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Abstract. Linear and weakly nonlinear stability analyses of Rayleigh–
Bénard convection in water–copper–alumina hybrid nanoliquid
bounded by rigid isothermal boundaries is studied analytically. A
single-phase description is used for the nanoliquid. Using a minimal
Fourier series representation and an appropriate scaling a classical
Lorenz model for rigid isothermal boundaries is derived. The Lorenz
model is transformed to the Ginzburg–Landau model using the renor-
malization group method. The solution of the Ginzburg–Landau model
is used to arrive at the expression of the Nusselt number. The study
shows that the presence of two nanoparticles in water is to increase the
coefficient of friction, advance the onset of convection and enhance the
heat transfer. Further, it is shown that compared to a single nanopar-
ticle the combined influence of two nanoparticles is more effective on
heat transfer. The percentage of heat transfer enhancement in water
due to Al2O3−Cu hybrid nanoparticles is almost twice that of Al2O3

nanopartcles. It is found that the hybrid nanoparticles of Al2O3−Cu
intensify convection in water more than the mono nanoparticles of
Al2O3 and the plots of stream function and isotherm point to this
fact. The effect of the physically realistic rigid boundaries is to inhibit
the onset of convection when compared with that of free boundaries.

1 Introduction

In early days of technological advancement, heat removal in many electrical, electronic
and mechanical devices was achieved by using the abundantly available coolants
like air and water. Later liquids like oil and ethylene glycol were used. Attempts at
enhancement of heat transfer in fluid media continued and have been going on for
several decades (see [1,2] and references therein). Alterations to the geometry was first
made to achieve this objective of efficient cooling. Fins, windows, exhausts and other
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Table 1. Common choice of base liquid and nanoparticles/nanotubes [10]–[15].

Type Material

Base liquid Water, ethylene glycol, methanol, engine oil, glycerine

Metal Diamond, gold, silver, copper, aluminum, silicon, titanium, zinc

Metal oxide Copper oxide, alumina, silica, titania

Nanotube
Single-walled carbon nanotubes, double-walled carbon nanotubes,

multi-walled carbon nanotubes, functional carbon nanotubes

ideas were implemented and put to great use in application situations (see [3,4] and
references therein). Subsequently researchers came up with the idea of introducing
micron-sized particles of higher thermal conductivity compared with that of the base
liquid they were dispersed in. This turned out to be an impractical proposition since
fluid systems where this idea was implemented suffered from pressure loss, clogging
and wall destruction. Stability of the micron-sized particles in the base liquid was
also an issue. With sophistication in manufacturing technology miniaturisation of
the devices was a natural consequence and micron-sized particles could not be a
viable solution. This lead people to go in for much smaller sized particles than the
micron-sized ones. With success in the synthesis of nanoparticles and also with the
understanding that the main thermophysical property of thermal conductivity gets
enhanced due to the reduction in size (see [5]), quite naturally researchers restarted
heat transfer research using this exciting new prospect of well-dispersed nanoparticles
in a coolant (see [6–8] and references therein). The very small size of the nanoparticles
meant that they were nearly the size of the fluid particles and hence fluidity was not
compromised much by the introduction of these. Most importantly fluid systems with
nanoparticles did not suffer from the deficiencies suffered by them on using micron-
sized particles(see [9]). With this new finding, experimentation was made trying out
different nanoparticles of different materials – metallic and non-metallic ones, oxides,
and others. Some of the nanoparticles and base liquids used are listed in Table 1.

The nanoparticles of same material and spherical shape was well-dispersed in a
noncarcinogenic base fluid and was termed as ‘nanofluid’ by Choi [7]. Innumerable
laboratory experiments then followed in trying out appropriate nanofluids for various
heat transfer applications. The thermal conductivity enhancement due to addition of
a dilute concentration of nanoparticles was first reported by Masuda et al. [6] who
showed that dilute concentration (5%) of alumina, silica and titania nanoparticles
in water yield 10%–50% improvement in the thermal conductivity of water. Mintsa
et al. [16] reported a thermal conductivity-temperature-nanoliquid volume fraction
relation found from experiment.

Many theoretical models were developed to study the stability and the heat
transfer performance of nanofluids. These models are based on either the single-
phase (where base liquid particles and nanoparticles are indistinguishable) or the
two-phase description. Buongiorno [17] argued in favor of two-phase model and he
developed a transport equation to study the nanoparticle concentration in the flow
model. Siddheshwar et al. [18] generalized Buongiorno two-phase model by incor-
porating thermophysical properties of nanoliquids. Siddheshwar and Lakshmi [19]
extended the generalized Buongiorno model to include a porous medium. Garoosi
et al. [20] reported that at high Rayleigh number the single-phase model proposed
by Khanafer et al. [21] is good enough to predict the stability of convection and heat
transport in nanoliquids. Jou and Tzeng [22] presented an empirical relation between
the average Nusselt number and the volume fraction of nanoparticles. Siddheshwar
and Meenakshi [23] reported the heat transfer enhancement in four base liquids for
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twenty nanoparticles. Simo et al. [24], Jawdat et al. [25] and Kanchana et al. [13]
studied chaotic convective motion in a nanoliquid layer heated from below.

