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Abstract The linear Rayleigh-Bénard electro-convective stability of the Newtonian
dielectric liquid is determined theoretically subject to the temperature modulation with
time. A perturbation method is used to compute the critical Rayleigh number and the
wave number. The critical Rayleigh number is calculated as a function of the frequency
of modulation, the temperature-dependent variable viscosity, the electric field dependent
variable viscosity, the Prandtl number, and the electric Rayleigh number. The effects
of all three cases of modulations are established to delay or advance the onset of the
convection process. In addition, how the effect of variable viscosity controls the onset of
convection is studied.
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Nomenclature

a, wave number;

D, electric displacement;

E, electric field;

E0, reference electric field;

g, gravitational acceleration, (0, 0,−g);

L, electric Rayleigh number;

P , dielectric polarization;

Pr, Prandtl number;

Rac, critical Rayleigh number;

p, effective pressure;

q, velocity vector, (u, v, w);

T , temperature;

T0, reference temperature;

∇, vector differential operator;

VT , temperature dependent variable viscosity;

VE, electric field dependent variable viscosity;

e, positive free charge.
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Greek symbols

α, coefficient of thermal expansion;
β, small amplitude of the temperature modu-

lation;
κ1, thermal diffusivity;
κ, thermal conductivity;
φ, electric potential;
ϕ, phase angle;
ω, modulation frequency;

µ, temperature and electric field strength de-
pendent variable viscosity;

ρ, fluid density;
ρ0, reference density at T = T0;
ǫ0, electric permittivity;
ǫr, relative permittivity or dielectric constant;
χe, electric susceptibility.

Subscripts

b, basic state;
c, critical quantity;

0, reference value.

Superscripts

′, dimensionless quantity;
T, transpose;

∗, dimensionless quantity.

1 Introduction

The study of Rayleigh-Bénard electroconvection in Newtonian dielectric liquid has many
applications in various fields such as geothermal engineering, chemical engineering, insulating
oils, power operators (power cables, power capacitors, circuit breaks, transformers, and so on),
and material science engineering. The potential functionalities of these liquids include acting
as a coolant, serving as a diagnostic medium, and providing electrical insulation. The problem
of temperature modulation with the effect of alternating current (AC) or direct current (DC)
electric field on convective instability in a dielectric liquid layer has been well surveyed. The
convection can occur in a dielectric liquid layer, if the temperature gradient is destabilizing
which is similar to Rayleigh-Bénard instability. The preliminary experiments in a uniform di-
electric liquid layer were not established theoretically, and furthermore the effect of non-uniform
temperature gradient controlled by time and position within a slight change in an AC electric
field was not considered. This non-uniform temperature gradient can be attained by solving
the energy equation with appropriate time-dependent temperature boundary conditions which
controls the convection externally. However, the non-uniform temperature gradient reveals its
provenance in transient cooling or heating at the walls. The basic state temperature depends
on time and position explicitly and was studied by Gross and Porter[1] and Gross[2]. This
phenomenon is known as temperature modulation.

The principal examination here is of the effect of modulated temperature on the onset of
thermal volatility in a Newtonian liquid. Venezian[3] determined the onset of convection by the
perturbation method in terms of amplitude oscillation and recognized that the onset of convec-
tion can be postponed or progressed by in-phase or out-of-phase modulation of the boundary
temperatures, respectively, when contrasted with the unmodulated system. If heat is applied
rapidly, the fundamental temperature gradient is non-uniform, being a function of time and po-
sition. The effect of non-uniform temperature gradient on low-frequency modulation of thermal
convection was studied by Rosenblat and Herbert[4]. They got the asymptotic arrangement with
arbitrary amplitude and made this examination with the known trial results. Rosenblat and
Tanaka[5] considered the effect of thermal modulation on the onset of Rayleigh-Bénard convec-
tion, when the temperature gradient is time-periodic. In general, they established that change in
the critical Rayleigh number is seen. At the same time, Nield[6] examined that the non-uniform
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temperature gradient controls convection in the absence of an electric field. In particular, if
heat is supplied gradually, the fundamental temperature gradient is uniform and convection as
a rule shows as rolls, and a number of studies on this in the presence of electric field[7] were
investigated. Later, Siddheshwar and Annamma[8], Singh and Bajaj[9], and Siddheshwar and
Annamma[10] examined the onset of thermal convection in a horizontal layer under the effect
of temperature modulation. The thermal instability in a dielectric liquid layer in the dielectric
liquid layer was subject to synchronous/asynchronous time-periodic temperatures. The conse-
quence of thermal modulation in a horizontal dielectric liquid under the temperature gradient
and simultaneous action of an electric field was investigated by Siddheshwar and Annamma[11],
Finucane and Kelly[12], and Malkus and Veronis[13].

