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Abstract The nonlinear stability of thermal convection in a layer of an Oldroyd-B
fluid-saturated Darcy porous medium with anisotropic permeability and thermal diffu-
sivity is investigated with the perturbation method. A modified Darcy-Oldroyd model is
used to describe the flow in a layer of an anisotropic porous medium. The results of the
linear instability theory are delineated. The thresholds for the stationary and oscillatory
convection boundaries are established, and the crossover boundary between them is de-
marcated by identifying a codimension-two point in the viscoelastic parameter plane. The
stability of the stationary and oscillatory bifurcating solutions is analyzed by deriving the
cubic Landau equations. It shows that these solutions always bifurcate supercritically.
The heat transfer is estimated in terms of the Nusselt number for the stationary and
oscillatory modes. The result shows that, when the ratio of the thermal to mechanical
anisotropy parameters increases, the heat transfer decreases.
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Nomenclature

d, depth of the porous layer;
g, gravitational acceleration;

k̂, unit vector in the vertical direction;

eK−1, inverse permeability tensor;
p, pressure;
q, velocity vector;
RD, Darcy-Rayleigh number;
t, time;
x, y, z, space coordinates;
α, effective thermal diffusivity tensor;
β, thermal expansion coefficient;

η, thermal anisotropy parameter;
λ1, stress relaxation time;
λ2, strain retardation time;
Λ1, stress relaxation parameter;
Λ2, strain retardation parameter;
μ, dynamic viscosity;
ν, kinematic viscosity;
ρ, fluid density;
ω, growth rate;
ψ, stream function;
ξ, mechanical anisotropy parameter.
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Subscripts/superscripts

b, basic state; ′, perturbed variable.

1 Introduction

The buoyancy-driven flow instability in a layer of fluid-saturated porous media has received
increasing attention over the past fifty years because of its numerous applications in geophysics
and energy-related systems[1–5]. The porous media involved in many engineering and industrial
applications are usually anisotropic in their mechanical and thermal properties, and several
investigators have addressed these effects on the stability characteristics of the system. Castinel
and Combarnous[6] were the first to investigate the effect of the anisotropy in the permeability
of a porous medium on the natural convection in the porous medium. Epherre[7] extended
this work to the case of anisotropy in both thermal diffusivity and permeability. Subsequently,
several studies were undertaken, covering various effects on this problem, and the results have
been reported in the open literature[8–11].

Most of the investigations on the thermal convection in anisotropic porous media are for New-
tonian fluids, and seldom for non-Newtonian fluids. However, the thermal convection encoun-
tered in many engineering applications, e.g., geophysics, material processing, petroleum, chem-
ical and nuclear industries, reservoir engineering, and bioengineering, exhibits non-Newtonian
characteristics. This has encouraged researchers to consider non-Newtonian fluids in their inves-
tigations. Among different kinds of non-Newtonian fluids, viscoelastic fluids are found to be of
considerable importance in various engineering applications[12]. Alishaev and Mirzadjanzade[13]

investigated the viscoelastic flows in porous media for the calculations of delay phenomenon in
the filtration theory. Rudraiah and Kaloni[14] provided a review on some of the constitutive
equations of non-Newtonian fluids flowing through porous media. By applying the linear stabil-
ity theory, Rudraiah et al.[15] examined the onset of convection in an Oldroyd-B fluid-saturated
horizontal porous layer heated from below. Shenoy[16] gave a comprehensive review on the
non-Newtonian fluids and heat transfer in porous media. Kim et al.[17] studied the thermal
instability in a porous layer saturated with a viscoelastic fluid. Malashetty et al.[18] and Shiv-
akumara et al.[19] analyzed the effects of local thermal non-equilibrium on the convection onset
in a viscoelastic fluid-saturated porous layer. Sheu et al.[20] investigated the buoyancy-induced
convection in a viscoelastic fluid-saturated porous medium. Wang and Tan[21] used both linear
and nonlinear stability theories to investigate double diffusive convection with the modified
Darcy-Maxwell model with the Soret effect. Recently, various types of flow problems for the
Oldroyd-B and Maxwell viscoelastic fluids have been analyzed[22–24]. Considering another non-
Newtonian fluid known as the Casson fluid, Makinde and Eegunjobi[25] discussed the thermally
radiating magnetohydrodynamics slip flow in a micro channel filled with Casson fluid-saturated
porous media, and Makinde and Rundora[26] analyzed the unsteady mixed convection flow in
a permeable wall channel with a reactive Casson fluid-saturated porous medium.

