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Abstract 
 

The study of behaviour in ecotoxicology allows for a broader understanding of the 

effects of pollution in an ecosystem. Amphibians are vulnerable to contaminant exposure, 

especially during early life stages when they are restricted to a waterbody. Since wood 

frog (Lithobates sylvaticus) tadpoles are exposed to contamination during diluted bitumen 

spills, an assessment of the impact of exposure was needed for freshwater systems. As 

part of the Boreal lake Oil Release Experiment by Additions to Limnocorrals (BOREAL) 

experiment, diluted bitumen was added to lake mesocosms at the International Institute 

for Sustainable Development’s Experimental Lake Area near Kenora, Ontario. Water 

from these mesocosms was transported to separate microcosms in which wood frog 

(Lithobates sylvaticus) tadpoles were reared from Gosner stage 25. Behavioural assays 

were conducted every three to four days in a separate arena and video recorded. Space-

use, sociality, and activity were quantified across a gradient of exposure to diluted 

bitumen infused lake water. No relationship between sociality and space use metrics and 

diluted bitumen concentrations were observed. There was a decrease in activity as diluted 

bitumen concentration increased, however the relationship between activity and diluted 

bitumen exposure should be further investigated to determine the physiological basis for 

this decrease in activity. 
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Introduction 
 

The interaction between hydrocarbons and the marine environment is 

consequential for both water quality and for the quality of life of marine organisms. It is 

known that petroleum exposure in marine environments is harmful to both water quality 

(Paul et al. 2013), as well as marine biota (Brussaard et al. 2016, Nelson et al. 2016). 

Research into the effects of hydrocarbons in freshwater environments and biota has been 

given much less attention in comparison, however (McKnight et al. 2016). Diluted 

bitumen (dilbit) is composed mainly of crude petroleum and diluents. Crude petroleum is 

typically obtained from bituminous tar sands, whereas diluents are composed of natural 

gas condensates, added to liquefy the crude petroleum (Alsaadi et al. 2018). Diluents 

allow for transport through pipelines by reducing viscosity of the tar-like crude 

petroleum. Diluents include compounds such as benzene, toluene, ethylbenzene and 

xylenes, a mixture often referred to as BTEX (Alsaadi et al. 2018). Polyaromatic 

compounds found in tar sands bitumen, such as phenanthrene, are typically the focus of 

dilbit exposure experiments; these are referred to as polycyclic aromatic hydrocarbons 

(PAHs) or polycyclic aromatic compounds (PACs), interchangeably (Alsaadi et al. 2018, 

Harner et al. 2018). Diluents and other contaminants contained in dilbit, including 

naphthenic acids, are of concern for animals in aqueous environments due to their 

toxicity and physiological effects. Naphthenic acids have been shown to decrease growth 

and alter development in amphibian larvae (Melvin and Trudeau 2012), and PAC 

concentrations have been linked to changes in genetic expression of cyp1a (cytochrome 

P4501A encoding gene) and alteration of DNA methylation in yellow perch (McDonnell 
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et al. 2019). The toxicity of dilbit and its components to aquatic life is a cause for 

concern for exposed freshwater ecosystems. 

The accidental spill of dilbit into the freshwater environment could potentially 

have harmful effects on freshwater biota. Toxicity of dilbit to aquatic organisms in 

freshwater has been demonstrated experimentally (Dew et al. 2015). While there has not 

been sufficient research into toxicity in aquatic biota, recent studies illustrate 

contamination effects across various trophic levels: in microbes, the toxicity of diluted 

bitumen has been observed with lower biomass and activity, due to a decrease in 

photosynthetic microbe population with exposure (Yergeau et al. 2013). In invertebrates, 

dilbit exposure has led to observed mortality and decreased reproductive success in 

Ceriodaphnia dubia (Robidoux et al. 2018). Fish populations also suffer from dilbit 

exposure in freshwater, as it can cause reduced hatching success, embryonic 

malformations, and reduced size in fathead minnows (Colavecchia et al.2004). With 

increasing focus on the method of transport of dilbit through pipelines, the need for an 

assessment of the effects of dilbit on freshwater environments and biota has become more 

urgent. 

Quantifying effects of dilbit is particularly important for amphibian species 

because they are confined to waterbodies in early life stages (i.e., eggs and tadpoles), 

before becoming metamorphs around Gosner stage 42 (Gosner 1960). Furthermore, 

amphibians at large are at risk from habitat loss (Ficetola et al. 2015) and are often used 

as indicators of ecosystem stress (Welsh and Ollivier 1998). Thus, knowing how dilbit 

affects amphibians may play a role in conservation efforts. Lithobates sylvaticus, or 

Wood Frog tadpoles, were chosen as a model for amphibian species as they have a broad 
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geographical and ecological range with habitats ranging across North America (Dodd 

2013). Furthermore, it has already been established that PAH compounds are absorbed 

into wood frog tadpole tissues with exposure to dilbit (Mundy et al. 2019). Knowing how 

wood frogs respond to dilbit exposure would be useful for determining how amphibians 

might respond to dilbit across a range of biomes.  

One understudied aspect of wood frog biology, with respect to dilbit and other 

contaminants, is behaviour. Animal behaviour as a discipline has sought to understand 

both at an evolutionary and mechanistic level why animals exhibit specific behaviours 

when interacting with each other and the environments in which they live.  Animal 

behaviour is not purely shaped by only genetics or only environmental circumstance, but 

it is an interaction between the two. Interactions with the environment can shape 

behaviour tendencies over time, such as in the adaptation of great tit (Parus major) 

dialect in woodland or plains habitat (Hunter and Krebs 1979). In this way, behaviour is 

central to the evolutionary framework, as the reproductive fitness and success of animals 

relies heavily on behavioural tendencies. This framework is illustrated by Careau and 

Garland (2012) as they include behaviour as central not only to the energetics of 

individuals, but also to the resulting Darwinian fitness of individuals. Animals that are 

more suited to adapting to new environmental circumstances, such as contamination, will 

pass on their traits and those behavioural responses to future generations.  

The link between behavioural tendencies and contamination has been explored 

previously in tadpoles. Pesticides, such as carbaryl, have been observed to alter response 

to predator cues in leopard plains tadpoles (Bridges 1997). Escape behaviours may also 

be altered upon exposure to neonicotinoids in wood frog tadpoles (Lee‐Jenkins and 
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Robinson 2018). As there is a link between contamination and behaviour in tadpoles, 

behavioural tendencies with respect to dilbit exposure needs to be explored.  

The objective of this experiment was to determine whether dilbit exposure, in 

field conditions, would affect wood frog tadpole behaviour. I hypothesized that 

behavioural change would occur, and that behavioural effects would increase with 

increasing concentration of dilbit. Specifically, I predicted that activity would decrease, 

and that sociality and space use would change because of that decreased activity in 

individuals.   

Methods 
 

Study Area 

 

All experimental procedures were performed at the International Institute for 

Sustainable Development’s Experimental Lake Area (IISD-ELA) in Northwestern 

Ontario, Canada. The Boreal lake Oil Release Experiment by Additions to Limnocorrals 

or BOREAL project was initiated in the summer of 2017 to provide assessment of the 

effects of dilbit on a boreal lake. The BOREAL project has four main areas of inquiry, 

with experiments focused at assessing the fate, toxicity, ecosystem structure and function, 

and bioaccumulation of dilbit in the freshwater environment. Briefly, nine 10-m diameter 

decagonal mesocosms were constructed in Lake 260 (49°41'56.0"N, 93°45'57.9"W) at 

IISD-ELA and were subsequently pinned to the sediment floor. Eight mesocosms were 

contained within booming to separate experimental mesocosms from the surrounding 

lake waters. A far-field control was constructed outside the booming (Appendix 1). Inside 

a mesocosm, the depth was approximately 2 m (depending on depth of sediment). Water 
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chemistry and other physical factors were monitored in each mesocosm prior to dilbit 

addition. Mesocosms were established two weeks prior to dilbit addition to allow for re-

sedimentation and stabilization of the mesocosm post-construction. Sampling ports were 

installed for water sampling, with the water intake approximately at one-meter depth for 

extraction with diaphragm pumps. 

