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Abstract—Test smells attempt to capture design issues in test
code that reduce their maintainability. Previous work found such
smells to be highly common in automatically generated test-cases,
but based this result on specific static detection rules; although
these are based on the original definition of “test smells”, a
recent empirical study showed that developers perceive these as
overly strict and non-representative of the maintainability and
quality of test suites. This leads us to investigate how effective
such test smell detection tools are on automatically generated
test suites. In this paper, we build a dataset of 2,340 test cases
automatically generated by EVOSUITE for 100 Java classes.
We performed a multi-stage, cross-validated manual analysis to
identify six types of test smells and label their instances. We
benchmark the performance of two test smell detection tools:
one widely used in prior work, and one recently introduced with
the express goal to match developer perceptions of test smells.
Our results show that these test smell detection strategies poorly
characterized the issues in automatically generated test suites;
the older tool’s detection strategies, especially, misclassified over
70% of test smells, both missing real instances (false negatives)
and marking many smell-free tests as smelly (false positives).
We identify common patterns in these tests that can be used
to improve the tools, refine and update the definition of certain
test smells, and highlight as of yet uncharacterized issues. Our
findings suggest the need for (i) more appropriate metrics to
match development practice; and (ii) more accurate detection
strategies, to be evaluated primarily in industrial contexts.

Index Terms—Test Generation, Test Smells, Software Quality

I. INTRODUCTION

An ambitious goal of software engineering research is to
automatically assess the quality and maintainability of test
code. Automatically identifying this is challenging [1], [2],
as the notion of quality is both context-sensitive and subject
to change over time. A common approach is to focus on
those parts of a program that clearly violate certain well-
established rules informed by practice; e.g., that a single test
method should not test multiple requirements [3], [4]. Ideally,
developers can be alerted to such issues automatically and
they can be resolved through meaning-preserving refactorings
– which is the goal of “test smell” detection [1].

Contemporary test smell detection relies on a well-defined
and empirically grounded set of “smells” that reflect improper
testing practice. The canonical catalog of these smells was
proposed by van Deursen et al. [1], who categorize 11 smell
types with the corresponding refactorings to resolve them.
Prior work has created tools that automatically mark these
smells in test code [5]. This is no small chore: many of
these require complex inference about the code, e.g., detecting
“indirect testing” [1] requires knowing whether (unmocked)
calls to other classes constitute “testing” those classes.

Heuristic (static) rule-based detection of test smells is
widely used, but over-reliance on such rules risks missing and
mischaracterizing issues as testing practices change over time.
Recent work showed that test smells are especially prevalent in
automatically generated test-cases [6]; however, the heuristics
defined typically apply to the goal of detecting smells in
manually written test cases, which may not be directly trans-
ferrable to automatically generated test suites, as those tests
are often markedly different in structure and semantics from
their human-written counterparts. Furthermore, while these
rules have been designed based on the original definition of
“test smells”, a recent empirical study showed that developers
do not perceive these as reflective of test suite quality and
maintainability, finding them overly strict [2].

Considering this challenge of automatically detecting test
smells, the non-trivial gap to assessing automatically generated
test suites, and the changes in testing practice since the
original categorization, we argue that a critical reassessment
of test smells is due, specifically focussing on automatically
generated test cases. In this work, we manually annotated test
smells in 100 test suites spanning 2,340 test cases. This paper
provides the following contributions:
Internal Validity: How widespread are test smells in auto-
matically generated test cases? We find that EVOSUITE [7], a
representative test generator, effectively abstracts away many
resources (e.g., database and file access), and applies mocking
where necessary. However, it still introduces a substantial
number of indirect tests and often generates tests that check



a wide range of behaviors simultaneously. We suggest that a
notion of semantic objective is needed to refine its focus.
Tool Validity: How accurate are automated tools in detecting
test smells in automatically generated tests? Comparing our
manual annotations against two popular detection tools, we
find a substantial rate of misclassifications. Many of these stem
from discrepancies between the heuristics and the peculiarities
of EVOSUITE’s tests. Notably, prior work did not detect many
of these issues in their own manual validation, raising concerns
about self-evaluations of the validity of heuristics as opposed
to industry-based evaluations – a common practice in our field.
External Validity: How well do test smells reflect real
problems in generated test suites? We highlight how several
smells rarely indicated issues, either because of advances in
testing frameworks (esp. “Assertion Roulette”) or because
they encode a matter of preference (e.g., “Eager Test”). In
turn, we highlight several issues not yet described by any
smells, particularly reflecting atypical patterns found in the
tests produced automatically.

II. BACKGROUND

A. Test Smells

The notion of code smells goes back to Fowler’s book [8].
Code that smells is not necessarily faulty, but may contain
quality issues that inhibit maintenance or lead to a bug at some
point [9]. The notion of code smells was later extended to test
code [1]. To help developers avoid such issues, several tools
have been introduced to automatically flag smelly test code [2],
[3]. This has in turn enabled researchers to empirically study
the prevalence of test smells and their effects, confirming that
test smells are not only common in open source and industrial
software, but also have a strong negative impact on program
comprehension and maintenance [2], [5], [10].

B. Test Case Generation

Writing test code can be tedious and methodical. To allevi-
ate this burden, a longstanding goal of researchers is to pro-
duce tests automatically. Automated test generation methods
have been developed for many specific testing problems, most
popularly generating unit tests using either random sampling
or search-based techniques. In random testing, sequences of
calls to constructors and methods are randomly assembled,
and objects created in these calls are used as parameters for
successive calls. A primary application of random testing is
to find undeclared exceptions [11] or violations of general
object contracts [12], but the generated tests can also be used
as automated regression tests. The effectiveness of random
test generators can be increased by integrating heuristics [13],
[14]. In search-based testing, evolutionary search algorithms
are popular, which gradually improve random initial sequences
of calls to maximize code coverage [15]–[18].

Automatically generated tests do tend to be harder to read
and interpret than manually crafted ones, which negatively
impacts their maintainability [19]. Research has focused on
improving this maintainability primarily by addressing the
amount of code generated: RANDOOP [12] removes redundant

tests after-the-fact, while EVOSUITE [17] uses test suite size
as a secondary objective during its search and further post-
processes individual tests to be “1-minimal” with respect to
coverage; i.e., leaving only statements that cannot be removed
without reducing the achieved coverage.

