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Bounding the Rates of Convergence Towards the

Extreme Value Distributions
James Palmer

1 Introduction

Extreme value theory is a branch of probability which examines the extreme outliers of prob-
ability distributions. Three extreme value distributions arise as the limits of the maxima of
sequences of random variables with certain properties. In this paper, we will first give infor-
mation about these three distributions and prove that they are the only limit distributions of
maxima. After that, we switch to a discussion about Stein’s method.

Stein’s method is commonly used to prove central limit theorems. Stein’s method also de-
velops bounds on the distance between probability distributions with regards to a probability
metric. There are three essential steps to Stein’s method: finding a characterizing operator,
solving the Stein equation, and then using the solution to that equation to generate bounds on
the distance to the target distribution. We will give a general overview of the method with some
basic examples, and then go over various ways to find operators for any distribution. We outline
the generalized density method, a recent technique for finding operators, and apply it to the
extreme value distributions to find a particularly good operator. Next, we work with two opera-
tors simultaneously in an attempt to bound the distance between maxima and the extreme value
distributions. Specifically, we apply this idea to the convergence of the exponential distribution
to the Gumbel.

2 Extreme Value Distributions

Our first goal is to develop a basic understanding of the maxima of a sequence of independent,
identically distributed random variables. We will start by proving that the only three limit
distributions of maxima are the Gumbel, Fréchet, and Weibull distributions, and to do this, we
first need a specific result called the convergence to types theorem.

Convergence to Types Theorem: Suppose an ≥ 0, An ≥ 0, bn ∈ R, Bn ∈ R, and that for
each n ≥ 1, Fn is a cumulative distribution function. If for every x ∈ R,

Fn(anx+ bn)→ U(x) and Fn(Anx+Bn)→ V (x) (1)

as n→∞, then

An
an
→ α > 0,

Bn − bn
an

→ β ∈ R, and V (x) = U(αx+ β). (2)

The quantities α and β can be found by inverting the two relations in Equation (1). That
V (x) = U(αx+ β) follows from Skorokhod’s representation theorem. For a proof of this result,
see chapter 0 of Resnick (1987). Now, we can move on to the desired proof involving the extreme
value distributions.
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2.1 Fisher-Tippett-Gnedenko Theorem:

Let Xn, n ≥ 1 be a sequence of independent and identically distributed random variables with
distribution function F (x), and let Mn = max(X1, X2, ..., Xn). We note that Mn has distribution
F (x)n by the simple calculation

P (Mn ≤ x) = P

{
n⋂
i=1

(Xi ≤ x)

}
=

n∏
i=1

P (Xi ≤ x) = F (x)n.

Now, suppose there exist an > 0, bn ∈ R, n ≥ 1 such that

lim
n→∞

P

(
Mn − bn
an

≤ x

)
= lim

n→∞
F (anx+ bn)n → G(x)

weakly and G is not degenerate. Then G has one of the following cumulative distribution
functions:

Fréchet : Φα(x) =

{
0, x < 0

e−x
−α
, x ≥ 0

for some α > 0;

Weibull : Ψα(x) =

{
e−(−x)

α
, x < 0

0, x ≥ 0
for some α > 0;

Gumbel : Λ(x) = e−e
−x
, x ∈ R.

Here, we define that Xn converges weakly to X if and only if P (Xn ≤ x) → P (X ≤ x) for all
continuity points of F (x) = P (X ≤ x). Additionally, we define that a distribution is degenerate
if and only if it focuses at a single point.

Proof : Let t ∈ R. Then for t > 0,

F (abntcx+ bbntc)
bntc → G(x)

and
F (anx+ bn)bntc = (F (anx+ bn)n)

bntc
n → Gt(x),

because bntc
n
→ t. As G(x) and Gt(x) are the same type, by the convergence to types theorem

there exists α(t) > 0 and β(t) ∈ R such that

lim
n→∞

an
abntc

= α(t)

and

lim
n→∞

bn − bbntc
abntc

= β(t)

with
G (α(t)x+ β(t)) = Gt(x). (3)

Here, we can replace the variable t with the product of two variables st and see that for s > 0
and t > 0,

G (α(st)x+ β(st)) = Gst(x). (4)
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By evaluating one exponent at a time according to Equation (3) we see that

Gst(x) = Gs (α(t)x+ β(t))

= G (α(s)(α(t)x+ β(t)) + β(s))

= G (α(s)α(t) + α(s)β(t) + β(s)) .

