Towards a Technical Debt Conceptualization
for Serverless Computing

Valentina Lenarduzzi', Antonio Martini?, Sebastiano Panichella3, and
Damian Andrew Tamburri*

! LUT University, Lahti (Finland)
2 University of Olso, Oslo (Norway)
3 University of Zurich, Zurich (Switzerland)
* Jheronimus Academy of Data Science, ’s-Hertogenbosch (The Netherlands)
valentina.lenarduzzi@lut.fi
antonima@ifi.uio.no
panichella@ifi.uzh.ch

d.a.tamburri@uvt.nl

Abstract. Serverless computing is an emergent compute paradigm re-
ducing processing and operational units to single event-driven functions
for orchestration. With its micro-granular architectural characteristics,
serverless computing is bound to produce a currently inconceivable set of
architectural issues and challenges in the medium- and long-term. There-
fore, it is going to become more and more important to define Techni-
cal Debt (TD) items—that is, a way to measure the additional long-run
project cost connected to immediately-expedient technical decisions—for
serverless computing as well as hybrid compute models (e.g., Serverless
+ Microservices hybrids). This article illustrates a conceptualization and
research roadmap in the direction of defining such TD items starting from
a technical overview on serverless computing.

Keywords: Serverless Computing, Technical Debt, Bad Smells

1 Introduction

Serverless computing is growing its popularity in the last year [?],[10]. Server-
less computing provides a platform to efficiently develop and deploy applica-
tions to the market without having to manage any underlying infrastructure
[?]. Different serverless computing platforms such as AWS Lambda, Microsoft
Azure Functions, and Google Functions have been proposed by the main cloud
providers. Such platforms facilitate and enable developers to focus more on busi-
ness logic, without the overhead of scaling and provisioning the infrastructure
as the program technically runs on external servers with the support of cloud
service providers [2].

Companies started to migrate from monolithic to Microservices and now to
Serverless Function also to facilitate maintenance [14]. However, recent studies
that monitored the microservices migration process, highlighted that mainte-
nance costs increase after migration [12],[14],[11].



2 Lenarduzzi et al.

Considering the similarity between Serverless Functions and Microservices,
we expected the same trend in Serverless Functions. The main issue is to under-
stand is the similarity can be adopted also in the context of Technical Debt.

Therefore, the goal of this paper is to investigate Technical Debt in Serverless
Functions and to preliminary identify a subset of items (or bad smells), mostly
derived from the similarity with microservices, that can be good predictor of
Technical Debt.

To the best of our knowledge, this is the first study that start to highlight
the role of Technical Debt in Serverless Function.

The different items are based on the concept of Technical Debt for cloud-
native applications, anti-patterns and bad smells proposed in microservices, and
finally on our experience [13], [9].

2 Serverless Computing: a Primer

Serverless computing is a new paradigm that “allows companies to efficiently
develop and deploy functions without having to manage any underling infrastruc-
ture” [8]. A serverless cloud application is deployed to infrastructure components
that are transparent to the application developer. The cloud provider dynami-
cally allocates and provisions servers, and the code is executed in almost-stateless
containers that are event-triggered.

The serverless paradigm is currently receiving enormous interest within the
cloud-focused developer community at present. The major cloud providers are
promoting it as the basis of the next wave of innovation supporting the applica-
tion developers and many application developers are indicating that serverless
approaches do or will address key pain points for developers. As consequence,
in the last year we have observed the usage of several emerging serverless com-
puting platforms, such as AWS Lambda, Azure Functions, and Google Cloud
Functions have been developed. These platforms allow developers to focus only
on the business logic, while the overhead of monitoring, provisioning, scaling and
managing the infrastructure are operated by the cloud service providers [2].

The available Serverless technologies can be grouped in two main categories:

Backend-as-a-Service enables to replace server-side components with off-
the-shelf services. BaaS enables developers to outsource all the aspects behind a
scene of an application so that developers can choose to write and maintain all
application logic in the frontend. Examples are remote authentication systems,
database management, cloud storage, and hosting. An example of BaaS can be
Google Firebase, a fully managed database that can be directly used from an
application. In this case, Firebase (the BaaS services) manage data components
on our behalf.

