
Journal of Scheduling (2020) 23:751–768
https://doi.org/10.1007/s10951-020-00665-4

Scheduling jobs with a V-shaped time-dependent processing time

Helmut A. Sedding1,2

Published online: 8 September 2020
© The Author(s) 2020

Abstract
In the field of time-dependent scheduling, a job’s processing time is specified by a function of its start time. While monotonic
processing time functions are well-known in the literature, this paper introduces non-monotonic functions with a convex,
piecewise-linear V-shape similar to the absolute value function. They are minimum at an ideal start time, which is the same
for all given jobs. Then, the processing time equals the job’s basic processing time. Earlier or later, it increases linearly with
slopes that can be asymmetric and job-specific. The objective is to sequence the given jobs on a single machine and minimize
the makespan. This is motivated by production planning of moving car assembly lines, in particular, to sequence a worker’s
assembly operations such that the time-dependent walking times to gather materials from the line-side is minimized. This
paper characterizes the problem’s computational complexity in several angles. NP-hardness is observed even if the two slopes
are the same for all jobs. A fully polynomial time approximation scheme is devised for the more generic case of agreeable
ratios of basic processing time and slopes. In the most generic case with job-specific slopes, several polynomial cases are
identified.

Keywords Single-machine scheduling · Time-dependent scheduling · Non-monotonic processing time · Piecewise-linear
processing time · V-shaped processing time

1 Introduction

Sequencing a set of jobs on a single machine such that the
makespan is minimized is trivial if each job’s processing
time is constant, because any job sequence is optimal in this
case. In contrast, if each job’s processing time is a function
of its start time, then the job sequence alters the processing
times. For example, if a swap of two jobs changes the sum of
their processing times, then all succeeding jobs are shifted,
which possibly necessitates a reoptimization. Hence, time-
dependent processing times add a layer of complexity, and
already the makespan minimization poses a challenge.

1.1 Processing time function

In time-dependent scheduling, the classic effect of a job’s
start time on its basic processing time is additive. Here, a

B Helmut A. Sedding
helmut.sedding@zhaw.ch

1 Institute of Theoretical Computer Science, Ulm University,
Ulm, Germany

2 Institute of Data Analysis and Process Design, ZHAW Zurich
University of Applied Sciences, Winterthur, Switzerland

penalty function � j of start time t is added to the basic pro-
cessing time � j≥ 0 of a job j to obtain the processing time

p j (t) = � j + � j (t) (1)

of job j . Then, the job is completed at

C j (t) = t + p j (t). (2)

Consequently, the completion time of a sequence of several
jobs equals the composition of their completion time func-
tions. For example, consider job sequence (1, 3, 2): If it is
started at time t , then it completes at C2(C3(C1(t))).

Although existing literature studies many variations of
� j , they are largely restricted tomonotonic, i.e., nondecreas-
ing or nonincreasing forms (Gawiejnowicz 2008, 2020a, b;
Strusevich and Rustogi 2017). A present practical case, aris-
ing in the context of moving assembly lines, requires a
non-monotonic penalty function (Sedding 2020b), joining
research lines on monotonic forms.

In particular, we explore the job-specific, non-monotonic,
piecewise-linear V-shaped penalty function

� j (t) = max
{−a j (t − τ), b j (t − τ)

}
. (3)

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/344930166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-020-00665-4&domain=pdf
http://orcid.org/0000-0001-7359-6587

752 Journal of Scheduling (2020) 23:751–768

Fig. 1 Given an example instance of the studied problem P with the
global start time tmin = 0, the common ideal start time τ = 10, eight
jobs, and for job j = 1, . . . , 7, the basic processing time � j = j and
the two common slopes a j = 0.1, b j = 0.2. Depicted is the only one
job sequence that provides the minimum makespan for this instance. It
arranges job 2 as the straddler job χ , and partitions the other jobs into
set A = {4, 3, 1} and set B = {5, 6, 7}. Please observe that the jobs of
A and B are sequenced in opposite orders, and that in this example, the
straddler job χ is not the job with the smallest basic processing time

It joins two linear pieces at one certain point, the so-called
common ideal start time τ , which is the same for all jobs.
Each linear piece is described by a job-specific slope, namely
1 ≥ a j ≥ 0 and b j ≥ 0. Note that all numbers are rational.
We observe that the domains of a j and b j ensure a nonde-
creasing completion time function C j . Thus, delaying a job
by inserting idle time does not reduce its completion time.

1.2 Problem setting

For a set of jobs of the described time-dependent processing
times (1) with the additive V-shaped penalty functions (3), let
us define the scheduling problemP . Several rational numbers
define an instance of P: a start time tmin for the first job,
a common ideal start time τ , and for each job j , a basic
processing time � j ≥ 0 and slopes 1 ≥ a j ≥ 0, b j ≥ 0. A
permutation of the jobs (a so-called job sequence) determines
the order in which to successively execute the jobs starting
from tmin on a single machine without idle time, completing
atCmax. Then, the objective inP is to find a job sequence that
minimizes the makespan φ = Cmax − tmin. Such a sequence
is called optimal, and solves the P instance.

For sequencing a given set of jobs, one needs to decide

– which jobs should complete before the common ideal
start time τ (denoted by job set A), and

– which job should be the first job that starts before or at τ
and that as well completes at or after τ (this job is called
the straddler job χ) if it exists;

– then, the remaining jobs (excluding the straddler job, if
it exists) all start at or after τ (job set B).

Once this decision is made, the corresponding job sequence
can be constructed in polynomial time by sorting set A and
set B, and linking them, if applicable, with the straddler jobχ

in between. Thus, the main computational effort to find an
optimal job sequence resides in choosing a suitable partition
into the two sets. Figure 1 visualizes an optimal job sequence
and the described parts of an example instance.

Fig. 2 The studied problemP models amoving assembly line planning
problem, in which a worker’s walking time to a material supply point
and back depends on the current position of the worker’s continuously
moving work piece. The supply point is passed by the work piece at a
certain point in time, τ , at which the incurred walking time is minimum.
Earlier or later, is increases linearly with asymmetric slopes, which
relate the back-and-forth walking velocities to the work piece’s velocity

Let us mention special cases of P:

• Case Pagreeable asserts �i a j ≤ � j ai ⇐⇒ �i b j ≤ � j bi

for any pair i, j of jobs, which we call agreeable ratios
of basic processing time and slopes.

• This property is also fulfilled by the special case of related
slopes, which scales common basic slopes 1 ≥ a ≥ 0,
b ≥ 0 by a job-specific rational scale factor 1 ≥ v j ≥ 0
to a j = av j and b j = bv j for each job j .

• Special cases of related slopes are monotonic slopes
where either a j = 0 for each job j , which yields a non-
decreasing p j , or b j = 0 for each job j , which yields a
nonincreasing p j , and

• common slopes a j = a, b j = b (case Pcommon).

Our practical motivation for the described scheduling
problem is to minimize costly walking time of workers at
a moving automobile assembly line. This is attained by
minimizing the makespan of each worker independently. A
worker needs to complete a set of assembly operations (jobs)
in any order at a his or her work piece, which is continuously
transported by a conveyor belt. Each assembly operation
consists of a constant assembly time and, before that, a time-
dependent walking time to gather material from a central
supply point at the line-side (see also Fig. 2).

The resulting assembly operation times can be adequately
modeled by the described time-dependent processing times
(Sedding 2020b). By permuting the operations, it is possi-
ble to minimize the total walking time, or equivalently, the
worker’s makespan.

2 Summary of results and organization

The results presented in this paper can be summarized as
follows:

• Identification of three polynomial cases: first, if tmin ≥ τ ;
second, if a certain job sequence starts each job before or
at τ ; third, if each basic processing time is zero.

123

Journal of Scheduling (2020) 23:751–768 753

• Proof that the studied problem is NP-hard already for the
special case Pcommon of common slopes. This is shown
by reduction from Even-Odd Partition. See Table 2 for
an overview.

• Introduction of a fully polynomial time approximation
scheme (FPTAS) for the case Pagreeable of agreeable
ratios of basic processing time and slopes. This approach
can be also be used in the common slope case and known
monotonic slope cases, see Table 3 for an overview.
Notably, the underlying dynamic program is not pseu-
dopolynomial, which is exceptional (Garey and Johnson
1979, p. 140). Because the objective value can be expo-
nential in input length and input values, please note that
the existence of an FPTAS neither implies the existence
of a pseudopolynomial algorithm, nor rules out NP-
hardness in the strong sense.

This paper is structured as follows. In Sect. 3, relevant lit-
erature is reviewed and the practicalmotivation of the study is
described. In Sect. 4, our notation for job sequences is given,
and properties of the makespan calculation are presented.
Polynomial cases are identified in Sect. 5. A symmetry prop-
erty in optimal job sequences is described in Sect. 6. In Sect.
7, it is shown that Pcommon is NP-hard. In Sect. 8, a dynamic
program is introduced for Pagreeable, which is used to con-
struct an FPTAS in Sect. 9.

3 Literature review

The studied non-monotonic penalty function (3) covers
monotonic special cases in the literature, because it allows
all-zero a j (or b j) slopes. A similar generalization occurred
within the scheduling literature on constant processing times,
which is summarized in the first subsection.We then continue
with a review of relevant time-dependent literature. Finally,
we describe the practical application that prompted the pre-
sented non-monotonic case.

3.1 Literature with constant processing times

From a historical point of view, a shift from (a) proportional
to (b) monotonic piecewise-linear, then to (c) non-monotonic
piecewise-linear measures similarly occurred before in the
classic scheduling theory in terms of weighted completion
costs, namely from the total weighted completion time crite-
rion to the total weighted tardiness criterion with a common
due date, then to the total weighted earliness and tardiness
criterion with a restrictive common due date.

(a)
∑

j w j C j A basic scheduling problem is to minimize
themonotonic totalweighted completion time

∑
j w j C j

with a given job-weight w j for each job j , achieved by

sorting the jobs by nonincreasing ratio w j/p j (Smith
1956).

(b)
∑

j w j Tj A harder problem is to minimize the piece-
wise-linearmonotonic totalweighted tardiness

∑
j w j Tj

with job-tardiness Tj = max{0, C j −d} for a given com-
mon due date d; it requires equal weights w j = w for
a polynomial-time algorithm (Lawler and Moore 1969).
Optimal job sequences can be divided into a set A of
jobs completing before d, a straddler job starting before
d and completing at or after d, and a set B of jobs start-
ing at or after d. The order of jobs in A is arbitrary;
set B is sorted according to Smith (1956). Therefore, an
algorithm mainly needs to decide on a straddler job and
partition the remaining jobs into sets A and B (Lawler
and Moore 1969). For job-specific weights, the latter
decision is NP-hard, as shown in Yuan (1992) by reduc-
tion from Partition. A pseudopolynomial-time dynamic
programming algorithm is devised in Lawler and Moore
(1969), a strongly polynomial FPTAS in Kacem (2010)
for a given straddler job, seeKianfar andMoslehi (2013).

(c)
∑

j w j (E j + Tj) A further complexity increase is
caused by the piecewise-linear nonmonotonic total
weighted earliness and tardiness criterion

∑
j w j (E j +

Tj) with job-earliness E j = max{d − C j , 0} and a
so-called restrictive common due date d <

∑
j p j . In

optimal job sequences, the jobs are arranged in oppos-
ing orders around d: nondecreasingly by w j/p j before
d and nonincreasingly byw j/p j after d. Again, it neces-
sitates to decide on the straddler job and job set A and B.
This problem is NP-hard already for common weights
w j = w, which is shown by reduction from Even-Odd-
Partition, andpermits a pseudopolynomial-timedynamic
programming algorithm (Hall et al. 1991; Hoogeveen
and van de Velde 1991). Kellerer and Strusevich (2010)
show that the problem admits a strongly polynomial
FPTAS by adopting an FPTAS for Symmetric Quadratic
Knapsack.

