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GLOSSARY 

Terms Definitions 
Criticality The measure of the change in neutrons from one generation to 

the next. 
Delayed neutron A neutron that is released sometime after the fission event 

occurs. 
Firewall An intrinsic trait of a material that represents a barrier to 

proliferation. 
Fission An event in which a nucleus separates into multiple parts, 

releasing energy in the process. 
Half-life The amount of time in which half of the radionuclides in a 

sample have decayed. 
HEU Enriched uranium having a concentration of 235U greater than 

20%. 
Induced fission Fission event that is caused by an incident neutron. 
keff The ratio of the number of neutrons in one generation to the 

number of neutrons in the next. 
LEU Enriched uranium having a higher concentration of 235U than 

natural, but less than 20% 235U. 
Material attractiveness The attractiveness a particular material has for weapon’s 

purposes. 
Nuclear nonproliferation The decrease in or spread of nuclear weapons technology or 

materials. 
Nuclear proliferation The increase in or spread of nuclear weapons technology or 

materials. 
Predetonation The detonation of a nuclear weapon before it has reached its 

optimal compression due to the amount of spontaneous fission 
neutrons produced by the material. 

Proliferation resistance The resistance an object (ex.: material, reactor design, fuel 
cycle, etc.) has to be utilized in a nuclear weapons program. 

Prompt neutron A neutron that is released at the moment of the fission event. 
Self-explosion The detonation of high explosives as a result of temperature 

increase above its “self-explosion temperature.” 
Spontaneous fission Fission even that occurs suddenly due to the instability of the 

nucleus. 
Tensile Strength The amount of tensile stress a material can undergo before 

plastic deformation occurs. 
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Weaponization The process by which a material is converted to a usable form 
for a nuclear weapon. 

Yield The expected amount of energy released from the detonation 
of a nuclear weapon. 
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Abstract 

Decreasing the material attractiveness of uranium and plutonium materials is crucial to 
nuclear nonproliferation. The International Atomic Energy Agency (IAEA) implements 
safeguards across the world on a limited budget. Not only does decreasing material 
attractiveness reduce the possibility of proliferation, but also may lighten the financial 
burden on the IAEA if safeguards can be reduced. Two particular isotopes that have negative 
material attractiveness traits are 238Pu and 232U. Without isotopic separation technology, 
these isotopes cannot be removed from plutonium and uranium materials respectively. Both 
238Pu and 232U produce large quantities of heat by alpha decay. High decay heat is considered 
one of the primary impacts on material attractiveness. This decay heat causes major issues 
during weaponization and can render the high explosives in a weapon useless and cause 
failure in the materials if high enough temperatures are reached. In addition to high alpha 
decay heat, 238Pu has a high spontaneous fission neutron generation rate, which can lead to 
a reduction in the yield of a nuclear weapon. 232U’s daughter products give a relatively high 
dose rate over time. Both the dose rate and heat generation increase over time, reaching a 
maximum after 10 years. 232U will also create difficulty during the enrichment process. 
Considering 232U is lighter than 235U, its concentration will increase at a higher rate during 
enrichment. The decay of 232U in gaseous UF6 can destroy UF6 molecules creating a variety 
of lighter molecules that must be separated from the enrichment stream. This study will 
evaluate the effects of 238Pu and 232U on material attractiveness. The material attractiveness 
of these materials will be quantified using multiple methods in an attempt to make a broad 
statement about their attractiveness. In order to better understand the feasibility of the 
introduction of 232U into a civilian nuclear fuel cycle, the effects on safety, security, and 
safeguards will also be explored. 
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1. INTRODUCTION 

1.1. Motivation 

 Limiting the proliferation of nuclear material is crucial for the international use of 

nuclear energy for peaceful purposes. The utilization of nuclear energy is spreading 

internationally with several countries constructing or considering constructing their first 

commercial nuclear reactor, including Bangladesh, Belarus, Saudi Arabia, Turkey, and the 

United Arab Emirates (1). With the continuous expansion of nuclear energy internationally, 

the possible use of nuclear materials for weapons purposes remains a major concern. 

Although infrequent, this proliferation of nuclear materials has occurred historically such 

as in the case of Iran’s enrichment program (2) or the Democratic People’s Republic of 

Korea (DPRK) nuclear weapons program (3). 

Increasing the difficulty of proliferation is a complex issue. Proliferation resistance 

is a commonly used term to describe the difficulty in proliferating nuclear technology or 

material. The term is broad and can be applied to anything from a specific nuclear material 

to an entire fuel cycle. Although useful in a qualitative sense, the term lacks the ability to be 

applied quantitatively. In order to limit ambiguity and foster a more quantitative analysis, a 

material’s specific firewalls against proliferation are considered. These firewalls are 

intrinsic features of a material, such as decay heat, that make the material less attractive for 

weapons purposes. This falls within the scope of proliferation resistance and is narrow 

enough to analyze a particular nuclear material. 

 This increase in use of nuclear energy for peaceful purposes requires an increase in 

the international safeguards that ensure the material is not used for weapons purposes. 
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Implemented by the International Atomic Energy Agency (IAEA), international safeguards 

must cover nuclear fuel cycles across the world with limited resources. The use of these 

limited resources must be as efficient as possible, as to effectively safeguard nuclear 

material and deter proliferation. Decreasing a material’s attractiveness may lead to a 

reduction in safeguards, allowing for resources to be reallocated to more essential tasks. 

Not only is this financially beneficial for the IAEA, but also decreasing material 

attractiveness creates significant obstacles with which a proliferant state must deal with in 

order to weaponize the material. These obstacles can limit a state’s ability to proliferate 

both financially and technologically. Even in a breakout scenario in which a state has 

broken its safeguards agreement and decided to proliferate, decreased material 

attractiveness will slow the state’s proliferation. 

1.2. Objectives 

 The primary objective of this study is to understand the impact of elevated 238Pu 

concentration in plutonium materials and 232U concentration in uranium materials on 

material attractiveness. The impacts on critical mass, decay heat, spontaneous fission 

neutron generation rate, and dose rate from the addition of each isotope will be quantified 

and discussed within the scope of weapons usability. Considering 232U does not occur 

naturally, additional impacts beyond those directly contributing to material attractiveness 

must be considered. In order for 232U to be a realistic option for decreasing material 

attractiveness of uranium materials, the following issues must be explored. The effects on 

the gaseous centrifuge enrichment process from the addition of 232U is evaluated. Also, 

possible issues with safeguards measurements of uranium materials containing 232U is 

considered. From a safety perspective, the dose rate from these proposed uranium 
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materials is calculated and compared to safety standards. The detectability of these 

uranium materials is also simulated. Since 238Pu is found in plutonium from used nuclear 

fuel, these additional issues need not be considered. 

1.3. Background 

1.3.1. Introduction to Nuclear Nonproliferation 

1.3.1.1. Basics of Nuclear Proliferation 

 In order to understand nuclear nonproliferation, one must also understand nuclear 

proliferation. Nuclear proliferation is the increase in or spread of nuclear weapons 

technology or materials. The possession of nuclear weapons represents a certain amount of 

power and prestige for a state entity. Nuclear weapons are one of the most powerful 

weapons ever conceived and are capable of producing destruction on large scales. In 1945, 

the United States detonated the only two nuclear weapons ever used in warfare on the 

Japanese cities of Hiroshima and Nagasaki. The weapons had a yield equivalent to 21 and 

15 kilotons of TNT (4).  Although the exact estimates for those killed and wounded vary 

from source to source, an estimated 66,000 died in Hiroshima and 39,000 in Nagasaki. An 

estimated 69,000 were injured in Hiroshima and 25,000 in Nagasaki. These numbers are 

staggering considering the death toll for each was approximately one fourth of the cities’ 

total populations, 255,000 and 195,000 (5). 

The science behind nuclear energy is as follows. Although both the peaceful and 

weapons use of nuclear energy utilize the fission of fissile isotopes, the manner in which 

fission is utilized is slightly different. A fission event can be induced or spontaneous. An 

induced fission event occurs when the nucleus absorbs a neutron and splits. A spontaneous 

fission event occurs spontaneously without the need for neutron absorption. Induced 
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fission is far more probable in 235U. However, 239Pu has a notable probability of fissioning 

both spontaneously and induced. When a fission event occurs, fission fragments, neutrons, 

and gamma rays are released. Some of the neutrons released are released promptly at the 

moment of fission. These neutrons are called prompt neutrons. However, some neutrons 

are released slightly after. These neutrons are called delayed neutrons. The neutrons from 

one fission event may induce another fission which will release neutrons. The repetition of 

this process makes up a fission chain reaction. In a nuclear reactor, chain reactions are 

intended to be sustained by delayed neutrons. This allows for control by way of insertion 

or removal of control rods. A chain reaction made up of prompt neutrons within a reactor 

would be uncontrollable by human intervention. In a nuclear weapon, the chain reaction is 

intended to comprise solely of prompt neutrons. This allows for a rapid increase in power 

as the weapon is detonated. keff is important in understanding how the chain reactions will 

progress. keff is the ratio of the number of neutrons in a generation to the number of 

neutrons in the previous generation. If keff is less than one, the fissile material is subcritical 

and the chain reaction will eventually end as the number of neutrons are decreasing from 

one generation to the next. If keff is equal to one, the fissile material is critical and the chain 

reaction will continue with each generation having the same number of neutrons. If keff is 

greater than one, the chain reaction will continue with each generation of neutrons 

increasing in number (6). Fission type nuclear weapons are designed such that they’re 

initially subcritical and will become super critical as the fissile material is compressed. 

1.3.1.2. Nuclear Nonproliferation Policy 

 Nuclear nonproliferation is the decrease in or spread of nuclear weapons 

technology or materials. This field encompasses efforts around the world that seek to 
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prevent the spread of nuclear weapons. The Treaty on the Non-Proliferation of Nuclear 

Weapons (NPT) was formed as a global effort to prevent the spread of nuclear weapons. 

The treaty was opened for signatures in 1968 and entered into force in 1970. This treaty 

creates two classifications of states: Nuclear Weapons States (NWS) and Non-nuclear 

Weapons States (NNWS). The five NWS; the United States of America, the United Kingdom, 

France, Russia, and China, were classified as such due to the fact that each state possessed 

nuclear weapons at the time of the NPT’s creation. The remaining signatories of the NPT 

and presumably all future signatories are classified as NNWS. These NNWS agree to not 

pursue nuclear weapons, including both receiving nuclear weapons from other states and 

manufacturing them, in exchange for the ability to utilize nuclear energy for peaceful 

purposes. In order to ensure each NNWS adheres to this agreement, the NPT requires 

NNWS to agree to a nuclear safeguards agreement that is negotiated and monitored by the 

IAEA (7). 

 Each safeguards agreement will be negotiated directly between the IAEA and the 

member state in accordance with the Information Circular 153 (INFCIRC/153). This 

document discusses the objectives of the safeguards agreement and lays the framework for 

the agreement (8). Including the 5 NWS, 191 states have signed the NPT (9). Thus, the IAEA 

is responsible for imposing safeguards on over 100 states across the world. This immense 

responsibility, coupled with the limited budget of the IAEA, makes implementing 

safeguards in the most efficient manner possible crucial. According to the IAEA Department 

of Safeguards Long-Term Strategic Plan for 2012-2023, the IAEA desires to implement 

“smarter” safeguards to reduce the overall burden of safeguards to where they’re the most 
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needed (10). This is the major motivation for developing nuclear materials resistant to 

proliferation. 

1.3.1.3. Direct Use Nuclear Materials 

Proliferation resistance is especially of concern when considering direct use nuclear 

material. These materials contain fissile isotopes and have significant attractiveness for 

weapons purposes (11). The two most common of these materials are plutonium and 

highly enriched uranium (HEU). 233U is also classified as a direct use nuclear material but is 

far less common in most nuclear fuel cycles across the world. However, with the significant 

research in thorium fuel cycles, 233U may become more pertinent in the proliferation 

resistant conversation. 

Plutonium is created through the burnup of uranium and is thus present in all used 

nuclear fuel. Although 239Pu is the most attractive isotope of plutonium for weapons 

purposes, all plutonium is considered weapons usable. The only international safeguards 

exemption by the IAEA on plutonium is plutonium containing over 80% 238Pu (11). This is 

primarily due to the high alpha decay heat of 238Pu. This limit is well above the typical 

concentration of 238Pu found in used nuclear fuel and doesn’t exclude any plutonium found 

in used nuclear fuel. 

HEU is uranium with a 235U concentration ≥20% (11). HEU is obtained through the 

enrichment of natural uranium (0.711 wt. % 235U). This material is not as fissile as 

plutonium, but is still a significant threat for weaponization. Although HEU is considered 

direct use nuclear material, an additional classification for uranium, weapons grade, is 

especially important when considering weaponization. Weapons grade uranium is uranium 

having approximately >90 wt. % 235U. 
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1.3.2. Contributions to Material Attractiveness 

 Material attractiveness is constantly debated within the nuclear nonproliferation 

community. In simplistic terms, a material’s attractiveness is a measure of how attractive 

that material is for weapons purposes. Several physical characteristics of a nuclear material 

contribute to the material’s attractiveness. 

 This debate is often centered on plutonium. Although the proliferation of uranium is 

possible, a plutonium weapon requires less mass and plutonium can be found in all used 

nuclear fuel. The three main properties of plutonium that is of proliferation concern are the 

bare critical mass, spontaneous fission neutron rate, and heat generation (12). The bare 

critical mass is important as it is related to the amount of mass required to weaponized the 

material. The spontaneous fission neutron rate is important as it impacts the functionality 

of the weapon. As the implosion occurs, a higher neutron emission rate in the fissile 

material can stop the implosion before the optimal implosion has occurred thus reducing 

the yield of the weapon (13). The heat generation within a weapon can cause problems 

within the high explosives and other materials. An additional property that should be 

considered is the radiation dose from a material. 

 The radiation dose from the materials can have a negative impact on the high 

explosives within a weapon as well as anyone responsible for handling the material. In 

order to understand the effects of radiation dose, a brief summary of radiation dose units is 

needed. There are two main types of radiation doses typically discussed; absorbed dose 

and dose equivalent. Absorbed dose quantifies the amount of radiation absorbed within the 

matter. The units used for this type of dose are gray (Gy) and rad. One Gy is equivalent to 

100 rad. In terms of energy deposition, one gray is equivalent to one J/kg. Dose equivalent 
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incorporates the biological effects of each radiation type through weighting factors. The 

units used for this type of dose are Sievery (Sy) and rem. One Sv is equivalent to 100 rem 

(6). For the sake of simplicity, this study will focus on absorbed dose. 

 The explosives within a nuclear weapon will begin to degrade once a high enough 

dose has been given. This degradation will reduce the effectiveness of the high explosives 

by reducing the detonation velocity (14). This reduction in the explosive potential of the 

high explosives will lead to a reduced yield in the weapon. 

 The effect of the dose rate on humans can be best understood in terms of whole 

body dose. The whole body dose is the dose to the entire body without considering a 

specific section of the body. When the dose rate is relatively high, lethal acute syndromes 

can be considered. Three of these syndromes to be used in this study are central nervous 

system (CNS) syndrome, gastrointestinal (GI) syndrome, and Haemopoietic syndrome. CNS 

syndrome progresses from drowsiness to lethargy. After several hours, seizures begin and 

eventually loss of control of bodily movements occur. Death occurs within 2-3 days. GI 

syndrome consists of severe vomiting and diarrhea. This leads to serious dehydration. GI 

syndrome typically leads to death within 2-3 weeks. Haemopoietic syndrome is the slowest 

progress of the three. Initially slight nausea, vomiting, and diarrhea may occur within the 

first 6-12 hours after exposure. However, these symptoms may subside for up to three 

weeks. The patient may feel healthy until headache, fever, and fatigue begin. This worsens 

until the condition proves lethal after 1-2 months (15). Table 1.1 shows the minimum dose 

thresholds for the three acute radiation syndromes. 
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Table 1.1: Minimum Dose for Acute Radiation Syndromes (15) * (16) 

Syndrome Minimum Dose 
Required [Gy] 

CNS 50 
GI 5 

Haemopoietic 0.7* 
  

 A more general method to determine the lethality of a dose is to consider the mean 

lethal dose. The lethal dose required for death in 50% of exposed individuals is 

represented as the LD50. Various time intervals can be related to this dose such as 15, 30, 

and 60 days. This will utilize the 60-day time interval. This is represented as the LD50/60. 

According to the Center for Disease Control, the LD50/60 is approximately 2.5 to 5 Gy (16). 

 In addition to the LD 50/60 other dose thresholds can be considered. The radiation 

safety standards in the United States are set by the United States Nuclear Regulatory 

Commission (NRC). For simplicity, the doses considered in this study are total effective 

dose equivalent. The NRC’s annual limit for the occupational dose of an adult is 5 rem (17). 

An additional safety limit is the “self-protecting” dose rate of 500 rad/h at 1 meter (18). 

This dose rate limit represents a threshold above which the material is considered 

practically unusable for any purpose. This limit is often referred to in terms of material 

attractiveness for weapon’s purposes, rather than within the scope of the material’s use in 

a civilian nuclear fuel cycle. 

1.4. 238Pu Unattractive Features 

 Elevating the concentration of 238Pu will decrease the material attractiveness of the 

plutonium material. This strategy takes advantage of the high alpha decay heat if 238Pu. 