Various other post-processing steps are common for au-
tomated test generators; for example, most tools integrate
some form of regression oracle generation [20] such that
the tests contain assertions based on the current behavior
of the code under test. To further improve maintainability,
these assertions can be minimized for their fault-finding po-
tential [21]. Further optimizations for maintainability include
applying specific heuristics from industrial application [22],
semantic simplification [23], prioritizing using literals taken
from the source code [24], generation of meaningful names for
tests [25], measuring readability using prediction models [26],
and adding textual summaries [27].

C. Limitations of Prior Work

Grano et al. [6] investigated test smells in automatically
generated test cases and found them widespread: the vast
majority (81%) of test suites generated by EVOSUITE contain
at least one test smell, and even more so among other test
case generation tools. That rate is remarkably high considering
how widely EVOSUITE is used, which seems unlikely if those
smells are indeed so abundant and indicative of quality and
maintainability issues. A careful manual analysis of its tests
and their purported smells thus seems in order. We focus on
three systematic concerns with the established numbers:

1) Grano et al. used the warnings raised by an automated
test smell detection tool to build their gold standard.
However, the tool is known to overestimate the number
of test smell instances [6], [28]. In this paper, we address
this issue by building a gold standard with manually
annotated classes, this to have a more clear view of test
smells occurrences in automatically generated tests.

2) The authors used test case generation tools with the
default parameter values. However, tools like EVOSUITE
are equipped with tuneable parameters, including the
timeouts used for the minimization process, which are
critical for producing maintainable tests. Test cases are
not minimized after this timeout, which may leave many
unnecessary statements and assertions, making them more
likely to contain certain smells (e.g., Assertion Roulette,
discussed later). Thus an incorrect setup, rather than a
fundamental issue in test case generation, could con-
tribute to the higher numbers of smells observed in
Grano et al. [6]. We address this by tuning EVOSUITE’s
parameters to ensure high quality test suite generation.

3) Modern test case generation tools use mocks to reduce
the dependencies between generated tests and external
resources (such as files). However, this aspect was not
considered nor discussed by Grano et al.. Since some
test smells are related to using external resources, we
investigate in-depth how the relation between mocking



and certain test smells manifests in both their annotations
and the generated tests.

Finally, the general explanation given by Grano et al. for the
results is unsatisfactory; the argument is that generated tests
are “scented since the beginning since crossover and mutation
operations performed though their evolution do not change
the structure of the tests.” However, tools like EVOSUITE and
JTEXPERT do evolve test suites and their test cases. Indeed,
the mutation operator can add, remove, or insert statements
in the test cases [29], [30], thus, altering the test structure. If
the majority of the generated tests are indeed smelly, the root
cause is to be found somewhere else.

III. METHODOLOGY

This section details the empirical evaluation we conduct
to assess the performance of test smell detection tools
when applied to automatically generated tests. A complete
(anonymized) replication package is available at the link:

https://tinyurl.com/y8jle2bl.

A. Research Questions

The following research questions steer our empirical study:
RQ1 How widespread are test smells in automatically gener-

ated test cases?
RQ2 How accurate are automated tools in detecting test

smells in automatically generated tests?
RQ3 How well do test smells reflect real problems in test

suites?
We first determine the spread and distribution of test smells

based on a manual analysis. Previous work [6] answered a
similar research question, proposing a test smell detection tool
as the gold standard with the assumption that this tool is 100%
precise for four types of test smells and over 65% precise
for three other smells [6]. In this study, we answer RQ1 by
building a curated dataset of automatically generated test cases
(further described in Section III-B) and manually identifying
the presence of one or more of six types of test smells (see
Section III-D). Our approach addresses an important threat to
construct validity to previous work, as our gold standard does
not depend on detection tools. We next compare the detected
extent of test smells with that predicted by two automatic smell
detection tools in RQ2 to establish their accuracy. This aims
to (in)validate the findings of previous work which suggest
that automatically generated test suites are highly prone to test
smells. Finally, RQ3 reflects on test smells, asking whether,
and how often, they relate to actual problems in the test suites,
which is illustrated through a series of examples.

B. Test case generation

To build our benchmark, we consider the same 100 Java
classes used by Grano et al. [6]. We extract these classes
from the SF110 dataset [29], which contains 110 projects from
SourceForge.net. The selected classes are non-trivial as
identified using a well-established triviality test [30], which
filters out classes whose methods have a McCabe’s Cyclomatic
complexity lower than three. This helps ignore classes that

can be fully covered by simple method invocations. We then
generate JUnit test cases for the selected classes using EVO-
SUITE [7] version 1.0.7. EVOSUITE is a state-of-the-art unit-
test generator for Java programs that has won several editions
of the SBST tool competition [31]–[33] against competing
random and search-based unit test generation tools; it produces
test suites with high code coverage [29], has documented
fault detection capability [34], [35], and is publicly available
on GitHub.1 EVOSUITE also applies several post-processing
optimizations to reduce the size of the test cases as well as
the number of generated assertions (see Section II-B).

Grano et al. used the default values for EVOSUITE param-
eters with the motivation that “the use of default values does
not impact the performance of automated test case generation
tools” [6]. However, there are several problems with this
assumption: first, the default values are optimized with respect
to code coverage [36], but other test suite properties like length
or number of assertions may well be affected by changes in
parameters. Second, the claim only holds for hyper-parameters
of the metaheuristic search parameters for a given algorithm
over multiple classes, but not necessarily for general param-
eters of EVOSUITE, such as post-processing options, search
budget, or the choice of algorithm. Indeed, a large body of
research has shown that changing the evolutionary algorithm
can have a dramatic impact on the overall performance [30],
[37]–[39]. Similarly, the search budget also has a substantial
impact on the overall performance, as shown in the SBST tool
competitions (e.g., [33]).

Parameter Settings. The default settings of EVOSUITE uses
the whole-suite approach and optimizes eight different cov-
erage criteria simultaneously. For the post-processing steps,
the EVOSUITE default settings use 60 seconds for test case
minimization, and a further 60 seconds for assertions gen-
eration/minimization. These parameter values can be derived
from the EVOSUITE code and from the replication package
by Grano et al.2 If the test case minimization and the asser-
tion generation reach their respective time-outs, EVOSUITE
terminates the post-processing and returns the original, non-
minimized, test suites. To ensure that this phase completes
successfully, we thus increase the timeouts from 60 seconds
(used in [6]) to ten minutes; this also leads to higher coverage.