An overview of complexity results for these classic schedul-
ing problems is given in Table 1.

3.2 Literature on time-dependent scheduling

Time-dependent schedulingwith the objective ofminimizing
the makespan is a research stream that dates back to Shafran-
sky (1978); Melnikov and Shafransky (1979). The latter
study job-uniform monotonic penalty functions � = � j ;
hence,� is nondecreasing or nonincreasing. For this generic
model, they show that an optimal job sequence is found in
polynomial time by sorting the jobs with respect to � j .

Turning to job-specific penalty functions � j , an interest-
ing special case arises for all-zero basic processing times
� j = 0, which means that p j = � j . This case is consid-

123

754 Journal of Scheduling (2020) 23:751–768

Table 1 Complexity results on related classic objectives

Objective Common weights w j = w Job-specific weights w j

∑
j w j C j ◦ Polynomial (Smith 1956) ◦ Polynomial (Smith 1956)

∑
j w j Tj ◦ Polynomial (Lawler and Moore 1969) ◦ NP-hard (Yuan 1992)

◦ Strongly polynomial FPTAS (Kacem 2010)
∑

j w j
(
E j + Tj

) ◦ NP-hard (Hall et al. 1991; Hoogeveen and van de Velde 1991) ◦ Strongly polynomial FPTAS (Kellerer and Strusevich 2010)

ered in the following three studies. Mosheiov (1994) studies
the proportionally increasing penalty function � j (t) = b j t
for b j ≥ 0 and a positive global start time tmin > 0, and
shows that any job sequence yields the samemakespan and is
optimal. Kawase et al. (2018) analyze monotonic piecewise-
linear penalty functions equivalent to� j (t) = min{0, (b j −
1) · t + c j } for b j ≥ 0, and show that an optimal job
sequence is computed in polynomial time by sorting the jobs.
Kononov (1998) considers non-monotonic penalty functions
� j (t) = b j ·h(t) with a common convex or concave func-
tion h where, for any t, t ′ with t ′ ≥ t ≥ tmin and each job j ,
there holds h(tmin) > 0 and t ′ + b j h(t ′) ≥ t + b j h(t).
Note that the second condition on b j and h is equivalent
to restricting job j’s completion time to be nondecreasing
for any start time t ≥ tmin. Kononov (1998) shows that the
minimum makespan is attained by sequencing the jobs in
nondecreasing order with respect to b j (or nonincreasing for
concave h), see also Gawiejnowicz (2008,Theorem 6.43) for
a description.

With nonnegative basic processing times � j ≥ 0, finding a
job sequence with a minimum makespan is computationally
more involved. The categorization for the classic schedul-
ing models in Sect. 3.1 can be translated to (a) proportional
penalty functions � j , (b) monotonic piecewise-linear � j ,
and (c) non-monotonic piecewise-linear� j . This categoriza-
tion is elaborated below and visualized in Fig. 3. An overview
of the complexity results is given in Table 2, a runtime com-
parison of the FPTASs in Table 3.

(a) Proportional � j The proportional increasing penalty
function� j (t) = b j t with b j ≥ 0 is independently stud-
ied in Shafransky (1978), Wajs (1986), Gupta and Gupta
(1988), Browne and Yechiali (1990), and Gawiejnow-
icz and Pankowska (1995). They show that an optimal
sequence sorts the jobs nondecreasingly with respect to
� j/b j and so that all jobs with b j = 0 are last. Gaw-
iejnowicz (2008), Theorem 6.24 summarizes multiple
ways for proving this: by partial order relations (Gaw-
iejnowicz and Pankowska 1995), by a job interchange
argument (Wajs 1986; Gupta and Gupta 1988), and by
its formalized concept, the so-called priority-generating
function (Shafransky 1978); for the latter also see Tanaev
et al. (1984, 1994, chapter 3, section 1.2).

The symmetric casewith proportional decreasing penalty
functions � j (t) = −a j t with 0 ≤ a j < 1 is considered
first in Ho et al. (1993). Here, the jobs need to be nonin-
creasingly ordered by � j/a j while jobs with a j = 0 are
last (Ho et al. 1993; Gordon et al. 2008).

(b) Monotonic piecewise-linear � j Adding a point in time
until which the processing time is constant results in
the piecewise-linear, job-specific, nondecreasing penalty
function� j (t) = max{0, b j (t−τ)} for a given common
τ . Then, the decision version of the scheduling problem
is NP-hard, as shown in Kononov (1997) by reduction
from Subset Sum, and in Kubiak and van de Velde (1998)
by reduction from Partition. Kubiak and van de Velde
(1998) also present a pseudopolynomial-time algorithm.
FPTASs are described in Cai et al. (1998), Kovalyov and
Kubiak (1998).Woeginger (2000), Kovalyov andKubiak
(2012), and Halman (2019) build upon Kovalyov and
Kubiak (1998). Our independently devised FPTAS also
applies. Retrospectively, it is most similar to Cai et al.
(1998). All approaches use techniques for trimming-the-
state-space as Ibarra and Kim (1975) except for Halman
(2019) with K -approximation sets. All rely on the prob-
lem’s property of allowing for the same order of jobs
before and after τ : nondecreasingly by � j/b j . Moreover,
Kovalyov andKubiak (1998) require that a straddler jobχ

completes at an integer valued completion time Cχ in
order to repeat the calculation for a polynomial number
of possible Cχ .
A symmetric problem exhibits similar properties and is
introduced in Cheng et al. (2003) by the nonincreas-
ing penalty function � j (t) = max{−a j (t − τ), 0} for
0 < a j < 1 and � j > a j min{τ, ∑

k �= j �k}. Cheng et al.
(2003) prove NP-hardness by reduction from Partition,
and introduce a pseudopolynomial-time algorithm. Later,
Ji and Cheng (2007) devise an FPTAS for it by utilizing
methods from Kovalyov and Kubiak (1998) and by rely-
ing on the same order of the job sets before and after τ :
nonincreasingly with respect to � j/a j . Moreover, they
utilize the problem’s property that the value of a strad-
dler job’s completion time only linearly influences the
makespan because the processing times of the jobs that
start at or after τ are constant.

123

Journal of Scheduling (2020) 23:751–768 755

(a) (b) (c)

Fig. 3 Time-dependent scheduling models for processing times p j =
� j +� j (t)with an additive penalty function� j are mostly restricted to
monotonic piecewise-linear � j in the literature, like (a) � j (t) = b j t

or � j (t) = −a j t , (b) � j (t) = max{0, b j (t − τ)} or � j (t) =
max{−a j (t − τ), 0}. These models are unified in this paper with (c)
� j (t) = max{−a j (t − τ), b j (t − τ)}

Table 2 Complexity results on singlemachine time-dependent schedul-
ing with processing time p j (t) = � j + � j (t) for an additive penalty
function� j (t) = min{−a j (t −τ), b j (t −τ)} of job j’s start time t in

several settings of the real-valued slopes 0 ≤ a j ≤ 1, b j ≥ 0, assuming
tmin = 0

a j b j Complexity Complexity of selected special cases

0 b ◦ polynomial (Melnikov and Shafransky 1979)

a 0 ◦ polynomial (Melnikov and Shafransky 1979)

0 b j ◦ NP-hard (Kononov 1997; Kubiak and van de Velde 1998) • polynomial if τ ≤ 0 (Lemma 4; Shafransky 1978; Wajs 1986;
Gupta and Gupta 1988; Browne and Yechiali 1990;
Gawiejnowicz and Pankowska 1995; Tanaev et al. 1984, 1994)

• FPTAS (Theorem 2; Cai et al. 1998; Kovalyov and Kubiak 1998;
Woeginger 2000; Halman 2019)

a j 0 ◦ NP-hard (Cheng et al. 2003) • polynomial if a � j /a j ↘-sorted sequence where the smaller � j is
first for ties starts all jobs before or at τ (Lemma 5)• FPTAS (Corollary 10; Ji and Cheng 2007)

a b • NP-hard (Theorem 1) • polynomial if τ ≤ 0 (Lemma 4), or if τ = ∞ (Ho et al. 1993)

• polynomial if ordering the jobs nondecreasingly by � j starts each
job before or at τ (Lemma 5)

• FPTAS (Corollary 9)

a j b j • NP-hard (Corollary 7) • polynomial if τ ≤ 0 (Lemma 4), or if τ = ∞ (Ho et al. 1993)

• polynomial if a � j /a j ↘-sorted sequence with smaller � j first (in
the case of ties) starts all jobs before or at τ (Lemma 5)

• polynomial if � j = 0 (Lemma 6)

• FPTAS for agreeable ratios of � j and the slopes (Theorem 2)

• Marks results devised or confirmed in this work,
◦ Marks results from the literature

Table 3 Comparison of FPTASs’ worst-case runtime for Pagreeable with n jobs and error ε ∈ (0, 1] in different settings of slopes, where �max
denotes the maximum l j , and bmax denotes the maximum b j

a j b j FPTAS runtime in the agreeable ratios of basic processing time and slopes case Pagreeable

a j b j • O(
n5 · log(1 + bmax) · (log �max + n log (1 + bmax))/ε

2
)

Theorem 2

0 b j ◦ O(
n5 · log(1 + bmax) · (log �max + n log (1 + bmax))/ε

2
)

Cai et al. (1998) (runtime stated in Halman 2019)

◦ O(
n5 · log4 max{n, 1/ε, �max, 1 + bmax}/ε3

)
Kovalyov and Kubiak (1998, 2012)

◦ O(
n4 · log3 max{�max, 1 + bmax, τ } · log(n logmax{�max, 1 + bmax, τ }/ε)/ε2) Halman (2019)

• O(
n5 · log(1 + bmax) · (log �max + n log (1 + bmax))/ε

2
)

Theorem 2

a j b • O(
n4 · (log �max + n log (1 + bmax))/ε

)
Corollary 9

a j 0 ◦ O(
n3 · log3 max{n, 1/ε, �max}/ε2

)
Ji and Cheng (2007)

• O(
n3 · log(�maxn)/ε

)
Corollary 10

For a common ground, let � j and b j be natural numbers. For runtimes given in the literature, we rather state 1 + bmax instead of just bmax to avoid
adverse effects of zero log bmax if bmax = 1. As it is common, logk x = (log x)k

• Marks results devised in this work,
◦ Marks results from the literature

123

756 Journal of Scheduling (2020) 23:751–768

(c) Non-monotonic piecewise-linear � j The described
forms are extended by the non-monotonic piecewise-
linear penalty function� j (t) = max{−a j (t−τ), b j (t−
τ))} in P , which has, to the best of our knowledge, not
been studied up to now. The following studies lie closest.
Farahani and Hosseini (2013) study the special case of
such a penalty function with symmetric, common (all-
equal) slopes 0 < a < 1, a = a j = b j , while treating the
global start time tmin as a decision variablewith the objec-
tive of minimizing the cycle time Cmax − tmin. Then, an
optimal schedule exhibits the following properties: one
job χ starts exactly at τ , the set A of jobs that complete
before and at τ are sorted nonincreasingly by � j , and the
set {χ}∪B of jobs starting at or after τ are sorted non-
decreasingly by � j . An exact polynomial time algorithm
sets χ = argmin j� j and assigns the other jobs iteratively
to A and B. They describe a practical application of their
problem setting related to scheduling a vehicle for deliv-
ery of commodities between two rush hours in an urban
setting, assuming added travel time first decreases, then
rises back up later on.
A similar non-monotonic time-dependent effect is con-
sidered in Jaehn and Sedding (2016). However, themodel
measures a job’s middle time, instead of its start time for
determining the processing time of a job j . In particular,
it is stated by p j = � j +a ·|m−M |with slope 0 < a < 2,
ideal middle time M , and the job’s middle time m, which
is related to the job’s start time t by m = t + p j/2, and
specifies the point in time when exactly half of the job
has been processed. Solving m for p j and t yields the
processing time function

p j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

� j − a (t − M)

1 + a/2
, t < M − � j/2,

� j + a (t − M)

1 − a/2
, t ≥ M − � j/2.

