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Abstract: 

In this thesis we explored some topics in regression analysis. In particular, we studied what linear 

regression is from a matrix theory perspective, and applied analysis of variance in a setting with 

two factors and unbalanced sample sizes. In addition, we applied Box-Cox variable 

transformation as a solution when the regression model violated the normality and equal 

variance (also called homoscedasticity) assumption. Our main goal is to use these theories to 

construct models and investigate questions related to lifetime earnings of people living in 

America by using real data. In doing so, we used the statistical software R to perform calculation 

involved in variable selection models, to identify and quantify relationships between variables as 

well as to test hypotheses. 

 

 

 

 

 

 

 

 

 



Introduction to Linear Models from Matrix Theory Perspective 

We will restrict attention to Simple Linear Regression to illustrate the main ideas. Simple linear 

regression models arise as an attempt to represent the relationship between two real valued 

variables 𝑥 and 𝑦 in the form 

𝑦 = 𝛽0 + 𝛽1𝑥. 

After observing n datapoints (xI, yI), the goal is to find the β0, and β1 for which 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 

holds for all 𝑖. As a matrix equation this is  

Y=Xβ 

where 

𝐘 = [

𝑦1
⋮
𝑦𝑛
], 𝐗 = [

1
⋮
1

  

𝑥1
⋮
𝑥𝑛
]  , and 𝛃 = [

𝛽0
𝛽1
]. 

We call 𝐗 the design matrix, and its column (𝑥1, … , 𝑥𝑛)
T is chosen in the design of a study. But 

𝐘 = 𝐗𝛃 usually has no solution, so we use the vector �̂�  in the range of 𝐗 that is closest to 𝐘 as 

an approximate solution. As we will illustrate below, this choice of  �̂� as an approximate solution 

has an illuminating geometric interpretation for which the standard regression identity: 

SSTotal = SSRegression + SSResiduals, is seen as a Pythagorean Theorem in 𝑛 spaces. 

We will use ‖∙‖ to denote the norm 𝑥 ↦ √∑𝑥𝑖
2, and denote the span of a set of vectors 𝐁 as 〈𝐁〉, 

and use ⦹ to denote a direct sum of orthogonal spaces of vectors. 

Procedure for acquiring  �̂� as an approximate solution to 𝐘 = 𝐗𝛃. 



Step 1: Let 𝕝 be the vector (1, … ,1)T ∈ ℝ𝑛, and 𝐗 = (𝑥1, … , 𝑥𝑛)
T. Orthogonalize {𝕝, 𝐱} to obtain 

a basis {𝕝, 𝐱 − �̅� ⋅ 𝕝 } of orthogonal vectors spanning the same 2-dimensional subset of ℝnas {𝕝, 𝐱} 

does. Since the range of 𝐗 is the span of its column, this gives us 

𝑅𝑎𝑛𝑔𝑒(𝐗) = ⟨{𝕝, 𝐱 − �̅� ∙ 𝕝}⟩ = ⟨𝕝⟩⦹⟨𝐱 − x̅ ∙ 𝕝⟩. 

Step 2: Project 𝐲 orthogonally onto ⟨𝕝⟩⦹⟨𝐱 − �̅� ∙ 𝕝⟩ to obtain  �̂�. It is achieved by the Hat Matrix 

𝐇 = 𝐗(𝐗′ ⋅ 𝐗)−𝟏𝐗′, and it is named because it puts the hat on 𝐘 (see page 29, 70 of [3]): 

�̂� = 𝐇𝐘 

Note that as long s the matrix 𝐗 has rank 2, the matrix 𝐗′𝐗 is invertible. We will always satisfy 

this requirement since we choose the 𝑥  vector and it would only lie in the span of 𝕝 all our 

observations are made of the same level of 𝑥. In this case, that would be a vertical line.  

In figure 1 that follows, 𝐘 is vectors 𝐄𝐃⃑⃑⃑⃑  ⃑ and �̂� is vector 𝐄𝐇⃑⃑ ⃑⃑  ⃑. This orthogonal projection makes  �̂� 

be the closest vector in the span of 𝕝 and 𝐱 − �̅� ∙ 𝕝 to 𝐘. Equivalently �̂� minimizes the length of 

the residual vector 𝐘 − �̂� (vector 𝐇𝐃⃑⃑⃑⃑⃑⃑  in figure 1). 