(5)

Because G is non-degenerate, we can conclude from Equations (4) and (5) that

α(st) = α(s)α(t) (6)

and

β(st) = α(s)β(t) + β(s)

= α(t)β(s) + β(t).
(7)

Equation (6) is a functional equation, and with our constraints (finite, measurable, nonnegative),
the only possible solution is that α(t) = t−θ, for some θ ∈ R. Our value for θ determines which
of the three families G belongs to.

Case 1: θ = 0. (G belongs to Gumbel family)
If θ = 0, then α(t) = 1 and we can simplify Equation (7) to

β(st) = β(s) + β(t). (8)

The solutions to this functional equation are logarithmic functions. We can say the solution is
of the form β(t) = −c log(t) with t > 0 and c ∈ R. Now we simplify Equation (3) to

Gt(x) = G(x− c log t). (9)

Next, we can say that c is nonzero, because c = 0 implies G is degenerate, violating our earlier
assumption. We can also rule out c being negative by noting that Gt(x) must be non-increasing
in t because |G(t)| ≤ 1. Therefore, c > 0. Additionally, we know that G never takes on the value
0 or 1. If for some x0 ∈ R we had that G(x0) = 0 then 0 = G(x0 − c log t) would arise directly
from Equation (9). That result would hold for every value of t, which is a contradiction. Clearly
the same argument works for G(x0) = 1. Now, let x = 0 to see that

Gt(0) = G(−c log t)

for every positive t. Because we proved 0 ≤ G(x) ≤ 1, we can set p such that G(0) = e−e
−p

.
Now letting u = −c log t and substituting into the above expression we find that

G(u) = e(−e
−p)t = exp(−e−

u
c
−p)

and thus G belongs to the Gumbel family.
Case 2: θ > 0. (G belongs to Fréchet family)

We can utilize both parts of Equation (7) to obtain

β(s)

1− α(s)
=

β(t)

1− α(t)
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for s 6= 1 and t 6= 1, with β(x)(1− α(x))−1 = c for some constant c. Then we have that

β(t) = c(1− t−θ).

Now we can substitute back into Equation (3) to find

Gt(x) = G(t−θx+ c(1− t−θ))
= G(t−θ(x− c) + c).

We can now simplify by changing variables. Let H(x) = G(x+ c). Then

H t(x) = Gt(x+ c) = G(t−θx+ c),

and as G and H are of the same type, we can now work with H. We know that H t(x) = H(t−θx)
and that H is nondegenerate. Now we want to show that H(0) = 0. Letting x = 0, we see that
logH(0) = t log(H(0)) for any t > 0. As a result, we can conclude that either logH(0) = 0 or
logH(0) = −∞. Now the only possible values for H(0) are 0 and 1. If H(0) = 1, then there
would exist an x0 < 0 such that H t(x) is decreasing in t, while H(t−θx) is increasing in t. As
the two expressions are equivalent, we know that H(0) 6= 1, and furthermore that H(0) = 0.
Now we examine H t(1) = H(t−θ). If H(1) = 0 or H(1) = 1 then H would take on those values
everywhere and thus be degenerate, violating our earlier assumption. As 0 < H(1) < 1, we can
make the substitution H(1) = exp(−p−α). We now set α = θ−1, and make the change of variable
u = t−θ so that t = u−α

−1
= u−α. We can compute

H(u) = H t(1) = e−tp
−α

= e−(pu)
−α

= Φα(pu)

and see that H belongs to the Fréchet family.
Case 3: θ < 0. (G belongs to Weibull family)

This case is almost identical to the last one. We can follow the same steps to immediately find
that

H t(x) = H(t−θx),

keeping in mind that here θ is taking on negative values. By a similar argument to case 2, we can
show that H(0) = 1. Now we plug in x = −1 and get that H t(−1) = H(−t−θ). We know that
H(−1) does not equal 0 or 1, because if it did H would hold that value everywhere. Considering
that, we can make the substitution α = −θ−1 and let p > 0 be such that H(−1) = e−p

α
. Then

we make the change of variables u = −t−θ so that t = −u−α. Then we have that

H(u) = H t(−1) = e(−tp
α) = e−tp

α

= e−(pu)
α

= Ψα(pu),

which means H belongs to the Weibull family.