Elevated decay heat introduces significant difficulties in handling and weaponizing the 
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material (19). Increased temperature within a hypothetical nuclear explosive device 

(HNED) can cause the high explosives to self-explode once a particular temperature is 

reached (20). As shown in Table 1.2, 238Pu has a high decay heat per unit mass than the 

other plutonium isotopes. These values have been calculated using data from the Korean 

Atomic Energy Research Institute (KAERI) (21). 

Table 1.2: Decay Heat Contributions of Pu Isotopes [W/kg] 

Isotope α β 
238Pu 557.43 - 
239Pu 1.88 - 
240Pu 6.94 - 
241Pu - 3.22 
242Pu 0.11 - 

  

 In addition to the high alpha decay heat of 238Pu, the spontaneous fission neutron 

generation rate is unattractive for weapons purposes. A high spontaneous fission neutron 

generation rate within an HNED can cause the HNED to detonate prematurely before 

maximum compression is achieved resulting in a lower yield (22). As shown in Table 1.3, 

the even numbered plutonium isotopes have higher spontaneous fission neutron 

generation rates with 238Pu having the highest. Although not often mentioned when 

discussing plutonium, the dose rate from the elevated 238Pu concentration may also 

contribute to its material attractiveness. This has not been thoroughly investigated and 

could play an important role in decreasing the material attractiveness of plutonium in used 

fuel. 
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Table 1.3: Spontaneous Fission Neutron Generation Rate of Pu Isotopes [n/s/g] (23) 

Isotope n/s/g 
238Pu 2.59·103 
239Pu 2.18·10-2 
240Pu 1.02·103 
241Pu 5.00·10-2 
242Pu 1.72·103 

 

1.5. Possible Production Routes for 238Pu 

 Higher 238Pu concentration in used nuclear fuel can be achieved using a few 

methods. The most common is burning fuel with a higher concentration of 235U than 

typically in reactor grade uranium at a high burnup. Figure 1.1 shows the production route 

of 238Pu via 235U. 

 

Figure 1.1: 238Pu Production by way of 235U 

 In addition to 235U, 237Np and 241Am can also be used (24). These isotopes can be 

mixed with fresh fuel and burned in a reactor to produce higher concentrations of 238Pu in 

used nuclear fuel. Figure 1 shows the production route using 237Np. Figure 1.2 shows the 

production route using 241Am. 
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Figure 1.2:  238Pu Production by way of 241Am 

1.6. 232U Unattractive Features 

 Mixing 232U with naturally occurring uranium isotopes can decrease the material 

attractiveness. The unattractive features of 232U are two-fold. The initial alpha decay of 232U 

is relatively high and over time the dose rate and decay heat of the material increases (25). 

This increase in dose rate over time is due to the build-up of 208Tl, which emits an energetic 

gamma ray with energy of 2.615 MeV. Not only is the dose rate a danger to anyone who 

may handle the material, but also can damage the high explosives of a weapon. Over time, 

energy deposition by gamma radiation within the high explosives may cause them to 

degrade leading to reduced effectiveness (14). Table 4 shows the decay heat contributions 

and half-lives of the uranium isotopes (21). The decay heat of 232U is notable in comparison 

to the naturally occurring uranium isotopes. Also, worth noting is the half-life of 232U, which 

is several orders of magnitude shorter than that of the naturally occurring uranium 

isotopes. 
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Table 1.4: Decay Heat Contribution and Half-lives of U Isotopes 

Isotope α-Decay Heat 
[W/kg] 

Half-life 
[years] 

232U 703 68.9 
234U 0.176 2.45·105 
235U 5.63·10-5 7.04·108 
238U 8.35·10-6 4.47·109 

 

 In order to understand how the decay heat and dose rate change over time, the 

decay chain of 232U must be considered. As shown in Figure 1.3, the daughter products of 

232U have relatively short half-lives and 208Tl builds up rapidly. The decay chain progresses 

rapidly upon the decay of 228Th. 

 

  Figure 1.3: 232U Decay Chain 

 Table 1.5 shows the decay heat per unit mass of 232U’s daughter products. Although 

the daughter products are present in fractional amounts, they produce high enough decay 



14 
 

heat to greatly increase the total decay heat of the material over time. Both the decay heat 

and dose rate reach a maximum after approximately 10 years (25). 

Table 1.5: 232U Daughter Products Decay Heat 

Isotope W/kg 
228Th 2.63·104 
224Ra 5.36·106 
220Rn 3.44·1010 
216Po 1.45·1013 
212Pb 8.25·105 
212Bi 2.32·108 
208Tl 9.82·108 
212Po 9.27·1018 

 

 In addition to the decay heat and dose rate, 232U poses a significant obstacle for the 

enrichment process (26). Without utilizing isotopic separation technology, 232U cannot be 

separated from the uranium material. The main purpose of the enrichment of natural 

uranium is to increase the concentration of 235U and decrease the concentration of 238U 

making the material more fissile. Although the concentration of 234U is also increased, the 

initial concentration of 234U is so low that it is not an impact. However, the significant mass 

difference between 232U and 235U (three neutrons) would cause the concentration of 232U to 

greatly increase during the enrichment process. This would increase the effects of heat 

generation and dose rate as the material is enriched. The emission of alpha particles in 

gaseous UF6 poses an additional threat to the enrichment process (26). When UF6 

molecules are irradiated with alpha particles, the molecules may decompose through the 

creation of ion pairs. Historically, this issue was considered through the scope of the effects 

of 234U’s alpha decay in gaseous UF6 (27). 232U’s effects will be significantly more notable as 
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its alpha emission rate is higher than that of 234U. Table 1.6 shows the alpha emission rates 

of 232U and the naturally occurring uranium isotopes. 

Table 1.6: Alpha Emission Rate of U Isotopes 

Isotope 
Alpha 

Emission Rate 
[α/s/g] 

232U 8.28·1011 
234U 2.31·108 
235U 8.00·104 
238U 1.24·104 

 

 Although not typically mentioned when referencing uranium, the spontaneous 

fission neutron rate of 232U may increase the detectability of uranium materials containing 

232U. Neutrons are often more difficult to shield than gamma rays and may allow for the 

detection of these materials in situations where gamma ray measurements may not. Table 

1.7 shows the spontaneous fission neutron generation rate of 232U and the naturally 

occurring uranium isotopes. Although these values are smaller than that of the even 

numbered plutonium isotopes, the spontaneous fission neutron generation rate of 232U is 

notable as it would allow for increased detection ability. 

Table 1.7: Spontaneous Fission Neutron Generation Rate of U Isotopes (23) 

Isotope 

Spontaneous 
Fission 

Neutron Rate 
[n/(s⋅kg)] 

232U 1300 
234U 5.02 
235U 0.299 
238U 13.6 
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 In addition to spontaneous fission neutrons, uranium materials that include 232U in 

an oxide matrix (such as UO2) will release a higher number of (α,n) neutrons. (α,n) 

neutrons are produced when an alpha particle reacts with an atom (such as oxygen) and 

releases a neutron. Table 1.8 shows the (α,n) neutron generation rate of 232U and the 

naturally occurring uranium isotopes. Considering 232U’s high alpha particle emission rate, 

its presence in UO2 creates orders of magnitude more (α,n) neutrons than naturally 

occurring uranium isotopes. 

Table 1.8: (α,n) Neutron Generation Rate of U Isotopes (23) 

Isotope (α,n) Neutron 
Rate [n/(s⋅kg)] 

232U 1.49·107 
234U 3.00·103 
235U 7.10·10-1 
238U 8.30·10-2 

 

1.7. Possible Production Routes for 232U 

 Although this study will not focus specifically on producing 232U, proposing and 

highlighting possible production routes is essential to understanding the feasibility of the 

proposed use of 232U. Historically, 232U has been discussed as it relates to thorium fuel 

cycles. When natural thorium, containing mostly 232Th, is irradiated by neutrons, 233U is 

produced containing fractional amounts of 232U. 232Th absorbs a neutron producing 233Th, 

which then beta decays to 233Pa. 233Pa then beta decays to 233U, an isotope whose fissile 

capabilities are more like plutonium than 235U. An (n,2n) reaction with 233Th, 233Pa, or 233U, 

will lead to the production of 232U (28). This production route is not useful for the method 

proposed in this study. Only fractional amounts of 232U are produced with most of the 

uranium produced being 233U. These isotopes would be difficult to separate as doing so 
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would require isotopic separation technology. The production route needed here should 

produce mainly 232U. 

 Producing 232U specifically can be done by utilizing 230Th and 231Pa (29). 230Th and 

231Pa are both found in nature in fractional amounts. Figure 1.4 show the production route 

for 232U. 

 

Figure 1.4: Production Route for 232U 

1.8. Material Properties 

 This section will discuss the material properties of both plutonium and uranium. 

1.8.1. Plutonium Material Properties 

 This study will analyze plutonium in metallic form as this is the most attractive for 

weapons purposes. Plutonium has a several solid phases with various densities. Figure 1.5 

shows the solid phases of plutonium as a function of density and temperature. 
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Figure 1.5: Plutonium phases (30) 

 The delta phase is most attractive for weapons purposes (20), but is not stable at 

room temperature. In order to stabilize delta phase plutonium at room temperature and 

across a wide range of temperatures, a small percentage (5 at.%) of gallium can be added. 

Figure 1.6 shows the plutonium-gallium phase diagram (31). 

 

Figure 1.6: Plutonium-Gallium Phase Diagram (31) 



19 
 

 The crystal structure of delta phase plutonium is a face-centered cubic. Delta phase 

plutonium has a density of 15.8 g/cm3. Table 1.9 shows the thermophysical properties of 

plutonium used in this study. 

Table 1.9: Thermophysical Properties of Plutonium (30) (31) 

Thermal 
Conductivity 

[W/m·K] 

Heat 
Capacity 
[J/g·K] 

Modulus of 
Elasticity 

[GPa] 

Thermal 
Expansion 

[1/K] 

Tensile 
Strength 

[GPa] 

10.97 0.13 68 3.00·10-6 1.00·10-1 
 

1.8.2. Uranium Material Properties 

 Uranium will be considered in several material form; metallic, UO2 powder, and 

sintered UO2. The metallic form is considerably less complicated than in the case of 

plutonium. Metallic uranium has three solid phases; α, β, and γ. α phase is stable under 669 

°C so this is the phase considered here. α phase uranium has an orthorhombic crystal 

structure with a density of 19.05 g/cm3. 

Table 1.10: Thermophysical Properties of Uranium (30) 

Thermal 
Conductivity 
[W/(m·K)] 

Heat 
Capacity 
[J/(g·K)] 

Modulus of 
Elasticity 

[GPa] 

Thermal 
Expansion 

[1/K] 

Tensile 
Strength 

[GPa] 

28.9 0.1163 190 1.39·10-5 0.615 
 

 UO2 is not attractive for weapons purposes but is found in nuclear fuel cycles as fuel. 

Initially, UO2 may be stored as a powder and later sintered. Powder UO2 has an 

approximate density of 2.5 g/cm3. Sintered UO2 has a density of 10.96 g/cm3 (30). The 

thermophysical properties previously described are not needed for the analysis of UO2 

done here. 
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1.8.3. Additional Material Properties 

 In addition to the thermophysical properties of the fissile material, that of the other 

materials found in the HNED is also needed. The high explosives chosen to analyze is PBX 

9502. PBX 9502 is a polymer bonded explosive that has a self-explosion temperature of 

331 °C, starts pyrolysis at 395 °C, and melts at 448 °C. Table 1.11 shows the densities for 

the HNED materials. 

Table 1.11: HNED Material Densities ** (20) 

Material 
Density 

(30) 
[g/cm3] 

References 

Be 1.85 (30) 
PBX 9502 1.90** (20) 
Al casing 2.7 (30) 

 

 Table 1.12 shows the thermophysical properties of the additional HNED materials. 

Table 1.12: Thermophysical Properties of HNED Materials (30), (32), (33), (34), (35), (36) 

Material 
Thermal 

Conductivity 
[W/m·K] 

Heat 
Capacity 
[J/g·K] 

Modulus of 
Elasticity 

[GPa] 

Thermal 
Expansion 

[1/K] 

Tensile 
Strength [GPa] 

Be 102 1.78 303 1.60·10-5 1.90·10-1 
PBX 
9502 0.5607 1.125 15.3 4.01·10-6 3.23·10-3 

Al casing 98ᶧ 1.177 17 2.30·10-5 4.80·10-1 
  

 The properties affecting the radiation and convective heat transfer at the surface of 

the models must be considered. The radiation heat transfer will be assumed to be that of a 

black body as this produces the best case for the heat transfer and is a limiting case. Table 

1.13 shows the convective heat transfer coefficients for air and liquid nitrogen. 
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Table 1.13: Convective Heat Transfer Coefficients [W/cm2·K] (37) (38) 

Fluid 
Convective Heat 

Transfer 
Coefficient 

Air 0.001 
Liquid Nitrogen 0.01 

 

1.9. Layout of Dissertation 

 This dissertation is made up of five chapters. The second chapter describes the 

previous studies that serve as the basis and background for this dissertation. These studies 

span several techniques for evaluating the attractiveness of both plutonium and uranium 

materials for weapons purposes. The third chapter describes the methodology used in this 

study. This methodology consists of a model based approach and figure of merit approach 

for both plutonium and uranium materials. In addition, an analysis to evaluate the 

practicality of the implementation of the uranium material in the civilian world. The fourth 

chapter reports and discusses the results from the methods described in Chapter 3. The 

fifth chapter concludes the dissertation. This chapter not only summarizes and concludes 

the plutonium and uranium analyses, but also elaborates on the scope of the final 

conclusions and describes possible future works.  
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2. LITERATURE REVIEW 

 Quantifying proliferation resistance is a complex task. In particular, when 

referencing the proliferation resistance of a specific material, making an accurate 

assessment can be open to interpretation. Historically, proliferation resistance assessments 

have varied greatly. This section will discuss three specific analyses used to assess 

proliferation resistance of nuclear materials. 

2.1. Modeling Based Analysis 

 This section shall describe the use of a specific model in order to assess the material 

attractiveness and proliferation resistance of the fissile material. These studies investigated 

plutonium vectors with elevated 238Pu content. Two similar studies are worth discussing to 

illustrate their methodology and possible shortfalls. 

 Dr. Kessler of the Technical University of Karlsruhe in Germany has published his 

work in regards to denaturing plutonium using 238Pu. Kessler analyzed 8 plutonium vectors 

having 238Pu concentrations ranging from 1.6% to 24.5%. He created three simple 

hypothetical spherical fission type nuclear weapon models representing high, medium, and 

low technology. Each model had varying thicknesses of high explosives and reflectors, with 

the high technology having the thinnest and the low technology having the thickest. Figure 

2.1 shows the three simplistic models. Each model is spherically symmetric. 
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Figure 2.1: Kessler's Models (20) 

 The plutonium masses for each vector were chosen in order to give the model a keff 

of 0.98. Using steady state heat transfer through the model, the temperature throughout 

each layer was determined. The temperature within the high explosives were compared to 

the “self-explosion” temperature of the high explosives to determine if the weapon would 

self-explode. Kessler concluded that plutonium vectors containing approximately 6% 238Pu 

or more would result in the self-explosion temperature being reached even in the high 

technology case (20). 

 Using the models shown in Figure 2.1, a group from the Research Laboratory from 

Nuclear Reactors at the Tokyo Institute of Technology analyzed the temperature within the 

high explosives as a function of 238Pu concentration. Rather than analyze a few specific 

plutonium vectors, they sought to relate the maximum temperature in the high explosives 

to the concentration of 238Pu. Their final conclusion was that 238Pu above 15% would be 

infeasible in the high technology case, above 6% in the medium technology case, and above 

2% in the low technology case (19). The 15% is a significantly higher concentration of 

238Pu than that the 6% proposed by Kessler. 
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 Although these studies were able to make conclusions regarding how the 238Pu 

concentration impacts the three models, the scope of these studies are narrow and only 

draw conclusions in regards to those specific models. These studies fail to make a more 

broad assessment of material attractiveness. The plutonium vectors analyzed by Kessler 

aren’t necessarily realistic. These vectors were obtained at high burnups that do not 

represent what is currently standard in the nuclear fuel cycle. Another major issue is that 

the results are heavily dependent on the models. Any deviation in the models (ex. changes 

in the high explosives type or thickness) will change the results. Also, these models do not 

represent a limiting case. A keff of 0.98 is close to critical (keff=1) and the weapon essentially 

has nearly a maximal plutonium mass without being critical. A nearly maximal plutonium 

mass would then produce a nearly maximal heat generation. In order for the model to be a 

limiting case, the keff must be minimal in order to minimize the mass and heat generation 

while still being a functional HNED. 

2.2. Figure of Merit Analysis 

 In order to broaden the assessment of material attractiveness, a Figure of Merit 

(FOM) analysis is useful. A group led by Charles Bathke at Lawrence Livermore National 

Laboratory developed a FOM that serves as a metric for attractiveness (18). An important 

note of this study is its definition of proliferation resistance. Proliferation resistance is 

defined as the characteristics of a material to impeded diversion of nuclear material by a 

state. This definition excluded any non-state entities such as terrorist organization. Non-

state entities are not considered in the analysis. The state entities considered in this study 

are separated into two categories: technically advanced states and less technically 

advanced states. 
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This analysis uses physical characteristics of a material as inputs and output a FOM 

value that measures the material’s attractiveness. These physical characteristics are the 

bare critical mass, the heat generation, the spontaneous fission neutron generation rate, 

and the dose rate. These are seen as the four main properties of a material that determine 

its attractiveness for weapons purposes. Each characteristic is represented by a factor that 

is normalized to accepted standards. The bare critical mass factor is normalized to the 

threshold for low enriched uranium (<20% 235U). The heat generation factor is normalized 

to the international safeguards limit for 238Pu concentration (80% 238Pu). The spontaneous 

fission neutron generation rate factor is normalized to reactor grade plutonium (≥20% 

240Pu). The dose rate factor is normalized to a “self-protecting” dose rate of 500 rad/h at 1 

meter. For technically advanced states, the spontaneous fission neutron generation rate 

factor is excluded as a technically advanced state can handle a high neutron generation rate 

within a weapon and avoid pre-detonation. All four factors are included in the case of less 

technically advanced states. Equation 2.1 shows the FOM for less technically advanced 

states (FOM1). Equation 2.2 shows the FOM for technically advanced states (FOM2). In these 

equations the FOM is related to the bare critical mass in units of kg (M), the heat generation 

in units of W/kg (h), the spontaneous fission neutron rate in units of neutrons/s/kg (S), 

and the dose rate in units of rad/h (D). 