In this work, we use more suitable settings for the con-
sidered task: we use DynaMOSA as the core evolutionary
algorithm following the recommendations from more recent
work [38]. DynaMOSA uses a many-objective genetic al-
gorithm to evolve a population of 50 test cases. Test cases
are evolved using single-point crossover with probability
pc = 0.75, uniform mutation with probability pm = 1/n (n
being the length of the test cases), and tournament selection.
DynaMOSA is also configured to optimize for eight coverage
criteria, namely branch, line, method, exception, input, and
output coverage plus weak mutation score. We select Dy-

1https://github.com/EvoSuite/evosuite
2https://zenodo.org/record/3337892#.XswWby-w3yU



TABLE I: Comparison between the test suites generated with
our setting vs. Grano et al. [6] setting. We report the median
values, the the interquartile range (IQR), and confidence
intervals (CI) using bootstrapping at 95% significance level.

Settings by Grano et al. [6] Our Settings

Criterion M IQR CI M IQR CI

Branch Coverage 0.69 0.71 [0.66, 0.72] 0.74 0.70 [0.71, 0.76]
Overall Coverage 0.67 0.66 [0.65, 0.70] 0.74 0.65 [0.71, 0.76]
# of Test Cases 14 23 [13.86, 14.13] 15 26 [14.83, 15.17]
Total Test Length 50 135 [47.25, 52.60] 46 110 [43.63, 48.24]

naMOSA over the whole-suite approach as the former can
achieve higher coverage with shorter tests.

Coverage Results. Table I lists summary statistics of the
test suites generated using EVOSUITE with our settings, and
compares them to the test suites obtained using the settings
from the prior work. The reported numbers are the averages
(median values plus interquartile ranges) over 50 independent
runs. We run EVOSUITE multiple times on each class to
address the randomized nature of evolutionary algorithms used
to synthesize test suites. As a consequence, our test suites
have slightly higher coverage (5%, significant in 45 out of
100 classes, as confirmed by Wilcoxon test p < 0.05) and are
a bit shorter than in prior work [6].

C. Detection Tool Selection

We select two test smell detection tools. The first tool
proposed by Bavota et al. [28] applies static detection rules.
It has been widely used in previous work [28], [40], [41]
to study the distribution of test smells in (manually-written
tests)open-source projects. Grano et al. [6] use this same
tool to detect smells in automatically generated test suites.
Bavota et al. report that this tool achieves 100% recall and 88%
precision when detecting test smells in manually-written tests.
For automatically generated tests, Grano et al. [6] reported an
average precision of 75%, with 100% precision on for four
test smell types: Assertion Roulette, Mystery Guest, Sensitive
Equality, and For Testers Only.

The second detection tool we study is TSDETECT [10],
which is publicly available on GitHub.3 Recently, Spadini
et al. [2] calibrated the detection rules in TSDETECT based
on developers’ perception and classification of test smell
severity, resulting in thresholds that are better aligned with
what developers consider actual bad test design choices.

While TSDETECT can detect 21 test smell types, the tool
used by Grano et al. [6] detects just seven; in our analysis, we
focus on these seven, five of which are shared by both tools:
Assertion Roulette, Eager Tests, Sensitive Equality, Mystery
Guest, Resource Optimism. The Indirect Testing test smell
is only supported by the tool used by Grano et al.; we
discard the For Tester Only smell, since it is not applicable to
automatically generated test suites that, by design, are linked
only to the class they were generated to test. Comparing the
results from two automated detection tools reduces the risk

3The tool can be found at: https://github.com/TestSmells/TestSmellDetector

of drawing conclusions specific to one tool alone, helping us
focus on identifying common limitations instead. An overview
of the shortlisted smells can be found in Table II.

D. Manual validation

To create a golden set of test smells in automatically
generated test suites, we manually evaluate all 100 generated
test suites. For each test suite, we analyze whether any of
the tests in the test suite suffer from one of the six smells
specified in Table II. Out of these six smells, we do not
explicitly annotate Mystery Guest and Resource Optimism, as
these do not apply to tests generated by EVOSUITE and are
thus trivially false for all its tests. We conduct this manual
analysis in a multi-stage cross-validated manner:

Step 1. We divide the 100 test suites into two sets of 50
each. The first two authors of this paper independently analyze
the first set, and the last two authors independently analyze the
other set. For each test suite, the analysis is done across four
dimensions, with each dimension corresponding to one of the
selected test smells. Since we only look for the presence of
a smell, for each dimension we use a binary marker. For our
analysis, as a guideline each author adheres to the detection
rules listed in Table II.

Step 2. For each set of 50 test suites, the two authors re-
sponsible for the analysis discuss their findings and determine
the level of agreement. For the first set, the authors disagree on
12% of the 200 (four per test suite for 50 test suites) cases and
for the second set, the authors disagree on 25% of the cases.
Both sets of authors then discuss the disputed cases to come
to a final resolution. We note that this discussion was used
to slightly refine guidelines for corner-cases, as test smells
manifest in many complex ways. At the end of the discussion
phase, there are just four cases from the first set that have
consensus and similarly three from the second set.

Step 3. For the seven disputed cases, all four authors
responsible for the manual analysis discuss the cases to come
to a final agreement. Furthermore, during this phase test cases
that are not smelly but still interesting anomalies are also
discussed. At the end of this phase the classification of the
100 test suites is set.

IV. EMPIRICAL RESULTS

A. RQ1: Distribution of Test Smells

To evaluate automated test smell annotation tools (RQ2) as
well as study the gaps in test smell coverage (RQ3), we need
to understand in what ways our tests are characterized by the
presently used test smells. This necessarily requires manual
annotation, which we conducted as described in Section III-D.
To be consistent with prior work [6], we annotated each smell
at the level of the entire test suite; if any one test in said suite
contained that smell, the entire suite is annotated accordingly.

