Characterization of the lengths of binary circular words containing no squares other than 00,11 , and 0101

James D. Currie
Department of Mathematics \& Statistics
The University of Winnipeg*
currie@uwinnipeg.ca
Jesse T. Johnson
Department of Mathematics \& Statistics
University of Victoria
jessejoho@gmail.com

May 19, 2020

Abstract

We characterize exactly the lengths of binary circular words containing no squares other than 00,11 , and 0101 . Key words: combinatorics on words, circular words, necklaces, square-free words, non-repetitive sequences

1 Introduction

Combinatorics on words started with the work of Thue [17], who showed the existence of arbitrarily long square-free words over a three letter alphabet. Thue studied circular words also [18], and completely characterized the circular overlap-free words on two letters. Circular words have been relatively unexplored until recently. In 2002, the first author characterized the lengths for which ternary circular square-free words exist:

Theorem 1. For every positive integer n other than 5, 7, 9, 10, 14, or 17 , there is a ternary circular square-free word of length n.

Several other proofs $[16,1,11]$ of this theorem have now been given, signaling increasing interest in circular words. The general question of when there is a circular word avoiding some pattern has also begun to receive attention [3, 12]. Circular words avoiding patterns seem harder to understand than linear words; while the set of linear words avoiding

[^0]some pattern is closed under taking factors, this is not true for the circular version.

Square-free words are objects of continuing interest in combinatorics on words. As proven by Thue, there exist arbitrarily long words over $\{a, b, c\}$ that contain no square factors. On the other hand, one quickly checks that every word over $\{0,1\}$ of length 4 or greater contains a square. A binary word with as few square factors as possible was found by Fraenkel and Simpson [5].
Theorem 2. There exist arbitrarily long words over $\{0,1\}$ avoiding all factors of the form $x x, x \neq 0,1,01$.

Simpler proofs of this result have been found $[6,14]$. Call a binary word containing no squares other than 00, 11, and 0101 an FS word. Harju and Nowotka have shown [7] that there are arbitrarily long circular FS words. It is natural to ask: For exactly which lengths are there circular FS words? We answer this question completely:
Main Theorem. There is a circular FS word of length m exactly when m is a non-negative integer other than 9, 10, 11, 13, 15, 16, 17, 18, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 40, 41, 42, 45, 47, 49, 53, 56, 59, 61, 64, and 73.

It would be interesting to probe the structure of circular FS words more deeply.

Problem. For each positive integer n, how many circular FS words are there of length n ?

2 Preliminaries

For general background on combinatorics on words, see the works of Lothaire [9, 10]. Let Σ be a finite set. We refer to Σ as an alphabet, and its elements as letters. We denote by Σ^{*} the free monoid over Σ, with identity ϵ, the empty word. We call the elements of Σ^{*} words. Informally, we think of the elements of Σ^{*} as finite strings of letters, and of its binary operation as concatenation. Thus, if $u=u_{1} u_{2} \cdots u_{n}, u_{i} \in \Sigma$ and $v=v_{1} v_{2} \cdots v_{m}, v_{j} \in \Sigma$, then $u v=u_{1} u_{2} \cdots u_{n} v_{1} v_{2} \cdots v_{m}$. In this case, we say that u is a prefix of $u v$ and v is a suffix. More generally, if $w=u v z$, then v is a factor of w. We say that v appears in w at index i in the case where $|u|=i-1$. We will work in particular with the alphabets $B=\{0,1\}, S=\{a, b, c\}$, and $T=\{a, b, c, d\}$. Words over S are called ternary words.

A word of the form $s=u u, u \neq \epsilon$ is called a square. Thus a square $u u$ has period $|u|$. We write z^{2} for $z z$. A word w which doesn't contain a square factor is said to be square-free. We call a word over B containing no square factors other than 00, 11, and 0101 an FS word (for FraenkelSimpson word).

If $u=u_{1} u_{2} \cdots u_{n}, u_{i} \in \Sigma$, then the length of u is defined to be n, the number of letters in u, and we write $|u|=n$. The set of words of length m over Σ is denoted by Σ^{m}. We use $\Sigma^{\geq n}$ to denote the set of words over Σ of length at least n. For $a \in \Sigma, u \in \Sigma^{*}$, we denote by $|u|_{a}$ the number of occurrences of a in u.

If $w=u v$, then define $w v^{-1}=u$. Thus $v u=v(u v) v^{-1}$, and we refer to $v u$ as a conjugate of $u v$. The relation ' a is a conjugate of b ' is an equivalence relation on Σ^{*}, and we refer to the equivalence classes of Σ^{*} under this equivalence relation as circular words. If $w \in \Sigma^{*}$, we denote the circular word containing w by $[w]$. We may consider the indices i of the letters of a circular word $[u]=\left[u_{1} u_{2} \cdots u_{n}\right]$ to belong to \mathbb{Z}_{n}, the integers modulo n. Thus $u_{n+1}=u_{1}$, for example. If $[w]$ is a circular word and $v \in \Sigma^{*}$, we say that v is a factor of $[w]$ if v is a factor of an element of $[w]$, i.e., if v is a factor of a conjugate of w. A circular word $[w]$ is square-free if no factor of $[w]$ is a square.