(4)

This function is not expressible in terms of the � j

penalty function because (a) the start time-dependent
processing time function has a job-specific minimum at
M − � j/2 instead of one common minimum at some
common ideal start time τ , and (b) the basic processing
time � j is scaled by two different factors, depending on
the start either before or at and after M −� j/2. Although
this model seems rather unconventional, its convincing
advantage is that it allows to study a perfectly symmet-
ric job prolongation before and after M . For example,
consider arbitrary middle times m′ and m′′ such that
m′′ − M = M − m′. If job j is scheduled such that
m j = m′, then it starts at t ′ and completes at C ′. Corre-
spondingly, if m j = m′′, it starts at t ′′ and completes at
C ′′. Then, there is t ′′−M = M−C ′ andC ′′−M = M−t ′.
This symmetry around M allows for a polynomial reduc-

tion from Even-Odd Partition and prove the NP-hardness
of the considered problem.
A much more generic problem is studied in Kawase
et al. (2018) with the optimal composition ordering of
convex or concave piecewise-linear functions. An inter-
esting remark is that the minimization problem with
functions C j (t) can be transformed to the maximization
problem with C̃ j (t) = −C j (−t), and vice-versa. One
of the studied cases is the maximum composition order-
ing of the concave C̃ j (t) = min{a′

j t +a′′
j , b′

j t +b′′
j } for

a′
j > 0, b′

j > 0. Their result on this case is a NP-hardness
proof by reduction fromPartition. From this, we infer that
the convex minimization counterpart C j (t) = −C̃ j (−t)
is also NP-hard. We observe that a special case is prob-
lem P with parameters a′

j = 1 − a j (unless a j = 1),
a′′

j = � j + a jτ , b′
j = 1 + b j , and b′′

j = � j − b jτ .
Of course, as it is a special case, the hardness of P can,
however, not be inferred from the more generic problem
setting.
In addition, let us note that preliminary results of our
paper are presented in Sedding (2017, 2020a) on the
FPTAS, inSedding (2018a, b) on theNP-hardness, andon
both of them in Sedding (2020c) for the common slopes
case Pcommon.

A comprehensive treatise on the variety of time-dependent
scheduling models is provided in Gawiejnowicz (2008,
2020a). A recent review is given in Gawiejnowicz (2020b).
Further reviews are inAlidaee andWomer (1999), Błażewicz
et al. (2019), Cheng et al. (2003), Agnetis et al. (2014), and
Strusevich and Rustogi (2017).

3.3 Practical application in automobile production
planning

The studied time-dependent scheduling problem P arises in
production planning of moving assembly lines. Amajor Ger-
man car manufacturer spends about 10–15% of working time
at the moving final assembly line with fetching supplies from
the line side (Scholl et al. 2013). This time expense incurs a
high cost, and any reduction offers a high return. This walk-
ing time mainly occurs before the start of each assembly
operation (job). There, the assembly worker needs to leave
the continuously moving work piece, then walk along the
assembly line to a nonmoving material supply point, and
return to the same work piece (which continued to move dur-
ing the worker’s absence). See Figure 2 for a visualization of
this scenario.

A worker’s walking time is minimized by essentially two
approaches. One is to reposition the supplies (Klampfl et al.
2006; Sedding 2020b); another is to resequence the worker’s
assembly operations (Sedding and Jaehn 2014; Jaehn and

123

Journal of Scheduling (2020) 23:751–768 757

Sedding 2016). We focus on the operation (re)sequencing
approach, which avoids a physical reconfiguration of the
assembly line; thus offers much faster reaction times on
short term changes. Theworker’s operations are usually inde-
pendent from each other. Hence, we can assume that any
job sequence is feasible. The high number of possible job
sequences raises the need for an algorithmic decision sup-
port (Sedding 2020c).

A special case is portrayed in Jaehn and Sedding (2016),
where walking time occurs in the middle of an operation,
which then exhibits a perfect symmetric processing time
function (4). We need to deviate from this symmetry to con-
sider a walking time that occurs at the start of each operation
as in Klampfl et al. (2006) and Sedding (2020b).

We model the time-dependent walking time like in Sed-
ding (2020b). Then, the walking time is proportional to the
distance between the static supply point and themovingwork
piece. Hence, the walking time depends on the time that the
worker starts to walk: the walking time is minimum when
the working point just passes by the supply point. This is
the ideal walking start time, which corresponds to τ in � j .
Earlier or later, the walking time increases linearly.

Sedding (2020b) elaborates how conveyor and worker
velocities are translated to asymmetric slopes 0 < a < 1
and b > 0. The slopes’ domains originate from an assembly
line velocity that is generally lower than the worker veloc-
ity. Their asymmetry arises from the continuous conveyor
movement, which is divided in two cases. While it moves
the work piece towards the supply point, the walking time
shortens. While it moves the work piece away, the walking
time increases.

Sometimes, properties of the carried material such as its
weight can influence the walking velocity for some opera-
tions (Klampfl et al. 2006). In this case, job-specific slopes
can be set, which typically yields a Pagreeable instance.

4 Preliminaries

In this section, our notation is introduced, and the makespan
calculation is expressed in closed formulae.

4.1 Notation of sequences

We specify our notation of (job) sequences, and denote two
sequence sort criteria.

Given a set J of n jobs, we denote by sequence S =
(S(1), . . . , S(n)) a permutation of the jobs in J , where S(i)
specifies the job that occupies position i ∈ {1, . . . , n}.
We denote by S−1(j) the position of job j in sequence S,
hence S(S−1(j)) = j . A sequence can be split, for exam-
ple, we write (1, 2, 3, . . . , n) = S1S2 with S1 = (1, 2),
S2 = (3, . . . , n) (then, S2(1) = 3).

The start time t and completion time C of a sequence cor-
responds to the start time of the first job and the completion
time of the last job in the sequence. Then, the makespan of a
sequence is C − t .

We say a sequence S of a set of jobs J is

– ‘� j/a j↘-sorted’ if � j ak ≥ �ka j , or
– ‘� j/b j↗-sorted’ if � j bk ≤ �kb j

holds for any two jobs j, k ∈ J at positions S−1(j) < S−1(k),
respectively.

Remark 1 For the set of all jobs in a Pagreeable instance,
there exists a � j/a j↘-sorted sequence such that its reversed
sequence is � j/b j↗-sorted.

4.2 Makespan calculation

For a sequence S of a (sub)set J of n jobs of a P instance,
the completion time is given in a recursive form by

C = CS(n)

(
CS(n−1)

(· · · CS(2)(CS(1)(t)) · · ·))

for the sequence’s start time t . This recursive equation can
be difficult to handle. However, it is possible to transform the
calculation to a closed form, as we show in this subsection.
Then, we state the derivatives of the sequence’s completion
time with respect to its start time if the sequence either starts
at or after the ideal start time τ , or completes before or at τ .

First, we substitute p j and f j in C j (see (2), (1), (3)) to

C j (t) =max{(1 − a) t j + � j + a jτ,

(1 + b) t j + � j − b jτ }. (5)

Then, we define the functions

αS(t) = t ·
∏

j∈J

(
1 − a j

) +
∑

j∈J

((
� j + a j τ

) ·
∏

k∈J ,

S−1(k)>S−1(j)

(1 − ak)
)
, (6)

βS(t) = t ·
∏

j∈J

(
1 + b j

) +
∑

j∈J

((
� j − b j τ

) ·
∏

k∈J ,

S−1(k)>S−1(j)

(1 + bk)
)
. (7)

For common a j = a or b j = b, respectively, they collapse
to

αS(t) = t (1 − a)n +
∑

i=1,...,n

(
�S(i) + aτ

)
(1 − a)n−i , (8)

βS(t) = t (1 + b)n +
∑

i=1,...,n

(
�S(i) − bτ

)
(1 + b)n−i (9)

with n jobs in sequence S.

123

758 Journal of Scheduling (2020) 23:751–768

Weuse the functionsαS andβS to calculate the completion
time of a given sequence S with a closed formula, where we
distinguish three cases.

Lemma 1 If a sequence S with n jobs starts at t < τ and
there is αS(t) ≤ τ + �S(n), then it completes at αS(t).

Proof LetC be the completion time of S and its last job S(n).
We renumber the jobs such that S = (1, . . . , n). Then, let
us show αS(t1) = C by induction: We begin with n = 1,
starting job 1 at t1 = t ≤ τ . By (5), job 1 completes at
C1(t1) = (1 − a1) t1 + �1 + a1τ = α(1)(t1) as stated. For
n > 1, job j completes, if starting at t j = α(1,..., j−1)(t1) ≤
τ , at C j (t j) = (

1 − a j
)

t j + � j + a jτ , and by induction
C j (t j) = � j +a jτ + (1−a j) ·α(1,..., j−1)(t1) = α(1,..., j)(t1).

��

Lemma 2 If a sequence S starts at t ≥ τ , then it completes
at βS(t).

Proof Shown similar to Lemma 1 by induction from t1 =
t ≥ τ to βS(t1). ��

Corollary 1 If a sequence S with n jobs starts at t < τ and
there is αS(t) > τ + �S(n), then it completes at βS2(αS1(t))
while the sequence is split into S = S1S2 such that τ ≤
αS1(t) ≤ τ + �χ for the last job χ in S1.

The effect of changing a sequence’s start time t can be
observed by considering the derivatives of αS and βS .

Corollary 2 Let a sequence S of a set of jobs J start at t .

(a) If t ≤ τ , then 1 ≥ d
dt αS(t) = ∏

j∈J

(
1 − a j

) ≥ 0.

(b) If t ≥ τ , then d
dt βS(t) = ∏

j∈J

(
1 + b j

) ≥ 1.

Thus, increasing a sequence’s start time t does not decrease
the sequence’s completion time C . In other words, C does
not increase if t is decreased.

Corollary 3 Inserting idle time in front of any job does not
decrease a sequence’s makespan, for any fixed start time.

Hence, it is not necessary to consider idle times in P .

5 Polynomial cases ofP
In this section, we analyze properties of job (sub)sets of P
instances, which lead to three polynomial cases of P: if the
ideal start time τ is early (τ ≤ tmin), if the ideal start time is
late (τ ≥ αS(tmin)−�S(n) given a � j/a j↘-sorted sequence S
with all n jobs), or if all basic processing times are zero.

5.1 Early ideal start time

If the start time t of a sequence is not less than the ideal start
time τ (as in Lemma 2) and τ = 0, then all jobs start at or
after τ . This corresponds to the known monotonic schedul-
ing problem with proportional penalty functions � j (t) =
b j t . Here, � j/b j↗-sorted sequences yield the minimum
makespan, which is observed in Shafransky (1978), Tanaev
et al. (1984, 1994, chapter 3, section 1.2),Wajs (1986), Gupta
and Gupta (1988), Browne and Yechiali (1990), and Gaw-
iejnowicz and Pankowska (1995).

Please note that the special case with all-zero basic pro-
cessing times is solved for any sequence S of a set of jobs J :
its completion time βS(t) = t · ∏

j∈J (1 + b j) is indepen-
dent of the order of jobs, which corresponds to the problem
in Mosheiov (1994).