Equation 2.1 
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Equation 2.2 
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 The FOM is separated into ranges that relate the value to the material’s weapons 

utility and attractiveness. Table 2.1 shows these ranges. 

Table 2.1: FOM Ranges and Material Attractiveness 

FOM Weapons 
Utility Attractiveness 

> 2 Preferred High 
1-2 Attractive Medium 
0-1 Unattractive Low 
< 0 Unattractive Very Low 

 

 Bathke applies this FOM to a variety of materials to quantify their attractiveness 

(18). The FOM analysis makes a broader statement about material attractiveness than the 

model based analysis as it doesn’t apply to a specific situation but rather the material in 

any situation. However, this analysis is only useful for direct use material in a weapon’s 

usable form (i.e. metal). Any potential process such as conversion from one chemical form 

to another or enrichment is excluded from this analysis. For example, if considering a 

uranium vector, the FOM would result in unattractive if the 235U enrichment were below 

20%. However, if the same material were enriched, the FOM would change. The 

infrastructure required to convert an unattractive material to an attractive one is not 

possessed by every state and should be accounted for. Also, how the material might affect 

these processes is important when determining the material’s attractiveness. 
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2.3. Broader Approaches 

 In the case of 232U proliferation resistance analyses, studies have been broad and 

somewhat ambiguous. Considering 232U is currently found in thorium fuel cycles, previous 

studies were done on 232U/233U mixtures. As natural thorium is irradiated with neutrons, 

233U is created with fractional amount of 232U as a result of (n,2n) reactions. 

 A study done at Lawrence Livermore National Laboratory by Dr. Moir attempted to 

analyze the proliferation resistant features of 232U/233U mixtures. The study shows the 

major increase in heat generation and dose rate over time from the daughter products of 

232U. Both reaching a maximum after approximately 10 years. This study also introduces 

the impact of radiation damage to high explosives. A high explosive can withstand 100 MR, 

equivalent to 0.877 Mrads and 0.00877 MGy, before degrading (14). However, the study 

only evaluates the dose rate from 1 meter rather than analyzing the dose given to high 

explosive within a realistic model. Without a realistic model, the study ignores the photon 

attenuation that would occur within the layers of the model. 

 Another study evaluates denaturing 20% 235U uranium materials with 232U (26). 

This study mentions the increase in dose rate, but focuses mostly on the increase in the 

neutron yield. The neutron yield is significantly larger than that of a uranium material 

containing natural uranium isotopes and would allow for detection via neutron detectors. 

This study also mentions the effect of alpha decay within gaseous UF6. UF6 molecules are 

destroyed by the irradiation of alpha particles. The study concludes that 48% of UF6 

molecules are destroyed in one tenth of a year. However, the analysis is difficult to follow 

and not rigorous. A considerable percentage of UF6 molecules being destroyed would pose 

a serious barrier to uranium enrichment. Since the separation of isotopes are driven by 
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mass differences, the lighter molecules created from the destruction of UF6 molecules 

would be counterproductive to the enrichment process. 
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3. METHODOLOGY 

3.1. Heat Transfer Theory 

 This study analyzes conductive heat transfer throughout multiple shells of several 

spherically symmetric HNED models in       order to calculate the temperature profiles 

throughout each shell. Equation 3.1 shows the complete conductive heat transfer equation 

in spherical coordinates (37). In this equation, the temperature in units of K (T) is related 

to the radius in units of m (r), time in units of s (t), the angle with respect to the x-axis in 

units of radian (θ), the angle with respect to the z-axis in units of radian (ф), the thermal 

conductivity in units of W/(m·K) (k), the density in units of kg/m3 (ρ), the heat capacity in 

units of J/K (Cp), and the heat generation in units of W (ġ). 

Equation 3.1 

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
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�𝑘𝑘 sin𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃
� + �̇�𝑔 = 𝜌𝜌𝐶𝐶𝑝𝑝

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

 Considering all of the models considered here are spherically symmetric, all partial 

derivatives with respect to θ and ф are equal to 0. The simplified version of the heat 

equation is shown in Equation 3.2. 

Equation 3.2 

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑘𝑘𝑟𝑟2
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3.1.1. Steady State Conductive Heat Transfer 

 In the steady state case (no time dependence), Equation 3.2 is simplified to Equation 

3.3. 

Equation 3.3 

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑘𝑘𝑟𝑟2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
� + �̇�𝑔 = 0 
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 Equation 3.3 is solved analytically for two cases; with heat generation (ġ≠0) and 

without heat generation (ġ=0). Equation 3.4 shows the temperature profile within a shell 

that is generating heat. This equation relates the temperature (T) with the outer 

temperature (To), the inner radius (ri), the outer radius (ro), the heat generation (ġ), the 

thermal conductivity (k), and the radius (r). 

Equation 3.4 

𝜕𝜕(𝑟𝑟) = −
�̇�𝑔𝑟𝑟2

6𝑘𝑘
−
�̇�𝑔𝑟𝑟𝑖𝑖3

3𝑘𝑘𝑟𝑟
+
�̇�𝑔𝑟𝑟𝑜𝑜2

6𝑘𝑘
+
�̇�𝑔𝑟𝑟𝑖𝑖3

3𝑘𝑘𝑟𝑟𝑜𝑜
+ 𝜕𝜕𝑜𝑜 

 Equation 3.5 shows the temperature profile with a shell that is not generating heat.  

Equation 3.5 

𝜕𝜕(𝑟𝑟) =  
𝑟𝑟𝑜𝑜𝑟𝑟𝑖𝑖(𝜕𝜕𝑖𝑖 − 𝜕𝜕𝑜𝑜)
𝑟𝑟(𝑟𝑟𝑜𝑜 − 𝑟𝑟𝑖𝑖)

−
𝑟𝑟𝑖𝑖(𝜕𝜕𝑖𝑖 − 𝜕𝜕𝑜𝑜)
𝑟𝑟𝑜𝑜 − 𝑟𝑟𝑖𝑖

+ 𝜕𝜕𝑜𝑜 

3.1.2. Transient Conductive Heat Transfer 

 Considering the complexity in attempting to solve Equation 3.2 analytically, 

discretizing the equation is a simpler way to analyze the transient conductive heat transfer. 

In to discretize, the partial derivate with respect to the radius must be expanded. Equation 

3.6 shows the expanded equation. 

Equation 3.6 

2𝑘𝑘
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

+ 𝑘𝑘
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑟𝑟2

+ �̇�𝑔 = 𝜌𝜌𝐶𝐶𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

 Each term is discretized using a forward finite difference discretization (39). 

Equation 3.7 and Equation 3.8 show the forward finite difference discretization of the first 

derivative with respect to r and t. Equation 3.9 shows the central forward difference 

discretization of the second derivative with respect to r. i corresponds to the ith node. j 
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corresponds to the jth node. Δr is the step size in the radial direction. Δt is the step size in 

time. 

Equation 3.7 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

=
𝜕𝜕𝑖𝑖+1
𝑗𝑗 − 𝜕𝜕𝑖𝑖

𝑗𝑗

Δ𝑟𝑟
 

Equation 3.8 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑖𝑖
𝑗𝑗+1 − 𝜕𝜕𝑖𝑖

𝑗𝑗

Δ𝜕𝜕
 

Equation 3.9 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑟𝑟2

=
𝜕𝜕𝑖𝑖+1
𝑗𝑗 − 2𝜕𝜕𝑖𝑖

𝑗𝑗 + 𝜕𝜕𝑖𝑖−1
𝑗𝑗

Δ𝑟𝑟2
 

 Equation 3.10 shows Equation 3.6 with Equation 3.7, Equation 3.8, and Equation 3.9 

substituted for each of the derivative terms. This equation is solved for the temperature at 

the j+1 time step. Matlab will be used to model this equation. 

Equation 3.10 

𝜕𝜕𝑖𝑖
𝑗𝑗+1 =

kΔ𝜕𝜕
𝜌𝜌𝐶𝐶𝑝𝑝Δ𝑟𝑟

�
2
𝑟𝑟
�𝜕𝜕𝑖𝑖+1

𝑗𝑗 − 𝜕𝜕𝑖𝑖
𝑗𝑗� +

1
Δ𝑟𝑟

�𝜕𝜕𝑖𝑖+1
𝑗𝑗 − 2𝜕𝜕𝑖𝑖

𝑗𝑗 + 𝜕𝜕𝑖𝑖−1
𝑗𝑗 �� + 𝜕𝜕𝑖𝑖

𝑗𝑗 +
�̇�𝑔Δ𝜕𝜕
𝜌𝜌𝐶𝐶𝑝𝑝

 

 Equation 3.11 shows the only stability criteria for Equation 3.10. 

Equation 3.11 

𝑘𝑘Δ𝜕𝜕
𝜌𝜌𝐶𝐶𝑝𝑝Δ𝑟𝑟2

<
1
2

 

3.1.3. Boundary Conditions 

 In order to analyze the heat transfer throughout the entire models, the boundary 

conditions must be used. The first boundary condition is the thermal energy transferred at 

each boundary is the same, because only the inner most shell is generating heat. At the 

outermost layer, the thermal energy is transferred via natural convection and radiation. 
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Equation 3.12 shows the relationship between the thermal energy in units of W (Q� ) and the 

surface temperature in units of K (Ts), the temperature of the surroundings in units of K 

(Tsurr), the temperature of the surrounding wall in units of K (T∞), the surface area in units 

of m2 (A), the convective heat transfer coefficient in units of W/(m2·K) (h), the radiative 

heat transfer coefficient (ε), and the Stefan-Boltzmann constant in units of W/(m2·K4) (σ). 

Equation 3.12 

�̇�𝑄 = 𝜀𝜀𝜀𝜀𝐴𝐴(𝜕𝜕𝑠𝑠4 − 𝜕𝜕𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 ) + ℎ𝐴𝐴(𝜕𝜕𝑠𝑠 − 𝜕𝜕∞) 

 In addition to the first boundary condition, the temperature throughout the model is 

assumed continuous. Although in reality slight air gaps between the shells may be present, 

these air gaps would raise the temperature in the outer shells. Therefor assuming perfect 

heat conduction between each shell is the best case for heat transfer and would yield the 

lowest temperature profile. This serves as the limiting case for this analysis. Since the 

models are spherically symmetric, the shells are treated as parts of a thermal resistance 

circuit. Equation 3.13 shows the expression of the thermal energy.  Since the temperature 

profile is continuous, the outer temperature of a shell is equal to the inner temperature of 

the next shell. 

Equation 3.13 

�̇�𝑄 =
4𝜋𝜋𝑟𝑟𝑜𝑜𝑟𝑟𝑖𝑖𝑘𝑘(𝜕𝜕𝑖𝑖 − 𝜕𝜕𝑜𝑜)

𝑟𝑟𝑜𝑜 − 𝑟𝑟𝑖𝑖
 

 When considering time dependence, the boundary conditions are the same. 

However, the shells are not treated as parts of a thermal circuit, but rather Fourier’s law is 

used as an additional boundary condition. Equation 3.14 shows the convective and 

radiation boundary condition at the outermost boundary of the model. 
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Equation 3.14 

𝛿𝛿𝜕𝜕
𝛿𝛿𝑟𝑟

= 𝜀𝜀𝜀𝜀(𝜕𝜕𝑠𝑠4 − 𝜕𝜕𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 ) + ℎ(𝜕𝜕𝑠𝑠 − 𝜕𝜕∞) 

 Equation 3.15 shows Fourier’s law at the interface. In this equation, km is the 

thermal conductivity of the mth shell, kn is the thermal conductivity of the nth shell, Tm is the 

temperature profile within the mth shell, Tn is the temperature profile within the nth shell, 

and rint is the radius at the interface. 

Equation 3.15 

𝑘𝑘𝑚𝑚
𝛿𝛿𝜕𝜕𝑚𝑚
𝛿𝛿𝑟𝑟 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑘𝑘𝑛𝑛
𝛿𝛿𝜕𝜕𝑛𝑛
𝛿𝛿𝑟𝑟 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖

 

3.1.4. Thermal Stress 

 Considering the temperature increases, thermal stresses will be experienced in the 

shells due to thermal expansion. As the temperature increases in the shells, they will 

expand. Since the shells are fixed and won’t be allowed to expand, the shells will experience 

thermal stress. Equation 3.16 shows thermal stress (σT), Young’s Modulus of Elasticity (E), 

the temperature difference (ΔT), and the linear thermal expansion coefficient (α). 

Equation 3.16 

𝜀𝜀𝑇𝑇 = 𝐸𝐸 ∙ Δ𝜕𝜕 ∙ 𝛼𝛼 

3.2. Plutonium Analysis 

3.2.1. Plutonium Vector 

 In order to obtain a realistic plutonium vector, a real world fuel design must be 

used. An innovative metallic fuel design from Lightbridge (40) will produce elevated 238Pu 

content in its used fuel. Previously, the Lightbridge fuel has been referred to as 

“proliferation resistant” (41) and may achieve a significant concentration of 238Pu to 
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decrease material attractiveness. Lightbridge fuel has an initial high 235U enrichment 

(19.7% 235U) and relatively high fuel burnup (191 MWd/kg). 

 Using ORIGEN2 software, the Lightbridge fuel was simulated for a pressurized 

water reactor. Table 3.1 shows the resulting plutonium vector (42). 

Table 3.1: Plutonium Vector 

Isotope wt. % 
238Pu 18.14 
239Pu 35.66 
240Pu 21.08 
241Pu 13.54 
242Pu 11.58 

 

 The plutonium will be alloyed with 5 at. % gallium and has a density of 15.8 g/cm3. 

3.2.2. Modeling Based Analysis 

3.2.2.1. Models 

 Kessler’s high technology model will be used initially to redo Kessler’s analysis 

using the plutonium vector in Table 3.2 and updated material properties. Updated decay 

heat contributions from each plutonium vector will be used to ensure the correct amount 

of heat generation is being analyzed. The results can then be compared to Kessler’s. 

Table 3.2: Kessler's Plutonium Vector 

Isotope wt. % 
238Pu 8.7 
239Pu 30.1 
240Pu 30.6 
241Pu 11.3 
242Pu 19.3 
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 In addition, this analysis will use two models for the steady state heat transfer 

analysis. The most realistic of these models will be used for the transient heat transfer 

analysis. Each model will be slightly modified to maintain the keff when the plutonium 

vector in Table 3.1 is used. The keff for each model is found using kcode within the software 

MCNP (43). 

 Model One is based on Fat Man. Fat Man is the only plutonium based nuclear 

weapon used in warfare and thus represents a logical realistic case to consider. The 

geometry of the model is well known. The keff of the original design is 0.98. Table 3.3 shows 

the radial thickness of each shell in the initial Fat Man geometry (4) and the updated 

geometry (42). Pu is plutonium. Unat is natural uranium. BPE is borated polyethylene. Al is 

aluminum. PBX 9502 is the polymer bonded explosives. The updated geometry contains 

more plutonium mass because the original geometry contained weapons grade plutonium 

rather than the less fissile plutonium vector used in the updated geometry. The borated 

polyethylene was removed from the updated geometry as the heat produced by the 

plutonium would melt it. 

Table 3.3: Model One Initial and Updated Geometries 

Material 
Radial Thickness 

[cm] 
Initial Updated 

Neutron 
Initiator 1 - 

Pu 3.6 5.105 
Unat 6.5 5 
BPE 0.33 - 
Al 12.07 12.40 

PBX 9502 47 47 
Steel casing 1 1 
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 Although this design is relatively large, Model One represents a limiting case. The 

larger outer surface area of the geometry will lead to a reduction in the temperatures 

within the materials. 

 Model Two is considered to be the most realistic design. This model features a 

minimum amount of plutonium and has a significantly lower keff than Model One. The lower 

plutonium mass will generate less heat and represents an important limiting case. The keff 

of Model Two is 0.66. The only change between the initial and updated models is the 

expansion of the plutonium shell inward. Table 3.4 shows the radial thickness of each shell 

in the initial model (44) and the updated model (42). 

Table 3.4: Model Two Initial and Updated Geometries 

Material 
Radial Thickness 

[cm] 
Initial Updated 

Inner 
cavity 4.25 3.715 

Pu 0.75 1.285 
Be 2 2 

Udep 3 3 
PBX 9502 10 10 
Al casing 1 1 

 

3.2.2.2. Steady State Heat Transfer 

 The temperature will be found analytically for each model using the theory 

described in the Steady State Conductive Heat Transfer section. The temperature within 

the high explosives will be compared to its self-explosion temperature to assess whether 

self-explosion will occur. 

