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A large body of research has documented the stress response of fish following angling capture. Nearly all of these studies
have taken place during the open-water season, with almost no work focused on the effects of capture in the winter via
ice angling. We therefore conducted a study to examine physiological disturbance and reflex impairment following capture
by ice-angling in two commonly targeted species, bluegill Lepomis macrochirus and yellow perch Perca flavescens. Fish
were captured from a lake in eastern Wisconsin (USA) and sampled either immediately or after being held in tanks for 0.5,
2 or 4 h. Sampling involved the assessment of reflex action mortality predictors (RAMP) and a blood biopsy that was used
to measure concentrations of plasma cortisol and lactate. The capture-induced increase in plasma cortisol concentration
was delayed relative to responses documented in previous experiments conducted in the summer and reached a relative
high point at 4 h post-capture. Reflex impairment was highest at the first post-capture time point (0.5 h) and declined with
each successive sampling (2 and 4 h) during recovery. Bluegill showed a higher magnitude stress response than yellow
perch in terms of plasma cortisol and RAMP scores, but not when comparing plasma lactate. Overall, these data show that
ice-angling induces a comparatively mild stress response relative to that found in previous studies of angled fish. While
recovery of plasma stress indicators does not occur within 4 h, declining RAMP scores demonstrate that ice-angled bluegill
and yellow perch do recover vitality following capture.
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Introduction
The ability of an organism to successfully respond to stress
can have ramifications for fitness, and the extent of physio-
logical disturbance accompanying a given stressful situation
may vary among individuals or species (Koolhaas et al.,
1999; Pottinger, 2010). The response of organisms to stress
may also be influenced by environmental conditions, includ-
ing temperature (Wieser et al., 1986; Lankford et al., 2003;

Davis, 2004). In the case of fish, studies have indicated that
high temperatures can lead to a more pronounced hormo-
nal (Barton and Schreck, 1987; Jaxion-Harm and Ladich,
2014) or metabolic response (Kieffer et al., 1994;
Sfakianakis and Kentouri, 2010). Cold temperatures, on the
other hand, have often been found to dampen the magni-
tude of this response (Van Ham et al., 2003; Davis, 2004;
Guderley, 2004).
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One area in which the effects of stress on fish has been
heavily studied is the physiological response of fish to recre-
ational or commercial capture. This includes capture via net-
ting (Donaldson et al., 2011) or hook-and-line angling
(Arlinghaus et al., 2009; Brownscombe et al., 2015). In the
case of angling, the widespread practice of catch-and-release
has led to a research focus on post-release stress and mortality
(Cooke and Suski, 2005; Cooke and Schramm, 2007). A host
of studies have demonstrated that angling capture and hand-
ling may lead to significant physiological disturbance (Cooke
et al., 2002; Cooke and Suski, 2005; Meka and McCormick,
2005; O’Toole et al., 2010) as well as mortality (Dubois et al.,
1994; Davis, 2007; Gutowsky et al., 2015) following release.
The degree of stress experienced by a captured fish may be
influenced by biotic (Cooke and Suski, 2005; Clark et al.,
2012) and abiotic (Meka and McCormick, 2005; Gingerich
et al., 2007) factors, as well as how the fish is handled by the
angler (Brydges et al., 2009; Cook et al., 2015). Generally
speaking, high water temperatures have been associated with
both greater physiological disturbance and a greater likelihood
of mortality (Meka and McCormick, 2005; Gingerich et al.,
2007; Gale et al., 2013). While the impacts of high tempera-
tures on fish following capture via angling have indeed been
reasonably well studied, the impacts of capture at low tem-
peratures (for instance, in winter) have received less attention.