Rearing Procedure 

 

One Lithobates sylvaticus egg mass was removed from Lake 227 at the IISD-ELA 

on May 5, 2018 and transferred to rearing facilities. A 600 L tank was partitioned into 

three separate rearing pools and equipped with aerators and predator meshes (Appendix 

2). The egg mass was split into three equal parts, with each reared in a separate partition. 

The rearing tanks were surrounded by a water bath to keep temperature consistent and 

contained water from Lake 260. Water changes were performed with pristine water from 

Lake 260 regularly (approximately every three to four days) on each of the partitions in 

the rearing setup to ensure suitable water quality. During early life stages, eggs were 

suspended in fishnets below the surface of the partitioned sections., Tadpoles hatched on 

approximately May 15th, 2018. During rearing, tadpoles were fed frozen spinach 

liberally, and were reared until approximately Gosner Stage 25 (Gosner 1960). After 

reaching this developmental stage, 360 tadpoles were transferred to the field setup.  

Microcosms and tadpole husbandry 

 

Transferred tadpoles were held in 16 L stainless steel tanks filled with water taken 

from the BOREAL mesocosms. Twenty-four stainless steel tanks were first soaked in 

water from Lake 260 and potential contaminants rinsed out with lake water. The tanks 
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were organized into three groups of eight and were filled with water taken from the 

mesocosm that corresponded to their respective treatment (Appendix 3). Each dilbit 

treatment had three replicates which were assigned with stratified randomization. 

Fifteen tadpoles were placed in each microcosm on June 7, 2018. From June 7-

20th, 2018, tadpoles in each microcosm were fed 10 g of frozen spinach every other day. 

Residual waste was cleaned from microcosms daily and water changes, morphological 

assays (data not included), and behavioural assays were performed every three-four days 

on a rotating schedule. Water changes involved the use of 24 L portable water jugs 

assigned to each treatment, which could be filled by diaphragm pump at each 

mesocosm’s sampling port. Fifty percent of the microcosm volume (8 L) was removed 

and stored in wastewater jugs, before being replenished with 8 L of fresh mesocosm 

water. Wastewater was returned to the mesocosm of origin. Mesocosm four (M4), which 

was within booming, was used for the control treatment water changes until dilbit 

exposure, after which point the far-field control (M9) was used for the control replicates 

to reduce risk of atmospheric deposition. In analyses, the control treatment is referred to 

as M4.  

Dilbit at various concentrations was added to the mesocosms in a simulated spill 

by Environment Canada employees and trained personnel on June 20th, 2018 (Table 1). 

From June 21–July 9, 2018, microcosm water changes used contaminated water from the 

various mesocosms (i.e., each microcosm received water from their respective treated 

mesocosm). The first water changes of the post-exposure period (June 21) used 

mesocosm water obtained 36 h after initial mesocosm exposure. Behavioural assays, 

morphological assays (not examined in this experiment), and water changes occurred on 
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a rotating schedule for the duration of sampling. Dissolved oxygen (DO) and temperature 

were monitored daily with a handheld probe (Hach LDO10105 IntelliCAL LDO Rugged 

Probe) throughout the experiment (see Appendix 8-11). pH was monitored daily with an 

IntelliCAL PHC101 Field Low Maintenance Gel Filled pH Electrode (see Appendix 8-

11). Each microcosm continued to be given 10 g of frozen spinach every other day 

throughout the duration of the experiment, and residual waste was cleaned from 

microcosms daily. Floats were added to the tanks when tadpoles began to metamorphize 

to higher Gosner Stages, as they required room to breathe and rest above water. 

Table 1: Dilbit dosage data of experimental mesocosms and microcosms. Volume of 

dilbit added to each experimental mesocosm on Lake 260, with the approximate 

concentrations of total petroleum hydrocarbons (TPH) for each treatment in both 

mesocosms and microcosms are detailed. TPH measurements for mesocosms were 

collected on June 28, 2018. TPH measurements for microcosms were collected on July 9, 

2018. Total petroleum hydrocarbons present in mesocosms significantly differ between 

control and treated mesocosms. Microcosm TPHs are not quite as variable between 

control and treatments in all (n) microcosm replicates (Stoyanovich et al. 2019, Patterson 

et al. 2019, unpublished data).  

 

Mesocosm  Treatment 

(Dilbit:Water)  

Mesocosm 

Dilbit 

Dose (L) 

Mesocosm 

TPH (µg/L) 

Microcosm 

Mean TPH 

(µg/L) 

n 

M1  1:1,000 179.78 1191 ± 109 1017.73 ± 48.24 3 

M8  1:2,100 81.83 743 ± 139.26 697.24 ± 67.22 3 

M3  1:4,600 42.34 533 ± 35.63 654.03 ± 94.85 3 

M7  1:10,000 18.13 223 ± 75.16 468.08 ± 36.25 3 

M2  1:21,000 5.51 223 ± 6.22 552.82 ± 260.64 3 

M5  1:46,000 2.87 199 ± 0.06 416.79 ± 3.17 2 

M6  1:100,000 1.45 185 ± 28.69 319.46 ± 26.64 3 

M4  Control 0.00 80 ± 59.55 436.9 ± 56.89 3 
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Behavioural Assays 

 

Behavioural assays, consisting of an open-arena test (Carlson and Langkilde 

2013), were performed on five individuals randomly selected from each microcosm and 

transferred to separate behavioural arenas (24 cm x 28 cm x 14 cm; Appendix 4). 

Tadpoles were acclimated in their behavioural arenas for at least 10 min before being 

moved to a tabletop surface and filmed for 10 min. Transfer and design in an open-field 

setup was performed as described by Carlson and Langkilde (2013). All filming was done 

with five Activeon CX Gold Plus action cameras at a resolution of 1080P at 60 frames 

per second, with a narrow field of view. All animal collection and handling procedures 

were done in accordance with Queen’s University and University of Winnipeg Animal 

Care Committee guidelines. 

Video Analysis 

 

Three behavioural metrics were analyzed in this experiment: activity, sociality, 

and space-use. Activity, or total movement within a behavioural arena, was observed 

through counting lines crossed on a grid overlay within a thirty second interval. Sociality 

was measured as the likelihood of individuals to aggregate with other individuals, 

exhibiting social behaviour. Like fish, tadpoles are more exposed to potential predators in 

open water, so frequenting open spaces (i.e., the center) in a behavioural arena indicates 

bolder individuals than those that remain close to edges (Carlson and Langkilde 2013). In 

this way, space use in the behavioural arena was used as a measure of boldness.  

The 10 min videos were split into 600 photos (one frame per second) with the 

pathtrackr R package. Twenty photos representing every 30s interval were selected for 
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analysis. These twenty photos began at 30 seconds and concluded with the frame at ten 

minutes (frame 600). If a video did not have 600 frames, the number of frames needed for 

a ten-minute analysis was subtracted from the initial frame used. For example, a video 

with 599 frames would begin analysis on frame 29 and proceed every thirty frames. Each 

of the five tadpoles present in the behavioural arena was analyzed individually. Location 

of the tadpole was quantified through use of a 6 x 7 grid overlay (Appendix 5) over the 

video frames observed. An individual was recorded as being within a square on the grid 

overlay if a majority of the tadpole’s body, excluding the tail, was within the square’s 

borders. The tadpole’s location was also denoted as being in an outer, middle, or inner 

square. Activity was measured by comparing the locations of each individual after each 

30s interval. The number of lines crossed, over the shortest distance to reach one grid 

location from a tadpole’s previous location, was counted (Appendix 6). The first frame 

observed (e.g. Frame 30) always had 0 lines crossed in activity, as there was no 

previously observed frame, so it was removed from the calculation of mean activity. 