Step 3: We obtain a representation of  �̂� as a linear combination of 𝕝 and 𝐱 − x̅ ⋅ 𝕝 as follows 

(Theorem 1.6.7, Page 34, [3]) 

�̂� = Proj⊥(𝐘|〈𝕝〉 ⦹ 〈𝐱 − x̅ ⋅ 𝕝〉) 

= Proj⊥(𝐘|〈𝕝〉) ⦹ Proj⊥(𝐘|〈𝐱 − x̅ ⋅ 𝕝〉) 

= �̅� ⋅ 𝕝 ⦹ 𝛽1̂ ⋅ (𝐱 − x̅ ⋅ 𝕝) 

And we can conclude that  �̂� = �̅� ⋅ 𝕝 + 𝛽1̂ ⋅ (𝐱 − x̅ ⋅ 𝕝) is the closest element of 〈{𝕝, 𝐱}〉 to 𝐘. In 

figure 1, this is the claim 𝐄𝐇⃑⃑ ⃑⃑  ⃑ = 𝐄𝐅⃑⃑⃑⃑  ⃑ + 𝐄𝐆⃑⃑⃑⃑  ⃑ 



 

Figure 1: Linear regression model as solution to projection problem 

Note that: 

• The regression identity 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 can be interpreted as a 

Pythagorean theorem in n-space for the triangle with vertices E, G, C: 

‖𝐄𝐂⃑⃑⃑⃑  ⃑ ‖
2
= ‖𝐄𝐆⃑⃑⃑⃑  ⃑ ‖

2
+ ‖𝐆𝐂⃑⃑⃑⃑  ⃑ ‖

2
equivalently, 

‖𝐘 − �̅� ∙ 𝕝‖2 = ‖�̂� − �̅� ∙ 𝕝‖
2
+ ‖𝐘 − �̂�‖

2
 

 

 

 

 

 



Methodology 

1. Two-Factor Studies with Unequal Sample Sizes 

In the case of two-factor with equal sample sizes, a Pythagorean style theorem still holds but on 

more orthogonal terms. Then we can still identify statistics for using in estimation and testing 

assertions about the mean response to each combination of factor levels. However, an 

unbalanced sample sizes setting makes the study more complicated. In particular orthogonality 

is lost, and so we fail to use the conceptually clear and clean approach to find estimators and 

their distributions. 

To get around this, we can use a generalized linear approach: Two-Factor Analysis with Unequal 

Sample Sizes (Chapter 23, [2]). This ANOVA model still follows the rules that the observations are 

normally distributed, and the variance of each group is the same. 

Suppose we have two factors 𝐴 and 𝐵 with mean effects 𝛼 and 𝛽. The factor-fixed effects model 

for two-factor ANOVA with interaction is: 

𝑌𝑖𝑗𝑘 = 𝜇∙∙ + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜀𝑖𝑗𝑘 

for 𝑎, 𝑏 ∈ ℕ, 𝑖 = 1,… , 𝑎 and 𝑗 = 1,… , 𝑏; 𝑛𝑖,𝑗 ∈ ℕ, 𝑘 = 1,… , 𝑛𝑖,𝑗. Here: 

• 𝜇∙∙  is a mean of the whole sample (the grand mean) 

• 𝛼𝑖 and 𝛽𝑗 are constants subject to the restriction ∑𝛼𝑖 = 0 and ∑𝛽𝑗 = 0  

• (𝛼𝛽)𝑖𝑗 are interaction constants subject to the restrictions: 

∑ (𝛼𝛽)𝑖𝑗𝑖 = 0  for each 𝑗 = 1,… , 𝑏 

∑ (𝛼𝛽)𝑖𝑗𝑗 = 0   for each 𝑖 = 1,… , 𝑎 



• And 𝜀𝑖𝑗𝑘 are independent 𝑁(0, 𝜎2) 

Therefore, for each (𝑖, 𝑗, 𝑘), the expected responses to the 𝑘th observation of the treatment for 

which 𝐴 is set to level 𝑖 and 𝐵 is set to level 𝑗 is: 

𝔼[𝑌𝑖𝑗𝑘] = 𝜇∙∙ + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 

By the constraints listed above, the expected overall response when 𝐴 is set to level 𝑖 is 𝛼𝑖, and 

the expected overall response to setting 𝐵 with level 𝑗 is 𝛽𝑗 , and the (𝛼𝛽)𝑖𝑗  term is the mean 

interaction influence that the combination of setting 𝐴 to level 𝑖 and setting 𝐵 to level 𝑗 has on 

the response 𝑌. 