 Although the α and β decay heat from each plutonium isotope has previously been 

assumed to be the main contributor to the heat generation, other decay heat contributor 
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will be considered. The heat generation due to gamma rays and spontaneous fission 

(including gamma rays, neutrons, fission fragments, and induced fission) will be considered 

in each layer. The gamma ray emissions from the plutonium will found using the software 

RadSrc. RadSrc takes radionuclide content and age in years as inputs and outputs the 

decayed content as an MCNP usable gamma ray emission spectrum (45). MCNP is then 

used to find the energy deposition from the sources previously described with the 

exception of the fission fragments. The energy deposition from the fission fragments is 

found using the average energy of the fission fragments (46). 

3.2.2.3. Transient Heat Transfer 

 Although a steady state transfer analysis will determine if the heat generation is 

significant enough to cause the high explosives to reach its self-explosion temperature, this 

analysis will not yield a time limit at which this temperature is met. This information is 

crucial as it serves as a time window within which the model is usable even with the 

increased heat generation. In order to find this limit, a transient heat transfer model must 

be used. 

 Matlab is used to create a computational model of the most realistic model (Model 

Two). The theory described in the Transient Conductive Heat Transfer section will be used 

to “step” through time and space to create the temperature throughout the model over 

time. The changes in temperature over time will also be used to calculate the maximum 

thermal stress (Equation 3.16) in each of the shells to determine if any deformation or 

failure will occur. Deformation or failure with an HNED would cause a nonuniform 

implosion leading to a reduction in the overall yield and could possibly reduce the weapon 
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to a radiological dispersal device. The transient heat transfer will be considered for four 

unique scenarios (42). 

 In the first scenario, the plutonium pit is inserted into the HNED. Prior to insertion, 

the HNED is at room temperature and the plutonium pit is in thermal equilibrium with the 

surrounding room. Post insertion, the HNED is stationary within a large room and the heat 

is transferred at the surface of the HNED by way of natural convection and radiative heat 

transfer. 

 In the second scenario, the plutonium pit is externally cooled in liquid nitrogen prior 

to insertion. As in scenario 1, the HNED is at room temperature however the plutonium pit 

is in thermal equilibrium with the liquid nitrogen. Post insertion, the HNED is again 

stationary within a large room and the heat is transferred at the surface by way of natural 

convection and radiative heat transfer. 

 In the third scenario, the plutonium pit is inserted into an externally cooled HNED. 

Prior to insertion, the HNED is at thermal equilibrium with the liquid nitrogen surrounding 

it and the plutonium pit is at thermal equilibrium with the surrounding room. Post 

insertion, the HNED remains externally cooled by liquid nitrogen. 

 In the fourth scenario, the fully assembled, liquid nitrogen cooled HNED is removed 

and place into a large room. The initial temperature profile of scenario 4 is the final 

temperature profile of scenario 3. Once the HNED is removed, heat is transferred at its 

surface by way of natural convection and radiative heat transfer. 

3.2.3. Figure of Merit Analysis 

 In order to make a broader statement regarding the plutonium vector’s material 

attractiveness, the FOM described in Equation 2.1 and Equation 2.2 will be calculated for 
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this plutonium vector. The resulting FOM values will be compared to the ranges shown in 

Table 2.1. In order to put the results in perspective, the FOM will be calculated for two 

additional plutonium vectors; one from a typical light water reactor (LWR) used fuel and 

the other from mixed oxide (MOX) used fuel. Table 3.5 shows these vectors (47). 

Table 3.5: Addition Plutonium Vectors [wt. %] 

Isotope LWR MOX 
238Pu 2.00 3.17 
239Pu 41.3 43.7 
240Pu 27.6 22.2 
241Pu 19.2 17.0 
242Pu 9.91 13.9 

 

 Each of the four components of the FOM equation: bare critical mass, dose rate, heat 

generation, and spontaneous fission neutron generation rate must be calculated. The bare 

critical mass will be found using kcode within MCNP. The geometry is a bare sphere of 

metallic plutonium surrounded by air. The mass will be slightly modified until the mass is 

critical (keff=1). The heat generation is found by combining the plutonium vectors with the 

decay heat per unit mass of each plutonium isotope. Similarly, the spontaneous fission rate 

is found by combining the plutonium vectors with the spontaneous fission neutron 

generation rate per unit mass of each plutonium isotope. MCNP will be used to find the 

dose rate of 0.2 the bare critical mass from 1 meter. Using the gamma ray spectrum from 

RadSrc for each plutonium vector, MCNP will calculate the dose rate 1 meter from the 

surface of a metallic plutonium sphere having 0.2 the bare critical mass. 

 In addition to calculating the FOM values, contributions from possible sources of 

uncertainty must be accounted for. Although the bare critical mass is found 

computationally using MCNP6, the result is dependent on the cross section libraries chosen 
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for each isotope. Using a technique previously used at Los Alamos National Laboratory 

(48), the bare critical mass will be calculated using several cross section libraries. The 

resulting masses will be averaged and their standard deviation is used as the uncertainty. 

The decay heat values are calculated using decay data from KAERI (21) and data used in 

plutonium denaturing studies done by a research groups in Tokyo (24). The spontaneous 

fission values are calculated by using the spontaneous fission rates from the book “Passive 

Nondestructive Assay of Nuclear Materials” (23) and from the studies from the Tokyo 

Institute of Technology mentioned previously (24). As with the bare critical mass values, 

the decay heat values and spontaneous fission values will be averaged and the standard 

deviation will be used as the uncertainty for each. The dose rate is calculated entirely 

computationally in MCNP6 such that the computational uncertainty is negligible. 

3.3. Uranium Analysis 

3.3.1. Uranium Vectors 

 Two unique sets of uranium vectors are used in the analysis. The first set is an initial 

mixture of 232U and natural uranium enriched to various concentrations of 235U for various 

applications. The second set are similar to the first set in terms of 235U enrichment, but do 

not contain 232U and have the same 235U/238U. The second set will be used to illustrate the 

effects of the introduction of 232U on various safety, security and safeguards measurements. 

 For the first set, the initial mixture is 0.029 wt. % 232U and natural uranium. This 

initial mixture was chosen because preliminary calculations concluded that the amount of 

232U when enriched to weapons grade from this initial mixture was sufficient to cause self-

explosion in the high explosives of a HNED model. The mixture is enriched to 

approximately 3, 5, 20, 90 at. % 235U. The 3 and 5 at. % vectors represent reactor grade 
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uranium. The 20 at. % vector represents the limit above which uranium is classified as 

HEU. The 90 at. % vector represents weapons grade uranium. The enrichment of the initial 

vector was simulated via MSTAR. MSTAR is a software program currently developed at Oak 

Ridge National Laboratory that takes an initial concentration of the various uranium 

isotope and a final concentration of 235U and outputs the final concentration of the other 

uranium isotopes (49). Table 3.6 shows the uranium vectors that include 232U. 

Table 3.6: Uranium Vectors with 232U [wt. %] 

Isotope Initial 3% 5% 20% 90% 

232U 0.029 0.179 0.310 1.330 6.241 
234U 0.005 0.028 0.043 0.180 0.930 
235U 0.702 2.940 4.741 19.805 89.844 
238U 99.263 96.853 94.706 78.714 2.985 

 

 Table 3.7 shows the uranium vectors that do not include 232U. 

Table 3.7: Uranium Vectors without 232U [wt. %] 

Isotope Initial 3% 5% 20% 90% 

234U 0.005 0.028 0.044 0.183 0.992 
235U 0.702 2.945 4.956 20.066 95.824 
238U 99.292 97.027 95.027 79.751 3.184 

 

 Not only are these fresh uranium vectors to be considered, but also the vectors as 

they age. Considering the relative rapid increase in heat generation and dose rate over 

time, each uranium vector will be analyzed at three time intervals: 0 year, 0.5 year, and 10 

years. The gamma ray spectrum and intensities as well as the isotopic composition of each 

vector is found using RadSrc (45). 
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3.3.2. Model Based Analysis 

3.3.2.1. Model 

 The uranium model based analysis will only utilize one HNED model. This model is 

similar to Model Two in the plutonium analysis. The model is considered realistic as it has a 

minimal amount of uranium mass. Considering this is an HNED model, the “90%” uranium 

vector in Table 3.6 is used. Considering this uranium vector is different than the weapons 

grade uranium originally in the design, the model is slightly modified to maintain the keff. 

According to MCNP’s kcode, the keff of this model is 0.69. Table 3.8 shows the initial (44) 

and update models. The inner cavity contains dry air. The U is the uranium weapons pit. 

The Be is the beryllium. The Udep is depleted uranium. The PBX 9502 is the polymer bonded 

high explosives. The Al casing is the aluminum casing. 

Table 3.8: Uranium HNED Initial and Updated Models 

Material 
Radial Thickness 

[cm] 
Initial Updated 

Inner 
cavity 5.77 5.897 

U 1.23 1.102 
Be 2 2 

Udep 3 3 
PBX 9502 10 10 
Al casing 1 1 

 

3.3.2.2. Steady State Heat Transfer 

 The temperature will be found analytically for the updated model in Table 3.8 using 

the theory described in the Steady State Conductive Heat Transfer section. The 

temperature within the high explosives will be compared to its self-explosion temperature 

to assess whether self-explosion will occur. 
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 Considering the heat generation contributions for sources besides α and β decay are 

calculated in the plutonium steady state heat transfer analysis, these contributions will 

only be included in the uranium analysis if their contributions are significant in comparison 

to the heat generation from α and β decay. Otherwise, these contributions are considered 

negligible. 

3.3.2.3. Transient Heat Transfer 

 As with the plutonium model based analysis, time dependent must also be 

considered in the case of uranium. Matlab is used to create a computational model of the 

model. This computational approach is the same as in the plutonium analysis with slightly 

different geometry and materials. The maximum thermal stress as a result in the changes in 

temperature is also calculated and compared to the material tensile strength in order to 

determine if deformation or failure will occur. The same four scenarios are considered 

here. 

 In the first scenario, the uranium pit is inserted into the HNED. Prior to insertion, 

the HNED is at room temperature and the uranium pit is in thermal equilibrium with the 

surrounding room. Post insertion, the HNED is stationary within a large room and the heat 

is transferred at the surface of the HNED by way of natural convection and radiative heat 

transfer. 

 In the second scenario, the uranium pit is externally cooled in liquid nitrogen prior 

to insertion. As in scenario 1, the HNED is at room temperature however the uranium pit is 

in thermal equilibrium with the liquid nitrogen. Post insertion, the HNED is again 

stationary within a large room and the heat is transferred at the surface by way of natural 

convection and radiative heat transfer. 
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 In the third scenario, the uranium pit is inserted into an externally cooled HNED. 

Prior to insertion, the HNED is at thermal equilibrium with the liquid nitrogen surrounding 

it and the uranium pit is at thermal equilibrium with the surrounding room. Post insertion, 

the HNED remains externally cooled by liquid nitrogen. 

 In the fourth scenario, the fully assembled, liquid nitrogen cooled HNED is removed 

and placed into a large room. The initial temperature profile of scenario 4 is the final 

temperature profile of scenario 3. Once the HNED is removed, heat is transferred at its 

surface by way of natural convection and radiative heat transfer. 

3.3.3. Figure of Merit Analysis 

 In order to make a broader statement regarding the material attractiveness with the 

addition 232U in uranium materials, the FOM equations found in Equation 2.1 and Equation 

2.2 are applied. Considering the FOM equations only apply to direct use nuclear materials, 

only the weapons grade uranium vector containing 232U can be used. Since two components 

of the FOM equations (dose rate and heat generation) increase over time, the FOM values 

for the uranium vector will be calculated at 0 year, 0.5 year, and 10 years. This will 

illustrate how the material attractiveness changes over time and if/when the uranium 

materials will become unattractive for weapons purposes. 

 The methods used to calculate each of the four components of the FOM equation; 

bare critical mass, dose rate, heat generation, and spontaneous fission neutron generation 

rate, are as follows. The bare critical mass will be found using kcode within MCNP. The 

geometry is a bare sphere of metallic uranium surrounded by air. The mass will be slightly 

modified until the mass is critical (keff=1). The heat generation is found by combining the 

uranium vectors with the decay heat per unit mass of each uranium isotope. Similarly, the 
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heat generation is found by combining the uranium vectors with the spontaneous fission 

neutron generation rate per unit mass of each uranium isotope. MCNP will be used to find 

the dose rate of 0.2 the bare critical mass from 1 meter. Using the gamma ray spectrum 

from RadSrc for each uranium vector, MCNP will calculate the dose rate 1 meter from the 

surface of a metallic uranium sphere having 0.2 the bare critical mass. 

 As in the case of the plutonium analysis, the sources of uncertainties must be 

accounted for. For the bare critical mass, multiple cross section libraries within MCNP6 are 

used to calculate multiple bare critical mass values. The spontaneous fission rate is 

calculated using the values in the book “Passive Nondestructive Assay of Nuclear Materials” 

(23) and using the software Sources 4C (50). These values are averaged and the standard 

deviation is used as the uncertainty. Considering the decay heat includes 232U daughter 

products, there is no easily assessable data to compare and include in the uncertainty. As 

with the plutonium analysis, the uncertainty from the dose rate is negligible. These values 

are averaged and the standard deviation is used as the uncertainty. 

3.3.4. Enrichment Issues 

 The relatively large alpha emission of 232U within gaseous UF6 could cause major 

enrichment issues. Calculating the number of UF6 molecules destroyed per time will gives 

insight into the magnitude of these issues. Approximately 9 UF6 molecules are destroyed 

per every keV deposited. Combining this with the average alpha particle energy released by 

232U (5301.6 keV) (21) and the activity of 232U in Becquerel will yield the rate of destruction 

of UF6 molecules. Equation 3.17 shows the relationship between the number of UF6 

molecules destroyed per second (U) and the activity of the 232U (A) and the average energy 

of the alpha particle emitted by 232U (E) (51). 
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Equation 3.17 

𝑈𝑈 = 9𝐴𝐴𝐸𝐸 

 Equation 3.17 will be applied to the uranium vectors shown in Table 3.6. This will 

show the effect of 232U’s alpha decay at various stages of the enrichment process. 

3.3.5. Effects on Safety 

 Although the dose rate from 232U is considered a proliferation resistant feature, 

elevated dose rate in materials used in a civilian nuclear fuel cycle pose operational 

challenges. Higher dose rates lead to higher and more expensive precautions to protect 

workers. In order to utilize 232U in a fuel cycle for nonproliferation considerations, the 

safety aspects of such use must be considered. 

 Three basic models found in a nuclear fuel cycle will be used: a UO2 fuel pellet, a UO2 

fuel rod, and a can of powdered UO2. These models will contain the uranium vectors shown 

in Table 3.6 (excluding the weapons grade vector). The dose rate from each model with 

each vector at 1 m will be calculated using MCNP. As mentioned previously, the gamma ray 

emissions will change over time and will be considered at time intervals of 0 year, 0.5 year, 

and 10 years. These dose rates will then be compared to set standards. 

 For completeness, the dose rate from neutron emissions will also be included. Both 

spontaneous fission neutrons and (α,n) neutrons must be included. In the case of the 

spontaneous fission neutron emissions, the source definition parameter is set to SF 

(spontaneous fission) and MCNP will calculate the dose rate from 1 meter from 

spontaneous fission neutrons. Since the (α,n) neutron energy spectrum is unique to the 

specific isotopic and elemental composition of the material, the spectrum must first be 

generated and input into MCNP. Sources 4C is utilized to calculate the (α,n) neutron 
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spectrum. Sources 4C is a program that takes the elemental and actinide composition of the 

material and outputs the (α,n) energy spectrum and yield (50). 

 The fuel pellet model consists of solid UO2 with a density of 10.96 g/cm3 (30) 

surrounded by dry air. The model has a height of 1 cm and a diameter of 1 cm (52). Figure 

3.1 shows the MCNP UO2 fuel pellet geometry. The red is the UO2. The yellow is dry air. 

 

Figure 3.1: UO2 Fuel Pellet Model 

 The fuel rod model consists of 400 fuel pellets stacked on one another surrounded 

by zirconium alloy cladding. The fuel pellets are identical to the one shown in Figure 3.1 

with a density of 10.96 g/cm3 and a radius and height of 1 cm. The total length of the fuel 

rod is 400 cm. The rod is surrounded by zirconium alloy cladding with a thickness of 0.06 

cm (53) and a density of 6.5 g/cm3 (30). Figure 3.2 shows a cross-sectional view of the 

MCNP UO2 fuel rod geometry. The red is the UO2. The yellow is dry air. The blue is the 

cladding. 



48 
 

 

Figure 3.2: UO2 Fuel Rod Model 

 The can of powdered UO2 consists of UO2 with a density of 2.5 g/cm3. The outer 

radius and height are 5.23 cm. The steel can is 0.39 cm thick and has a density of 7.8 g/cm3. 

These dimensions were chosen as they allow the can to contain approximately 990 g of 

uranium and is consistent with UISO standards (54). Figure 3.3 shows the MCNP UO2 can 

geometry. The red is the UO2. The yellow is dry air. The orange is the can. 
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Figure 3.3: UO2 Can Model 

3.3.6. Effects on Security 

 The introduction of 232U in uranium material will increase the detectability of the 

material and thus benefits security measures. Considering the energetic gamma rays of 232U 

daughter products and the relatively high spontaneous fission neutron emission rate of 

232U, the presence of 232U will increase the ability to detect the material by way of both 

gamma ray and neutron detectors. 