Sociality was quantified as the number of tadpoles within one grid unit of the center of an 

individual’s body at each frame (Appendix 7).  

Data Analysis 

 

Activity and sociality were plotted against dilbit concentration in a linear mixed 

effects (LME) model to determine whether there was any relationship between the two 

factors, with sampling day as a random effect. Sampling day was chosen as a random 

effect because a developmental effect was observed during initial data analysis. For this 

reason, day 18 was removed from all analysis after a significant decrease in activity was 
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observed. Individual tadpoles had metamorphosized to grow large limbs and were less 

likely to swim at day 18. 

To create a LME model with activity, the mean number of lines crossed per 

individual was averaged. These values were added together for each of the five 

individuals present in a replicate and averaged for each video recorded. This mean 

number of lines crossed per video was compared to mesocosm dilbit dose in the LME 

model. 

To create a LME model with sociality, the mean number of proximal tadpoles 

observed per individual was averaged. These values were added together for each of the 

five individuals present in a replicate and averaged for each video recorded. This mean 

number of proximal tadpoles per video was compared to mesocosm dilbit dose in the 

LME model. 

To analyze space use, the percentage of frames spent in outer squares compared to 

middle and inner squares was calculated for each individual. Those percentages were 

averaged per five individuals in a replicate, for each video recorded. Percentage of time 

spent in the outer arena was plotted against mesocosm dilbit dose. 

When collecting observations after dilbit exposure, replicate M5B experienced 

significant mortality and thus was eliminated from further analysis. 

Results  
 

While experimental microcosms were not in Lake 260, much of the same 

environmental variation was present throughout replicates. Results from water quality 
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monitoring in microcosms indicate that temperature, pH, and DO conditions were quite 

variable among the different days when behavioural sampling took place (Appendix 8-

11). When comparing microcosms measured on the same day however, readings were 

relatively consistent between treatments, except for the control (with no dilbit added), as 

seen in Tables 2-5.  

Table 2: Water quality measurements of microcosms from the first day post-exposure, on 

which behavioural sampling took place. Mean pH, temperature, and DO (mg/L and 

percent saturation) were observed for replicates of all treatments. (Patterson et al. 2019, 

unpublished data) 

 

Days 

Post-

Exposure 

Treatment Mesocosm 

Dilbit 

Dose (L)  

pH D.O. 

(mg/L) 

D.O. (%) Temp. 

(˚Celsius) 

1 M4 0.00 7.6 ± 0.5 7.6 ± 1.0 98.5 ± 13.6 25.9 ± 0.3 

1 M6 1.45 8.6 ± 0.7 9.2 ± 0.6 118.7 ± 7.5 25.3 ± 0.2 

1 M5 2.87 9.1 ± 0.5 9.4 ± 0.7 122.1 ± 8.8 25.7 ± 0.3 

1 M2 5.51 9.2 ± 0.3 9.6 ± 0.5 124.5 ± 6.4 25.5 ± 0.2 

1 M7 18.13 8.6 ± 0.4 8.9 ± 0.4 115.5 ± 6.3 25.5 ± 0.5 

1 M3 42.34 9.3 ± 0.2 9.5 ± 0.3 123.7 ± 3.4 25.6 ± 0.3 

1 M8 81.83 8.9 ± 0.3 9.1 ± 0.5 118.4 ± 6.7 25.3 ± 0.05 

1 M1 179.78 8.9 ± 0.5 9.1 ± 0.7 117.5 ± 9.3 25.5 ± 0.09 
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Table 3: Water quality measurements of microcosms from the fifth day post-exposure, 

on which behavioural sampling took place. Mean pH, temperature, and DO (mg/L and 

percent saturation) were observed for replicates of all treatments. (Patterson et al. 2019, 

unpublished data) 

 

Days 

Post-

Exposure 

Treatment Mesocosm 

Dilbit 

Dose (L) 

 

pH D.O. 

(mg/L) 

D.O. (%) Temp. 

(˚Celsius) 

5 M4 0.00 6.7 ± 0.1 4.4 ± 0.4 50.3 ± 4.8 18.7 ± 0.5 

5 M6 1.45 7.3 ± 0.04 6.1 ± 0.3 68.5 ± 2.9 18.8 ± 0.2 

5 M5 2.87 7.3 ± 0.09 6.3 ± 0.5 70.6 ± 4.6 18.4 ± 0.3 

5 M2 5.51 7.2 ± 0.005 6.8 ± 0.2 76.7 ± 2.3 18.5 ± 0.05 

5 M7 18.13 7.4 ± 0.4 6.6 ± 0.2 75.5 ± 1.5 18.4 ± 0.08 

5 M3 42.34 7.1 ± 0.02 6.6 ± 0.3 73.8 ± 3.5 18.4 ± 0.09 

5 M8 81.83 7.1 ± 0.05 6.6 ± 0.5 75.2 ± 6.2 18.4 ± 0.09 

5 M1 179.78 7.1 ± 0.08 6.4 ± 0.6 72.3 ± 6.7 18.5 

 

 

 

 

 

 

 

 

 

 



13 
 

 
 

Table 4: Water quality measurements of microcosms from the ninth day post-exposure, 

on which behavioural sampling took place. Mean pH, temperature, and DO (mg/L and 

percent saturation) were observed for replicates of all treatments. (Patterson et al. 2019, 

unpublished data) 

 

Days 

Post-

Exposure 

Treatment Mesocosm 

Dilbit 

Dose (L) 

 

pH D.O. 

(mg/L) 

D.O. (%) Temp. 

(˚Celsius) 

9 M4 0.00 7.1 ± 0.08 3.5 ± 0.4 41.1 ± 4.4 19.8 ± 0.2 

9 M6 1.45 7.5 ± 0.09 4.9 ± 0.5 57.2 ± 5.7 20.1 ± 0.3 

9 M5 2.87 7.3 ± 0.07 5.0 ± 0.6 58.5 ± 6.9 19.7 ± 0.09 

9 M2 5.51 7.1 ± 0.05 4.7 ± 0.7 54.9 ± 8.1 19.5 ± 0.09 

9 M7 18.13 7.1 ± 0.04 4.8 ± 0.5 54.7 ± 5.5 19.5 ± 0.09 

9 M3 42.34 7.1 ± 0.04 4.4 ± 0.8 51.3 ± 8.7 19.6 ± 0.05 

9 M8 81.83 7.1 ± 0.07 5.2 ± 1.0 59.9 ± 12.0 19.6 ± 0.05 

9 M1 179.78 7.1 ± 0.04 4.5 ± 0.6 52.3 ± 7.1 19.6 ± 0.05 
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Table 5: Water quality measurements of microcosms from the twelfth day post-exposure, 

on which behavioural sampling took place. Mean pH, temperature, and DO (mg/L and 

percent saturation) were observed for replicates of all treatments. (Patterson et al. 2019, 

unpublished data) 

 

Days 

Post-

Exposure 

Treatment Mesocosm 

Dilbit 

Dose (L) 

 

pH D.O. 

(mg/L) 

D.O. (%) Temp. 