A circular word $[w]$ is called an FS circular word, if every conjugate of w is an FS word.

Let Σ and T be alphabets. A map $\mu: \Sigma^{*} \rightarrow T^{*}$ is called a morphism if it is a monoid homomorphism, that is, if $\mu(u v)=\mu(u) \mu(v)$, for $u, v \in \Sigma^{*}$. A morphism $f: \Sigma^{*} \rightarrow B^{*}$ such that $f(w)$ is an FS word whenever w is square-free is called an FS morphism.

A ternary w such that for any letters $x, y \in\{a, b, c\}$,

$$
|w|_{x}-1 \leq|w|_{y} \leq\left|w_{x}\right|+1
$$

is called level. The authors recently proved the following:
Theorem 3. [4, 8] There is a level ternary circular square-free word of length n, exactly when n is a positive integer, $n \neq 5,7,9,10,14,17$.

3 Constructing circular FS words

We begin by proving a generalization of an approach used by Harju and Nowotka [6]. They used it to demonstrate that a particular morphism applied to ternary square-free words gave FS words. Here, we use it to find FS morphisms on alphabets of any size:
Lemma 1. Fix $n \geq 3$. Suppose $f: \Sigma_{n}^{*} \rightarrow \Sigma_{2}^{*}$ is a morphism satisfying these conditions:

1. For any square-free $v \in \Sigma_{n}^{3}, f(v)$ is an $F S$ word.
2. There is a word $p \in \Sigma_{2}^{*},|p| \geq 3$, such that:
(a) For each $a \in \Sigma_{n}, p$ is a prefix of $f(a)$.
(b) If $a_{i} \in \Sigma_{n}, 1 \leq i \leq \ell$, and $f\left(a_{1} a_{2} \cdots a_{\ell}\right)=q p r$ for some words $q, r \in \Sigma_{2}^{*}$, then $q=\epsilon$ or $q=f\left(a_{1} a_{2} \cdots a_{j}\right)$, some $j \leq \ell$.
Then f is an FS morphism.
Proof. To begin with, note that the conditions imply that if $a, b \in \Sigma_{n}$ and $f(a)$ is a prefix of $f(b)$, then $a=b$. Otherwise, $a b a$ is a square-free word of length 3, with square prefix $f(a) f(a)$. However, $|f(a)| \geq|p| \geq 3$, so $f(a) f(a) \neq 00,11$, or 0101 . This contradicts Condition 1 .

For the sake of getting a contradiction, consider a square-free word $w=w_{1} w_{2} \cdots w_{m}$, with the $w_{i} \in \Sigma_{n}$, such that $f\left(w_{1} w_{2} \cdots w_{m}\right)$ contains a square $x x, x \neq \epsilon, 0,1,01$. Let m be as small as possible. By Condition 1, $m \geq 4$. Since m is minimal, write

$$
x x=W_{1}^{\prime \prime} W_{2} \cdots W_{m}^{\prime},
$$

$$
\text { where } \begin{aligned}
f\left(w_{1}\right) & =W_{1}^{\prime} W_{1}^{\prime \prime}, W_{1}^{\prime \prime} \neq \epsilon \\
f\left(w_{i}\right) & =W_{i}, 2 \leq i \leq m-1 \\
f\left(w_{m}\right) & =W_{m}^{\prime} W_{m}^{\prime \prime}, W_{m}^{\prime} \neq \epsilon .
\end{aligned}
$$

As per Condition 2a, write $W_{2}=p W_{2}^{\prime \prime}$.
Case A: $|x|<\left|W_{1}^{\prime \prime}\right|$ or $|x|<\left|W_{m}^{\prime}\right|$
If $|x|<\left|W_{1}^{\prime \prime}\right|$, write $W_{1}^{\prime \prime}=x W_{1}^{\prime \prime \prime}, W_{1}^{\prime \prime \prime} \neq \epsilon$. Then we find the second copy of x in $x x$ can be written

$$
x=W_{1}^{\prime \prime \prime} W_{2} \cdots W_{m}^{\prime}=W_{1}^{\prime \prime \prime} p W_{2}^{\prime \prime} \cdots W_{m}^{\prime}
$$