2.2 Generalized Extreme Value Distribution

Later in this paper, these three distributions may be compressed into the generalized extreme
value distribution. The cumulative distribution function is then given by

Fξ(s) =

{
e−(1+ξs)

−1
ξ
, ξ 6= 0

e−e
−s
, ξ = 0

.
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The support is understood here and henceforth to be (a, b) where a = −1/ξ, b = ∞ for ξ > 0;
a = −∞, b = −1/ξ for ξ < 0; and a = −∞, b = ∞ for ξ = 0. Observe that the second
expression is the limit of the first expression as ξ → 0. In that case the generalized extreme
value distribution is the Gumbel. The Fréchet arises if ξ > 0, in which case it can be retrieved
through the change of variables ξ = α−1 and y = 1 + ξx. If ξ < 0 then the generalized
distribution becomes the reversed Weibull, the appropriate change of variables being ξ = −α−1
and y = −1− ξx. The density is given by

fξ(s) =

{
(1 + ξs)−

1
ξ
−1e−(1+ξs)

−1
ξ
, ξ 6= 0

e−se−e
−s
, ξ = 0.

Once the aforementioned change of variables has been made, the −1/ξ terms become 0 in the
definitions of a, b.

3 Stein’s Method

Stein’s method is a collection of techniques to get bounds on the distance between probability
distributions. We measure the distance between distributions with respect to certain probability
metrics. Given measures µ and ν, we measure distance using an appropriate class of test functions
H by the formula

dH(µ, ν) = sup
h∈H

∣∣∣∣ ∫ h(x)dµ(x)−
∫
h(x)dν(x)

∣∣∣∣.
To improve clarity, we abuse notation and write these metrics as

dH(W,Z) = sup
h∈H
|E[h(W )]− E[h(Z)]|

where the random variables W and Z have laws µ and ν respectively. The family H dictates
which particular metric is being evaluated. When studying continuous distributions, we normally
look at the Wasserstein metric, which is found by letting H be the set of all Lipschitz continuous
functions with Lipschitz constant 1. The first step of Stein’s method is to rewrite the right side
of the above equation into something that is easier to work with.

To accomplish this, we find a characterizing operator A for our target distribution L (Z)
such that

E[Af(W )] = 0⇐⇒ W =d Z

for all f in a distribution determining class of functions F . Here, W =d Z means that W is
equal in distribution to Z. Normally there are infinitely many operators for a distribution, and
the choice of which to work with has impact later in the method. Once we have defined our
characterizing operator, we set up and solve the Stein equation. For each h ∈ H, the Stein
equation is

Af(x) = h(x)− E[h(Z)],

and if we’ve chosen a suitable operator, we can find a solution fh that belongs to the class of
functions F attached to the operator. If we plug in our random variableW and take expectations,
we get that

E[Afh(W )] = E[h(W )]− E[h(Z)],
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and then by taking suprema and absolute values we find that

sup
h∈H
|E[Afh(W )]| = sup

h∈H
|E[h(W )]− E[h(Z)]| = dH(W,Z). (10)

Here we’ve redefined the desired distance as being dependent on W by incorporating Z into the
choice of operator, and in turn fh. When employing Stein’s method, the hope is that if W is
close to Z, then given that E[Af(Z)] = 0, E[Afh(W )] should be close to 0.

Given that Stein’s method was originally conceived with the standard normal distribution
in mind, it’s natural to introduce the classic characterizing operator for the normal distribution
as an example. Stein’s Lemma, given in Chen et al. (2010), defines the most notable operator,
stating that

E[f ′(W )−Wf(W )] = 0⇐⇒ W ∼ N (0, 1), the standard normal distribution,

for all absolutely continuous f with E|f(Z)|, E|f ′(Z)| < ∞, Z ∼ N (0, 1). Writing Φ(x) =
E[h(Z)], we can set up the Stein equation, finding that

f ′(w)− wf(w) = h(w)− Φ(h)

has the bounded solution

fh(w) = e
w2

2

∫ ∞
w

e−
t2

2 (Φ(h)− h(t))dt,

where fh satisfies

||fh||∞ ≤ 2||h′||∞, ||f ′h||∞ ≤
2

π
||h′||∞, and ||f ′′h ||∞ ≤ 2||h′||∞

if h is absolutely continuous. Following the general process given in Equation (10), we get that

dH(W,Z) = sup
h∈H
|E[f ′h(W )−Wfh(W )]|.

After setting up and solving the Stein equation, the next step in Stein’s method is to bound
the right side of Equation (10). At this point, the method splinters into several techniques for
generating bounds.

4 General Methods of Finding Operators

Given a particular distribution, the first step in Stein’s method is to define a characterizing
operator. We start off by going over some basic ideas and methods.

