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Abstract
In recent work, Bringmann et al. used q-difference equations to compute a two-variable q-
hypergeometric generating function for the number of overpartitions where (i) the difference
between two successive parts may be odd only if the larger of the two is overlined, and (ii)
if the smallest part is odd then it is overlined, given by t(n). They also established the two-
variable generating function for the same overpartitions where (i) consecutive parts differ by
a multiple of (k + 1) unless the larger of the two is overlined, and (ii) the smallest part is
overlined unless it is divisible by k+1, enumerated by t (k)(n). As an application they proved
that t(n) ≡ 0 (mod 3) if n is not a square. In this paper, we extend the study of congruence
properties of t(n), and we prove congruences modulo 3 and 6 for t(n), congruences modulo
2 and 4 for t (3)(n) and t (7)(n), congruences modulo 4 and 5 for t (4)(n), and congruences
modulo 3, 6 and 12 for t (8)(n).
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1 Introduction

For |ab| < 1, Ramanujan’s general theta function f (a, b) is defined by

f (a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2. (1.1)
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Using Jacobi’s famous triple product identity [5, Entry 19, p.35], (1.1) takes the form

f (a, b) = (−a; ab)∞ (−b; ab)∞ (ab; ab)∞ ,

where (a; b)∞ = (1 − a)(1 − ab)(1 − ab2) · · · .

Throughout this paper, we will use

fk := (qk; qk)∞.

The most important special cases of f (a, b) are

ϕ (q) := f (q, q) = 1 + 2
∑

n≥1

qn
2 = (−q; q2)2∞(q2; q2)∞ = f 52

f 21 f 24
, (1.2)

ψ (q) := f
(
q, q3

) =
∑

n≥0

qn(n+1)/2 = (q2; q2)∞
(q; q2)∞ = f 22

f1
(1.3)

and

f (−q) := f (−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞ = f1. (1.4)

Equation (1.4) is the famous pentagonal number theorem [2, pp. 9–12].
A partition of a positive integer n is a non-increasing sequence of positive integers whose

sum is n; the number of partitions of n is denoted by p(n). It is well known that the generating
function of p(n) is

∑

n≥0

p(n)qn = 1

(q; q)∞
.

Ramanujan’s [14], [15, pp. 210–213], three famous congruences satisfied by p(n) are

p(5n + 4) ≡ 0 (mod 5), (1.5)

p(7n + 5) ≡ 0 (mod 7), (1.6)

p(11n + 6) ≡ 0 (mod 11). (1.7)

Motivated by these congruences mathematicians are engaged in finding such congruences for
different partition functions. One of the partition functions we discuss here is overpartitions.
An overpartition of n is a partition of n in which the first occurrence (equivalently, the final
occurrence) of a part may be overlined. Let p(n) denote the number of overpartitions of n.
Corteel and Lovejoy [9] showed that the generating function of p(n) is

∑

n≥0

p(n)qn = (−q; q)∞
(q; q)∞

= 1

ϕ(−q)
.

For example, the 24 overpartitions of 5 are

5, 5, 4 + 1, 4 + 1, 4 + 1, 4 + 1, 3 + 2, 3 + 2, 3 + 2, 3 + 2, 3 + 1 + 1, 3 + 1 + 1,

3 + 1 + 1, 3 + 1 + 1, 2 + 2 + 1, 2 + 2 + 1, 2 + 2 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1,

2 + 1 + 1 + 1, 2 + 1 + 1 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Andrews [3] defined combinatorial objects that he called singular overpartitions which
are overpartitions in which no part is divisible by δ and only parts ≡ ±i (mod δ) may be
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overlined. The number of singular overpartitions of n is denoted by Cδ,i (n). The ten singular
overpartitions counted C3,1(4) are

4, 4, 2+2, 2+2, 2+1+1, 2+1+1, 2+1+1, 2+1+1, 1+1+1+1, 1+1+1+1.

For δ ≥ 3 and 1 < i <
⌊

δ
2

⌋
, the generating function for Cδ,i (n) is

∑

n≥0

Cδ,i (n)qn = (qδ; qδ)∞(−qi ; qδ)∞(−qδ−i ; qδ)∞
(q; q)∞

. (1.8)

Andrews found that for each n ≥ 0,

C3,1(9n + 3) ≡ C3,1(9n + 6) ≡ 0 (mod 3), (1.9)

and also that, for all n ≥ 0, C3,1(n) = A3(n), where A3(n) is the number of overpartitions
of n into parts not divisible by 3. To know more about overpartitions one can see [1,7,13].

Let t(n) denote the number of overpartitions of n where (i) the difference between two
successive parts may be odd only if the larger of two is overlined, and (ii) if the smallest part
is odd then it is overlined. Let s(n) denote the number of overpartitions counted by t(n) but
with odd smallest part. Let t(m, n) and s(m, n) denote the number of overpartitions counted
by t(n) (resp. s(n)) havingm parts. For example, the nine overpartitions counted by t(5) are

5, 4 + 1, 3 + 2, 3 + 2, 3 + 1 + 1, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1

and seven overpartitions counted by s(5) are

5, 4 + 1, 3 + 1 + 1, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Bringmann et al. [6] have proved the following identities:

∑

m,n≥0

t(m, n)xmqn = (−xq; q)∞
(xq; q)∞

⎛

⎝1 +
∑

n≥1

(−q3; q3)n−1(−x)nqn

(−q; q)n−1(q2; q2)n

⎞

⎠ ,

∑

m,n≥1

s(m, n)xmqn =
∑

n≥1

(q3; q3)n−1xnqn

(q; q)n−1(q2; q2)n .

