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Abstract 

Rivers play a critical role in global carbon (C) budgets despite their comparatively small surface 

area. A significant portion of the terrestrial C that they receive is transformed, re-mineralized, or 

stored during transit to the ocean. Radiocarbon (∆14C) data show that a fraction of riverine 

organic C (OC) has been pre-aged in the terrestrial environment.  Lateral export of carbon from 

these aged pools may contribute to atmospheric carbon dioxide emissions through microbial and 

photochemical oxidation. However, little is known about the regional climatic, anthropogenic, 

and landscape factors that promote the mobilization of aged OC to rivers. This study examines 

associations between riverine OC and river basin characteristics. It leverages data from two 

sources: 1) a spatially extensive collection of literature-reported ∆14C measurements and 2) the 

U.S. Environmental Protection Agency’s Stream-Catchment (StreamCat) database. The 

radiocarbon data include 95 dissolved (∆14CDOC) and 54 particulate (∆14CPOC) organic C 

measurements after averaging by location. We used the random forest (RF) machine learning 

algorithm to build independent models of ∆14CDOC (MSR = 7319.51, % var explained = 17.05) 

and ∆14CPOC (MSR = 11254.03, % var explained = 45.36). In both RF models, the StreamCat 

data were used as predictor variables. Model validation was accomplished with a random, 75:25 

split where 75% of the data were used for model building and the remaining 25% were used for 

testing and validation (∆14CDOC RMSE = 61.23, r = 0.71; ∆14CPOC RMSE = 39.82, r = 0.94). Key 

predictors of ∆14CDOC were generally climactic or land cover variables affecting terrestrial 

primary productivity. Key predictors of ∆14CPOC were primarily factors associated with sediment 

transport and erosion, but also included several indicators of anthropogenic influence. Human 

activities appear to be destabilizing both C pools, resulting in aged C flux to the more rapidly 

cycled C reservoir in rivers. 
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Introduction 

Terrestrial organic carbon (OC) has three fates: long-term storage in biomass or physicochemical 

structures such as stable soil aggregates, oxidation (e.g., pyrolysis, combustion, gasification, and 

respiration), or export as dissolved or particulate organic carbon (DOC and POC) to inland 

waters. Of these, rivers serve as the only pathway between the terrestrial, oceanic, and 

atmospheric global C reservoirs. Traditional global C models recognize the importance of rivers 

as links between the terrestrial and oceanic reservoirs; however, only recent models incorporate 

them as biochemical reactors of C wherein C may be transformed, re-mineralized, or stored 

during transport (Cole et al., 2007; Battin et al., 2009; Aufdenkampe et al., 2011). Inputs of bulk 

terrestrial OC range from 1.9 to 2.7 petagrams per year (Pg C yr-1) (Cole et al., 2007; Battin et 

al., 2009; Tranvik et al., 2009), but only 0.9 Pg C yr-1 are estimated to reach the ocean (Cole et 

al., 2007) (Figure 1). Carbon dioxide (CO2) evasion from in-stream processing of C is a globally 

significant source of atmospheric CO2 (Battin et al., 2009; Raymond et al., 2013), with C 

residence times as short as days to weeks in some rivers (Battin et al., 2009). At the global scale, 

a growing number of studies show that many rivers transport highly aged terrestrial OC 

previously removed from the C cycle (see Marwick et al., 2015). This C may be oxidized by 

photodegradation (Caraco et al., 2010) or microbial processing (McCallister et al., 2012) and 

thus contribute an unknown amount of CO2 to the atmosphere. This release of previously stored, 

aged C into the atmosphere is analogous to the burning of fossil fuels. Thus, investigating the 

factors that mobilize and deliver aged OC to fluvial systems may contribute not only to our 

understanding of riverine OC cycling, but may also have implications for climate change 

mitigation and CO2 management. 

 

The source and cycling of OC in rivers can be assessed through natural abundance of stable 

(δ13C) and radiocarbon (14C) of the different OC pools. The distributions of these isotopes in the 

environment are governed by predictable natural phenomena (i.e., fractionation, mixing, and 

radioactive decay), which enables their use as environmental tracers of aquatic OC in 

biogeochemistry studies (Fry, 2006). Radiocarbon provides unique information on the age of 

organic matter and is now regularly used to assess the mobilization of aged allochthonous C in 

aquatic systems (Raymond et al. 2001a,b; Hossler and Bauer, 2012; Butman et al., 2014; 
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Marwick et al., 2015). The analysis of the deviation of radiocarbon in parts per thousand (‰) 

from the isotopic ratio (∆14C) is the common measure for comparing the 14C of samples across 

different locations. This measure corrects 14C content for fractionation effects using a δ13C value 

of -25 ‰ and expresses it relative to a known oxalic acid standard that represents the pre-nuclear 

atmospheric 14C of CO2 in the base year of 1950 (Stuvier, 1977).  