However, then

$$
f\left(w_{1}\right)=W_{1}^{\prime} W_{1}^{\prime \prime}=W_{1}^{\prime} x W_{1}^{\prime \prime \prime}=W_{1}^{\prime} W_{1}^{\prime \prime \prime} p W_{2}^{\prime \prime} \cdots W_{m}^{\prime} W_{1}^{\prime \prime \prime}
$$

contains an instance of p at an index which contradicts Condition 2 b .
Similarly, if $|x|<\left|W_{m}^{\prime}\right|$, write $W_{m}^{\prime}=W_{m}^{\prime \prime \prime} x, W_{m}^{\prime \prime \prime} \neq \epsilon$. Then we find the first copy of x in $x x$ can be written

$$
x=W_{1}^{\prime \prime} W_{2} \cdots W_{m}^{\prime \prime \prime}=W_{1}^{\prime \prime \prime} p W_{2}^{\prime \prime} \cdots W_{m}^{\prime \prime \prime}
$$

However, then

$$
f\left(w_{m}\right)=W_{m}^{\prime} W_{m}^{\prime \prime}=W_{m}^{\prime \prime \prime} x W_{m}^{\prime \prime}=W_{m}^{\prime \prime \prime} W_{1}^{\prime \prime} p W_{2}^{\prime \prime} \cdots W_{m}^{\prime \prime \prime} W_{m}^{\prime \prime}
$$

contains an instance of p at an index which contradicts Condition 2 b .
Case B: $|x| \geq\left|W_{1}^{\prime \prime}\right|,\left|W_{m}^{\prime}\right|$
In this case we can write

$$
\begin{aligned}
x & =W_{1}^{\prime \prime} \cdots W_{j}^{\prime} \\
& =W_{j}^{\prime \prime} \cdots W_{m}^{\prime},
\end{aligned}
$$

for some $j, 1<j<m$, with $W_{j}=W_{j}^{\prime} W_{j}^{\prime \prime}$.
If $j>2$, then there is at least one instance of p in $x=W_{1}^{\prime \prime} W_{2} \cdots W_{j}^{\prime}$, appearing as a prefix of W_{2}. On the other hand, if $j=2$, then an instance of p appears as a prefix of W_{j+1} in $x=W_{j}^{\prime \prime} W_{j+1} \cdots W_{m}^{\prime}$. In either case, there is at least one instance of p in x. For the sake of definiteness, adjusting notation if necessary, choose j so that $W_{j}^{\prime}=\epsilon$ if x starts with p; that is, assume in all cases that $W_{j}^{\prime \prime} \neq \epsilon$.

Case B(i): Word x starts with p.

If x starts with p, then Condition 2b forces $W_{1}^{\prime \prime}=W_{1}$. Our choice of notation gives $W_{j}^{\prime \prime}=W_{j}$. Since W_{1} and W_{j} are prefixes of x, one must be a prefix of the other, and, as noted at the beginning of this proof, this forces $w_{1}=w_{j}$. Therefore $W_{1}=W_{j}$.

We prove by induction that for $1 \leq i \leq j-2, w_{1} \cdots w_{i}=w_{j} \cdots w_{j+i-1}$, and $W_{i+1} \cdots W_{j-1}=W_{j+i} \cdots W_{m}^{\prime}$. We have just established the base case of this induction, when $i=1$.

Suppose that for some $k, 1 \leq k<j-2$, we have $w_{1} \cdots w_{k}=w_{j} \cdots w_{j+k-1}$, and $W_{k+1} \cdots W_{j-1}=W_{j+k} \cdots W_{m}^{\prime}$. Then one of W_{k+1} and W_{j+k} is a prefix of the other, giving $w_{k+1}=w_{j+k}$, yielding the induction step.

Setting $i=j-1$, we see that $w_{1} \cdots w_{j-1}=w_{j} \cdots w_{2 j-2}$. However, now w contains the square $\left(w_{1} \cdots w_{j-1}\right)^{2}$. Since $\left|w_{1} \cdots w_{j-1}\right| \geq|p|=3$, this is a contradiction.

Case B(ii): Word x doesn't start with p.

The first p in x is at the beginning of W_{2} : If $x=W_{1}^{\prime \prime} W_{2} \cdots W_{j}^{\prime}$ has an instance of p of index $i, 1<i<\left|W_{1}^{\prime}\right|+1$, then $f\left(w_{1} w_{2}\right)$ contains an instance of p of index properly between 1 and $\left|f\left(w_{1}\right)\right|+1$, violating property 2(b). Thus the least index of p in x is $\left|W_{1}^{\prime}\right|+1$. However, an analogous argument observing that $x=W_{j}^{\prime \prime} W_{j+1} \cdots W_{m}^{\prime}$ yields least index of $p=\left|W_{j}^{\prime \prime}\right|+1$. Thus $W_{1}^{\prime \prime}$ and $W_{j}^{\prime \prime}$ are prefixes of x with the same length, forcing $W_{1}^{\prime \prime}=W_{j}^{\prime \prime}$. Now, $W_{2} \cdots W_{j}^{\prime}=W_{j+1} \cdots W_{m}^{\prime}$, so that one of W_{2} and W_{j+1} is a prefix of the other, forcing $w_{2}=w_{j+1}$.