4.1 Density Method

The most common method to find an operator for any given distribution is the density method,
which notably generates Stein’s operator for the normal distribution. Suppose that Z is abso-
lutely continuous with continuously differentiable density p(x), which is supported on [a, b] and
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strictly positive on (a, b) for some −∞ ≤ a < b ≤ ∞. Let F be a class of test functions for
which the expectations below exist. Given f ∈ F , the density method gives us the operator

(Af)(x) = f ′(x) +
p′(x)

p(x)
f(x).

We can prove that E[(Af)(Z)] = 0 by taking expectations and finding that

E[Af(Z)] = E (f ′(Z)) + E

(
p′(Z)

p(Z)
f(Z)

)
=

∫ b

a

f ′(x)p(x)dx+

∫ b

a

f(x)p′(x)dx

= f(x)p(x)|ba −
∫ b

a

f(x)p′(x)dx+

∫ b

a

f(x)p′(x)dx

= 0.

Here we are assuming that limx↘a p(x)f(x) = 0 = limx↗a p(x)f(x). This is a consistent way of
finding operators, but oftentimes using the operator from the density method leads to problems
later on. As a result, it is still worthwhile to explore other methods.

4.2 Generalized Density Method

Under the same initial assumptions as the density method, also let ϕ(x) be a continuously
differentiable function which is nonzero on (a, b) and satisfies limx↘a ϕ(x)p(x)f(x) = 0 =
limx↗b ϕ(x)p(x)f(x) for all f in a distribution determining class F . Then we can compute

E[ϕ′(Z)f(Z)] =

∫ b

a

ϕ′(x)f(x)p(x)dx

= ϕ(x)f(x)p(x)|ba −
∫ b

a

ϕ(x)[f ′(x)p(x) + f(x)p′(x)]dx

= −
∫ b

a

[
f ′(x) +

p′(x)

p(x)
f(x)

]
ϕ(x)p(x)dx

= −E[Gf (Z)ϕ(Z)]

(11)

where Gf (x) = f ′(x) + p′(x)
p(x)

f(x). If we define an operator (Af)(x) = ϕ′(x)f(x) + Gf (x)ϕ(x),

then by the above computations E[(Af)(Z)] = 0. The density method arises from this method
by setting ϕ(x) = 1, so this approach might be termed the generalized density method. This
method is outlined in Ley et al. (2017). For H a family of functions determining a probability
metric dH(X, Y ) = suph∈H |E[h(X)]− E[h(Y )]|, the associated Stein equation is

f ′(x)ϕ(x) +

[
ϕ′(x) +

p′(x)

p(x)
ϕ(x)

]
f(x) = ϕ′(x)f(x) +

[
f ′(x) +

p′(x)

p(x)
f(x)

]
ϕ(x)

= (Af)(x)

= h(x)− µh

7



where µh = E[h(Z)]. If we define P (x) = ϕ′(x)
ϕ(x)

+ p′(x)
p(x)

and Q(x) = h(x)−µh
ϕ(x)

, we can rewrite the
above equality as

f ′(x) + P (x)f(x) = Q(x).

Seeing that it’s a linear ODE with integrating factor e
∫
P (x)dx = elog(ϕ(x)p(x)) = ϕ(x)p(x), we

reduce the equation to

d

dx
(f(x)p(x)ϕ(x)) = Q(x)ϕ(x)p(x) = (h(x)− µh)p(x).

The general solution to this equation is thus

fh(x) =
1

ϕ(x)p(x)

∫ x

a

(h(t)− µh)p(t)dt. (12)

4.3 Generalized Bounds

We typically want to choose our operator so that fh has desirable properties, as Stein did in the
normal case discussed earlier. This will enable us to determine F such that if E[Af(W )] = 0
for all f ∈ F , then W =d Z. In this section, we rewrite the general solution given in Equation
(12) into a form that is oftentimes easier to bound. Working in the Wasserstein metric, we can
compute that

h(t)− µh =

∫ b

a

[h(t)− h(x)]p(x)dx

=

∫ t

a

∫ t

x

h′(u)p(x)dudx−
∫ b

t

∫ x

t

h′(u)p(x)dudx

=

∫ t

a

∫ u

a

h′(u)p(x)dxdu−
∫ b

t

∫ b

u

h′(u)p(x)dxdu

=

∫ t

a

h′(u)F (u)du−
∫ b

t

h′(u)(1− F (u))du,
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where F (u) =
∫ u
a
p(x)dx is the distribution function for Z. We can plug this into our integral