The lack of research on the response of fish to winter cap-
ture can be attributed to a variety of factors, including the
uncomfortable working environment at low temperatures,
the difficulty of capturing fish and issues in keeping equip-
ment functional (Lavery, 2016). As a result, there is a paucity
of studies on the physiological responses of freshwater fish to
catch-and-release in cold winter conditions (but see Louison
et al., 2017), save for examinations of post-release mortality
(Dubois et al., 1994; Persons and Hirsch, 1994). This is a
significant gap in our knowledge of how fish respond to
angling stress, considering that ice-angling is a popular activ-
ity at higher latitudes (Deroba et al., 2007) and large num-
bers of captured fish are often released (~50% in some cases)
(Margenau et al., 2003). Understanding the stress imposed
by ice-angling on fish is important to fisheries managers who
recommend to anglers best practices for handling captured
fish (Cooke and Cowx, 2004; Cowx et al., 2010).

Earlier work has documented the stress response of nor-
thern pike Esox lucius to winter capture (Louison et al.,
2017), however, additional work is needed to further our
knowledge of how fish respond to the stress of ice-angling.
One aspect that has not been examined is how ice-angling
impacts the vitality of fish. A relatively new and relevant tool
to assess this is the assessment of reflex responsiveness,
through the use of reflex action mortality predictors (RAMP)
(Davis, 2007, 2010). Using RAMP to quantify vitality (alter-
natively, reflex impairment) in fish has several advantages
relative to laboratory-based measurements (for instance,
levels of cortisol or lactate in the plasma), including the
speed at which assessments can be performed and the lack of

laboratory expertise necessary to perform them (Raby et al.,
2012). RAMP has been used successfully to assess mortality
risk in captured fish, but only during the open-water season
(Raby et al., 2012; McArley and Herbert, 2014; Bower
et al., 2016). By using both an assessment of plasma metrics
and reflex responsiveness concurrently, we hope to provide a
more comprehensive assessment of the response of bluegill
Lepomis macrochirus and yellow perch Perca flavescens to
winter capture.

To further our knowledge of the response of fish to winter
capture, we conducted a study that examined bluegill and yel-
low perch following capture through the ice. These two species
were selected because they are among the most commonly tar-
geted by ice anglers throughout much of central and north-
eastern North America (Gaeta et al., 2013). While no data
exists on release rates in winter for these species, summer
release rates have been found to range from 67 to 99% (Gaeta
et al., 2013). The objectives of this study were threefold: (i) to
define how plasma stress metrics (cortisol and lactate) in blue-
gill and yellow perch respond to the stress of capture in the
winter, (ii) to quantify reflex impairment and recovery of reflex
function of these two species following ice angling capture and
(iii) to characterize the concordance between reflex impairment
and blood constituents assessed under winter conditions.
Results from this study serve to fill a notable gap in the catch-
and-release literature, and provide recommendations for what
assessments may be most useful in describing the physiological
status of winter captured fish.

Methods
Study site
All sample collection took place on February 20 and 21, 2016
between 9:00 and 16:30 at Fox Lake (Fig. 1), a 1097 ha lake
with a mean depth of ~2m located in Dodge County, WI,
USA (43.584845 N, 88.923569 W). Over the course of the
2 days, air temperatures fluctuated between 1 and 6°C (as
measured with a hand-held thermometer), and water tempera-
tures were recorded between 3.4 and 4.2°C. In addition to
bluegill and yellow perch, heavily targeted sportfish in Fox
Lake include muskellunge Esox masquinongy, largemouth
bass Micropterus salmoides, northern pike Esox lucius and
walleye Sander vitreus (Fox Lake Profile, Wisconsin
Department of Natural Resources Website, http://dnr.wi.gov/
lakes/lakepages/LakeDetail.aspx?wbic=835800).

Fish capture and holding
All fish in this study were captured via ‘jigging’, a typical
approach used by anglers to capture yellow perch and blue-
gill through winter ice. The fishing gear consisted of small
(0.8 m), light-action jigging rods spooled with 1.8 kg mono-
filament line rigged with a size 2 jig (Barbed J-hook with a
colourful, weighted head). Jigs were baited with either a live
waxworm (Galleria spp.) or a small soft plastic lure, and
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slowly bobbed up and down about 0.5 m from the bottom
by the angler at a depth of 1.5 m. Once a strike was felt, the
angler quickly raised their fishing rod to lift the fish from the
water, with the time from hooking to landing the fish never
exceeding 5 s. Six experienced anglers were responsible for
capturing the fish used in this study.