An instancewith ideal start time τ �= 0 can be transformed
to an instance with a zero ideal start time by performing a
time-shift of −τ . Then, the result for τ = 0 applies as well.

Proposition 1 A sequence S that is started at or after τ

provides the minimum makespan if and only if S is � j/b j↗-
sorted.

Corollary 4 A P instance of n jobs with tmin ≥ τ is solved in
O(n log n) time by any � j/b j↗-sorted sequence.

5.2 Late ideal start time

Similarly, if t ≤ τ = 0, then a sequence might start each job
before or at τ (like in Lemma 1). Such a case corresponds
to the penalty function � j (t) = −a j t , in which a � j/a j↘-
sorted sequence provides a minimum makespan (Ho et al.
1993). It follows that in P , if a � j/a j↘-sorted sequence
starts each job (or equivalently, the last job) before or at τ ,
then it provides the minimum makespan.

In the special case of all-zero basic processing times and
t ≤ τ = 0, any sequence S of a set of jobs J attains the same
completion time αS(t) = t · ∏

j∈J (1 − a j) ≤ 0.
Again, it is possible to convert an instance with τ �= 0 by

a time-shift of −τ to an instance with a zero ideal start time.

Proposition 2 If a sequence S starts its last job before or at
τ , then S provides the minimum makespan if and only if S is
� j/a j↘-sorted.

Proposition 2 is only applicable to sequences that start
each job at or before τ . But this may apply only for some
of several existing � j/a j↘-sorted sequences. However, one
can strengthen the sorting criterion such that for any two
jobs j, k in sequence S at positions S−1(j) < S−1(k), there
is

� j ak > �ka j ∨ (
� j ak = �ka j ∧ � j ≤ �k

)
. (10)

123

Journal of Scheduling (2020) 23:751–768 759

If there are multiple possible last jobs, this criterion assigns
the one with the longest basic processing time to the last
position. This minimizes the start time at the last position
without changing the sequence’s completion time.

Corollary 5 For a P instance of n jobs with tmin ≤ τ , a
sequence S respecting (10) is constructed in O(n log n) time.
If αS(tmin) ≤ τ + �S(n), then S is optimal.

5.3 Zero basic processing times

The combination of the aforementioned special cases of all-
zero basic processing times � j = 0 is valid for any ideal start
time τ and any start time tmin. This generalizes the result on
instances with tmin > τ = 0 in Mosheiov (1994).

Lemma 3 If � j = 0 for each job j in a set J, then any
sequence of J provides the minimum makespan for any start
time t, and completes at

τ + max

⎧
⎨

⎩
(t − τ) ·

∏

j∈J

(1 − a j), (t − τ) ·
∏

j∈J

(1 + b j)

⎫
⎬

⎭
.

Corollary 6 AP instance with � j = 0 for each job j is solved
by an arbitrary sequence; it is returned in O(n) time.

6 Symmetry in optimal sequences forP
Even if none of the described polynomial cases ofP applies,
they allow to observe a central property of optimal sequences:
the symmetric sorting of the jobs before and after τ .

Proposition 3 If a P sequence provides the minimum make
span, then

(a) all jobs that complete before or at τ are � j/a j↘-sorted,
(b) all jobs that start at or after τ are � j/b j↗-sorted.

Proof Given a sequence S, split S into S1S0S2 such that S1
completes before or at τ , and S2 starts at or after τ . Assume S1
is not � j/a j↘-sorted. Then, the completion time of S1 is not
minimal: it decreases by re-ordering S1 as a � j/a j↘-sorted
sequence. Then, all jobs still complete (and start) before or
at τ , and by Corollary 2, the ensuing sequence S0S2 starts
earlier. Hence, S does not provide aminimummakespan if S1
is not � j/a j↘-sorted (Proposition 2). An analogous obser-
vation holds for S2: it has to be � j/b j↗-sorted (Proposition
1). ��
Remark 2 (Implications for Pagreeable) According to
Remark 1, aPagreeable instance permits a job sequence that is
� j/a j↘-sorted and, in reversed order, � j/b j↗-sorted. Let
(1, . . . , n) denote such a sequence by renumbering the given

jobs accordingly. Now, consider an optimum sequence S and
two jobs j, k with 1 ≤ j < k ≤ n. If both jobs complete
before or at τ , then their positions are S−1(j) < S−1(k).
If both start at or after τ , then S−1(j) > S−1(k).

Remark 3 (On the choice of the straddler job) Please note that
Proposition 3 excludes a statement about a potential straddler
job. Indeed in optimal solutions, the straddler job (if it exists)
is neither necessarily the job with the shortest basic process-
ing time � j , nor with highest a j and b j value; see Figure 1 for
an example of this. In the polynomial cases above however,
the straddler job (if it exists) can be chosen according to the
respective sorting criterion.

Remark 4 (On the existence of the straddler job) A straddler
job exists in all optimal sequences if andonly if tmin ≤ τ and a
sequence sorted according to (10) that is started at tmin yields
Cmax ≥ τ . If a straddler job exists in an optimal sequence,
then it also exists in any other sequence of the same job set
starting at t for tmin ≤ t ≤ τ because its completion time is
not less than the minimum completion time.

7 Computational complexity ofP ,Pagreeable,Pcommon

In this section, a reduction from the NP-complete Even-Odd
Partition problem shows that already the common slopes
case Pcommon is NP-hard. Thus, the more general problems
P , Pagreeable are also NP-hard. Let us outline the proof, but
beforehand, state the NP-complete Even-Odd Partition prob-
lem.

Definition 1 (Even-Odd Partition (Garey et al. 1988)) Given
a set of n = 2h natural numbers X = {x1, . . . , xn} where
x j−1 < x j for j = 2, . . . , n, does there exist a partition of
X into subsets X1 and X2 such that

∑
x∈X1

x = ∑
x∈X2

x
and such that for each i = 1, . . . , h, set X1 (and hence X2)
contains exactly one of {x2i−1, x2i }?

NP-hardness of Pcommon is shown by proving the NP-
hardness of its decision version, which asks, for a given
rational-valued thresholdΦ, if there exists a sequence S of the
given jobs that is started at tmin and yields makespan φ ≤ Φ.

The major steps of the proof are outlined as follows. The
first trick is to choose slopes a and b such that assignment
‘costs’ are the same for the same ordinal position away from
the ideal start time. Hence, a job’s impact on the makespan
no longer depends on its deviation from the ideal start time.
Furthermore, the impact is the same on either side of τ within
each Even-Odd pair. Then, the assignment decision of jobs to
a side represents the partitioning problem. The second major
step is to use a polynomial number of filler jobs that take up
the time between the early jobs (if they complete too early)
and τ , such that a No-instance is correctly recognized.

123

760 Journal of Scheduling (2020) 23:751–768

Theorem 1 Pcommon is NP-hard.

Proof Given an arbitrary instance of Even-Odd Partition, let
us first define a corresponding instance of the decision ver-
sion of Pcommon. Then, we show it has a solution if and only
if there exists a solution for the Even-Odd Partition instance.

Let q = 1
2

∑
i∈X xi . For the corresponding instance, we

give the threshold Φ = 4q, the common ideal start time τ =
0, the global start time tmin = −q, and the jobs {1, . . . , 2n +
1} , with �n+ j = 0 for j = 1, . . . , n, with �2n+1 = 2q,
and with �2k−i = x2k−i (1 + b)k−h−1 for k = 1, . . . , h and
i = 0, 1. Then, � j−1 < � j for j = 2, . . . , n, and �n <

�2n+1. We may choose an arbitrary common slope a with
0 < a < 1, and set b = (1 − a)−1 − 1. Then, b > 0 and
(1 + b) = (1 − a)−1. It is feasible to conduct the reduction
for any such slope values.However,we choose to simplify the
presentation in the following by fixing the slopes to a = 1/2
and b = 1 such that (1 − a) = 1/2 and (1 + b) = 2.

Assume that a given corresponding instance possesses a
sequence S with makespan φ ≤ Φ. Then, S either already
has a certain format, or it can be aligned to this format in
polynomial timewithout increasing themakespan as follows.

First, we assume that job 2n + 1 is the last job in S. Else,
let t2n+1 denote this job’s start time. If t2n+1 ≥ 0, by sorting
the jobs in S starting after 0 according to Proposition 1 in
polynomial time, job 2n + 1 can take the last position with-
out increasing the sequence’s completion time. Otherwise if
job2n+1 starts at t2n+1 < 0, then it completes after 0 because
�2n+1 > τ . In this case, repeatedly swap it with its successor
job j and sort all other jobs starting before 0 according to
Proposition 2. This does not increase the sequence’s com-
pletion time either, because � j < �2n+1 and, with (5),

C j (C2n+1(t2n+1)) = (t2n+1/2 + �2n+1) ·2 + � j

>
(
t2n+1/2 + � j

) ·2 + �2n+1

= C2n+1(C j (t2n+1)).

Second, the jobs that complete before or at 0 can be
ordered according to Proposition 2, while the jobs with zero
basic processing time � j = 0 are the last that complete before
or at 0, in any order (Lemma 3). Analogously, let the jobs
starting at or after 0 adhere to Proposition 1, while the jobs
with � j = 0 are the first, in any order (again according to
Lemma 3). Then, Proposition 3 holds.

Now, sequence S can be narrowed down to attain either
of the following two forms:

(i) Either, the sequence can be split into S = S1S0S2 such
that partial sequence S1 contains the jobs completing
before or at 0, while S0 contains all the jobs that start
and complete at 0, and S2 contains the jobs starting at or
after 0.

(ii) Otherwise, it can be split into S = S1S01Sχ S02S2 such
that S01 and S02 together contain all the jobs with � j = 0,
while sequence Sχ= (χ) consists of the straddler job χ

that starts strictly before 0 and completes strictly after 0,
partial sequence S1 contains the jobs completing before
or at 0, and S2 the remaining jobs.

While form (i) is the desired form, let us rule out form (ii).
Consider sequences S01 and S02. They contain all n jobs

with zerobasic processing time� j = 0.Letv denote the num-
ber of jobs in S02. Then, S01 contains n−v jobs. Sequence S01
starts at some time t < 0. According to (8), it completes at
t/2n−v , which equals tχ , the start time of the straddler job.
Then, the straddler job χ completes at Cχ = tχ/2 + �χ .
Sequence S02 starts at Cχ , hence it completes according to
(9) atC = Cχ ·2v . Together, the completion time of S01Sχ S02
starting at t is

C =
(

t/2n−v+1+�χ

)
·2v =

(
t ·2v−n−1+�χ

)
·2v.

Its first and second derivatives are

d

dv
C =

(
2t ·2v−n−1+�χ

)
·2v·ln 2,

d2

dv2
C =

(
4t ·2v−n−1+�χ

)
·2v·ln2 2.

The completion timeC has an extremumat a vwith d
dv C = 0.

As t < 0, the second derivative at the same v is d2

dv2
C < 0.

Therefore, this v value maximizes C . It follows that C is
minimized either for v = 0 or for v = n with 0 ≤ v ≤ n.
Therefore, the jobs with zero basic processing time can be
moved altogether to either S01 or S02 without increasing C .

Assume that the zero basic processing time jobs {n +
1, . . . , 2n} all start at or after 0. Hence, they are either in
sequence S0 for case (i), or they are in sequence S02 while
S01 is empty for case (ii) in the following elaboration; the
opposite case where they are in S01 while S02 is empty is
performed analogously. With this assumption, iff S adheres
to form (i), sequence S1 completes at time 0, denoted by Ĉ .
Otherwise for form (ii), the straddler job χ completes at a
time strictly after 0, denoted by Ĉ as well. Thus, Ĉ ≥ 0
in sequence S. Let t̂ specify the start time of S2. Hence,
sequence S0 in case (i), or S02 in case (ii), starts at Ĉ and
completes at t̂ = Ĉ ·2n .