For some particular values of x and using the mock theta functions γ (q) and χ(q) defined
by

γ (q) :=
∑

n≥0

(−1; q)n(q; q)nq(n+1
2 )

(q3; q3)n (1.10)

and

χ(q) :=
∑

n≥0

(−1; q)n(−q; q)nq(n+1
2 )

(−q3; q3)n . (1.11)
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Bringmann et al. [6] have also proved the following identities:

∑

n≥0

t(n)qn = (q3; q3)∞
(q; q)∞(q2; q2)∞ , (1.12)

∑

n≥0

(
t+(n) − t−(n)

)
qn = (−q3; q3)∞

(−q; q)3∞
χ(q), (1.13)

∞∑

n=1

s(n)qn := 1 + 3
∑

n≥1

(s+(n) − s−(n))qn

= (−q3; q3)∞
(−q; q)3∞

, (1.14)

1 + 3
∑

n≥1

s(n)qn = (q3; q3)∞
(q; q)∞(q2; q2)∞ χ(q), (1.15)

where t+(n) (resp. s+(n)) denotes the number of overpartitions counted by t(n) (resp. s(n))
with largest part even and t−(n) (resp. s−(n)) denotes the number of overpartitions counted
by t(n) (resp. s(n)) with largest part odd. Bringmann et al. [6] have also proved the following
congruence identities:
For a prime � �= 2, 3, and n ≥ 0,

t+(�2n) +
((−n

�

)
− � − 1

)
t+(n) + �t+

( n

�2

)

≡ t−(�2n) +
((−n

�

)
− � − 1

)
t−(n) + �t−

( n

�2

)
(mod 3). (1.16)

For n ≥ 1,

t(n) ≡
{

(−1)h+1 (mod 3) if n = h2,

0 (mod 3) otherwise.
(1.17)

Bringmann et al. [6] generalized (1.12) as

∑

n≥0

t (k)(n)qn =
(
qk+1; qk+1

)
∞

(qk; qk)∞(q; q)∞
, (1.18)

where t (k)(n) denotes the number of overpartitions of n where (i) consecutive parts differ by
a multiple of (k + 1) unless the larger of the two is overlined, and (ii) the smallest part is
overlined unless it is divisible by k + 1.

Chern et al. [8] studied Ramanujan-type congruences for the partition functions t(n) and
s(n).

By (1.11) and (1.15), we deduce that

1 + 3
∑

n≥1

s(n)qn = (q3; q3)∞
(q; q)∞(q2; q2)∞

⎛

⎝1 +
∑

n≥1

(−1; q)n(−q; q)nq(n+1
2 )

(−q3; q3)n

⎞

⎠ , (1.19)

which implies that

1 +
∑

n≥1

s(n)qn ≡ (q3; q3)∞
(q; q)∞(q2; q2)∞ (mod 2). (1.20)
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Applying (1.12) in (1.20), we find that
∑

n≥0

s(n)qn ≡
∑

n≥0

t(n)qn (mod 2), (1.21)

from which we can say that “For any nonnegative integer n, t(n) is even (or odd) iff s(n) is
even (or odd)”.

Motivated by the above work, in this paper, we extend the study of congruence properties
of overpartitions with restricted odd differences. In Sect. 3, we prove congruences modulo
6 for t(n), while in Sects. 4–7, we prove congruences modulo 2, 4 for t (3)(n) and t (7)(n),
congruences modulo 4 and 5 for t (4)(n) and congruences modulo 3, 6, and 12 for t (8)(n).

2 Preliminaries

In this section, we recall 2-dissection identities for certain quotients of theta functions and
p-dissection identities for theta functions f (−q) andψ(q)which plays a key role in proving
our main results.

Lemma 2.1 The following 2-dissections hold.

1

f 21
= f 58

f 52 f 216
+ 2q

f 24 f 216
f 52 f8

, (2.1)

f 41 = f 104
f 22 f 48

− 4q
f 22 f 48
f 24

, (2.2)

1

f 41
= f 144

f 142 f 48
+ 4q

f 24 f 48
f 102

, (2.3)

f3
f1

= f4 f6 f16 f 224
f 22 f8 f12 f48

+ q
f6 f 28 f48
f 22 f16 f24

, (2.4)

1

f1 f3
= f 28 f 512

f 22 f4 f 46 f 224
+ q

f 54 f 224
f 42 f 26 f 28 f12

, (2.5)

f 31
f3

= f 34
f12

− 3q
f 22 f 312
f4 f 26

, (2.6)

f3
f 31

= f 64 f 36
f 92 f 212

+ 3q
f 24 f6 f 212

f 72
, (2.7)

f9
f1

= f 312 f18
f 22 f6 f36

+ q
f 24 f6 f36
f 32 f12

, (2.8)

f5
f1

= f8 f 220
f 22 f40

+ q
f 34 f10 f40
f 32 f8 f20

, (2.9)