Upon capture, fish were quickly unhooked and either treated
as a baseline sample (i.e. immediately sampled) or placed into
one of several 68 l opaque plastic holding tanks containing fresh
lake water. Water temperatures in the tanks were stabilized by
ambient conditions and periodic water exchanges to hold
between 3 and 5°C, and temperature was checked during times
when no fish were being held using a dissolved oxygen and tem-
perature probe (YSI®, Yellow Springs, OH, USA). Dissolved
oxygen concentrations were never below 90% saturation at any
point during the study. The duration of air exposure, from the
time a fish was landed until it was transferred to holding tanks
or sampling, was standardized at 60 s. This short handling peri-
od is realistic for ice-angled fish, which often are handled for
less time than summer-angled fish (Dextrase and Ball, 1991).
Additionally, unlike with larger species, ice-anglers that capture
bluegill and yellow perch typically do not pause to take photos
or otherwise show off their catch if it is to be released (Louison,
personal observation). Fish were not included in the study if
they were bleeding or if hooking took place deep in the throat
or gills, potentially leading to injury that could confound the
results (Cooke et al., 2011; Stein et al., 2012), however, fewer
than five fish fell into this category during sampling. Fish ran-
domly chosen as baseline samples were immediately sampled
for blood as described below, with no RAMP testing taking

place. RAMP scores were not assessed in the baseline group to
avoid the introduction of bias resulting from each individual
angler assessing RAMP immediately upon capture, and to
ensure blood samples were drawn as rapidly as possible. Non-
baseline fish were held in tanks for a period of 0.5, 2 or 4 h
before being assessed for RAMP and having blood drawn.

RAMP assessment, blood biopsy and
plasma analysis
Each non-baseline fish was immediately tested for RAMP
following the conclusion of its holding time (0.5, 2 or 4 h).
Assessment of RAMP followed previously established proto-
cols (Davis, 2007; Raby et al., 2012) and included the assess-
ment of four metrics: ‘tail grab’ (whether or not the fish
attempted to burst away in the holding tanks when grabbed
on the caudal peduncle by the handler), ‘orientation’
(whether or not the fish righted itself within 3 s after being
placed in its holding tank upside down), ‘body flex’ (whether
the fish attempted to escape while being held out of the water
around the midsection of its body) and ‘vestibular-ocular
response’ (VOR, whether or not the fish rolled its eye to
maintain contact with the handler after being rotated out of
the water from normal orientation onto its side). Head com-
plex (whether the fish continued to open its jaws and opercu-
lum in a normal ventilation pattern out of the water) was
not included in our analyses because every fish that was cap-
tured showed impairment for this reflex. All RAMP assess-
ments were performed by a single observer (GDR), with
scores for each reflex either recorded as a 0 (present, no
impairment), or a 1 (impaired/absent). If the response of a

Figure 1: Study location, Fox Lake, Wisconsin, USA. The location of Fox Lake within North America, and the location of sampling within the
lake are indicated by stars.
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fish for any of the metrics was ambiguous, it was recorded as
impaired. Overall RAMP score for each individual was taken
as the proportion of the four reflexes that were impaired
(higher scores = lower vitality).

Following completion of the assessment (which took
10–15 s) each fish was transferred to a foam sampling trough
where 0.1–0.25ml of blood was drawn via caudal puncture
using a 1ml heparinized syringe equipped with a 23 gauge nee-
dle. Blood was immediately centrifuged at 6000RPM for 120 s
to extract plasma, which was immediately stored in liquid nitro-
gen for transport back to the laboratory where it was subse-
quently stored at −80°C. Cortisol concentration in plasma was
quantified using a commercially available ELISA Immunoassay
kit (Enzo Life Sciences, Farmingdale, NY, USA), previously val-
idated for use in fishes (Sink et al., 2008). Plasma lactate con-
centrations were quantified calorimetrically from perchloric acid
extracts on a 96-well spectrophotometry plate based on meth-
odology in Lowry and Passonneau (1972).