Also, since ∑𝛼𝑖 = 0 and ∑𝛽𝑖 = 0, the first sum has (𝑎 − 1) and the second sum has (𝑏 − 1) 

degrees of freedom. Consequently, the last term 𝛼𝑎 and 𝛽𝑏 can be written as: 

𝛼𝑎 = −𝛼1 − 𝛼2 −⋯− 𝛼𝑎−1 

𝛽𝑏 = −𝛽1 − 𝛽2 −⋯− 𝛽𝑏−1 

Similarly, we can write these equations for the interaction parameters: 

(𝛼𝛽)𝑖𝑏 = −(𝛼𝛽)𝑖1 − (𝛼𝛽)𝑖2 −⋯− (𝛼𝛽)𝑖,𝑏−1  

(𝛼𝛽)𝑎𝑗 = −(𝛼𝛽)1𝑗 − (𝛼𝛽)2𝑗 −⋯− (𝛼𝛽)𝑎−1,𝑗 

Therefore, there are only (𝑎 − 1)(𝑏 − 1) free interaction effects, and (𝑎 − 1) + (𝑏 − 1) factor 

effects need to be estimated. 

Example: Suppose we collect data on the responses to two treatment factors 𝐴 and 𝐵, where 𝐴 

has 2 levels, and 𝐵 has 3. So we need to estimate one of 𝛼1 and 𝛼2, two of 𝛽1, 𝛽2, 𝛽3, and two of 



(𝛼𝛽)11, (𝛼𝛽)12, (𝛼𝛽)13, (𝛼𝛽)21, (𝛼𝛽)22,  and (𝛼𝛽)23 . We will show how to find estimators of 

𝛼1, 𝛽1, 𝛽2, (𝛼𝛽)11, and (𝛼𝛽)12. 

Once we do this, we can obtain the others as follow: 

𝛼2 = −𝛼1 

𝛽3 = −𝛽1 − 𝛽2 

(𝛼𝛽)13 = −(𝛼𝛽)11 − (𝛼𝛽)12 

(𝛼𝛽)21 = −(𝛼𝛽)11 

(𝛼𝛽)22 = −(𝛼𝛽)12 

(𝛼𝛽)23 = −(𝛼𝛽)13 = (𝛼𝛽)11 + (𝛼𝛽)12 

We begin by expressing the dependence of the 𝑘th response 𝑌 has to the treatment for which 𝐴 

is set to level 𝑖  and 𝐵  is set to level 𝑗  in terms of indicator functions  𝑋1, 𝑋2, and 𝑋3  that are 

defined after the full regression model: 

𝑌𝑖𝑗𝑘 = 𝜇∙∙ + 𝛼1𝑋𝑖𝑗𝑘1⏟    
Factor 𝐴 main effect

+ 𝛽1𝑋𝑖𝑗𝑘2 + 𝛽2𝑋𝑖𝑗𝑘3⏟          
Factor 𝐵 main effect

+ (𝛼𝛽)11𝑋𝑖𝑗𝑘1𝑋𝑖𝑗𝑘2 + (𝛼𝛽)12𝑋𝑖𝑗𝑘1𝑋𝑖𝑗𝑘3⏟                        
Fractor 𝐴𝐵 interation effect

+ 𝜀𝑖𝑗𝑘  

Here 𝑋𝑖𝑗𝑘1, 𝑋𝑖𝑗𝑘2, 𝑋𝑖𝑗𝑘3 are indicator functions that depend on the treatment. 

Specifically, 

𝑋𝑖𝑗𝑘1 = {
1,     if A is set to level 1 (i=1)

−1, if A is set to level 2 (i=2)
 

𝑋𝑖𝑗𝑘2 = {
1,     if 𝐵 is set to level 1 (j=1)
−1, if 𝐵 is set to level 3 (j=3)

0, otherwise
 



𝑋𝑖𝑗𝑘3 = {
1,      if 𝐵 is set to level 2 (j=2)
−1,  if 𝐵 is set to level 3 (j=3)

0, otherwise
 

Next, by applying the expectation operator to this equation we obtain the following equations 

for the expected values 𝜇𝑖𝑗 = 𝔼[𝑌|𝐴 = 𝑖, 𝐵 = 𝑗]. 