 

Riverine OC may range in age from modern (decadal) to > 1,000 years old depending on the 

source and anthropogenic influences (Marwick et al., 2015). In paired riverine DOC and POC 

measurements, DOC typically has a more recent origin than POC (Marwick et al., 2015), 

reflecting terrestrial vegetation and surface soils as dominant DOC sources (Longworth et al., 

2007). In general, natural terrestrial reservoirs from which aged (i.e., 14C-depleted) DOC may be 

exported include groundwater (Moyer et al., 2013), peat-dominated systems (Schell, 1983), aged 

soil organic matter from deeper soil profiles (Butman et al., 2012), and shale outcrops (Raymond 

et al., 2004). Other studies have shown that permafrost (Neff et al., 2006) and precipitation 

(Raymond et al., 2005) may also contribute aged DOC to rivers. In situ processing of DOC along 

the fluvial continuum may result in the export of aged DOC to the ocean through the preferential 

utilization of younger DOC (Raymond and Bauer, 2001a; Raymond et al., 2004).  Additionally, 

aged OC has also been reported in rivers fed by glacial meltwaters (Hood et al., 2009; Aiken et 

al., 2014), in the geologically ancient Kimberly region of Australia (Fellman et al., 2014), and in 

small mountainous rivers (SMRs, rivers with drainage basins < 10,000 km2 and headwater 

elevations > 1,000 m) (Milliman and Syvitski, 1992) such as the Santa Clara river (Masiello and 

Druffel, 2001).  

 

In contrast to DOC, less than 20% of all riverine ∆14CPOC measurements suggest a modern origin 

(Marwick et al., 2015). Natural sources of aged POC include aged organic matter from deeper 

soil horizons or rock-bound OC (fossil POC or kerogen) derived from the physical and chemical 

erosion of carbonaceous rocks (Komada et al., 2004; Leithold et al., 2006). Aged POC is highly 

correlated with sediment yield (Leithold et al., 2006; Marwick et al., 2015) suggesting it is 

primarily controlled by physical erosion. SMRs and rivers in active margin basins are major 

sources of aged POC (Masiello and Druffel, 2001; Komada et al., 2004; Goñi et al., 2013), 

except where lower sediment yields allow modern plant-derived OC to dominate (Leithold et al., 



4 

 

2006; Hatten et al., 2012). However, aged POC has also been detected in rivers occurring on 

passive continental margins (Raymond and Bauer, 2001b; Longworth et al., 2007) and in major 

river systems such as the Mackenzie River Delta (Goñi et al., 2005). Both aged and 

contemporary riverine POC inputs may additionally enter deposition-resuspension cycles which 

promote further remineralization and aging (Newbold et al., 1982), particularly in river valleys 

and floodplains (Meade, 1996). 

 

Anthropogenic landscape modifications have increased total terrestrial OC flux to inland waters 

by approximately 20% since the 18th century (Regnier et al., 2013). This increased OC flux from 

human activities includes the enhanced mobilization of aged C (Butman et al., 2014). 

Agricultural activities may destabilize deep soil profiles and mobilize aged OC (Raymond et al., 

2004; Ewing et al., 2006; Longworth et al., 2007; Sickman et al., 2010; Butman et al., 2014; 

Butman et al., 2018).  Landscape modifications and development may also release aged OC to 

the watershed by decreasing contemporary contributions from terrestrial plants (Lu et al., 2014), 

especially when high-productivity systems such as wetlands are destroyed (Raymond et al., 

2004). Other anthropogenic impacts on riverine C age include petroleum-based agrochemicals 

and oils from non-point urban runoff (Sickman et al., 2010), municipal wastewater inputs 

(Griffith et al., 2009; Griffith and Raymond, 2011), and burning of fossil fuels which can 

contribute fossil POC inputs in the form of black carbon (Mitra et al., 2002). River 

impoundments increase water residence time and associated DOC age; however, dams frequently 

result in enhanced algal production of presumably modern OC which may mask the aged DOC 

signature (Hossler and Bauer, 2012). 

 

A robust, empirical database of OC radiocarbon measurements is now available to study large-

scale factors that may regulate aged C inputs to rivers. Models using publicly available, 

continental-scale data have been used previously to examine how basin characteristics and land 

use effect riverine conditions or constituents (Manning et al., 2020). Previous studies have 

attempted to synthesize spatially diverse ∆14C measurements to assess such patterns (Raymond 

and Bauer, 2001b; Raymond et al., 2004; Butman et al., 2012; Butman et al., 2014; Marwick et 

al., 2015). However, understanding of the regional controls of riverine C age is still limited by 

the lack of in-depth analysis of ∆14C as a function of basin characteristics. This study combines > 
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520 literature-derived ∆14C measurements from rivers of the continental United States (CONUS) 

with the U.S. Environmental Protection Agency’s Stream-Catchment (StreamCat) Database. 

StreamCat is a national database of watershed characteristics and associated disturbance indices 

for approximately 2.65 million stream and river segments (Hill et al., 2006). Separate random 

forest (RF) models (Breiman, 2001) of ∆14CDOC and ∆14CPOC are built to investigate regional-

scale drivers of OC age in lotic systems. Syntheses evaluating the regional drivers of riverine C 

age may allow for a more complete understanding of the general anthropogenic, geo-

physicochemical, and climatic controls affecting OC composition and age in rivers. 

 

Methods  

Radiocarbon data 

 

C data were compiled from 27 primary publications (Appendix S1). The compiled dataset 

includes 305 ∆14CDOC and 217 ∆14CPOC measurements from lotic systems throughout the 

CONUS. Mean ∆14CDOC and ∆14CPOC values were used when multiple measurements were 

reported at a given location. Radiocarbon values and sampling coordinates were obtained 

directly from the source papers, their supplementary tables, or from personal communications 

with the original authors. In several cases where explicit coordinates were not available, but 

publication figures were of sufficient detail and quality, locations were spatially interpolated. In 

one case, ∆14C data were presented in detailed figures but not in tabular or appendix form 

(Hossler and Bauer, 2012); here, data values were interpolated from the figures with 

WebPlotDigitizer (version 4.2) software. C measurements collected prior to 1995 were compiled 

from source papers when available but were ultimately excluded from the final analyses as many 

of the predictor variables used in the analyses represented landscape conditions for more recent 

years (e.g., 2000 and later). 