1

f1 f7
= f 216 f

5
56

f 22 f8 f 214 f
2
28 f

2
112

+ q
f 24 f 228
f 32 f 314

+ q6
f 58 f 2112

f 22 f 24 f 214 f
2
16 f56

, (2.10)

f1 f7 = f2 f14 f 216 f
5
56

f4 f8 f 328 f
2
112

− q f4 f28 + q6
f2 f 58 f14 f 2112
f 34 f 216 f28 f56

. (2.11)
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Equations (2.1)–(2.3) are consequences of dissection formulas of Ramanujan, collected in
Berndt’s book [5, Entry 25 p. 40]. Xia and Yao [17] proved (2.4) by employing Jacobi triple
product identity. Equation (2.5) was proved by Baruah and Ojah [4] and (2.6) was proved by
Hirschhorn, Garvan, and Borwein [11]. Replacing q by −q in (2.6) and using the relation

(−q;−q)∞ = f 32
f1 f4

we obtain (2.7). Equation (2.8) was proved by Xia and Yao [18]. (2.9) was proved by
Hirschhorn and Sellers [12]. (2.10) and (2.11) was proved by Xia [16, Lemma 3.4]

Lemma 2.2 [10, Theorem 2.1] For any odd prime p,

ψ(q) =
p−3
2∑

m=0

q
m2+m

2 f

(
q

p2+(2m+1)p
2 , q

p2−(2m+1)p
2

)
+ q

p2−1
8 ψ(q p2). (2.12)

Furthermore, m2+m
2 �≡ p2−1

8 (mod p) for 0 ≤ m ≤ p−3
2 .

Lemma 2.3 [10, Theorem 2.2] For any prime p ≥ 5,

f1 =
p−1
2∑

k=− p−1
2

k �=(±p−1)/6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)

+ (−1)
±p−1

6 q
p2−1
24 f p2 . (2.13)

Furthermore, for −(p − 1)/2 ≤ k ≤ (p − 1)/2 and k �= ±p − 1

6
,

3k2 + k

2
�≡ p2 − 1

24
(mod p),

where
±p − 1

6
:=

{
p−1
6 , p ≡ 1 mod 6,

−p−1
6 , p ≡ −1 mod 6.

3 Congruences for t(n)

In this section, we prove infinite family of congruencesmodulo 6 for t(n) by using dissections
of theta function identities.

Theorem 3.1 If p is any prime p ≥ 5 such that

(−2

p

)
= −1 and 1 ≤ j ≤ p − 1, then for

any nonnegative integer α

∑

n≥0

t
(
8p2αn + 3p2α

)
qn ≡ 3ψ(q) f6 (mod 6) (3.1)

and for n ≥ 0,

t
(
8p2α+1(pn + j) + 3p2α+2) ≡ 0 (mod 6). (3.2)
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Proof From (1.12) and (2.4), we find that

∑

n≥0

t(n)qn = f4 f6 f16 f 224
f 32 f8 f12 f48

+ q
f6 f 28 f48
f 32 f16 f24

, (3.3)

which yields
∑

n≥0

t(2n + 1)qn = f3 f 24 f24
f 31 f8 f12

. (3.4)

Invoking (2.7) and (3.4), we see that

∑

n≥0

t(2n + 1)qn = f 84 f 36 f24
f 92 f8 f 312

+ 3q
f 44 f6 f12 f24

f 72 f8
. (3.5)

Equating the coefficients of q2n+1, dividing throughout by q and then replacing q2 by q in
(3.5), we find that

∑

n≥0

t(4n + 3)qn = 3
f 42 f3 f6 f12

f 71 f4
. (3.6)

Substituting (2.3) and (2.7) into (3.6), we find that

∑

n≥0

t(4n + 3)qn = 3
f 42 f6 f12

f4

(
f 64 f 36
f 92 f 212

+ 3q
f 24 f6 f 212

f 72

) (
f 144

f 142 f 48
+ 4q

f 24 f 48
f 102

)
, (3.7)

from which we get

∑

n≥0

t(8n + 3)qn = 3
f 192 f 43
f 191 f 44 f6

+ 36q
f 32 f 23 f 44 f 36

f 131
. (3.8)

By the binomial theorem, it is easy to see that for all positive integers r and m

f 2mr ≡ f m2r (mod 2), (3.9)

f 4mr ≡ f 2m2r (mod 4). (3.10)

From (3.9), it follows that

f 192 f 43
f 191 f 44 f6

≡ f 22 f6
f1

= ψ(q) f6 (mod 2). (3.11)

In view of (3.11), we can rewrite (3.8) as

∑

n≥0

t(8n + 3)qn ≡ 3ψ(q) f6 (mod 6). (3.12)

From here our proof relies on mathematical induction. The congruence (3.12) is the case
α = 0 of (3.1). Now assume that (3.1) holds for some α ≥ 0. Substituting (2.12) and (2.13)
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into (3.12), we deduce that
∑

n≥0

t
(
8p2αn + 3p2α

)
qn

≡ 3

⎛

⎜⎝

p−3
2∑

m=0

q
m2+m

2 f

(
q

p2+(2m+1)p
2 , q

p2−(2m+1)p
2

)
+ q

p2−1
8 ψ

(
q p2

)
⎞

⎟⎠

×

⎛

⎜⎜⎜⎝

p−1
2∑

k=− p−1
2

k �=(±p−1)/6

q6×
3k2+k

2 f

(
−q6×

3p2+(6k+1)p
2 ,−q6×

3p2−(6k+1)p
2

)

+q6×
p2−1
24 f6p2

⎞

⎟⎟⎟⎠ (mod 6). (3.13)

For a prime p ≥ 5, −(p − 1)/2 ≤ k ≤ (p − 1)/2 and 0 ≤ m ≤ (p − 3)/2, consider the
congruence

m2 + m

2
+ 6 × 3k2 + k

2
≡ 9p2 − 9

24
(mod p),

which is equivalent to

(2m + 1)2 + 2(6k + 1)2 ≡ 0 (mod p).