 The model used in the security analysis is a sphere of metallic uranium with a 5.39 

cm radius. The security model has a density of 19.05 g/cm3 and total uranium mass of 12.5 

kg. This mas was chosen as it is similar to ½ of a significant quantity (12.5 kg) (11).  The 

analysis will include the model unshielded and surrounded by 1 cm of lead shielding with a 

density of 11.3 g/cm3. The model will be analyzed first with the weapons grade (90%) 

vector with 232U. Then the analysis will be repeated for the weapons grade (90%) vector 

without 232U in order to illustrate the effect the introduction of 232U had on the overall 

detectability of the material. This model was chosen as the major focus of security to detect 
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covert smuggling of direct use materials. Figure 3.4 shows the shielded security model. The 

red is the metallic uranium. The green is the lead. The yellow is dry air. 

 

 

Figure 3.4: Security Model 

 The gamma detector chosen for this analysis is a NaI-Tl detector. This detector 

consists of a solid 4”x4”x16” block of NaI-Tl with a density of 2.7 g/cm3 incased in a 0.04” 

shell of aluminum. It was chosen because its high-efficiency is more important for security 

purposes than energy resolution. Figure 3.5 shows the gamma detector used here. 
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Figure 3.5: 4x4x16 NaI-Tl Detector 

The gamma detector is 10 meters from the surface of the model and oriented such 

that the 4”x16” side faced the model. This configuration is simulated in MCNP6 using 

gamma ray spectra from RadSrc. The final spectrum will include a background spectrum 

taken by this detector within a concrete building at Virginia Commonwealth University in 

Richmond, Virginia. The measurement time for the spectra are 5 minutes. 

The neutron detector utilized here has four 3He tubes surrounded by high density 

polyethylene (HDPE). This detector will count the number of neutrons, rather than create 

an energy spectrum. Each 3He tube has a height of 32” and a radius of 1” at a pressure of 4 

atm. The outer dimensions of the HDPE are 7.22”x7.15”x47.5”. The detector is 10 meters 

from the model and oriented such that the sides of the 3He tubes face the model. Figure 3.6 

shows the neutron security detector model in MCNP6. The purple is the 3He. The green is 

the HDPE. The yellow is dry air. 
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Figure 3.6: Neutron Security Detector 

 As with the gamma ray measurements, the model shown in Figure 3.4 will first be 

measured for 5 minutes with the weapons grade (90%) vector with 232U. The results will 

then be compared to the results from the same 5-minute measurement interval with the 

weapons grade (90%) vector without 232U. The total number of neutrons from each 

measurement plus the estimated background counts are compared to quantify the increase 

in neutron detectability from the introduction of 232U. 

3.3.7. Effects on Safeguards 

 In order to implement uranium materials containing 232U into civilian nuclear fuel 

cycles, the effects on safeguards measurements must be explored. Basic nondestructive 

assay safeguards techniques of both gamma rays and neutrons are used to determine their 
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effectiveness on uranium materials containing 232U. The can model in Figure 3.3 is used for 

this analysis.  

 The gamma ray technique used here is a method to calculate the enrichment of 235U 

in the sample. This method compared the ratio of the intensity of the 185.7 keV 235U peak 

to the 1001 keV 234mPa. The 234mPa peak can be used in place of a 238U peak because 238U is 

in secular equilibrium with 234mPa at the time intervals considered in this study (0.5 year 

and 10 years). Equation 3.10 shows the ratio of the peak areas of the 235U and 238U without 

232U to the ratio of the peak areas of the 235U and 238U with 232U (23). This technique is 

applied to each of the pairs of uranium vectors shown in Table 3.6 and Table 3.7 excluding 

the 90% vectors. 

Equation 3.18 

1 =

𝑈𝑈𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑜𝑜𝑠𝑠𝑤𝑤 𝑈𝑈−232
235

𝑈𝑈𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑜𝑜𝑠𝑠𝑤𝑤 𝑈𝑈−232
238

𝑈𝑈𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑈𝑈−232
235

𝑈𝑈𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑈𝑈−232
238

 

 The intensity of each of the peaks is found via the three-window extraction 

technique. The three-window extraction technique calculates the net peak area by 

calculating and subtracting the continuum from the peak (55). The continuum is calculated 

by forming two windows on both sides of the peak. Equation 3.19 shows the continuum 

counts (B) as a function of the number of bins in the peak’s region (N), the number of 

counts in the region to the left (B1), the number of bins in the region to the left (n1), the 

number of counts in the region to the right (B2), and the number of bins in the region to the 

right (n2). 
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Equation 3.19 

𝐵𝐵 = 𝑁𝑁
1
2
�
𝐵𝐵1
𝑛𝑛1

+
𝐵𝐵2
𝑛𝑛2
� 

 As shown in Equation 3.20, the continuum counts calculated in Equation 3.19 (B) is 

subtracted from the gross counts in the peak region (P), yielding the net peak area (S). 

Equation 3.20 

𝑀𝑀 = 𝑃𝑃 − 𝐵𝐵 

 A 2”x2” HPGe detector is chosen for the safeguards measurements, because of its 

high energy resolution which allows for easy identification and analysis of the 235U and 238U 

peaks. MCNP6 is used to generate a gamma ray spectrum and the measurements are 5 

minutes. 

 The neutron techniques chosen here are active and passive neutron 

coincidence/multiplicity counting. Both techniques seek to quantify the mass of uranium in 

the sample. An active measurement refers to a measurement in which the sample is being 

irradiated by a source during the measurement, in this case with neutrons. A passive 

measurement refers to a measurement in which the sample is being measured without an 

external source of radiation. Typically, neutron measurements on uranium materials are 

active because the spontaneous fission neutron generation rate of naturally occurring 

uranium isotopes are relatively low. However, passive measurements of uranium materials 

have been shown effective in calculating the 238Ueff mass (56). 

 A brief review neutron multiplicity basics is useful in understanding the analyses 

used here. Considering neutrons are released in multiples from fission events, the detection 

of these multiples can be related to the mass of material being measured. The detection of a 

single neutron is known as a singles count (S). The detection of two neutrons closely 
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correlated in time is known as a doubles count (D). The detection of three neutrons closely 

correlated in time is known as a triples count (T). 

Passive neutron measurements can be used to calculate an “effective” mass, 

typically of the isotope with a notable contribution to the neutron generation rate. In this 

analysis, the effective 238U mass (m238 eff) and 232U mass (m232 eff) are used. Equation 3.21 

shows the relationship between the k value for the 23xU isotope (k23x238) and the 

spontaneous fission rate per unit mass of the 23xU isotope (F0_23x), the second spontaneous 

fission factorial moment of the 23xU isotope (νs2_23x), the spontaneous fission rate per unit 

mass of 238U (F0_238), and the second spontaneous fission factorial moment of 238U (νs2_238). 

Equation 3.21 

𝑘𝑘23𝑥𝑥238 =
𝐹𝐹0_23𝑥𝑥𝜈𝜈𝑠𝑠2_23𝑥𝑥

𝐹𝐹0_238𝜈𝜈𝑠𝑠2_238
 

Equation 3.22 shows the relationship between the effective 238U mass (m238 eff) and 

the k values of each uranium isotope and the mass of each uranium isotope. 

Equation 3.22 

𝑚𝑚238 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘232238𝑚𝑚232 + 𝑘𝑘234238𝑚𝑚234 + 𝑘𝑘235238𝑚𝑚235 + 𝑚𝑚238 

Equation 3.23 shows the relationship between the k value for the 23xU isotope 

(k23x232) and the spontaneous fission rate per unit mass of the 23xU isotope (F0_23x), the 

second spontaneous fission factorial moment of the 23xU isotope (νs2_23x), the spontaneous 

fission rate per unit mass of 232U (F0_232), and the second spontaneous fission factorial 

moment of 232U (νs2_232). 

Equation 3.23 

𝑘𝑘23𝑥𝑥232 =
𝐹𝐹0_23𝑥𝑥𝜈𝜈𝑠𝑠2_23𝑥𝑥

𝐹𝐹0_232𝜈𝜈𝑠𝑠2_232
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Equation 3.24 shows the relationship between the effective 232U mass (m232 eff) and 

the k values of each uranium isotope and the mass of each uranium isotope. The k23223x is 

the ratio of the spontaneous fission rate per mass of 23xU to the spontaneous fission rate 

per mass of 232U.  

 

Equation 3.24 

𝑚𝑚232 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚232 + 𝑘𝑘234232𝑚𝑚234 + 𝑘𝑘235232𝑚𝑚235 + 𝑘𝑘238232𝑚𝑚238 

 Equation 3.25 shows the relationship between the effective 238U mass (m238 eff) with 

the singles counts (S), doubles counts (D), detector efficiency (ε), doubles gate fraction (fd), 

leakage multiplication factor (ML), the first factorial induced fission multiplicity of 235U (νi1), 

the second factorial induced fission multiplicity of 235U (νi2), the first factorial spontaneous 

fission multiplicity of 238U (νs2), and the spontaneous fission yield of 238U (F0) (56). 

Equation 3.25 

𝑚𝑚238 𝑒𝑒𝑒𝑒𝑒𝑒 =

2𝐷𝐷
𝜀𝜀𝑓𝑓𝑑𝑑

− 𝑀𝑀𝐿𝐿(𝑀𝑀𝐿𝐿 − 1)𝜈𝜈𝑖𝑖2𝑀𝑀
𝜈𝜈𝑖𝑖1 − 1

𝜀𝜀𝐹𝐹0𝑀𝑀𝐿𝐿
2𝜈𝜈𝑠𝑠2

 

 Equation 3.26 shows the relationship between the effective 232U mass (m232 eff) with 

the singles counts (S), doubles counts (D), detector efficiency (ε), doubles gate fraction (fd), 

leakage multiplication factor (ML), the first factorial induced fission multiplicity of 235U (νi1), 

the second factorial induced fission multiplicity of 235U (νi2), the first factorial spontaneous 

fission multiplicity of 232U (νs2), and the spontaneous fission yield of 232U (F0). 

Equation 3.26 

𝑚𝑚232 𝑒𝑒𝑒𝑒𝑒𝑒 =

2𝐷𝐷
𝜀𝜀𝑓𝑓𝑑𝑑

− 𝑀𝑀𝐿𝐿(𝑀𝑀𝐿𝐿 − 1)𝜈𝜈𝑖𝑖2𝑀𝑀
𝜈𝜈𝑖𝑖1 − 1

𝜀𝜀𝐹𝐹0𝑀𝑀𝐿𝐿
2𝜈𝜈𝑠𝑠2
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 Equation 3.27 shows the relationship between the doubles gate fraction (fd) as a 

function of the pre-delay gate width (P), the gate width (G), and the neutron die-away time 

(τ). 

Equation 3.27 

𝑓𝑓𝑑𝑑 = 𝑒𝑒−
𝑃𝑃
𝜏𝜏(1 − 𝑒𝑒−

𝐺𝐺
𝜏𝜏) 

 The leakage multiplications (ML) is calculated using three coefficients (a, b, c). 

Considering the coefficients contain values specific to the uranium isotope whose effective 

mass is being calculated, it must be calculated for both the 238U and 232U effective masses. 

Equation 3.28 shows the relationship between the leakage multiplication (ML) and the 

coefficients (a, b, c). 

Equation 3.28 

𝑎𝑎 + 𝑏𝑏𝑀𝑀𝐿𝐿 + 𝑐𝑐𝑀𝑀𝐿𝐿
2 + 𝑀𝑀𝐿𝐿

3 = 0 

 Equation 3.29 shows the relationship between a and the singles counts (S), the 

triples counts (T), the first factorial induced fission multiplicity (νi1), the second factorial 

induced fission multiplicity (νi2), the third factorial induced fission multiplicity (νi3), the 

second factorial spontaneous fission multiplicity (νs2), the third factorial spontaneous 

fission multiplicity (νs3), the efficiency of the detector (ε), and the triples gate fraction (ft). 

Equation 3.29 

𝑎𝑎 = −
6𝜕𝜕𝜈𝜈𝑠𝑠2(𝜈𝜈𝑖𝑖1 − 1)

𝜀𝜀2𝑓𝑓𝑤𝑤𝑀𝑀(𝜈𝜈𝑠𝑠2𝜈𝜈𝑖𝑖3 − 𝜈𝜈𝑠𝑠3𝜈𝜈𝑖𝑖2) 
 

 Equation 3.30 shows the relationship between b and the singles counts (S), the 

doubles counts (D), the first factorial induced fission multiplicity (νi1), the second factorial 

induced fission multiplicity (νi2), the third factorial induced fission multiplicity (νi13), the 
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second factorial spontaneous fission multiplicity (νs2), the third factorial spontaneous 

fission multiplicity (νs3), the efficiency of the detector (ε), and the doubles gate fraction (fd). 

Equation 3.30 

𝑏𝑏 =
2𝐷𝐷[𝜈𝜈𝑠𝑠3(𝜈𝜈𝑖𝑖1 − 1) − 3𝜈𝜈𝑠𝑠2𝜈𝜈𝑖𝑖2]
𝜀𝜀𝑓𝑓𝑑𝑑𝑀𝑀(𝜈𝜈𝑠𝑠2𝜈𝜈𝑖𝑖3 − 𝜈𝜈𝑠𝑠3𝜈𝜈𝑖𝑖2)  

 Equation 3.31 shows the relationship between c and the singles counts (S), the 

doubles counts (D), the first factorial induced fission multiplicity (νi1), the second factorial 

induced fission multiplicity (νi2), the third factorial induced fission multiplicity (νi13), the 

second factorial spontaneous fission multiplicity (νs2), the third factorial spontaneous 

fission multiplicity (νs3), the efficiency of the detector (ε), and the doubles gate fraction (fd). 

Equation 3.31 

𝑐𝑐 =
6𝐷𝐷𝜈𝜈𝑠𝑠2𝜈𝜈𝑖𝑖2

𝜀𝜀𝑓𝑓𝑑𝑑𝑀𝑀(𝜈𝜈𝑠𝑠2𝜈𝜈𝑖𝑖3 − 𝜈𝜈𝑠𝑠3𝜈𝜈𝑖𝑖2) − 1 

 Table 3.9 shows the induced fission multiplicities of 235U and the spontaneous 

fission multiplicities of 238U. These values for 232U will be obtained using MCNP6. 

Table 3.9: Induced and Spontaneous Fission Multiplicities 

 νi1 νi2 νi3 νs1 νs2 νs3 
235U 2.69 6.17 11.57 - - - 
238U - - - 1.99 2.87 2.82 
232U - - - 1.71 2.34 2.33 

 

 The neutron die away time is related to the detector configuration and is often cited 

from a known value. However, an MCNP output can also be used to calculate it. The doubles 

counts from two gate widths (one is the standard gate width for that detector (G) and the 

other is half the standard gate width) are used to calculate the neutron die away time. 

Equation 3.32 shows the relationship between the neutron die away time (τ) to the shorter 
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gate width (G1), the normalized doubles counts from the shorter gate (D1), and the 

normalized doubles counts from the longer gate (D2). 

Equation 3.32 

𝜏𝜏 =
𝐺𝐺1

ln �𝐷𝐷2𝐷𝐷1
− 1�

 

 

Similarly, the efficiency can also be calculated via MCNP. Equation 3.33 shows the 

relationship between the efficiency (ε) and the normalized singles counts (Snorm) and the 

net multiplication (Mnet). 

Equation 3.33 

𝜀𝜀 =
𝑀𝑀𝑛𝑛𝑜𝑜𝑠𝑠𝑚𝑚
𝑀𝑀𝑛𝑛𝑒𝑒𝑤𝑤

 

 The passive technique described here will first be used to calculate the effective 238U 

mass and then the effective 232U mass. These masses will be compared to the known value. 

The can model with the uranium vectors that do not include 232U are simulated to calculate 

an effective 238U mass in each case. This will be repeated with the uranium vectors 

including 232U and both the 238U and 232U effective masses will be used. 

 Active neutron coincidence counting is a bit more simplistic. The doubles counts 

from the same detector and sample configuration have a linear relationship to the 235U 

mass, for small multiplication values (56). Multiple samples having the same geometry and 

mass but various 235U concentrations can be measured and related to the 235U mass. 

Repeating this procedure for each of the uranium vectors containing 232U in the can model 

will illustrate the methods effectiveness at verifying 235U mass despite the presence of 232U. 
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 The major source of uncertainty are the singles, doubles, and triples counts. The 

computational uncertainties from the MCNP6 simulations are not related to the 

uncertainties expected in a real world measurement. In order to estimate the uncertainties 

of a real world measurement, a technique developed by Dr. Croft will be used (57). 

Equation 3.34 shows the relationship between the singles count rate uncertainty (σs) and 

the singles count rate (Sr), the measurement time (t), the doubles count rate (Dr), and the 

doubles gate fraction (fd). 

Equation 3.34 

𝜀𝜀𝑆𝑆 = �
𝑀𝑀𝑠𝑠
𝜕𝜕

+
2𝐷𝐷𝑠𝑠
𝑓𝑓𝑑𝑑𝜕𝜕

 

 Equation 3.35 shows the relationship between the doubles count rate uncertainty 

(σD) and the gate width (G), the doubles gate fraction (fd), the neutron die away time (τ), 

the singles count rate (Sr), the doubles count rate (Dr), and the measurement time (t). 