We prove by induction that for $2 \leq i \leq j-2, w_{2} \cdots w_{i}=w_{j+1} \cdots w_{j+i-1}$, and $W_{i+1} \cdots W_{j-1} W_{j}^{\prime}=W_{j+i} \cdots W_{m-1} W_{m}^{\prime}$. We have just established the base case of this induction, when $i=2$.

Suppose that for some $k, 1 \leq k<j-1$, we have $w_{2} \cdots w_{k}=w_{j+1} \cdots w_{j+k-1}$, and $W_{k+1} \cdots W_{j-1} W_{j}^{\prime}=W_{j+k} \cdots W_{m-1} W_{m}^{\prime}$. Then one of W_{k+1} and W_{j+k} is a prefix of the other, giving $w_{k+1}=w_{j+k}$, yielding the induction step.

When $i=j-1$, we find $W_{j}^{\prime}=W_{m}^{\prime}$. Since one of W_{j} and W_{m} must be a prefix of the other, $w_{j}=w_{m}$. Then w contains the square $w_{2} \cdots w_{j} w_{j+1} \cdots w_{m}=\left(w_{2} \cdots w_{j}\right)^{2}$. Since $\left|w_{2} \cdots w_{j}\right| \geq|p|=3$, this is a contradiction.

One can find morphisms on T satisfying the conditions of Lemma 1 by computer search.

It is possible to build circular FS words from circular square-free words and FS morphisms, using the following Lemma and Corollary due to Rampersad[13].
Lemma 2. If f is a square-free morphism from Σ_{n} to Σ_{m}, and $[w]$ is a square-free circular word with $|w| \geq 2$, then $[f(w)]$ is a square-free circular word.

Proof. Write $w=w_{1} w_{2} \cdots w_{\ell}, w_{\ell} \in \Sigma_{n}$. Let $f\left(w_{i}\right)=W_{i}, 1 \leq i \leq \ell$. Replacing w with one of its conjugates if necessary, we can assume that $W_{1}^{\prime \prime} W_{2} \cdots W_{\ell} W_{1}^{\prime}$ is a representative of $[f(w)]$ containing a square, where $W_{1}=W_{1}^{\prime} W_{1}^{\prime \prime}$. Then $W_{1} W_{2} \cdots W_{\ell} W_{1}=f\left(w_{1} w_{2} \cdots w_{\ell} w_{1}\right)$ also contains this square. Since f is square-free, this implies that $w_{1} w_{2} \cdots w_{\ell} w_{1}$ contains some square $x x$. Both $w_{1} w_{2} \cdots w_{\ell}$ and $w_{2} \cdots w_{\ell} w_{1}$ are representatives of w, and are thus square-free. It follows that $x x=w_{1} w_{2} \cdots w_{\ell} w_{1}$. However, x then begins and ends with letter w_{1}, so that $w_{1} w_{1}$ appears at the center of $x x$, whence w contains the square $w_{1} w_{1}$. This is a contradiction.

Corollary 1. If f is a $F S$ morphism from Σ_{n} to Σ_{2}, and $[w]$ is a squarefree circular word with $|w| \geq 2$, then $[f(w)]$ is an FS circular word.

Proof. The previous proof goes through, replacing 'containing a square' by 'containing a square other than $00,11,0101$ ', and 'square-free' by 'an FS morphism'.

To produce circular FS words with specific lengths, we make use of the following recent result by the authors $[4,8]$:
Theorem 4. There is a level ternary circular square-free word of length n, for each positive integer $n, n \neq 5,7,9,10,14,17$.

Here is how we produce circular FS words with desired lengths: Given $n \geq 2, n \neq 5,7,9,10,14,17$, write $n=3 i+j$, integers i and j such that $-1 \leq j \leq 1$. Note that $i \geq 1$. Let w be a level circular square-free word over S with $|w|=n$. Permuting a, b, c if necessary, assume that, $|w|_{a}=i+j,|w|_{b}=|w|_{c}=i$. For $k \leq i+j$, replacing k of the a 's in w by d 's gives a circular square-free word u over T with $|u|_{a}=i+j-k$, $|u|_{b}=|u|_{c}=i,|u|_{d}=k$.