𝜇11 = 𝜇∙∙ + 𝛼1 ⋅ 1 + 𝛽1 ⋅ 1 + 𝛽2 ⋅ 0 + (𝛼𝛽)11 ⋅ 1 ⋅ 1 + (𝛼𝛽)12 ⋅ 1 ⋅ 0 = 𝜇∙∙ + 𝛼1 + 𝛽1 + (𝛼𝛽)11 

𝜇12 = 𝜇∙∙ + 𝛼1 ⋅ 1 + 𝛽1 ⋅ 0 + 𝛽2 ⋅ 1 + (𝛼𝛽)11 ⋅ 1 ⋅ 0 + (𝛼𝛽)12 ⋅ 1 ⋅ 1 = 𝜇∙∙ + 𝛼1 + 𝛽2 + (𝛼𝛽)12 

𝜇13 = 𝜇∙∙ + 𝛼1 ⋅ 1 + 𝛽1 ⋅ (−1) + 𝛽2 ⋅ (−1) + (𝛼𝛽)11 ⋅ 1 ⋅ (−1) + (𝛼𝛽)12 ⋅ 1 ⋅ (−1)

= 𝜇∙∙ + 𝛼1 − 𝛽1 − 𝛽2 − (𝛼𝛽)11 − (𝛼𝛽)12 

𝜇21 = 𝜇∙∙ + 𝛼1 ⋅ (−1) + 𝛽1 ⋅ 1 + 𝛽2 ⋅ 0 + (𝛼𝛽)11 ⋅ (−1) ⋅ 1 + (𝛼𝛽)12 ⋅ (−1) ⋅ 0

= 𝜇∙∙ − 𝛼1 + 𝛽1 − (𝛼𝛽)11 

𝜇22 = 𝜇∙∙ + 𝛼1 ⋅ (−1) + 𝛽1 ⋅ 0 + 𝛽2 ⋅ 1 + (𝛼𝛽)11 ⋅ (−1) ⋅ 0 + (𝛼𝛽)12 ⋅ (−1) ⋅ 1

= 𝜇∙∙ − 𝛼1 + 𝛽2 − (𝛼𝛽)12 

𝜇23 = 𝜇∙∙ + 𝛼1 ⋅ (−1) + 𝛽1 ⋅ (−1) + 𝛽2 ⋅ (−1) + (𝛼𝛽)11 ⋅ (−1) ⋅ (−1) + (𝛼𝛽)12 ⋅ (−1) ⋅ (−1)

= 𝜇∙∙ − 𝛼1 − 𝛽1 − 𝛽2 + (𝛼𝛽)11 + (𝛼𝛽)12 

Assembling these information lead to the augmented matrix below, which can be row reduced 

to yield estimators of 𝛼1, 𝛽1, 𝛽2, (𝛼𝛽)11, and (𝛼𝛽)12 

(

 
 
 
 

𝜇∙∙ 𝛼1 𝛽1 0 (𝛼𝛽)11 0

𝜇∙∙ 𝛼1 0 𝛽2 0 (𝛼𝛽)12
𝜇∙∙ 𝛼1 −𝛽1 −𝛽2 −(𝛼𝛽)11 −(𝛼𝛽)12
𝜇∙∙ −𝛼1 𝛽1 0 −(𝛼𝛽)11 0

𝜇∙∙ −𝛼1 0 𝛽2 0 −(𝛼𝛽)12
𝜇∙∙ −𝛼1 −𝛽1 −𝛽2 (𝛼𝛽)11 (𝛼𝛽)12

|

|

𝜇11
𝜇12
𝜇13
𝜇21
𝜇22
𝜇23)

 
 
 
 

 



After solving this matrix, we get these parameters: 

(

 
 

𝛼1
𝛽1
𝛽2

(𝛼𝛽)11
(𝛼𝛽)12)

 
 
=

(

 
 

𝜇1∙ − 𝜇∙∙
𝜇∙1 − 𝜇∙∙
𝜇∙2 − 𝜇∙∙

𝜇11 − 𝜇1∙ − 𝜇∙1 + 𝜇∙∙
𝜇12 − 𝜇1∙ − 𝜇∙1 + 𝜇∙∙)

 
 

 

Each mean occurring in the vector on the right-hand side of the previous equation is then 

estimated with the corresponding sample means. 