in the general solution to get∫ x

a

(h(t)− µh)p(t)dt =

∫ x

a

∫ t

a

h′(u)F (u)p(t)dudt−
∫ x

a

∫ b

t

h′(u)(1− F (u))p(t)dudt

=

∫ x

a

∫ x

u

h′(u)F (u)p(t)dtdu−
∫ x

a

∫ u

a

h′(u)(1− F (u))p(t)dtdu

−
∫ x

b

∫ x

a

h′(u)(1− F (u))p(t)dtdu

=

∫ x

a

h′(u)F (u)(F (x)− F (u))du−
∫ x

a

h′(u)(1− F (u))F (u)du

−
∫ b

x

h′(u)(1− F (u))F (x)du

=

∫ x

a

h′(u)F (u)F (x)du−
∫ x

a

h′(u)F (u)du

−
∫ b

x

h′(u)F (x)du+

∫ b

x

h′(u)F (u)F (x)du

= (F (x)− 1)

∫ x

a

h′(u)F (u)du+ F (x)

∫ b

x

h′(u)(F (u)− 1)du.

Since |h′(u)| ≤ 1 almost everywhere, we have that

|fh(x)| ≤ 1

|ϕ(x)|p(x)

[
(1− F (x))

∫ x

a

F (u)du+ F (x)

∫ b

x

(1− F (u))du

]
.

We also want to rewrite the general form of f ′h(x) and f ′′h (x). We differentiate Equation (12)
and find that

f ′h(x) =
h(x)− µh
ϕ(x)

− ϕ′(x)p(x) + ϕ(x)p′(x)

ϕ(x)2p(x)2

∫ x

a

(h(t)− µh)p(t)dt

and then substitute fh back in to get

f ′h(x) =
h(x)− µh
ϕ(x)

−
(
ϕ′(x)

ϕ(x)
+
p′(x)

p(x)

)
fh(x).

We can differentiate the Stein equation to see that

h′(x) = f ′′(x)ϕ(x) + f ′h(x)ϕ′(x) +

(
ϕ′′(x)

p′′(x)p(x)− p′(x)2

p(x)2
ϕ(x) +

p′(x)

p(x)
ϕ′(x)

)
fh(x)

+

(
ϕ′(x) +

p′(x)

p(x)
ϕ(x)

)
f ′h(x)

and isolating the desired f ′′h (x) we get

f ′′h (x) =
h′(x)

ϕ(x)
− f ′h(x)

(
2
ϕ′(x)

ϕ(x)
+
p′(x)

p(x)

)
− fh(x)

(
ϕ′′(x)

ϕ(x)
+
p′′(x)p(x)− p′(x)2

p(x)2
+
p′(x)ϕ′(x)

p(x)ϕ(x)

)
.

Now that we’ve accomplished a reasonable amount in generality, it’s time to employ these
methods with regards to the distributions we’re focusing on.
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5 Operator for the Extreme Value Distributions

Bartholmé and Swan (2013) define a particularly useful operator for the Fréchet, and it can be
derived using the generalized density method. The Fréchet has density p(y) = y−1−αe−y

−α
, and

p′(y) = y−2−2αe−y
−α

(α − yα − αyα). The operator is given by the generalized density method
when we let ϕ(y) = y1+α, noting that ϕ′(y) = (α + 1)yα. We compute that

ϕ′(y) +
p′(y)

p(y)
ϕ(y) = (α + 1)yα +

y−2−2αe−y
−α

(α− yα − αyα)

y−1−αe−y−α
(y1+α)

= αyα + yα + y−1−αy1+α(α− yα − αyα)

= α.

Remember that our test functions must satisfy

lim
y↘a

ϕ(y)f(y)p(y) = 0 = lim
y↗b

ϕ(y)f(y)p(y).

In this instance our restrictions become

lim
y↘0

e−y
−α
f(y) = 0

and
lim
y↗∞

f(y) = lim
y↗∞

e−y
−α
f(y) = 0.

We let F = AC0(a, b), the space of absolutely continuous functions on (a, b) which vanish at
a = 0 and b = ∞. The following result is stated in Bartholmé and Swan (2013). We provide a
proof for completeness.

Theorem 1. Define the functional operator A by

(Af)(y) = yα+1f ′(y) + αf(y).

Then E[(Af)(Y )] = 0 for all f ∈ F if and only if Y has the Fréchet distribution.