Define h1 as the number of jobs in S1, and define h2 =
n − h1. Given Ĉ ≥ 0, and the inverse of αS in (8), which is
α−1

S (C̃) = C̃ (1 − a)−n − ∑
j∈J �S(j) (1 − a)− j , then there

is

tmin= α−1
S1

(Ĉ) = Ĉ ·2h1 −
∑

k=1,...,h1

�S1(k)·2k . (11)

123

Journal of Scheduling (2020) 23:751–768 761

Sequence S2 starts at t̂ = Ĉ ·2n . It consists of h2 + 1 jobs.
With the closed form (9), it completes at Cmax = βS2(t̂).
Then,

Cmax = Ĉ ·2n+h2+1 +
∑

k=1,...,h2+1

�S2(k)·2h2+1−k

= Ĉ ·2n+h2+1 + �2n+1 +
∑

k=1,...,h2

�S2(h2+1−k)·2k . (12)

Define

g1(k) =
{

�S1(k), 1 ≤ k ≤ h1,

0, else,

g2(k) =
{

�S2(h2+1−k), 1 ≤ k ≤ h2,

0, else,

ḡ =
∑

k=1,...,n

(g1(k) + g2(k)) ·2k,

d = 2n+h2+1 − 2h1 .

Because h1 ≤ n and h2 ≥ 0, we have d > 0. Then,

Φ ≥ Cmax − tmin

⇐⇒ 4q ≥ Ĉd + �2n+1 +
∑

k=1,...,h1

�S1(k)·2k

+
∑

k=1,...,h2

�S2(h2+1−k)·2k

⇐⇒ 2q ≥ Ĉd +
∑

k=1,...,n

(g1(k) + g2(k)) ·2k = Ĉd + ḡ.

Sequence S satisfies the inequality since itsmakespanφ =
Cmax − tmin ≤ Φ. Let us show that the minimum of ḡ is 2q,
which means that Ĉ = 0 in the inequality.

For any i, j ∈ {1, 2} such that i �= j , if gi (k) = 0 for some
k while g j (k + 1) > 0, then sequence S does not provide a
minimum for ḡ: it decreases by resequencing the jobs such
that gi (k) > 0 and g j (k + 1) = 0 because 2k < 2k+1.

By this argument and as h1 + h2 = 2h, it follows that
h1 = h2 = h.

Moreover, a minimum ḡ has gi (k − 1) ≥ g j (k) for k =
2, . . . , h and any i, j = 1, 2, because 2k−1 < 2k . This is the
case for an optimal S as in Proposition 3.

Therefore, aminimum ḡ requires {S1(h+1−k), S2(k)} =
{2k − 1, 2k} (in any order) for k = 1, . . . , h. Then,

ḡ =
∑

k=1,...,h

(
�S1(h+1−k) + �S2(k)

) ·2h+1−k

=
∑

k=1,...,h

(�2k−1 + �2k) ·2h+1−k

=
∑

k=1,...,h

(
x2k−1·2k−h−1 + x2k ·2k−h−1

)
·2h+1−k

=
∑

k=1,...,h

x2k−1 + x2k = 2q.

By the arguments above, we have ḡ = 2q, h1 = h2 = h,
and it follows that Cmax − tmin = Φ and Ĉ = 0. Sequence S
thus adheres to form (i).

With tmin = −q and Ĉ = 0, we transform (11) by using
{S1(h + 1 − k), S2(k)} = {2k − 1, 2k} for k = 1, . . . , h to

q =
∑

k=1,...,h

�S1(k)·2k

=
∑

k=1,...,h

�S1(h+1−k)·2h+1−k

=
∑

k=1,...,h

(
xS1(h+1−k)·2k−h−1

)
·2h+1−k

=
∑

k=1,...,h

xS1(k).

Applying similar steps for (12) with Cmax = 3q, we get
q = ∑

k=1,...,h xS2(k). It follows the equality

∑

k=1,...,h

xS2(k) =
∑

k=1,...,h

xS1(k).

Concluding, sets X1 = {xS1(k) | k = 1, . . . , h} and X2 =
X \ X1 are a solution for the Even-Odd Partition instance.

Therefore, a solution to the Even-Odd Partition instance
allows us to solve the corresponding Pcommon decision
instance and vice versa. As the reduction is polynomial, it
follows that Pcommon is NP-hard. ��

Problem Pcommon is a special case of Pagreeable, which in
turn is a special case of P .

Corollary 7 P and Pagreeable are both NP-hard.

The latter hardness result can also be inferred from themono-
tonic special cases in Pagreeable (where either a j = 0 or
b j = 0, and the nonzero slopes are job-specific), which are
NP-hard following the results in Kononov (1997), Kubiak
and van de Velde (1998), and Cheng et al. (2003).

123

762 Journal of Scheduling (2020) 23:751–768

8 Dynamic programming algorithm for
Pagreeable

In this section, we describe a dynamic programming algo-
rithm for Pagreeable, and analyze its runtime. This algorithm
is employed later (in Sect. 9) for constructing a fully poly-
nomial time approximation scheme.

We explicitly exclude instances that already correspond to
a polynomial case in Corollary 4 or Corollary 5 in the follow-
ing consideration. Hence, we can assume that the straddler
job exists (see Remark 4).

Denote by J the set of all given jobs. Let n = |J |−1where
|J | is the number of jobs in J . Then, the following algorithm
runs repeatedly, once for each possible straddler job χ ∈ J .
In each run, renumber the jobs to {1, . . . , n, n + 1} such that
χ = n + 1 and such that � j ak ≥ �ka j and � j bk ≥ �kb j

for 1 ≤ j < k ≤ n. Such a numbering exists (Remark 1),
and implies that sequence (1, . . . , n) is � j/a j↘-sorted, and
(n, . . . , 1) is � j/b j↗-sorted. Please remember the according
symmetry around τ in an optimal sequence (Remark 2).

The dynamic programming algorithm solving Pagreeable

for a straddler job χ = n + 1 consists of n stages. Stage j =
1, . . . , n is represented by a set Vj of partial solutions. A
partial solution can be imagined as a pair (S1, S2) of two
partial sequences that respect the following invariant: S1 and
S2 represent a partition of jobs {1, . . . , j} into sets A, B while

– sequence S1 of job set A is � j/a j↘-sorted, to start at tmin

and guaranteed to complete before τ , and
– sequence S2 of job set B is � j/b j↗-sorted, to start at τ .

In the j’th stage, job j is inserted into all partial solu-
tions Vj−1 of the preceding stage j − 1. We consider two
possible ways of inserting job j to the sequences, which
respects the above invariant. First, inserting j as the last job
in sequence S1 unless this yields a completion time after τ .
This has no effect on the start times of the other jobs in S1.
Second, inserting job j as the first job in S2. Then, job j starts
exactly at τ , which postpones all other jobs in S2 by job j’s
processing time p j (τ) = � j .

The dynamic programdoes, to savememory, not explicitly
store the partial sequences S1 and S2. Instead, a partial solu-
tion is represented by a three-dimensional vector [x, y, z] of
nonnegative rational numbers, described as follows:

– The first component, x , denotes sequence S1’s comple-
tion time, hence, x = αS1(tmin), see Lemma 1.

– The y component describes the proportional increase of
sequence S2’s makespan if increasing its start time t≥ τ ,
hence, y = d

dt βS2(t) = d
dt βS2(τ), see Corollary 2(b).

– Lastly, z represents sequence S2’s makespan if starting it
at τ , hence, z = βS2(τ) − τ , see Lemma 2.

Fig. 4 The dynamic programming algorithm for Pagreeable with a cer-
tain straddler job χ stores a vector [x, y, z] to represent a state, where x
denotes the completion time of sequence S1 starting at tmin, z denotes the
makespan of sequence S2 starting at τ , and y denotes the derivative value
of z on changing the start time of S2. In each iteration j = 1, . . . , n, at
most two new vectors are generated from each state [x, y, z]: (a) vec-
tor [C j (x), y, z] that appends job j to x as long as C j (x)<τ , and (b) a
vector [x, (1 + b j) y, z + y� j] that prepends job j to S2 and modifies
y accordingly. After the last iteration, the straddler job χ is appended to
S1, after which S2 is then started, increasing its makespan accordingly

After stage n, the straddler job χ is appended to sequence S1,
after which S2 continues. Figure 4 displays the partial
solution of such an intermediate state, and shows the two suc-
cessor states that emerge from adding the next job to either
sequence S1 or sequence S2.

Algorithm 1 (Dynamic Programming for Pagreeable with
straddler job χ)
Initialize state set

V0 = {[tmin, 1, 0]}. (13a)

For job j = 1, . . . , n, generate state set

Vj = {[C j (x), y, z] ∣∣ [x, y, z] ∈ Vj−1, C j (x)<τ
}

(13b)

∪ {[
x,

(
1 + b j

)
y, z + y � j

] ∣∣ [x, y, z] ∈ Vj−1
}
.

(13c)

Return

Cχ
max = min

{
τ + y max

{
Cχ (x) − τ, 0

} + z
∣∣ [x, y, z] ∈ Vn

}
.

(13d)

The resulting sequence S = S1S2 is reconstructed inO(n)

time by recording for stage j = 1, . . . , n and each state in Vj

fromwhich state in Vj−1 it originates. With this information,
one can determine a backwards path from the final state in
Vn to the initial state in V0. Then, the sequence is built by
following the path from j = 1 to n. Begin with empty partial
sequences S1 and S2. If the path’s state in Vk was generated
in (13b), append job k to S1. If instead, it was generated in
(13c), then prepend job k to S2. In (13d), χ is appended to S1,
and S2 is started at max{Cχ (x), τ }. If the state was invalid

123

Journal of Scheduling (2020) 23:751–768 763

in the sense that job χ completes at Cχ (x) < τ , this inserts
idle time before S2 such that it starts at τ ; then the result
is dominated by a solution from running the algorithm for
another straddler job.

Proposition 4 For a Pagreeable instance, repeatedly running
Algorithm 1 for each possible straddler job χ ∈ J returns
the minimum makespan φ∗.

Proof Given an instance of Pagreeable, the algorithm is run as
follows for each possible χ .

Consider stage j = 1, . . . , n. In Vj , there is at least one
vector for each possible subset of jobs A ⊆ {1, . . . , j}where
each job k ∈ A completes before τ , and B = {1, . . . , j} \
A. Each vector [x, y, z] ∈ Vj stems from a source vector
[x ′, y′, z′]. Two cases are distinguished:

– If the vector is generated in (13b), job j is in set A. The
value x ′ describes the start time of job j , completing at
x . If x ′ = tmin, job j is the first job in set A and it starts
at the global start time tmin. As � j−1a j ≥ � j a j−1, the
makespan x of the jobs in set A is minimum, see Propo-
sition 2. The condition C j (x ′)<τ ensures that j does not
turn into the straddler job. As the set B is unchanged,
y = y′ and z = z′ remain the same.

– Else, if the vector is generated in (13c), job j is instead
in set B. For this, j is (for now) started at τ . Then, j
completes at C j (τ). If z′ = 0, job j is the first job in
set B. Then, z = C j (τ) − τ= � j . If z′ > 0, job j is
prepended to the jobs B ′ = B \ { j}. Then, they start
later, by C j (τ) − τ= � j . As of Corollary 2(b), their
completion time increases by y· ∏ j∈B′

(
1 + b j

)
. Each

job that is inserted in set B multiplies the previous y
by

(
1 + b j

)
. Therefore, y′ = ∏

j∈B′
(
1 + b j

)
. Then, z

expresses the sum of processing times of all jobs in set
B when started at τ . Moreover, the jobs are sequenced
as SB = (j, . . . ,min B). Thus, z = βSB (τ) − τ . As
� j ≤ � j−1, this makespan is minimum for the jobs in
set B if started at or after τ .