Since

(−2

p

)
= −1, the only solution of the above congruence is m = (p − 1)/2 and

k = (±p − 1)/6. Therefore, extracting the terms containing q pn+ 9p2−9
24 from both sides of

(3.13), dividing throughout by q
9p2−9

24 and then replacing q p by q , we find that
∑

n≥0

t
(
8p2α+1n + 3p2α+2) qn ≡ 3ψ(q p) f6p (mod 6), (3.14)

which yields ∑

n≥0

t
(
8p2α+2n + 3p2α+2) qn ≡ 3ψ(q) f6 (mod 6), (3.15)

which is the (3.1) with α + 1 for α. Comparing the coefficients of q pn+ j , for 1 ≤ j ≤ p− 1,
from both sides of (3.14), we arrive at (3.2). ��

4 Congruences for t
(3)

(n)

In this section, we prove congruences and infinite family of congruences modulo 2 and 4 for
t (3)(n).
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Theorem 4.1 If n and α are any nonnegative integers, then

t (3)(4αn) + t (3)(n) ≡ 0 (mod 2), (4.1)

t (3)(4α(4n + 2)) ≡ 0 (mod 2), (4.2)

t (3)(4α(4n + 3)) ≡ 0 (mod 2), (4.3)

t (3)(4α(8n + 5)) ≡ 0 (mod 2), (4.4)

t (3)(24n + 1) ≡
{
1 (mod 2) if n is a pentagonal number,

0 (mod 2) otherwise,
(4.5)

t (3)(6n + 3) ≡ 0 (mod 4), (4.6)

t (3)(6n + 5) ≡ 0 (mod 4), (4.7)

t (3)(16n + 10) ≡ 0 (mod 4), (4.8)

t (3)(16n + 14) ≡ 0 (mod 4), (4.9)

t (3)(24n + 19) ≡ 0 (mod 4). (4.10)

Proof Setting k = 3 in (1.18) and using (2.5), we find that

∑

n≥0

t (3)(n)qn = f4
f1 f3

= f4

(
f 28 f 512

f 22 f4 f 46 f 224
+ q

f 54 f 224
f 42 f 26 f 28 f12

)
. (4.11)

Extracting the coefficients of even and odd powers of q on both sides of the above equation,
we obtain

∑

n≥0

t (3)(2n)qn = f 24 f 56
f 21 f 43 f 212

, (4.12)

∑

n≥0

t (3)(2n + 1)qn = f 62 f 212
f 41 f 23 f 24 f6

. (4.13)

Using (3.9), (4.12) can be rewritten

∑

n≥0

t (3)(2n)qn ≡ f 32
f6

(mod 2), (4.14)

which yields

∑

n≥0

t (3)(4n)qn ≡ f 31
f3

≡
∑

n≥0

t (3)(n)qn (mod 2), (4.15)

t (3)(4n + 2) ≡ 0 (mod 2). (4.16)

Equating the coefficients of qn in (4.15) and by mathematical induction, we arrive at (4.1).
Using (4.16) in (4.1), we obtain (4.2).

In view of (3.9), we have

f 62 f 212
f 41 f 23 f 24 f6

≡ f12 (mod 2). (4.17)
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By (4.13) and (4.17), we find that
∑

n≥0

t (3)(2n + 1)qn ≡ f12 (mod 2), (4.18)

from which we obtain

t (3)(4n + 3) ≡ 0 (mod 2), (4.19)

t (3)(8n + 5) ≡ 0 (mod 2), (4.20)
∑

n≥0

t (3)(24n + 1)qn ≡ f1 (mod 2). (4.21)

Equations (4.3) and (4.4) follows from (4.1), (4.19) and (4.20).
The result (4.5) is obtained from (4.21) and (1.4).
Thanks to (3.10),

f 62 f 212
f 41 f 23 f 24 f6

≡ f 36
f 23

(mod 4). (4.22)

In view of (4.13) and (4.22),

∑

n≥0

t (3)(2n + 1)qn ≡ f 36
f 23

(mod 4), (4.23)

which yields the desired results (4.6) and (4.7).
By (3.10), we have

f 24 f 56
f 21 f 43 f 212

≡ f 24 f 36
f 21 f 212

(mod 4). (4.24)

Using (2.1) in the right hand side of (4.24) and then applying the resulting equation in (4.12),
we deduce that

∑

n≥0

t (3)(2n)qn ≡ f 24 f 36
f 212

(
f 58

f 52 f 216
+ 2q

f 24 f 216
f 52 f8

)
(mod 4). (4.25)