Proof: Letting Z have the Fréchet distribution, we clearly have that E[(Af)(Z)] = 0 for all f ∈
F given the calculations in Equation (11).

Letting E[(Af)(Y )] = 0 for all f ∈ F , we first obtain the unique bounded solution fx of the
differential equation

yα+1f ′x(y) + αfx(y) = 1[y ≤ x]− Φα(x),

where Φα(x) is the c.d.f. of the Fréchet distribution. After dividing by yα+1, we find that the
integrating factor is e

∫
αy−α−1dy = e−y

−α
. Next, we see that fx is given by

fx(y) = ey
−α
∫ y

0

(1[y ≤ x]− Φα(x))t−α−1e−t
−α
dt.
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By definition, we have that

|P (Y ≤ x)− Φ(x)| = |E[yα+1f ′x(Y ) + αfx(Y )]|.

By our assumptions, the right side is 0, and as a result Y has the Fréchet distribution.

We also want to solve the Stein equation. Similar to above, we find that the solution is

fh(y) = ey
−α
∫ y

0

(h(t)− µh)t−α−1e−t
−α
dt.

This holds for general test functions h, not just h(y) = 1{y ≤ x}, the test functions corresponding
to the Kolmogorov metric which gives the sup norm of the difference between cdfs.

5.1 GEVD Operator

We can use the generalized extreme value distribution to extend the operator to apply to the
Weibull and Gumbel distributions. The generalized extreme value distribution has density

p(x) = (1 + ξx)(−1−
1
ξ
)exp(−(1 + ξx)−

1
ξ )

with
p′(x) =

[
1− (ξ + 1)(1 + ξx)

1
ξ

]
(1 + ξx)−2−

2
ξ exp(−(1 + ξx)−

1
ξ )

and
p′(x)

p(x)
=
[
1− (ξ + 1)(1 + ξx)

1
ξ

]
(1 + ξx)−1−

1
ξ .

We perform a change of variables and let ϕ(x) = (1+ξx)1+
1
ξ , with derivative ϕ′(x) = (ξ+1)(1+

ξx)
1
ξ . The associated operator is then

(Af)(x) = ϕ′(x)f(x) +

[
f ′(x) +

p′(x)

p(x)
f(x)

]
ϕ(x)

= (ξ + 1)(1 + ξx)
1
ξ f(x) +

[
(1 + ξx)1+

1
ξ f ′(x) +

[
1− (ξ + 1)(1 + ξx)

1
ξ

]
f(x)

]
= (1 + ξx)1+

1
ξ f ′(x) + f(x).

We plug into Equation (12) to see that the general solution is

fh(x) = e(1+ξx)
−1/ξ

∫ x

a

(h(t)− µh)(1 + ξt)−1−1/ξe(1+ξt)
−1/ξ

dt.

Next, we will apply this operator to the Weibull and Gumbel.

11



5.2 Reversed Weibull

In the reversed Weibull case, if we let α = −ξ−1, y = −(1 + ξx) we have that ϕ(x) = (−y)1−α

with ϕ′(x) = (α− 1)(−y)−α, noting that

p(y) = α(−y)α−1e−(−y)
α

and p′(y) = e−(−y)
α

(−α(−y)α−2(α− 1) + α2(−y)2α−2).

Then we can calculate

ϕ′(y) +
p′(y)

p(y)
ϕ(y) = (α− 1)(−y)−α +

(
(1− α)(−y)−1 + α(−y)α−1

)
(−y)1−α

= (α− 1)(−y)−α + (1− α)(−y)−α + α

= α.

Our test functions must satisfy

lim
y↘a

ϕ(y)f(y)p(y) = 0 = lim
y↗b

ϕ(y)f(y)p(y).

Here, we have that ϕ(y)p(y) = αe−(−y)
α
. As a result, our restrictions become

lim
y↘−∞

f(y) = lim
y↘−∞

f(y)αe−(−y)
α

= 0

and
lim
y↗0

f(y)αe−(−y)
α

= 0.

By a slight abuse of notation, we let F = AC0(a, b) as before, keeping in mind that a and b vary
according to type.

Theorem 2. Define the functional operator A by

(Af)(y) = (−y)1−αf ′(y) + αf(y).

Then E[(Af)(Y )] = 0 for all f ∈ F if and only if Y has the Weibull distribution.

The proof of this theorem is analogous to the proof in the Fréchet case. To solve the Stein
equation we divide out by (−y)1−α, and find that our integrating factor is e

∫
α(−y)α−1dy = e−(−y)

α
,

and our solution is

fh(y) = e(−y)
α

∫ y

−∞
(h(t)− µh)e−(−t)

α

(−t)α−1dt.

