
J. Chem. Sci. (2019) 131:29 © Indian Academy of Sciences
https://doi.org/10.1007/s12039-019-1610-0

REGULAR ARTICLE

Zinc chloride catalyzed multicomponent synthesis
of pyrazolopyridocoumarin scaffolds

DEVADAS SHAMALAa, KALEGOWDA SHIVASHANKARa,∗ , CHANDRAb and
MADEGOWDA MAHENDRAb

aP. G. Department of Chemistry, Bangalore University, Central College Campus, Bangalore, Karnataka
560 001, India
bDepartment of Studies In Physics, Manasagangotri, University of Mysore, Mysore, Karnataka 570 006, India
E-mail: shivashankark@gmail.com

MS received 4 October 2018; revised 20 February 2019; accepted 27 February 2019; published online 22 March 2019

Abstract. An efficient synthesis of a series of pyrazolopyridocoumarins is reported by condensation of 4-
hydroxycoumarin, benzaldehydes and 1-alkyl-5-amino-pyrazoles in the presence of 10 mol% zinc chloride in
ethanol under reflux conditions through one-pot reaction. The significant attraction of this protocol is being a
simple procedure, mild reaction condition, and excellent yield. The molecular structure of the compound (4e)
is established by single crystal X-ray structure determination.
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1. Introduction

Multicomponent reactions (MCRs) efficiently combine
three or more reactants simultaneously in one pot that do
not need the isolation, purification and characterization
of intermediate products. The MCRs have additional
benefits of being selective, time-saving, convergent,
atom economy and playing an important role in modern
synthetic methodology.1–13

Fused polyheterocycles are an important class of
organic molecules14–18 because of their widespread
applications (Figure 1) as pharmaceuticals (A, B, C
& D),19–21 photosensitizer (E)20,21 and fluorescent dye
(F).22 Coumarin nucleus fused with pyridine rings
have received increasing attention due to their pho-
tophysical properties23 and potential biological activ-
ities such as antimicrobial,24 antiosteoporotic,25 anti-
inflammatory21 and analgesic.26

The synthesis of fused tetracyclic pyrazolopyrido-
coumarins has evoked much attention as a result of
which a variety of synthetic methodologies are reported.
Among them, the reaction of 4-hydroxycoumarin, aro-
matic aldehydes and 5-amino-3-methyl-1-phenyl-
pyrazole is of particular interest.27 A few protocols
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have been developed for the preparation of pyra-
zolopyridocoumarin derivatives with the use of various
catalysts such as n-tetrabutylammonium tribromide,28

Zn(OTf)2,29 glacial acetic acid,30 piperidine in acetic
acid,31 and iodine.19,32 However, these methodologies
suffer from one or more shortcomings such as long
reaction time, low yields and use of excess amounts
of expensive and toxic catalysts. Therefore, the devel-
opment of an efficient and low-cost method for the
synthesis of fused tetracyclic pyrazolopyridocoumarins
is still in great demand.

Based on the literature survey and in continuation
with our ongoing research work on the preparation
of biologically active heterocycles,33–52 we desire to
report a novel method for synthesis of pyrazolopyrido-
coumarins from simple and readily available starting
materials, which went through the simultaneous con-
struction of pyrazole and pyridine rings.

2. Experimental

2.1 General

The melting points were determined by an open capillary
method using electric melting point apparatus and were not
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Figure 1. Pyridocoumarins in pharmaceuticals, photosensitizer and dye.

corrected. The IR spectra (KBr disc) were measured with a
Shimadzu-8400S FT-IR spectrophotometer. 1H NMR (400
MHz) and 13C NMR (100 MHz) spectra in CDCl3/DMSO-
d6were recorded using a Bruker spectrometer at IISc, Banga-
lore. Chemical shifts were given in parts per million (ppm)
relative to tetramethylsilane. The mass spectrum (ESI-MS)
was obtained at IISc, Bangalore. The purity of the compounds
was checked by TLC. The elemental analyses were carried out
using Elemental Vario Micro Cube CHN Rapid Analyzer. All
the compounds gave satisfactory elemental analyses.