Extracting the terms involving odd powers of q on both sides of (4.25), we obtain

∑

n≥0

t (3)(4n + 2)qn ≡ 2
f 42 f 33 f 28
f 51 f4 f 26

(mod 4)

≡ 2
f 28
f1 f3

(mod 4). (4.26)

But in view of (3.9), we can rewrite (2.5) as

1

f1 f3
≡ f8

f12
+ q

f24
f4

(mod 2). (4.27)

Substituting (4.27) into (4.26), we find that

∑

n≥0

t (3)(4n + 2)qn ≡ 2
f 38
f12

+ 2q
f 28 f24
f4

(mod 4). (4.28)

Equating the coefficients of q4n+2 and q4n+3 on both sides of (4.28), we arrive at (4.8) and
(4.9).
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Extracting the coefficients of q3n on both sides of (4.23) and then replacing q3 by q , we
find that

∑

n≥0

t (3)(6n + 1)qn ≡ f 32
f 21

(mod 4). (4.29)

Applying (2.1) in (4.29), we obtain

∑

n≥0

t (3)(6n + 1)qn ≡ f 58
f 22 f 216

+ 2q
f 24 f 216
f 22 f8

(mod 4). (4.30)

In view of (3.9) and (3.10), we can rewrite the above equations as

∑

n≥0

t (3)(6n + 1)qn ≡ f8
f 22

+ 2q
f 28 f16
f4

(mod 4), (4.31)

which yields
∑

n≥0

t (3)(12n + 7)qn ≡ 2
f 24 f8
f2

(mod 4). (4.32)

If we equate the coefficients of q2n+1 on both sides of the above equation, we
obtain (4.10). ��

Theorem 4.2 Let p ≥ 5 be any prime such that

(−3

p

)
= −1 and 1 ≤ j ≤ p − 1. Then for

any nonnegative integers α,

∑

n≥0

t (3)
(
24p2αn + 7p2α

)
qn ≡ 2ψ(q) f4 (mod 4) (4.33)

and for each n ≥ 0,

t (3)
(
24p2α+1(pn + j) + 7p2α+2) ≡ 0 (mod 4). (4.34)

Proof We prove (4.33) by mathematical induction. Extracting the terms involving even pow-
ers of q on both sides of (4.32), we find that

∑

n≥0

t (3)(24n + 7)qn ≡ 2
f 22 f4
f1

= 2ψ(q) f4 (mod 4), (4.35)
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12 M. S. M. Naika, D. S. Gireesh

which is the α = 0 case of (4.33). Now assume that (4.33) holds for some α ≥ 0. Substituting
(2.12) and (2.13) into (4.33), we deduce that

∑

n≥0

t (3)
(
24p2αn + 7p2α

)
qn

≡ 2

⎛

⎜⎝

p−3
2∑

m=0

q
m2+m

2 f

(
q

p2+(2m+1)p
2 , q

p2−(2m+1)p
2

)
+ q

p2−1
8 ψ

(
q p2

)
⎞

⎟⎠

×

⎛

⎜⎜⎜⎝

p−1
2∑

k=− p−1
2

k �=(±p−1)/6

q4×
3k2+k

2 f

(
−q4×

3p2+(6k+1)p
2 ,−q4×

3p2−(6k+1)p
2

)

+q4×
p2−1
24 f4p2

⎞

⎟⎟⎟⎠ (mod 4). (4.36)

For a prime p ≥ 5, −(p − 1)/2 ≤ k ≤ (p − 1)/2 and 0 ≤ m ≤ (p − 3)/2, consider the
congruence

4 × 3k2 + k

2
+ m2 + m

2
≡ 7p2 − 7

24
(mod p),

that is

(12k + 2)2 + 3(2m + 1)2 ≡ 0 (mod p).

Since

(−3

p

)
= −1, the only solution of the above congruence is k = (±p − 1)/6 and

m = (p − 1)/2. Therefore, extracting the terms containing q pn+ 7p2−7
24 from both sides of

(4.36), dividing throughout by q
7p2−7

24 and then replacing q p by q , we find that
∑

n≥0

t
(
24p2α+1n + 7p2α+2) qn ≡ 2ψ(q p) f4p (mod 4), (4.37)

which yields ∑

n≥0

t
(
24p2α+2n + 7p2α+2) qn ≡ 2ψ(q) f4 (mod 4), (4.38)

which is the (4.33) with α+1 for α . Comparing the coefficients of q pn+ j , for 1 ≤ j ≤ p−1,
from both sides of (4.37), we arrive at (4.34). ��
Theorem 4.3 Let p ≥ 5 be any prime with

(−2

p

)
= −1 and 1 ≤ j ≤ p − 1. Then for any

nonnegative integers α,
∑

n≥0

t (3)
(
16p2αn + 6p2α

)
qn ≡ 2ψ(q) f6 (mod 4), (4.39)

and for each n ≥ 0,

t (3)
(
16p2α+1(pn + j) + 6p2α+2) ≡ 0 (mod 4). (4.40)
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Congruences for overpartitions with restricted odd differences 13

Proof Equating the coefficients of q4n+1, dividing throughout by q and then replacing q4 by
q in (4.28), we obtain

∑

n≥0

t (3)(16n + 6)qn ≡ 2
f 22 f6
f1

≡ 2ψ(q) f6 (mod 4). (4.41)

Rest of the proof is similar to that of Eqs. (3.1) and (3.2) in the Theorem 3.1, so we omit the
proof here. ��

5 Congruences for t
(4)

(n)

In this section, we obtain congruences modulo 4 and 5 for t (4)(n).