The combined effect of a uniform electric field and a non-uniform temperature field in a
dielectric liquid was studied by Siddheshwar and Radhakrishna[14] using both linear and non-
linear stability analyses. A weak nonlinear stability in a Newtonian liquid, confined between
two parallel surfaces, subject to imposed time-periodic boundary temperature or gravity mod-
ulation, was investigated by Siddheshwar et al.[15] in a dielectric liquid with an AC electric
field. Further, Pranesh and Sangeetha[16] studied the effect of time-periodic wall temperature
of infinitesimal amplitude under an AC electric field in dielectric couple stress fluids using the
linear stability theory. The Venezian approach is apt for obtaining the critical Rayleigh number.

The temperature modulation in a flat liquid layer within two rigid parallel plates, heating in
a time periodic manner with two frequencies forcing and using the Fourier-Floquet method was
examined by Puneet et al.[17]. Kiran and Narasimhulu[18] studied heat transfer with the effect
of modulation parameters in a dielectric liquid using the Ginzburg-Landau model. The flow
behavior of the Newtonian liquid based on viscosity and heat transfer has been investigated
by Sadaf[19]. In this survey, we observe that the variable viscosity effect is missing. Therefore,
the present study concentrates on the effects of variable viscosity and temperature modulation
on the onset of electro-convection in a Newtonian dielectric liquid, and this study focuses on
external control of convection in dielectric liquids.

2 Mathematical formulation

We consider an unbounded flat layer of the Newtonian dielectric liquid restricted between
two parallel plates at a separation d apart. The Cartesian coordinate system is taken with
the bottom plate in the xy-plane and z-axis, vertically upwards. The bottom plate at z = 0
and the upper plate at z = d are maintained with temperatures T0 + ∆T

2 (1 + β cos(ωt)) and

T0 −
∆T
2 (1 − β cos (ωt + ϕ)) subsequently (see Fig. 1). A uniform electric field E0 is applied in

the vertical direction.

D β ω ϕ

D β ω

Fig. 1 Schematic of the flow configuration
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The basic mathematical equations for the Rayleigh-Bénard convection in the Newtonian dielec-
tric liquid are

∇ · q = 0, (1)

ρ0

(∂q

∂t
+ (q · ∇)q

)
= −∇p − ρgk̂ + ∇ ·

(
µ (E, T ) (∇q + ∇qT)

)
+ (P · ∇)E, (2)

∂T

∂t
+ (q · ∇)T = κ∇2T, (3)

ρ = ρ0 (1 − α (T − T0)) , (4)

∇ · D = 0, (5)

∇× E = 0, (6)

D = ǫ0E + P, P = ǫ0 (ǫr − 1)E, (7)

ǫr = ǫ0r − e (T − T0) , (8)

µ (E, T ) =
µ0

1 + δT (T − T0) − δE (E − E0)
, (9)

T (0, t) = T0 +
∆T

2
(1 + β cos (ωt)) , (10)

T (d, t) = T0 −
∆T

2
(1 − β cos (ωt + ϕ)) . (11)

Here, k̂ is the unit vector in the z-direction, α and e are positive, and ǫ0r = (1 + χe), where χe

is the electric susceptibility.
The Newtonian dielectric liquid in the basic state is characterized as follows:

{
qb = 0, µ = µb (z), T = Tb (z),
ρ = ρb (z, t) , p = pb (z, t) , P = Pb (z) , E = Eb (z) .