In the quest for future coolants with much higher thermal conductivity than
that of nanofluids, researchers considered a base fluid well-dispersed with two or
more types of nanoparticles (see [26–34]). Further, some of the researchers considered
two well-mixed base liquids and introduced one or more type of nanoparticles and
experimented with them [35]. Such nanofluids were called as ‘hybrid nanofluids’.
These can also be termed ‘nanocomposite fluids’ or even ‘new generation nanofluids’.
An important finding of the research conducted on all types of nanofluids is that
only dilute concentration of nanoparticles will have to be used in the base liquid
in order to avoid agglomeration and retain large surface area of heat transfer in
each nanoparticle. A recent finding concerns some hybrid nanofluids that showed
‘enhanced heat transfer’ when compared with that of nanofluids with one type of
nanoparticle [28].

At the present time experimentation is still on to try out different nanofluids and
hybrid nanofluids and thus this paper must only be viewed as a small theoretical
endeavor in the direction of moving from TRL (Technology Readiness Level) 4 (lab-
oratory experiments) to TRL 5 (actual applications). In the world today search for
future coolants is an ongoing process and the synergising factor of nanoparticles in
the case of hybrid nanofluids is an important aspect to be researched. Findings in
one type of heat transfer problem may throw light on another type of heat trans-
fer application and hence in this spirit we present this study of Rayleigh–Bénard
convection in hybrid nanofluids and a representative one, viz., water-copper-alumina
is chosen for investigation. Unlike in the case of single nanoparticle in base liquid
where we can find many models to study the thermal conductivity and the viscos-
ity of nanoliquids, in the case of hybrid nanoliquid there is no such model. Hence,
we have used the experimental data reported by Suresh et al. [26] for thermal con-
ductivity and viscosity of water-cu-alumina hybrid nanoliquid. In order to compare
the heat transfer performance of hybrid nanoliquids with nanoliquids we have also
considered the experimental data of Suresh et al.[26] for water-alumina nanoliquid.
The main objective of the paper is to contribute in a small way towards developing
energy-efficient systems that have higher energy efficiency, better performance and
lower operating costs.

2 Mathematical formulation

We consider a Rayleigh–Bénard convective system consisting of two infinite-
horizontal-extent parallel plates with distance h apart. The upper and lower plates
are maintained at temperatures T0 and T0 + ∆T (∆T > 0) respectively as shown in
Figure 1. Water–copper–alumina nanoliquid is chosen as the working medium. The
instability in the system sets in as longitudinal rolls (cross-section is a circle in the
xz-plane). The axis of these parallel rolls is along the y− direction and hence a two-
dimensional study in the xz-plane suffices. In one wavelength we can notice two rolls
of which one turns clockwise and the other anticlockwise.

The following equations govern the Rayleigh–Bénard convective flow:

∇ · q = 0, (1)

ρhnl
∂q

∂t
= −∇p+ µhnl∇2q + [ρhnl − (ρβ)hnl (T − T0)]g, (2)

∂T

∂t
+ (q · ∇)T = αhnl∇2T. (3)
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Fig. 1. Schematic of the Rayleigh–Bénard convection problem.

Table 2. Thermophysical properties of water-Al2O3−Cu nanoliquid at T = 300 K.

φhnp

%

φA2O3

%

φCu

%

khnl

W/[m K]

µhnl

kg/m s

ρhnl

kg/m3
Cphnl

J/kg K

αhnl × 107

m2/s

βhnl × 105

1/K

0.10 0.0962 0.0038 0.619982 0.000972 1000.26 4164.68 1.48828 20.92

0.33 0.3175 0.0125 0.630980 0.001098 1007.53 4132.08 1.51561 20.73

0.75 0.7215 0.0285 0.649004 0.001386 1020.81 4073.74 1.56066 20.39

1.00 0.9620 0.0380 0.657008 0.001602 1028.71 4039.73 1.58097 20.19

2.00 1.9241 0.0759 0.684992 0.001935 1060.32 3908.79 1.65274 19.42

Equations (1)–(3) are respectively continuity, momentum and energy equations.
The quantities in the governing equations are q = (u,w), two-dimensional velocity
vector with components, u and w in the ith and kth directions (in m), T is the

temperature of the hybrid nanofluid (in K), g = −gk̂ is the gravity (in m/s
2
), p is

the pressure (in Pa), ρhnl, µhnl and βhnl are respectively the density, the dynamic
viscosity and the thermal expansion coefficient of water-Al2O3−Cu nanoliquid (in