Theorem 5.1 If n is any nonnegative integer, then

t (4)(8n + 6) ≡ 0 (mod 4), (5.1)

t (4)(16n + 10) ≡ 0 (mod 4), (5.2)

t (4)(16n + 2) ≡
{
2 (mod 4) if n is a triangular number,

0 (mod 4) otherwise.
(5.3)

Proof Setting k = 4 in (1.18) and then using (2.9), we obtain

∑

n≥0

t (4)(n)qn = f8 f 220
f 22 f4 f40

+ q
f 24 f10 f40
f 32 f8 f20

, (5.4)

which yields
∑

n≥0

t (4)(2n)qn = f4 f 210
f 21 f2 f20

. (5.5)

Combining (2.1) and (5.5), we find that

∑

n≥0

t (4)(2n)qn = f4 f 210
f2 f20

(
f 58

f 52 f 216
+ 2q

f 24 f 216
f 52 f8

)
. (5.6)

Extracting the coefficients of odd powers of q on both sides of the above equation, we obtain

∑

n≥0

t (4)(4n + 2)qn = 2
f 32 f 25 f 28
f 61 f4 f10

. (5.7)

It follows from (3.9) that

f 32 f 25 f 28
f 61 f4 f10

≡ f4 f8 ≡ f 28
f4

≡ ψ(q4) (mod 2). (5.8)

Using (5.8), (5.7) can be reduced to
∑

n≥0

t (4)(4n + 2)qn ≡ 2 f4 f8 ≡ 2ψ(q4) (mod 4). (5.9)

Equating the coefficients of q2n+1 and q4n+2 on both sides of the above equation, we arrive
at (5.1) and (5.2).
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Extracting the terms of (5.9) in which powers of q is congruent to 0 modulo 4, we obtain

∑

n≥0

t (4)(16n + 2)qn ≡ 2ψ(q) (mod 4). (5.10)

A positive integer x is said to be triangular number, if it is of the form x(x+1)
2 . The result

(5.3) follows from (1.3) and (5.10). ��

Theorem 5.2 For any prime p ≥ 5 with

(−2

p

)
= −1, 1 ≤ j ≤ p − 1, and α ≥ 0, we have

∑

n≥0

t (4)
(
16p2αn + 2p2α

)
qn ≡ 2 f1 f2 (mod 4), (5.11)

and for each n ≥ 0,

t (4)
(
16p2α+1(pn + j) + 2p2α+2) ≡ 0 (mod 4). (5.12)

Proof From (5.9), we have

∑

n≥0

t (4)(16n + 2)qn ≡ 2 f1 f2 (mod 4). (5.13)

For a prime p ≥ 5 and −(p − 1)/2 ≤ k,m ≤ (p − 1)/2, consider

3k2 + k

2
+ 2 × 3m2 + m

2
≡ 3p2 − 3

24
(mod p),

which implies that

(6k + 1)2 + 2(6m + 1)2 ≡ 0 (mod p).

Since

(−2

p

)
= −1, the only solution of the above congruence is k = m = (±p − 1)/6.

Therefore, using Lemma 2.3, we have

∑

n≥0

t (4)
(
16

(
p2n + 3p2 − 3

24

)
+ 2

)
qn ≡ 2 f1 f2 (mod 4). (5.14)

Invoking (5.13) and (5.14), we arrive at

∑

n≥0

t (4)
(
16p2n + 2p2

)
qn ≡

∑

n≥0

t (4)(16n + 2)qn ≡ 2 f1 f2 (mod 4). (5.15)

The result (5.11) follows from the above equation and by induction on α.
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Congruences for overpartitions with restricted odd differences 15

Substituting (2.13) into (5.11), we deduce that
∑

n≥0

t (4)
(
16p2αn + 2p2α

)
qn

≡ 2

⎛

⎜⎜⎜⎝

p−1
2∑

k=− p−1
2

k �=(±p−1)/6

q
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ q

p2−1
24 f p2

⎞

⎟⎟⎟⎠

×

⎛

⎜⎜⎜⎝

p−1
2∑

k=− p−1
2

k �=(±p−1)/6

q2×
3k2+k

2 f

(
−q2×

3p2+(6k+1)p
2 ,−q2×

3p2−(6k+1)p
2

)

+q2×
p2−1
24 f2p2

⎞

⎟⎟⎟⎠ (mod 4), (5.16)

which yields ∑

n≥0

t (4)
(
16p2α+1n + 2p2α+2) qn ≡ f p f2p (mod 4). (5.17)

Equating the coefficients of q pn+ j for j = 1, 2, . . . , p − 1 in (5.17), we obtain (5.12). ��

Theorem 5.3 For n ≥ 0, we have

t (4)(16n + 6) ≡ 2	3(n) (mod 5) (5.18)

and

t (4)(16n + 14) ≡ 0 (mod 5). (5.19)

Proof Setting k = 4 in (1.18), we obtain

∑

n≥0

t (4)(n)qn = f5
f1 f4

. (5.20)