5.3 Gumbel

The Gumbel distribution arises from the generalized extreme value distribution when we send ξ
to 0. The density of the Gumbel is

p(x) = lim
ξ→0

(1 + ξx)−1−ξ
−1

e−(1+ξx)
−ξ−1

= e−x−e
−x
.
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We also note that
p′(x) = (−1 + e−x)e−x−e

−x
.

Next, we take the limit of ϕ(x) to obtain

lim
ξ→0

ϕ(x) = lim
ξ→0

(1 + ξx)1+ξ
−1

= exp

(
lim
ξ→0

(1 + ξ−1) log(1 + ξx)

)
= exp

(
lim
ξ→0

log(1 + ξx)
ξ
ξ+1

)

= exp

(
lim
ξ→0

x
1+ξx

1
(ξ+1)2

)
= ex.

This also gives us ϕ′(x) = ex. We can now start to work towards our operator, first finding that

ϕ′(x) +
p′(x)

p(x)
ϕ(x) = ex +

(
(−1 + e−x)e−x−e

−x

e−x−e−x

)
ex

= ex + (−1 + e−x)ex

= 1.

Our test functions must satisfy

lim
x↘a

ϕ(x)f(x)p(x) = 0 = lim
x↗b

ϕ(x)f(x)p(x).

Here, our restrictions simply become

lim
x↘−∞

e−e
−x
f(x) = 0 = lim

x↗∞
e−e

−x
f(x),

which works if we let F = AC0(R).

Theorem 3. Define the functional operator A by

(Af)(y) = exf ′(y) + f(x).

Then E[(Af)(Y )] = 0 for all f ∈ F if and only if Y has the Gumbel distribution.

Again, the proof of this theorem is similar to the proof given in the Fréchet case. We solve the
Stein equation by first dividing out by ex and seeing that the integrating factor is e

∫
e−x = e−e

−x
.

The solution is

fh(x) = e−e
−x
∫ x

−∞
(h(t)− µh)e−t−e

−t
dt.
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6 Employing Two Operators

In the proof of the Fisher-Tippett-Gnedenko Theorem in Section 2.1, we discussed the conver-
gence of Wn = (Mn − bn)/an, where Wn had distribution Gn(x) = F (anx + bn)n and density
pn(x) = nanF (anx+ bn)n−1f(anx+ bn). Now, we want to construct an operator for Gn and use
it in conjunction with an operator for our target distribution.

First, let Z have our target distribution with density q(x). Let A be the Stein operator for
the target distribution, chosen with ϕ1(x) in the generalized density method, and Bn be the
Stein operator for Gn, chosen with ϕ2(x) in the generalized density method. Then we have that

(Af)(x) = ϕ1(x)f ′(x) +

(
ϕ′1(x) +

q′(x)

q(x)

)
f(x)

and

(Bnf)(x) = ϕ2(x)f ′(x) +

(
ϕ′2(x) +

p′n(x)

pn(x)

)
f(x)

= ϕ2(x)f ′(x) + (ϕ′2(x) + ρn(x)) f(x),

where ρn(x) = d
dx

log(pn(x)) is the score function for Wn. When applying this method, we can
simplify the general form for ρn(x), seeing that

ρn(x) =
n(n− 1)a2nF (anx+ bn)n−2f(anx+ bn)2 + na2nF (anx+ bn)n−1f ′(anx+ bn)

nanF (anx+ bn)n−1f(anx+ bn)

= an

(
(n− 1)f(anx+ bn)

F (anx+ bn)
+
f ′(anx+ bn)

f(anx+ bn

)
.

(13)

Next, we want to combine the two operators into one, getting that

E[h(Z)− h(Wn)] = E[(Afh)(Wn)] = E[(Afh)(Wn)]− E[(Bnfh)(Wn)] = E[Cnfh(Wn)],

where
After reaching this point for a particular Wn, we would then examine |E[(Cnfh)(Wn)]|. If we
wanted to pick ϕ1(x) and ϕ2(x) such that the f ′ term is eliminated, it’s simple enough. Just
choose ϕ1(x) = ϕ2(x). We can then work with any ϕ(x) and say that

Cnf(x) = ϕ(x)

(
q′(x)

q(x)
− ρn(x)

)
f(x). (14)