2.2 General procedure for the zinc chloride catalysed
the multicomponent synthesis of
pyrazolopyridocoumarins

To a stirring solution of 4-hydroxycoumarin (1) (0.5 g,
0.003 mol), benzaldehydes 2(a–h) (0.003 mol) and 1-alkyl-
5-amino-pyrazoles 3(a–b) (0.003 mol) in ethanol (15 mL)

was added zinc chloride (10 mol%). The reaction flask was
refluxed in an oil bath for 6–7 h. After completion of the
reaction (monitored by TLC), the solvent was removed under
reduced pressure. The residue left out was dissolved with ethyl
acetate and added aqueous Na2S2O3 solution. The organic
layer was separated, and the aqueous layer was extracted with
ethyl acetate (15 mL x 3). The combined organic phase was
washed with water and dried over anhydrous Na2SO4. The
solvent was removed under reduced pressure. The residue
was purified by column chromatography on silica gel [elu-
ent: hexane and ethyl acetate (7:3)] provided the pure title
compounds.

2.2a 10-Ethyl-7-phenyl-10,11-dihydro-7H-5-oxa-9,10,
11-triaza-cyclo-penta[b]phenanthren-6-one (4a): Yield:
86%; Colorless solid; M.p. 301–303 ◦C; IR (KBr, cm−1):
1725 (C=O), 3082, 3173 (NH); 1H NMR (400 MHz, DMSO-
d6): δ 1.45 (t, 3H, CH3 of C2H5 group, J1,2 = 7.6 Hz), 3.54
(s, 1H, methine proton), 4.19 (q, 2H, CH2 of C2H5 group,
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J1,2 = 7.6 Hz), 6.88–8.74 (m, 10H, Ar-H), 10.67 (s, 1H, NH);
13C NMR (100 MHz, DMSO-d6): δ 14.0, 45.9, 48.1, 101.1,
104.5, 108.0, 114.5 (2C), 120.9, 121.8, 127.5, 127.7 (2C),
128.3 (2C), 137.0, 137.2, 147.9, 152.0, 157.4, 159.9; Anal.
C21H17N3O2. Cald for: C, 73.45; H, 4.99; N, 12.24. Found:
C, 73.36; H, 4.93; N, 12.19.

2.2b 7-(4-Bromo-phenyl)-10-ethyl-10,11-dihydro-7H-
5-oxa-9,10,11-triaza-cyclo-penta[b]phenanthren-6-one
(4b): Yield: 89%; Brown solid; M.p. 311–313 ◦C; IR (KBr,
cm−1): 1721 (C=O), 3068, 3192 (NH); 1H NMR (400 MHz,
DMSO-d6): δ 1.44 (t, 3H, CH3 of C2H5 group, J1,2 = 7.6
Hz), 3.47 (s, 1H, methine proton), 4.44 (q, 2H, CH2 of C2H5
group, J1,2 = 7.6 Hz), 7.15–8.92 (m, 9H, Ar-H), 10.50 (s, 1H,
NH);13C NMR (100 MHz, DMSO-d6): δ 14.0, 45.3, 49.8,
102.8, 103.7, 113.0, 115.9, 119.9, 124.0, 125.5 (2C), 132.9
(3C), 133.1, 142.1, 148.2, 149.2, 151.3, 152.0, 160.15; Anal.
C21H16BrN3O2. Cald for: C, 59.73; H, 3.61; N, 9.95. Found:
C, 59.69; H, 3.60; N, 9.88.

2.2c 10-Ethyl-7-(2-hydroxy-phenyl)-10,11-dihydro-7H
-5-oxa-9,10,11-triaza-cyclo-penta[b]phenanthren -6-
one (4c): Yield: 87%; Colorless solid; M.p. 309–311 ◦C;
IR (KBr, cm−1): 1722 (C=O), 3076 (OH), 3209, 3447 (NH);
1H NMR (400 MHz, DMSO-d6): δ 1.53 (t, 3H, CH3 of C2H5
group, J1,2 = 7.6 Hz), 3.61 (s, 1H, methine proton), 4.45 (q,
2H, CH2 of C2H5 group, J1,2 = 7.6 Hz), 7.09–8.33 (m, 9H,
Ar-H), 9.85 (s, 1H, OH), 10.70 (s, 1H, NH); 13C NMR (100
MHz, DMSO-d6): δ 14.1, 45.9, 48.0, 102.4, 107.6, 108.3,
112.9 (2C), 114.7, 122.2, 123.9, 127.8, 129.7, 133.9, 139.1,
141.7, 148.3, 150.9, 152.0, 152.9, 160.4. Anal. C21H17N3O3.
Cald For: C, 70.18; H, 4.77; N, 11.69. Found: C, 70.06; H,
4.65; N, 11.62.