Equation 3.35 

𝜀𝜀𝐷𝐷 = �(1 + 8(1 −
1 − 𝑒𝑒−

𝐺𝐺
𝜏𝜏

𝐺𝐺
𝜏𝜏

)(
𝐷𝐷𝑠𝑠
𝑀𝑀𝑠𝑠𝑓𝑓𝑑𝑑

) )
𝐷𝐷𝑠𝑠 + 2𝑀𝑀𝑠𝑠2𝐺𝐺

𝜕𝜕
 

 Equation 3.36 shows the relationship between the triples count rate (σT), which is 

Equation 3.36 

𝜀𝜀𝑇𝑇

=

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

�1 + 10�1 −
1 − 𝑒𝑒−
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 The Active Well Coincidence Counter (AWCC) is used for both the passive and active 

simulations. Although the AWCC has primarily an active configuration, the neutron sources 

can be removed making it a passive configuration. The AWCC has 42 3He tubes embedded 

in HDPE. The sample cavity is 20 cm in diameter and can be adjusted from 23 to 35 cm in 

height. In its active configuration, the AWCC has two AmLi neutron sources (58). The AWCC 

can be operated in two modes; thermal or fast mode. In fast mode, a cadmium sleeve is 

used to remove thermal neutrons thus preventing them from scattering back into the 

sample and inducing fission. The cadmium sleeve is removed in thermal mode (59). The 

MCNP6 model of the AWCC used for this analysis is in fast mode. 
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4. RESULTS AND DISCUSSIONS 

4.1. Plutonium Analysis 

4.1.1. Model Based Analysis 

 This section contains both the steady state and transient temperature profiles of the 

various models described earlier. The plutonium vector shown in Table 3.1 is utilized in the 

weapons pit of each model with the exception of the Kessler comparison. 

 Figure 4.1 shows the steady state temperature profile of Kessler’s high technology 

model from Figure 2.1 with the plutonium vector shown in Table 3.2. The temperature 

within the high explosives does surpass the self-explosion temperature. This self-explosion 

would render the HNED useless. Kessler’s plutonium vector has less than half the 238Pu 

concentration as the plutonium vector from the Lightbridge fuel simulation. However, the 

temperature barely reaches the self-explosion temperature and as previously discussed, 

Kessler’s model does not represent a limiting case. Therefore, the 238Pu concentration in 

Kessler’s plutonium vector would not be enough to reach the self-explosion temperature in 

the high explosive of a more limiting case HNED. 
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Figure 4.1: Steady State Temperature Profile of Kessler's Model (60) 

 The decay heat contribution from the plutonium vector in Table 4.1 in each layer of 

Model One is shown Table 4.1. All decay heat contributions besides α and β decay within 

the plutonium pit are negligible. Thus only the heat generation from α and β decay within 

the plutonium pit will be included. 
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Table 4.1: Decay Heat Contribution within Model One [W] (60) 

Material α/β decay γ 

spontaneous fission 

total 

γ n fission 
fragments 

induced 
fission total 

Pu 8.71·102 2.80·10-1 9.68·10-4 9.09·10-4 2.47·10-3 9.68·10-4 5.31·10-3 8.70·102 

Unat 1.71·10-3 6.10·10-5 2.41·10-4 2.28·10-4 2.47·10-3 2.41·10-4 3.18·10-3 4.95·10-3 

Al - 1.17·10-10 5.94·10-6 2.81·10-6 - - 8.75·10-6 8.75·10-6 

PBX 9502 - 1.37·10-11 3.07·10-5 1.06·10-5 - - 4.13·10-5 4.13·10-5 

Steel 
casing 

 0.00·100 2.94·10-7 3.53·10-10 - - 2.95·10-7 2.95·10-7 

 

 Figure 4.2 shows the steady state temperature profile of Model One. The 

temperature within the high explosives reaches the self-explosion temperature, rendering 

the HNED useless. 
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Figure 4.2: Model One Steady State Temperature Profile (60) 

 Table 4.2 shows each decay heat contribution within each layer of Model Two. As in 

Model One, only α and β decay within the plutonium is notable and all other decay heat 

contributions are considered negligible. 
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Table 4.2: Decay Heat Contributions within Model Two [W] (60) 

Material α/β  
decay γ 

spontaneous fission 
total γ n fission 

fragments 
induced 
fission total 

Pu 4.93·102 1.58·10-1 2.14·10-6 3.23·10-5 1.41·10-3 3.44·10-5 1.48·10-3 4.94·102 
Be - 1.91·10-5 9.21·10-8 2.67·10-7 - - 3.59·10-7 1.94·10-5 

Udep 5.29·10-4 3.35·10-5 1.57·10-6 6.01·10-6 9.06·10-9 6.39·10-6 1.40·10-5 5.77·10-4 
PBX 

9502 - 1.15·10-8 1.12·10-7 5.11·10-7 - - 6.23·10-7 6.34·10-7 

Al casing - 1.04·10-9 1.25·10-8 3.77·10-9 - - 1.63·10-8 1.73·10-8 
 

 Figure 4.3 shows the steady state temperature profile within Model Two. The 

temperature within the high explosives surpasses the self-explosion temperature by nearly 

100 °C. Like Model One, Model Two would be rendered useless. 
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Figure 4.3: Model Two Steady State Temperature Profile (60) 
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 Figure 4.4 shows the transient temperature profile at various time intervals of 

Model Two from scenario 1. The temperature within the high explosives reaches the self-

explosion temperature within 7.5 hours. In order to avoid premature detonation of Model 

Two, the HNED must be detonated less than 7.5 hours from the insertion of the plutonium 

pit. This time frame is relatively small and not useful for deterrence purposes. An HNED 

utilized for deterrence must be armed and ready quickly for an extended period of time 

(months to years). 

 

Figure 4.4: Transient Temperature Profile of Model One Scenario 1 (42) 
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reaches the self-explosion temperature within 7.5 hours. As discussed above, this time 

frame is too short for deterrence purposes and would be significantly inconvenient. 

 

Figure 4.5: Transient Temperature Profile of Model One Scenario 2 (42) 

  Figure 4.6 shows the transient temperature profile at various time intervals 

of Model Two from scenario 3. The external cooling keeps the temperature well 

below the high explosive temperature. Model Two could be stored externally cooled 

by liquid nitrogen for an indefinite amount of time. Although this would be useful 

for deterrence purposes, the costs of externally cooling Model Two for an extended 

period of time would be expensive and would likely cause other challenges that 

would need to be overcome. 
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Figure 4.6: Transient Temperature Profile of Model One Scenario 3 (42) 

 Figure 4.7 shows the transient temperature profile at various time intervals of 

Model Two from scenario 4. Unlike in scenarios 1 and 2, the temperature reaches the self-

explosion temperature within the high explosives in slightly longer than 7.5 hours. This 

scenario would also be impractical from a deterrence perspective. The results from 

scenarios 1, 2, and 4 show that regardless of how the pit or HNED is cooled, natural 
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Figure 4.7: Transient Temperature Profile of Model One Scenario 4 (42) 
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strength in all 4 scenarios within 300 minutes. Plastic deformation will occur in the high 

explosives and beryllium in all 4 scenarios. This deformation can decrease the overall 

performance of Model Two by producing asymmetry within the layers. This asymmetry 

will cause asymmetry within the implosion reducing the yield. Although Model Two would 

likely somewhat function, the reduction of the yield may not be considered effective 

depending on the adversary. In the case of a state entity, the use of a nuclear weapon that 

underperforms could have dire consequences if used, because the other nuclear weapons 

states will have weapons that almost certainly won’t underperform. However, in the case of 

a non-state entity, the use of a nuclear weapon with any notable yield may be considered 

effective. 

 

Figure 4.8: Maximum Thermal Stress within the Aluminum 
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Figure 4.9: Maximum Thermal Stress within the High Explosives 

 

Figure 4.10: Maximum Thermal Stress within the Uranium 
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Figure 4.11: Maximum Thermal Stress within the Beryllium 

 

Figure 4.12: Maximum Thermal Stress in the Plutonium 
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4.1.2. Figure of Merit Analysis 

 In order to calculate the FOM1 and FOM2 values, each of the components must first 

be calculated. Table 4.3 shows the FOM components: bare critical mass (M), heat decay (h), 

spontaneous fission neutron generation rate (S), and the dose rate (D), for the plutonium 

vectors from the Lightbridge fuel inspired design (LB), the light water reactor used fuel 

(LWR), and the mixed oxide used fuel (MOX). The uncertainty in the bare critical mass was 

found by repeating the k-code simulations using three different data libraries in MCNP6: 

.60c, .65c, and .80c. Although the bare critical mass of the Lightbridge vector is slightly 

lower than the LWR and MOX, the heat decay and spontaneous fission neutron generation 

rate are notably higher. As expected, the dose rate is relatively low. 

Table 4.3: FOM Components 

 LB LWR MOX 
M [kg] 22.6 ± 0.5 24.2 ± 0.2 24.0 ± 0.3 
h [W/kg] 104.6 ± 1.3 14.6 ± 0.2 24.1 ± 0.3 
S [n/s·kg]·105 8.91 ± 0.11 5.06 ± 0.01 5.94 ± 0.01 
D [rem/h] 0.0751 ± 0.0015 0.0088 ± 0.0001 0.0138 ± 0.0001 

 

 Table 4.4 shows the FOM values for the three plutonium vectors. As a review, FOM1 

applies to less technically advanced states and FOM2 applies to technically advanced states. 

In the case of less technically advanced states, all three plutonium vectors are unattractive 

for weapons purposes. In the case of the technically advanced states, all three plutonium 

vectors are attractive. When comparing the LB plutonium vector to the other two (LWR 

and MOX), both FOM1 and FOM2 are notably lower. However, considering they still fall 

within the same range, the significance of the difference between the values is debatable 

and can’t give any real conclusion as to which vector is more or less attractive. 



76 
 

Table 4.4: FOM Values 

 LB LWR MOX 
FOM1 0.457 ± 0.010 0.720 ± 0.005 0.647 ± 0.005 
FOM2 1.260 ± 0.023 1.964 ± 0.002 1.801 ± 0.002 

 

4.2. Uranium Analysis 

4.2.1. Model Based Analysis 

 This section analyzes the steady state and transient heat transfer within the updated 

model described in Table 3.8. The weapons grade (90%) uranium vector from Table 3.6 is 

used. Considering Table 4.1 and Table 4.2 show that all other sources of heat are negligible, 

only the heat generation from the α decay within the uranium weapons pit will be included.  

In addition to the heat transfer, the dose rate to the high explosives will also be calculated. 

 Figure 4.13 shows the total heat generation in units of Watts over time. As the 232U 

decays, its daughter products contribute additional decay heat which greatly increases the 

total heat generation. This value reaches a maximum after approximately 10 years. 
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Figure 4.13: Heat Generation of Weapons Pit over Time 

 Although the decay heat increases over time, the rate of increase is on the order of 

months. As shown in the transient plutonium analysis, steady state is reached after 

approximately a day, so we shall assume steady state is reached at each of the time 

intervals of 0, 0.25, 0.5, 1, 5, and 10 years.  

 Figure 4.14 through Figure 4.20 show the steady state temperature profiles at the 

various time intervals. Even when the uranium is fresh (t=0), the temperature within the 

high explosives reaches its “self-explosion” temperature. Over time, the temperature within 

the model increase significantly to the point of exceeding the “self-explosion” temperature 

within the high explosives by 100’s of degrees. These results show the heat generation 

produced is well above what is required to render the HNED useless. 

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10

He
at

 G
en

er
at

io
n 

[W
]

time [years]



78 
 

 

Figure 4.14: Steady State Temperature Profile at Time Interval t = 0 
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Figure 4.15: Steady State Temperature Profile at Time Interval t = 0.25 year 
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Figure 4.16: Steady State Temperature Profile at Time Interval t = 0.5 year 
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Figure 4.17: Steady State Temperature Profile at Time Interval t = 1 year 
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Figure 4.18: Steady State Temperature Profile at Time Interval t = 2 years 
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Figure 4.19: Steady State Temperature Profile at Time Interval t = 5 years 
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Figure 4.20: Steady State Temperature Profile at Time Interval t = 10 years 
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 In addition to the effects of the heat generation on the high explosives, the dose rate 

from the decay of 232U also damages the high explosives. Figure 4.21 shows the dose rate to 

the high explosives over time. 

 

Figure 4.21: Dose Rate to the High Explosives over time 
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because the degradation of the high explosives would lead to a significant reduction of the 

performance of the implosion eventually leading to total ineffectiveness of the weapon. 

 

Figure 4.22: Dose to the High Explosives over time 
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• Scenario 3: the uranium pit is inserted into an externally cooled Model 

• Scenario 4: the fully assembled Model in thermal equilibrium with liquid nitrogen is 

removed and placed into a large room 

 Figure 4.23 shows the transient temperature profile from scenario 1. The 

temperature within the high explosives reaches its self-explosion temperature after 

approximately one day. This is a relatively small time frame and would require the weapon 

be used the same day of the insertion of the weapons pit. For deterrence purposes, the time 

frame is too short and storing the weapons pit separately would likely be impractical and 

reduces the level of readiness. 

 

Figure 4.23: Transient Temperature Profile from Scenario 1 
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 Figure 4.24 shows the transient temperature profile from scenario 2. As in scenario 

1, the temperature within the high explosives reaches its self-explosion temperature after 

approximately one day. The lower initial temperature profile of the weapons pit only 

reduces the time taken to reach the self-explosion temperature by minutes. The final 

conclusion is the same as in scenario 1. 

 

Figure 4.24: Transient Temperature Profile from Scenario 2 
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Figure 4.25: Transient Temperature Profile from Scenario 3 
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Figure 4.26: Transient Temperature Profile from Scenario 4 
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scenarios, plastic deformation will occur in at least one shell of the HNED. This plastic 

deformation will reduce the yield of the HNED. The underperformance of a nuclear weapon 

may discourage its use by a state entity. 

 

Figure 4.27: Maximum Thermal Stress in the Aluminum 
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Figure 4.28: Maximum Thermal Stress in the High Explosives 

 

Figure 4.29: Maximum Thermal Stress in the Depleted Uranium 
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Figure 4.30: Maximum Thermal Stress in the Beryllium 

 

Figure 4.31: Maximum Thermal Stress in the Weapons Grade Uranium 
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4.2.2. Figure of Merit Analysis 

 In order to calculate the Figure of Merit values for the “90%” uranium isotopic 

vector including 232U, each factor must be calculated. The bare critical mass is 39.0 ± 1.6 kg. 

The spontaneous fission neutron generation rate is 81.7 ± 1.5 neutrons/s·kg. This value is 

too low to produce a significant difference between the FOM1 and FOM2 equations, therefor 

spontaneous fission neutron generation rate will be excluded from the calculation of the 

Figure of Merit and the results are assumed to be applicable to both less technically 

advanced and technically advanced states. Figure 4.32 shows the heat generation per mass 

of the uranium material over time. As shown, the heat generation increases by more than a 

factor of five over the ten year time interval. Due to limits in the available nuclear data, the 

uncertainty of the heat generation is not included. 
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Figure 4.32: Heat Generation per Mass vs. Time 

 Figure 4.33 shows the dose rate from 1 meter of 0.2 times the bare critical mass 

over time. The dose rate initially increases from approximately zero rem/h to nearly 1000 
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Figure 4.33: Dose Rate from 1 meter of 2/10 the Bare Critical Mass vs. Time 

 Figure 4.34 shows the Figure of Merit values over time. The increase in dose rate 
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utility. The burden of semi-annually refurbishing the uranium material in order to maintain 

a level of readiness would be significant for any state. Considering the primary function of 

most nuclear weapons arsenals are for deterrence purposes, the level of readiness must be 

constantly maintained. Although the use of such a material for weapons purposes is not 

impossible, using this material for deterrence purposes is highly impractical. 

 

Figure 4.34: Figure of Merit Values vs. Time 
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Table 4.5: Percentage of UF6 Molecules Decomposed per second 

Initial 3% 5% 20% 90% 
3.33·10-7 2.04·10-6 3.54·10-6 1.48·10-5 6.91·10-5 

 

 Table 4.6 shows the total percentage of UF6 molecules decomposed over various 

time intervals from each uranium isotopic vectors containing 232U. These time intervals 

were chosen as they represent various amounts of time gaseous UF6 may be stored in a 

civilian nuclear fuel cycle. Even the percentages of UF6 decomposed after only one day 

would significantly alter the enrichment process. The production of fractions of a percent 

of molecules having notably lower masses into the enrichment stream would cause these 

molecules to significantly increase. This would be counterproductive to the primary goal of 

enrichment: increasing the concentration of 235U. 

Table 4.6: Percentage of UF6 Molecules Decomposed over Various Time Intervals 

Time interval Initial 3% 5% 20% 90% 
One day 0.03 0.18 0.31 1.28 5.97 
One week 0.20 1.23 2.14 8.93 41.81 
One month 0.87 5.34 9.27 38.70 181.18 

 

 This analysis is a preliminary simplification of the possible issues 232U may cause in 

the enrichment process. Although some of the percentages in Table 4.6 are not entirely 

realistic (such as the 181.18%), these values do indicate that if 232U at the concentrations 

found here were introduced into the enrichment process, significant UF6 decomposition 

would occur. This illustrates the magnitude of the impact 232U may have on enrichment. 

Before 232U could practically be implemented into a civilian nuclear fuel cycle, this impact 

would need to be more thoroughly explored and additional measures must be taken in 

order to effectively enrich the uranium materials containing 232U. 
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4.2.4. Effects on Safety 

 This section will discuss the dose rate from 1 meter from the gamma ray and 

neutron emissions of the pellet model shown in Figure 3.1, the rod model shown in Figure 

3.2, and the can model shown in Figure 3.3. The initial, 3%, 5%, and 20% uranium isotopic 

vectors with 232U from Table 3.6. Since the gamma ray emissions change drastically as the 

daughter products of 232U build-up, the dose rate from the gamma rays are considered at 

time intervals of 0, 0.5, and 10 years. 