 

Some radiocarbon measurements were originally reported in “fraction modern” (fM) units. These 

were converted to ∆14C using an equation modified from McNichol and Aluwihare (2007): 

 

∆14C = 1000 [fM  exp –λ(y-1950) - 1] (1) 
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where y represents the year of sample collection and measurement and λ is the Libby decay 

constant (λ = 8033). As discussed by Marwick et al. (2015), year of sample collection and 14C 

content measurement are not typically both reported and as such are assumed to be identical in 

this equation. Error resulting from this assumption is expected to be ≤0.62 ‰, representing a 

difference of approximately five years between sample collection and measurement. 

 

Predictor variables 

 

∆14C sampling locations were linked to the 1:100,000 scale National Hydrography Dataset 

version 2 (NHDPlus V2; McKay et al., 2015) geospatial framework using location information 

provided in the source publications. Spatial analyses were performed with ArcGIS Pro 10 

software (version 2.3.2, Environmental Systems Research Institute, Redlands California, USA). 

The NHDPlusV2 delineates individual stream segments based on local catchments and assigns 

each a “common identifier” (COMID) that can be used as a primary key to link these data (point 

locations) to the StreamCat data (linear stream/river segments). StreamCat metrics are available 

at both the local catchment (Cat) and watershed (Ws) scale, the latter of which represents the 

catchment itself in addition to the hydrologically connected upstream catchments that contribute 

flow to the catchment’s stream segment (Figure 2). These metrics include anthropogenic 

variables such as agriculture, population density, and land cover percent imperviousness in 

addition to natural variables such as lithology, soil characteristics, and elevation (see Hill et al., 

2016 for a complete list of available metrics). Some StreamCat metrics are also expressed as a 

100-m stream buffer (Rp100) occurring within either the Cat or Ws scales, representing 

conditions immediately adjacent to (i.e., within 100 m of) the stream channel. 

 

A total of 249 StreamCat variables were evaluated as potential predictors in ∆14C models. 

Missing values in the StreamCat dataset were imputed using the R package missForest 

(Stekhoven, 2013) prior to analysis. The missForest method is a nonparametric algorithm that 

uses a RF trained on the observed values of the data matrix to predict missing values. To 

improve data imputation performance, we removed from consideration any continuous variables 

with missing data that had five or fewer unique data values. Following imputation, some year-
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specific StreamCat metrics were manipulated prior to modeling. StreamCat metrics that were 

specific to years after 2009 (e.g., percent impervious surface values for 2011) were omitted 

because the compiled ∆14C dataset does not include samples collected after 2009. Population 

density data from the 2010 decennial U.S. census were retained as this represented the only 

direct population measure within the dataset. For other StreamCat metrics where multiple years 

were included for a given variable (e.g., 2001 vs. 2006 National Land Cover Database values), 

an average value was calculated with one of two methods: (1) the weighted mean based on year 

of sample collection ± 2 years (for StreamCat metrics reported for non-continuous years); or (2) 

a simple mean where few years were represented (e.g., 2008 and 2009 Parameter-elevation 

Regression on Independent Slopes Model tables and 2008 and 2009 predicted stream 

temperature tables). 

 

Random forest models 

 

RF modeling (Breiman, 2001) was used to investigate the predictive importance of each 

StreamCat variable on ∆14CDOC and ∆14CPOC. With large and complex datasets such as 

StreamCat, RFs can be advantageous because they are capable of (1) modeling high-order 

interactions among correlated predictor variables without overfitting, (2) handling non-linear 

relationships, and (3) maintaining accuracy when there are missing data (Cutler et al., 2007). RF 

models have been shown to match or outperform other common methods of classification and 

regression used in ecological and environmental applications (Prasad et al., 2006; Gislason et al., 

2006; Cutler et al., 2007; Freeman et al., 2015). 

 

RF is a modified bagged decision tree algorithm that fits decision trees on many bootstrap 

samples of the training dataset, then aggregates decisions from all trees within the model 

(collectively referred to as the forest) to make predictions. Each tree uses its own bootstrap 

sample, which contains approximately 0.33 of the original observations, which can be repeated at 

least once. It is this split-variable randomization that occurs during the bagging process that 

reduces tree correlation. In addition to using bootstrap samples, each tree works from a 

randomly-selected subset of the predictor variables. In the randomForest R package used in this 

study, this number is typically the total number of predictors divided by three (for regression 
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trees) or the square root of the total number of predictor variables (for classification trees) (Liaw 

and Weiner, 2002). This ensures that trees do not over rely on individual features and that all 

potentially predictive features are evaluated. Working from these variants of the training dataset, 

each tree behaves like a traditional decision tree, wherein data at each parent node are split into 

left and right child nodes based on which subset of the data has the smallest mean squared error 

(MSE). This occurs at subsequent nodes until the tree reaches the largest possible size, as defined 

by pre-set hyperparameters dictating the minimum number of observations allowed for a split or 

when the overall variance can no longer be reduced beyond a certain threshold. Model outcomes 

are determined using the mean (for regression) or most frequent (for classification) predictions 

aggregated across individual trees in the forest. The proportion of out-of-bag (OOB) data 

consisting of original observations excluded from the bootstrapped samples incorrectly predicted 

by the trees can be used to assess model accuracy (OOB error).  

