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Abstract— A settings-free and derivative-free optimization 

technique, called Jaya Optimization Algorithm, is investigated in 
this paper for the design of simple fuzzy PSSs (FPSSs) in a 
multimachine power system. Performance of this technique 
during the optimization process is compared to the one exhibited 
by a Bat Optimization Algorithm based approach. Considering a 
set of test cases for illustrative purposes, FPSSs tuned with both of 
these algorithms are applied to the study system and their 
performance in damping inter-area and local oscillations is 
analyzed against some commonly used lead-lag structures, 
including multi-band PSSs. 
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I.  INTRODUCTION 
Power systems are experiencing dramatic changes due to the 

rapidly increasing energy demand, trends to intensify the 
application of renewable energy resources and the deregulation 
of electricity markets [1]. Besides, with the interconnection of 
large electrical networks to reduce the reserve energy, 
electromechanical oscillations that significatively affect the 
security and stability of power systems and lead to cascade 
outages may appear [2]. Although conventional power system 
stabilizers have been widely used for many years to reduce the 
unwanted effects of these oscillations, the operation and control 
requirements of modern electrical networks have brought about 
new challenges that demand the introduction of advanced 
technologies and methods to effectively deal with these issues 
[3]. 

Over the past few decades, various computational 
intelligence based methods such as artificial neural networks, 
evolutionary computation, swarm intelligence, artificial immune 
systems, and fuzzy systems have been proposed for solving 
different complex problems in many areas of power system 
engineering [4], [5]. These methods have become increasingly 
popular due to their relatively simple mathematical structure and 
the improved solutions they can provide, as compared to 
traditional techniques. Moreover, to take advantage of the 
strengths of each single method and eliminate individual 
weaknesses, hybrid paradigms are proposed [6]. For instance, 
fuzzy systems can be used to approximate and implement human 
expert control actions through linguistic terms and fuzzy if-then 
rules. They are appropriate for dealing with uncertainties and 
approximate reasoning, especially for complex nonlinear 
processes where an exact mathematical description of the plant 

would be difficult to derive [4], [6]. However, despite the 
outstanding performance reported in many fuzzy logic 
applications, it is widely recognized that the tuning of fuzzy 
logic systems represents a critical task in their design. Therefore, 
they can be combined with a suitable optimization algorithm that 
provides an optimal solution and solve the controller parameter 
tuning issue. 

Population-based optimization algorithms have become very 
popular in recent years because they provide a relatively simple 
process, free of derivatives, to search for optimal solutions even 
in very complex problems. However, in addition to common 
parameters such as number of generations and population size, 
some strategies require their own algorithm-specific control 
parameters, such as mutation and crossover rate in Genetic 
algorithm, cognitive/social acceleration factors and inertia 
weights in Particle swarm optimization, and low/high pulse 
frequency, initial loudness and pulse rate in Bat optimization, for 
example. Generally, the correct setting of these additional 
parameters depends on the particular application and has a great 
influence on the algorithm performance, leading to increased 
computational effort or local optima when they are not properly 
tuned [6], [7]. 

 In this work, fuzzy logic is combined with two recently 
introduced optimization techniques, such as the Bat 
Optimization Algorithm (BOA) and the Jaya Optimization 
Algorithm (JOA), to design power system stabilizers (PSSs) in 
a sample multimachine power system. While a set of own 
parameters must be defined in BOA, JOA does not use any 
algorithm-specific control parameters. Although any of these 
optimization techniques may be applied to tune fuzzy PSSs, their 
complexity and their performance in aspects such as speed of 
convergence, precision and computational effort should also be 
taken into account for an effective application. For illustrative 
purposes, system response using BOA and JOA based fuzzy 
PSSs is compared against the performance provided by multi-
band, conventional , and conventional Pa PSSs. 