In view of (3.10), we can rewrite (5.20) as

∑

n≥0

t (4)(n)qn ≡ f 41
f4

(mod 5). (5.21)

Substituting (2.2) into (5.21) and then extracting even powers of q on both sides, we obtain

∑

n≥0

t (4)(2n)qn ≡ f 92
f 21 f 44

(mod 5)

≡ f 92
f 44

(
f 58

f 52 f 216
+ 2q

f 24 f 216
f 52 f8

)
(mod 5), (5.22)
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which implies that

∑

n≥0

t (4)(4n + 2)qn ≡ 2
f 41 f 28
f 22 f4

(mod 5)

≡ 2
f 28
f 22 f4

(
f 104
f 22 f 48

− 4q
f 22 f 48
f 24

)
(mod 5). (5.23)

Extracting odd powers of q on both sides, we obtain

∑

n≥0

t (4)(8n + 6)qn ≡ 2
f 64
f 32

(mod 5)

≡ 2ψ3(q2) (mod 5). (5.24)

If we extract even and odd powers of q on both sides of the above equation, we arrive at
(5.18) and (5.19), respectively. ��

6 Congruences for t
(7)

(n)

In this section, we prove congruences and infinite family of congruences modulo 2 and 4 for
t (7)(n).

Theorem 6.1 If n is any nonnegative integer, then

t (7)(8n + 7) ≡ 0 (mod 4). (6.1)

Proof Setting k = 7 in (1.18), we find that
∑

n≥0

t (7)(n)qn = f8
f1 f7

. (6.2)

Substituting (2.10) into (6.2) and then extracting the terms involving odd powers of q on both
sides of the resulting equation, we obtain

∑

n≥0

t (7)(2n + 1)qn = f 22 f4 f 214
f 31 f 37

. (6.3)

In view of (3.10), we can rewrite (6.3) as
∑

n≥0

t (7)(2n + 1)qn ≡ f1 f4 f7 (mod 4). (6.4)

Invoking (2.11) and (6.4), we deduce that

∑

n≥0

t (7)(2n + 1)qn ≡ f2 f14 f 216 f
5
56

f8 f 328 f
2
112

− q f 24 f28 + q6
f2 f 58 f14 f 2112
f 24 f 216 f28 f56

(mod 4). (6.5)

Equating the coefficients of odd powers of q on both sides of the above equation, we find
that ∑

n≥0

t (7)(4n + 3)qn ≡ 3 f 22 f14 (mod 4), (6.6)

which yields the desired result (6.1). ��
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Theorem 6.2 Let p ≥ 5 be any prime with

(−14

p

)
= −1 and 1 ≤ j ≤ p − 1. Then for any

nonnegative integers α,
∑

n≥0

t (7)
(
8p2αn + 3p2α

)
qn ≡ f2 f7 (mod 2), (6.7)

and for each n ≥ 0,

t (7)
(
8p2α+1(pn + j) + 3p2α+2) ≡ 0 (mod 2). (6.8)

Proof We prove (6.7) by mathematical induction. In view of (3.9), we can rewrite (6.6) as
∑

n≥0

t (7)(4n + 3)qn ≡ f4 f14 (mod 2), (6.9)

which yields ∑

n≥0

t (7)(8n + 3)qn ≡ f2 f7 (mod 2). (6.10)

which is the α = 0 case of (6.7). Now assume that (6.7) holds for some α ≥ 0. Substituting
(2.13) into (6.7), we deduce that

∑

n≥0

t (7)
(
8p2αn + 3p2α

)
qn

≡

⎛

⎜⎜⎜⎝

p−1
2∑

k=− p−1
2

k �=(±p−1)/6

q3k
2+k f

(
−q3p

2+(6k+1)p,−q3p
2−(6k+1)p

)
+ q

p2−1
12 f2p2

⎞

⎟⎟⎟⎠

×

⎛

⎜⎜⎜⎝

p−1
2∑

k=− p−1
2

k �=(±p−1)/6

q7×
3k2+k

2 f

(
−q7×

3p2+(6k+1)p
2 ,−q7×

3p2−(6k+1)p
2

)

+q7×
p2−1
24 f7p2

⎞

⎟⎟⎟⎠ (mod 2). (6.11)

For a prime p ≥ 5, −(p − 1)/2 ≤ k,m ≤ (p − 1)/2, consider the congruence

2 × 3k2 + k

2
+ 7 × 3m2 + m

2
≡ 9p2 − 9

24
(mod p),

that is

(12k + 2)2 + 14(6m + 1)2 ≡ 0 (mod p).

Since

(−14

p

)
= −1, the only solution of the above congruence is k = m = (±p − 1)/6.

Therefore, extracting the terms containing q pn+ 9p2−9
24 from both sides of (6.11), dividing
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throughout by q
9p2−9

24 and then replacing q p by q , we find that
∑

n≥0

t (7)
(
8p2α+1n + 3p2α+2) qn ≡ f2p f7p (mod 2), (6.12)

which yields ∑

n≥0

t (7)
(
8p2α+2n + 3p2α+2) qn ≡ f2 f7 (mod 2), (6.13)

which is the (6.7) with α + 1 for α. Comparing the coefficients of q pn+ j , for 1 ≤ j ≤ p− 1,
from both sides of (6.13), we arrive at (6.8). ��

7 Congruences for t
(8)

(n)

In this section, we prove congruences and infinite family of congruences modulo 3, 6, and
12 for t (8)(n).