 

Predictor variable importance is measured during RF modeling by calculating variable influence 

on model performance when those variables are randomly permuted in individual trees 

(Breiman, 2001). Variable importance can be measured by computing the percent increase in 

mean squared error (%IncMSE) or by the increase in node purity (IncNodePurity). %IncMSE 

measures the increase in MSE that occurs as a result of the random permutation of a variable.  

IncNodePurity is calculated from the reduction in the sum of squared errors when a coefficient is 

chosen for a split. For both importance measures, higher values indicate that the coefficients 

have a greater degree of influence in the model. 

 

Model selection approaches for RF may involve the stepwise reduction of input variables or 

tuning of key model parameters (e.g., number of trees in the forests and number of predictor 

variables selected at each node during tree growth). However, previous studies suggest that these 

approaches are unnecessary for RF models to remain robust (Cutler et al., 2007; Freeman et al., 

2015; Fox et al., 2018). Furthermore, Fox et al. (2017) found that stepwise variable selection 

biased OOB accuracy and destabilized model predictions. For these reasons, we used the full 

StreamCat variable set in the RF models except for select omissions of variables discussed 

previously (see ‘Predictor variables’ above) and no additional tuning steps were taken beyond 
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setting the maximum forest size to 3,000 trees to stabilize the variable importance measures 

(Liaw and Weiner, 2002; Wang et al., 2006).  

 

For model validation, 24 ∆14CDOC  and 14 ∆14CPOC measurements (25% of each dataset) were 

randomly queried and withheld during model creation. The remaining 75% of each dataset was 

used for model building while the test data were used to evaluate each model’s predictive 

performance on the withheld sites’ ∆14C measurements. All RF models were built and tested 

using R version 3.5.1 (R Development Core Team, 2018, Vienna, Austria) and the 

‘RandomForest’ library (Liaw and Weiner, 2002). 

 

Results 

After calculating the mean ∆14C by location and removing measurements collected prior to 1995, 

the compiled ∆14C dataset included 95 ∆14CDOC and 54 ∆14CPOC measurements, representing a 

total combined watershed area of approximately 37,283 km2. The distribution of measurements 

from both pools across Eastern, Central, or Western U.S. were roughly similar and were 

concentrated in the Eastern and Western U.S. (Figure 3). The median signature for ∆14CDOC was 

34.17 ‰ (modern) while the median signature for ∆14CPOC was -74 ‰, corresponding to an age 

of approximately 550 years before present when calibrated to a 2009 collection and measurement 

date using equation 1 (Figure 4). The range of observed ∆14CDOC values was -263.00-210.48 ‰ 

and the range of observed ∆14CPOC values was -526.50-94.9 ‰. We report RF regression model 

(ntree = 3000, nmtry = 83) results for ∆14CDOC (MSR = 7319.51, % var explained = 17.05) and 

∆14CPOC (MSR = 11254.03, % var explained = 45.36). OOB errors for the imputed predictor 

values are provided in Appendix S2. Quantile ranges for the StreamCat predictors and ∆14C for 

both pools are provided in Appendix S3. 

 

The IncNodePurity variable importance measure was used to rank the 10 most influential ∆14C 

predictors (Figure 5). For the final variable importance model, only one variable from each set of 

related variables (Cat, WS, Rp100) was allowed to be included. RF results suggested that the 

∆14C values for both OC pools were affected by a combination of natural and anthropogenic 

variables. Metrics characterizing natural influences comprised the majority of the top 10 
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predictors across both models. These natural influences included a variety of land cover, geo-

physicochemical and climate variables. However, no single class of StreamCat variable emerged 

as most influential for both ∆14CDOC and ∆14CPOC. Percent woody wetland land cover within a 

100-m of watershed streamlines and 2008-2009 average catchment precipitation levels were the 

most influential natural factors for ∆14CDOC. Watershed elevation, percent forest loss to fire 

within a 100-m buffer of the watershed streamlines, and percent barren land cover within a 100-

m buffer of the watershed streamlines were the most influential natural factors for ∆14CPOC. 

Anthropogenic predictors characterizing development or agriculture were present in both 

models, but were more influential for ∆14CPOC, as indicated by changes in node purity.  

 

For each model predictor, the direction of association (positive vs. negative) with carbon age was 

inferred from partial dependence plots (not shown).  Predicted ∆14CPOC responded negatively to 

increases in all StreamCat coefficients except for watershed bedrock depth, whereas predicted 

∆14CDOC response varied (Figure 5). Predicted ∆14CDOC response was positively associated with 

increases in coefficients representing land cover or climatic influences, apart from percent 

deciduous forest land cover. In most cases, anthropogenic predictors were associated with 

decreasing (older) ∆14C responses between models. 