Table III shows the resulting general incidence rate of
each smell across the 100 test suites. Overall, test smells
are commonly present in a small, but non-trivial portion of
automatically generated test suites. The respective incidence
rates are all quite similar, but their distributions vary; in



TABLE II: Test smells considered in this paper.

Test smell Definition by van Deursen et al. [1] Rules for interpretation

Mystery
Guest

Test case that accesses external resources such as files and
databases, so that it is no longer self-contained.

Discarded, since the EVOSUITE test suite runner by definition
mocks out all accesses to external resources.

Eager Test A test that checks multiple different functionalities in one case,
which makes it hard to read or understand.

(1) The test must have more than one assertion and (2) at least
one assertions is not on the result of a get method.

Assertion
Roulette

A test that has multiple assertion statements that do not provide
any description of why they failed

A test must have two or more assertions and neither has any
explanatory message accompanying them

Indirect
Testing

Tests the class under test using methods from other classes. The presence of any assert that uses a method that is not part of
the class under test.

Sensitive
Equality

When an test checks for equality through the use of the
toString method.

Any assert that checks the exact value of a String that is returned
through a toString call is said to be sensitive

Resource
Optimism

A test that makes optimistic assumptions about the state/existence
of external resources

Discarded as the EVOSUITE test suite runner by definition mocks
out all accesses to external resources

TABLE III: Distribution statistics of the selected test smells
in 100 test suites spanning all collected systems.

Smell Rate

Eager Test 21%
Assertion Roulette 17%
Indirect Testing 32%
Sensitive Equality 19%
Mystery Guest* 0%
Resource Optimism* 0%

* EVOSUITE never generates tests requiring external resources.

about half of the test suites no smells were present at all,
another five contained every possible smell, and the remainder
involved some pairings more frequently occurring than others.
In particular, eager tests and assertion roulette often co-
occurred (appearing together in 12 out of their respective 20
& 16 occurrences); these both describe tests that involve “too
much” testing, either in terms of methods tested or in terms
of (non-trivial) properties asserted.

We noticed that individual tests in a test suite were often
very similar to each other, with typically just a few archetypes
repeated with slightly different setup and conclusion. As a
consequence, suites that we marked with a test smell also
tended to contain it in many of its test methods. Conversely,
ca. half of the suites contained no test smells at all for the same
reason, although we caution that a few of these were empty
(as in, no tests were generated). This suggests that generating
diverse tests for a given class is still an open challenge, at
least with respect to common smell-related pitfalls.

Finding 1. Test smells are commonly present in a small, but non-
trivial portion of automatically generated test suites. However, their
rate of occurrence is smaller than previously reported.

B. RQ2: Accuracy of Automated Test Smell Detection

Table IV reports the false-positive rates (FPR), false-
negative rates (FNR), precision, recall, and F-measure that
each tool achieves for each test smell. We were not able to
compute all performance metrics for certain smells because
either (1) our gold standard does not include instances of
those smells (as in the case of Mystery guest and Resource

  @Test(timeout = 4000)
  public void test5() throws Throwable {
      ActionRegistry a0 = new ActionRegistry();
      ErrorPage errorPage0 = new ErrorPage();
      Label label0 = new Label(errorPage0, errorPage0);
      a0.addEntry("+}OIdF3!uYBcSb=", "+}OIdF3!uYBcSb=", false);
      boolean boolean0 = a0.isActionMethod(label0, (String) null);
      assertFalse(boolean0);
  }

Fig. 1: Example of a false positive for the tool used by Grano
et al. for Assertion Roulette.

optimism), or (2) the detection tool was unable to detect any
instances of them.

Assertion roulette. The tool used by Grano et al. largely
overestimates the number of instances for assertion roulette.
The tool raises warnings for 76% of the test suites generated
by EVOSUITE, which is in line with the percentage (73.4%)
reported in their work [6]. However, our analysis reveals a
high rate of false-positives; although the tool achieves 100%
recall, its low precision results in an F-measure of just 0.36.

To better understand this high FPR, we manually inspected
the warnings raised by the tool. Most saliently, we observed
that test methods with only a single assertion are common
amongst the false positives; Figure 1 shows such an example,
in which the test contains just one assertion. Such cases by
definition cannot be classified as an instance of assertion
roulette, as there is no cause for confusion in case of a failure.

Table IV suggests that TSDETECT works fairly well on this
test smell, reaching a higher precision (67%) but a lower recall
compared to the tool used by Grano et al., giving it a 21%
higher F-score. This is mainly due to the higher threshold value
(three assertions) used by Spadini et al.. However, this simple
heuristics also causes the tool to miss some instances with
fewer assertions; an example is shown in Figure 5, in which
a test case checks (asserts) two different properties: object
equality and the value of its attributes. At the same time, we
acknowledge that tests with few assertions are questionable
instances of assertion roulette. As pointed out by Spadini
et al. [41], “the test method name accurately reflects the
reason for the test to fail” even when no further comments



TABLE IV: Detection performance of different automated test smell detection tools for test cases generated by EVOSUITE.
FPR denotes the False Positive Rate and FNR is the False Negative Rate. The best values are highlighted in grey colour.

Test smell Tool used by Grano et al. [6] TSDETECT calibrated by Spadini et al. [2]

FPR FNR Precision Recall F-measure FPR FNR Precision Recall F-measure
Assertion Roulette 0.72 0.00 0.22 1.00 0.36 0.05 0.50 0.67 0.5 0.57
Eager Test 0.53 0.05 0.33 0.95 0.49 0.05 0.45 0.73 0.55 0.63
Mystery Guest 0.12 — — — — 0.03 — — — —
Sensitive Equality 0.00 0.67 1.00 0.33 0.50 0.00 0.67 1.00 0.33 0.50
Resource Optimism 0.02 — — — — 0.02 — — — —
Indirect Testing 0.00 1.00 — 0.00 — — — — — —

  @Test(timeout = 4000)
  public void test07() throws Throwable {
     ScriptOrFnScope s0 = new ScriptOrFnScope((-806),
                             (ScriptOrFnScope) null);
     ScriptOrFnScope s1 = new ScriptOrFnScope((-330), s0);
     s1.preventMunging();
     s1.munge();
     assertNotSame(s0, s1);
  }

Fig. 2: Example of false positive for the tool used by Grano
et al. for Eager Test

  @Test(timeout = 4000)
  public void test00() throws Throwable {
      Show show0 = new Show();
      File file0 = MockFile.createTempFile("...");
      MockFileOutputStream m0 = new MockFileOutputStream(file0, false);
      MockPrintStream mP0 = new MockPrintStream(m0);
      show0.printHelpExtra(mP0, (List) null);
      assertEquals(797L, file0.length());
  }

Fig. 3: Example of false positive for Mystery Guest

are provided in the tests.