The investigations on the thermal convection in a viscoelastic fluid-saturated porous medium
are mainly dispensed with isotropic porous media except the study of Malashetty and Swamy[12],
where the convection onset in a layer of viscoelastic liquid-saturated anisotropic Darcy porous
media was investigated. Since the stability of the viscoelastic fluid-saturated anisotropic porous
layer takes the form of overstable motion only, it is of interest to perform the nonlinear stability
analysis and quantify the role of anisotropy and viscoelastic parameters on the same layer.
The goal of the present paper is to investigate the nonlinear stability of thermal convection
in an Oldroyd-B fluid-saturated anisotropic porous layer with the perturbation method. The
stability of bifurcating equilibrium solutions is discussed by deriving cubic Landau equations.
The results of the linear instability analysis are delineated. Besides, the consequence of the
viscoelastic and anisotropy parameters on the variation of the Nusselt number with respect to
the Darcy-Rayleigh number is examined.
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2 Mathematical formulation

The physical configuration is as shown in Fig. 1. We consider an infinite horizontal anisotropic
porous layer heated from below and saturated with a viscoelastic fluid of an Oldroyd-B type
confined between the impermeable planes z = 0 and z = d in the presence of gravity. The
anisotropy in both thermal diffusivity and permeability is considered. A Cartesian coordinate
system (x, y, z) is selected such that the origin is located at the lower boundary and the z-axis
is measured vertically upward. The lower and upper boundaries are maintained at T0 + ΔT
(ΔT > 0) and T0, respectively.

Δ

- -

Fig. 1 Physical configuration

The basic governing equations under the Boussinesq approximation are[13–17]

∇ · q = 0, (1)(
1 + λ1

∂

∂t

)
(−∇p+ ρg) = μ

(
1 + λ2

∂

∂t

)
K̃−1 · q, (2)

∂T

∂t
+ (q · ∇)T = ∇ · (α̃ · ∇T ), (3)

ρ = ρ0(1 − β(T − T0)), (4)

where q = (u, v, w) is the velocity vector, p is the pressure, μ is the fluid viscosity, λ1 is the
stress relaxation time, λ2 is the strain retardation time, g is the gravitational acceleration, ρ is
the fluid density, T is the temperature, β is the thermal expansion coefficient, ρ0 is the reference
density at T = T0, and

α̃ = αx î̂i+ αy ĵ ĵ + αz k̂k̂, K̃−1 = k−1
x î̂i+ k−1

y ĵ ĵ + k−1
z k̂k̂ (5)

are the effective thermal diffusivity and the inverse permeability tensors, respectively, whose
principal axes are associated with the coordinate system. A horizontal isotropy in the perme-
ability and thermal diffusivity is assumed and considered, i.e.,

kx = ky(= kh), kz = kv; αx = αy(= αh), αz = αv,

where kh and αh are the permeability and the thermal diffusivity in the horizontal î and ĵ
directions, respectively, while kv and αv are the corresponding values in the vertical k̂ direction,
respectively.

The steady basic state is quiescent, and is given by

qb = 0, Tb = T0 + ΔT
(
1 − z

d

)
, pb = p0 − ρ0g

(
z − βΔT

(
z − z2

2d

))
. (6)

To study the stability of the basic state, the perturbations on the basic state are superimposed
as follows:

q = 0 + q′, p = pb(z) + p′, ρ = ρb + ρ′, T = Tb(z) + T ′, (7)
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where primes designate the perturbed quantities. Substituting Eq. (7) into Eqs. (1)–(4), elim-
inating the pressure term from Eq. (2) by operating curl, introducing the stream function
ψ(x, z, t) through

u =
∂ψ

∂z
, w = −∂ψ

∂x
, (8)

and rendering the resulting equations to dimensionless form by using d, d2/αv, αv, and ΔT as
the units of the length, time, stream function, and temperature, respectively, we have

L

(
ψ

T

)
=

(
0

J(ψ, T )