 

External validation of the models using the independent 25% test subset of the data showed that 

RF had lower predictive accuracy for ∆14CDOC compared to ∆14CPOC (Table 1). There was a 

strong positive correlation between the predicted and observed values for both models (∆14CDOC  

r = 0.71, ∆14CPOC  r = 0.94) (Figure 6). The DOC model appeared biased towards predicting 

modern ∆14C DOC, as indicated by deviation from the 1:1 prediction line. Similarly, there was a 

greater deviation from the 1:1 line where observed ∆14CPOC was more negative. For ∆14C DOC, 

bias in the model predictions may be a result of having comparatively few aged ∆14C DOC 

measurements in the original dataset available for training. Deviations between predicted and 

observed ∆14C POC measurements may have been induced by the presence of several highly aged 

∆14C POC measurements (< -250 ‰), none of which were included in the testing dataset during the 

random 75:25 split prior to model creation. 
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Discussion 

Fluvial OC is a complex mixture of compounds with a range of ages determined by regional 

climate and landscape features. While the number of 14C measurements is increasing, there 

remain significant gaps in both the geographic coverage and equivalence of measurements across 

river sizes (Marwick et al., 2015). Robust models are necessary to achieve a comprehensive 

understanding of regional drivers of riverine OC age and lay the foundation for future 

interpolation of OC ages where 14C data are sparse. 

 

In this model, both natural and anthropogenic predictors were influential drivers of riverine 

particulate and dissolved OC age. Previous research has suggested that anthropogenic 

disturbance is critical for the mobilization of aged terrestrial POC and DOC (Butman et al., 

2015; Hossler and Bauer, 2012; Marwick et al., 2015). Basin level syntheses of OC age have 

suggested the liberation of ancient terrestrial OC results from agricultural based tilling, 

mechanical weathering of underlying lithology, and inputs of fossil-fuel-derived OC (Sickman et 

al., 2010; Longworth et al. 2007; Griffith and Raymond, 2009; Hossler and Bauer, 2012). 

However, these studies have been unable to distinguish the source of fossil-derived inputs (i.e., 

wastewater treatment plants (WWTPs), pesticides, synthetic fertilizers, petroleum) contributing 

to the aged riverine OC signature (Butman et al., 2015). 

 

Relative to the data platforms employed for existing models of riverine OC age (Butman et al., 

2012; Butman et al., 2015; Hossler and Bauer, 2012; Longworth et al. 2007; Lu et al., 2014), 

StreamCat provided a more comprehensive accounting of potential point and non-point sources 

of ancient fossil-derived C sources (e.g., proximity to WWTPs, Superfund sites, watershed 

pesticide application). Our model identified multiple anthropogenic factors associated with the 

presence of aged OC along the riverine continuum. For example, urbanization intensity and 

roads (density of roads or density of road-stream intersections for DOC and POC, respectively) 

were among the most influential predictors of aged C for both pools. Similarly, Butman et. al. 

(2015) found increased watershed disturbance to be negatively correlated with radiocarbon age 

of DOC from 77 small watersheds (<400 km2) worldwide. Our findings further suggest that 

petroleum run-off from impermeable surfaces is the primary source of fossil fuel-derived OC to 
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fluvial OC rather than point sources such as WWTP (Griffith and Raymond, 2009) and 

pesticides from agricultural run-off (Butman et al., 2014). 

 

For POC, the model additionally indicated canal density and forest loss from fire as significant 

drivers of age. Although the mechanism for the relationship between aged POC and canals is 

uncertain, this may be an indirect effect of irrigation-induced erosion along the banks or 

streambeds of gravity irrigation systems (U.S. Department of the Interior, 2018). Water diverted 

into a canal from reservoirs may additionally contain previously buried sediment POC (Maavara 

et al., 2017). Wildfires increase erosion and downstream suspended sediment and POC (Meixner 

& Wohlgemuth, 2004) and produce black carbon (BC). Black carbon is a largely recalcitrant 

byproduct of incomplete combustion of terrestrial OC which can be exported to rivers or remain 

in soil stores to be pre-aged prior to release in future disturbance events (Czimczik & Masiello, 

2007; Hanke et al., 2017; Coppola et al., 2018). 

 

Anthropogenic influences were primarily negative drivers of OC age with one exception: the 

percentage of hay and pasture within the watershed. Land cover conversion from forest to 

agriculture typically results in an overall reduction of soil C stocks (Post and Kwon, 2000). 

Tillage increases the mean age of surface soil OC through mixing with deeper older profiles 

(Longworth et al., 2007) while decreasing soil permeability, increasing soil aeration and erosion, 

and decreasing DOC exports (Follett, 2001; Lal, 2003). In contrast, some pasture and grassland 

management practices promote supplements of soil OC to aid restoration efforts in severely 

degraded areas (Machmuller et al., 2015). In addition, it has become common practice to 

enhance pasture soil fertility through additions of poultry litter, generating significant manure-

derived OC inputs from grazing cattle (Molinero and Burke, 2009). Consequently, run-off from 

pastures would result in the leaching and substantial export of contemporary DOC relative to 

other anthropogenic land use types (Seitzinger et al, 2002; Molinero and Burke, 2009).  

 

Increased precipitation, atmospheric N deposition, and wetland coverage were all associated with 

younger fluvial DOC in our model. Wetlands have been documented to export significant 

amounts of DOC (Mulholland, 1997) with a modern 14C signature (Raymond and Hopkinson, 

2003; Raymond et al., 2004) to adjacent streams and rivers as a result of shallow flow paths 
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through organic rich soil horizons. Contemporary OC subsides to aquatic systems are associated 

with increased terrestrial NPP which is driven by both enhanced precipitation and inorganic 

nitrogen wet deposition (Ollinger et al., 2002; Aber and Magill, 2004).  However, the role of 

precipitation itself on age of OC export is not limited simply to its association with greater NPP. 