Theorem 7.1 For each nonnegative integer n,

t (8)(4n + 3) ≡ 0 (mod 3), (7.1)

t (8)(24n + 15) ≡ 0 (mod 12), (7.2)

t (8)(24n + 23) ≡ 0 (mod 12). (7.3)

Proof Setting k = 8 in (1.18), we obtain

∑

n≥0

t (8)(n)qn = f9
f8 f1

. (7.4)

Invoking (2.8) and (7.4), we find that

∑

n≥0

t (8)(n)qn = f 312 f18
f 22 f6 f8 f36

+ q
f 24 f6 f36
f 32 f8 f12

. (7.5)

Extracting the coefficients of odd powers of q on both sides of the above equation, we obtain

∑

n≥0

t (8)(2n + 1)qn = f 22 f3 f18
f 31 f4 f6

. (7.6)

Substituting (2.7) into (7.6) and then extracting the coefficients of odd powers of q on both
sides of the resulting equation, we deduce that

∑

n≥0

t (8)(4n + 3)qn = 3
f2 f 26 f9

f 51
, (7.7)

from which, we obtain the result (7.1).
In view of (3.10), we have

f2 f 26 f9

f 51
≡ f 26 f9

f1 f2
(mod 4). (7.8)
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Using (7.8), (7.7) can be reduces to

∑

n≥0

t (8)(4n + 3)qn ≡ 3
f 26 f9
f1 f2

(mod 12). (7.9)

Applying (2.8) in (7.9), we find that

∑

n≥0

t (8)(4n + 3)qn ≡ 3
f 26
f2

(
f18 f 312
f 22 f6 f36

+ q
f 24 f6 f36
f 32 f12

)
(mod 12). (7.10)

Equating the coefficients of q2n+1, dividing throughout by q and then replacing q2 by q in
(7.10), we obtain

∑

n≥0

t (8)(8n + 7)qn ≡ 3
f 22 f 33 f18
f 41 f6

(mod 12). (7.11)

But, from (3.10)
f 22 f 33 f18
f 41 f6

≡ f 33 f18
f6

(mod 4). (7.12)

Invoking (7.11) and (7.12), we find that

∑

n≥0

t (8)(8n + 7)qn ≡ 3
f 33 f18
f6

(mod 12), (7.13)

which yields the desired results (7.2) and (7.3). ��

Theorem 7.2 For any prime p ≥ 5 with

(−6

p

)
= −1, 1 ≤ j ≤ p − 1, α ≥ 0, we have

∑

n≥0

t (8)
(
24p2αn + 7p2α

)
qn ≡ 3 f1 f6 (mod 6), (7.14)

and for each n ≥ 0,

t (8)
(
24p2α+1(pn + j) + 7p2α+2) ≡ 0 (mod 6). (7.15)

Proof From (3.9), we have
f 33 f18
f6

≡ f3 f18 (mod 2). (7.16)

Using (7.16), we can rewrite (7.13) as
∑

n≥0

t (8)(8n + 7)qn ≡ 3 f3 f18 (mod 6), (7.17)

which yields ∑

n≥0

t (8)(24n + 7)qn ≡ 3 f1 f6 (mod 6). (7.18)

For a prime p ≥ 5 and −(p − 1)/2 ≤ k,m ≤ (p − 1)/2, consider

3k2 + k

2
+ 6 × 3m2 + m

2
≡ 7p2 − 7

24
(mod p),
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which is equivalent to

(6k + 1)2 + 6(6m + 1)2 ≡ 0 (mod p).

Since

(−6

p

)
= −1, the only solution of the above congruence is k = m = (±p − 1)/6.

Therefore, using Lemma 2.3, we have

∑

n≥0

t (8)
(
24

(
p2n + 7p2 − 7

24

)
+ 7

)
qn ≡ 3 f1 f6 (mod 6). (7.19)

Invoking (7.18) and (7.19), we arrive at

∑

n≥0

t (8)
(
24p2n + 7p2

)
qn ≡

∞∑

n=0

t (8)(24n + 7)qn ≡ 3 f1 f6 (mod 6). (7.20)

The result (7.14) follows from the above equation and by induction on α.
Substituting (2.13) into (7.14), we deduce that

∑

n≥0

t (8)
(
24p2αn + 7p2α

)
qn

≡ 3

⎛

⎜⎜⎜⎝

p−1
2∑

k=− p−1
2

k �=(±p−1)/6

q
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ q

p2−1
24 f p2

⎞

⎟⎟⎟⎠

×

⎛

⎜⎜⎜⎝

p−1
2∑

k=− p−1
2

k �=(±p−1)/6

q6×
3k2+k

2 f

(
−q6×

3p2+(6k+1)p
2 ,−q6×

3p2−(6k+1)p
2

)

+q6×
p2−1
24 f6p2

)
(mod 6), (7.21)

which yields ∑

n≥0

t (8)
(
24p2α+1n + 7p2α+2) qn ≡ 3 f p f6p (mod 6). (7.22)

Equating the coefficients of q pn+ j for j = 1, 2, . . . , p − 1 in (7.22), we obtain (7.15). ��
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