kg/m
3
, kg/ms and K−1 respectively). Further, αhnl =

khnl
Cphnlρhnl

denotes thermal

diffusivity of water-Al2O3−Cu nanoliquid (in m2/s) with khnl and Cphnl being ther-
mal conductivity and specific heat of water-Al2O3−Cu nanoliquid (in W/mK and
J/kg K, respectively). These thermophysical properties vary with volume fraction of
nanoparticles and temperature. In Tables 2 and 3 we have documented the thermo-
physical values of water-Al2O3−Cu and water-Al2O3 nanoliquid for different values
of volume fraction of nanoparticles at temperature 300 K. The maximum volume
fraction chosen is 2% (in the case of Al2O3−Cu it is 1.9241% of Al2O3 and 0.0759%
of Cu) with the intention of retaining the stability of the system (see [26]). The ther-
mal conductivity and the dynamic viscosity of water-Al2O3−Cu and water-Al2O3

nanoliquids mentioned in the Tables 2 and 3 are obtained experimentally at 300 K
(see [26]). Other thermophysical properties of nanoliquids are obtained by using the
thermophysical properties of water, Cu and Al2O3 (documented in Tab. 4) and the
traditional mixture theory:

ρhnl = (1− φhnp) ρw + φAl2O3
ρAl2O3

+ φCu ρCu

(ρβ)hnl = (1− φhnp) ρw βw + φA2O3
ρAl2O3

βAl2O3
+ φCu ρCu βCu

(ρCp)hnl = (1− φhnp) ρw Cpw + φA2O3 ρAl2O3 CpAl2O3
+ φCu ρCu CpCu

 . (4)
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Table 3. Thermophysical properties of water-Al2O3 nanoliquid at T = 300 K.

φnp

%

knl

W/[m K]

µnl

kg/m s

ρ0nl
kg/m3

Cpnl

J/kg K

αnl × 107

m2/s

βnl × 105

1/K

0.10 0.614055 0.000904 1000.07 4165.45 1.47406 20.92

0.33 0.619004 0.000905 1006.91 4134.58 1.48686 20.73

0.75 0.63098 0.000910 1019.40 4079.28 1.51736 20.41

1.00 0.64375 0.000952 1026.83 4047.01 1.54912 20.22

2.00 0.657192 0.000972 1056.56 3922.44 1.58578 19.49

Table 4. Thermophysical properties of water, Cu and Al2O3 at T = 300 K.

Properties
k

W/[m K]

µ

kg/m s

ρ

kg/m3
Cp

J/kg K

α× 107

m2/s

β × 105

1/K

Water 0.611 0.0009 997.1 4179 1.46632 21

Cu 401 – 8933 385 1163.1 1.67

Al2O3 40 – 3970 765 131.7 0.85

Equations (1)–(3) for the dynamic state are subjected to rigid and isothermal
boundary condition:

(u,w) = (0, 0),
∂u

∂x
= 0,

∂w

∂z
= 0, T = T0 + ∆T at z = −h

2

(u,w) = (0, 0),
∂u

∂x
= 0,

∂w

∂z
= 0, T = T0 at z =

h

2

 . (5)

The basic state quantities are:

qb(z) = (0, 0), p = pb(z) and Tb = Tb(z). (6)

The solution of the basic-state temperature that significantly influences the
dynamics is given by:

Tb(z) = T0 + ∆T

(
1

2
− z

h

)
. (7)

Superimposing perturbations, q′(x, z, t), T ′(x, z, t) and p′(x, z, t) on the basic state
and using the basic state solution, we get

ρhnl
∂u′

∂t
= −∂p

′

∂x
+ µhnl∇2u′, (8)

ρhnl
∂w′

∂t
= −∂p

′

∂z
+ µhnl∇2w′ − (ρβ)hnlT

′g, (9)

∂T ′

∂t
= αhnl∇2T ′ +

∆T

h
w′ −

(
u′
∂T ′

∂x
+ w′

∂T ′

∂z

)
. (10)

Differentiating equation (8) with respect to z and equation (9) with respect to x
and subtracting these two equations, then differentiating the resultant equation with
respect to x again and using the continuity equation, we get

ρhnl
∂

∂t
(∇2w′) = µhnl∇4w′ − (ρβ)nl

∂2T ′

∂x2
g. (11)
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Non-dimensionalizing the equations (10) and (11) using the following definition:

(X,Z) =
(x
h
,
z

h

)
, τ =

αbl
h2
t, U =

hu′

αbl
, W =

hw′

αbl
, Θ =

T ′

∆T
, (12)

we obtain the dimensionless form of the vorticity and the heat transport equations
as follows:

∂

∂τ

(
∇2W

)
= Prhnl

(
a1∇4W − a21Rahnl

∂2Θ

∂X2

)
, (13)

∂Θ

∂τ
= W + a1∇2Θ−

(
U
∂Θ

∂X
+W

∂Θ

∂Z

)
, (14)

where

Prhnl =
µhnl

ρhnlαhnl
(hybrid nanoliquid Prandtl number)

Rahnl =
(ρβ)hnl g∆T h3

αhnlµhnl
(hybrid nanoliquid Rayleigh number)

a1 =
αhnl
αbl

( diffusivity ratio)


. (15)

We note here that a1 is an important parameter in hybrid nanoliquids. We show
later on that a1 is essentially the relative coefficient of friction.