Eager Test. The tool used by Grano et al. achieves high recall
(95%) but low precision. The tool raises warnings for 62% of
the test suites generated by EVOSUITE, which corresponds
to a false-positive rate of 53%; i.e., the majority of warnings
raised are not actual test smell instances. This tool uses the
number of methods calls (not including constructors) in a
test method to determine whether it is eager or not, but
eagerness is properly concerned with functionality – whether
more than one requirement is tested. Figure 2 depicts an
example of a false positive where two methods on the object
ScriptOrFnScore1 are invoked. The first method sets the
private attribute markedForMunging of the class to false
(it is true by default). The method munge manipulates
symbols in the global scope of the class if and only if the
attribute markedForMunging is set to true. Testing this
scenario requires both method invocations, otherwise one of
the branches inside the method munge cannot be tested.

TSDETECT achieves a higher precision (73%), again by
using a higher threshold [41] for the same metric (the number
of method invocations). This also causes it to again miss some
instances, resulting in a lower recall (55%). For example,
TSDETECT correctly annotates the test in Figure 2 as non-
smelly, but misses the case in Figure 5. The resulting F-score
is again higher for TSDETECT, reinforcing that research with
developers and human participants is critical to calibrating test
smell detection tools properly.

Mystery Guest and Resource Optimism. For these two
types of smells, both detection tools raise several warnings.
However, they are all false positives by definition, as our gold
standard does not contain any instances of such smells. The
detection tools both annotate test methods that contain specific
strings or objects, such as: “File”, “FileOutputStream”
“DB”, “HttpClient” as smelly; however, EVOSUITE sep-
arates the test code from environmental dependencies (e.g.,
external files) in a fully automated fashion through byte-
code instrumentation [42]. In particular, it uses two mech-
anisms: (1) mocking, and (2) customized test runners. For
one, classes that access the filesystem (e.g., java.io.File)
have all their methods (and constructor) mocked [42]. EVO-
SUITE also replaces general calls to the Java Virtual Ma-
chine (e.g., System.currentTimeMillis) with mock
classes/methods with deterministic behavior. Finally, the test
runner used by EVOSUITE replaces occurrences of console
inputs (e.g., java.io.InputStream) in all instrumented
classes with a customized console. Notice that EVOSUITE
resets all mock objects before every test execution. The
application of static rules based on string patterns is thus
insufficient to identify instances of these smells. Grano et
al.’s tool, especially, does not identify mocks, thus raising a
warning every time a test contains the string “File”. Figure 3
shows an example of such a false positive. While TSDETECT
avoids misclassification of mocked file access by checking for
the string “Mock”, it does not inspect whether a customized
test runner is used, which helps it achieve a lower FPR.

Indirect testing. 32% of the test suites in our gold standard
contains test cases affected by indirect testing. This makes it
the most widespread smell in automatically generated tests.
However, the tool used in prior work [6] fails to detect any
instances of this smell. Furthermore, TSDETECT does not
detect indirect testing. Therefore, further research is needed
to capture indirect testing with automated tools effectively.

Sensitive equality. Based on its definition, this smell is partic-
ularly easy to detect with static rules, as it just requires check-
ing whether the toString method is used for (equality-
related) assertions. Surprisingly, both test smell detection tools
detect only a small portion of this test smell’s instances.
Through manual analysis, we discovered that these tools
successfully detect sensitive equality if and only if the method
toString directly appears within an assertion. However,
both detection tools can be easily fooled by using first storing
the result of toString in a local variable and then asserting



  @Test(timeout = 4000)
  public void test56() throws Throwable {
      SubstringLabeler substringLabeler0 = new SubstringLabeler();
      substringLabeler0.connectionNotification("testSet", "testSet");
      InstanceEvent instanceEvent0 = substringLabeler0.m_ie;
      substringLabeler0.acceptInstance(instanceEvent0);
      assertEquals("SubstringLabeler",
                      substringLabeler0.getCustomName());
      assertFalse(substringLabeler0.isBusy());
      assertEquals("Match",
                      substringLabeler0.getMatchAttributeName());
  }

Fig. 4: Example of eager test.

  @Test(timeout = 4000)
  public void test58() throws Throwable {
      OrganizationImpl organizationImpl0 = new OrganizationImpl();
      boolean boolean0 = organizationImpl0.equals(organizationImpl0);
      assertTrue(boolean0);
      assertEquals(0L, organizationImpl0.getPrimaryKey());
  }

Fig. 5: Example of assertion roulette.

its value against the target.

Finding 2. Test smell detection tools overestimate the
occurrence of all evaluated test smells, sometimes by large
margins. TSDETECT is more precise due to calibrated
thresholds, but sacrifices recall. Involving human partici-
pants is critical to improving the accuracy of these tools.

C. RQ3: Relation to Real Issues

The goal of test smells is to reflect real, rectifiable issues in
test cases. It is thus important to ascertain that detected smells
are actually indicative of problems in automatically generated
test cases. Our manual validation was based on the definition
and interpretation of a test smell provided by van Deursen et
al. to ensure a fair comparison with previous work on test
smell detection, but these smells have not been reassessed for
generated test suites. In this section, we do so for the four test
smells that EVOSUITE test suites can plausibly contain.

Eager test. We avoided mislabeling tests as eager when they
checked an object’s state using multiple getter calls after
some action (which is rarely avoidable). Even so, we find
that automatically generated tests are often eager in that they
test (entirely) unrelated functionalities. One such example
can be seen in Figure 4, where, the entity under test is
SubstringLabeler. We observe that two of the asserts are
checking the result of a getter on the entity, whereas the other
checks whether the object is busy. Cases such as these were
quite common, and clearly reflect a lack of singular purpose
in test cases, which indeed risks maintainability issues.