)
, (9)

where

L =

⎛⎜⎜⎝
(

1 + Λ2
∂

∂t

)(
∂2

∂x2
+

1
ξ

∂2

∂z2

)
RD

(
1 + Λ1

∂

∂t

)
∂

∂x

∂

∂x

∂

∂t
− η

∂2

∂x2
− ∂2

∂z2

⎞⎟⎟⎠ , (10)

and J(·, ·) stands for the Jacobian with respect to x and z. Here, RD is the Darcy-Rayleigh
number defined by

RD =
βgΔTkvd

ναv
,

Λ1 is the relaxation parameter defined by Λ1 = λ1αv/d
2, Λ2 is the retardation parameter

defined by Λ2 = λ2αv/d
2, η is the thermal anisotropy parameter defined by η = αh/αv, and ξ

is the mechanical anisotropy parameter defined by ξ = kh/kv.
Since the boundaries are impermeable and isothermal, the appropriate boundary conditions

are

ψ = T = 0 at z = 0, 1. (11)

3 Nonlinear stability analysis

The nonlinear stability analysis near the convection threshold is performed with the per-
turbation method. The cubic Landau equations are derived for stationary and oscillatory
convection modes. Such a study helps in analyzing the stability of the bifurcating equilibrium
solutions (subcritical/supercritical) and also in estimating the convective rate of heat transfer.
Accordingly, the dependent variables ψ, T , and RD are expanded in the power series of a small
perturbation parameter χ (� 1) as follows[27–28]:

RD = RDc + χ2RD2 + · · · , ψ =
∞∑

n=1

χnψn, T =
∞∑

n=1

χnTn. (12)

The other parameters Λ1, Λ2, ξ, and η are taken as given, and RDc is the critical value at the
threshold as the case may be. A slow time scale s is introduced, i.e., s = χ2t. The operator ∂

∂t
is replaced, depending on the nature of the bifurcating solutions.
3.1 Bifurcation of the stationary solution

In this case, RD = Rs
Dc. Substituting Eq. (12) and ∂

∂t = χ2 ∂
∂s into Eq. (9) and equating the

coefficients of different powers of χ lead to a sequence of equations.
For the first-order power of χ, the resulting stability equations are homogeneous, and are

L1

(
ψ1

T1

)
=

(
0
0

)
, (13)
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where

L1 =

⎛⎜⎜⎝
∂2

∂x2
+

1
ξ

∂2

∂z2
RD

∂

∂x

∂

∂x
−η ∂

2

∂x2
− ∂2

∂z2

⎞⎟⎟⎠ .

The eigenvalue and eigenfunctions of this problem are

Rs
D =

π4 + (ξ + η)π2a2 + ξηa4

ξa2
, (14)

ψ1 = A1 sin(ax) sin(πz), T1 = B1 cos(ax) sin(πz). (15)

The undetermined amplitudes A1 and B1 are related by

A1 = − c

a
B1, (16)

where c = ηa2 + π2. The eigenvalue Rs
D attains the critical value at ac = (ξη)−

1
4π, and the

corresponding critical value is

Rs
Dc = π2

(
1 +

√
η

ξ

)2

, (17)

which is free from the viscoelastic parameters and coincides with the Newtonian case[9]. For
the isotropic case (ξ = η), ac = π, and Rs

Dc = 4π2, which are the known exact values[2].
For the second-order power of χ, the stability equations are inhomogeneous, and are

L1

(
ψ2

T2

)
=

(
0

J(ψ1, T1)

)
, (18)

where J(ψ1, T1) =
1
2
πaA1B1 sin(2πz). The solution of the above system of equations is

T2 =
a

8π
A1B1 sin(2πz), ψ2 = 0. (19)

For the third-order power of χ, the stability equations become

L1

(
ψ3

T3

)
=

(
Δ1

J(ψ1, T2)

)
, (20)

where

Δ1 =
((
aΛ1RD − c

a

(
a2 +

1
ξ
π2
)
Λ2

)dB1

ds
+ aRD2B1

)
sin(ax) sin(πz),

J(ψ1, T2) = −
(dB1

ds
+
c2

8
B3

1

)
cos(ax) sin(πz) +

c2

8
B3

1 cos(ax) sin(3πz).