The boundary condition (5) as considered for the dynamic state is:

W =
∂W

∂Z
= Θ = 0 at Z = ±1

2
. (16)

In the next subsection we derive the classical Lorenz model for rigid boundaries
using the minimal Fourier–Galerkin expansion.

2.1 Derivation of the classical Lorenz model for rigid boundaries

The minimal (normal) Fourier–Galerkin expansion to study the Rayleigh–Bénard
convection in water-Al2O3−Cu hybrid nanoliquids bounded by rigid isothermal
boundaries is:

U(X,Z, τ) = −
√

2δ2a1
πκc

m1A(τ)f1(X,Z), (17)

W (X,Z, τ) =

√
2δ2a1
π

m1A(τ)f2(X,Z), (18)

Θ(X,Z, τ) =
1

πrhnl

[√
2m2B(τ)f3(X,Z)−m3C(τ)f4(Z)

]
, (19)

where m1, m2 and m3 are chosen in such a way that we are led to the Lorenz model
for rigid boundaries in classical form. These mi’s are chosen as follows:

m1 =

√
p

1
p

2

p3p4

, m2 =
p

5

p6

m1 and m3 =
p

4

p1

m1m2. (20)
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The quantities p1 to p6 are given by:

p1 = 〈f4 f4〉, p2 = 〈f3 f3〉, p3 = − 1

π
〈f2 f3 Df4〉,

p
4

=
2

πκ2

〈
∂2f2
∂X∂Z

Df3 f4

〉
, p

5
= − 1

δ2
〈
∇4f2 f2

〉
,

p
6

=
δ2

κ2

〈
∂2f3
∂X2

f2

〉


, (21)

where D refers the Z-derivative. The inner product 〈f g〉 of the two functions, f(X,Z)
and g(X,Z), is defined as:

〈f(X,Z) g(X,Z)〉 =

∫ 1
2

Z=− 1
2

∫ 2π
κ

X=0

f(X,Z) g(X,Z)dXdZ. (22)

The other quantities in equations (17)–(19) are δ2 = κ2 + π2, κ is wave number,

rhnl =
Rahnlκ

2

δ6
, scaled Rayleigh number and fi, i = 1(1)4, denotes the eigenfunctions

and these must satisfy the Helmholtz equation of the longitudinal rolls plan form and
hence fi have been taken as:

f1(X,Z) = sin(κX) DCf (Z), f2(X,Z) = cos(κX)Cf (Z)

f3(X,Z) = cos(κX) sin
(
πZ +

π

2

)
, f4(Z) = S(Z) + 2S

(
−1

2

)
Z

 . (23)

The function Cf (Z) in equation (23) is the Chandrasekhar function [36] which is
defined as:

Cf (Z) =
cosh(µ1Z)

cosh(µ1

2 )
− cos(µ1Z)

cos(µ1

2 )
, (µ1 = 4.73004074). (24)

The term f4(Z) arises due to the nonlinear term in the heat equation (10) and it
must satisfy the condition:

f4(Z) = 0 and Df4(Z) 6= 0 at Z = ±1

2
. (25)

Thus, S(Z) in f4(Z) is taken as:

S(Z) = −π
∫ Z

Z2=0

{∫ Z2

Z1=0

Cf (Z1) sinπZ1 dZ1

}
dZ2. (26)

Substituting equations (17)–(19) in equations (11) and (10) and taking the inner
product of the resulting equations with f1, f3 and f4, we get the classical Lorenz
model for rigid isothermal boundaries:

dA

dτ1
= Pr∗a1(−A+B), (27)

dB

dτ1
= a1(r∗A−B −AC), (28)
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dC

dτ1
= a1(−b∗C +AB), (29)

where τ1 = ε2τ , Pr∗ =
p

5

p7

Prhnl , r∗ =
p

8
p

6

p2 p5

rhnl and b∗ =
p

9

p1

b.

The quantities p
1

to p
6

are defined in equation (21) and p
7
, p

8
and p

9
are defined

below:

p
7

= 〈∇2f2 · f2〉, p8
= 〈f2 · f3〉 and p

9
= − 1

4π
〈f4 · D2f4〉. (30)

The Lorenz model (27)–(29) resembles the classical Lorenz model derived by
Lorenz (Ref. [37]) for free boundaries. Hence it retains all the features of the classi-
cal system, i.e., Hamilton nature, energy conserving property and bounded solution.
Further, the Lorenz model (27)–(29) is analytically intractable. To pursue our objec-
tive of obtaining an analytical solution we transform the third-order Lorenz model
into the first-order Ginzburg–Landau model (see [14,15]). In other words, we project
the third-order Lorenz model into the first-order Ginzburg–Landau model. The
Ginzburg–Landau model retains the local stability properties of the Lorenz model
in the neighborhood of the critical Rayleigh number. Such a reduction is done in the
paper using the renormalization group method (Ref. [38]) which produces an envelop
solution that serves as a global solution for the Lorenz system (27)–(29) and it sat-
isfies the Lorenz system approximately but uniformly. This approximate solution of
the Lorenz system is valid in the vicinity of the onset of convection and that the
determination of its validity domain is a subject of further investigation.