2.2d 10-Ethyl -7-(4-methoxy-phenyl)-10,11-dihydro -
7H-5-oxa-9,10,11-triaza-cyclo-penta[b]phenanthren-6
-one (4d): Yield: 92%; Colorless solid; M.p. 274–276 ◦C;
IR (KBr, cm−1): 1722 (C=O), 3076, 3254 (NH); 1H NMR
(400 MHz, DMSO-d6): δ 1.44 (t, 3H, CH3 of C2H5 group,
J1,2 = 7.6 Hz), 3.41 (s, 1H, methine proton), 3.61 (s, 3H,
OCH3), 4.45 (q, 2H, CH2 of C2H5 group, J1,2 = 7.6 Hz),
7.16–8.45 (m, 9H, Ar-H), 10.32 (s, 1H, NH); 13C NMR (100
MHz, DMSO-d6): δ 13.7, 44.6, 48.8, 58.8, 102.1, 106.0 (3C),
114.7, 114.9, 125.6 (2C), 128.1, 129.3, 129.4, 130.5, 133.5,
133.6, 142.6, 149.4, 150.7, 160.4; Anal. C22H19N3O3. Cald
for: C, 70.76; H, 5.13; N, 11.25. Found: C, 70.69; H, 5.04; N,
11.16.

2.2e 10-Ethyl-7-(2,3-dimethoxy-phenyl)-10,11-dihydro
-7H-5-oxa-9,10,11-triaza-cyclopenta[b]phenanthren-6
-one (4e): Yield: 96%; Colorless solid; M.p. 297–299 ◦C;
IR (KBr, cm−1): 1720 (C=O), 3294, 3409 (NH); 1H NMR
(400 MHz, DMSO-d6): δ 1.48 (t, 3H, CH3 of C2H5 group,
J1,2 = 8.0 Hz), 3.40 (s, 3H, OCH3), 3.44 (s, 1H, methine pro-
ton), 3.61 (s, 3H, OCH3), 4.62 (q, 2H, CH2 of C2H5 group,
J1,2 = 8.0 Hz), 6.81–8.73 (m, 8H, Ar-H), 10.23 (s, 1H, NH);
13C NMR (100 MHz, DMSO-d6): δ 14.5, 24.8, 40.1, 55.6,

60.0, 109.6, 113.3, 116.6, 119.2, 120.3, 123.8, 124.5, 125.1,
130.6, 132.7, 134.0, 144.8, 147.9, 149.7, 150.6, 151.9, 152.0,
158.7; ESI-MS: [M+H] 404.1. Anal. C23H21N3O4. Cald For:
C, 68.47; H, 5.25; N, 10.42. Found: C, 68.38; H, 5.16; N,
10.35.

2.2f 10-Ethyl -7-(3,4,5- trimethoxy-phenyl)-10,11-di-
hydro-7H-5-oxa-9,10,11-triaza-cyclopenta[b]phenan-
thren-6-one (4f): Yield: 93%; Colorless solid; M.p. 297–
299 ◦C; IR (KBr, cm−1): 1718 (C=O), 3275, 3337 (NH); 1H
NMR (400 MHz, DMSO-d6): δ 1.55 (t, 3H, CH3 of C2H5
group, J1,2 = 7.6 Hz), 2.34 (s, 1H, methine proton), 2.42 (s,
3H, OCH3), 3.48 (s, 3H, OCH3), 3.60 (s, 3H, OCH3), 4.19 (q,
2H, CH2 of C2H5 group, J1,2 = 7.6 Hz), 6.97–8.44 (m, 7H,
Ar-H), 10.52 (s, 1H, NH); 13C NMR (100 MHz, DMSO-d6):
δ 13.9, 44.1, 49.3, 55.7, 59.0 (2C), 102.1, 108.0, 111.4, 113.7
(2C), 121.3, 123.6, 126.8, 129.8, 131.1, 134.2, 142.9 (2C),
143.1, 149.1, 151.8, 155.9, 160.1; Anal. C24H23N3O5. Cald
for: C, 66.50; H, 5.35; N, 9.69. Found: C, 66.44; H, 5.31; N,
9.62.