Specifically, 

• �̂�𝑖𝑗 = �̅�𝑖𝑗. ≔
1

𝑛𝑖𝑗
∑ 𝑦𝑖𝑗𝑘
𝑛𝑖𝑗
𝑘=1  

• �̂�𝑖. =
1

𝑏
∑ �̅�𝑖𝑗.
𝑏
𝑗=1  

• �̂�.𝑗 =
1

𝑎
∑ �̅�𝑖𝑗.
𝑎
𝑖=1  , and 

• �̂�.. =
1

𝑎
∑ �̂�𝑖.
𝑎
𝑖=1 =

1

𝑎𝑏
∑ ∑ �̅�𝑖𝑗.

𝑏
𝑗=1

𝑎
𝑖=1  

From this, we obtain 

(

 
 
 

�̂�1
�̂�1
�̂�2

(𝛼𝛽)̂11
(𝛼𝛽)̂12)

 
 
 
=

(

 
 

�̂�1∙ − �̂�∙∙
�̂�∙1 − �̂�∙∙
�̂�∙2 − �̂�∙∙

�̂�11 − �̂�1∙ − �̂�∙1 + �̂�∙∙
�̂�12 − �̂�1∙ − �̂�∙1 + �̂�∙∙)

 
 

 

Note that, in the case of a balanced dataset, theses formulas reduce to 

(

 
 
 

�̂�1
�̂�1
�̂�2

(𝛼𝛽)̂11
(𝛼𝛽)̂12)

 
 
 
=

(

 
 

�̅�1.. − �̅�⋅∙∙
�̅�.1. − �̅�⋅∙∙
�̅�.2. − �̅�...

�̅�11. − �̅�1.. − �̅�.1. + �̅�…
�̅�12. − �̅�1.. − �̅�.1. + �̅�…)

 
 

 



2. Box-Cox Transformation 

When the explanatory variables are quantitative and we wish to regress the response 𝑌 on the 

explanatory variables 𝑋1and 𝑋2  it is fairly common that the regression assumptions are not 

satisfied in that either the response variable 𝑌 is not normally distributed or it is not a linear 

function of the levels of 𝑋1and 𝑋2. In such settings, a transformation may help. The Box-Cox 

method (Chapter 3.9, [2]) of choosing a transformation is well-studied and we introduce it here. 

Such transformations can be used to reduce skewness in the distributions of the errors 𝜀𝑖𝑗 , 

stabilize the unequal error variance1, and reduce the nonlinearity of the association between 

𝑌and 𝑋1and 𝑋2.  

By this method we will obtain a power-transformed variable 𝑌′ = 𝑌𝜆  where the power 𝜆  is 

chosen with the intention that there be parameters 𝛽0, and 𝛽1 so that for each factor 𝑋𝑖 holds. 

 

𝑌𝑖
′ = (𝑌𝑖)

𝜆 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖  

For example: 

𝜆 = −2 ⟹ 𝑌′ =
1

𝑌2
 

 𝜆 = 0    ⟹ 𝑌′ = ln 𝑌 (by definition) 

𝜆 = 0.5 ⟹ 𝑌′ = √𝑌. 

                                                           
1 The function (𝑥1, 𝑥2) ⟼ 𝑉𝑎𝑟(𝑌|𝑋1 = 𝑥1, 𝑋2 = 𝑥2) is called the scedastic function. So the assumption that all the 
error variables have the same variance is commonly called an assumption of homoscedasticity, and when that 
assumption fails the family of error variables is said to be heteroscedastic.  



Since we also want this transformation to correct for the unequal variances, we further suppose 

the error variances are equal, say to 𝜎2 and include an estimation of that variance as part of the 

goal of determining the parameters. The method of Box-Cox uses maximum likelihood estimators 

for each of the parameters 𝜆, 𝛽0, 𝛽1, and 𝜎2; however, an exact solution for �̂�  is not typically 

desired since for example, a value of 𝜆 = 0.4372 will not typically perform much differently than 

a nicer value like 𝜆 = 0.5.  