(˚Celsius) 

12 M4 0.00 8.9 ± 0.4 8.2 ± 2.6 98 ± 30.6 21.8 ± 0.2 

12 M6 1.45 9.4 ± 1.0 11.0 ± 1.2 131.4 ± 13.7 21.2 ± 0.4 

12 M5 2.87 9.9 ± 0.05 11.1 ± 0.4 132.2 ± 3.9 20.9 ± 0.05 

12 M2 5.51 9.6 ± 0.7 10.7 ± 1.4 127.7 ± 16.5 20.8 ± 0.2 

12 M7 18.13 10.09 ± 0.4 11.9 ± 1.1 141.2 ± 14.2 21.0 ± 0.3 

12 M3 42.34 10.1 ± 0.04 11.5 ± 0.3 135.8 ± 3.9 21.1 ± 0.09 

12 M8 81.83 10.0 ± 0.3 11.3 ± 0.6 134.3 ± 7.3 21.1 ± 0.1 

12 M1 179.78 10.2 ± 0.2 12.6 ± 0.7 149.6 ± 8.5 21.3 ± 0.2 
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There was a significant decrease in mean activity per behavioural arena observed 

at increased mesocosm dosage (p= 0.045, n= 16; Figure 1). The mean activity, or lines 

crossed each 30s, for all five individuals, per microcosm (video) analyzed was 4.27± 1.02 

(Appendix 18-25). The mean activity for replicates analyzed at the highest treatment, M1 

(179.78 L mesocosm dilbit dose), was 4.18± 0.75 lines crossed (Appendix 25). In the 

control treatment, M4 (0.00 L mesocosm dilbit dose), the mean activity was 4.59± 1.04 

lines crossed (Appendix 18). There was no relationship between mean proximate tadpoles 

and concentration of dilbit across all individuals in a particular microcosm (p= 0.85, n= 

16) (Figure 2), with a mean of 8.04± 1.82 proximal tadpoles per microcosm (see 

Appendix 14-15). Space use within the behavioural arena was consistent throughout trials 

and did not change with increasing dilbit concentration (Figure 3). Individuals spent 

nearly 100 % of the time around the outer edges of the arena, with few individuals 

venturing towards the open water in the center (see Appendix 16-17).  
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Figure 1: Mean activity index for each video plotted against mesocosm dosage from the 

water transferred to microcosms in a linear mixed effects model. A significant decrease is 

seen as the mesocosm dilbit dose increases (p= 0.045, n= 16). 
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Figure 2: Mean social index, or the number of proximal tadpoles per video, plotted 

against mesocosm dosage from the water transferred to microcosms in a linear mixed 

effects model. No correlation between mean proximal tadpoles and dilbit level was 

observed (p= 0.85, n= 16). 
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Figure 3: Percentage of frames observed where individuals are within the outer squares 

of the grid overlay plotted against mesocosm dilbit dose. Individuals spent almost all of 

the frames observed within the outer edges of the behavioural arena, with no change in 

space use with respect to increasing dilbit concentration in the mesocosm water 

transferred to microcosms. 
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Discussion 
 

There was a decrease in mean activity in replicates with increased dilbit dosage to 

mesocosms. While a definite cause for the decrease is unknown, elsewhere it has been 

suggested that dilbit exposure can adversely affect cardiac muscle in fish species 

(Alderman et al. 2016, Nelson et al. 2016). A decrease in cardiac function could lead to 

loss of activity in tadpoles with high PAH concentration in tissue. Further research is 

needed on the physiological effects of PAH retention in amphibian tissues before 

correlations between exposure and behavioural syndromes can be made, however. This 

decrease in mean activity is notable because there is inherent variability in conditions and 

individuals in any field-based experiment. Ecology experiments done in the field do not 

have controlled weather conditions, and changes in lake water characteristics (i.e. pH, 

DO, etc.) are not under the restrictions of a lab-based setup. For this reason, lab-based 

and field experiments often have differing results (Mikó et al. 2015, Saura-Mas 2002). To 

see any effects of exposure across replicates in such a dynamic system, like that of an 

actual lake environment, is worthy of further investigation.  

Contaminants have previously been shown to cause changes in activity, or 

swimming behaviour, in tadpoles. Lajmanovich et al. (2019) performed an experiment in 

which Odontophrynus americanus tadpoles were exposed to pyriproxyfen pesticide, 

resulting in a multitude of physiological changes, such as a decrease in cardiac activity, 

as well as a decrease in swimming activity. As acetylcholinesterase activity was also 

measured to have increased significantly with exposure, acetylcholinesterase activity was 

negatively correlated with their swimming behaviour endpoints. Acetylcholinesterase is 

used at neuromuscular junctions to inhibit the activity of acetylcholine (Colović et al. 
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2013), thus placing a control over muscular, and thus swimming activity. The observation 

of contaminants such as pyriproxyfen in changing acetylcholinesterase activity, and 

therefore neuromuscular activity and subsequent behaviour is significant. This finding 

suggests that neuromuscular functions can influence the activity of tadpoles, but also that 

contaminants and their physiological effects can be linked to behavioural change. It is 

plausible that dilbit exposure in this experiment affected similar physiological pathways, 

leading to reduced activity. Integrative questions such as these however were beyond the 

scope of this experiment. That is why it is crucial to research the connection between 

PAH retention and physiological change, with respect to activity in future.  

There are several possible explanations as to why there was not a significant 

behavioural change in sociality and space use in wood frog tadpoles with dilbit exposure. 

Firstly, the concentrations chosen to use in the BOREAL experiment were not very high, 

with the highest concentration having a dilbit to water ratio of 1:1000. It is important to 

note that the dilbit concentrations chosen were more relevant to concentrations in a 

potential spill, and thus were more relevant to wood frog exposure. A positive control 

where dilbit concentration could be highly exaggerated may have given more definitive 

trends in activity. This additional replicate would have shown what higher concentrations 

could be capable of in terms of behavioural change. Another possibility as to why 

changes in space use and sociality were not observed would be the variability of the 

mesocosm water change itself. The sampling port for water samples which were used for 

water changes was located at the midpoint, at approximately a one-meter depth, below 

the surface. It is unlikely that contaminants moved down the water column uniformly, 

and the window for ideal PAH exposure could have been missed within the timeframe of 
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this experiment. Unfortunately, variability in the distribution of contaminants could not 

have been prevented with the weathering of the dilbit. The dynamic nature of the surface 

skim itself causes further uncertainty about the distribution of contaminants in the water 

column. It is possible therefore that contaminant exposure within the duration of the 

experiment was not uniform in exposure length and intensity, which may have influenced 

contaminant uptake into tissue. There is higher exposure to volatile compounds such as 

benzene before volatilization, earlier in a dilbit spill. Because of the immense sampling 

that took place immediately after the simulated spill, as well as safety concerns, the 

mesocosm water was added to microcosms 36h after initial exposure. It is possible that if 

these contaminants cause immediate behavioural change in spill sites, that water changes 

starting closer to initial exposure (2h, 5h, 10h, 24h, etc.) may have shown greater effects 

on behaviour.  

With a recent study demonstrating PAC retention in tissues of wood frog tadpoles 

(Mundy et al. 2019), it is clear that with dilbit exposure, PACs will be retained in tissues. 

While the main focus of Mundy et al. was not the effects of exposure, it also 

demonstrated one component of the lake ecosystem which was not present within the 

microcosms used in this experiment. The microcosms did not incorporate sediment from 

Lake 260, thus tissue retention may not have occurred to the extent it might have 

otherwise. Without significant PAH retention in tissues, potential physiological changes 

and behavioural changes caused by the contaminants also would not occur to the extent 

that it might have. 