Function-as-a-Service which represents an environment within which is
possible to run software. Serverless functions are event- driven cloud-based sys-
tems where application development relies solely on a combination of third-party
services, client- side logic, and cloud-hosted remote procedure calls [2]. FaaS al-
lows developers to deploy code that, upon being triggered, is executed in an



Towards a Technical Debt Conceptualization for Serverless Computing 3

isolated environment. Fach function typically describe a small part of an entire
application.

Serverless functions can be developed in several contexts while, because of
its limitations, it might have some issues in other contexts. As an example, long-
running functions, such as machine learning training or long-running algorithms
might have timeout problems, while constant workloads might result in higher
costs compared to indefinitely running on-demand compute services like virtual
machines or container runtimes.

More in general, this Serverless movement is in some sense driven by indus-
try, influential figures in the academia are looking at serverless from a more
fundamental point of view. The recent Berkeley view on Serverless ® makes the
important point that serverless platforms are more than FaaS runtimes; indeed
the severless paradigm can only make sense if the FaaS layer sits atop a set
of high level services which only require the addition of modest functionality -
delivered via FaaS - to provide real business value. We elaborate in the next
section the limit of the Serverless practices and movements.

2.1 Fallacies and Pitfalls in Serverless Computing

Since Serverless is in its infancy, researchers and practitioners have proposed a
few set of good and best practices for its adoption and operations [2] as well
as patterns for composing and triggering serverless functions [?] together with
bad practices that should be avoided [10][?]. As with the success of Kubernetes,
serverless open source solutions which have the most traction today are Open-
Whisk and Knative.

OpenWhisk was an early mover in this space offering a coherent vision with a
clear understanding that event based function invocation was a key characteristic
of serverless. Being driven by IBM, it achieved some traction and is now under
the auspices of the Apache foundation. The Open Source variant of OpenWhisk
is useful but lacks many basic features for production environments, including
log management, debugging supports, database integrations, etc. Knative is a
newer technology which is closely coupled to the Kubernetes ecosystem: as with
OpenWhisk, Knative has a quite comprehensive serverless vision, supporting dis-
tribution of functions within kubernetes pods and supporting integration points
for ingestion of events. It currently has a large community behind it and has a
more open approach than that of OpenWhisk. However, it is worth noting that
despite these success stories, a significant issue for the serverless world is that
the toolsets and interfaces required for productive developer experiences are only
evolving: debugging, logging, tracing etc is still very much a work in progress.

Nupponen et al. [10] and Leitner et al. [?] proposed seven different bad prac-
tices that should be avoided in Serverless applications, such as Asynchronous
Calls, Shared Code between functions or Too many functions.

In summary, several issues are still open in serverless [4].

5 Jonas, Eric, et al. ”Cloud Programming Simplified: A Berkeley View on Serverless
Computing.” arXiv preprint arXiv:1902.03383 (2019).



4 Lenarduzzi et al.

— Lack of a significant serverless tool sets and interfaces required for improv-
ing productivity of developer experiences, with debugging, logging, tracing
solutions that are still very much a work in progress.

— Lack of understanding of the event-driven paradigm, especially for developers
used to develop with different approaches.

— Lack of solid tools for deploying and developing functions. Deployment tools
are not yet stable and development tools and IDEs do not yet provide a
matured specific support.

— Confusion between functions and microservices. Some participants claimed
that functions should only do only one thing, for a specific business logic.

— Testing. Since functions are triggered by well-defined interfaces, unit tests
can be easily developed. However, system-level and integration testing be-
come much more complex.

3 Technical Debt for Cloud-Native Architectures

Technical Debt (TD) is a metaphor to represent sub-optimal design or imple-
mentation solutions that yield a benefit in the short term [5], but make changes
more costly or even impossible in the medium to long term [1]. Part of the over-
all TD is to be related to architecture sub-optimal decisions, and it is known as
Architecture Technical Debt (ADT) [7].

More precisely, ATD is regarded as implemented solutions that are sub-
optimal with respect to the quality attributes (internal or external) defined in
the desired architecture intended to meet the companies business goals. Under-
standing the different ATD components is crucial for managing and reducing
it [3].

In Cloud-based systems, the impact of migrating from monolith and of post-
poned activities on TD is still not clear. Only limited number of studies have
investigated the impact of postponed activities on TD, especially in the context
of microservices [11],[6].