In the last step, the straddler job χ is appended to the early
jobs in each source vector [x ′, y′, z′].

For this, χ starts at time x ′, and completes at x = Cχ (x ′).
To return a correct Cχ

max, two cases are treated in (13d):

Case x ≥ τ : Then, the jobs in set B start at x . In (13d),
their completion time τ + z′ is correctly increased by
(x − τ) · y′, according to Corollary 2(b), with time dif-
ference x − τ and slope y′ = ∏

j∈B

(
1 + b j

)
. Therefore,

the return value correctly calculates Cχ
max corresponding

to [x ′, y′, z′].
Case x < τ : In this case, idle time is inserted from x to τ .

Then, the first job in set B, k = max B, is scheduled at

the common ideal start time: tk = τ . The resulting Cχ
max

in (13d) is dominated by Ck
max for k as the straddler job.

It is assumed that an optimal sequence has a straddler job, else
the instance corresponds to a polynomial case in Sect. 5 for
which the algorithm stops upfront. Therefore, the repeated
execution of the algorithm to obtain Cχ

max for each χ ∈ J
yields φ∗ = minχ∈J Cχ

max. ��
The total number of states in Algorithm 1 isO(2n), which

corresponds to the number of branchings.

Corollary 8 A Pagreeable instance with n jobs is solved by a n
times repeated call of Algorithm 1 in O(n · 2n) time total.

The runtime still is non-polynomial (i.e., not pseudopoly-
nomial) if measured in terms of input length and values, or
similarly, in terms of unary encoded input length.

Proposition 5 Algorithm 1 is not pseudopolynomial.

Proof The fundamental theorem of arithmetic states that any
natural number greater than 1 can be expressed by a unique
product of a nonempty multiset of prime numbers up to the
order of the factors (Hardy and Wright 2008, chapter 1).
Conversely, the product of any nonempty multiset of prime
numbers is unique. Thus, all the 2n distinct subsets of the set
of the first n primes yield 2n distinct products.

Let Pi for i ≥ 1 denote the i’th prime number. Create a
Pagreeable instance with τ = 0, some straddler job, and an
arbitrary number of jobs {1, . . . ,n} where � j = 1, a j = 0,
and b j = Pj −1 for j = 1, . . . , n. Then, Algorithm 1 creates
vectors where the y component corresponds to a product of a
subset of the first n prime numbers. Hence, at least 2n distinct
values (and states) are created.

The sum of the first n primes is polynomial in n (see,
e.g., Axler 2019). Respectively, a unary encoded input of the
stated instance has a length that is polynomial in n, but Algo-
rithm 1 remains exponential in unary encoded input length.
Thus, Algorithm 1 is not pseudopolynomial. ��
Since Algorithm 1 is not pseudopolynomial, it does not settle
the questionwhetherPagreeable isNP-hard in the strong sense.

It is interesting to observe that despite this result, Algo-
rithm 1 is suited for constructing an FPTAS, as it is shown
below. This is unusual and counter-intuitive because com-
monly, an FPTAS is derived from a pseudopolynomial exact
algorithm (Garey and Johnson 1979, p. 140).

9 Fully polynomial time approximation
scheme forPagreeable

A fully polynomial time approximation scheme (FPTAS) is
introduced for Pagreeable in this section.

123

764 Journal of Scheduling (2020) 23:751–768

An FPTAS is an algorithm that, given a problem’s input
and any approximation factor ε ∈ (0, 1], runs in polynomial
timeof input length and1/ε to return a solutionwith objective
value φε ≤ (1 + ε) · φ∗, where φ∗ denotes the minimum
objective value.

The following FPTAS for Pagreeable is based on Algo-
rithm 1. It is based on the idea of trimming-the-state-space
as described in Ibarra and Kim (1975), combined with the
interval partition technique described in Woeginger (2000).
The latter technique defines

Δ = 1 + ε

2n
, and h(x) = Δ�logΔ x� for any real x > 0 ,

where h intentionally satisfies x/Δ < h(x) ≤ x · Δ.
For an approximation factor ε ∈ (0, 1] and corresponding

Δ and h, let us define, similar to Algorithm 1, with the same
preconditions and a given straddler job χ :

Algorithm 2 (FPTAS for Pagreeable with straddler job χ and
ε)
Initialize

V #
0 = {[tmin, 1, 0]} . (14a)

For job j = 1, . . . , n, generate state set

Ṽ #
j =

{
[C j (x), y, z] ∣∣ [x, y, z] ∈ V #

j−1, C j (x)<τ
}

(14b)

∪
{[

x,
(
1 + b j

)
y, z + y � j

] ∣∣ [x, y, z] ∈ V #
j−1

}

(14c)

and trimmed state set

V #
j =

{[
x̃, ỹ, z̃

] ∈ Ṽ #
j

∣∣ x̃ = xmin
j (ỹ, z̃)

}

with xmin
j (ỹ, z̃) = min

{
x

∣∣ [x, y, z] ∈ Ṽ #
j ,

h(y) ≤ h(ỹ),

h(z) = h(z̃)} . (14d)

Return

Cχε
max = min

{
τ + y max

{
Cχ (x) − τ, 0

} + z
∣∣ [x, y, z] ∈ V #

n

}
.

(14e)

The algorithm’s approximation guarantee and its worst-
case runtime is shown in the remainder of this section.

Lemma 4 For j = 0, . . . , n and all vectors [x, y, z] ∈ Vj

of Algorithm 1, there exists a vector [x#, y#, z#] ∈ V #
j in

Algorithm 2 with

x# ≤ x, (15a)

y# ≤ y · Δ j , and (15b)

z# ≤ z · Δ j . (15c)

Proof Let us show the given hypothesis by forward-induction
for j= 0, . . . , n.

For j = 0, the trimmed set equals the original set: V0 =
V #
0 = {[tmin, 1, 0]}, as of (13a) and (14a). As Δ0 = 1, the

hypothesis is shown.
For j = 1, . . . , n, there are two cases, corresponding to

(14b) and (14c):

– The first case applies if x < τ , i.e., the job j is appended
to S1 such that it completes before τ . Consider vec-
tor [x ′, y′, z′] ∈ Vj−1 where C j (x ′) = x , y′ = y, z′ = z
as generated in (14b).
Then, by induction, the corresponding vector [x ′#, y′#,
z′#] ∈ V #

j−1 with x ′# ≤ x ′, y′# ≤ y′ · Δ j−1, and

z′# ≤ z′ · Δ j−1 exists. Also, the condition x ′# ≤ τ

is satisfied. Furthermore, the algorithm created [x̃ ′, ỹ′,
z̃′] = [C j (x ′#), y′#, z′#] ∈ Ṽ #

j , see (14b). Although, after
the trimming operation in (14d) this vector may not be in
V #

j , there exists a vector [x#, y#, z#] ∈ V #
j with x# ≤ x̃ ′,

h(y#) ≤ h(ỹ′), and h(z#) = h(z̃′) (thus, y# ≤ ỹ′ · Δ and
z# ≤ z̃′ · Δ).
Let us show the induction hypothesis for this vector.
Remember thatC j (t) is an nondecreasing function. Thus,
x# ≤ x̃ ′ = C j (x ′#) ≤ C j (x ′) = x for (15a). As
y# ≤ ỹ′ · Δ = y′# · Δ ≤ y′ · Δ j = y · Δ j , (15b) is satis-
fied. Inequality z# ≤ z̃′ · Δ = z′# · Δ ≤ z′ · Δ j = z · Δ j

satisfies (15c).
– In the second case corresponding to (14c), consider vec-
tor [x ′, y′, z′] ∈ Vj−1 where x ′ = x ,

(
1 + b j

)
y′ = y,

and z′ + y′ � j = y.
By induction hypothesis, the corresponding vector [x ′#,
y′#, z′#] ∈ V #

j−1 with x ′# ≤ x ′, y′# = y′ · Δ j−1, and

z′# ≤ z′ · Δ j−1 exists. Then, the algorithm created a cor-
responding vector [x̃ ′, ỹ′, z̃′] = [x ′#,

(
1 + b j

)
y′#, z′# +

y′# � j] ∈ Ṽ #
j in (14c). Even though, by trimming, this

vector may not be in set V #
j , there must exist some vec-

tor [x#, y#, z#] ∈ V #
j with x# ≤ x̃ ′, h(y#) ≤ h(ỹ′), and

h(z#) = h(z̃′) (thus y# ≤ ỹ′ · Δ and z# ≤ z̃′ · Δ).
Let us show the induction hypothesis. For (15a): x# ≤
x̃ ′ = x ′# ≤ x ′ = x . As y# ≤ ỹ′ ·Δ = (

1 + b j
) · y′# ·Δ ≤(

1 + b j
) · (

y′ · Δ j−1
) · Δ = y · Δ j , (15b) is satisfied.

Lastly, (15c) is satisfied because

z# ≤ z̃′ · Δ =
(

z′# + y′# � j

)
· Δ

≤
(

z′ · Δ j−1 + y′ � j · Δ j−1
)

· Δ = (
z′ + y′ � j

) · Δ j

= z · Δ j . ��

123

Journal of Scheduling (2020) 23:751–768 765

Lemma 5 For 0 < ε ≤ 1 and a Pagreeable instance with
straddler job χ and minimum makespan φ∗, Algorithm 2
yields Cχε

max such that φε = Cχε
max − tmin ≤ (1 + ε) φ∗.

Proof Let χ be the straddler job and [x, y, z] ∈ Vn be the
vector that corresponds to φ∗ = Cχ

max − tmin in Algorithm 1.
Then, Cχ

max = τ + y
(
Cχ (x) − τ

) + z, with Cχ (x) ≥ τ .
By Lemma 4, there exists a vector [x#, y#, z#] ∈ V #

n with
x# ≤ x , y# ≤ y · Δn , and z# ≤ z · Δn . Then,

Cχε
max = τ + y# · max

{
Cχ (x#) − τ, 0

}
+ z#

≤ τ + y · Δn · max
{
Cχ (x) − τ, 0

} + z · Δn

= τ + (
y · max

{
Cχ (x) − τ, 0

} + z
) · Δn

= τ + (
Cχ
max − τ

) · Δn

= Cχ
max·Δn + τ · (

1 − Δn)
.

Because 1−Δn ≤ 0 and tmin ≤ τ , there is tmin · (1 − Δn) ≥
τ · (1 − Δn), thus

Cχε
max − tmin ≤ Cχ

max·Δn + τ · (1 − Δn) − tmin

≤ Cχ
max·Δn + tmin · (

1 − Δn) − tmin

= (
Cχ
max − tmin

) · Δn .

Thus, together with Proposition 4, φε ≤ φ∗·Δn . A known
inequality is (1+ δ/n)n ≤ 1+ 2δ for 0 ≤ δ ≤ 1 (Woeginger
2000, Proposition 3.1). Setting δ = ε/2, it follows Δn ≤
1 + ε. Thus, φε ≤ (1 + ε) φ∗. ��

For aworst-case runtime analysis, let us bound the number
of states in each stage to a polynomial number. This uses the
respective logarithm of

�ratio = max
{
� j

∣∣ k = 1, . . . , n
}

min
{
� j > 0

∣∣ j = 1, . . . , n
} ,

bmax = max
{
b j

∣∣ j = 1, . . . , n
}
.

Lemma 6 For 0 < ε ≤ 1 and stage j = 0, . . . , n, the num-
ber |V #

j | of states is inO(n3· log(1 + bmax)·(log max{�ratio,
1/bmax} + n log(1 + bmax))/ε

2).