II. PROBLEM FORMULATION 

A. Sample Power System 
In this study, the power system illustrated in Fig. 1 is used as 

the test system, with generators G1 and G2 forming one area, 
and G3 and G4 forming another area. These areas are connected 
together by two transmission lines. Parameters of all generators, 
speed governors, AVRs, transmission lines and loads can be 



 

obtained from [8]. Operating conditions are given in the 
Appendix. 

 
Fig. 1. Sample power system. 

With no PSSs, the frequency and damping of the system 
electromechanical oscillations modes for the base case operating 
condition are given in Table I, where an inter-area oscillation 
mode with negative damping can be observed. 

TABLE I.  ELECTROMECHANICAL OSCILLATION MODES 

Mode Frequency (Hz) Damping (%) 

1 0.64 -2.6 
2 1.12 8.0 
3 1.16 8.0 

 

B. Fuzzy PSS (FPSS) 
To deal with the undamped oscillations of the system, FPSSs 

with the structure given in [9] will be used in this work. In this 
regard, the FPSS output u is calculated in the following manner: 

𝑢 = 𝐾𝑜 ⋅ 𝑠𝑢 ⋅ 𝑢𝑢𝑠                              (1) 

where Ko is an output scaling factor, su is the control action sign, 
and uus is determined from the fuzzy inference process using the 
rule base in Table II. 

TABLE II.  RULE BASE 

d ZO S M B 

uus ZO S M B 
 

In Table II, ZO, S, M and B refer to Zero, Small, Medium and 
Big, respectively. While these terms are represented by 
triangular membership functions evenly distributed in the range 
{0, 1} for the normalized variable d, fuzzy singletons are 
considered for the ones associated with uus. d is defined in this 
case by the following expressions: 

 𝑦 = 𝐾1 ⋅ 𝛥𝜔 + 𝐾2 ⋅ 𝛥𝜔
.
                           (2) 

𝑑 = |𝑦|                                        (3) 

where  and 
.
  are the machine speed deviation and its rate 

of change, respectively, and K1 and K2 are their associated 
scaling factors. The sign of the control action is simply 
computed from: 
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su                          (4) 

 
C. Constrained optimization problem 

Parameters of the FPSS, namely, K1, K2, the ones related to 
the triangular membership functions and singletons, and Ko are 
adjustable parameters that may enhance overall system 
damping. However, Ko is normally defined by the physical 
restrictions associated with the controller output. As for the 
parameters of triangular membership functions and singletons, 
they can be adjusted in a relatively simple way by working only 
on the center points of the representations. Therefore, K1, K2 and 
the parameter that defines the centers of the fuzzy sets S and M 
are selected to be optimized in this study according to the 
minimization of the following cost function: 

𝐽 = ∑ ∑(𝑐1𝑘 + 𝑐2𝑢𝑘)

𝑡𝑠𝑖𝑚

𝑘=1

𝐷

1

⋅ 𝑡𝑘                  (5) 

where, D refers to the number of disturbances for parameter 
optimization, tsim is the respective simulation time, and c1 and c2 
are weighting factors. Besides, k and uk were defined as: 

𝑘 =|𝛥𝜔13,𝑘 − 𝛥𝜔13,𝑘−1| + |𝛥𝜔12,𝑘 − 𝛥𝜔12,𝑘−1| +

|𝛥𝜔34,𝑘 − 𝛥𝜔34,𝑘−1|
    (6) 

𝑢𝑘 =|𝑢1,𝑘 − 𝑢1,𝑘−1| + |𝑢2,𝑘 − 𝑢2,𝑘−1| +

|𝑢3,𝑘 − 𝑢3,𝑘−1| + |𝑢4,𝑘 − 𝑢4,𝑘−1|
           (7) 

with ab,k being the relative speed differences between 
machines a and b, and un,k referring to the FPSS output at 
machine n. The tuning of FPSSs can then be carried out through 
the solution of the following constrained optimization problem: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

𝐾1
𝑚𝑖𝑛 ≤ 𝐾1 ≤ 𝐾1

max

𝐾12
𝑚𝑖𝑛 ≤ 𝐾2 ≤ 𝐾2

max

𝑆𝑐𝑝
𝑚𝑖𝑛 ≤ 𝑆𝑐𝑝 ≤ 𝑆𝑐𝑝

𝑚𝑎𝑥

𝑀𝑐𝑝
𝑚𝑖𝑛 ≤ 𝑀𝑐𝑝 ≤ 𝑀𝑐𝑝

max

                       (8) 

III. CONSIDERED OPTIMIZATION ALGORITHMS 
To solve the problem in (8), BOA and JOA based strategies 

are used in this work. A brief review of these optimization 
algorithms is given below. 