A total of 66 bluegill and 39 yellow perch were captured
over the 2 days of ice-angling. Blood samples were obtained
from a minimum of eight fish for each combination of spe-
cies and holding time (Table 1) but insufficient plasma was
extracted to conduct assays for both cortisol and lactate for
some fish. In those cases, performance of only one of the two
assays resulted in a reduced sample size for the other metric
for that species × holding time combination (Table 1).

Statistical analysis
To test whether plasma metrics differed across species or hold-
ing times (including baseline samples in the case of cortisol and
lactate), we ran separate two-way analyses of variance
(ANOVA) for cortisol and lactate. Each analysis included spe-
cies, holding time and their interaction as fixed factors. Fish
length was initially included as a covariate in both models,
however, it was removed when it did not approach significance
(Engqvist, 2005). In each case, homogeneity of variance was
assessed using a Levene’s test, and normality was assessed via

visual inspection of q–q plots. In the case of a significant main
effect of holding time, pairwise differences were assessed using
Tukey’s Honest Significant Difference (HSD) test. In the event
of a statistically significant interaction term, pairwise differ-
ences were tested among species × holding time groups and
main effects were ignored.

Binary logistic regression models were used to determine the
effects of species, holding time and fish length on whether or not
a fish showed any sign of reflex impairment. Holding time was
treated as a categorical variable, and impairment (whether or
not a fish had a non-zero RAMP score) was treated as the
response variable. To assess whether reflex impairment was
reflected by levels of plasma stress metrics (regardless of holding
time), we ran an ordinal regression (Winship and Mare, 1984)
for bluegill with RAMP score as the dependent variable, and
cortisol and lactate (separately) as independent variables.
Because all yellow perch scored at either 0 or 0.25 (see Results),
we could not run ordinal regression for yellow perch and
instead ran a binary logistic regression, again with RAMP
score as the dependent variable and cortisol and lactate as
independent variables. Analyses were performed using R
version 3.2.1 (R Core Team, Vienna, Austria), with signifi-
cance assessed at P < 0.05.

Results
Significant effects of both species and holding time were
found for plasma cortisol (Table 2). Cortisol values were not
significantly elevated above baselines at 0.5 h for either spe-
cies, but by 2 h were significantly higher than baselines
(Fig. 2A). Cortisol levels were not significantly different
between 2 and 4 h for either species but remained signifi-
cantly elevated above baseline levels (Fig. 2A). Across all
holding times, cortisol concentrations in bluegill were 58%
higher than yellow perch (Fig. 2A).

In the case of plasma lactate, a significant species × hold-
ing time interaction was detected (Table 2). For both species,
lactate levels were significantly elevated relative to baseline

Table 1: Summary of sample sizes of bluegill and yellow perch for each sampling time point and analysis. In some cases, insufficient plasma
resulted in the inability to run assays for both lactate and cortisol. The final number of individuals (N) for each treatment × time group for each
metric is shown

Holding time N captured Mean length (cm ± S.E.M.) RAMP N Cortisol N Lactate N

Bluegill Baseline 18 17.14 (±0.50) NA 17 16

30min 18 16.52 (±0.38) 18 18 18

2 h 17 17.93 (±0.52) 17 16 16

4 h 13 16.17 (±0.69) 13 13 13

Yellow perch Baseline 11 14.59 (±0.30) NA 9 11

30min 11 16.45 (±0.69) 11 8 10

2 h 9 15.06 (±0.73) 9 8 8

4 h 8 16.30 (±1.02) 8 8 8
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values by 0.5 h post-capture (Fig. 2B). For bluegill, lactate
levels remained elevated after 0.5 h, but for yellow perch, lac-
tate levels declined by 54% from 0.5 to 2 h post-capture, but
remained significantly higher than baseline levels (Fig. 2B).