Discharge is one of the most significant drivers of allochthonous C delivery to watersheds due to 

its effects on runoff and erosion (Lauerwald et al., 2012; Hossler and Bauer, 2012).  Under high 

flow conditions, contemporary OC contributions generally increase (Neff et al., 2006) due to 

shallower flow paths and leaching of surface litter (Barnes et al., 2018). Under baseflow 

conditions and in more arid environments 14C-depleted contributions from deeper soil profiles 

and groundwater comprise the majority of flow (Sanderman et al., 2009; Butman et al, 2012; 

Barnes et al., 2018). 

 

In general, the radiocarbon age of POC was primarily influenced by erosional and transport 

processes. Discharge-driven suspended sediment yield can be a significant driver of aged 

∆14CPOC (Komada et al., 2004; Leithold et al., 2006). However, in our model, precipitation was 

not one of the influential predictors for ∆14CPOC . This may be due to contrasting compositions of 

suspended sediment loads across watersheds, which may vary from surficial contemporary 

organic-rich fractions to fossil POC from bedrock erosion in SMRs (Rosenheim et al., 2013; 

Marwick et al., 2015). The negative relationship between ∆14CPOC and bedrock depth suggests 

that mechanical weathering and erosional processes are the primary drivers of aged POC export. 

Furthermore, watershed elevation was identified as the most influential predictor for ∆14CPOC in 

this study, reinforcing the relationship between aged POC mobilized by SMRs. 

 

The RF approach used in this study confers an advantage over traditional linear modeling 

approaches through its ability to model complicated relationships among correlated 

environmental variables. However, while external validation resulted in a strong correlation 

between predicted and observed ∆14C, it’s possible that model performance for both OC pools 

could be improved by adding a temporal dimension to the study. Intra-basin temporal variation 

in discharge, vegetation phenology, and anthropogenic activities may have significant effects on 

C flux, composition, and age in some rivers (Neff et al., 2006; Sanderman et al., 2009; Aiken et 

al., 2014). However, a study of the Parker River watershed by Raymond and Hopkinson (2003) 
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did not find a difference between DOC age or concentration between high-flow and low-flow 

measurements. Although some temporal ∆14C data were available in the source publications, this 

was not the case for many locations and modeling is still limited by the lack of complementary 

temporal data for many of the potential drivers.  

 

Another possible caveat to this approach is that many of the primary publications sourced in this 

study characterize ∆14C on the East Coast, at only one or two locations within a basin (Figure 3). 

Increased longitudinal sampling should help discern downstream changes in 14C arising from in-

stream processes, such as DOC mineralization, in situ phytoplankton production and storage in 

streambeds, or behind impoundments (Raymond and Bauer, 2001a; Mayorga et al., 2005; 

Butman et al., 2015) . Increased inter-basin sampling across the CONUS could further enhance 

RF model accuracy and may allow for the separation of significant drivers among different 

ecoregions or major basins. For instance, basin size can obfuscate potential drivers of C age 

(Butman et al., 2015). 

 

Our study is one of only a few to assess the influence of basin characteristics on organic riverine 

∆14C at a national scale, with most previous syntheses focused on ∆14CDOC. Our results suggest 

that the controls on ∆14C vary between the OC pools. The significant drivers of ∆14CDOC were 

generally climactic or land cover variables affecting terrestrial primary productivity and the 

significant drivers of ∆14CPOC were generally factors affecting sediment transport and erosion. 

However, human activities appear to be destabilizing both C pools, resulting in aged C flux to 

the more rapidly cycled riverine C pool. Although this study advances our understanding of the 

relative importance of the natural and anthropogenic basin characteristics affecting aged C inputs 

to rivers at a regional scale, the analytical power of future RF models could be improved by 

increased inter- and intra- basin ∆14C measurements and increased reporting of ancillary 

parameters (e.g., δ13C ratios, bulk OC concentrations, inorganic C concentrations and age, and 

size fractions) which can provide additional insight on C composition and sources. 
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Tables 
 

 

Table 1. Root mean squared error (RMSE) and mean absolute error (MAE) 

of the random forest model predictions applied to the test ∆14CDOC and 

∆14CPOC datasets. 

 RMSE MAE 

∆14CDOC 61.23 54.29 

∆14CPOC 39.82 32.62 
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Figures 

 
 

 

 

 

 

Figure 1. Rivers connect the terrestrial, oceanic, and atmospheric C reservoirs. All numbers are 

C fluxes in units of petagrams per year (Pg C yr-1) based on values reported by Battin et al. 