Assertion roulette. Assertions in the test code can add a text-
based explanation that is shown if it fails, which can help
identify specifically which assert first triggered an error in case
there are multiple. In our analysis, we thus do not consider
tests with just one assert (with no accompanying message)
as smelly, since it is trivial to trace failures for these; but,
EvoSuite tends to generate many test cases with multiple, and

  @Test(timeout = 4000)
  public void test21() throws Throwable {
      Home home0 = new Home();
      SwingViewFactory swingViewFactory0 = new SwingViewFactory();
      PhotoController photoController0 = new PhotoController(home0,
             (UserPreferences) null, (View) null, swingViewFactory0,
             (ContentManager) null);
      Camera.Lens camera_Lens0 = Camera.Lens.FISHEYE;
      Camera camera0 = new Camera(2026, 3700L, 3700L, 2026, 3700L,
             2026, 3700L, camera_Lens0);
      home0.setCamera(camera0);
      assertEquals(3700L, camera0.getTime());
  }

(a) Indirect test of Camera instead of PhotoController.
  @Test(timeout = 4000)
  public void test05()  throws Throwable  {
      LinkedHashMap<String, Object> linkedHashMap0 = new
                     LinkedHashMap<String,Object>();
      TeamFinderImpl teamFinderImpl0 = new TeamFinderImpl();
      linkedHashMap0.put("com.liferay.portal.service.persistence." +
                     TeamFinder.findByG_N_D",teamFinderImpl0);
      teamFinderImpl0.setJoin((QueryPos) null, linkedHashMap0);
      assertFalse(linkedHashMap0.isEmpty());
  }

(b) Indirect test of LinkedHashMap instead of Team-
FinderImpl.

Fig. 6: Examples of the indirect testing smell.

often very many, assertions. This is largely because it is prone
to testing for multiple results of a series of method calls,
without a clear understanding of whether those results are
related to a single “behavior” (i.e., a single semantic action).
We tend to find that when a test case has this smell, it is
often also classified as an eager test case. One example of this
can be found in Figure 5, which contains an assertTrue
on the result of a (tautological) equality test and an unrelated
assertEquals on an attribute of the same object.
Indirect testing. In our manually analyzed dataset, we found
30 test suites with cases of indirect testing, in which the
actual tested behavior (e.g., the final assert statement) relied
on an unmocked call to a method of some other class to
confirm correct behavior. This clearly violates the containment
expected in unit testing. We specifically observed two kinds
of indirect testing: (1) those where the entity under test has
nothing to do with the test case at all, and (2) those where
the test case asserts a property of a class that is related to the
entity under test after the entity has interacted with it.

An example of the former can be seen in Figure 6a, where
the class under test is PhotoController, but the time set
on the Camera class is being asserted. In this test, the call
to home0.setCamera leads to coverage on the class under
test (the PhotoController is an observer of home0) such
that the statement survives EVOSUITE’s minimization. When
EVOSUITE’s regular mutation-based assertion minimization
does not succeed in retaining any relevant assertions, as a
last resort EVOSUITE adds an assertion on the last return
value produced in the test case. In this case, however, the
time value set on the Camera has nothing to do with the
PhotoController. Support for more advanced assertions
could have avoided this problem.

A more clear-cut case of indirect testing can be seen in



  @Test(timeout = 4000)
  public void test62() throws Throwable {
      SubstringLabeler.Match substringLabeler_Match0 = new
                                 SubstringLabeler.Match();
      String string0 = substringLabeler_Match0.toString();
      assertEquals("Substring:     [Atts: ]", string0);
  }

Fig. 7: Example of sensitive equality.

Figure 6b. Here the class under test is TeamFinderImpl,
but the ultimate assert checks a LinkedHashMap for empti-
ness to confirm some aspect of the behavior of setJoin
(to which the LinkedHashMap is passed). Although we
marked this as smelly, in accordance with the pre-established
definition, it is debatable whether this is actually an issue:
there may not be a direct way to test this map’s value
through TeamFinderImpl (e.g., through a getter), so that
the tester is faced with the choice of either incurring this
smell or not testing this property. This is not endemic to
automatically generated test suites either; questions regarding
testing of hidden (or ‘private’) properties are abundant on e.g.,
StackOverflow and no consensus exists on what is appropriate.

Sensitive equality. Asserting the configuration of an object
using its representation, as returned by a toString method,
is non-robust: that representation is prone to changing in trivial
ways, like adding/removing punctuation, which would cause a
spurious test failure. We find that automated test cases do gen-
erate some tests that rely on the value returned by toString
methods. Oddly enough, the invocation of toString is rarely
done directly in the assert; rather, its result is often stored
in a local variable which is then compared to the expected
value in the assert (as seen in Figure 7). Whether these uses
of toString constitute a real problem is debatable; for
any such test, EVOSUITE also generated many test cases that
explicitly check for equality (to equivalent objects) and/or the
values returned by all ‘getter’ methods. Tests such as this
seemed to genuinely test the current implementation of the
toString method – we very rarely found cases where the
string representation was used specifically to confirm program
state after some call, or to test equality to another object.

Mystery guest and Resource optimism. Mocking and byte-
code instrumentation are the core techniques used by EVO-
SUITE to handle environmental dependencies [42]. Originally,
these techniques were introduced to solve other challenges,
such as removing non-determinism (the primary cause of flaky
tests), avoiding the creation/deletion/modification of external
files, and ultimately to increase code coverage. Our analysis
reveals that these strategies positively impact the maintainabil-
ity of generated tests by preventing these smells.

Finding 3. While EVOSUITE generates eager tests and
ones with multiple assertions, their severity is debatable.
Mocks and bytecode instrumentation techniques used in
EVOSUITE effectively mitigate the concerns of mystery
guests and resource optimism.

V. QUALITATIVE REFLECTION

In the previous section, we presented quantitative results
grounded in a thorough investigation of test smell prevalence.
In the process of this annotation effort, one cannot help but
observe many recurring patterns, both in the way test smells
manifest, are (mis-)detected and miss other issues entirely.
This section discusses such observations qualitatively, with
examples from our dataset, discussing each smell separately.

