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D-HOMOTHETICALLY DEFORMED KENMOTSU METRIC
AS A RICCI SOLITON

D.L. Kiran Kumar, H.G. Nagaraja, K. Venu

Abstract. In this paper we study the nature of Ricci solitons in D-homo-
thetically deformed Kenmotsu manifolds. We prove that η-Einstein Kenmotsu
metric as a Ricci soliton remains η-Einstein under D-homothetic deformation
and the scalar curvature remains constant.

1. Introduction

One of the important topics in the study of almost contact metric man-
ifolds is the study of Ricci flow and Ricci solitons. A Ricci soliton is a Rie-
mannian metric g on a manifold M together with a vector field V such that

(1.1) (LVg)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0,

where LV, S and λ denote the Lie derivative along V , Ricci tensor and a con-
stant. A Ricci soliton is said to be shrinking or steady or expanding if λ is
negative, zero or positive, respectively. A Ricci soliton is said to be a gradient
Ricci soliton if the vector field V is gradient of some smooth function f onM .

Sharma ([11]) initiated the study of Ricci solitons in contact Riemann-
ian geometry. Ghosh and Sharma ([5], [6]), Sharma ([11]) established results
by considering K-contact, Kenmotsu, Sasakian and (κ, µ)-contact metrics as
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Ricci solitons. Bejan and Crasmareanu ([1]) extended the study of Ricci soli-
tons to paracontact manifolds. De and others ([15], [8], [9]) studied Ricci
solitons in f -Kenmotsu manifolds and Kenmotsu manifolds. In [10] authors
analyze the behaviour of trans-Sasakian manifolds under D-homothetic defor-
mations. Several authors, e.g. Nagaraja and Premalatha ([7]), De and Ghosh
([4]) studied the behaviour of K-contact, normal almost contact metric man-
ifolds under D-homothetic deformations. We make use of the invariance of
certain contact structures under D-homothetic deformations to study Ricci
solitons.

This paper is structured as follows: after a brief review of Kenmotsu man-
ifolds in section 2, we study D-homothetically deformed Kenmotsu metrics as
Ricci solitons in section 3.

2. Preliminaries

A (2n+1)-dimensional smooth manifoldM is said to be an almost contact
metric manifold if it admits an almost contact metric structure (φ, ξ, η, g)
consisting of a tensor field φ of type (1, 1), a vector field ξ, a 1-form η and
a Riemannian metric g compatible with (φ, ξ, η) satisfying

φ2X = −X + η(X)ξ, φξ = 0, g(X, ξ) = η(X), η(ξ) = 1, η ◦ φ = 0,

and

(2.1) g(φX, φY ) = g(X,Y )− η(X)η(Y ).

An almost contact metric manifold is said to be a Kenmotsu manifold ([2]) if

(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX,(2.2)

∇Xξ = X − η(X)ξ,(2.3)

(∇Xη)Y = g(∇Xξ, Y ),

where ∇ denotes the Riemannian connection of g.
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In a Kenmotsu manifold the following relations hold ([3]):

R(X,Y )ξ = η(X)Y − η(Y )X,(2.4)

S(X, ξ) = −2nη(X),(2.5)

S(φX, φY ) = S(X,Y ) + 2nη(X)η(Y ),

for any vector fields X,Y, Z on M , where R denotes the curvature tensor of
type (1, 3) on M .

A vector field V on a Kenmotsu manifold is said to be conformal Killing
vector field ([14]) if

(2.6) (LVg)(X,Y ) = 2ρg(X,Y ),

where ρ is a function on the manifold.
Let (g, V, λ) be a Ricci soliton in a 3 dimensional Kenmotsu manifold M .

Then from (2.6) and (1.1), we have

(2.7) S(X,Y ) = −(λ+ ρ)g(X,Y ),

which yields

QX = −(λ+ ρ)X,(2.8)

S(X, ξ) = −(λ+ ρ)η(X),

r = −3(λ+ ρ),(2.9)

where Q is the Ricci operator and r is the scalar curvature on M .

3. Ricci solitons in Kenmotsu manifolds under D-homothetic
deformations

Let (M,φ, ξ, η, g) be an almost contact metric manifold, where g is a Ricci
soliton. The D-homothetic deformation ([13] on M is given by

(3.1) φ∗ = φ, ξ∗ =
1

a
ξ, η∗ = aη, g∗ = ag + a(a− 1)η ⊗ η

for a positive constant a. If (M,φ, ξ, η, g) is an almost contact metric structure
with contact form η, then (M,φ∗, ξ∗, η∗, g∗) is also an almost contact metric
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structure ([13]). Now we recall the Ricci tensor of a Kenmotsu manifold trans-
forms under a D-homothetic deformation ([10]) as

(3.2) S∗(X,Y ) = S(X,Y ) +
2n(a− 1)

a
{g(X,Y ) + (a− a2 − 1)η(X)η(Y )}.