Suppose that $f: T^{*} \rightarrow B^{*}$ is an FS morphism, with $|f(a)|=\alpha$, $|f()|=\beta,|f(c)|=\gamma,|f(d)|=\delta$. By Corollary $1,[f(u)]$ is a circular FS word, with length

$$
\begin{aligned}
\sum_{t \in T}|f(t) \| u|_{t} & =\alpha(i+j-k)+\beta i+\gamma i+\delta(k) \\
& =(\alpha+\beta+\gamma) i+\alpha j+k(\delta-\alpha)
\end{aligned}
$$

In a similar way, for $k \leq i$, replacing k of the b 's in w by d 's gives a circular square-free word v over T with $|v|_{a}=i+j,|v|_{b}=i-k,|v|_{c}=i$, $|v|_{d}=k$, and $[f(v)]$ is a circular FS word with length

$$
(\alpha+\beta+\gamma) i+\alpha j+k(\delta-\beta)
$$

We have proved the following:
Theorem 5. Suppose there exists a FS morphism $f: T^{*} \rightarrow B^{*}$, with $|f(a)|=\alpha,|f(b)|=\beta,|f(c)|=\gamma,|f(d)|=\delta$. Then there exists a circular $F S$ word of length m for every positive integer m of the form

$$
\begin{equation*}
m=(\alpha+\beta+\gamma) i+\alpha j+k(\delta-\alpha) \tag{1}
\end{equation*}
$$

with integers i, j, k such that

- $i \geq 1$
- $-1 \leq j \leq 1$
- $3 i+j \neq 5,7,9,10,14,17$
- $k \leq i+j$,
and of every length m of the form

$$
\begin{equation*}
m=(\alpha+\beta+\gamma) i+\alpha j+k(\delta-\beta) \tag{2}
\end{equation*}
$$

with integers i, j, k such that

- $i \geq i$
- $-1 \leq j \leq 1$
- $3 i+j \neq 5,7,9,10,14,17$
- $k \leq i$.

As an example of the application of this theorem, we prove the following:
Lemma 3. Suppose that m is an integer, $m \geq 7400$. There is a circular $F S$ word of length m.
Proof. One checks that the morphism $f: T^{*} \rightarrow S^{*}$ given by

$$
\begin{aligned}
f(a) & =01100111000101110010110001011100011001011000111001 \\
f(b) & =01100111000110010110001011100101100011100101110001 \\
f(c) & =01100111000110010111000101100011100101100010111001 \\
f(d) & =011001110001011100101100011100101110001011000111001
\end{aligned}
$$

satisfies the conditions of Theorem 1. We have $|f(a)|=|f(b)|=|f(c)|=$ $50,|f(d)|=51$. Write $m=50 \ell+k, 0 \leq k \leq 49$. Write $\ell=3 i+j,-1 \leq j \leq$ 1. Then $\ell=\lfloor m / 50\rfloor \geq 148$, so that $i=(\ell-j) / 3 \geq 147 / 3=49 \geq k$. Then the conditions giving a length of form (2) hold, with $\alpha=\beta=\gamma=50$, $\delta=51$, and there is a circular FS word of length

$$
\begin{aligned}
(\alpha+\beta+\gamma) i+\alpha j+k(\delta-\beta) & =150 i+50 j+k \\
& =150\left(\frac{\ell-j}{3}\right)+50 j+m-50 \ell \\
& =50 \ell-50 j+50 j+m-50 \ell \\
& =m .
\end{aligned}
$$

Several other morphisms satisfying the conditions of Theorem 1 are given in Tables 1, 2, and 3.
Remark 1. Choose $r, 0 \leq r \leq 32$, and consider the morphism f_{r} in Tables 1, 2, or 3. Let $[\alpha, \beta, \gamma, \delta]$ be a permutation of $\left[\left|f_{r}(a)\right|,\left|f_{r}(b)\right|,\left|f_{r}(c)\right|,\left|f_{r}(d)\right|\right]$. Letting i, j, k take on values allowable in Theorem 5, one produces FS words of various lengths. A computer search thus shows that all lengths less than 7400 are obtainable in this way except for
$1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21$, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, $63,64,65,69,70,71,73,77,116,127,232,241$, and 253.

A further computer search finds circular FS words in each of these cases, or shows that no such word exists. Where circular FS words exist, not obtainable via Theorem 5 and the morphisms in Tables 1-3, they are listed in Table 4. The lengths for which no circular FS word exists are found to be

9, 10, 11, 13, 15, 16, 17, 18, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 40, 41, 42, 45, 47, 49, 53, 56, 59, 61, 64, and 73.
Main Theorem. There is a circular FS word of length m exactly when m is a non-negative integer other than 9, 10, 11, 13, 15, 16, 17, 18, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 40, 41, 42, 45, 47, 49, 53, 56, 59, 61, 64, and 73.