A. BOA 
In the search for better and more efficient algorithms, the bat 

optimization algorithm was introduced in [10]. It is a bio-
inspired strategy based on the echolocation behavior of micro-
bats. By associating each member in the bat population with a 
pulse frequency fi, a velocity vi and a location xi, the main 
equations of the algorithm are: 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽𝑖                    (9) 

𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡−1 − 𝑥∗)𝑓𝑖                   (10) 



 

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡                                (11) 

where fmin and fmax are respectively the minimum and maximum 
values of the pulse frequency, β is a randomly selected number 
in the interval 0 to 1, and x* is the best solution up to the present 
time.  

To provide a way to automatically switch from explorative 
shifts to intensive and local exploitation as the search approaches 
global optimality, the loudness A and pulse rate r can be 
regulated according to the following expressions: 

𝐴𝑖
𝑡+1 = 𝛼𝐴𝑖

𝑡                                  (12) 

𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − exp(−𝛾𝑡)]                         (13) 

with α and   being constants. Detailed information of the 
algorithm and its diverse applications can be found in [7], [10]. 
The flowchart of the BOA strategy is shown in Fig. 2. 

 
Fig. 2. BOA flowchart. 

B. JOA 
JOA is a relatively new optimization technique characterized 

by no algorithm-specific control parameters, which makes it 
very simple to implement and apply [11]. In this case, for a 
candidate solution xi at iteration t, the solution will be updated 
according to the following: 

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑟𝑎𝑛𝑑1(𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡−1)

−𝑟𝑎𝑛𝑑2(𝑥𝑤𝑜𝑟𝑠𝑡 − 𝑥𝑖
𝑡−1)

                 (14) 

where xbest and xworst respectively represent the best and worst 
solutions up to now, and rand1 and rand2 refer to random 
numbers in the range 0 to 1 for each search variable. While the 
second term in (14) represents the tendency of the solution to 

always try to get closer to the best solution in each generation, 
the last term in the expression has to do with moving away from 
the worst solution [11]. As clearly observed from (14), JOA 
represents an algorithm-specific parameter-less optimization 
process. A detailed description of this algorithm and its 
engineering applications can be found in [11], [12]. Fig. 3 
illustrates the flowchart of the JOA approach. 

 
Fig. 3. Flowchart of JOA. 

IV. SIMULATION RESULTS 

A. Design of fuzzy PSSs 
To enhance power system damping and for the purpose of 

illustrating the performance of the considered optimization 
algorithms in this study, the four generators of the test system 
were equipped with FPSSs. As for the involved optimization 
strategies, the number of generations and population size were 
respectively fixed to 100 and 20, and the initial populations were 
set in a randomly way for both BOA and JOA.  Now, for the 
BOA alternative, suggested parameters of the algorithm, as 
given in [7], were used in the studies. In this regard, low and 
high frequency limits were fixed to 0 and 2, respectively, initial 
loudness was randomly chosen in the range {1, 2}, pulse rate 
was initially specified as 0.1, and α and  were settled to 0.9. On 
the other hand, JOA did not require any own algorithm-specific 
control parameters to be set. 