Proof Starting with |V #
0 | = 1, let us analyze state set V #

j for
j = 1, . . . , n in the following. Consider a vector [x, y, z] ∈
V #

j . For each y and z value, there is one x value. Thus, |V #
j |

is bounded by the product of the number of possible y and z
values, which is bounded in the following.

Let �(j)
max = max {�k

∣∣ k = 1, . . . , j}, �(j)
min = min{�k > 0 |

k = 1, . . . , j}, and b(j)
max = max {bk

∣∣ k = 1, . . . , j}. Then,
the y value is bounded by

1 ≤ y ≤
∏

k=1,..., j

(1 + bk) ≤
(
1 + b(j)

max

) j =: Y j .

The z value represents the makespan of the sequence that
starts at the ideal start time. For z > 0, it is bounded by

�min ≤ z ≤
∑

j ′=1,..., j

� j ′
∏

k= j ′+1,..., j

(1 + bk)

≤ �(j)
max

(
1 + b(j)

max

) j − 1

b(j)
max

=: Z j .

The trimming step in (14d) ensures that there is at most
a single y and z value for the same h(y) and h(z) value,
respectively. Moreover, the rounded values are bounded by
1 ≤ h(y) ≤ h(Y j) and by h(�

(j)
min) ≤ h(z) ≤ h(Z j) for

z > 0.
It follows from the definition of h that the number of dis-

tinct h(y) values is at most

logΔ Y j − logΔ 1 = log Y j · ln 2 / lnΔ

≤
(
1 + 2n

ε

)
· log Y j

=
(
1 + 2n

ε

)
· j · log

(
1 + b(j)

max

)
,

which uses the inequality lnΔ ≥ (Δ − 1)/Δ (Woeginger
2000, Proposition 3.1). Similarly, the number of distinct h(z)
values for z > 0 is at most

logΔ Z j − logΔ �
(j)
min = log

(
Z j

/
�
(j)
min

)
· ln 2 / lnΔ

<

(
1 + 2n

ε

)(

log
�
(j)
max

�
(j)
min

+ log
1

b(j)
max

+ j · log
(
1 + b(j)

max

))

.

In summary, there are at most O(
n2 log (1 + bmax)/ε

)

distinct y values, and there are at most O(n · (log �ratio

+ log (1/bmax)+n log (1 + bmax))/ε) distinct z values. Both
upper bounds are polynomial in input length in a binary
encoding. This includes rational numbers because they can
be encoded as a division of two integers. The product of both
bounds yieldsO(n3 ·log (1 + bmax)·(log �ratio+log(1/bmax)

+ n log(1 + bmax))/ε
2), which is not more than the upper

bound stated above. ��
Algorithm 2 is repeatedly started for each possible strad-

dler job, hence n + 1 times, and has at most n stages, each
with a polynomial number of states (Lemma 6). Furthermore,
as of Lemma 5, the resulting makespan is guaranteed to be
at most (1+ ε) times the minimum makespan φ∗. This leads
to the conclusion.

Theorem 2 For a Pagreeable instance of n jobs with mini-
mum makespan φ∗ and an approximation factor 0 < ε ≤ 1,
the n times repeated call of Algorithm 2 returns a solution
with makespan φε ≤ (1 + ε) · φ∗ in O(n5· log(1 + bmax)

·(logmax{�ratio, 1/bmax}+n log(1 + bmax))/ε
2)) time total.

123

766 Journal of Scheduling (2020) 23:751–768

This runtime is polynomial, hence Algorithm 2 is an
FPTAS for Pagreeable. With a common slope b j = b,
the y component of a state can attain at most j different
values in each stage j∈ {1, . . . , n}. Then, there are only
O(n2 ·(log �ratio+ log(1/b)+n log (1 + b))/ε) states in each
of the O(

n2
)
stages.

Corollary 9 For instances with a common slope b j = b for
each given job j , the runtime given in Theorem 2 is reduced
to O(n4 · (logmax{�max, 1/b} + n log (1 + b))/ε).

In the monotonic case b j = 0, the y component equals 1
at all times, and z is bounded by the sum of basic processing
times. Then, the number of distinct z values is bounded by
O(�ratio · n), and there are only O(n · log(�ration)/ε) states
per stage.

Corollary 10 For instances with b j = 0 for each given job j ,
the runtime in Theorem2 is reduced toO(

n3 · log(�ration)/ε
)
.

If each job j has the same � j = �, then �ratio = 1. If
in addition max{b j , 1/b j } is smaller than a constant, then
the FPTAS finishes in strongly polynomial O(

n5/ε2
)
time.

For b j = 0, it takes only O(
n3 log n/ε

)
time, although this

particular case is even easier to solve optimally by sorting the
jobs with respect to nondecreasing a j values (Cheng et al.
2003).

Remark 5 (Implications on Pagreeable’s computational com-
plexity) Garey and Johnson (1978, Theorem 1) state that
if, for all instances, the optimal objective value of a min-
imization problem is upper bounded by a polynomial in
input length and input values, then the existence of an
FPTAS implies that a pseudopolynomial algorithm exists.
In Pagreeable, the makespan can be exponential in input
length and input values: e.g., for tmin = τ , b j = b,
and � j ≥ 1 for j = 1, . . . , n, the makespan is not less
than (1 + b)n−1. Therefore, the existence of an FPTAS for
Pagreeable does, in this particular case, not imply the existence
of a pseudopolynomial algorithm. Hence, it remains open
whether a pseudopolynomial algorithm exists for Pagreeable,
and whether Pagreeable is NP-hard in the strong sense.

Acknowledgements Let me thank the associate editor and the anony-
mous referees very much for their constructive comments and thorough
reviews, thank Joanna Berlińska, Peter Fúsek, Stanisław Gawiejnow-
icz, Nir Halman, Jan-Hendrik Lorenz, Bartłomiej Przybylski for helpful
discussions, and especially thank Uwe Schöning at the Institute of The-
oretical Computer Science at Ulm University in Ulm, Germany for the
generous support of the majority of this paper.

Funding Open access funding provided by ZHAW Zurich University
of Applied Sciences.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Agnetis, A., Billaut, J. C., Gawiejnowicz, S., Pacciarelli, D., & Soukhal,
A. (2014). Multiagent scheduling. Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-41880-8.

Alidaee, B., & Womer, N. K. (1999). Scheduling with time depen-
dent processing times: Review and extensions. The Journal of the
Operational Research Society, 50(7), 711–720. https://doi.org/10.
2307/3010325.

Axler, C. (2019). On the sum of the first n prime numbers. Journal de
Théorie des Nombres de Bordeaux, 31(2), 293–311. https://doi.
org/10.5802/jtnb.1081.

Browne, S., & Yechiali, U. (1990). Scheduling deteriorating jobs on
a single processor. Operations Research, 38(3), 495–498. https://
doi.org/10.1287/opre.38.3.495.

Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., Sterna, M., &
Wȩglarz, J. (2019).Handbook on scheduling: From theory to prac-
tice. Cham: Springer. https://doi.org/10.1007/978-3-319-99849-
7.

Cai, J. Y., Cai, P., & Zhu, Y. (1998). On a scheduling problem of time
deteriorating jobs. Journal of Complexity, 14(2), 190–209. https://
doi.org/10.1006/jcom.1998.0473.

Cheng, T. C. E., Ding, Q., Kovalyov, M. Y., Bachman, A., & Janiak, A.
(2003). Scheduling jobs with piecewise linear decreasing process-
ing times. Naval Research Logistics, 50(6), 531–554. https://doi.
org/10.1002/nav.10073.

Farahani, M. H., & Hosseini, L. (2013). Minimizing cycle time in
single machine scheduling with start time-dependent process-
ing times. The International Journal of Advanced Manufacturing
Technology, 64(9), 1479–1486. https://doi.org/10.1007/s00170-
012-4116-1.

Garey, M. R., & Johnson, D. S. (1978). “Strong” NP-completeness
results—Motivation, examples, and implications. Journal of the
ACM, 25(3), 499–508. https://doi.org/10.1145/322077.322090.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability–
A guide to the theory of NP-completeness. Series of books in the
mathematical sciences. San Francisco: W.H. Freeman.

Garey, M. R., Tarjan, R. E., & Wilfong, G. T. (1988). One-processor
schedulingwith symmetric earliness and tardiness penalties.Math-
ematics of Operations Research, 13(2), 330–348. https://doi.org/
10.2307/3689828.

Gawiejnowicz, S. (2008). Time-dependent scheduling. Monographs in
theoretical computer science. Berlin,Heidelberg: Springer. https://
doi.org/10.1007/978-3-540-69446-5.

Gawiejnowicz, S. (2020a). Models and algorithms of time-dependent
scheduling. Monographs in theoretical computer science (2nd ed.).
Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-
59362-2.

Gawiejnowicz, S. (2020b). A review of four decades of time-dependent
scheduling: Main results, new topics, and open problems. Journal
of Scheduling,. https://doi.org/10.1007/s10951-019-00630-w.

Gawiejnowicz, S., & Pankowska, L. (1995). Scheduling jobs with
varying processing times. Information Processing Letters, 54(3),
175–178. https://doi.org/10.1016/0020-0190(95)00009-2.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-41880-8
https://doi.org/10.2307/3010325
https://doi.org/10.2307/3010325
https://doi.org/10.5802/jtnb.1081
https://doi.org/10.5802/jtnb.1081
https://doi.org/10.1287/opre.38.3.495
https://doi.org/10.1287/opre.38.3.495
https://doi.org/10.1007/978-3-319-99849-7
https://doi.org/10.1007/978-3-319-99849-7
https://doi.org/10.1006/jcom.1998.0473
https://doi.org/10.1006/jcom.1998.0473
https://doi.org/10.1002/nav.10073
https://doi.org/10.1002/nav.10073
https://doi.org/10.1007/s00170-012-4116-1
https://doi.org/10.1007/s00170-012-4116-1
https://doi.org/10.1145/322077.322090
https://doi.org/10.2307/3689828
https://doi.org/10.2307/3689828
https://doi.org/10.1007/978-3-540-69446-5
https://doi.org/10.1007/978-3-540-69446-5
https://doi.org/10.1007/978-3-662-59362-2
https://doi.org/10.1007/978-3-662-59362-2
https://doi.org/10.1007/s10951-019-00630-w
https://doi.org/10.1016/0020-0190(95)00009-2

Journal of Scheduling (2020) 23:751–768 767

Gordon,V. S., Potts, C.N., Strusevich, V.A.,&Whitehead, J. D. (2008).
Singlemachine schedulingmodelswith deterioration and learning:
Handlingprecedence constraints via priority generation. Journal of
Scheduling, 11(5), 357–370. https://doi.org/10.1007/s10951-008-
0064-x.

Gupta, J. N. D., & Gupta, S. K. (1988). Single facility scheduling with
nonlinear processing times. Computers & Industrial Engineering,
14(4), 387–393. https://doi.org/10.1016/0360-8352(88)90041-1.

Hall, N. G., Kubiak, W., & Sethi, S. P. (1991). Earliness-tardiness
scheduling problems, II: Deviation of completion times about a
restrictive common due date. Operations Research, 39(5), 847–
856. https://doi.org/10.1287/opre.39.5.847.

Halman, N. (2019). A technical note: Fully polynomial time approxi-
mation schemes forminimizing themakespan of deteriorating jobs
with nonlinear processing times. Journal of Scheduling,. https://
doi.org/10.1007/s10951-019-00616-8.

Hardy, G. H., & Wright, E. M. (2008). An introduction to the theory of
numbers (6th ed.). Oxford, New York: Oxford University Press.