However, when we compute |E[(Cnfh)(x)]|, with this method, referencing Equation (12) for the
value of fh, we get

|E[(Cnfh)(x)]| =
∣∣∣∣E [ϕ(x)

(
q′(x)

q(x)
− ρn(x)

)
1

ϕ(x)p(x)

∫ x

a

(h(t)− µh)p(t)dt
]∣∣∣∣ . (15)

There is cancellation with the ϕ(x) terms, so when employing this method the choice of ϕ(x) is
irrelevant, and the result is the same as when employing the density method for both operators
(though the choice still impacts the class of test functions for the two operators A and Bn, as well
as the properties of the solutions to the associated Stein equations). Bartholmé and Swan (2013)
used a similar strategy along with the operator given earlier to compute rates of convergence of
the maxima of Pareto random variables to the Fréchet distribution.
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7 Examples of Operators

In this section, we begin to apply the method discussed in the previous sections to the maxima of
random variables with various distributions. Further work needs to be done in terms of bounding
various integrals in order to obtain convergence rates.

7.1 Exponential

Let X1, X2, ..., Xn be a sequence of random variables with the standard exponential distribution.
Then Mn = max(X1, X2, ..., Xn) has distribution F n(x) = (1 − e−x)n. After applying the
normalizing constants an = 1 and bn = log n we see that

F n(anx+ bn) = (1− e−x−logn)n =

(
1− e−x

n

)n
→ Λ(x)

as n → ∞. Note that f(anx + bn) = e−x/n and f ′(anx + bn) = −e−x/n. Next, we find ρn(x)
using Equation (13), getting

ρn(x) =
(n− 1) e

−x

n

1− e−x

n

− 1

=
n− 1

nex − 1
− 1.

We can look back at Equation (15) to generate an operator. First we let q(x) be the p.d.f. of
the Gumbel distribution, getting that q′(x)/q(x) = e−x − 1. Now we see that

(Cnf)(x) = f ′(x) (ϕ1(x)− ϕ2(x)) + f(x)

(
ϕ′1(x)− ϕ′2(x) + ϕ1(x)(e−x − 1)− ϕ2(x)

(
n− 1

nex − 1
− 1

))
.

If we let ϕ1(x) = ϕ2(x) then we see that

(Cnf)(x) = ϕ(x)

(
e−x − n− 1

nex − 1

)
f(x),

where ϕ(x) can be tuned to change the class of test functions and the solution fh.

7.2 Pareto

Let X1, X2, ..., Xn be a sequence of random variables with the standard Pareto distribution.
Then Mn = max(X1, X2, ..., Xn) has distribution F n(x) = (1 − x−α) for x ≥ 1. The maxima of
Pareto random variables converge to the Fréchet distribution by letting an = nα

−1
and bn = 0.

From Equation (13) we see that

ρn(x) = nα
−1

(n− 1)αx−α−1n−1−α
−1

(
1− x−α

n

)−1
+
(
nα
−1
) α(−α− 1)x−α−2n−1−2α

−1

αx−α−1n−1−α−1

=
n− 1

n
αx−1−α

(
1− x−α

n

)−1
− α + 1

x
.

Bartholmé and Swan (2013) developed O(1/n) rates of convergence by taking an equivalent
approach with ϕ(x) = x1+α.
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7.3 Cauchy

Let X1, X2, ..., Xn be a sequence of random variables with the standard Cauchy distribution.
Then Mn = max(X1, X2, ..., Xn) has distribution F n(x) = (π−1 arctan(x) + 1

2
)n. The maxima of

random variables with the Cauchy distribution converge to the Fréchet distribution by letting
an = n/π and bn = 0. We use Equation (13) to compute

ρn(x) =
n

π

(
(n− 1)π−1

(
1 + (nx

π
)2
)−1

π−1 arctan(x) + 1
2

−
π−22xn

(
1 + (nx

π
)2
)−2

π−1
(
1 + (nx

π
)2
)−1

)

=
n

π

(
π−1(n− 1)

(
1 + (nx

π
)2
)−1

π−1 arctan(x) + 1
2

− π−12xn

1 + (nx
π

)2

)
.

Thus, our operator would be of the form

(Cnf)(x) = f ′(x) (ϕ1(x)− ϕ2(x))

+ f(x)

(
ϕ′1(x)− ϕ′2(x) + ϕ1(x)(e−x − 1)− ϕ2(x)

n

π

(
π−1(n− 1)

(
1 + (nx

π
)2
)−1

π−1 arctan(x) + 1
2

− π−12xn

1 + (nx
π

)2

))
.
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