 Metamorphic staging and the timeframe under which exposure took place may 

have influenced the results of this experiment. Diluted bitumen and its related 
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contaminants have been tied to changes in development in aquatic vertebrates 

(Colavecchia et al. 2004, Colavecchia et al. 2007, Alsaadi et al. 2018, McDonnell et al. 

2019, Melvin and Trudeau 2012,), ranging from decreased hatching success, embryonic 

malformations, to outright mortality. It is possible that tadpoles may have shown greater 

behavioural change if tadpoles were hatched and reared in contaminated water. However, 

the time at which egg masses had to be collected and reared did not correspond to the 

exposure period for BOREAL. Exposure of tadpole eggs during rearing and throughout 

early life stages may have yielded different results.  

One of the advantages to ecosystem-based ecotoxicology and the use of field-

based experiments for projects such as these is that conditions, while variable, will more 

closely resemble natural ecosystems. While pH and DO were not identical in each 

microcosm replicate analyzed, this is similar to changing conditions in a waterbody. pH 

and dissolved oxygen between microcosm replicates were relatively consistent, however 

these values changed significantly by sampling day. The changes in pH and DO may be 

explained by the water change schedule, as dissolved oxygen and pH usually increased 

on sampling days closer to water changes (Patterson et al. 2019, unpublished data). The 

differences in pH and DO between behavioural sampling days may have also been a 

result of dilbit addition, as the control treatment, M4, typically had differing 

measurements in pH and DO from the dilbit-treated mesocosm water. The contribution of 

dilbit to water quality will be clearer with further data from the BOREAL project. The 

change in pH and DO may have affected behavioural results, but since water quality 

measurements were relatively consistent by sampling day, if there was a significant 
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change to behavioural metrics from these factors they would have been present across 

each replicate on a particular sampling day, which was not the case.  

Unfortunately, the TPH levels between microcosms was not highly variable 

between treatment and control replicates. This is concerning, as the exposure to 

contaminants, namely hydrocarbons, may not have been similar between the mesocosm 

and microcosm environment. Uptake of contaminants into tissue may have also affected 

this reading. Sampling of microcosm TPH levels occurred days after the final water 

change, so it is possible that these measurements do not accurately represent the TPH 

levels seen immediately after a water change. Eutrophication was also variable between 

microcosms, which might have influenced the water quality. It must be acknowledged 

that regardless of precautions taken, field-based studies of tadpole behaviour will always 

differ from the results of those conducted in a lab setting (Mikó et al. 2015). Like within 

a lake, competition for food was present among tadpoles in each replicate. While each 

replicate was fed the same mass of frozen spinach, competition for food resources most 

likely led to the size discrepancy seen in individuals, even with individuals transferred to 

the microcosms initially having similar Gosner staging. Difference in staging and mass 

within the timeframe of the exposure may have influenced results. Mass and other 

physiological parameters will be incorporated into the statistical model in future.  

 Overall this study supports the view that dilbit exposure likely decreases activity 

in wood frog tadpoles. At the concentrations used, exposure does not adversely affect 

their space use and sociality, however. This decrease in activity is concerning, 

considering its importance for the survival of wood frog tadpoles in their early life stages. 

As behavioural change could have ecosystem-wide implications (Sih et al. 2004), any 
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behavioural affects from exposure is disadvantageous for conservation of amphibian 

species at risk. 

Conclusions 
 

1. Mean tadpole activity (lines crossed) decreased across microcosms in tadpoles 

with increasing concentration of dilbit during exposure.  

2. Sociality, or the likelihood of individual tadpoles to aggregate in groups, was not 

influenced by increased dilbit concentrations.  

3. Space-use in tadpoles focused on swimming around the outer edges of the 

behavioural arenas. This trend was not influenced by increased dilbit 

concentrations. 
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Appendix  
 

Appendix 1: Mesocosm setup on Lake 260 (left). Mesocosms 1-8 (M1-M8) were within 

booming to contain the dilbit exposure, and Mesocosm 9 (M9) outside the booming, to 

act as a far-field control. Lakeside view of a mesocosm prior to exposure (right). 
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Appendix 2: Rearing setup used to hatch and raise tadpoles from the partitioned egg 

mass. 

 

 

 

Appendix 3: Organization of replicates in microcosm setup (left). Microcosms after 

tadpole addition and dilbit exposure (right). 
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Appendix 4: Behavioural assay configuration for sampling. Behavioural arenas were 

organized horizontally on a level tabletop surface, with cameras one through five (right to 

left) positioned directly above for filming.  

 

 

 

 

 

 

 



31 
 

 
 

Appendix 5: Grid overlay used in space use analysis, indicating both the square number 

and classification as an inner, middle, or outer square on the grid. 
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Appendix 6: A demonstration of space use and activity in two frames of video with its 

grid overlay. The first frame includes the original position of the individual being 

observed (left), circled in red, and the number of lines on the grid these individual crosses 

to reach its next position thirty seconds later (right). The individual crosses seven lines in 

total, which would be recorded as its activity for that 30 sec interval, and its grid location 

(Appendix 5) recorded for its space use. 
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Appendix 7: Method for determination of proximal tadpoles. When two or more tadpole 

bodies are within one grid length from each other (left), two circles, whose radius is 

equivalent to one grid length, centered on the tadpole’s body, is compared between the 

individuals. If the radii overlap with the center of another tadpole’s body (right), the 

tadpoles were considered proximal. 
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Appendix 8: Microcosm water quality data recorded on June 22, 2018, or one day after 

dilbit exposure had begun, with respective averages. (Patterson et al. 2019, unpublished 

data) 

 

Tank 
Treatment 

Replicate 
pH 

D.O. 

(mg/L) 
D.O. % 

Temp. 

(˚Celsius) 

M1A 1A 9.51 9.95 129.4 25.6 

M1B 1B 8.94 9.00 116.6 25.4 

M1C 1C 8.22 8.20 106.6 25.6 

M2A 2A 9.17 9.62 125.7 25.8 

M2B 2B 8.81 9.00 116.2 25.2 

M2C 2C 9.55 10.16 131.7 25.4 

M3A 3A 9.02 9.15 119.3 25.7 

M3B 3B 9.46 9.90 127.7 25.1 

M3C 3C 9.41 9.49 124.1 25.9 

M4A 4A 8.32 8.79 115.2 26.0 

M4B 4B 7.22 6.37 82.0 25.5 

M4C 4C 7.40 7.51 98.4 26.1 

M5A 5A 9.56 10.12 132.6 26.0 

M5B 5B 9.31 9.49 122.8 25.3 

M5C 5C 8.50 8.50 111.0 25.8 

M6A 6A 7.62 8.44 109.3 25.3 

M6B 6B 9.19 9.91 127.6 25.1 

M6C 6C 9.02 9.19 119.3 25.5 

M7A 7A 8.65 8.66 113.0 25.8 

M7B 7B 8.17 8.53 109.4 24.8 

M7C 7C 9.12 9.49 124.1 25.9 

M8A 8A 8.58 8.68 112.5 25.4 

M8B 8B 9.40 9.87 127.7 25.3 

M8C 8C 8.82 8.89 114.9 25.3 

Mean 8.79 9.04 117.4 25.5 

Standard Deviation (+/-) 0.66 0.86 11.27 0.33 
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Appendix 9: Microcosm water quality data recorded on June 26, 2018, or five days after 

dilbit exposure had begun, with respective averages. (Patterson et al. 2019, unpublished 

data) 

Tank Treatment 

Replicate 

pH D.O. 

(mg/L) 

D.O. % Temp. 