The solution of the above equations is

ψ3 = A3 sin(ax) sin(πz) + · · · , T3 = B3 cos(ax) sin(πz) + · · · . (21)
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The solvability condition has been derived for Eq. (20), which is in the form of the first-order
nonlinear ordinary differential equation (the cubic Landau equation) for the unknown amplitude
B1 as follows:

Γ
∂B1

∂s
=
a2

c
RD2B1 −B3

1 , (22)

where

Γ =
(1
c

+ Λ2

)(
a2 +

1
ξ
π2
)
− a2Λ1

c
Rs

Dc, (23)

 =
c

8

(
a2 +

1
ξ
π2
)
. (24)

For the steady state, the amplitude is found to be

B2
1 =

8a2

c2

(
a2 +

1
ξ
π2
)−1

RD2. (25)

Equation (25) is independent of viscoelastic parameters while depends on anisotropy parame-
ters. Note that RD2 > 0, which indicates that the stationary bifurcation is always supercritical
(stable).

The convective heat transfer is determined in terms of the area-averaged thermal Nusselt
number. The Nusselt number is defined by

Nu = 1 − χ2 dT2

dz

∣∣∣∣
z=0

= 1 +
2a2

c

Rs
D −Rs

Dc

a2 + 1
ξπ

2
. (26)

By substituting the critical values into the above equation, we have

Nu = 1 +
2
π2

(
1 +

√
η

ξ

)−2(
RD − π2

(
1 +

√
η

ξ

)2)
. (27)

If η = ξ, Eq. (27) coincides with the Newtonian case[29].
3.2 Bifurcation of the oscillatory solution

In this case, RD = Ro
Dc. A minor alteration of the method applied in the earlier section is

used to find out the bifurcation of the oscillatory convection. The time derivative is not zero
in the present case, and ∂

∂t is replaced by ∂
∂t + χ2 ∂

∂s .
For the first-order power of χ, the equations reduce to the linear instability problem for

overstability as follows:

L

(
ψ1

T1

)
=

(
0
0

)
. (28)

The eigenfunctions are ⎧⎨⎩ψ1 = (A1eiωt +A1e−iωt) sin(ax) sin(πz),

T1 = (B1eiωt +B1e−iωt) cos(ax) sin(πz),
(29)

where the overline denotes the complex conjugate, ω and a are taken to be the critical conditions
associated with the oscillatory onset. The amplitudes A1 and B1 are functions of the slow time
scale, and are related by

A1 = −c+ iω
a

B1. (30)
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The eigenvalue is found to be

Ro
D =

(
a2 +

1
ξ
π2
)c+ (Λ1 − Λ2)ω2 + cΛ1Λ2ω

2

a2(1 + Λ2
1 ω

2)
, (31)

where

ω2 =
c(Λ1 − Λ2) − 1

Λ1Λ2
> 0. (32)

Equation (32) shows that the oscillatory convection is not possible if Λ1 < Λ2. It is seen that
Ro

D attains its critical value Ro
Dc at a2 = a2

c , where

a2
c =

√
π4 + π2/Λ2√

ξη
, (33)

which is independent of Λ1, and the corresponding expression for Ro
Dc is

Ro
Dc =

1
Λ1

(√
1 + π2 Λ2 + π

√
Λ2

√
η

ξ

)2

. (34)

For the second-order power of χ, the equations are inhomogeneous and found to be

L

(
ψ2

T2

)
=

(
0

J(ψ1, T1)

)
, (35)

where

J(ψ1, T1) =
1
2
πa(A1B1e2iωt +A1B1e−2iωt +A1B1 +B1A1) sin(2πz). (36)

Equation (36) suggests that the stream function and temperature should contain the terms in-
volving the frequency 2ω. Based on this fact, the second-order stream function and temperature
can be expressed as follows:⎧⎨⎩ψ2 = (ψ20 + ψ22e2iωt + ψ22e

−2iωt) sin(2πz),

T2 = (T20 + T22e2iωt + T 22e−2iωt) sin(2πz).
(37)

The solution of the second-order problem is now found to be

T20 =
a

8π
(A1B1 +B1A1), ψ20 = 0, T22 =

πaA1B1

8π2 + 4iω
, ψ22 = 0. (38)