2.2 Derivation of the Ginzburg–Landau equation from the Lorenz model using
the renormalization group method

Renormalization group method is a powerful perturbation method used to reduce the
order of the dynamical system (Refs. [38–40] and references therein). The Taylor series
expansion is the basis for this method. Let us consider the Taylor series expansion in
ε, a small amplitude, as follows:

V = εV1 + ε2V2 + ε3V3 + · · · , (31)

r∗ = r∗0 + ε2r∗2 (32)

where Vi = [Ai, Bi, Ci]
T , i = 1, 2, 3, . . .

At the various orders of ε we have the following system of equations:

First-order system: (
d

dτ1
− L0

)
V1 = 0, (33)

where

L0 =


−a1 Pr −a1 Pr 0

a1 r
∗
0 −a1 0

0 0 −a1 b∗

 . (34)
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By taking the determinant of L0 equal to zero for a non-trivial solution we obtain
r∗0 = 1. The eigenvalues of (34) are

λ1 = 0, λ2 = −a1(1 + Pr), λ3 = −a1 b∗. (35)

The corresponding eigenvectors are

H1 = [1, 1, 0]T , H2 = [Pr, −1, 0]T , H3 = [0, 0, 1]T . (36)

In the asymptotic state (τ1 →∞) we may take the neutrally stable solution as

V1(τ1, t0) = M(t0)H1, (37)

where t0 is the initial time and thus the solution is dependent on t0. Solution (37) in
terms of its components form may be written as:

A1(τ1) = M(t0), B1(τ) = M(t0), C1(τ1) = 0. (38)

Second-order system:

(
d

dt
− L0

)
V2 =

(
0

−a1 A1C1

a1 A1B1

)
= a1 M(t0)2H3. (39)

The second-order system yields the solution

V2(τ1, t0) =
M(t0)2

b∗
H3. (40)

In component form equation (40) may be written as:

A2(τ1) = 0, B2(τ1) = 0, C2(τ1) =
M(t0)2

b∗
. (41)

Third-order system:

(
d

dτ
− L0

)
V3 =


0

−a1(r∗2A1 −A1C2)

0


=

1

(1 + Pr∗)

(
r∗2M(t0)− M(t0)3

b∗

)
(Pr∗H1 −H2).

(42)

Equation (42) produces the following solution:

V3 =
1

(1 + Pr∗)

(
r∗2M(t0)− M(t0)3

b∗

){
a1 Pr

∗(τ1 − t0)U1 +
Pr∗H1 −H2

a1(1 + Pr∗)

}
. (43)
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Thus the perturbation solution of the Lorenz system of equations (27)–(29) around
τ1 = t0 is

V (τ1; t0) = εM(t0)H1 + ε2
M(t0)2

b∗
H3 +

ε3

(1 + Pr∗)

[
r∗2M(t0)− 1

b∗
M(t0)3

]
×
{
a1 Pr

∗(τ1 − t0)H1 +
Pr∗H1 −H2

a1(1 + Pr∗)

}
. (44)

Let us now construct the envelope function, V (τ1), of the family of trajectories
given by the functions V (τ1; t0,M(t0)) with t0 parametrizing the trajectories. In order
to construct the envelope function we first impose the following equation:

dV

dt0

∣∣∣∣
t0=τ1

= 0. (45)

Thus using (45), the solution (44) is written as

ε
dM

dτ1
H1 +

2ε2M

b∗
dM

dτ1
H3 −

ε3

(1 + Pr∗)

(
r∗2M −

1

b∗
M3

)
H1 = 0. (46)

The equation (46) is consistent with
dM

dτ1
= O(ε2). Thus we get the amplitude

equation:

dM

dτ1
=
ε2a1 Pr

∗

1 + Pr∗

(
r∗2M −

1

b∗
M3

)
. (47)

Using equation (47) we obtain the envelop function:

V (τ1) = V (τ1; τ1 = t0)

= εM(τ1)H1 + ε2
M(τ1)2

b∗
H3 +

ε3

a1(1 + Pr∗)2

[
r∗2M(τ1)− 1

b∗
M(τ1)3

]
× (Pr∗H1 −H2). (48)

Equation (48) in terms of its components is

A(τ1) = εM(τ1), (49)

B(τ1) = εM(τ1) +
ε3

a1(1 + Pr∗)

[
r∗2M(τ1)− 1

b∗
M(τ1)3

]
, (50)

C(τ1) = ε2
M(τ1)2

b∗
. (51)

Substituting equation (49) in the amplitude equation (46) and using equa-
tions (31), (38) and (41), we arrive at the Ginzburg–Landau amplitude equation:

dA

dτ1
=

a1Pr
∗

(1 + Pr∗)

[
(r∗ − 1)A− 1

b∗
A3

]
. (52)

The solution (49)–(51) serves as the local solution of the Lorenz system (27)–(29)
and it satisfies the system approximately but uniformly for all values of τ1 up to
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o(ε4). It is to be also noted here that the solution (49)–(51) is a slow manifold which
may identify with a center manifold (Ref. [41]).