The migration to microservices is a non-trivial task that requires deep re-
engineering of the whole system. It is commonly performed on systems that are
being actively developed. Therefore, in several cases, the development of new
features is prioritized over refactoring of the code, which generates TD and in-
creases the software maintenance effort. Migrating from monolith to Cloud based
system should lead as consequence to a significant decrease of the maintenance
cost. However, in the long run, TD grows slower after the migration process [6].
One of the possible cause could be the deal with a new system architecture. De-
velopers should consider various aspects such as enabling the legacy system to
communicate via Enterprise Service Bus with the microservices, dealing with au-
thentication issues as well as with process-related issues such as the introduction
of the DevOps culture, including continuous building and delivery [6].

TD issues related to architectural that can affect MS systems are mainly the
existence of too many point-to-point connections among services, the presence
of business logic in the communication layer, the lack of standards in the com-
munication among services, weak source code and knowledge management and



Towards a Technical Debt Conceptualization for Serverless Computing 5

unnecessarily many different technologies used by the service developers in the
communication among services [11].

The main impact of these issues is more encountered as extra cost (called
Interest) due to the need of rewriting the code, extra effort to handle different
technologies, and coupling between services [11]. Moreover, other factors can
affect TD in microservices, such as the definition of a single middleware layer
and removal of business logic from the communication layer [11].

4 Towards Technical Debt Issues for Serverless
Computing

In this Section, we highlight the different aspects of Serverless that might led to
the creation of technical debt. Our proposal will be validated with practitioners
and experts in Serverless Computing.

Serverless can imply different types of TD: architectural debt, due to the
re-architecting process, that could be ”quick and dirty”, but also enables to
experiment, and therefore to use technical solutions (or shortcuts) that then
are never fixed. As it is a fast development system, the system quickly mess-up
creating also different type of debt (including code). Test is hard, therefore the
testing of several ”things” might be postponed, accumulating other debt.

Based on the aforementioned open issues, Serverless Functions can have the
risk to accumulated higher Technical Debt than Microservices-based systems.
Serverless context allows developers to explore different technologies and tech-
nical solutions. However, experimentation can create features ”quick and dirty”
that in the future will not well maintained and refactored from the company.
Moreover, experimentation can led to misunderstanding among the teams that
work in a single Serverless function and then have to integrate their work.

Another factor that should be considered is the higher risk to create a dis-
tributed monolith system composed by several Serverless Functions. The Inte-
gration of more Serverless Functions implicates to create Microservices composed
by many components. However, if a Microservice distributed monolith system
is an issues currently investigated [?],[13],[14] having unmanageable chaos inside
the Microservice its self, due to Serverless Functions, is a more dangerous risk.

We propose a set of 13 Technical Debt items (bad smells) (Table 1), consid-
ering the aspects and the similarity between Serverless Functions and serverless.
The different items are based on the concept of technical debt for cloud-native
applications, anti-patterns and bad smells proposed in Serverless Functions, and
finally on our experience [13], [9].

5 Road Map and Conclusion

In this paper, we introduce and illustrate a conceptualization of Technical Debt
(TD) in Serverless Functions. Moreover, we proposed 13 TD items starting from
a technical overview on serverless.



Lenarduzzi et al.

Table 1. TD items (bad smells) for Serverless Computing

TD item

Description

Lack of API Versioning

If APIs are not versioned, in case of a new version of the
APIs, the API consumers can face connection issues [13].

Hardcoded endpoints

Hardcoding the IP address and the ports of the services
they need to connect bring very soon to problems when
needing to change their locations. [13].

Inappropriate Service Inti-
macy

The Serverless Function is keeping on connecting to pri-
vate data from other services instead of dealing with its
own data [13].

Serverless Function Greedy

In this case, developers often tend to create new Server-
less Functions for each feature, even when they are not
needed. This issue can generate the explosion of the num-
ber of Serverless Functions composing a system, resulting
in a useless huge system that will easily become unmain-
tainable because of its size.

Multiple Services in One

Container

Placing multiple services in one container would consti-
tute an architectural smell for the independent deploya-
bility of Serverless Functions. If two Serverless Functions
would be packaged in the same Docker image, spawning
a container from such image would result in launching
both Serverless Functions [9].

Shared Libraries

Tightly couples Serverless Functions together, loosing in-
dependence between them. Moreover, teams need to co-
ordinate each other when they need to modify the shared
library [13].

Shared Persistency

It deals with Serverless Functions that share the dame
data. This smell highly couples the Serverless Functions
connected to the same data, reducing team and service
independency [13].