(˚Celsius) 

M1A 1A 7.18 7.01 78.9 18.5 

M1B 1B 7.16 6.63 74.9 18.5 

M1C 1C 7.01 5.63 63.1 18.5 

M2A 2A 7.25 6.93 78.1 18.5 

M2B 2B 7.24 6.56 73.5 18.4 

M2C 2C 7.25 7.00 78.6 18.5 

M3A 3A 7.15 6.89 77.4 18.5 

M3B 3B 7.15 6.70 75.0 18.3 

M3C 3C 7.10 6.16 69.1 18.5 

M4A 4A 6.48 4.95 56.4 19.3 

M4B 4B 6.78 3.98 44.8 18.0 

M4C 4C 6.78 4.36 49.8 18.7 

M5A 5A 7.34 6.81 75.1 18.6 

M5B 5B 7.30 6.46 72.5 18.0 

M5C 5C 7.14 5.71 64.2 18.6 

M6A 6A 7.27 5.80 66.0 19.1 

M6B 6B 7.23 6.44 72.6 18.6 

M6C 6C 7.32 5.94 66.9 18.6 

M7A 7A 7.11 6.34 75.8 18.3 

M7B 7B 7.91 6.88 77.1 18.4 

M7C 7C 7.15 6.55 73.5 18.5 

M8A 8A 7.15 6.89 78.7 18.5 

M8B 8B 7.19 7.17 80.5 18.3 

M8C 8C 7.08 5.89 66.5 18.5 

Mean 7.16 6.24 70.4 18.5 

Standard Deviation (+/-) 0.25 0.82 9.13 0.27 
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Appendix 10: Microcosm water quality data recorded on June 30, 2018, or nine days 

after dilbit exposure had begun, with respective averages. (Patterson et al. 2019, 

unpublished data) 

Tank 
Treatment 

Replicate 
pH 

D.O. 

(mg/L) 
D.O. % 

Temp. 

(˚Celsius) 

M1A 1A 7.11 5.18 59.9 19.6 

M1B 1B 7.14 4.69 54.2 19.6 

M1C 1C 7.04 3.70 42.9 19.7 

M2A 2A 7.08 3.77 43.6 19.6 

M2B 2B 7.16 5.07 58.5 19.4 

M2C 2C 7.19 5.40 62.5 19.6 

M3A 3A 7.04 3.57 41.3 19.6 

M3B 3B 7.10 4.34 50.1 19.5 

M3C 3C 7.14 5.42 62.6 19.6 

M4A 4A 7.16 3.14 36.8 20.1 

M4B 4B 7.00 3.41 39.5 19.6 

M4C 4C 6.99 4.05 47.1 19.8 

M5A 5A 7.36 5.22 60.6 19.8 

M5B 5B 7.37 5.68 65.7 19.6 

M5C 5C 7.22 4.24 49.1 19.6 

M6A 6A 7.60 4.17 49.1 20.5 

M6B 6B 7.43 5.20 60.7 20.0 

M6C 6C 7.39 5.31 61.7 19.8 

M7A 7A 7.09 4.41 50.1 19.6 

M7B 7B 7.17 5.41 62.4 19.4 

M7C 7C 7.10 4.47 51.7 19.6 

M8A 8A 7.06 4.14 47.9 19.6 

M8B 8B 7.22 6.59 76.2 19.5 

M8C 8C 7.14 4.80 55.5 19.6 

Mean 7.18 4.64 53.7 19.7 

Standard Deviation (+/-) 0.15 0.82 9.39 0.23 
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Appendix 11: Microcosm water quality data recorded on July 3, 2018, or twelve days 

after dilbit exposure had begun, with respective averages. (Patterson et al. 2019, 

unpublished data) 

Tank 
Treatment 

Replicate 
pH 

D.O. 

(mg/L) 
D.O. % 

Temp. 

(˚Celsius) 

M1A 1A 10.46 13.54 161.6 21.5 

M1B 1B 10.26 12.22 144.7 21.1 

M1C 1C 9.86 12.01 142.6 21.2 

M2A 2A 9.79 10.49 129.5 21.0 

M2B 2B 8.75 9.08 106.6 20.5 

M2C 2C 10.32 12.43 146.9 20.9 

M3A 3A 10.03 11.03 130.5 21.0 

M3B 3B 10.02 11.57 137.0 21.0 

M3C 3C 10.12 11.79 139.8 21.2 

M4A 4A 9.30 9.33 112.5 22.0 

M4B 4B 9.11 10.56 126.0 21.5 

M4C 4C 8.32 4.61 55.4 21.8 

M5A 5A 9.91 11.05 131.1 21.0 

M5B 5B 9.86 10.74 128.1 20.9 

M5C 5C 9.98 11.60 137.4 20.9 

M6A 6A 7.96 9.38 112.8 21.8 

M6B 6B 10.21 12.26 145.3 20.8 

M6C 6C 10.09 11.48 136.1 21.0 

M7A 7A 9.68 10.80 127.9 21.0 

M7B 7B 10.00 11.48 134.8 20.6 

M7C 7C 10.59 13.50 160.9 21.4 

M8A 8A 9.85 11.04 130.5 21.0 

M8B 8B 10.33 12.22 144.5 21.0 

M8C 8C 9.73 10.77 128.0 21.3 

Mean 9.77 11.04 131.3 21.1 

Standard Deviation (+/-) 0.64 1.74 20.4 0.4 
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Appendix 12: Reported statistics for the LME model of mean activity with respect to 

mesocosm dilbit dosage in replicates.  
 

Estimate Standard 

Error 

t value p value 

Intercept 85.41038386 2.65928378 32.117815 0.000000 

With Dilbit Addition -0.04758399 0.02378293 -2.000762 0.045418 

 

 

 

 

Appendix 13: Reported statistics for the LME model of mean proximal tadpoles 

(sociality index) with respect to mesocosm dilbit dosage in replicates. 
 

Estimate Standard 

Error 

t value p value 

Intercept 8.0419184567 0.407888942 19.7159512 0.0000000 

With Dilbit Addition -0.0007655969 0.004187878 -0.1828126 0.8549451 
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Appendix 14: Mean proximal tadpoles (sociality index) in a replicate for the five lowest 

concentration treatments, on each sampling day, with respect to the first (1) and second 

(2) sample of replicates analyzed.  

Replicate Set Post- 

Exposure Day 

Mesocosm  

Treatment 

Mean Proximal 

Tadpoles 

1 1 M4 9.6 

1 5 M4 8.8 

1 9 M4 9.6 

1 12 M4 8.8 

2 1 M4 4.8 

2 5 M4 6.0 

2 9 M4 9.2 

1 1 M6 9.2 

1 5 M6 8.8 

1 9 M6 8.0 

1 12 M6 4.4 

2 1 M6 7.0 

2 5 M6 4.8 

2 9 M6 6.4 

1 1 M5 10.8 

1 5 M5 8.8 

1 9 M5 10.4 

1 12 M5 9.2 

2 1 M5 4.8 

2 5 M5 7.2 

2 9 M5 9.8 

1 1 M2 8.4 

1 5 M2 11.2 

1 9 M2 8.0 

1 12 M2 8.0 

2 1 M2 8.6 

2 5 M2 9.2 

2 9 M2 7.2 

1 1 M7 9.0 

1 5 M7 6.4 

1 9 M7 8.0 

1 12 M7 7.6 

2 1 M7 10.6 

2 5 M7 10.8 

2 9 M7 8.8 
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Appendix 15: Mean proximal tadpoles (sociality index) in a replicate for the three 

highest concentration treatments, on each sampling day, with respect to the first (1) and 

second (2) sample of replicates analyzed.  