(12)

Substituting Eq. (12) into fundamental governing equations (1)−(8), we obtain the solutions
of quiescent state as follows:

∂pb

∂z
+ ρbg + Pb

∂Eb

∂z
= 0, (13)

∂Tb

∂t
= κ

∂2Tb

∂z2
. (14)

We might just need the temperature field Tb, because Eq. (14) is linear and comprises the sum
of a reference temperature field T0 and the oscillating part βF (z, t),

Tb = T0 +
∆T

2

(
1 −

2z

d

)
+ βF (z, t), (15)

F (z, t) = Re{H(λ)e
λz
d + H(−λ)e

−λz
d }e−iωt, (16)

where Re stands for the real part, and the other parameters are





µb(z) = µ1

1+VT G1(z)−VE
eG1(z)

(1+χe)

(
1−

eG1(z)
1+χe

) ,

ρb(z) = ρ0 (1 − α∆TG1(z)) ,

ǫrb (z) = (1 + χe)
(
1 −

eG1 (z)

1 + χe

)
,

Eb =
(1 + χe)E0

(1 + χe) − eG1 (z)
,

Pb = ǫ0 (1 + χe)E0

(
1 −

1

(1 + χe) − eG1 (z)

)
k̂.

(17)
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The solution to Eq. (14) that satisfies the temperature boundary conditions (10) and (11) is

G1 (z) = Tb − T0 =
∆T

2

(
1 −

2z

d

)
+ βRe

{(
H(λ)e

λz
d + H(−λ)e

−λz
d

)
e−iωt

}
.

Here,





λ = (1 − i)
(ωd2

2κ1

) 1
2

,

H(λ) =
∆T

2

(e−iϕ − e−λ

eλ − e−λ

)
.

(18)

Presently, we superpose small disturbances to the system of this fundamental state to analyze
the stability of the system.
2.1 Linear stability analysis

The fundamental state is disturbed by the small temperature disturbance so that

{
q = qb + q′, T = Tb + T ′, ρ = ρb + ρ′, p = pb + p′, µ = µb + µ′,

E = Eb + (E′
1, E

′
3) , P = Pb + (P ′

1, P
′
3).

(19)

Here, the prime denotes perturbation. Equation (5) on linearization leads to

P ′
1 = ǫ0χeE

′
1, P ′

2 = ǫ0χeE
′
2, P ′

3 = ǫ0χeE
′
3 − eǫ0E0T

′, (20)

where it is implicit that e∆T ≪ (1 + χe). Equation (6) implies that it can be written as
E′ = ∇φ′. Introducing the electric potential φ′, substituting Eq. (19) into Eq. (2) to eliminate
the pressure p, and neglecting the primes, we get the vorticity transport equation in the following
form:

ρ0
∂

∂t

(
∇2w

)
=ǫ0eE0

∂Tb

∂z
∇2

1 (Dφ) −
ǫ0e

2E2
0

1 + χe

∂Tb

∂z
∇2

1T + µb (z)∇4w

+ 2
∂µb

∂z

∂

∂z

(
∇2w

)
+

∂2µb

∂z2

( ∂2

∂z2
−∇2

1

)
w + αρ0g∇

2
1T. (21)

Substituting Eq. (19) into Eq. (3) and neglecting primes, we obtain

∂T

∂t
−∇2T = −w

∂Tb

∂z
. (22)

Using Eq. (20) in Eq. (5), we get

∇2
1φ −

eE0

1 + χe
DT = 0. (23)

We introduce the dimensionless variables such as

t∗ =
tκ

d2
, w∗ =

wd

κ
, (x∗, y∗, z∗) =

(x

d
,
y

d
,
z

d

)
, T ∗ =

T

∆T
, φ∗ =

φ (1 + χe)

eE0 (∆T )d
. (24)

Substituting Eq. (24) into Eqs. (21)−(23) and neglecting * (asterisk) for simplicity, we obtain

1

Pr

∂

∂t

(
∇2w

)
= L∇2

1T − L
∂

∂z

(
∇2

1φ
)

+ g1 (z)∇4w + 2Dg1 (z)∇2
(∂w

∂z

)

+ D2g1 (z)
(∂2w

∂z2
−∇2

1w
)

+ Ra∇2
1T, (25)
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where

g1 (z) = 1 − VT G(z) + VE

(eG (z)

1 + χe
+

( eG (z)

1 + χe

)2)
. (26)

Then,






∂T

∂t
+ w

∂T0

∂z
= ∇2T,

∇2φ −
∂T

∂z
= 0.

(27)

Here, the dimensionless quantities (w, T , φ) are the velocity, the temperature, and the electric
potential, respectively.

The dimensionless parameters are found in Eq. (25) as follows.
The Prandtl number is

Pr =
µ0

ρ0κ
.

The Rayleigh number is

Ra =
αρ0gd3∆T

µ0κ
.