(2009). Figure adapted from Aufdenkampe et al. (2011). 
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Figure 2. A hypothetical watershed from the U.S. Environmental Protection Agency’s Stream-

Catchment (StreamCat) dataset. Each stream segment (blue lines) is delineated by a local 

catchment (dashed outline) representing the topography where precipitation falling on the land 

surface flows into that stream segment. All catchments within the watershed (green outline) flow 

to the most downstream catchment. In this study, radiocarbon sampling site were spatially 

related to the specific stream segment where sampling occurred using the stream segment 

common identifier (COMID). 
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Figure 3. Distribution of riverine ∆14CDOC (n = 95) and ∆14CPOC (n = 54) measurements after 

removing measurements collected prior to 1995. Measurement distributions are shown in the 

context of water resource regions (HUC2 boundaries) and U.S. regions (Eastern, Central, and 

Western). 
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Figure 4. Frequency distribution plots for riverine ∆14CDOC (top) and ∆14CPOC (bottom) in the 

continental United States (CONUS) from the compiled dataset, after calculating the mean ∆14C 

by location (when multiple measurements were collected at a given location) and removing 

measurements collected prior to 1995. 
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Figure 5. Importance plots for ∆14CDOC (top) and ∆14CPOC (bottom) variables (variable 

description [StreamCat variable name]) ranked by increase in node purity and symbolized based 

on generalized categories of influence. Each variable represents the local catchment (Cat) or 

watershed (Ws) scale, occasionally within a 100-m buffer of the streamline within that scale 

(Rp100) as indicated by the suffix on the StreamCat variable name. Land use and land cover 

coefficients represent the mean value at a location for years ≤ 2009. Positive (+) or negative (-) 

signs indicate the direction of the relationship between predicted ∆14C and the coefficient by 

partial dependence plots. 



21 

 

 

 

Figure 6. Comparison of predicted and observed ∆14C values for each organic carbon (OC) pool, 

where r equals the Pearson correlation coefficient and the dotted line indicates where Y = X. 

Model validation consisted of a test subset (25%) of the original data excluded during model 

development.  
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APPENDIX S2. Imputed predictor OOB values 

 

Root mean squared error (RMSE) values for the imputed StreamCat 

coefficients, with n signifying the number of locations with missing 

data requiring imputation. 

Coefficient RMSE n 

PctSalLakeWs 0.00 1 

AgKffactCat 0.03 1 

KffactCat 0.07 1 

prG_BMMI 0.12 15 

PctHydricWs 0.14 1 

PctFrstLoss2002CatRp100 0.16 2 

NCat 0.19 2 

PctAlkIntruVolWs 0.24 1 

SCat 0.27 2 

NH4_2008Ws 0.28 2 

PctOw2006CatRp100 0.31 2 

PctFrstLoss2013CatRp100 0.32 2 

NARS_Region 0.36 1 

InorgNWetDep_2008Ws 0.36 2 

PctFrstLoss2012CatRp100 0.37 2 

NH4_2008Cat 0.41 3 

PctFrstLoss2001CatRp100 0.42 2 

P2O5Cat 0.42 2 

PctFrstLoss2010CatRp100 0.44 2 

K2OCat 0.49 2 

PctFrstLoss2011CatRp100 0.49 2 

InorgNWetDep_2008Cat 0.49 3 

PctFrstLoss2003CatRp100 0.53 2 

Na2OCat 0.54 2 

MAST_2008 0.59 25 

MAST_2013 0.62 25 

MAST_2009 0.64 25 

MAST_2014 0.67 25 

PctFrstLoss2006CatRp100 0.70 2 

PctFrstLoss2008CatRp100 0.72 2 

PctFrstLoss2005CatRp100 0.73 2 

TRIDensCatRp100 0.74 2 

OmWs 0.83 1 

MWST_2008 0.87 24 

MWST_2009 0.88 24 

MSST_2013 0.89 25 
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PctExtruVolWs 0.89 1 

NO3_2008Ws 0.90 2 

MSST_2008 0.90 25 

PctFrstLoss2007CatRp100 0.91 2 

MWST_2013 0.93 24 

MWST_2014 0.93 24 

MSST_2014 0.93 25 

MSST_2009 0.96 25 

PctEolCrsWs 0.96 1 

NO3_2008Cat 1.01 3 

PctFrstLoss2009CatRp100 1.06 2 

NPDESDensCatRp100 1.46 2 

PctEolFineWs 1.55 1 

MgOCat 1.59 2 

RdDensCat 1.64 2 

PctWaterWs 1.73 1 

Al2O3Cat 1.85 2 

PctOw2001CatRp100 1.92 2 

PctFrstLoss2004CatRp100 2.78 2 

PctGrs2001CatRp100 2.79 2 

CBNFWs 2.82 1 

PctGrs2011CatRp100 2.85 2 

PctCarbResidWs 2.85 1 

PctOw2011CatRp100 2.88 2 

ManureWs 2.90 1 

PermWs 2.97 1 

RdDensCatRp100 3.02 4 

PctGlacLakeFineWs 3.39 1 

CBNFCat 3.47 3 

PctGrs2006CatRp100 3.58 2 

PctNonAgIntrodManagVegCatRp100 3.62 2 

Fe2O3Cat 3.64 2 

ClayWs 3.64 1 

OmCat 3.73 2 

PctMxFst2006CatRp100 4.26 2 

PctCrop2006CatRp100 4.62 2 

PctUrbHi2006CatRp100 4.68 2 

PctUrbHi2001CatRp100 4.70 2 

PctCrop2011CatRp100 4.81 2 

PctCrop2001CatRp100 4.86 2 

PctGlacTilClayWs 5.06 1 

PctHay2001CatRp100 5.11 2 

CaOCat 5.24 2 
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PctMxFst2011CatRp100 5.29 2 