Replicate Set Post- 

Exposure Day 

Mesocosm  

Treatment 

Mean Proximal 

Tadpoles 

1 1 M3 8.8 

1 5 M3 4.4 

1 9 M3 9.2 

1 12 M3 4.8 

2 1 M3 9.6 

2 5 M3 6.0 

2 9 M3 4.8 

1 1 M8 11.2 

1 5 M8 10.0 

1 9 M8 7.8 

1 12 M8 8.0 

2 1 M8 6.4 

2 5 M8 6.8 

2 9 M8 8.4 

1 1 M1 6.4 

1 5 M1 7.4 

1 9 M1 7.6 

1 12 M1 8.8 

2 1 M1 8.0 

2 5 M1 10.8 

2 9 M1 6.8 
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Appendix 16: Percentage of frames observed with individuals in outer, middle, and inner 

squares on the grid overlay, for the five lowest concentration treatments. Space use data 

was reported for each replicate and sampling day, with respect to the first (1) and second 

(2) sample of replicates analyzed. 

Replicate 

Set 

Post- 

Exposure 

Day 

Mesocosm  

Treatment 

Inner 

Frame 

(%) 

Middle 

Frame 

(%) 

Outer 

Frame 

(%) 

1 1 M4 0 2 98 

1 5 M4 1 5 94 

1 9 M4 0 1 99 

1 12 M4 1 2 97 

2 1 M4 0 3 97 

2 5 M4 0 0 100 

2 9 M4 0 0 100 

1 1 M6 0 1 99 

1 5 M6 0 3 97 

1 9 M6 0 1 99 

1 12 M6 2 8 90 

2 1 M6 1 2 97 

2 5 M6 0 3 97 

2 9 M6 1 8 91 

1 1 M5 0 1 99 

1 5 M5 2 2 96 

1 9 M5 0 0 100 

1 12 M5 1 2 97 

2 1 M5 1 0 99 

2 5 M5 1 2 97 

2 9 M5 0 2 98 

1 1 M2 3 7 90 

1 5 M2 0 2 98 

1 9 M2 0 6 94 

1 12 M2 1 2 97 

2 1 M2 0 2 98 

2 5 M2 0 2 98 

2 9 M2 0 0 100 

1 1 M7 0 7 93 

1 5 M7 1 3 96 

1 9 M7 0 7 93 

1 12 M7 0 1 99 

2 1 M7 1 2 97 

2 5 M7 0 0 100 

2 9 M7 0 2 98 
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Appendix 17: Percentage of frames observed with individuals in outer, middle, and inner 

squares on the grid overlay, for the three highest concentration treatments. Space use data 

was reported for each replicate and sampling day, with respect to the first (1) and second 

(2) sample of replicates analyzed. 

Replicate 

Set 

Post- 

Exposure 

Day 

Mesocosm  

Treatment 

Inner 

Frame 

(%) 

Middle 

Frame 

(%) 

Outer 

Frame 

(%) 

1 1 M3 1 1 98 

1 5 M3 0 2 98 

1 9 M3 0 10 90 

1 12 M3 0 1 99 

2 1 M3 1 5 94 

2 5 M3 4 8 88 

2 9 M3 2 1 97 

1 1 M8 1 2 97 

1 5 M8 0 0 100 

1 9 M8 0 0 100 

1 12 M8 0 0 100 

2 1 M8 0 1 99 

2 5 M8 2 10 88 

2 9 M8 1 1 98 

1 1 M1 1 2 97 

1 5 M1 0 1 99 

1 9 M1 1 0 99 

1 12 M1 2 0 98 

2 1 M1 0 0 100 

2 5 M1 0 0 100 

2 9 M1 1 1 98 
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Appendix 18: Mean lines crossed (activity) per tadpole on each sampling day, from 

replicates with water from mesocosm four.  

Animal ID Mesocosm 

Treatment 

Post-Exposure 

Day 

Mean Activity 

(Lines Crossed) 

004-M4A-1 M4 1 6.65 

004-M4A-2 M4 1 5.15 

004-M4A-3 M4 1 4.25 

004-M4A-4 M4 1 4.35 

004-M4A-5 M4 1 4.7 

005-M4A-151 M4 5 5.0 

005-M4A-152 M4 5 4.4 

005-M4A-153 M4 5 4.7 

005-M4A-154 M4 5 2.9 

005-M4A-155 M4 5 3.2 

006-M4C-91 M4 9 6.2 

006-M4C-92 M4 9 4.7 

006-M4C-93 M4 9 5.55 

006-M4C-94 M4 9 5.1 

006-M4C-95 M4 9 4.3 

007-M4A-191 M4 12 2.85 

007-M4A-192 M4 12 5.3 

007-M4A-193 M4 12 3.9 

007-M4A-194 M4 12 5.65 

007-M4A-195 M4 12 2.9 

008-M4A-41 M4 18 4.5 

008-M4A-42 M4 18 3.35 

008-M4A-43 M4 18 2.35 

008-M4A-44 M4 18 2.8 

008-M4A-45 M4 18 3.6 
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Appendix 19: Mean lines crossed (activity) per tadpole on each sampling day, from 

replicates with water from mesocosm six.  

Animal ID Mesocosm 

Treatment 

Post-

Exposure Day 

Mean Activity 

(Lines Crossed) 

004-M6B-10 M6 1 4.0 

004-M6B-6 M6 1 4.25 

004-M6B-7 M6 1 4.15 

004-M6B-8 M6 1 5.2 

004-M6B-9 M6 1 2.8 

005-M6A-216 M6 5 3.75 

005-M6A-217 M6 5 2.4 

005-M6A-218 M6 5 3.25 

005-M6A-219 M6 5 4.0 

005-M6A-220 M6 5 5.4 

005-M6C-131 M6 5 4.75 

005-M6C-132 M6 5 4.5 

005-M6C-133 M6 5 4.25 

005-M6C-134 M6 5 3.55 

005-M6C-135 M6 5 5.5 

006-M6B-100 M6 9 5.0 

006-M6B-96 M6 9 4.9 

006-M6B-97 M6 9 3.6 

006-M6B-98 M6 9 5.9 

006-M6B-99 M6 9 4.95 

007-M6B-171 M6 12 2.85 

007-M6B-172 M6 12 3.15 

007-M6B-173 M6 12 4.75 

007-M6B-174 M6 12 4.0 

007-M6B-175 M6 12 3.7 

008-M6C-46 M6 18 2.75 

008-M6C-47 M6 18 1.45 

008-M6C-48 M6 18 5.1 

008-M6C-49 M6 18 4.45 

008-M6C-50 M6 18 3.8 
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Appendix 20: Mean lines crossed (activity) per tadpole on each sampling day, from 

replicates with water from mesocosm five.  

Animal ID Mesocosm 

Treatment 

Post-

Exposure Day 

Mean Activity 

(Lines Crossed) 

004-M5A-11 M5 1 4.35 

004-M5A-12 M5 1 1.0 

004-M5A-13 M5 1 5.45 

004-M5A-14 M5 1 4.95 

004-M5A-15 M5 1 4.35 

005-M5A-156 M5 5 5.05 

005-M5A-157 M5 5 5.05 

005-M5A-158 M5 5 3.65 

005-M5A-159 M5 5 3.45 

005-M5A-160 M5 5 4.4 

005-M5C-206 M5 5 3.95 

005-M5C-207 M5 5 3.5 

005-M5C-208 M5 5 3.25 

005-M5C-209 M5 5 3.95 

005-M5C-210 M5 5 3.8 

006-M5A-111 M5 9 3.75 

006-M5A-112 M5 9 3.75 

006-M5A-113 M5 9 6.2 

006-M5A-114 M5 9 4.8 

006-M5A-115 M5 9 4.15 

007-M5C-181 M5 12 4.95 

007-M5C-182 M5 12 5.25 

007-M5C-183 M5 12 2.35 

007-M5C-184 M5 12 4.6 

007-M5C-185 M5 12 4.8 

008-M5C-51 M5 18 4.2 

008-M5C-52 M5 18 4.8 

008-M5C-53 M5 18 2.55 

008-M5C-54 M5 18 3.1 

008-M5C-55 M5 18 2.8 
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Appendix 21: Mean lines crossed (activity) per tadpole on each sampling day, from 

replicates with water from mesocosm two.  