2.2g 7-(4 -Chloro-phenyl)-10-methyl-10,11-dihydro-
7H-5-oxa-9,10,11-triaza-cyclopenta[b]phenanthren-6-
one (4g): Yield: 88%; Colorless solid; M.p. 248–250 ◦C; IR
(KBr, cm−1): 1721 (C=O), 3184, 3297 (NH); 1H NMR (400
MHz, CDCl3): δ 3.82 (s, 3H, CH3), 4.27 (s, 1H, methine pro-
ton), 6.88–8.10 (m, 9H, Ar-H), 10.33 (s, 1H, NH); 13C NMR
(100 MHz, CDCl3): δ 36.3, 39.2, 98.9, 106.5, 113.3, 117.5,
121.6, 124.3, 128.5, 128.7, 128.8, 129.1, 131.3, 132.0, 132.6,
143.5, 144.3, 146.9, 152.7, 159.0; Anal. C20H14ClN3O2. Cald
for: C, 66.03; H, 3.88; N, 11.55. Found: C, 65.97; H, 3.81; N,
11.50.

2.2h 10-Methyl-7-(4-nitro-phenyl)-10,11-dihydro-7H
-5-oxa-9,10,11-triaza-cyclopenta[b]phenanthren-6-one
(4h): Yield: 81%; Pale yellow solid; M.p. 288–290 ◦C; IR
(KBr, cm−1): 1723 (C=O), 3284, 3395 (NH); 1H NMR (400
MHz, CDCl3): δ 3.79 (s, 3H, CH3), 4.24 (s, 1H, methine pro-
ton), 6.90–8.38 (m, 9H, Ar-H), 10.34 (s, 1H, NH); 13C NMR
(100 MHz, CDCl3): δ 36.3, 40.1, 99.0, 107.1, 113.3, 117.5,
121.6, 124.3, 128.3, 128.5, 128.8, 129.1, 131.3, 132.0, 132.6,
144.4, 144.5, 146.0, 152.8, 160.8; Anal. C20H14N4O4. Cald
for: C, 64.17; H, 3.77; N, 14.97. Found: C, 64.12; H, 3.71; N,
14.90.

3. Results and Discussion

Our study commenced by optimizing the reaction con-
ditions in order to achieve the title compounds using 4-
hydroxycoumarin (1), 2,3-dimethoxybenzaldehyde (2e)
and 1-ethyl-5-amino-pyrazole (3a) as a model substrate
(Table 1). Initially, when the model reaction was per-
formed without any catalyst in ethanol solvent at room
temperature (Table 1, entry 1) and reflux conditions
(Table 1, entry 2), no desirable product (4e) was obtained
even after a prolonged reaction time. This indicated
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Table 1. Optimization studies for the synthesis (4e).a

Entry Catalyst (10 mol%) Solvent Temperature (◦C) Time (h) Yield (%)

1 No catalyst Ethanol RT 48 No Product
2 No catalyst Ethanol Reflux 48 No Product
3 Zeolite Ethanol Reflux 24 5
4 CuCl Ethanol Reflux 24 9
5 Iodine Ethanol Reflux 24 15
6 ZnCl2 Acetonitrile Reflux 9 82
7 ZnCl2 DCM Reflux 10 69
8 ZnCl2 THF Reflux 24 34
9 ZnCl2 DMF Reflux 24 23
10 ZnCl2 Toluene Reflux 24 53
11 ZnCl2 Chloroform Reflux 15 67
12 ZnCl2 DMSO Reflux 24 45
13 ZnCl2 Dioxane Reflux 12 80
14 ZnCl2 Water Reflux 24 Trace
15 ZnCl2 Ethanol RT 24 20
16 ZnCl2 Ethanol 50 12 51
17 ZnCl2 Ethanol 60 6 82
18 ZnCl2 Ethanol Reflux 6 96
19 ZnCl2 Ethanol Reflux 7 96

aReaction conditions: 1 (3 mmol, 1 equiv), 2e (3 mmol, 1 equiv), 3a (3 mmol, 1 equiv), catalyst (10 mol%), and solvent (15
mL).

that a catalyst must absolutely be necessary for this
reaction. We hypothesized that zinc chloride can cat-
alyze the model reaction by forming a better-activated
intermediate. A preliminary examination showed that
zinc chloride in ethanol efficiently catalyzed the model
reaction (Table 1, entry 18). Other catalysts tried has
not produced a significant yield (Table 1, entry 3, 4, 5).
The role of solvents on the synthesis of pyrazolopyri-
docoumarin (4e) was then studied and the results are
depicted (Table 1). When the reaction was carried out in
solvents like acetonitrile, DCM, THF, DMF, toluene,
chloroform, DMSO, dioxane and water, the desired
product (4e) was obtained from traces to 82% yield. The
best yield of 96% was received in ethanol (Table 1, entry
18). Thus, ethanol was selected as an optimal solvent for
the reaction.