 Table 4.7 shows the dose rate in units of rem/h from 1 meter from the gamma 

emissions of the pellet models at time intervals of 0, 0.5, and 10 years. 

Table 4.7: Gamm Ray Dose Rate [rem/h] of Pellet Models from 1 meter 

Time [years] Initial 3% 5% 20% 
0 1.095·10-7 6.709·10-7 1.159·10-6 4.839·10-6 
0.5 0.001 0.006 0.010 0.040 
10 0.005 0.031 0.054 0.225 

 

 Table 4.8 shows the dose rate in units of rem/h from 1 meter of the rod models from 

the gamma emissions at time intervals of 0, 0.5, and 10 years. 

Table 4.8: Gamm Ray Dose Rate [rem/h] of the Rod Models from 1 meter 

Time [years] Initial 3% 5% 20% 
0 2.545·10-6 4.397·10-6 2.694·10-5 1.123·10-4 
0.5 0.038 0.207 0.405 1.695 
10 0.215 1.322 2.285 9.550 

 

 Table 4.9 shows the dose rates in units of rem/h from 1 meter of the can models 

from the gamma emissions at time intervals of 0, 0.5, and 10 years. 
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Table 4.9: Gamma Ray Dose Rate [rem/h] of Can Models from 1 meter 

Time [years] Initial 3% 5% 20% 
0 1.909·10-5 1.170·10-4 2.021·10-4 8.438·10-4 
0.5 0.402 2.464 4.258 17.798 
10 2.263 13.881 23.988 100.265 

 

 Considering the amount of uranium mass does not change significantly over the 10 

year time interval, the neutron emissions are assumed to be constant. Table 4.10 shows the 

dose rates from the neutron emissions (both spontaneous fission and (α,n)) of the pellet, 

rod, and can models. 

Table 4.10: Neutron Dose Rate of the Models from 1 meter 

Model Initial 3% 5% 20% 
Pellet 8.208·10-9 5.083·10-8 8.689·10-8 7.030·10-7 
Rod 3.863·10-7 2.229·10-6 4.091·10-6 1.718·10-5 
Can 4.634·10-6 2.840·10-5 4.909·10-5 2.066·10-4 

 

 In order to compare the dose rates to the 5 rem annual limit of the United States 

Nuclear Regulatory Commission, the total amount of time an exposed worker would reach 

this total dose limit is calculated. 

 Table 4.11 shows the total number of hours a worker exposed to the pellet models 

would reach the NRC’s annual limit of 5 rem. 

Table 4.11: Total Time [hours] until Worker Exposed to the Pellet Models would reach 5 rem 
limit 

Time [years] Initial 3% 5% 20% 
0 26,102,530 6,927,959 4,012,805 902,211 
0.5 5,539 903 523 125 
10 983 160 93 22 
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 Table 4.12 shows the total number of hours a worker exposed to the rod models 

would reach the NRC’s annual limit of 5 rem. 

Table 4.12: Total Time [hours] until Worker Exposed to the Rod Models would reach 5 rem 
limit 

Time [years] Initial 3% 5% 20% 
0 1,705,908 754,593 161,097 38,562 
0.5 131 24 12 3 
10 23 4 2 1 

 

 Table 4.13 shows the total number of hours a worker exposed to the can models 

would reach the NRC’s annual limit of 5 rem. 

Table 4.13: Total Time [hours] until Worker Exposed to the Can Models would reach 5 rem 
limit 

Time [years] Initial 3% 5% 20% 
0 210,782 34,394 19,905 4,760 
0.5 12 2 1 0 
10 2 0 0 0 

 

 Assuming a 40-hour work week, the total number of hours in an entire work year is 

2,080 hours. Although this number does not include possible holidays, such an 

approximation is adequate for this discussion. In all three models, the dose rates initially 

could not possibly reach the annual limit. However, after only 0.5 year the 3%, 5%, 20% 

isotopic vector pellet models could reach the limit within a year. The rod and can models 

with every isotopic vector considered here pose a significant dose rate threat at both the 

0.5 and 10 year time intervals. In some cases, the 5 rem annual limit is reached within only 

a few hours or even within an hour. This illustrates a significant issue with implementing 

232U at the concentrations discussed here in a civilian nuclear fuel cycle. Additional 

shielding precautions would be essential to handling these materials and would be a 
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financial burden to any state seeking to utilize these materials. This must be considered 

before 232U can be utilized to reduce material attractiveness purposes. 

4.2.5. Effects on Security 

 This section will analyze gamma ray and neutron security measurements of the 

model shown in Figure 3.4 in both its non-shielded and shielded configurations. 

Measurements of the 90% vector with 232U from Table 3.6 and the 90% vector without 232U 

from Table 3.7 are compared. Since the scenarios considered here are the detection of a 

weapon’s usable uranium material, the initial, 3%, 5%, and 20% vectors are excluded. 

 The gamma ray spectra found via the MCNP6 simulations of the security model and 

the detector shown in Figure 3.5 at time intervals of 0, 0.5, and 10 years of the isotopic 

vectors with and without 232U are shown below. The measurement time is 5 minutes and 

the detector is 10 meters from the surface of the model. Figure 4.35 shows the spectra 

fresh non-shielded geometries. Figure 4.36 shows the spectra from 0.5 year non-shielded 

geometries. Figure 4.37 shows the spectra from 10 year non-shielded geometries. Even at 

the initial time interval of 0 years, low energy peaks in the gamma ray spectrum with 232U 

are clearly visible above the background spectrum. At the 0.5 and 10 year time intervals, 

the spectra with 232U is several order of magnitudes above both background and the 

spectra without 232U. The spectra with 232U is clearly visible and distinguishable between 

that without 232U. This illustrates a significant increase in the detectability of the 

weaponized uranium material via the introduction of 232U. 
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Figure 4.35: Fresh non-shielded geometry 

 

Figure 4.36: 0.5 year non-shielded geometry 
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Figure 4.37: 10 year non-shielded geometry 

 The results from the shielded geometries are similar to that of the non-shielded 

cases. Figure 4.38 shows the spectra from the fresh shielded geometries. Figure 4.39 shows 

the spectra from the 0.5 year shielded geometries. Figure 4.40 shows the spectra from 10 

year shielded geometries. The lead shielding proves effective at significantly reducing the 

low energy peaks in both the spectrum with and without 232U. As a result, the fresh spectra 

are well below background and would be difficult to detect. However, the spectra with 232U 

at 0.5 and 10 years is clearly visible above the spectra without 232U and background. The 

shielding has a minimal effect on the spectra with 232U, particularly at higher energies, as 

can be seen by the intensity of the 2.6 MeV 208Tl peak. This illustrates the significant 

increase in detectability after the build-up of 232U daughter products is present even when 

lead shielding is utilized. 
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Figure 4.38: Fresh shielded geometry 

 

Figure 4.39: 0.5 years shielded geometry 
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Figure 4.40: 10 years shielded geometry 
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counts from the security model with 232U is 33 counts. The total neutron counts from the 

security model without 232U is approximately 0 counts. In order to determine whether this 

difference in counts is detectable, the background counts must be approximated. 

 The background counts are approximated by calculating the reaction rate of the 

background neutrons in the 3He within the detector. Equation 4.1 shows the relationship 

between the reaction rate (R) and the number of atoms (N), the neutron flux in units of 

neutrons/cm2·s (ф), and the cross section in units of cm2 (σ) (6). 

Equation 4.1 

𝑅𝑅 = 𝑁𝑁𝜕𝜕𝜀𝜀 

 In this analysis, the reaction rate calculated will be the total neutron count rate from 

background. The number of atoms is the total number of 3He atoms within the detector: 

1.984·1024. The neutron flux is the background neutron flux: approximately 0.015 n/cm2·s 

(61). The neutron flux can vary by several percent (62). The value chosen here represents a 

median approximation of the possible variations in neutron flux based on location. In 

addition to the flux, the energy spectrum of the background neutrons can vary greatly 

based on location. The presence of objects such as large concrete structures or variations in 

altitude can significantly impact the spectrum of background neutrons. The detection 

efficiency of 3He changes with neutron energy. Figure 4.41 shows the cross sections of 

various 3He-neutron interactions as a function of neutron energy. 
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Figure 4.41: 3He cross sections [barns] vs. neutron energy [eV] (63) 

 In neutron detectors, (n,p) interactions of the 3He produce neutron counts. 

Therefore, the (n,p) cross section of 3He should be used in this analysis. Much of the 

neutron background energy spectrum falls below 1 MeV. 100 barns (10-22 cm2) is chosen as 

this represents the cross section near the highest end of the neutron energy spectrum thus 

representing a conservative estimate. Lower energy neutrons would correspond to higher 

cross sections and only increase the detection of the background neutrons. The realistic 

value would depend heavily on the location of the background measurement. The value 

chosen here is intended to be an approximation. Using Equation 4.1, the background count 
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rate of the detector is 3 counts per second. For a 10 minute measurement, the background 

counts is 1786 counts. 

 Table 4.14 shows the neutron counts after a 10 minute measurement of the 90% 

isotopic vectors with and without 232U including background. The values are within a one-

sigma uncertainty and thus are not statistically differentiable. Unfortunately, this indicates 

the introductions of 232U did not significantly increase the neutron detectability of the 

material. The cross section chosen here assumed high energy background neutrons. 

Additional attenuation via structures such as concrete buildings would lower the energy of 

the background neutrons and thus increase the detection of these neutrons. An increase in 

the detection efficiency of the background neutrons would only strengthen the conclusion 

made here that the spontaneous fission of 232U will not significantly increase the neutron 

detectability of uranium materials. 

Table 4.14: Neutron counts with and without 232U including background 

Isotopic Vector Counts 

With 232U 1,819 ± 135 

Without 232U 1,786 ± 134 

 

4.2.6. Effects on Safeguards 

 This section discusses gamma ray and neutron non-destructive assay safeguards 

techniques. These techniques are done on the initial, 3%, 5%, and 20% uranium isotopic 

vectors with 232U (Table 3.6) and without 232U (Table 3.7) at time intervals of 0.5 and 10 

years. The results from the set of isotopic vectors with 232U are compared to that without 
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232U in order to evaluate the effectiveness of the techniques in the presence of 232U. Only 

the can model shown in Figure 3.3 is used in this analysis. 

 First, a non-destructive technique using the 235U and 238U gamma ray peaks to 

quantify 235U enrichment is analyzed. The set of simulations found here represent a 5 

minute gamma ray measurement of the can models by a 2”x2” HPGe detector in MCNP6. 

The figures include both the spectra with and without 232U as well as red dashed lines at 

the 185.7 keV 235U peak and the 1001 keV 234mPa peak (utilized for 238U). 

 Figure 4.42 shows the initial uranium isotopic vector spectra with and without 232U 

after 0.5 year. Figure 4.43 shows the initial uranium isotopic vector spectra with and 

without 232U. 

 

Figure 4.42: Initial uranium isotopic vector spectra at 0.5 year 
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Figure 4.43: Initial uranium isotopic vector spectra at 10 years 

 Figure 4.44 shows the 3% uranium isotopic vector spectra with and without 232U 

after 0.5 year. Figure 4.45 shows the 3% uranium isotopic vector spectra with and without 
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Figure 4.44: 3% uranium isotopic vector spectra at 0.5 year 

 

Figure 4.45: 3% uranium isotopic vector spectra at 10 years 
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 Figure 4.46 shows the 5% uranium isotopic vector spectra with and without 232U 

after 0.5 year. Figure 4.47 shows the 5% uranium isotopic vector spectra with and without 

232U after 10 years. 

 

Figure 4.46: 5% uranium isotopic vector spectra at 0.5 year 
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Figure 4.47: 5% uranium isotopic vector spectra at 10 years 

 Figure 4.48 shows the 20% uranium isotopic vector spectra with and without 232U 

after 0.5 year. Figure 4.49 shows the 20% uranium isotopic vector spectra with and 

without 232U after 10 years. 
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Figure 4.48: 20% uranium isotopic vector spectra at 0.5 year 

 

Figure 4.49: 20% uranium isotopic vector spectra at 10 years 
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discussed here relies on the calculation of the net peak area of these peaks, this is the first 

indication that the technique may not be effective. Using Equation 3.19 and Equation 3.20, 

the net peak areas of the 235U and 238U peaks are calculated using the same regions in all of 

the spectra shown above. The ratio of the peaks is input into Equation 3.18 to calculate the 

ratio. 

 Table 4.15 shows the net peak area and the ratio found from the initial uranium 

isotopic vectors at time intervals of 0.5 and 10 years. 

Table 4.15: Peak ratios from the initial uranium isotopic vectors 

   Counts ratio 

0.5 y 
without 232U 

235U 171,900 ± 508 

4.752 ± 17.850 
238U 112,700 ± 383 

With 232U 
235U 426,300 ± 1,592,520 
238U 1,328,000 ± 520,588 

10 y 
without 232U 

235U 171,900 ± 508 

4.406 ± 15.550 
238U 113,300 ± 384 

with 232U 
235U 2,437,000 ± 8.544.664 
238U 7,078,000 ± 2,834.231 

 

 Table 4.16 shows the net peak area and the ratio found from the 3% uranium 

isotopic vectors at time intervals of 0.5 and 10 years. 

Table 4.16: Peak ratios from the 3% uranium isotopic vectors 

   Counts ratio 

0.5 y 
without 232U 

235U 717,200± 1,064 

32.94 ± 232.00 
238U 110,300 ± 404 

with 232U 
235U 1,304,000 ± 9,166,000 
238U 6,604,000 ± 3,030,000 

10 y 
without 232U 

235U 717,300 ± 1,064 

6.58 ± 8.47 
238U 110,800 ± 405 

with 232U 
235U 46,370,000 ± 56,780,000 
238U 47,170,000 ± 18,640,000 
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 Table 4.17 shows the net peak area and the ratio found from the 5% uranium 

isotopic vectors at time intervals of 0.5 and 10 years. 

Table 4.17: Peak ratios from the 5% uranium isotopic vectors 

   Count rate ratio 

0.5 y 
without 232U 

235U 1,191,000 ± 1,407 

15.40 ± 27.30 
238U 108,000 ± 412 

with 232U 
235U 10,230,000 ± 17,660,000 
238U 14,270,000 ± 5,764,000 

10 y 
without 232U 

235U 1,191,000 ± 1,407 

13.34 ± 18.81 
238U 108,600 ± 413 

with 232U 
235U 72,830,000 ± 99,200,000 
238U 88,510,000 ± 32,380,000 

 

 Table 4.18 shows the net peak area and the ratio found from the 20% uranium 

isotopic vectors at time intervals of 0.5 and 10 years. 

Table 4.18: Peak ratios from the 20% uranium isotopic vectors 

   Count rate ratio 

0.5 y 
without 232U 

235U 4,819,000 ± 3,214 

76.34 ± 137.67 
238U 90,600 ± 435 

with232U 
235U 41,670,000 ± 73,280,000 
238U 60,110,000 ± 23,940,000 

10 y 
without 232U 

235U 4,819,000 ± 3,214 

55.57 ± 73.65 
238U 91,070 ± 437 

with 232U 
235U 316,500,000 ± 399,700,000 
238U 332,300,000 ± 133,700,000 

 

 As initially indicated by the spectra, the technique proves to be ineffective. The 

ratios in each case disagree from unity and have large uncertainties. This is due to the 

inability to precisely calculate the net peak area of the 235U and 238U peaks in the presence 

of 232U and its daughter products. The high gamma source strengths of the daughter 

products of 232U produce a continuum which hides the 235U and 238U peaks making them 

statistically undetectable. The final ratio found is useless for quantifying 235U enrichment. 
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This illustrates that this safeguards technique is not useful in the presence of 232U 

concentrations discussed here. 

 The following analysis evaluates a passive neutron multiplicity technique to 

calculate uranium mass. The singles, doubles, and triples counts from a passive AWCC 10 

minutes measurement of the can models with and without 232U are utilized to calculate the 

effective 232U and 238U masses. Table 4.19 shows the passives singles, doubles, and triples 

counts from the uranium isotopic vectors with 232U. Table 4.20 shows the singles, doubles, 

and triples counts from the uranium isotopic vectors without 232U. The uncertainties shown 

are the expected experimental uncertainties calculated using a method developed by Dr. 

Croft (57). 

Table 4.19: Passive singles, doubles, and triples counts from uranium isotopic vectors with 
232U 

 Initial 3% 5% 20% 
Singles 399,476 ± 637 2,446,709 ± 1,576 4,230,597 ± 2,074 17,825,942 ± 4,272 
Doubles 2,070 ± 268 12,581 ± 1,624 23,101 ± 2,807 141,074 ± 11,891 
Triples 141 ± 61 857 ± 844 1,614 ± 1,909 10,870 ± 16,527 

 

Table 4.20: Passive singles, doubles, and triples counts from uranium isotopic vectors without 
232U 

 Initial 3% 5% 20% 
Singles 1,365 ± 45 1,404 ± 45 1,396 ± 45 1,643 ± 47 
Doubles 214 ± 20 210 ± 19 209 ± 19 182 ± 17 
Triples 17 ± 6 17 ± 6 17 ± 6 16 ± 5 

 

 The following tables show multiple variables needed to calculate the effective 232U 

and 238U masses. These variables are the spontaneous fission factorial moments (νs1, νs2, 

νs3), doubles gate fraction (fd), triples gate fraction (ft), efficiency (ε), and neutron die-away 

(τ) time calculated. Each variable was obtained via the same MCNP6 passive simulations 
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that yielded the singles, doubles, and triples counts above. Table 4.21 shows these values 

for the uranium isotopic vectors with 232U. Table 4.22 shows these values for the uranium 

isotopic vectors without 232U. 