r	x	$f_{r}(x)$	$\left\|f_{r}(x)\right\|$
0	a b c d d	011001110001100101110001 011001110001100101100010111001 01100111000101110010110001011100011001011000111001 011001110001011100101100011100101110001011000111001	$\begin{aligned} & 24 \\ & 30 \\ & 50 \\ & 51 \end{aligned}$
1	a b c d	110001100101110001011001 11000110010110001110010110011100010111001011000101 110001100101100010111001011001110001011000111001011001 1100011001011000111001011100010110011100010111001011001	$\begin{aligned} & 24 \\ & 50 \\ & 54 \\ & 55 \end{aligned}$
2	a b c d	110001100101100010111001011001 11000110010111000101100011100101110001011001 11000110010110001110010110011100010111001011000101 110001100101100011100101110001011000111001011000101	$\begin{aligned} & 30 \\ & 44 \\ & 50 \\ & 51 \end{aligned}$
3	$\begin{aligned} & a \\ & b \\ & c \\ & c \\ & d \end{aligned}$	0110011100011001011000111001 0110011100010111001011000101110001100101100010111001 01100111000110010111000101100011100101110001100101100010111001 011001110001011000111001011000101110001100101100011100101110001	$\begin{aligned} & 28 \\ & 52 \\ & 62 \\ & 63 \end{aligned}$
4	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	0101100011100101100111000101110 010110001110010111000101100111000110 01011000111001011100011001011000101110010110011100 010110001110010111000110010110001011100011001011100	$\begin{aligned} & 31 \\ & 36 \\ & 50 \\ & 51 \end{aligned}$
5	$\begin{aligned} & \hline a \\ & b \\ & c \\ & d \end{aligned}$	010110001110010110011100011001011100 01011000111001011001110001011100101100010111000110 010110001110010111000110010110001011100101100111000110 0101100011100101110001011001110001011100101100111000110	$\begin{aligned} & 36 \\ & 50 \\ & 54 \\ & 55 \end{aligned}$
6	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	01011000111001011001110001011100101100010111000110 0101100011100101110001011001110001011100101100111000110 01011000111001011100011001011000101110010110011100011001011100 010110001110010111000101100111000110010110001011100011001011100	$\begin{aligned} & 50 \\ & 55 \\ & 62 \\ & 63 \end{aligned}$
7	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	011001110001011100101100011100101110001 01100111000110010111000101100011100101110001 011001110001100101100011100101110001100101100010111001 0110011100011001011000101110001100101110001011000111001	$\begin{aligned} & 39 \\ & 44 \\ & 54 \\ & 55 \end{aligned}$
8	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	0101100011100101100111000110 010110001110010111000101100111000101110010110011100 01011000111001011100011001011000101110010110011100011001011100 010110001110010111000101100111000110010110001011100011001011100	$\begin{aligned} & 28 \\ & 51 \\ & 62 \\ & 63 \end{aligned}$
9	a b c d d	110001100101100010111001011001 110001100101100011100101110001011001 1100011001011000111001011001110001011000111001011000101 11000110010111000101100011100101100111000101100011100101	$\begin{aligned} & 30 \\ & 36 \\ & 55 \\ & 56 \end{aligned}$
10	a b c d	011001110001011100101100011100101110001 01100111000101110010110001011100011001011000111001 011001110001100101100011100101110001100101100010111001 0110011100011001011000101110001100101110001011000111001	$\begin{aligned} & 39 \\ & 50 \\ & 54 \\ & 55 \end{aligned}$