The electric Rayleigh number is

L =
ǫ0E

2
0e2d2∆T

µ0κ (1 + χe)
.

The temperature dependent variable viscosity is

VT = δT ∆T.

The electric field dependent variable viscosity is

VE = δEE0.

In Eq. (26), ∂T0

∂z
is the dimensionless form of ∂Tb

∂z
, where

∂T0

∂z
= −1 + βF (z, t) , (28)

F (z, t) = Re
{(

H (λ) eλz + H (−λ) e−λz
)
e−iωt

}
, (29)

H (λ) =
λ

2

(e−iϕ − e−λ

eλ − e−λ

)
. (30)

The free-free isothermal boundary conditions for solving Eqs. (25)–(27) are

w =
∂2w

∂z2
= T =

∂φ

∂z
= 0 at z = 0, 1. (31)

Eliminating T and φ from Eqs. (25)–(27), we obtain the following differential equation for w of
order 8:

(( ∂

∂t
−∇2

)( 1

Pr

∂

∂t
− (1 + VE − VT )∇2

)
∇4 + L

∂T0

∂z
∇2

1 + ∇2 ∂T0

∂z
Ra∇2

1

)
w = 0. (32)

The boundary conditions for velocity in the dimensionless form for solving Eq. (32) are obtained
from Eqs. (25)–(27), and Eq. (31) is represented as follows:

w =
∂2w

∂z2
=

∂4w

∂z4
=

∂6w

∂z6
= 0 at z = 0, 1. (33)
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2.2 Method of solution

We are presently seeking the eigenfunctions w and eigenvalues Ra of Eqs. (32) and (33)
for the temperature form so as to vanish from the linear form ∂T0

∂z
= −1 with the quantities

of order β. The resultant eigenfunctions and eigenvalues which are attained in the current
problem to differ as of those related to the standard Bénard problem of quantities in order β.
The expansion is given as

{
w = w0 + βw1 + β2w2 + · · · ,

Ra = Ra0 + βRa1 + β2Ra2 + · · · .
(34)

This form was used in connection with convective problems to study the effects of finite ampli-
tude convection by Venezian[3]. Substituting Eq. (34) into Eq. (32) and likening the coefficients
of different powers of β on either side of the subsequent condition, we can obtain

L1w0 = 0, (35)

L1w1 = −LF∇4
1w0 + Ra1∇

2∇2
1w0 − Ra0F∇2∇2

1w0, (36)

L1w2 = −LF∇4
1w1 + Ra1∇

2∇2
1w1 + Ra2∇

2∇2
1w0 − Ra0F∇2∇2

1w1 − Ra1F∇2∇2
1w0. (37)

The function w0 is the solution to the classical Bénard problem with β = 0.
Here,

L1 =
( ∂

∂t
−∇2

)( 1

Pr

∂

∂t
− (1 + VE − VT )∇2

)
∇4 − L∇4

1 − Ra∇2∇2
1. (38)

We accept the slightly stable solution to Eq. (35) in the form of

w
(n)
0 = sin(nπz) exp(i(lx + my)), n = 1, 2, 3, · · · , (39)

where l and m are the wave numbers in the x- and y-directions, respectively, such that l2+m2 =
a2. The corresponding eigenvalues are given by

Ra
(n)
0 =

δ6
n(1 + VE − VT )

a2
−

La2

δ2
n

, (40)

where δ2
n = n2π2 + a2. For a fixed value of a, the least eigenvalue (see Ref. [3]) for L = 0 is

Ra0 =
(π2 + a2)3

a2
(41)

corresponding to w0 = sin(πz), which is used as the starting-point of our solution. Equation (36)
for w1 then reads

L1w1 =
(
−LF∇4

1 + Ra1∇
2∇2

1 − Ra0F∇2∇2
1

)
w0. (42)

If Eq. (42) is a solution, the right-hand side must be orthogonal to the operator L1. This involves
that the part independent of time in Eq. (42) should be perpendicular to sin(πz) of the right-
hand side as F differs with respect to time resulting in the sine wave. The main substantial
term in the right-hand side of Eq. (42) is Ra1a