Taking the Lie derivative of g∗ = ag + a(a− 1)η ⊗ η along V and using (3.1)
and (3.2), we obtain

(3.3) (LVg
∗)(X,Y ) + 2S∗(X,Y ) + 2λg∗(X,Y )

= a(LVg)(X,Y ) + a(a− 1){(LVη)(X)η(Y ) + η(X)LVη)(Y )}

+ 2S(X,Y ) +
4n(a− 1)

a
{g(X,Y ) + (a− a2 − 1)η(X)η(Y )}

+ 2λa{g(X,Y ) + (a− 1)η(X)η(Y )}.

We Lie-differentiate η(ξ) = 1 along V to get

(3.4) (LVη)(ξ) + η(LV ξ) = 0.

Also Lie-differentiation of g(ξ, ξ) = 1 along V gives

(3.5) (LVg)(ξ, ξ) + 2η(LVξ) = 0.

Further, setting X = Y = ξ in (1.1) and using (2.5), we obtain

(3.6) (LVg)(ξ, ξ) = 4n− 2λ.

Using (3.6), equation (3.5) yields

(3.7) η(LV ξ) = λ− 2n.

Now, (3.4) yields

(LVη)(ξ) = 2n− λ.

By putting Y = ξ in (1.1), we obtain

(3.8) (LVη)(X) = g(X,LVξ)− 2S(X, ξ)− 2λη(X).

We know that LVξ = η(LV ξ)ξ ([12]) and using (2.5), (3.7) in (3.8), we get

(3.9) (LVη)(X) = (2n− λ)η(X).
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By hypothesis (LVg)(X,Y ) = −2(S(X,Y ) + λg(X,Y )) and with the use of
(3.9), (3.3) reduces to

(LVg
∗)(X,Y ) + 2S∗(X,Y ) + 2λg∗(X,Y )

= −2(a− 1)[S(X,Y )− 2n

a
{g(X,Y ) + (a− 1)η(X)η(Y )}],

i.e g∗ is a Ricci soliton if and only if

(3.10) S(X,Y ) =
2n

a
{g(X,Y ) + (a− 1)η(X)η(Y )}.

Therefore, we have the following theorem.

Theorem 3.1. Under D-homothetic deformation, a Kenmotsu metric
which is η-Einstein Ricci soliton remains η-Einstein Ricci soliton.

Contracting (3.10), we have

(3.11) r =
2n

a
{2n+ a}.

Let us now use the formula ([11])

(3.12) LV r = − M r + 2RijR
ij + 2λr.

As r is a constant, we get

RijR
ij = −λr.(3.13)

On contracting (3.2), we obtain

(3.14) r∗ = r +
2n(a− 1)

a
{2n+ a− a2}.

By substituting (3.11) in (3.14), we have

(3.15) r∗ = 2n(2n+ 2a− a2).

Thus, we state the following:

Theorem 3.2. An η-Einstein Kenmotsu metric as a Ricci soliton re-
mains η-Einstein Ricci soliton and in this case the scalar curvature of a D-
homothetically deformed Kenmotsu manifold is constant.
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Using (3.11), (3.13) becomes

(3.16) RijR
ij = −2nλ

a
{2n+ a}.

Analogously to the formula (3.12), we write

LV r
∗ = − M r∗ + 2R∗

ij(R
∗)ij + 2λr∗.

From (3.15), r∗ is a constant, so we get

R∗
ij(R

∗)ij = −λr∗.(3.17)

By making use of (3.14) and (3.11), (3.17) becomes

(3.18) R∗
ij(R

∗)ij = −λr − 2nλ(a− 1)

a
{2n+ a− a2}.

Comparing the above with (3.2), we get

(3.19) R∗
ij(R

∗)ij = RijR
ij

+
4n2(a− 1)2

a2
[{gi,j + (a− a2 − 1)ηiηj}{gi,j + (a− a2 − 1)ηiηj}].

After simplification, equation (3.19) gives

(3.20) R∗
ij(R

∗)ij = RijR
ij +

4n2(a− 1)2

a2
{2n+ a2(a− 1)2}.

In view of (3.18) and (3.20) , using (3.16), we obtain

λ =
2n(1− a){2n+ a2(a− 1)2}

a{2n+ a(1− a)}
.

Thus, we can state the following:

Theorem 3.3. A Ricci soliton in a D-homothetically deformed Kenmotsu
manifold is expanding for a < 1.
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Since in a three-dimensional Riemannian manifold the conformal curvature
tensor C vanishes, we have

(3.21) R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY

+ S(Y,Z)X − S(X,Z)Y − r

2
[g(Y,Z)X − g(X,Z)Y ],

where R is Riemannian curvature tensor of type (1,3).
Using (2.7), (2.8), (2.9) in (3.21) and by putting Z = ξ, we get

(3.22) R(X,Y )ξ =
(λ+ ρ)

2
{η(X)Y − η(Y )X}.