Table 1: Various FS morphisms with lengths

r	x	$f_{r}(x)$	$\left\|f_{r}(x)\right\|$
11	a b c d	110001100101100010111001011001 11000110010111000101100011100101 11000110010110001110010110011100010111001011000101 110001100101100011100101110001011000111001011000101	$\begin{aligned} & 30 \\ & 32 \\ & 50 \\ & 51 \end{aligned}$
12	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	11000110010111000101100011100101110001011001 110001100101100011100101110001011000111001011000101 110001100101100010111001011001110001011000111001011000101 1100011001011100010110001110010110011100010111001011000101	$\begin{aligned} & 44 \\ & 51 \\ & 57 \\ & 58 \end{aligned}$
13	$\begin{aligned} & \hline a \\ & b \\ & c \\ & d \end{aligned}$	000111001011001110001100101110001011 000111001011000101110010110011100011001011 00011100101110001100101100010111001011001110001011 000111001011100010110011100010111001011001110001011	$\begin{aligned} & 36 \\ & 42 \\ & 50 \\ & 51 \end{aligned}$
14	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$		$\begin{aligned} & 24 \\ & 44 \\ & 55 \\ & 67 \end{aligned}$
15	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	110011100011001011100010110001110010111000110010110001110010 11001110001100101100010111001011000111001011100010110001110010 11001110001100101100011100101110001011000111001011000101110010 110011100011001011000101110001100101110001011000111001011100010	$\begin{aligned} & 60 \\ & 62 \\ & 62 \\ & 63 \end{aligned}$
16	$\begin{aligned} & \hline a \\ & b \\ & c \\ & d \end{aligned}$	01100111000101110010110001011100011001011000111001 01100111000110010110001011100101100011100101110001 01100111000110010111000101100011100101100010111001 011001110001011100101100011100101110001011000111001	$\begin{aligned} & \hline 50 \\ & 50 \\ & 50 \\ & 51 \end{aligned}$
17	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	110011100011001011100010 110011100011001011000111001011100010110001110010 110011100010111001011000111001011100011001011000101110010 1100111000101110010110001011100011001011100010110001110010	$\begin{aligned} & 24 \\ & 48 \\ & 57 \\ & 58 \end{aligned}$
18	$\begin{aligned} & \hline a \\ & b \\ & c \\ & d \end{aligned}$	110011100011001011100010 110011100010111001011000111001011100010110001110010 110011100011001011000111001011100011001011000101110010 1100111000110010110001011100011001011100010110001110010	$\begin{aligned} & 24 \\ & 51 \\ & 54 \\ & 55 \end{aligned}$
19	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	110011100011001011100010 1100111000101110010110001011100011001011000101110010 110011100011001011000111001011100011001011000101110010 1100111000110010110001011100011001011100010110001110010	$\begin{aligned} & \hline 24 \\ & 52 \\ & 54 \\ & 55 \\ & \hline \end{aligned}$
20	a b c d d		$\begin{aligned} & 28 \\ & 32 \\ & 51 \\ & 52 \end{aligned}$
21	a b c d	1100111000110010110001110010 11001110001100101110001011000111001011100010 110011100010111001011000111001011100011001011000101110010 1100111000101110010110001011100011001011000111001011100010	$\begin{aligned} & \hline 28 \\ & 44 \\ & 57 \\ & 58 \end{aligned}$

Table 2: Various FS morphisms with lengths

r	x	$f_{r}(x)$	$\left\|f_{r}(x)\right\|$
22	a b c c d	1100111000110010110001110010 1100111000101110010110001011100011001011100010 110011100010111001011000111001011100010110001110010 1100111000101110010110001011100011001011000101110010	$\begin{aligned} & 28 \\ & 46 \\ & 51 \\ & 52 \end{aligned}$
23	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	1100111000110010110001110010 11001110001100101110001011000111001011000101110010 11001110001011000111001011100011001011000111001011100010 110011100010111001011000111001011100011001011000101110010	$\begin{aligned} & 28 \\ & 50 \\ & 56 \\ & 57 \end{aligned}$
24	$\begin{aligned} & \hline a \\ & b \\ & c \\ & d \end{aligned}$	1100111000110010110001110010 11001110001100101110001011000111001011000101110010 110011100010111001011000111001011100011001011000101110010 1100111000101110010110001011100011001011000111001011100010	$\begin{aligned} & 28 \\ & 50 \\ & 57 \\ & 58 \end{aligned}$
25	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	1100111000110010110001110010 11001110001011000111001011100011001011000111001011100010 110011100010111001011000111001011100011001011000101110010 1100111000101110010110001011100011001011100010110001110010	$\begin{aligned} & 28 \\ & 56 \\ & 57 \\ & 58 \end{aligned}$
26	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	1100111000110010110001110010 110011100010111001011000111001011100011001011000101110010 11001110001100101110001011000111001011100011001011000101110010 110011100010110001110010110001011100011001011000111001011100010	$\begin{aligned} & 28 \\ & 57 \\ & 62 \\ & 63 \end{aligned}$
27	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	11001110001011000111001011100010 110011100011001011100010110001110010 110011100011001011000111001011100011001011000101110010 1100111000101110010110001110010111000110010110001110010	$\begin{aligned} & \hline 32 \\ & 36 \\ & 54 \\ & 55 \end{aligned}$
28	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	11001110001011000111001011100010 11001110001011100101100010111000110010110001110010 110011100011001011000111001011100011001011000101110010 1100111000110010110001011100011001011100010110001110010	$\begin{aligned} & 32 \\ & 50 \\ & 54 \\ & 55 \end{aligned}$
29	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	110011100011001011000111001011100010 11001110001100101110001011000111001011000101110010 110011100010111001011000111001011100010110001110010 1100111000101110010110001011100011001011000101110010	$\begin{aligned} & 36 \\ & 50 \\ & 51 \\ & 52 \end{aligned}$
30	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	110011100011001011100010110001110010 11001110001011100101100010111000110010110001110010 11001110001100101100011100101110001011000111001011000101110010 110011100011001011000101110001100101110001011000111001011100010	$\begin{aligned} & 36 \\ & 50 \\ & 62 \\ & 63 \end{aligned}$
31	a b c d d	110011100010111001011000111001011100010 110011100011001011000111001011100010110001110010 11001110001100101110001011000111001011100011001011000101110010 110011100011001011000101110001100101110001011000111001011100010	$\begin{aligned} & 39 \\ & 48 \\ & 62 \\ & 63 \end{aligned}$
32	a b c d	11001110001100101110001011000111001011100010 1100111000101110010110001011100011001011000101110010 110011100011001011000111001011100011001011000101110010 1100111000110010110001011100011001011100010110001110010	$\begin{aligned} & 44 \\ & 52 \\ & 54 \\ & 55 \end{aligned}$