Single-layer Teams

The classical approach of splitting teams by technol-
ogy layers (e.g., user interface teams, and middle- ware
teams, and database teams) is hence considered an ar-
chitectural smell, as any change to a Serverless Function
may result in a cross-team project having taken time and
budgetary approval [9].

Shared Functions between
Serverless Functions

A function that is used by different Serverless Functions.
In this case, we might have two issues: 1) the function is
used by 2 or more Serverless Functions and modified by
more than one team (high risk of errors) 2) the function
is used by several teams, but only one team modify it
(better from maintenance point of view, but increased
coupling between teams)

Too many standards

Despite Serverless Functions allow to use different tech-
nologies, the adoption of too many different technologies
can be a problem in companies, specially in case of devel-
opers turnover. [13].

Wobbly Service Interac-

The interaction of a Serverless Function mi with another

tions. Serverless Function m_f is "wobbly” when a failure in m_f
can result in triggering a failure also in m_i. [9].
Wrong Cuts Serverless Functions should be splitted based on busi-

ness capabilities and not on technical layers(presentation,
business, data layers) [13].




Towards a Technical Debt Conceptualization for Serverless Computing 7

We aim at validating the conceptualization of Technical Debt in Serverless

Functions and the defined TD items. Therefore, we will design a study to un-
derstand what practitioners consider as Technical Debt in Serverless Functions.

We will carry out an exploratory study, structured as a mixed research

method, composed by a set of interviews, a focus group, and a final set of
group interviews. Based on these results, we will design and conduct detailed
case studies, involving companies that develop or used Serverless Functions.

References

10.

11.

12.

13.

14.

Avgeriou, P., Kruchten, P., Ozkaya, 1., Seaman, C.: Managing Technical Debt in
Software Engineering. Dagstuhl Reports 6(4), 110-138 (2016)

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell,
N., Muthusamy, V., Rabbah, R., Slominski, A., Suter, P.: Serverless Computing:
Current Trends and Open Problems (2017)

Besker, T., Martini, A., Bosch, J.: Technical debt cripples software developer pro-
ductivity: A longitudinal study on developers’ daily software development work.
In: International Conference on Technical Debt. pp. 105-114 (2018)

Casale, G., Arta¢, M., van den Heuvel, W.J., van Hoorn, A., Jakovits, P., Leymann,
F., Long, M., Papanikolaou, V., Presenza, D., Russo, A., Srirama, S.N., Tamburri,
D.A., Wurster, M., Zhu, L.: Radon: rational decomposition and orchestration for
serverless computing. SICS Software-Intensive Cyber-Physical Systems (2019)
Cunningham, W.: The wycash portfolio management system. SIGPLAN OOPS
Mess. 4(2), 29-30 (Dec 1992)

. Lenarduzzi, V., Lomio, F., Saarimki, N., Taibi, D.: Does migrate a monolithic

system to microservices decrease the technical debt? (2019)

Li, W., Shatnawi, R.: An empirical study of the bad smells and class error prob-
ability in the post-release object-oriented system evolution. J. Syst. Softw. 80(7),
1120-1128 (Jul 2007)

Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., Pallickara, S.: Serverless com-
puting: An investigation of factors influencing microservice performance. In: Inter-
national Conference on Cloud Engineering. pp. 159-169 (2018)

Neri, D., Soldani, J., Zimmermann, O., Brogi, A.: Design principles, architec-
tural smells and refactorings for microservices: a multivocal review. Softw.-Inensiv.
Cyber-Phys. Syst. (2019)

Nupponen, J., Taibi, D.: Serverless: What it is,what to do and what not to do. In:
International Conference on Software Architecture (ICSA 2020) (2020)

Soares de Toledo, S., Martini, A., Przybyszewska, A., Sjberg, D.I.K.: Architectural
technical debt in microservices: A case study in a large company. In: International
Conference on Technical Debt. pp. 78-87 (2019)

Soldani, J., Tamburri, D.A., Heuvel, W.J.V.D.: The pains and gains of microser-
vices: A systematic grey literature review. J. Syst. Softw. 146, 215 — 232 (2018)
Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Soft-
ware 35(3), 56-62 (2018)

Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating
to microservices architectures: An empirical investigation. IEEE Cloud Computing
4(5), 22-32 (2017)



