shmoo.com:80/
data/cctf-defcon8/

Cyber Security and Information Sciences Group, MIT Lincoln Laboratory.
(2000). 2000 Darpa Intrusion Detection Evaluation Data Set. [Online].
Available: https://www.1l.mit.edu/ideval/data/2000data.html

(1999). 1999 Darpa Intrusion Detection Evaluation Data Set. [Online].
Available: https://www.1l.mit.edu/ideval/data/1999data.html

A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Comput. Secur, vol. 31, no. 3, pp.357-374,
May 2012.

1. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, 2018, pp. 108-116.

E. Kidmose, M. Stevanovic, and J. M. Pedersen, “Correlating intrusion
detection alerts on bot malware infections using neural network,” in
Proc. Int. Conf. Cyber Secur. Protection Digit. Services (Cyber Secur.),
Jun. 2016, pp. 195-211.

C. M. Bishop, Neural Networks for Pattern Recognition. London, U.K.:
Oxford Univ. Press, 1995.

M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jests, Neural
Network Design, vol. 20. Boston, MA, USA: PWS Publishing Company,
1996.

W. S. Sarle. (1997). Neural Network FAQ, Periodic Posting to Usenet
Newsgroup Compai Neural-Nets. [Online]. Available: http://www.fags.
org/faqs/ai-fag/neural-nets/part1/preamble.html.

J. Heaton, Introduction to Neural Networks With Java. St. Louis, MO,
USA: Heaton Research, 2008.

T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent
semantic analysis,” Discourse Process., vol. 25, nos. 2-3, pp. 259-284,
1998.

EGON KIDMOSE received the B.Sc.Eng. and
M.Sc.Eng. degrees from Aalborg University
(AAU), in 2012 and 2014, respectively, and the
Ph.D. degree for work on network-based detection
from AAU, in 2019. He is currently a Postdoctoral
Researcher with AAU, researching detection using
machine learning on domain names and DNS.
During and after his Ph.D., he has experience as
* a Security Engineer (LEGO System A/S, during

\ and after his Ph.D.). In addition to participating

in international conferences, he also prioritizes his engagement in various
relevant, local and national communities, ranging from talks at local schools
to knowledge sharing with companies and authorities. His research interests
include network security, incident detection, machine learning, and applica-
tion of big data methods.

MATUA STEVANOVIC received the M.Sc. degree
in electrical engineering from the Faculty of Elec-
trical Engineering, Belgrade University, in 2011,
and the Ph.D. degree in electrical engineering from
Aalborg University, Denmark, in 2016. He was a
Postdoctoral Researcher with Aalborg University,
from 2015 to 2017, and an Information Security
Officer with Siemens Gamesa, Brande, Denmark,
from 2017 to 2018. He is currently an IT Secu-
rity Architect with LEGO System A/S, Billund,

Denmark. His research interests include network security, traffic anomaly
detection, and malware detection based on network traffic analysis.

VOLUME 8, 2020

E. Kidmose et al.: Featureless Discovery of Correlated and False Intrusion Alerts

IEEE Access

SOREN BRANDBYGE received the M.Sc. degree
in food science and technology from the Depart-
ment of Process Technology, Royal Vetenarian
High School, Copenhagen, specialized in mathe-
matical modeling and simulation, in 1988, and the
M.Sc. degree in information technology from the
Center for Interactive Medias, Syddansk Univer-
sity, and the Department of Information and Media
Studies, Aarhus University, in 2007. From 2002 to
2019, he held various security and network roles
as an Infrastructure Engineer at LEGO System A/S, Billund, Denmark.
He is currently an IT Security Specialist with Velux A/S, Denmark. His
interests include asynchronous process communication and network security
and planning with focus on cryptography and anomaly-detection in highly
heterogeneous information networks.

VOLUME 8, 2020

JENS M. PEDERSEN received the M.Sc. degree
in mathematics and computer science and the
Ph.D. degree in Electrical Engineering from Aal-
borg University, Denmark, in 2002 and 2005,
respectively. He is currently an Associate Pro-
fessor with the Wireless Communication Section,
Department of Electronic Systems, Aalborg Uni-
versity. He is the author/coauthor of more than
120 publications in international conferences and
journals, and has participated in Danish, Nordic

and European funded research projects. His research interests include net-
work planning, traffic monitoring, and network security. He is also a board
member of a number of companies within technology and innovation.

108765

	INTRODUCTION
	RELATED WORK
	PRE-PROCESSING
	EXISTING APPROACHES
	FEATURE ENGINEERING
	DATA SETS AND EVALUATION
	PERFORMANCE EVALUATION

	METHOD
	GENERAL APPROACH
	LSTM RNN: MAPPING FUNCTION
	LSTM RNN: TRAINING A MAPPING FUNCTION
	LSTM RNN: DETAILS OF THE MAPPING FUNCTION
	LSA
	CLUSTERING PROCEDURE
	SECTION SUMMARY

	EVALUATION
	DATA SET 1: MCFP BOT TRAFFIC MERGED WITH BENIGN
	DATA SET 2: CIC IDS 2017
	METRICS

	RESULTS
	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	EGON KIDMOSE
	MATIJA STEVANOVIC
	SØREN BRANDBYGE
	JENS M. PEDERSEN