2δ2
1 sin(πz), in case Ra1 = 0. Then, it has taken

after that all the odd coefficients are equal to zero, i.e., Ra1 = Ra3 = Ra5 = · · · = 0 in Eq. (34).
To solve Eq. (42), we expand the right-hand side by using Fourier series expansion and

inverting the operator L1 to obtain w1, and we require Fourier series for expansion of eλz . For
resulting steps in the problem, we need the expression of eλz sin(mπz). It can be found by

Qnm (λ) = 2

∫ 1

0

eλz sin(nπz) sin(mπz)dz = −
4nmπ2λ

(
1 + (−1)n+m+1eλ

)

(λ2 + (n − m)2π2) (λ2 + (n + m)2π2)
(43)
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so that

eλz sin(mπz) =

∞∑

n=1

Qnm sin(mπz). (44)

It is convenient to define

L1 (ω, n) = −
ω2

Pr
δ4
n + δ8

n (1 + VE − VT ) − La4 − Ra0a
2δ2

n − iωδ6
n

( 1

Pr
+ (1 + VE − VT )

)
. (45)

It follows

L1 sin(nπz)e−iωt = L1 (ω, n) sin(nπz)e−iωt. (46)

Now, Eq. (42) reads

L1w1 =
(
−La4 − Ra0a

2δ2
1

)
Re

{∑
(H (λ) Qn1 (λ) + H (−λ)Qn1 (−λ)) e−iωt sin (nπz)

}

so that

w1 =
(
−La4 − Ra0a

2δ2
1

)
Re

{∑ Bn (λ)

L1 (ω, n)
e−iωt sin (nπz)

}
, (47)

where

Bn (λ) = H (λ) Qn1 (λ) + H (−λ)Qn1 (−λ) . (48)

For w2, Eq. (37) becomes

L1w2 = −a2F
(
La2 + Ra0δ

2
n

)
w1 + Ra2a

2δ2
1w0. (49)

Equation (49) is not required for solution, but can be simply used to determine Ra2. The
solvency condition requires that the constant part of the right-hand side should be orthogonal
to sin(πz), and accordingly,

Ra2 = 2
(La2 + Ra0δ

2
n

δ2
1

) ∫ 1

0

Fw1 sin (πz) dz. (50)

Here, the bar denotes the time average.
From Eq. (42), we obtain

F sin (πz) =
1

−La4 − Ra0a2δ2
1

L1w1

so that

Fw1 sin (πz) =
1

−La4 − Ra0a2δ2
1

w1L1w1

=
a2

(
−La2 − Ra0δ

2
1

)

2
Re

{∑ Bn (λ)

L1 (ω, n)
sin (nπz)

∑
B∗

n (λ)

}
, (51)

and

Ra2 =
(−La2 − Ra0δ

2
1

2δ2
1

)
Re

{
∑ (

La4 + Ra0a
2δ2

n

) |Bn (λ)|
2

L1 (ω, n)

}

=
(−La2 − Ra0δ

2
1

2δ2
1

) ∞∑

n=1

(
La4 + Ra0a

2δ2
n

) |Bn (λ)|
2

|L1 (ω, n)|2

(L1 (ω, n) + Lc
1 (ω, n)

2

)
, (52)



Effects of variable viscosity and temperature modulation 1609

where Lc
1 (ω, n) is the conjugate of L1 (ω, n). To calculate the critical value of Ra2, replace a

by a0 in Ra2, where a0 is the critical value obtained in getting from Ra0 in Eq. (41). We have
the following three cases to evaluate Ra2c.

Case 1 ϕ = 0 (in-phase modulation)
In this particular case,

Bn(λ) =

{
dn if n is even,

0 if n is odd.

Case 2 ϕ = π (out-of-phase modulation)
Especially,

Bn(λ) =

{
0 if n is even,

dn if n is odd.

Case 3 ϕ = −i∞
The bottom wall is modulated, and the upper wall is fixed with a constant temperature. In

this case Bn(λ) = −dn for all n, where

dn = −
4nπ2λ2

(λ2 + (n + 1)
2
π2)(λ2 + (n − 1)

2
π2)

.

The variable λ is represented in Eq. (18), as far as the frequency in the dimensionless form
is

λ = (1 − i)
(ω

2

) 1
2

,

and thus

|dn|
2

=
16n2π4ω2

(ω2 + (n + 1)4 π4)(ω2 + (n − 1)4 π4)
.