Table 4.21: Multiplicity analysis variables for uranium isotopic vectors with 232U 

 Initial 3% 5% 20% 
νs1 1.98 1.94 1.92 1.81 
νs2 5.72 5.60 5.50 5.16 
νs3 16.92 16.68 16.56 16.90 
fd 0.663 0.663 0.664 0.657 
ft 0.440 0.439 0.441 0.432 
ε 0.299 0.299 0.299 0.300 
τ [µs] 49.44 49.49 49.27 50.44 

 

Table 4.22: Multiplicity analysis variables for uranium isotopic vectors without 232U 

 Initial 3% 5% 20% 
νs1 2.72 2.69 2.68 2.62 
νs2 6.33 6.16 6.05 5.69 
νs3 12.07 11.49 11.12 9.84 
fd 0.659 0.659 0.659 0.662 
ft 0.434 0.434 0.434 0.438 
ε 0.325 0.325 0.327 0.325 
τ [µs] 50.20 50.21 50.17 49.68 

 

 In order to illustrate the technique is effective in uranium materials without 232U, 

the effective 238U masses (m238 eff) for the uranium isotopic vectors without 232U are 

calculated using Equation 3.25 with the singles, doubles, and triples counts in Table 4.20 

and the values in Table 4.22. The known values are calculated using Equation 3.22. As 

shown in Table 4.23, the calculated effective 238U mass agrees well with the known values.  

This shows the technique works well when not in the presence of 232U 
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Table 4.23: Calculated and known effective 238U masses from the uranium isotopic vectors 
without 232U 

 m238 eff [g] 

 
Calculated Known Percent 

difference 
Initial 983 983 0.00 
3% 961 961 0.00 
5% 945 941 0.43 
20% 796 790 0.76 

 

 Table 4.24 shows the calculated and known effective 238U masses (m238 eff) and 232U 

masses (m232 eff) from the uranium isotopic vectors with 232U. The effective 232U masses 

were calculated using Equation 3.26 and the effective 238U masses were calculated using 

Equation 3.25 with the singles, doubles, and triples counts in Table 4.19 and the values in 

Table 4.21. The known effective 232U masses were found using Equation 3.24 and the 

known effective 238U masses were found using Equation 3.22. The calculated and known 

values disagree considerably. 

Table 4.24: Calculated and known effective 238U and 232U masses from the uranium isotopic 
vectors with 232U 

 m232 eff [g] m238 eff [g] 

 
Calculated Known Percent 

difference Calculated Known Percent 
difference 

Initial 26 13 100 11,131 1,005 1,007 
3% 195 14 1,293 67,864 1,095 6,097 
5% 239 15 1,493 122,491 1,172 10,351 
20% 337 23 1,365 689,192 1,761 39,036 

 

 In order to attempt to correct the disagreement between the calculate and known 

values, rather than use the leakage multiplication found via Equation 3.28, the net 

multiplication (Mnet) from the MCNP6 simulations is used instead. This net multiplication is 

a weighted average of the net multiplications found via the (α,n) and spontaneous fission 



121 
 

MCNP6 simulations. Table 4.25 shows the calculated and known effective 238U masses (m238 

eff) and 232U masses (m232 eff). Although this percent difference is less using Mnet, the 

disagreement is still too significant to accurately and effectively quantify the uranium mass. 

Table 4.25: Calculated and known effective 238U and 232U masses from the uranium isotopic 
vectors with 232U using Mnet 

 m232 eff [g] m238 eff [g] 

 
Calculated Known Percent 

difference Calculated Known Percent 
difference 

Initial 16 13 23.08 1,685 1,005 67.66 
3% 45 14 221.43 4,798 1,095 338.17 
5% 76 15 406.67 7,977 1,172 580.63 
20% 567 23 2,365.22 55,525 1,761 3,053.04 

 

 The major difference between the neutron emissions of the uranium isotopic 

vectors with 232U and without 232U is the significant difference in their (α,n) emission rates. 

Table 4.26 shows the (α,n) and spontaneous fission neutron emission rates of the uranium 

isotopic vectors with 232U. Table 4.27 shows the (α,n) and spontaneous fission neutron 

emission rates of the uranium isotopic vectors without 232U. As shown in the tables below, 

the α decay of 232U in the UO2 produces significantly more (α,n) neutrons than those found 

in the uranium isotopic vectors without 232U. 

Table 4.26: (α,n) and spontaneous fission neutron emission rates of uranium isotopic vectors 
with 232U [n/s] 

 
(α,n) Spontaneous 

Fission Total 

Initial 4,365 14 4,379 
3% 26,785 16 26,801 
5% 46,274 17 46,291 
20% 193,633 28 193,661 
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Table 4.27: (α,n) and spontaneous fission neutron emission rates of uranium isotopic vectors 
without 232U [n/s] 

 
(α,n) Spontaneous 

Fission Total 

Initial 0 14 14 
3% 1 13 14 
5% 1 13 14 
20% 6 11 17 

 

 The significantly larger (α,n) source strength in the uranium isotopic vectors with 

232U cause a notable increase in the sensitivity of the relationship between the effective 

masses and the leakage multiplication. Figure 4.50 shows the effective 238U mass (m238 eff) 

as a function of the leakage multiplication (ML). Slight variations in the leakage 

multiplication will produce only slight variations in the effective 238U mass. For example, a 

1% difference in the leakage multiplication will produce only a difference of approximately 

10 grams in the effective 238U masses. 
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Figure 4.50: Effective 238U mass vs. leakage multiplication from uranium isotopic vectors 
without 232U 

 Figure 4.51 shows the effective 232U mass (m232 eff) as a function of the leakage 

multiplication (ML) from the uranium isotopic vectors with 232U. Unlike the relationship 

shown in Figure 4.50, the relationship between the effective 232U mass and the leakage 

multiplication is significantly sensitive. Slight variations in the leakage multiplication 

produces significantly different 232U mass values (on the order of 100s to 1000s of grams). 

This impact increases with higher concentrations of 232U. Minor errors in the nuclear data 

used will produce significantly erroneous effective 232U masses. The limited nuclear data of 

232U produces significant issues with the use of this technique to quantify uranium mass. In 

order to effectively calculate the uranium mass via passive neutron interrogation in the 

presence of 232U, further investigation must be done to produce accurate nuclear data for 

232U in real world measurements. 
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Figure 4.51: Effective 232U mass vs. leakage multiplication from uranium isotopic vectors with 
232U 

 In addition to the passive neutron interrogation discussed here, an active analysis is 

also done. The AWCC is utilized in its active configuration in MCNP6 to produce active 

doubles count rates from the uranium isotopic vectors with and without 232U. Figure 4.52 

shows the active doubles count rates graphed as a function of the 235U mass from the 

uranium isotopic vectors with and without 232U. The relationship between the active 

doubles count rate and the 235U mass are similar both with and without 232U. There is a 

slight contribution in the active doubles count rate from the 232U mass. If the passive 

doubles count rate can be removed from the active measurement, then this active 

interrogation could possibly be used to quantify the 235U mass. 
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Figure 4.52: Active doubles count rate vs. 235U mass 
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5. CONCLUSIONS AND FUTURE WORKS 

5.1. Plutonium Conclusions 

 The analyses in this study illustrate the value of increasing the concentration of 

238Pu in used fuel for reducing the material attractiveness. However, the magnitude of this 

decrease in material attractiveness is not significant enough to warrant the label of 

“proliferation proof” or even unattractive for weapons purposes. Although the model based 

analysis was promising, the Figure of Merit analysis showed the difficulty in reaching the 

unattractive limit via increased 238Pu concentrations. 

 The model based approach concluded the concentration of 238Pu in the plutonium 

isotopic vector shown in Table 3.1 was high enough to render the HNED models described 

in Table 3.3 and Table 3.4 useless. In the time dependent analysis of the more realistic 

model (Table 3.4), the self-explosion temperature in the high explosives was reached after 

approximately 7.5 hours from the initial insertion of the weapons pit into the model. 

However, external cooling with liquid nitrogen prevented the self-explosion temperature 

from being reached. The tensile strength in the high explosives and beryllium was reached 

in all four scenarios, likely producing plastic deformation. The possibility of the weapon 

being rendered totally useless or a significant reduction in the yield represent major 

obstacles to proliferation. These results show the impractically and difficulty in 

weaponizing this plutonium vector for these simple implosion models. 

 The application of the Figure of Merit equations shown in Equation 2.1 and Equation 

2 to the plutonium vector yielded significantly fewer positive results regarding its material 

attractiveness. In comparison to the additional plutonium vectors from Table 3.5, the 

material attractiveness was lower. However, all three fell within the same range for both 
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FOM equations. For less technically advanced states, all three plutonium vectors are 

unattractive according to FOM1 (Equation 2.1). For technically advanced states, all three 

plutonium vectors are attractive according to FOM2 (Equation 2.2). This conclusion is to be 

expected as the heat generation factor in FOM equations is normalized to 80% 238Pu and 

the spontaneous fission neutron generation rate is normalized to reactor grade. Thus, any 

plutonium isotopic vector from used reactor fuel with less than 80% 238Pu will be 

unattractive for less technically advanced states and attractive for technically advanced 

states. Currently, surpassing these limits in used fuel is in most cases impractical or even 

unattainable given current reactor designs. Therefor as long as the Figure of Merit 

approach discussed here in its present form is used to analyze plutonium vectors from 

used fuel, these conclusions will be the same. 

5.2. Uranium Conclusions 

 This study successfully illustrated the reduction of material attractiveness in 

uranium materials via the introduction of 232U and the build-up of its daughter products. 

Unlike the case of the plutonium analysis, this reduction of material attractiveness proved 

successful in both the model based and Figure of Merit analyses. However, the introduction 

of 232U poses additional obstacles to its implementation in a civilian nuclear fuel cycle. 

 The model based analysis showed the concentration of 232U in the weapons grade 

uranium vector (90%) from Table 3.6 in the model shown in Table 3.8 sufficient to reduce 

the material attractiveness. As shown in Figure 4.14 through Figure 4.20, the temperature 

in the high explosives exceeds its self-explosion temperature rendering the weapon 

useless. In addition, the high explosives begin to degrade after 2.1 years as a result of 

radiation dose. The transient heat transfer analysis showed that the self-explosion 
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temperature within the high explosives is reached after approximately 1 day, unless the 

model is continuously externally cooled by liquid nitrogen. Similarly, to the plutonium 

model based results, the strength of the high explosives and beryllium is surpassed in all 

four scenarios. This will likely produce plastic deformation in those materials and a 

possible reduction in the yield. The model based analysis illustrates the impracticality of 

utilizing this uranium material in simple implosion type fission weapons. 

 The Figure of Merit results also show a significant decrease in material 

attractiveness. Considering the spontaneous fission neutron generation rate of the 

weapons grade uranium vector is relatively low, the FOM equations for less technically 

advanced states (Equation 2.1) and for technically advanced states (Equation 2.2) yield the 

same results. Thus, these conclusions are valid for both less technically advanced and 

technically advanced states. As shown in Figure 4.34, the build-up of 232U’s daughter 

products causes the material to become unattractive for weapons purposes within the first 

6 to 9 months after separation. In order to maintain the weapons usability of the material, 

the daughter products must be removed approximately semi-annually. This poses a 

significant burden on the proliferating state and would be impractical. 

 Although the merits of utilizing 232U to decrease material attractiveness are clear, 

implementing 232U in civilian nuclear fuel cycles would be difficult. At the 232U 

concentrations shown in Table 3.6, the dose rate from the pellet (Figure 3.1), rod (Figure 

3.2), and can (Figure 3.3) pose a significant safety risk. The 5 rem annual limit imposed by 

the U.S. Nuclear Regulatory Commission would be reached far too quickly and thus 

significant shielding would be required. In addition, both gamma ray and neutron non-

destructive assay techniques proved ineffective in the presence of 232U. Although, 
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quantifying 235U mass via active neutron interrogation may be possible. Considering both 

the safety and safeguards concerns, the decrease in material attractiveness is currently not 

sufficient to justify the implementation of 232U at these concentrations in a civilian nuclear 

fuel cycle. The burden of increasing shielding throughout the handling of the material as 

well as the need for new non-destructive assay safeguards techniques would likely 

outweigh the obstacles to proliferation from most state’s perspectives. 

 One of the most beneficial conclusions of this study is the increase in detectability 

with the addition of 232U. Although the security neutron analysis showed no increase in 

detectability, the security gamma ray analysis showed a significant increase in 

detectability. When comparing gamma ray measurements of the 90% vector with 232U 

(Table 3.6) and that without 232U (Table 3.7), the spectra with 232U are clearly 

distinguishable between background and the spectra without 232U, in particularly at the 6 

month and 10 year time intervals. The intensity of the spectra with 232U indicates the 

possibility of producing an increase in detectability even at a lower concentration of 232U. 

Although the concentrations of 232U discussed here are likely too high to implement within 

a civilian nuclear fuel cycle, the possibility of implementing lower concentrations of 232U 

exists. This possibility could come to fruition if the safety and safeguards impacts of 232U 

are minimized while its impact on gamma ray detectability is further evaluated. Combing 

computational and experimental efforts to explore gamma ray measurements of uranium 

materials with significantly lower concentrations of 232U than those discussed here would 

be useful to determine the minimum amount of 232U that would produce a notable increase 

in detectability. 
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5.3. Conclusions on the Effectiveness of Material Attractiveness Analyses 

 This study utilized two different techniques to evaluate material attractiveness that 

represent both a specific evaluation and a more broad evaluation. The model based 

analysis is likely the most restrictive analysis in terms of overall material attractiveness 

conclusions. Although it is impossible to evaluate the material attractiveness for specific 

HNED models, a comprehensive determination must involve all the possible permutations 

of nuclear weapons designs. Currently this is not possible, because the vast majority of 

these possible designs fall within the classified space. The Figure of Merit analysis 

discussed in this study allows for a more comprehensives evaluation while still relying on 

open source information for the analysis. However, these techniques are just two of the 

many possible techniques utilized to quantify material attractiveness or proliferation 

resistance. 

 As mentioned in this study, the most significant shortcoming of the FOM equations 

shown in Equation 2.1 and Equation 2.2 is its inability to account for processes such as 

enrichment or reprocessing. In the uranium analysis, this study evaluated several isotopic 

vectors at various 235U concentrations originating from the same initial uranium isotopic 

vector. Due to limits of the FOM equations, the material attractiveness of only the weapons 

grade (90%) isotopic vector could be considered. Therefor the entire enrichment process is 

neglected in the final determination of this material attractiveness. Ideally, the material 

attractiveness of the specific material initially possessed by the state would be useful 

rather than the material attractiveness of the weaponized version of this material. 

Similarly, the plutonium analysis only considers the plutonium isotopic vector in its final 
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metallic state rather than present in the used fuel. This doesn’t account for the processing 

required to remove plutonium from the used fuel.  

 A public workshop preformed at the request of the U.S. Department of Energy 

known as the “Proliferation Risk in Nuclear Fuel Cycles” discussed several aspects of 

proliferation risk assessments (64). This workshop not only discussed the Figure of Merit 

analysis used here, but also more comprehensive methods of evaluating proliferation 

resistance. These more comprehensive methods not only consider the material 

attractiveness, but also many factors that contribute to proliferation risk such as 

characteristics of the entire fuel cycle or the proliferant state. Perhaps the most 

comprehensive of these methods is the Proliferation Resistance Analysis and Evaluation 

Tool for Observed Risk (PRAETOR) that was developed at Texas A&M (65). PRAETOR uses 

what is known as a multi attribute utility analysis methodology to consider many possible 

attributes to the proliferation of nuclear material to quantify the associated proliferation 

risk (66). Although useful, this method is most useful in analyzing a larger aspect of a 

nuclear fuel cycle rather than a specific material. 

Another specific illustration of the shortcomings of the Figure of Merit analysis can 

also be found in the literature. A group at LLNL applied the figure of merit equation to a 

specific material but made additional considerations (66). Although the figure of merit 

conclusions showed the material was attractive, the group recognized the following 

attributes were not evaluated in the FOM analysis: the difficulty of stealing, diverting, or 

transporting the material and the number of significant quantities available. The group 

concluded that combining the figure of merit with these additional considerations proves 

useful although they concede that it may be “impossible to come up with absolute 
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quantitative measures of proliferation resistance.” This final conclusion serves as the main 

justification for only utilizing the FOM equations to quantify the material attractiveness. 

If the techniques described in this study (utilizing 238Pu and 232U for decreasing 

material attractiveness) were to be expanded, the use of a tool such as PRAETOR would be 

useful. In the case of the plutonium material, the final conclusions would not likely change, 

because the current obstacles of reprocessing and handling of similar plutonium materials 

are not considered significant to justify a reduction in safeguards. However, in the case of 

uranium, the final conclusions may possibly differ. The decay of 232U poses significant 

handling and reprocessing issues. If the safety and safeguards issues shown here were 

overcame and 232U were implemented into a civilian nuclear fuel cycle, applying a 

PRAETOR would be necessary as a compliment to the FOM analysis. Analysis this 

hypothetical fuel cycle that included 232U might shed additional light on 232U’s 

comprehensive effect at reducing the proliferation risk. However, this is outside of the 

scope of this study and would require additional considerations to limit the burden of 232U 

on the state seeking to use the material for peaceful purposes. 
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