Both species and holding time had significant effects on
RAMP scores (Table 3). On average, RAMP scores were 2.7
times higher for bluegill at each holding time compared to
yellow perch, indicating greater reflex impairment (Fig. 2C).
RAMP scores across species declined by 70% from 0.5 to
4 h (Fig. 2C). Body flex was the reflex most often impaired
for both species (30 out of 48 bluegill, 10 out of 28 yellow
perch) and was the only RAMP metric observed to be
impaired in yellow perch. As for the other reflex metrics, 10
out of 48 bluegill showed an impaired tail grab reflex and 6
out of 48 bluegill showed an impaired orientation response.
These reflex-specific differences explain why RAMP scores
were consistently lower for yellow perch than for bluegill.
Vestibular-ocular response was not impaired in any of the
fish in this study.

A significant negative relationship was found between corti-
sol concentrations and RAMP score for bluegill (Fig. 3A, t =
−2.05, P = 0.04), but not for yellow perch (Fig. 3C, P = 0.15).
Lactate was not related to RAMP score for either perch or
bluegill (P > 0.61 for both, Fig. 3)

Discussion
The process of ice-angling induces stress in captured fish, as
evidenced by significant rises in plasma cortisol levels. Cortisol,
the primary stress hormone in fish, is released in response to
acute stressors for the purpose of activating energy stores and
mediating the exchange of ions across gill membranes (Bonga,
1997; Gesto et al., 2014). While this response was indeed acti-
vated in ice-angled fish, the magnitude of the stress response
observed was far lower than that seen in previous studies of

Table 2: Statistical Output for two-way analysis of variance tests (ANOVA) assessing the effect of species (bluegill, yellow perch), and holding
time (baseline, 30min, 2 h, 4 h), and their interaction on concentrations of plasma lactate and cortisol. Significant results are given in bold

Plasma cortisol Plasma lactate

Species F = 8.19; DF = 1,89; P = 0.002 F = 4.13; DF = 1,92; P = 0.07

Holding time F = 33.77; DF = 3,89; P < 0.001 F = 67.71; DF = 3,92; P < 0.001

Species × holding time F = 1.04; DF = 3,89; P = 0.37 F = 9.34; DF = 3,92; P < 0.001

Figure 2: (A) Cortisol concentration, (B) lactate concentration and (C) RAMP score for both bluegill (black circles) and yellow perch (open
circles) sampled at 0, 0.5, 2 or 4 h after ice-angling capture. The asterisk (*) on panel A indicates a significant effect of species for plasma cortisol
concentration as determined by two-way analysis of variance (ANOVA), and the asterisk on panel C indicates a significant effect of species in
driving whether or not fish had a non-zero RAMP score as determined by binary logistic regression. For both (A and C), significant letters (xy)
indicate differences between holding time treatments. For plasma lactate (B) a significant species × holding time interaction was found, as such
significant differences between individual species × holding time blocks are indicated by letters (abc).

Table 3: Effect sizes taken from binary logistic regression model
assessing the effect of species, holding time and fish length on
whether or not a fish showed impairment for any of the four RAMP
metrics assessed. Two-way interactions were non-significant and were
removed from the model. The effect of the intercept (constant) is also
included, statistically significant factors are given in bold

B S.E. Wald df P

Species 1.28 0.56 5.23 1 0.02

Holding time −0.01 0.003 9.44 1 0.002

Fish length (mm) 0.01 0.01 0.95 1 0.32

Constant −1.33 1.95 0.47 1 0.49
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bluegill and yellow perch. For instance, peak cortisol values
measured 45min after a 3min air exposure have ranged from
177 ngml−1 to upwards of 500 ngml−1, respectively (Cook
et al., 2012; Cousineau et al., 2014). In yellow perch, peak cor-
tisol concentrations have been shown to vary between 107 and
170 ngml−1 across a range of temperatures (Eissa and Wang,
2013). Two studies of the closely related Eurasian Perch Perca
fluviatilis reported peak cortisol levels of ~200 ngml−1 (Jentoft
et al., 2005) and ~120 ngml−1 measured 0.5 h after a 1min
air exposure stressor (Acerete et al., 2004). In the present
study, the highest cortisol levels only reached ~53 and ~73 ng
ml−1 4 h post-capture for yellow perch and bluegill, respect-
ively, well below peak levels reported in prior studies. This