For the third-order power of χ, the stability equations are

L

(
ψ3

T3

)
=

(
Δ2

J(ψ1, T2)

)
, (39)

where

Δ2 =
(
a(1 + iωΛ1)RD2B1 +

(
aRDΛ1 − Λ2

a

(
a2 +

1
ξ
π2
)

· (c+ iω)
)dB1

ds

)
eiωt sin(ax) sin(πz) + · · · ,

J(ψ1, T2) = −
(dB1

ds
+ πa(A1T20 +A1T22)

)
eiωt cos(ax) sin(πz) + · · · .
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The third-order problem has the solution as follows:

ψ3 = A3eiωt sin(ax) sin(πz) + · · · , T3 = B3eiωt cos(ax) sin(πz) + · · · . (40)

Equation (39) gives the following cubic Landau equation that explains the temporal variation
of B1 of the convection cell:

γ
dB1

ds
=

a2(1 + iωΛ1)
(1 + iωΛ2)

(
a2 + 1

ξπ
2
)RaD2B1 − κ|B1|2B1, (41)

where

γ = 1 +
1

1 + iΛ2ω

(
Λ2(c+ iω) − a2Λ1Ra

0
Dc

(
a2 +

1
ξ
π2
)−1)

, (42)

κ = π2
(c2 + ω2

8π2
+

(c+ iω)2

8π2
+

c2 + ω2

(8π2 + 4iω)

)
. (43)

From Eq. (42), the following relation can be obtained:

d |B1|2
ds

= 2pr |B1|2 − 2lr |B1|4 , (44)

d (ph (B1))
ds

= pi − li |B1|2 , (45)

where

a2(1 + iωΛ1)
(1 + iωΛ2)(a2 + 1

ξπ
2)
RD2γ

−1 = pr + ipi, κγ−1 = lr + ili,

and ph(·) represents the phase shift. The temporal evolution of |B1| can be expressed as a
function of the initial amplitude B0 as follows:

|B1|2 =
B2

0

(lr/pr)B2
0 + (1 − (lr/pr)B2

0) exp(−2prs)
. (46)

From the above equation, it is seen that |B1| ∼ B0 exp(prs) as s→ −∞ and |B1| → 0, just
as the linear theory, but |B1| →

√
pr/lr as s → ∞, which is independent of the value of B0.

For the post-transient state, Eq. (45) yields an expression for the amplitude as follows:

|B1|2 =
pr

lr
=
RD2

Ω
. (47)

If Ω > 0, the bifurcation is supercritical. If Ω < 0, the bifurcation is subcritical. This can be
achieved by evaluating the expression for Ω for various values of the physical parameters since
there is no simple way to analyze this expression. For this case, the area and time-averaged
thermal Nusselt number can be represented by using Eq. (11) as follows:

Nu = 1 +

(αc

2π

∫ 2π/αc

0

dT
dz

dx
)

z=0(αc

2π

∫ 2π/αc

0

dTb

dz
dx
)

z=0

= 1 − χ2
(dT2

dz

)
z=0

. (48)

With Eqs. (37) and (38), we can rewrite Eq. (48) as follows:

Nu = 1 +
1
2
c

Ω
(RD −Ro

Dc). (49)
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4 Results and discussion

The effects of the anisotropy in permeability and thermal diffusivity on the nonlinear sta-
bility of thermal convection in a horizontal porous layer saturated by an Oldroyd-B fluid are
investigated. Since the considered nonlinear stability analysis is based on the linear instability
analysis, the results of the linear instability theory are also discussed. Although the stationary
convection boundary depends on anisotropy parameters while is independent of viscoelastic
parameters, it concurs with the Newtonian fluid-saturated anisotropic porous layer when the
base flow is quiescent. The oscillatory convection boundary, however, depends on viscoelastic
parameters, e.g., mechanical and thermal anisotropy parameters.