The effect of reaction temperature on product yield
was evaluated. It was found that increasing temperature
led to a high yield of the product (4e). It is noteworthy
that the ratio of these starting materials has an influ-
ence on the yield of the reaction. When the ratio of
4-hydroxycoumarin, 2,3-dimethoxybenzaldehyde and
1-ethyl-5-aminopyrazole was 1.0:1.0:1.0, the total out-
put had reached 96%. Further altering the ratio did not
improve the yield. Thus, we chose the above molar ratio
of substrates for subsequent studies. When a mixture of
4-hydroxycoumarin, 2,3-dimethoxybenzaldehyde and
1-ethyl-5-amino-pyrazole in ethanol was refluxed in
the presence of zinc chloride (10 mol%) for 6 h, the
fused heterocyclic product, pyrazolopyridocoumarin
(4e) was obtained in excellent yield (96%) (Table 1,
entry 18). Higher percentage loading of the catalyst
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Table 2. Zinc chloride catalyzed synthesis of novel pyrazolopyridocoumarins.b

Sl. No. R1 R2 Product Time (h) Yield (%)

1 H Ethyl 4a 6 86
2 4-Br Ethyl 4b 6 89
3 2-OH Ethyl 4c 6 87
4 4-OCH3 Ethyl 4d 6 92
5 2,3-Dimethoxy Ethyl 4e 6 96
6 3,4,5-Trimethoxy Ethyl 4f 6 93
7 4-Cl Methyl 4g 6 88
8 4-NO2 Methyl 4h 7 81

b Reaction conditions: 1 (3 mmol, 1 equiv), 2(a–h) (3 mmol, 1 equiv), 3(a–b) (3 mmol, 1 equiv) ZnCl2 (10 mol%) and ethanol
(15 mL) at reflux condition for 6–7 h. The reaction was conducted on gram scale.

neither increased the yield nor lowered the reaction
time.

With the optimal conditions in hand, the scope and
limitations of the reaction with respect to the ben-
zaldehyde was evaluated (Table 2). It was found that
benzaldehydes containing electron donating 2-hydroxy,
4-methoxy, 2,3-dimethoxy and 3,4,5-trimethoxy groups
tolerate the reaction conditions to afford excellent yields
(Table 2, entry 3, 4, 5, 6). The introduction of elec-
tron withdrawing substitutions on phenyl ring such
as 4-Br and 4-Cl resulted in high yield (Table 2,
entry 2, 7). The yield obtained was somewhat less for
phenyl ring bearing 4-NO2 group (Table 2, entry 8).
We also found that 5-amino pyrazole tethered with
1-methyl and 1-ethyl group could also be used to synthe-
size pyrazolopyridocoumarins successfully with high
yields.

The structure of (4e) was unambiguously confirmed
by single crystal X-ray structure (Figure 2) determina-
tion.53

A plausible explanation for the formation of pyra-
zolopyridocoumarins is illustrated (Scheme 1) which is
similar to the established mechanism as reported in the
literature.18 Zinc chloride can serve as a mild Lewis
acid catalyst for the reaction of 4-hydroxycoumarin
and benzaldehydes to give the benzylidene-chroman-

Figure 2. ORTEP diagram of the molecule (4e) at 50%
probability.

2,4-diones. The Michael addition of 1-alkyl-5-amino-
pyrazoles on the benzylidene-chroman-2,4-diones, fol-
lowed by intramolecular cyclization would eventually
afford the final pyrazolopyridocoumarins. Zinc chlo-
ride is likely to enhance the rate of this multicomponent
reaction.
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Scheme 1. Plausible mechanism for the formation of pyrazolopyridocoumarins in the presence of zinc
chloride catalyst.

4. Conclusions

In summary, we have developed a zinc chloride cat-
alyzed multicomponent reaction of 4-hydroxycoumarin,
benzaldehydes and 1-alkyl-5-aminopyrazoles for the
synthesis of pyrazolopyridocoumarins in ethanol at
reflux temperature. Zinc chloride is used as a readily
available and cheap catalyst. This procedure is simple
and the reaction conditions are mild. These advantages
make the methodology an attractive process for the
preparation of pyrazolopyridocoumarins.
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Supplementary information of this manuscript is available at
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