Hence, from Eq. (52) and using dn(λ), we get the expression for Ra2c in the following form:

Ra2c =
(−La2 − Ra0δ

2
1

2δ2
1

) ∞∑

n=1

(
La4 + Ra0a

2δ2
n

) ∣∣∣∣
dn (λ)

L1 (ω, n)

∣∣∣∣
2 (L1 (ω, n) + Lc

1 (ω, n)

2

)
. (53)

In Eq. (53), for Case 1, n is even, for Case 2, n is odd, and for Case 3, n is either even or odd.
Equation (53) converges in all cases rapidly. The graphs of Ra2c versus ω for various values of
L, VT , and VE are interpreted in Figs. 2–13.

3 Results and discussion

The effects of the temperature-dependent variable viscosity, the electric field dependent
variable viscosity, and the temperature modulation on linear Rayleigh-Bénard convection in
the Newtonian dielectric liquid with free-free isothermal boundaries are studied. Our results
in respect of linear Rayleigh-Bénard convection agree with those of Venezian[3] when L = 0,
VT = 0, and VE = 0.

Figure 2 represents the variation of Ra2c versus ω for various magnitudes of the electric
Rayleigh number L with the Prandtl number Pr = 10 in the absence of VT and VE . It can
be observed that the supercritical movements occur when L is greater than 2 973 which in
turn means that Ra2c increases with the increase in L with respect to ω. Hence, L stabilizes
the system. From the figure, we can notice that when L < 2 973, initially Ra2c decreases
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with the increment in ω, it reaches a minimum, and then it increases with the increment in ω.
When L > 2 973, Ra2c increases with ω and reaches a maximum. After that, it decreases with
ω. Here, in a dielectric liquid, the system is destabilized for smaller values of the modulation
frequency ω and is stabilized for larger ω. The temperature profiles consist of a steady part in
addition to a parabolic part which oscillates with time. The parabolic part is significant when
the amplitude of the modulation increases. It must be recognized that the nonlinear shape is
conditional for the finite amplitude instability in case the convection occurs at lower Rayleigh
numbers than that of the linear theory. There is likewise a significant range of ω in which the
stabilizing influence is minimum and this minimum declines with an increase in L.

Figure 3 shows the plot of Ra2c versus ω for various values of L with a fixed Prandtl number
Pr = 10, VT = 0.1, and in the absence of VE . From this figure, we observe that the supercritical
movements take place when L is greater than 2 700, and Ra2c increases with an increment in L.
Thus, L has stabilizing effects on the system. Figure 3 shows that when L < 2 700, initially Ra2c

decreases with an increase in ω, attains a minimum, and then rises with ω. When L > 2 700,
initially, Ra2c shows an increment with an increase in ω, attains a maximum, and then reduces
with an increase in ω. This shows that for a dielectric liquid, the system has been destabilized
for smaller values of ω, and it has been stabilized for larger values of ω. We conclude that the
impact of VT is felt all over the liquid when the modulated frequency is quite low.

ω

Fig. 2 Ra2c versus ω for various values of
L for in-phase temperature modula-
tion, when VT = 0 and VE = 0 (color
online)

ω

Fig. 3 Ra2c versus ω for various values of L for
in-phase temperature modulation, when
VT = 0.1 and VE = 0 (color online)

The plot of Ra2c versus ω for various values of L with a fixed Prandtl number Pr = 10 and
VE = 0.1 and in the absence of VT is shown in Fig. 4. It can be noticed that when L < 3 120,
Ra2c shows the reduction with an increase in ω, attains a minimum, and then increases with
an increment in ω. When L > 3 120, with an increment in ω, Ra2c increases first and decreases
after attaining a maximum with a further increment in ω. This shows that the system has been
destabilized for smaller values of ω, and it is stabilized for larger values of ω in a dielectric liquid.
We conclude that the impact of VE is felt all over the liquid when the modulated frequency is
quite low.

Figure 5 is the plot of Ra2c versus ω for various values of L with a fixed Prandtl number
Pr = 10, VT = 0.03, and VE = 0.01. When L < 2 700, Ra2c is reduced and reaches a minimum,
and then it increases with an increase in ω. Furthermore, Ra2c increases and reaches the peak
followed by its decrement with an increment in ω as L > 2 700. This shows that the system
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is stabilized for larger values of ω and destabilized for smaller values of ω in a dielectric liquid.
The conclusion from this result is that the impacts of both VT and VE are felt all over the liquid
when the frequency of modulation is low. From Figs. 4 and 5, we see that Ra2c reduces with
the increase in L.