The neutral stability curves on the (a,RD)-plane for different values of the stress relaxation
parameter Λ1, strain retardation parameter Λ2, mechanical anisotropy parameter ξ, and thermal
anisotropy parameter η are presented in Figs. 2 and 3. The region underneath the neutral curve
corresponds to the stability region, above which it is unstable. It is observed that the effects
of increasing Λ1 (see Fig. 2(a)) and ξ (see Fig. 3(a)) as well as decreasing Λ2 (see Fig. 2(b)) are
to decrease the stability region, while the effect of increasing η (see Fig. 3(b)) is to increase
the stability region. Besides, the oscillatory neutral stability curves shift towards lower values
of the wavenumber when Λ1 and ξ increase, which indicates that the cell width at the critical
state increases while Λ2 and η decrease.

The critical Darcy-Rayleigh number RDc and the corresponding critical oscillation fre-
quency ωc are obtained for various physical parameters. The results are presented in Figs. 4–6.

Λ

Λ

Λ

Λ
Λ

Λ

Λ

Λ

Fig. 2 Neutral stability curves for different values of Λ1 and Λ2 for isotropic (η/ξ = 1) and anisotropic
cases (η/ξ = 1.6)

Fig. 3 Oscillatory neutral stability curves for different values of ξ and η when Λ1 = 0.5 and Λ2 = 0.1
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Λ Λ

Λ
Λ

Fig. 4 Variations of RDc and ωc with respect to Λ2 for different values of Λ1, where η/ξ = 0.5

Λ
Λ

Fig. 5 Variations of RDc and ωc with respect to η/ξ for different values of Λ1, where Λ2 = 0.1

Λ

Λ

Fig. 6 Variations of RDc and ωc with respect to η/ξ for different values of Λ2 when Λ1 = 0.5

Figures 4(a) and 4(b), respectively, show the variations of RDc and ωc as functions of Λ2

for different values of Λ1, where η/ξ = 0.5. It is noted that increasing Λ1 is to advance the
onset of oscillatory convection for any fixed value of Λ2. This may be attributed to the fact
that increasing the relaxation parameter ceases the stickiness of the viscoelastic fluid and hence
the effect of friction will be reduced so that the convection sets in at lower values of RDc. On
the contrary, increasing Λ2 delays the onset of oscillatory convection for a fixed value of Λ1

because increasing Λ2 amounts to increasing the time taken by the fluid element to respond to
the applied stress. Further inspection of Fig. 4(a) reveals that the range of the values of Λ2,
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within which the oscillatory convection possibly increases with increasing Λ1. In other words,
for a fixed value of Λ1, there exists a threshold value Λ∗

2 which divides the boundary of regimes
between the oscillatory and stationary convection. Initially, convection begins in the form of
an oscillatory mode. As the value of Λ2 reaches Λ∗

2, convection ceases to be oscillatory and
stationary convection becomes the preferred mode of instability. The value of Λ∗

2 depends on
other physical parameters as well. The critical frequency ωc shown in Fig. 4(b) exhibits that
it decreases with increasing Λ2 and increases with increasing Λ1 due to the increase in the
elasticity of the fluid.

The variations of (RDc and ωc) as functions of η/ξ are shown in Figs. 5 and 6 for different
values of Λ1 (with Λ2 = 0.1) and Λ2 (with Λ1 = 0.5), respectively. These figures clearly indicate
that the effects of increasing η/ξ is to delay the onset of convection and to increase the frequency
of oscillations. The increase in η/ξ amounts to either decreasing ξ or increasing η. We note that
the decrease in ξ amounts to decreasing the horizontal permeability, which impedes the motion
of the fluid in the parallel direction. As a result, the transfer process in the porous medium gets
suppressed, and hence higher values of RDc are needed for the onset of instability. Moreover,
the increase in η amounts to increasing the horizontal thermal diffusivity. Thus, heat can be
transported with ease in the porous layer, the horizontal temperature differences in the fluid,
which are necessary to maintain convection, are more competently dissipated with increasing η,
and higher values of RDc are required for the onset of convection. It is intriguing to note that
by altering the anisotropy in the permeability and thermal diffusivity, it is possible to control
the (augment/suppress) convective instability. From the figures, it is further evident that the
increase in Λ1 and decrease in Λ2 are to hasten the onset of oscillatory convection. Moreover,
the critical frequency increases with increasing Λ1 while decreases with increasing Λ2.