A. On Rule-Based Detection of Test Smells

Automatically detecting test smells requires explicitly en-
coding their most salient, reliable characteristics. The previous
section discussed the challenge of this problem in relation to
established definitions [1], but these definitions are not exact;
both Grano et al. and Spadini et al. quote these definitions
but interpret them differently in subtle ways. We discuss
contemporary issues with both these definitions and (different
takes on) their definition here.

Eager test. These tests evaluate the behavior of multiple
methods in a single test method. Both tools considered rely
on the number of production method invocations to detect
this, but Spadini et al. [2] set a higher threshold than Grano
et al. [6], who consider any more than one invocation to
be smelly. This definition does not necessarily capture real
“eagerness”, however; some tests necessarily invoke multiple
methods to test more complex behavior (e.g., a pair of encrypt
and decrypt methods); as long as a separate test case exists for
its intermediate stages, this should not be a concern. It is highly
non-trivial to detect for this automatically and it is especially
fault-prone to assume a threshold of just one invocation. In
our manual analysis, we excluded many common occurrences
of this pattern, such as multiple invocations of getters of the
same class, which simply test various aspects of its state
after a single operation, or two equality checks that ascertain
bidirectional equality. Note that refactoring those would result
in substantial code bloat (as also alluded to by Van Deursen et
al. [1]). As such, detecting this test smell requires much more
semantic awareness than is currently present.

Assertion roulette. When a test case has multiple asserts
without explanations, pinpointing why it failed was historically
complicated: JUnit 2 was widely used at the time of this
smell’s definition, which had no traceability for the cause
of failing test cases with multiple asserts. Both Spadini et
al. and Grano et al. annotate this smell when an assert
statement has no string message to explain a potential failure
[2], [6], though Spadini et al. require at least two such
asserts. Currently, EVOSUITE only documents cases where
an exception is expected (using JUnit’s fail method) –
automatically generating failure-related messages is out of the
scope of current tools. This results in automated tools marking
many of their tests as smelly, in many cases incorrectly so.
For one, test cases with just a single assert, even if not
explained, should never involve this confusion. Furthermore,
it is debatable whether e.g., assertNull (in general) needs
an explanatory message as the expected behavior is encoded



in its name reason. More generally, advances in the JUnit
framework have removed the traceability confound entirely.
We still annotated some cases with this smell based on a
strict adherence to its definition, but suggest that this smell
has become obsolete, which is further reinforced by its high
degree of overlap with Eager Test.

Indirect testing. Testing classes other than the specific entity
under test is considered indirect testing. Grano et al. interpret
this as using any methods of another class [6]; but, we found
many such invocations that were necessary for setup, which
were often either Mocked, or not used in any assertions (i.e.,,
only needed for setting up a scenario). Even discarding such
trivial distractors, we found indirect testing to be a widespread
issue with automated generated test suites in our manual
analysis. Strangely, although we adhere to a stricter definition
than Grano et al., we still find 30 cases of test suites with
this smell. This is significantly more than Grano et al., whose
detection approach did not even identify a single instance.

Sensitive equality. When a test asserts that an object has a
given value (or checks its equality) using the result of its
toString method, it is considered “sensitive”. Grano et al.
interpret this as the presence of a toString call specifically
in an assert statement [6]. However, we found that EVOSUITE
often stores the result of a toString in a local variable
before checking its value, so this detection rule has many false
negatives. This pattern suggests a disconnect between human-
written and automatically generated test suites; the proposed
rule may work well on regular tests, but falls short on those
automatically generated by EVOSUITE.

Mystery guest and resource optimism. Mocking and byte-
code instrumentation introduce more challenges for test smell
detection tools based on static rules. TSDETECT successfully
reduces the false positive rate by checking for mocked objects.
However, static rules fall short for strategies that work at the
instrumentation level. These strategies can be fully detected
via dynamic analysis (e.g., identifying which objects are in
memory) or using watchdogs to check whether the tests
modify external files. Therefore, we foresee more sophisticated
rules to detect mystery guests and resource optimism in
automatically generated tests effectively.

B. On Issues not Included in Test Smells

During our manual analysis, we also uncovered a wide
range of issues that are not captured by the concept of any
defined test smells at all. This is due in part to the unique
nature of (EVOSUITE’s) automatically generated tests, but also
reminiscent of more general problems with detecting only a
closed vocabulary of “issues”.

Absence of assertions. We find that many test cases contain
(sometimes elaborate) setup and invocations to the entity
under test, but then do not assert the results of these method
invocations in any way. One example is shown in Figure 8a,
where the assert is commented out by EVOSUITE due to
instability concerns, which results in this test case having no
asserts. In Figure 8b, EVOSUITE generates a test case with

  @Test(timeout = 4000)
  public void test3() throws Throwable {
      XML xML0 = new XML();
      MockPrintStream mockPrintStream0 = new
                                   MockPrintStream(",qmf=");
      ConsoleInput consoleInput0 = new ConsoleInput((AzureusCore)
                                   null, mockPrintStream0);
      xML0.execute((String) null, consoleInput0,
                                   consoleInput0.torrents);
      //Unstable assertion: assertFalse(consoleInput0.isDaemon());
  }

(a) Example of test with unstable assertion.
  @Test(timeout = 4000)
  public void test7() throws Throwable {
      ClientIDManagerImpl impl0 = new ClientIDManagerImpl();
  }

(b) Example of test with no assertion.

Fig. 8: Example of tests with no assertions.

  @Test(timeout = 4000)
  public void test0() throws Throwable {
      SessionProperties sp0 = mock(SessionProperties.class, new
                                ViolatedAssumptionAnswer());
      SessionProperties sp1 = mock(SessionProperties.class, new
                                ViolatedAssumptionAnswer());
      doReturn("The 'data' array must have length ==2.")
                  .when(sp1).getObjectFilterExclude();
      doReturn("7}3c]d+XG]mJk6La")
                  .when(sp1).getObjectFilterInclude();
      ISession i0 = mock(ISession.class, new 
                                ViolatedAssumptionAnswer());
      doReturn((IApplication) null).when(i0).getApplication();
      doReturn(sp0, sp1, sp1).when(i0).getProperties();
      ObjectTreeCellRenderer o0 = null;
      try {
        o0 = new ObjectTreeCellRenderer((ObjectTreeModel) null, i0);
        fail("Expecting exception: NullPointerException");
      
      } catch(NullPointerException e) {
        verifyException("net.sourceforge.squirrel_sql.client.session
                   .mainpanel.objecttree.ObjectTreeCellRenderer", e);
      }
  }

Fig. 9: Example of a test case with failed setup.

just a constructor invocation but does nothing with it at all.
Such invocations will show up as providing code coverage
for the methods being inspected; however, with no assertions
taking place, it tests nearly nothing of semantic importance4.
This reflects a disconnect between the optimization metric of
“coverage” and real-world validity of test cases; addressing
this could lead to more useful support for developers.