result is in concordance, however, with previous work on nor-
thern pike, which also showed a lower cortisol response follow-
ing ice capture compared to capture in warm conditions
(Louison et al., 2017). It should be noted that in both the pre-
sent study and the previous study of northern pike water depths
were relatively low (<2m), which could have reduced the
amount of stress on the captured fish, as capture at greater
depth has been found to be linked to higher stress levels and
risk of mortality (Campbell et al., 2010; Schramm et al., 2010).
Additionally, because we did not assess cortisol levels more
than 4 h after capture, this study does not address whether cor-
tisol levels in ice-angled fish continue to rise after 4 h and could
reach levels close to those seen in previous work. Nonetheless,

Figure 3: Relationships between (A) RAMP score and bluegill cortisol concentration, (B) RAMP score and bluegill lactate concentration, (C)
RAMP score and yellow perch cortisol concentration and (D) RAMP score and yellow perch lactate concentration. Dots represent individual fish.
P-values for bluegill on panels A and B derived from an ordinal regression with RAMP score as the dependent variable and plasma metric
concentrations as independent variables, the regression line in panel A indicates a significant negative relationship between cortisol
concentration and RAMP score for bluegill. For yellow perch, only two RAMP scores were recorded (0 or 0.25), so P-values are derived from a
binary logistic regression model with RAMP score as the dependent variable and plasma metric concentrations as independent variables.
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it appears that ice-angling capture and handling in yellow perch
and bluegill induces a less severe physiological stress response
than capture and release at warmer temperatures, albeit one
that may be relatively delayed and prolonged.

Plasma cortisol levels did not rise over baseline levels until
2 h post-capture, and were still elevated at 4 h. This differs
from studies conducted at warmer temperatures, which have
generally described cortisol levels reaching a peak within 1 h
of the onset of a stressor (Galloway and Kieffer, 2003; Meka
and McCormick, 2005; Vanlandeghem et al., 2010) and
returning to near baseline levels by 4 h (Hyvarinen et al.,
2004; Gesto et al., 2013; Jutfelt et al., 2013). However, this
delayed recovery curve is similar to that seen in northern
pike following ice-angling (Louison et al., 2017), as well as
in other studies examining recovery at low temperatures. In
one such example, cortisol levels in turbot Scophthalmus
maximus held at 10°C did not reach their peak until 2 h
post-exercise (Van Ham et al., 2003). In another example,
peak cortisol levels in hybrid striped bass Morone chrysops ×
Morone saxatilis held at 5°C were not reached until 6 h
following confinement stress (Davis, 2004). In both of these
cases, peak cortisol levels were also much lower in fish
stressed at low compared to high temperatures. One poten-
tial explanation for this is that reduced temperatures may be
inhibiting enzyme and receptor-binding activity in the
hypothalamus-pituitary-interrenal (HPI) axis, which is acti-
vated in response to stress (Bonga, 1997). The HPI axis pro-
duces cortisol as a result of an initial production of
corticotropin releasing factor in the hypothalamus, which
then stimulates the production of adrenocorticotropic hor-
mone (ACTH) in the pituitary. ACTH is ultimately trans-
ported via the blood to the interrenal cells of the head kidney
where cortisol is produced, and reduced temperatures could
inhibit enzyme and receptor-binding activity at any of these
stages. This inhibition of the stress pathway at cold tempera-
tures would, in turn, lead to both a reduction in the magni-
tude of the response and a delay in the initial increase in
plasma cortisol levels following a stressor (Barton and
Schreck, 1987; Lankford et al., 2003). Additionally, reduced
clearance of cortisol during the recovery phase could also be
linked to lower metabolic rates and enzymatic activity (Van
Ham et al., 2003; Davis, 2004), as well as a reduction in dif-
fusion rates of cortisol out of the fish’s body through the gill
membranes at low temperatures (Pottinger and Yeomans,
1999). Regardless of the mechanism, it appears that yellow
perch and bluegill angled through the ice in winter do not
begin to exhibit a stress response until >30min after experi-
encing the stressor, unlike the typical response seen under
warmer conditions.