Animal ID Mesocosm 

Treatment 

Post-

Exposure Day 

Mean Activity 

(Lines Crossed) 

004-M2B-16 M2 1 3.9 

004-M2B-17 M2 1 3.55 

004-M2B-18 M2 1 4.0 

004-M2B-19 M2 1 5.75 

004-M2B-20 M2 1 5.1 

005-M2B-121 M2 5 5.55 

005-M2B-122 M2 5 3.1 

005-M2B-123 M2 5 3.65 

005-M2B-124 M2 5 3.95 

005-M2B-125 M2 5 3.25 

005-M2C-211 M2 5 4.3 

005-M2C-212 M2 5 3.85 

005-M2C-213 M2 5 4.1 

005-M2C-214 M2 5 5.8 

005-M2C-215 M2 5 3.5 

006-M2A-101 M2 9 4.2 

006-M2A-102 M2 9 2.15 

006-M2A-103 M2 9 2.9 

006-M2A-104 M2 9 3.4 

006-M2A-105 M2 9 3.35 

007-M2B-186 M2 12 3.9 

007-M2B-187 M2 12 7.0 

007-M2B-188 M2 12 4.2 

007-M2B-189 M2 12 4.35 

007-M2B-190 M2 12 4.25 

008-M2C-56 M2 18 5.25 

008-M2C-57 M2 18 0.35 

008-M2C-58 M2 18 5.25 

008-M2C-59 M2 18 4.35 

008-M2C-60 M2 18 2.75 
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Appendix 22: Mean lines crossed (activity) per tadpole on each sampling day, from 

replicates with water from mesocosm seven.  

Animal ID Mesocosm 

Treatment 

Post-

Exposure Day 

Mean Activity 

(Lines Crossed) 

004-M7C-21 M7 1 5.0 

004-M7C-22 M7 1 5.75 

004-M7C-23 M7 1 2.5 

004-M7C-24 M7 1 4.5 

004-M7C-25 M7 1 2.95 

005-M7B-141 M7 5 3.65 

005-M7B-142 M7 5 5.65 

005-M7B-143 M7 5 4.85 

005-M7B-144 M7 5 3.7 

005-M7B-145 M7 5 5.85 

005-M7C-201 M7 5 4.2 

005-M7C-202 M7 5 5.4 

005-M7C-203 M7 5 3.3 

005-M7C-204 M7 5 4.65 

005-M7C-205 M7 5 6.2 

006-M7C-86 M7 9 4.15 

006-M7C-87 M7 9 5.15 

006-M7C-88 M7 9 3.65 

006-M7C-89 M7 9 5.6 

006-M7C-90 M7 9 1.5 

007-M7C-166 M7 12 4.1 

007-M7C-167 M7 12 5.7 

007-M7C-168 M7 12 2.25 

007-M7C-169 M7 12 2.65 

007-M7C-170 M7 12 4.6 

008-M7A-61 M7 18 3.4 

008-M7A-62 M7 18 3.3 

008-M7A-63 M7 18 4.4 

008-M7A-64 M7 18 3.1 

008-M7A-65 M7 18 2.75 
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Appendix 23: Mean lines crossed (activity) per tadpole on each sampling day, from 

replicates with water from mesocosm three.  

Animal ID Mesocosm 

Treatment 

Post-

Exposure Day 

Mean Activity 

(Lines Crossed) 

004-M3C-26 M3 1 4.2 

004-M3C-27 M3 1 5.4 

004-M3C-28 M3 1 5.0 

004-M3C-29 M3 1 4.5 

004-M3C-30 M3 1 4.9 

005-M3A-126 M3 5 4.25 

005-M3A-127 M3 5 5.3 

005-M3A-128 M3 5 4.5 

005-M3A-129 M3 5 4.1 

005-M3A-130 M3 5 4.75 

006-M3B-106 M3 9 4.25 

006-M3B-107 M3 9 4.8 

006-M3B-108 M3 9 4.55 

006-M3B-109 M3 9 4.7 

006-M3B-110 M3 9 5.0 

007-M3B-161 M3 12 5.15 

007-M3B-162 M3 12 2.05 

007-M3B-163 M3 12 3.95 

007-M3B-164 M3 12 6.1 

007-M3B-165 M3 12 4.25 

008-M3B-66 M3 18 1.95 

008-M3B-67 M3 18 4.05 

008-M3B-68 M3 18 4.6 

008-M3B-69 M3 18 2.65 

008-M3B-70 M3 18 2.7 
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Appendix 24: Mean lines crossed (activity) per tadpole on each sampling day, from 

replicates with water from mesocosm eight.  

Animal ID Mesocosm 

Treatment 

Post-

Exposure Day 

Mean Activity 

(Lines Crossed) 

004-M8A-31 M8 1 3.15 

004-M8A-32 M8 1 5.2 

004-M8A-33 M8 1 3.35 

004-M8A-34 M8 1 3.3 

004-M8A-35 M8 1 4.2 

005-M8C-146 M8 5 4.6 

005-M8C-147 M8 5 2.6 

005-M8C-148 M8 5 0.6 

005-M8C-149 M8 5 5.55 

005-M8C-150 M8 5 4.8 

006-M8C-116 M8 9 3.8 

006-M8C-117 M8 9 3.8 

006-M8C-118 M8 9 4.3 

006-M8C-119 M8 9 4.35 

006-M8C-120 M8 9 4.35 

007-M8A-176 M8 12 4.65 

007-M8A-177 M8 12 5.1 

007-M8A-178 M8 12 4.15 

007-M8A-179 M8 12 5.45 

007-M8A-180 M8 12 4.7 

008-M8B-71 M8 18 2.95 

008-M8B-72 M8 18 4.0 

008-M8B-73 M8 18 4.5 

008-M8B-74 M8 18 2.15 

008-M8B-75 M8 18 3.7 
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Appendix 25: Mean lines crossed (activity) per tadpole on each sampling day, from 

replicates with water from mesocosm one.  

Animal ID Mesocosm 

Treatment 

Post-

Exposure Day 

Mean Activity 

(Lines Crossed) 

004-M1B-36 M1 1 4.85 

004-M1B-37 M1 1 4.4 

004-M1B-38 M1 1 4.2 

004-M1B-39 M1 1 3.8 

004-M1B-40 M1 1 3.4 

005-M1C-136 M1 5 4.55 

005-M1C-137 M1 5 4.85 

005-M1C-138 M1 5 3.65 

005-M1C-139 M1 5 5.55 

005-M1C-140 M1 5 5.25 

006-M1B-81 M1 9 4.75 

006-M1B-82 M1 9 3.5 

006-M1B-83 M1 9 4.5 

006-M1B-84 M1 9 5.0 

006-M1B-85 M1 9 4.05 

007-M1C-196 M1 12 3.45 

007-M1C-197 M1 12 3.05 

007-M1C-198 M1 12 4.15 

007-M1C-199 M1 12 4.1 

007-M1C-200 M1 12 2.55 

008-M1C-76 M1 18 4.75 

008-M1C-77 M1 18 3.75 

008-M1C-78 M1 18 1.0 

008-M1C-79 M1 18 2.65 

008-M1C-80 M1 18 0.55 

 

 

 

 

 

 

 