The parameters for the boundary separating stationary and oscillatory solutions are esti-
mated. Figures 7(a) and 7(b) show the bifurcation of the stationary and oscillatory solutions
in the viscoelastic parameter plane for different values of η and ξ, respectively. The region
above each curve corresponds to the system which is unstable under oscillatory convection,
and the region below the curve corresponds to the system which is unstable under stationary
convection. From Figs. 7(a) and 7(b), for a fixed value of Λ2/Λ1, it is seen that the value of Λ1,
at which codimension-two bifurcation occurs, decreases when η increases (see Fig. 7(a)), while
an opposite trend is observed when ξ increases (see Fig. 7(b)). As the value of Λ2/Λ1 advances
towards 0.9, there is a steep rise in the value of Λ1.

The stability of the stationary and oscillatory bifurcating solutions is analyzed by deriving
the cubic Landau equations for these cases. It is an observable fact that the stationary solu-
tion always bifurcates supercritically (see Eq. (25)), while the stability of the oscillatory solution

Λ Λ

Λ Λ Λ Λ

Fig. 7 Bifurcations of stationary and oscillatory solutions in the viscoelastic parameter plane for
different values of η and ξ
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can be understood from the sign of Ω. When Ω > 0, the bifurcation is supercritical. When
Ω < 0, the bifurcation is subcritical (see Eq. (47)). Hence, the expression Ω is evaluated for a
wide range of parametric values at the critical values of oscillatory convection, and is denoted
by Ωc. Figures 8(a) and 8(b) represent the computed values of Ωc as a function of η/ξ for
different values of Λ1 and Λ2, respectively. These figures indicate that the oscillatory solution
always bifurcates supercritically. Thus, the linear instability analysis provides the necessary
and sufficient conditions for instability.

Λ Λ

Λ

Λ

Fig. 8 Variations of Ωc with respect to η/ξ for different values of Λ1 and Λ2

The heat transfer is estimated in terms of the Nusselt number for both stationary and
oscillatory cases. For the stationary case, the area-averaged Nusselt number is calculated as
a function of RD for different values of η/ξ. It is seen that the Nusselt number originates
from higher values of RD with increasing η/ξ. The value of the Nusselt number increases with
increasing RD for any fixed value of η/ξ, and the heat transfer decreases with increasing η/ξ
(see Fig. 9).

Fig. 9 Effects of η/ξ on the area-averaged Nusselt number Nu

For the oscillatory case, the area and time-averaged Nusselt number Nu is calculated as
a function of RD for various values of the physical parameters. The variations of Nu as a
function of RD for different values of η/ξ as well as Λ2 (with Λ1 = 1) and Λ1 (with Λ2 = 0.3)
are illustrated in Figs. 10(a) and 10(b), respectively. It is noted that the value of Nu increases
when RD increases for a fixed value of η/ξ. Moreover, the heat transfer increases with increasing
Λ1 while decreases with increasing η/ξ and Λ2.

5 Conclusions

The nonlinear stability of thermal convection in an Oldroyd-B fluid-saturated anisotropic
porous layer is investigated with the perturbation method. The onset of stationary and
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Λ
Λ
Λ

Λ
Λ
Λ

Λ Λ
Fig. 10 Variations of the area- and time-averaged Nusselt numbers with respect to RD for different

values of η/ξ (0.5, 1.0, and 1.5), Λ2, and Λ1

oscillatory convection is delineated since the nonlinear stability analysis is based on the results
of the linear instability analysis. The instability sets in via the oscillatory mode under certain
conditions, and the effect of increasing the mechanical and thermal anisotropy parameters is
to advance and delay the onset of the oscillatory convection, respectively. A codimension-two
bifurcation occurs at well-defined parametric conditions, and the value of the relaxation pa-
rameter, at which it occurs, decreases with increasing the thermal anisotropy parameter and
decreasing the mechanical anisotropy parameter in the viscoelastic parameter plane. The stabil-
ity of the stationary and oscillatory cases is discussed by deriving the cubic Landau equations.
It is observed that these solutions always bifurcate supercritically. The increases in the value
of the relaxation and retardation parameters are to enhance and suppress the time and area-
averaged heat transfer, respectively. Besides, the increase in the ratio of the thermal anisotropy
parameter to the mechanical anisotropy parameter is to decrease the heat transfer. By tuning
the anisotropy of the porous medium, it is possible to control the convective instability of the
system.
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