Solving equation (52) subject to the initial condition, A(0) = 1, we get

A(τ1) =

√
Q1√

Q2(1− e−2Q1τ1) +Q1e−2Q1τ1
, (53)

where

Q1 =
a1 Pr

∗(r∗ − 1)

(1 + Pr∗)
and Q2 =

a1 Pr
∗

b∗(1 + Pr∗)
.

It is clear from equation (53) that for steady flow

A(∞) =

√
Q1

Q2
. (54)

Using the steady solution (54) of the Ginzburg–Landau equation (52) obtained
from the renormalization group method, in the next section we discuss about the

relative coefficient of friction at a particular point on the lower boundary, Z = −1

2
.

2.3 Relative coefficient of friction at the lower plate for a steady flow

The relative coefficient of friction, Cf , is defined as:

Cf =
Coefficient of friction of hybrid nanoliquids

Coefficient of friction of baseliquids
. (55)

By having a look at the Figure 1, we arrived at the decision that on the lower

plate, z = −h
2

, the point where Cf can be calculated is either at x =
πh

2κc
(the point

on the clockwise Rayleigh–Bénard cell touching the lower plate) or the corresponding

point x =
3πh

2κc
on the counter-clockwise cell. It suffices to take one point and so

we decide upon

(
πh

2κc
,−h

2

)
to evaluate Cf and this point in nondimensional form

written as

(
π

2κc
,−1

2

)
. The relative coefficient of friction for the Rayleigh–Bénard

convection problem is written as:

Cf =


(
∂U

∂Z
+
∂W

∂X

)
hnl(

∂U

∂Z
+
∂W

∂X

)
bl

(
π

2κc
,−

1

2

) = a1. (56)

In what follows we use the unsteady solution (53) of the Ginzburg–Landau equa-
tion obtained from the renormalization group method to estimate the heat transport
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in terms of the Nusselt number at the boundary, Z = −1

2
, within a wave-length

distance in the horizontal direction.

3 Enhanced heat transfer in water due to synergising effect
of copper and alumina nanoparticles

The thermal Nusselt number, Nuhnl, is used to quantify the heat transport and is
defined as:

Nuhnl(τ1) =
Heat transport by (conduction + convection)

Heat transport by conduction
,

= 1 +
khnl
kbl


∫ 2π
κc
0

(
∂Θ

∂Z

)
dX

∫ 2π
κc
0

(
dΘb

dZ

)
dX


Z=−

1

2

. (57)

Substituting equations (7), (19), (40) and (44) and completing integration, we
get

Nuhnl(τ1) = 1 +

(
khnl
kbl

)
m3 m4κc

2π2b∗

(
p

8
p

6

p
2
p

5

)(
1− 1

rhnl

)
A2, (58)

where m4 = −2π

κc
Df4

(
−1

2

)
.

Using equation (58) we study the heat transport in water-Al2O3−Cu hybrid nano-
liquids. We also compare the influence of a dilute concentration of Al2O3−Cu and
Al2O3 on the heat transport in water for both rigid isothermal and free isothermal
boundaries. A relative Nusselt number, Nur, of the steady state is needed in the
study and the same is defined by:

Nu∞r =
Nuhnl(∞)

Nu(∞)
. (59)

The results of the study and their discussion are presented in the next section.

4 Results and discussion

Rayleigh–Bénard convection in water-Al2O3−Cu hybrid nanoliquid is studied ana-
lytically in the paper using the single-phase model proposed by Khanafer et al. [21]
but with the thermal conductivity and the viscosity of hybrid nanoliquids obtained
from experiment at 300 K (Ref. [26]). The other thermophysical properties of the
hybrid nanoliquids are obtained using the traditional mixture theory. The values of
thermophysical quantities of water-copper-alumina hybrid nanoliquid, water-alumina
nanoliquid, water, copper and alumina are documented in Tables 2–4.

Using the minimal Fourier–Galerkin expansion we arrive at the Lorenz model
(27)–(29) for the rigid boundaries. By taking the linear, steady state of version of the
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Fig. 2. Variation of the Rayleigh number with wave number, κ, hybrid nanoliquids for free
and rigid boundaries.

Lorenz model (27)–(29), we get r∗ = 1, which indeed means:

Rahnl =

(
p

2
p

5

p8p6

)
δ6

κ2
. (60)

For free isothermal boundaries the above expression is

RaFIhnl =
δ6

κ2
. (61)

Figure 2 is the plot of the Rayleigh number versus wave number for rigid and free
isothermal boundaries. It is clear from the figure that RaRIhnlc = 2.62867RaFIhnlc , where
the superscripts, RI and FI, denote rigid isothermal and free isothermal boundaries.
In order to bring in the hybrid nanoliquid effect in the Rayleigh number expression
we may write:

Rahnl = F1Rabl, (62)

where

F1 =

(
ρhnl αbl µbl
ρbl αhnl µhnl

)
and Rabl =

ρblβblg∆Th3

µblαbl
.