ω

Fig. 4 Ra2c versus ω for various values of L

for in-phase temperature modulation
when VE = 0.1, VT = 0, and Pr = 10
(color online)

ω

Fig. 5 Ra2c versus ω for various values of L for
in-phase temperature modulation when
VT = 0.03, VE = 0.01, and Pr = 10
(color online)

We observe from Fig. 6 the variations of Ra2c versus ω for out-of-phase temperature modu-
lation for a fixed electric Rayleigh number L and in the absence of VT and VE . We find that
Ra2c decreases with an increment in ω. Therefore, in this case, the sub-critical motions are
averted. We can also see from Fig. 7 the variation of Ra2c versus ω for out-of-phase tempera-
ture modulation with a fixed electric Rayleigh number. Ra2c decreases with an increase in ω

for VT = 0.1 and VE = 0. Compaing Figs. 6 and 7, we also find that Ra2c decreases with an
increase in the variable viscosity parameter VT for a fixed L.

ω

Fig. 6 Ra2c versus ω for out-of-phase tem-
perature modulation with fixed L.
Note that the two cases use distinc-
tive vertical scales

ω

Fig. 7 Ra2c versus ω for out-of-phase tempera-
ture modulation with fixed L and VT =
0.1. Note that the two cases use distinc-
tive vertical scales

We notice from Fig. 8 the variations of Ra2c versus ω for out-of-phase temperature modula-
tion with a fixed electric Rayleigh number L. We find that Ra2c decreases with an increment
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in ω for fixed VE = 0.1 and VT = 0. Compaing Figs. 8 and 9, we find that Ra2c increases with
an increase in the variable viscosity parameter VE for a fixed L.

From the results in Fig. 9, the plot of Ra2c versus ω with a fixed electric Rayleigh number L

reveals that Ra2c decreases with an increase in ω for fixed VT = 0.03 and VE = 0.01. For Case 3
wherein only the bottom wall has been modulated with the upper wall being fixed steady tem-
perature, Figs. 10–13 show that the effects of the temperature dependent variable viscosity,
the electric field dependent variable viscosity, and the electric Rayleigh number on Ra2c are
qualitatively similar to the preceding two cases.

ω

Fig. 8 Ra2c versus ω for out-of-phase tem-
perature modulation with fixed L,
VT = 0, and VE = 0.1. Note that
the two cases use distinctive vertical
scales

ω

Fig. 9 Ra2c versus ω for out-of-phase tempera-
ture modulation with fixed L, VT = 0.03,
and VE = 0.01. Note that the two cases
use distinctive vertical scales

ω

Fig. 10 Ra2c versus ω at the point when
just the temperature of the bottom
wall has been modulated with fixed
L and VT = VE = 0. Note that
the two cases use distinctive verti-
cal scales

ω

Fig. 11 Ra2c versus ω at the point when just
the temperature of the bottom wall has
been modulated with fixed L, VE = 0,
and VT = 0.1. Note that the two cases
used distinctive vertical scales

4 Conclusions

The effects of variable viscosity and temperature modulation on linear Rayleigh-Bénard
convection of the Newtonian dielectric liquid are examined by applying linear stability analysis.
An expression for Ra2c is obtained analytically from Eq. (53), and the numerical results are
computed for different values of parameters such as Pr, VT , VE , and L for all the three cases
of modulations. The conclusions may be drawn as follows.
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ω

Fig. 12 Ra2c versus ω at the point when
just the temperature of the bottom
wall has been modulated with fixed
L, VT = 0, and VE = 0.1. Note that
the two cases use distinctive vertical
scales

ω

Fig. 13 Ra2c versus ω at the point when just
the temperature of the bottom wall has
been modulated with fixed L, VT =
0.03, and VE = 0.01. Note that the
two cases use distinctive vertical scales

(i) The consequence of all the three cases of modulations, i.e., in-phase, out-of-phase, and
only the bottom wall temperature modulations has been found to be destabilizing compared
with the un-modulated system.

(ii) At large frequencies, the impact of temperature modulation disappears in all three cases
of modulation.

(iii) Ra2c tends to zero with an increase in ω for larger values of VT .

(iv) An increase in the values of L and VT is to destabilize the system, while an increase in
VE is to stabilize the system in all the three cases.
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