By comparing (2.4) and (3.22), we obtain

λ+ ρ = 2.

Thus, we have

Theorem 3.4. If the generating vector field V is a conformal Killing vector
field with associated function ρ, then the Ricci soliton in a three-dimensional
Kenmotsu manifold is shrinking or expanding or steady if ρ > 2 or ρ < 2 or
ρ = 2, respectively.

Example 3.1. We consider the three-dimensional manifold

M = {(x, y, z) ∈ R3; z 6= 0},

where (x, y, z) are the standard coordinates in R3. The vector fields

E1 = ez
∂

∂x
, E2 = ez

∂

∂y
, E3 =

∂

∂z

are linearly independent at each point of M . Let g be the Riemannian metric
defined by

gij =

{
1 for i = j,

0 for i 6= j.
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Let η be the 1-form defined by η(Z) = g(Z,E3) for any Z ∈ χ(M). Let φ be
the (1, 1) tensor field defined by φE1 = E2, φE2 = −E1, φE3 = 0. Then using
the linearity of φ and g we have

η(E3) = 1, φ2(Z) = −Z + η(Z)E3, g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M). Thus, for E3 = ξ, (φ, ξ, η, g) defines an almost contact
metric structure on M .

Let ∇ be the Levi-Civita connection with respect to the metric g. Then
we have

[E1, E2] = 0, [E1, E3] = −E1, [E2, E3] = −E2.

The Riemannian connection ∇ of the metric g is given by the Koszul’s formula

2g(∇XY,Z) = X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y ))

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

By Koszul’s formula, we get

∇E1E3 = −E1, ∇E2E3 = −E2, ∇E3E3 = 0,

∇E1E2 = 0, ∇E2E2 = E3, ∇E3E2 = 0,

∇E1E1 = E3, ∇E2E1 = 0, ∇E3E1 = 0.

From the above expressions it follows that the manifold satisfies (2.1), (2.2)
and (2.3) for ξ = E3. Hence, the manifold is a Kenmotsu manifold. With the
help of the above results we can verify the following results:

R(E1, E1)E1 = 0, R(E1, E2)E2 = −E1, R(E1, E3)E3 = −E1,

R(E2, E1)E1 = −E2, R(E2, E2)E2 = 0, R(E2, E3)E3 = −E2,

R(E3, E1)E1 = −E3, R(E3, E2)E2 = −E3, R(E3, E3)E3 = 0.

From the above expressions of the curvature tensor, we obtain the non-zero
components of Ricci tensor S as follows:

S(E1, E1) = g(R(E1, E2)E2, E1) + g(R(E1, E3)E3, E1) = −2.

Similarly, we have

S(E2, E2) = S(E3, E3) = −2.
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For V = e−zE3, we have

(3.23) (LVg)(Ei, Ei) = −2e−z.

Now, by taking X = Y = Ei in (1.1), where i = 1, 2, 3, and by virtue of the
above equations, we have that g is a Ricci soliton for λ = e−z + 2. Here λ is
positive for all z. Hence, the soliton is expanding.

Equation (3.23) can be written as (LVg)(Ei, Ei) = 2ρg(Ei, Ei), where
ρ = −e−z, i.e. λ+ ρ = 2.

In this example ρ < 2 for all values of z. This verifies Theorem 3.4.

Suppose (g∗, V, λ) is a Ricci soliton, where g∗ is obtained by D-homothetic
change of a three-dimensional Kenmotsu metric g. Then

(LVg
∗)(X,Y ) + 2S∗(X,Y ) + 2λg∗(X,Y ) = 0.

Now, by taking the Lie derivative of g∗ = ag + a(a − 1)η ⊗ η along V and
using (3.9), we obtain

(3.24) a{(LVg)(X,Y ) + 2S(X,Y ) + 2λg(X,Y )}+ 4a(a− 1)η(X)η(Y )

+ 2(1− a)S(X,Y ) +
4(a− 1)

a
{g(X,Y ) + (a− a2 − 1)η(X)η(Y )} = 0.

By using (1.1) and (2.7), (3.24) becomes

(3.25) {λ+ ρ+
2

a
}g(X,Y ) + {2− 2

a
}η(X)η(Y ) = 0.

Putting X = Y = ξ in (3.25), we get

λ+ ρ = −2.

Theorem 3.5. Under D-homothetic deformation, Ricci soliton in a three-
dimensional Kenmotsu manifold with the generating vector field V as a confor-
mal Killing vector field and ρ as associated function is expanding or shrinking
or steady if ρ < −2 or ρ > −2 or ρ = −2, respectively.
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