In practice there is a simple procedure to find an estimate �̂� of 𝜆 prior to attempting to find the 

others. First, standardized values 𝑊𝑖 of the 𝑌𝑖
𝜆 variables are introduced for which the magnitude 

of the sum of squared errors (SSE) of these standardized variables is minimized at 𝜆. Then a 

sequence of values of 𝜆 is selected, the SSE of these standardized variables is calculated for each 

of those values, and graph is produced displaying the SSE as a function of the putative value of. 

Lastly, we can just look at the graph and suggest a “nice” value for �̂� that is close to the number 

that would produce a global minimum.  

For example if we think 𝜆  is between -2 and 3 we could use 𝜆 ∈

{−2.00,−1.75,−1.50,… ,2.75,3.00}. If the relationship between the SSE and 𝜆 is as in the figure 

2, then we could choose �̂� to be 1.5.  



 

Figure 2: Maximum likelihood of 𝜆 

Specifically, the standardized values are defined as so. For each 𝑖, the standardized value 𝑊𝑖 is 

calculated from a proposed value of 𝜆, the response 𝑌𝑖 to factor 𝑖, and the geometric mean of all 

the response variables:  

𝑊𝑖 = {
𝐾1(𝑌𝑖

𝜆 − 1)         𝜆 ≠ 0

𝐾2(ln 𝑌𝑖)              𝜆 = 0
 

where 

𝐾2 = (∏𝑌𝑖

𝑛

𝑖=1

)

1
𝑛

 

𝐾1 =
1

𝜆𝐾2
𝜆−1

 

The best estimation  �̂� will be the number that minimizes SSE of these standardized values, but 

as stated above, we usually select a “nice” �̂� that is approximately the SSE minimizing number.  
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3. Tukey Multiple Comparison Procedure 

In a multifactor setting, the ANOVA test only tells if some treatment effects are significantly 

different. It does not tell us which treatments are different. To find which means are different, a 

post-hoc analysis is performed. One method for determining which effects significantly different 

is called the Tukey Test (Tukey’s Honest Significant Difference Test). It is based on the studentized 

range distribution and allows us to determine which group means were responsible for the 

rejection of the ANOVA hypothesis test by conducting a family of hypothesis tests on all pairwise 

differences in means:   

H0: 𝜇𝑖 = 𝜇𝑗 

H1: 𝜇𝑖 ≠ 𝜇𝑗 

 

Here 𝜇𝑖 and 𝜇𝑗 are the mean responses to treatments groups 𝑖 ≠ 𝑗 = 1,2,3, … , 𝑟 when there 

are 𝑟 treatment groups.  

If the total sample size is 𝑁, the test is based on the studentized range statistic: 

q =
�̅�𝑙𝑎𝑟𝑔𝑒𝑠𝑡 − �̅�𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 

√MSE/N 
 

At significance level 𝛼, the critical number for this studentized range statistic is denoted by 

𝑞(1 − 𝛼; 𝑟; 𝑁 − 𝑟).  For each pairwise comparison we would like to make, we can calculate the 

test statistic  

𝑞∗ =
√2|𝜇𝑖 − 𝜇𝑗|

√MSE (
1
𝑛𝑖
+
1
𝑛𝑗
) 

 

and compare its value with that of 𝑞(1 − 𝛼; 𝑟; 𝑁 − 𝑟). 



Specifically, if the observed value of 𝑞∗ > 𝑞(1 − 𝛼; 𝑟; 𝑁 − 𝑟) then we reject the null hypothesis 

and state that the difference between the two groups’ mean is statistically significant at level 𝛼. 

 

Data Background 

Our data comes from Stanford’s DeepSolar Project. They constructed this database by gathering 

information from American Community Survey (ACS). It recorded various community data in 

2015. This database provides valuable resources for socioeconomic analysis, as well as insight for 

education prospect.  

Research Question 

Based on a real market data set, we come up with a question: “Are city rates of bachelor level or 

higher education associated with per capita income of that city? Does it also depend on the 

employment rate of the city?”  

Analysis 

In our dataset, we have quantitative variables “bachelor education rate” and “employment rate”. 