From Table 5 it is evident that for all values of φhnp the factor F1 is less than
1 and as we increase the volume fraction of Al2O3−Cu in water the value of F1

decreases and this means that the effect of Al2O3−Cu hybrid nanoparticles in water
is to decrease the critical Rayleigh number which in turn implies advancement in
the onset of convection. In order to compare the performance of Al2O3−Cu hybrid
nanoparticles with a single nanoparticle (Al2O3) we have also documented the value

of the factor, F2 =

(
ρnl αbl µbl
ρbl αnl µnl

)
for water-Al2O3 nanoliquids in Table 5. From the

table it is evident that F1 < F2 and this leads to the result:

Rahnlc < Ranlc < Rablc . (63)

Equation (63) is true for both rigid isothermal and free isothermal boundaries.
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Table 5. Values of F1 and F2 for different values of volume fractions of Al2O3−Cu hybrid
nanoparticles and Al2O3 nanoparticles.

Al2O3−Cu hybrid nanoparticles
volume fraction in % F1

Al2O3 nanoparticles
volume fraction in % F2

φhnp φCu φAl2O3 φAl2O3

0.10 0.0962 0.0038 0.911522 0.10 0.989409
0.33 0.3175 0.0125 0.790876 0.33 0.978135
0.75 0.7215 0.0285 0.606357 0.75 0.949942
1.00 0.9620 0.0380 0.516798 1.00 0.887494
2.00 1.9241 0.0759 0.405507 2.00 0.841814

Fig. 3. Variation of the Nusselt number with time, τ1, for water, water-Al2O3 and water-
Al2O3−Cu nanoliquids for rigid and free boundaries.

Having analysed some results on the critical Rayleigh number we now present the
individual influences of Al2O3−Cu hybrid nanoparticles and Al2O3 nanoparticles on
the heat transport in water.

Figure 3 is the plot of Nusselt number, Nu, against time, τ1, for water-Al2O3−Cu
hybrid nanoliquid and water-Al2O3 nanoliquid in the case of both rigid isothermal and
free isothermal boundaries. It is clear from this figure that for both rigid isothermal
and free isothermal cases the following result is true:

Nuhnl > Nunl > Nubl. (64)

The percentage enhancement, E, in heat transport in water due to presence of
Al2O3−Cu hybrid nanoparticles and Al2O3 nanoparticles is reported in Tables 6
and 7, respectively using the information on heat transport in water documented in
Table 8. From Table 6 it is clear that the percentage of heat transfer enhancement
in water due to Al2O3−Cu hybrid nanoparticles increases with increase in volume
fraction of Al2O3−Cu hybrid nanoparticles. It is shown that for rhnl = 4, 2% of
Al2O3−Cu hybrid nanoparticles in water provides 6.44% heat transfer enhancement
in water for rigid isothermal boundaries and 7.65% heat transfer enhancement in
water for free isothermal boundaries whereas 2% of Al2O3 nanoparticles in water
provides 4.01% heat transfer enhancement in water for rigid isothermal boundaries
and 4.7% heat transfer enhancement in water for free isothermal boundaries. Thus,
compared to Al2O3 nanoparticles, Al2O3−Cu hybrid nanoparticles enhance heat
transport around 2.43% more for rigid isothermal boundaries and around 2.95% more
for free isothermal boundaries.
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Table 6. Values of Nusselt number for water-Al2O3−Cu hybrid nanoliquid for different
values of volume fraction of Al2O3−Cu hybrid nanoparticles for rigid and free boundaries.

Al2O3−Cu hybrid
nanoparticles
volume fraction in %

Rigid boundaries Free boundaries

φhnp φAl2O3 φCu
Nuhnl

(rhnl = 2)
E

Nuhnl

(rhnl = 4)
E

Nuhnl

(rhnl = 2)
E

Nuhnl

(rhnl = 4)
E

0.10 0.0962 0.0038 1.73206 0.63 2.09809 0.78 2.00602 0.78 2.50903 0.93
0.33 0.3175 0.0125 1.74542 1.41 2.11813 1.75 2.02519 1.74 2.53778 2.09
0.75 0.7215 0.0285 1.76725 2.68 2.15088 3.32 2.05636 3.31 2.58454 3.97
1.00 0.9620 0.0380 1.77694 3.24 2.16540 4.02 2.07018 4.00 2.60527 4.81
2.00 1.9241 0.0759 1.81052 5.19 2.21579 6.44 2.11725 6.37 2.67587 7.65

Table 7. Values of Nusselt number for water-Al2O3 nanoliquid for different values of volume
fraction of Al2O3 nanoparticles for rigid and free boundaries.