Too many assertions. A substantial number of test cases
contained many asserts, often at least five, but sometimes
dozens – one peculiar suite had multiple test cases with
nearly 80 assertions. This reflects an incredibly high assertion
density. Although this certainly overlaps with the definition
of established smells such as Assertion Roulette and Eager
Test, the scope of this problem is vastly different, and thus
likely requires differently targeted solutions than what might
plausibly occur in regular, developer-generated tests.

Failed setup. We found many tests that involved a substantial
amount of setup, often including entities set up via mock

4Though, one might argue, that an invocation which does not trigger an
exception is still a form of a test.



objects, but nevertheless resulting in exceptions that suggest
the setup was not successful. Figure 9 shows an example of
such a test: all the test code related to mocking ISession
i0 helps to cover the elaborate initialization code of the
class ObjectTreeCellRenderer; yet eventually the con-
structor throws a NullPointerException. This is again
indicative of a mismatch between coverage of code vs. actual
requirements: while EVOSUITE succeeded in achieving high
coverage through this setup, the resulting test is unlikely to be
helpful for finding faults, besides being hard to maintain.

VI. THREATS TO VALIDITY

The narrow focus of this work implies that the main threats
to its validity are external.
Threats to external validity. EVOSUITE is commonly used
and has been continually developed, but is far from the only
automatic test suite generation tool. Other examples include
Randoop [12] and JTExpert [14], which were assessed in
some prior work (e.g., [6]); conclusions from our manual
analysis may not extend to these tools. Nonetheless, many of
our observations concern problems caused by the discrepancy
between generated tests and those a human might write; even
if specific issues may not recur across tools, the presence
of a discrepancy almost certainly will. The broader result of
this paper, which showed that current test smells are often
inappropriate indicators of issues with such test suites, is thus
likely equally applicable to such work, and follow-up studies
assessing the degree and characteristics of such issues for
other tools would be appropriate. Similarly, our selection of
test smells is smaller than some prior work, but comparable
to other. This does not invalidate our specific findings for
these smells, but does imply that further studies are needed to
confirm whether similar conclusions apply to other test smells.
Threats to construct validity. The main challenge in con-
ducting this study was the interpretation of the definitions of
the various test smells, which were never defined precisely
and have been adopted in subtly different ways. We aimed to
interpret them using a small set of simple, but semantically
reasonable rules, which we detailed carefully. Choosing alter-
native interpretations may be appropriate for some purposes
(e.g., when using an older version of JUnit), and can certainly
change a number of annotations. But, our experience while
annotating was that no variation would eliminate a smell
completely, or make it abundant. Furthermore, two raters
independently annotated each example and discussed any
discrepancies with respect to the established rules, adding
clauses agreed on by all annotators in case of any lingering
ambiguity. As such, we are confident that our annotations are
internally consistent and highly traceable to our rules, which
we believe are common-sense interpretations of these smells.

VII. THE PATH FORWARD

In contrast to previous work, we found that the test suites
generated by EVOSUITE are riddled with smells, we found
the majority of generated test suites to be smell free. Having
analyzed the main causes for these tools’ false positives, it

stands out that these are all static in nature and use rather
simple heuristics (e.g., relying on specific numerical thresholds
for the number of asserts that are not able to clearly capture
semantic aspects of smells) that require enhancements. To that
end, we propose the following review of test smell detection:

1) Smells such as Assertion Roulette (which has become
generally obsolete), Resource Optimism, For Testers Only
and, Mystery Guest no longer apply to (well-calibrated)
automatic test generators. A root and branch review of
test smells and their detection tools/strategies is warranted
to ensure that developers and future work do not rely on
definitions that need substantial adaptation to this context.

2) The definition and interpretation of certain smells, such
as Indirect Testing, appeared to be unpriced and possibly
incomplete. Currently, tools interpret it as any method
invocation to a class that is not the one under test, which
hardly matches its intent. There is thus a need for a
definition that is not only precise but captures the notion
of a semantic objective for a test, under which it tests
a specific, realistic behavior. This objective need not be
self-contained and could span multiple methods, or even
classes, as long as it has a well-defined goal. Defining
this, and automatically detecting it, is an ambitious, yet
pressing open challenge for this line of research.

3) Our study highlights important internal validity of prior
work. Current tools are benchmarked on a false-positive
prone “golden set” of manually validated data, which
resulted in obvious errors being left uncaught. This high-
lights the need for a global, thoroughly verified dataset
that can be used across studies as a reference benchmark.

VIII. CONCLUSION

This paper investigates test smell occurrence in automati-
cally generated test-cases and the extent to which contempo-
rary test smell detection tools are able to identify them. We
built a dataset of 2,340 test cases automatically generated by
EVOSUITE for 100 Java classes and conducted a multi-stage,
manual cross-validation to identify six types of test smells
across these. Our results show that test smells are commonly
present in a small, but non-trivial portion of automatically
generated test suites. However, they occurr far less often
then reported by the tool (and analysis) of Grano et al.
[6], while TSDETECT achieves somewhat better results [41].
In particular, although EVOSUITE does generate eager tests
and tests with multiple assertions, many heuristically detected
cases are not problematic, while the severity of others is
debatable (as also argued in recent work [41]). In turn, mocks
and bytecode instrumentation techniques used in EVOSUITE
effectively address the problem of avoiding mystery guests and
resource optimism. Our findings suggests that involvement of
human participants (preferably in industrial contexts) is critical
to ensuring that the design test smell detection tools better
reflects developer practice. Additionally, the discrepancies
between tool assessment and practical accuracy exposed by
our work suggests the need for further studies of other test
case generation tools and test smells.
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