We first set these two variables to categorical type and both with three levels: low, medium and 

high. We use the first and third quantile as the bound of these levels: 

Figure 3: Set two categorical variables “Bachelor Education Rate” and “Employment Rate” 

 Bachelor Education Rate (R1) Employment Rate (R2) 

Low R1 < 0.096 R2 < 0.888 

Medium 0.096 ≤ R1 < 0.245 0.888 ≤ R2 < 0.949 

High 0.245 ≤ R1 0.949 ≤ R2 



We use two-factor ANOVA interaction unbalanced model to compare the between-group means. 

Figure 4 shows the first ten rows of our modified data for this model. Each row represents 

observations on a unique city, totally 71555 observations. 

 

Figure 4: Modified data for two-factor ANOVA model 

Let 𝑌  be the per capita income, 𝛼𝑖  be the effect of education rate, and 𝛽𝑗  be the effect of 

employment rate. We have a full regression model: 

𝑌𝑖𝑗𝑘 = 𝜇∙∙ + 𝛼𝑖 + 𝛽𝑗 + 𝜀𝑖𝑗𝑘 

where 𝑖 = 1,2,3; 𝑗 = 1,2,3; and 𝑘 = 1,2,3, … ,71555. 

We conduct three pairs of hypotheses for our ANOVA model: 

• H0: the means of all education level groups are equal 

• H1: the means of at least one education level groups are different 

 

• H0: the means of all employment level groups are equal 

• H1: the means of at least one employment level groups are different 

 

• H0: there is no interaction effect between education level and employment level 

• H1: there is interaction effect between education level and employment level 



Before we run the ANOVA test in R, we first need to examine the normality and homoscedasticity 

assumptions. From the following residuals plot and histogram, we notice that the variances in 

each group are not equal and the response variable 𝑌 has a right skewed distribution.  

 

Figure 5: Residuals versus fitted plot 

 

Figure 6: Frequency distribution of per capita income 



To improve our model, we use Box-Cox transformation to make a better fit. Figure7 is the graph 

showing the estimation of 𝜆 by the maximum likelihood method. 𝜆 has the best estimation at 

−0.02, and so we select 𝜆 = 0 be our choice. That is, we use log transformation for the response 

variable. 

 

Figure 7: Box Cox transformation for two-factor ANOVA 

Therefore, we update our full regression model as follow: 

ln(𝑌𝑖𝑗𝑘) = 𝜇∙∙ + 𝛼𝑖 + 𝛽𝑗 + 𝜀𝑖𝑗𝑘 

From figure 8 and 9, we can see that all most every group has similar variance if we ignore the 

outliers, and it is more likely to be a normal distribution. 



 

Figure 8: Updated Residuals versus fitted plot 

 

Figure 9: Histogram of updated model 

 

 



Results 

Figure 10 is the box plot of our new transformed model. From this graph we found that, as the 

level of education level increases, the per capita income will also increase; and for each education 

level, the per capita income raising along with the changing of employment level. 

 

Figure 10: Box plot for updated ANOVA model 

Next, we perform ANOVA test to confirm the result we had from box plot. From the ANOVA 

result table (figure 11): 

• the p-value of education level is less than 0.05, which indicates that the levels of 

education rate are significantly associated with the changing of per capita income. 

• the p-value of employment level is less than 0.05, which also indicates that the levels of 

employment rate are significantly associated with the changing of per capita income. 

• the p-value for the interaction between education level and employment level is less 0.05, 

and so the per capita income depends on both variables. 



 

Figure 11: ANOVA result table 

At last we show the interaction plot between two factors and the Tukey test. Since the p-value 

are all extremely small and close to 0, it shows that all levels’ means are significant different to 

each other. 

 

Figure 12: Interaction plot 



 

Figure 13: Tukey HSD result table 

 

Conclusion 

From the ANOVA test, interaction plot and Tukey test showing above, we conclude that that all 

levels of education rate are significantly associated with the changing of per capita income and it 

also depends on the employment rate. Education rate level and employment rate level both have 

positive relation to the per capita income.  

Figure 14 is the summary statistics table. The first two columns represent different levels of two 

factors. The third column “N” counts the size of each group. “logy” is the mean of transformed 

response variable, and the last column is the fitted value of per capita income. On average, 

increasing education rate by 1 level will cause the per capita income changes $10314.5; 

increasing employment rate by 1 level will cause the per capita income changes $5022.2. 



 

Figure 14: Summary statistics table 
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