Both optimization alternatives were implemented in Matlab, 
and the study system and FPSSs in Simulink [13], as graphically 
illustrated in Fig. 4. The parameter tuning process in this work 
was carried out under the application of different critical system 
perturbations for the base case operating condition, namely, a 
three phase fault at bus 7 and 9 without line outage. Nonlinear 
time domain simulations were carried out to evaluate each 
candidate solution and compute the cost function value during 
each iterative evolution process. The best final solutions after ten 
runs are given in Table III. Convergence results of cost function 
minimization for the algorithms are illustrated in Fig. 5, and 
corresponding fitness values achieved during the optimization 
process are provided in Table IV. 



 

 
Fig. 4. Matlab/Simulink implementation. 

 
TABLE III.  BEST FINAL SOLUTIONS 

Parameter  FPSS 
Algorithm 

BOA JOA 

K1 

G1 290.54 294.45 

G2 283.59 295.81 

G3 257.61 343.60 

G4 220.49 301.59 

K2 

G1 48.02 47.62 

G2 51.62 52.18 

G3 51.60 47.82 

G4 43.69 35.64 

Scp 

G1 0.62 0.58 

G2 0.49 0.66 

G3 0.22 0.45 

G4 0.41 0.66 

Mcp 

G1 0.94 0.98 

G2 0.64 0.99 

G3 0.73 0.79 

G4 0.71 0.92 
 

 
Fig. 5. Cost function convergence averaged over 10 runs. 

TABLE IV.  FITNESS VALUE DURING OPTIMIZATION 

Algorithm 
Jmin Average, relative 

computational 
time (pu) Best Worst Mean 

BOA 158.98 179.88 166.24 1.00 

JOA 158.59 162.87 160.42 0.92 

From Fig. 5, it can be observed that both BOA and JOA were 
able to achieve comparable convergence rates and average 
precision. From Table IV, it is also clear that best minimizing 
results after ten independent runs are very similar in both 
approaches for the problem under consideration. As for the 
computational time, an average 8% reduction with the JOA 
alternative can be noticed in this study, as compared to BOA. 

B. Test cases and results 
For illustrative purposes, system response under the effect of 

fuzzy PSSs designed with BOA (BOA-FPSS) and JOA (JOA-
FPSS) is investigated for the following test cases: 

1) A three phase fault is applied at bus 8 in the base case 
operating condition (OC1). Then, it is cleared after 5 cycles by 
disconnecting the line between buses 7-8 and 8-9. 

2) A 5% step change is applied on the reference voltage of 
machine G1 for 12 cycles in OC1. 

3) A three phase fault is applied at bus 9 in the operating 
condition OC2, where active power from Area 1 to Area 2 (PB7-

B9) has been increased to 487 MW. The fault is cleared after 8 
cycles with no line outage. 

Power system performance for the test cases above and all 
the perturbations occurring at 1 s is shown in Figs. 6 through 11. 
System behavior with multi-band (MB), conventional , and 
conventional Pa PSSs is also included in the studies for 
comparison purposes [14]. The center frequencies and 
corresponding gains of each band in the MB-PSSs were selected 
according to a desired and nearly flat phase response between 
0.1 Hz and 5 Hz. The settings for the -PSS and Pa-PSSs 
were derived from [8]. Parameters for MB,  and Pa PSSs, 
as used in the study, are provided in the Appendix [14]. 

As can be observed from Fig. 6, the Pa-PSSs fails to keep 
system stability under the large disturbance considered in test 
case 1. For this case, although system synchronism is maintained 
with the rest of PSSs, interarea and local oscillations of the 
sample system are much better damped with MB-PSSs, BOA-
FPSSs and JOA-FPSSs, as can be noticed from Figs. 6 and 7. 

Now, from the results in Figs. 8 and 9, a superior 
performance of MB-PSSs, BOA-FPSSs and JOA-FPSSs in 
damping interarea and local oscillations modes can also be seen 
under the application of a small disturbance, as compared to -
PSSs and Pa-PSSs. It can be observed that these two last PSSs 
show less effectiveness in quickly reaching the steady state of 
the system after applying a 5% step change on the reference 
voltage of generator G1. 