Plasma lactate was elevated following ice-angling capture
and unlike cortisol rose above baseline levels by 0.5 h.
Significantly elevated lactate observed 0.5 h following capture
indicates that anaerobic activity is still occurring at these cold
temperatures (Brett, 1964), as lactate is produced in response
to intense exercise and/or oxygen deprivation, as the organism

shifts from anaerobic to aerobic metabolism (Wood, 1991).
While lactate concentrations rose quickly, the magnitude of
the response appears dampened compared to previous studies.
In this study, the peak lactate concentrations for bluegill
(7.7mmol l−1) and yellow perch (8.0mmol l−1) post-stress
were lower than reported in studies of the response to in sum-
mer, for instance in peacock bass Cichla ocellaris (Bower et al.,
2016), bonefish Albula spp. (Brownscombe et al., 2015), and
largemouth bass (Brownscombe et al., 2014). The reduced lac-
tate production observed in this study compared to this prior
work may have resulted from reduced enzymatic activity as a
result of low temperatures, specifically reduced lactate dehydro-
genase activity (Wieser et al., 1986). Alternatively, it could be
unrelated to temperature and related instead to the short times
needed to capture fish, as longer angling durations require
longer periods of anaerobic exercise and lead to greater lactate
production (Brownscombe et al., 2015). Finally, the differences
seen between this study and prior work could simply reflect
basic differences in lactate production seen among species,
regardless of temperature or angling method (Pottinger, 2010).
On this score, it should be noted that peak lactate concentra-
tions in yellow perch and bluegill were lower than the ~14 ng
mmol l−1 seen previously in ice-angled northern pike (Louison
et al., 2017), demonstrating that lactate production following
capture in winter differs by species, even though peak values
seen in yellow perch and bluegill were similar. Overall ice-
angling capture leads to relatively low production of lactate in
bluegill and yellow perch, and, unlike for cortisol, rises in lac-
tate following capture are not delayed.

In contrast to plasma stress metrics, RAMP scores indi-
cated that maximum impairment was present in fish shortly
after capture before showing signs of recovery at succeeding
time points. This pattern was identical for bluegill and yel-
low perch, although RAMP scores were higher in bluegill
than in yellow perch throughout the recovery period. Rather
than being positively correlated with plasma metrics, RAMP
scores in ice-angled bluegill (but not yellow perch) were sig-
nificantly and negatively associated with cortisol levels, while
no relationship was found between RAMP and lactate for
either species. It is presumed that reflex impairment has a
basis in physiological pathways (Davis, 2010) that also drive
differences in other measurements of stress (lactate, cortisol,
glucose, ions, etc.), but concordance between reflex impair-
ment and blood plasma measures have been inconsistent.
Blood plasma stress indicators were not associated with
RAMP scores in Coho salmon Oncorhynchus kisutch (Raby
et al., 2012) or in bonefish (Brownscombe et al., 2015),
while reflex impairment and plasma lactate were correlated
in snapper Pagrus auratus Forster (McArley and Herbert,
2014). High RAMP scores observed shortly after capture by
ice angling indicate that an individual fish is out of homoeo-
stasis; therefore, low cortisol concentrations and high RAMP
scores observed in fish sampled at 0.5 h likely indicate that
individual fish had yet to respond physiologically to restore
homoeostasis. The purpose of cortisol of is to restore hom-
oeostasis following a stressor (Bonga, 1997), and if cortisol
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production is delayed due to low temperatures it is possible
that the result could be impaired vitality due to an inability
to restore homoeostasis shortly after capture. Regardless of
whether cortisol concentrations and RAMP are mechanistic-
ally connected or not, the present study shows at the least
that the use of RAMP may provide insights into fish recovery
under winter conditions that analysis of plasma metrics alone
may miss. While some prior work has shown RAMP to be
more effective at predicting mortality than analysis of plasma
metrics (Raby et al., 2012), future work will be needed to
assess which assessment (plasma metrics or RAMP) is a better
indicator of mortality risk in ice-angled sportfish species.