Table 3: Various FS morphisms with lengths

$\|w\|$	w
1	0
2	00
3	000
4	0001
5	00011
6	000111
7	0001011
8	00010111
12	000101100111
14	00010111001011
19	0001011100011001011
20	00010110001110010111
24	000101100011100101100111
28	0001100101100011100101100111
30	000101110010110011100011001011
36	000101100011100101100111000110010111
38	00010110001110010110001011100101100111
39	000101100011100101100010111000110010111
43	0001011001110001011100101100111000110010111
44	00010110001110010111000101100111000110010111
46	0001011001110001011100101100010111000110010111
48	000101100011100101100111000110010110001110010111
50	00010110001110010110001011100101100111000110010111
51	000101100011100101100010111000110010110001110010111
52	0001011001110001100101100011100101100111000110010111
55	0001011000111001011000101110001100101100011100101100111
57	000101100011100101100010111000110010110001011100101100111
58	0001011000111001011001110001011100101100010111000110010111
63	000101100011100101110001011001110001011100101100111000110010111
65	00010110001110010110001011100011001011000101110010110001110010111
69	000101100011100101100010111000110010110001011100101100111000110010111
70	0001011000111001011000101110001100101110001011001110001011100101100111
71	00010110011100010111001011001110001100101100011100101100111000110010111
77	00010110001110010110001011100011001011100010110001110010110001011100101100111
116	00010110001110010110001011100011001011000101110010110001110010111000101100011
	10010110011100010111001011000110010111
127	0001110010111000101100111000110010110001011000110010111000101100011100101100
232	11100010111001011000101110001100101100010111001011
241	$f_{27}(a b d c d)$
253	$f_{29}(a b d c d)$
$2 b d c d)$	

Table 4: Circular SF words of various lengths

References

[1] T. Clokie, D. Gabric, J. Shallit, Circularly squarefree words and unbordered conjugates: a new approach. In Mercas R., Reidenbach D. (eds.) Combinatorics on Words. WORDS 2019. Lecture Notes in Computer Science, 11682, Springer, 2019, pp. 264-274.
[2] J. D. Currie, There are circular square-free words of length n for $n \geq 18$, Electron. J. Comb. 9 (2002) \#N10.
[3] J. D. Currie, D. S. Fitzpatrick, Circular words avoiding patterns. In: Ito M., Toyama M. (eds) Developments in Language Theory. DLT 2002. Lecture Notes in Computer Science, 2450. Springer, Berlin, Heidelberg, 319-325.
[4] J. D. Currie, J. T. Johnson, There are level ternary circular square-free words of length n for $n \neq 5,7,9,10,14,17$, doi: http://arXiv:2005.06235
[5] A.S. Fraenkel, R.J. Simpson, How many squares must a binary sequence contain? Electron. J. Comb. 2 (1995) \#R2.
[6] T. Harju, D. Nowotka, Binary words with few squares Bull. Eur. Assoc. Theor. Comput. Sci., 89 (2006), 164-166.
[7] T. Harju, D. Nowotka, Cyclically repetition-free words on small alphabets Information Processing Letters, 110 (2010), 591-595 .
[8] J. T. Johnson, New and existing results on circular words, M.Sc. thesis, University of Victoria, doi: http://hdl.handle.net/1828/11743
[9] M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications 17, Addison-Wesley, Reading (1983).
[10] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge (2002).
[11] L. Mol, N. Rampersad, Personal communication.
[12] H. Mousavi, J. Shallit, Repetition avoidance in circular factors. In: Béal M.-P., Carton O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, 7907. Springer, Berlin, Heidelberg, 384-395.
[13] N. Rampersad, Personal communication.
[14] N. Rampersad, J. Shallit, and M.-w. Wang. Avoiding large squares in infinite binary words. Theoret. Comput. Sci., 339 (2005) 19-34.
[15] R. O. Shelton, On the structure and extendibility of square-free words, Combinatorics on Words: Progress and Perspectives, Academic Press, New York, 1983, 101-188.
[16] A. M. Shur, On Ternary Square-free Circular Words, Electr. J. Comb. 17(1) (2010) \#R140
[17] A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana No. 7 (1906).
[18] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 1 (1912) 1-67.

[^0]: *The author is supported by an NSERC Discovery Grant