Al2O3
nanoparticles
volume fraction
in % (φAl2O3

)

Rigid boundaries Free boundaries

Nunl

(rnl = 2)
E

Nunl

(rnl = 4)
E

Nunl

(rnl = 2)
E

Nunl

(rnl = 4)
E

0.10 1.72484 0.21 2.08725 0.26 1.99556 0.25 2.49334 0.30

0.33 1.73080 0.56 2.09620 0.69 2.00390 0.67 2.50585 0.81

0.75 1.74522 1.40 2.11783 1.73 2.02409 1.69 2.53613 2.02

1.00 1.76067 2.29 2.14101 2.84 2.04590 2.78 2.56885 3.34

2.00 1.77679 3.23 2.16518 4.01 2.06844 3.91 2.60266 4.70

Table 8. Values of Nusselt number for water for rigid and free boundaries.

Rigid boundaries (Nu) Free boundaries (Nu)

r = 2 r = 4 r = 2 r = 4

1.7212 2.0818 1.99053 2.4858

A better understanding with physical explanation of the observed results, can be
had by including the plots of the stream function, the isotherms and the coefficient
of friction and the same is included as Figures 4–6. Observing the plots of stream
function and isotherm in Figures 4 and 5 it can be seen that the Al2O3−Cu hybrid
nanoparticles intensify convection in water more than the Al2O3 mono nanoparticles.
The reason for this can be extracted by considering these plots in conjunction with
the plots of the relative coefficient of friction (6). It is obvious that relative coefficient
of friction is more in the case of water-Al2O3−Cu compared to water-Al2O3 and
hence the aforementioned result. A similar explanation can be given in the context
of the rigid boundary influence on Rayleigh–Bénard convection in nanoliquids and
hybrid nanoliquids.

5 Conclusion

Suspending new generation (hybrid) nanoparticles in the base liquid is a recent devel-
opment in nanoliquid heat transfer research. It is thus worth studying theoretically
the heat transfer performance in hybrid nanoliquid by Rayleigh–Bénard convection.
Since dilute concentrations of nanoliquids were used in such studies the model with
single-phase description is a preferred one. If one is looking for stability of the sys-
tem in addition to heat transfer enhancement in application situation then in those
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Fig. 4. Plot of the streamline for water, water-Al2O3 and water-Al2O3−Cu for both
rigid(left) and free(right) boundaries.
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Fig. 5. Plot of the isotherms for water, water-Al2O3 and water-Al2O3−Cu for both
rigid(left) and free(right) boundaries.
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Fig. 6. Plot of the relative coefficient of friction, Cf (left), and relative Nusselt number,
Nur(right), versus χ for water-Al2O3 and water-Al2O3−Cu nanoliquids for the case of rigid
boundaries.

cases alumina is the best choice of nanoparticles. This is because it is theoretically
and experimentally proven that alumina is more stable in liquids compared to many
other nanoparticles. The problem with alumina nanoparticle, however, is that it is has
very less thermal conductivity than other nanoparticles (around 10 times less than
that of copper nanoparticles). To retain such a stability and also to have maximum
heat transfer enhancement one can think of including alumina nanoparticles with
small amounts of other nanoparticles which have higher thermal conductivity. While
choosing the proportion of alumina and the other nanoparticle one has to take addi-
tional care to retain the stability feature of alumina. The present paper is an attempt
to provide vital information to those who seek stability as well as best heat trans-
fer performance in the Rayleigh–Bénard convective mechanism. To keep the problem
realistic we opted for an experimental or realistic boundary condition, namely, rigid
isothermal boundaries. From the present study we arrived at the following general
conclusion:

– The error in the estimation of the critical Rayleigh number for rigid isothermal
boundaries in the present study when compared with the most accurate value
(Ref. [36]) is 1.24%.

– RaRIc = 2.62867 RaFIc for all working media.

– Raw−Al2O3−Cuc < Raw−Al2O3c
< Rawc

The result is true for both rigid isothermal and free isothermal boundaries.

– Nuw−Al2O3−Cu > Nuw−Al2O3 > Nuw
The result is true for both rigid isothermal and free isothermal boundaries.

– The percentage enhancement of heat transfer in water due to 2% Al2O3−Cu
hybrid nanoparticles is 6.44% for rigid boundaries and 7.65% for free bound-
aries.

– The percentage enhancement of heat transfer in water due to 2% Al2O3

nanoparticles is 4.01% for rigid boundaries and 4.7% for free boundaries.

– The percentage enhancement of heat transfer in water due to 2% of Al2O3−Cu
hybrid nanoparticles compared to 2% of Al2O3 nanoparticles is 2.43% for rigid
boundaries and 2.95% for free boundaries.

– Convection is more intense in the case of water-Al2O3−Cu nanoliquid compared
to that of water-Al2O3 nanoliquid. This is because C hnl

f > C nl
f . Thereby we also

have Nuhnlr > Nunlr .
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– The stream function and isotherm plots reiterates the earlier findings.

– The relative coefficient of friction has physical significance in that it can be
identified with the ratio of thermal diffusivities, a1.
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