Bluegill and yellow perch showed significant differences in
all aspects of the response to angling, as shown by plasma
indicators and reflex responsiveness. While the magnitude of
the rise in lactate levels was low in both yellow perch and
bluegill, the recovery trajectory of lactate was different
among species as shown by a significant species × holding
time interaction. For plasma cortisol, the recovery trajectory
(or lack thereof) was similar between species, however, corti-
sol levels were significantly higher across holding times in
bluegill than in yellow perch. Between-species differences in
plasma indicators carried over to differences in reflex respon-
siveness, as bluegill showed greater levels of reflex impair-
ment across holding times as compared to yellow perch.
While fish size can influence the magnitude of the stress
response (Meka and McCormick, 2005) and recovery
(Gingerich and Suski, 2012), fish sampled in this study repre-
sented a relatively narrow size range, limiting our ability to
draw firm conclusions regarding the lack of a size effect on
the stress response of bluegill or yellow perch captured via
ice angling in this study. Size has been found to not influence
cortisol or lactate levels in ice-angled northern pike, though
again the range of fish sizes examined was narrow (Louison
et al., 2017). The fact that bluegill and yellow perch differed
in their response is not unexpected given previous work that
has shown that fish in different taxonomic groups differ in
their response to stress and in their metabolic capacity
(Kieffer, 2000; Pottinger, 2010; King et al., 2016). The dif-
ferences in the response to ice-angling between yellow perch
and bluegill could reflect adaptive differences; optimal ther-
mal ranges for growth are slightly lower in yellow perch
(16–25°C) than in bluegill (22–30°C) (McDermot and Rose,
2000), which could lead to bluegill being more sensitive to
stress at lower temperatures (Abbink et al., 2012). However,
a comparison between the maximum stress response seen in
previous studies of bluegill (Cook et al., 2012; Cousineau
et al., 2014) and both yellow perch (Eissa and Wang, 2013)
and Eurasian perch (Acerete et al., 2004; Jutfelt et al., 2013)
described earlier suggests that bluegill may simply show
greater responsiveness to stress, regardless of temperature. If
this is the case, bluegill may be at greater risk of post-release
mortality as a result of both physiological disturbance and
increased risk of post-release predation (Raby et al., 2014).
However, because we did not directly assess mortality, this
possibility remains largely speculative.

Conclusions
The results of this study provide a number of insights into
the response of fish to stress at cold temperatures. Cold con-
ditions appear to dampen the stress response as shown by
lower levels of cortisol and lactate, however, the angling
methods utilized in this study (i.e. short fight times and the
capture of fish from relatively shallow depths) may have
played a role as well. Recovery of plasma metrics back to
baseline is notably delayed, likely due to reduced enzymatic
activity at lower temperatures. The two species that were
examined showed differences in their response to ice-angling
stress, this applied to both measures of plasma metrics and
measures of reflex responsiveness. However, the recovery
course for these two metrics was very different, as cortisol
and lactate levels remained elevated throughout the time
course while reflex impairment was highest shortly after cap-
ture before recovering. This difference underscores the utility
in applying multiple approaches to assessing stress in fish.
Examining cortisol levels exclusively, for instance, would
give the researcher the impression that stress was ongoing in
the fish all the way through 4 h, however, the use of RAMP
exclusively would lead to the conclusion that recovery was
well underway. While the use of RAMP provides obvious
logistical advantages given the lack of expertise and labora-
tory resources needed to assess it, whether it actually is
superior under winter conditions in predicting eventual out-
comes for captured fish cannot be determined from this
study. Given the dearth of information currently available on
delayed mortality following ice-angling in most targeted spe-
cies, this will certainly be an area where future research can
provide valuable insights by determining not only mortality
rates but also how different stress indicators such as RAMP
or plasma metrics relate to the likelihood of mortality.
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