System response to a large perturbation considering a 
somewhat different operating point is illustrated in Figs. 10 and 
11. One more time, the system can more effectively reach stable 
operating conditions with the MB-PSSs, BOA-FPSSs and JOA-
FPSSs. However, it can be noticed that the performance of the 
MB-PSSs has been somehow affected with the change in the 
system operating point since, as compared to the BOA-FPSSs 
and JOA-FPSSs, a longer time for damping interarea and local 
oscillations is perceived with this option. 



 

 
Fig. 6. Simulation results for test case 1: 1-3 and PB7-B9 response. 
 

 
Fig. 7. Simulation results for test case 1: 1-2 and 3-4  response. 
 

  
Fig. 8. Simulation results for test case 2: 1-3 and PB7-B9 response. 

 
Fig. 9. Simulation results for test case 2: 1-2 and 3-4  response. 
 

 
Fig. 10. Simulation results for test case 3: 1-3 and PB7-B9 response. 
 

 
Fig. 11. Simulation results for test case 3: 1-2 and 3-4  response. 



 

To quantitatively measure and compare the performance of 
the different PSSs considered in this study, the computation of 
the cost function (5) was carried out separately for each test case 
and is given in Table V. According to this, JOA-FPSSs are able 
to provide the best performance in Cases 1 and 2, while a 
relatively better response in these terms is obtained with BOA-
FSSs for Case 3. On the other hand, a comparatively poor 
performance is exhibited in general by -PSSs and Pa-PSSs 
in this study. As for MB-PSSs, a remarkable system response 
can be achieved in Case 1 and a pretty good performance can 
also be accomplished in Case 2, as observed from the values of 
J in Table V. However, although the response of MB-PSSs is 
acceptable in Case 3, a significant difference in terms of J is 
noticed against the BOA-FPSSs alternative, which provides the 
minimum value in this case. All these observations coincide with 
the time domain simulation results previously discussed. 
 

TABLE V.  COST FUNCTION VALUE FOR TEST CASES 

PSS 
J 

Case 1 Case 2 Case 3 
MB-PSS 26.51 8.38 105.13 

-PSS 34.69 19.35 184.51 

Pa -PSS Unstable 8.94 95.11 

BOA-FPSS 27.50 6.43 71.20 
JOA-FPSS 24.53 6.25 78.70 

 
V. CONCLUSIONS 

Design of simple fuzzy PSSs using two modern and 
derivative-free optimization algorithms such as BOA and JOA 
has been carried out in this study. Although both strategies were 
able to accomplish comparable results during the optimization 
process, JOA showed on average a lower computational time in 
this sense. When compared to some commonly used lead-lag 
PSSs, such as MB-PSSs, -PSSs and Pa-PSSs, BOA-FPSSs 
and JOA-FPSSs succeeded in providing a relatively better 
damping effect to inte-area and local oscillations in the sample 
multimachine power system. However, in addition to be much 
simpler, JOA is a settings-free optimization method that does not 
require any algorithm-specific control parameters for its 
operation, which makes it more attractive for practical 
applications. 

APPENDIX 
A) Operating conditions 
 

  G1 G2 G3 G4 

OC1 
P 700.00 699.92 719.00 700.00 
Q 91.91 117.70 82.26 82.68 

OC2 
P 750.00 737.14 719.00 700.00 
Q 101.59 115.03 95.11 114.13 

 

  L7 L9 

OC1 
P 950.81 1776.86 
Q -85.54 -87.49 

OC2 
P 960.20 1842.58 
Q -86.39 -85.86 

    P is given in MW and Q in MVAR. 

B) MB,  and Pa PSS settings 
MB-PSS: FL=0.2, FI=1.25, FH=12.0, KL=30.0, KI=40.0, KH=160.0, 

                 VLmax=0.075, VImax= VHmax =0.15 

-PSS: K=30.0, T1=0.05, T2=0.02, T3=3.0, T4=5.4 
 
Pa-PSS: K=3.125, T1=0.06, T2=1.0 
 
Output limits for all PSSs are [-0.15, 0.15]. 
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