Ho, K. I. J., Leung, J. Y. T., & Wei, W. D. (1993). Complexity of
scheduling tasks with time-dependent execution times. Informa-
tion Processing Letters, 48(6), 315–320. https://doi.org/10.1016/
0020-0190(93)90175-9.

Hoogeveen, J. A., & van de Velde, S. L. (1991). Scheduling
around a small common due date. European Journal of Oper-
ational Research, 55(2), 237–242. https://doi.org/10.1016/0377-
2217(91)90228-N.

Ibarra, O. H., & Kim, C. E. (1975). Fast approximation algorithms for
the knapsack and sum of subset problems. Journal of the ACM,
22(4), 463–468. https://doi.org/10.1145/321906.321909.

Jaehn, F., & Sedding, H. A. (2016). Scheduling with time-dependent
discrepancy times. Journal of Scheduling, 19(6), 737–757. https://
doi.org/10.1007/s10951-016-0472-2.

Ji, M., & Cheng, T. C. E. (2007). An FPTAS for scheduling jobs
with piecewise linear decreasing processing times to minimize
makespan. Information Processing Letters, 102(2–3), 41–47.
https://doi.org/10.1016/j.ipl.2006.11.014.

Kacem, I. (2010). Fully polynomial time approximation scheme for
the total weighted tardiness minimization with a common due
date.Discrete Applied Mathematics, 158(9), 1035–1040. Erratum:
Kianfar and Moleshi (2013) https://doi.org/10.1016/j.dam.2010.
01.013.

Kawase, Y., Makino, K., & Seimi, K. (2018). Optimal composition
ordering problems for piecewise linear functions. Algorithmica,
80(7), 2134–2159. https://doi.org/10.1007/s00453-017-0397-y.

Kellerer, H., & Strusevich, V. A. (2010). Minimizing total weighted
earliness-tardiness on a single machine around a small common
due date: An FPTAS using quadratic knapsack. International Jour-
nal of Foundations of Computer Science, 21(3), 357–383. https://
doi.org/10.1142/S0129054110007301.

Kianfar, K., & Moslehi, G. (2013). A note on “Fully polynomial time
approximation scheme for the total weighted tardiness minimiza-
tion with a common due date”. Discrete Applied Mathematics,
161(13–14), 2205–2206. https://doi.org/10.1016/j.dam.2013.02.
026.

Klampfl, E., Gusikhin,O.,&Rossi, G. (2006). Optimization ofworkcell
layouts in a mixed-model assembly line environment. Interna-
tional Journal of Flexible Manufacturing Systems,17(4), 277–299.
https://doi.org/10.1007/s10696-006-9029-6.

Kononov, A. V. (1997). On schedules of a single machine jobs with
processing times nonlinear in time. Discrete Analysis and Oper-
ational Research, 391, 109–122. https://doi.org/10.1007/978-94-
011-5678-3_10.

Kononov, A. V. (1998). Problems in scheduling theory on a single
machine with job durations proportional to an arbitrary function.
Diskretnyı̆ Analiz i Issledovanie Operatsiı̆, 5(3), 17–37.

Kovalyov, M. Y., & Kubiak, W. (1998). A fully polynomial approx-
imation scheme for minimizing makespan of deteriorating jobs.
Journal of Heuristics, 3(4), 287–297. https://doi.org/10.1023/A:
1009626427432.

Kovalyov, M. Y., & Kubiak, W. (2012). A generic FPTAS for partition
type optimisation problems. International Journal of Planning and
Scheduling, 1(3), 209. https://doi.org/10.1504/IJPS.2012.050127.

Kubiak, W., & van de Velde, S. L. (1998). Scheduling deteriorating
jobs to minimize makespan. Naval Research Logistics, 45(5),
511–523. https://doi.org/10.1002/(SICI)1520-6750(199808)45:
5<511::AID-NAV5>3.0.CO;2-6.

Lawler, E. L., & Moore, J. M. (1969). A functional equation and its
application to resource allocation and sequencing problems. Man-
agement Science, 16(1), 77–84. https://doi.org/10.1287/mnsc.16.
1.77.

Melnikov, O. I., & Shafransky, Y. M. (1979). Parametric problem in
scheduling theory. Cybernetics, 15(3), 352–357. https://doi.org/
10.1007/BF01075095.

Mosheiov, G. (1994). Scheduling jobs under simple linear deterioration.
Computers & Operations Research, 21(6), 653–659. https://doi.
org/10.1016/0305-0548(94)90080-9.

Scholl, A., Boysen, N., & Fliedner, M. (2013). The assembly line
balancing and scheduling problem with sequence-dependent
setup times: Problem extension, model formulation and efficient
heuristics.OR Spectrum, 35(1), 291–320. https://doi.org/10.1007/
s00291-011-0265-0.

Sedding, H. A. (2017). Scheduling of time-dependent asymmetric non-
monotonic processing times permits an FPTAS. In: Proceedings
of the 15th Cologne Twente Workshop on Graphs and Combinato-
rial Optimization, University of Cologne, Cologne, Germany (pp.
135-138).

Sedding, H. A. (2018a). On the complexity of scheduling start time
dependent asymmetric convex processing times. In: Proceedings
of the 16th International Conference on Project Management and
Scheduling, Universitá di Roma “Tor Vergata”, Rome, Italy (pp.
209–212).

Sedding, H. A. (2018b). Scheduling non-monotonous convex
piecewise-linear time-dependent processing times. In: Proceed-
ings of the 2nd International Workshop on Dynamic Scheduling
Problems, AdamMickiewicz University, Poznań, Poland (pp. 79–
84).

Sedding,H.A. (2020a).AnFPTAS for schedulingwith piecewise-linear
nonmonotonic convex time-dependent processing times and job-
specific agreeable slopes. In:Proceedings of the 17th International
Conference on Project Management and Scheduling, Toulouse
Business School, Toulouse, France, postponed to 2021.

Sedding, H. A. (2020b). Line side placement for shorter assembly line
worker paths. IISE Transactions, 52(2), 181–198. https://doi.org/
10.1080/24725854.2018.1508929.

Sedding, H. A. (2020c). Time-dependent path scheduling: Algorith-
mic minimization of walking time at the moving assembly line.
Wiesbaden: SpringerVieweg. https://doi.org/10.1007/978-3-658-
28415-2.

Sedding,H.A.,& Jaehn, F. (2014). Singlemachine schedulingwith non-
monotonic piecewise linear time dependent processing times. In:
Proceedings of the 14th International Conference on Project Man-
agement and Scheduling, TUM School of Management, Munich,
Germany (pp. 222–225).

Shafransky, Y.M. (1978). On optimal ordering in deterministic systems
with tree-like partial serving order. Proceedings of the Academy of
Sciences of BSSR, Physics and Mathematics Series, 1978(2), 120.

Smith, W. E. (1956). Various optimizers for single-stage production.
Naval Research Logistics Quarterly, 3(1–2), 59–66. https://doi.
org/10.1002/nav.3800030106.

123

https://doi.org/10.1007/s10951-008-0064-x
https://doi.org/10.1007/s10951-008-0064-x
https://doi.org/10.1016/0360-8352(88)90041-1
https://doi.org/10.1287/opre.39.5.847
https://doi.org/10.1007/s10951-019-00616-8
https://doi.org/10.1007/s10951-019-00616-8
https://doi.org/10.1016/0020-0190(93)90175-9
https://doi.org/10.1016/0020-0190(93)90175-9
https://doi.org/10.1016/0377-2217(91)90228-N
https://doi.org/10.1016/0377-2217(91)90228-N
https://doi.org/10.1145/321906.321909
https://doi.org/10.1007/s10951-016-0472-2
https://doi.org/10.1007/s10951-016-0472-2
https://doi.org/10.1016/j.ipl.2006.11.014
https://doi.org/10.1016/j.dam.2010.01.013
https://doi.org/10.1016/j.dam.2010.01.013
https://doi.org/10.1007/s00453-017-0397-y
https://doi.org/10.1142/S0129054110007301
https://doi.org/10.1142/S0129054110007301
https://doi.org/10.1016/j.dam.2013.02.026
https://doi.org/10.1016/j.dam.2013.02.026
https://doi.org/10.1007/s10696-006-9029-6
https://doi.org/10.1007/978-94-011-5678-3_10
https://doi.org/10.1007/978-94-011-5678-3_10
https://doi.org/10.1023/A:1009626427432
https://doi.org/10.1023/A:1009626427432
https://doi.org/10.1504/IJPS.2012.050127
https://doi.org/10.1002/(SICI)1520-6750(199808)45:5<511::AID-NAV5>3.0.CO;2-6
https://doi.org/10.1002/(SICI)1520-6750(199808)45:5<511::AID-NAV5>3.0.CO;2-6
https://doi.org/10.1287/mnsc.16.1.77
https://doi.org/10.1287/mnsc.16.1.77
https://doi.org/10.1007/BF01075095
https://doi.org/10.1007/BF01075095
https://doi.org/10.1016/0305-0548(94)90080-9
https://doi.org/10.1016/0305-0548(94)90080-9
https://doi.org/10.1007/s00291-011-0265-0
https://doi.org/10.1007/s00291-011-0265-0
https://doi.org/10.1080/24725854.2018.1508929
https://doi.org/10.1080/24725854.2018.1508929
https://doi.org/10.1007/978-3-658-28415-2
https://doi.org/10.1007/978-3-658-28415-2
https://doi.org/10.1002/nav.3800030106
https://doi.org/10.1002/nav.3800030106

768 Journal of Scheduling (2020) 23:751–768

Strusevich, V. A., & Rustogi, K. (2017). Scheduling with time-changing
effects and rate-modifying activities. Cham: Springer. https://doi.
org/10.1007/978-3-319-39574-6.

Tanaev, V. S., Gordon, V. S., & Shafransky, Y. M. (1984). Scheduling
theory: Single-stage systems. Moscow: Nauka.

Tanaev, V. S., Gordon, V. S., & Shafransky, Y. M. (1994). Scheduling
theory: Single-stage systems. Dordrecht: Springer. https://doi.org/
10.1007/978-94-011-1190-4.

Wajs, W. (1986). Polynomial algorithm for dynamic sequencing prob-
lem. Archiwum Automatyki i Telemechaniki, 31(3), 209–213.

Woeginger, G. J. (2000). When does a dynamic programming for-
mulation guarantee the existence of a fully polynomial time
approximation scheme (FPTAS)? INFORMS Journal on Comput-
ing, 12(1), 57–74. https://doi.org/10.1287/ijoc.12.1.57.11901.

Yuan, J. (1992). The NP-hardness of the single machine common due
date weighted tardiness problem. Systems Science and Mathemat-
ical Sciences, 5(4), 328–333.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-39574-6
https://doi.org/10.1007/978-3-319-39574-6
https://doi.org/10.1007/978-94-011-1190-4
https://doi.org/10.1007/978-94-011-1190-4
https://doi.org/10.1287/ijoc.12.1.57.11901

	Scheduling jobs with a V-shaped time-dependent processing time
	Abstract
	1 Introduction
	1.1 Processing time function
	1.2 Problem setting

	2 Summary of results and organization
	3 Literature review
	3.1 Literature with constant processing times
	3.2 Literature on time-dependent scheduling
	3.3 Practical application in automobile production planning

	4 Preliminaries
	4.1 Notation of sequences
	4.2 Makespan calculation

	5 Polynomial cases of mathcalP
	5.1 Early ideal start time
	5.2 Late ideal start time
	5.3 Zero basic processing times

	6 Symmetry in optimal sequences for mathcalP
	7 Computational complexity of mathcalP, mathcalPagreeable, mathcalPcommon
	8 Dynamic programming algorithm for mathcalPagreeable
	9 Fully polynomial time approximation scheme for mathcalPagreeable
	Acknowledgements
	References