PctUrbLo2001CatRp100 5.33 2 

PctMxFst2001CatRp100 5.33 2 

BFIWs 5.36 1 

PctUrbHi2011CatRp100 5.41 2 

PctUrbLo2011CatRp100 5.51 2 

PctHay2011CatRp100 5.52 2 

SandWs 5.74 1 

PermCat 5.80 2 

PctImp2001CatRp100 6.19 2 

PctImp2006CatRp100 6.19 2 

PctBl2011CatRp100 6.46 2 

PctBl2001CatRp100 6.50 2 

PctUrbMd2001CatRp100 6.64 2 

PctImp2011CatRp100 6.67 2 

PctBl2006CatRp100 6.72 2 

ManureCat 6.85 3 

BFICat 6.88 1 

PctUrbLo2006CatRp100 7.14 2 

PctUrbMd2006CatRp100 7.37 2 

PctColluvSedWs 7.41 1 

ClayCat 7.59 2 

PctConif2011CatRp100 7.62 2 

PctHay2006CatRp100 7.73 2 

PctConif2001CatRp100 8.38 2 

PctShrb2011CatRp100 8.43 2 

PctUrbMd2011CatRp100 8.44 2 

PctShrb2001CatRp100 8.64 2 

PctConif2006CatRp100 8.66 2 

FertWs 8.69 1 

SiO2Cat 8.91 2 

PctShrb2006CatRp100 9.18 2 

PctAlluvCoastWs 9.55 1 

PctUrbOp2001CatRp100 9.61 2 

PctUrbOp2011CatRp100 9.90 2 

PctWdWet2011CatRp100 10.01 2 

SandCat 10.13 2 

PctUrbOp2006CatRp100 10.19 2 

PctHbWet2006CatRp100 11.09 2 

PctWdWet2006CatRp100 11.45 2 

PctWdWet2001CatRp100 12.02 2 

PctHbWet2011CatRp100 12.08 2 

PctDecid2006CatRp100 12.39 2 
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PctHbWet2001CatRp100 12.42 2 

PctDecid2011CatRp100 12.50 2 

PctDecid2001CatRp100 13.05 2 

PctGlacLakeCrsWs 13.52 1 

RckDepWs 13.70 1 

PctWaterCat 14.56 2 

PctSilicicWs 15.10 1 

PctGlacLakeFineCat 16.00 2 

PctNonCarbResidWs 16.84 1 

PctGlacTilLoamWs 17.11 1 

PctGlacLakeCrsCat 17.50 2 

FertCat 17.65 3 

PctGlacTilCrsWs 17.95 1 

RckDepCat 18.74 2 

PctGlacTilLoamCat 19.54 2 

WtDepWs 20.27 1 

PctNonCarbResidCat 20.48 2 

PctGlacTilCrsCat 21.03 2 

PctSilicicCat 21.72 2 

PctAlluvCoastCat 21.84 2 

HydrlCondCat 25.90 2 

CompStrgthCat 29.97 2 

WtDepCat 33.53 2 

SN_2008Ws 53.50 2 

SN_2008Cat 57.65 3 

Pestic97Ws 68.81 1 

WetIndexCat 155.58 2 

HUDen2010CatRp100 318.36 2 

Pestic97Cat 328.02 1 

PopDen2010CatRp100 589.22 2 
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APPENDIX S3. Variable quantiles 

U.S. Environmental Protection Agency Stream-catchment (StreamCat) predictor (n = 249) variable 

quantiles for each OC pool. 

  ∆14C-DOC 

  Quantile 

Variable 0 0.25 0.50 0.75 1 

CatAreaSqKm 0.02 1.58 3.66 11.17 51.24 

WsAreaSqKm 0.26 22.07 8,955.72 34,370.21 3,130,494.43 

MineDensCat 0.00 0.00 0.00 0.00 0.08 

MineDensWs 0.00 0.00 0.00 0.00 0.08 

PctAg2006Slp20Cat 0.00 0.00 0.00 0.05 4.09 

PctAg2006Slp10Cat 0.00 0.00 0.03 0.84 17.58 

PctAg2006Slp20Ws 0.00 0.00 0.20 0.35 4.09 

PctAg2006Slp10Ws 0.00 0.08 1.76 3.44 17.67 

CBNFCat 0.00 0.00 0.34 2.55 31.86 

FertCat 0.00 0.00 0.87 6.77 157.05 

ManureCat 0.00 0.00 0.01 0.49 66.97 

CBNFWs 0.00 0.50 1.70 4.91 33.12 

FertWs 0.00 1.74 3.47 11.32 100.27 

ManureWs 0.00 0.05 1.30 2.29 22.95 

BFICat 10.00 36.00 45.44 49.20 64.39 

BFIWs 26.34 43.83 46.76 49.45 66.41 

CanalDensCat 0.00 0.00 0.00 0.00 33.33 

CanalDensWs 0.00 0.00 0.00 0.01 33.33 

CoalMineDensCat 0.00 0.00 0.00 0.00 0.00 

CoalMineDensWs 0.00 0.00 0.00 0.00 0.36 

DamDensCat 0.00 0.00 0.00 0.00 0.61 

DamNIDStorCat 0.00 0.00 0.00 0.00 40,015,916.55 

DamNrmStorCat 0.00 0.00 0.00 0.00 31,044,598.85 

DamDensWs 0.00 0.00 0.01 0.02 0.66 

DamNIDStorWs 0.00 0.00 80,908.05 123,376.69 350,009.38 

DamNrmStorWs 0.00 0.00 41,325.51 98,097.14 324,822.05 

ElevCat 0.00 8.35 37.58 127.45 1,841.92 

ElevWs -1.85 158.85 335.83 447.33 2,597.10 

NPDESDensCat 0.00 0.00 0.00 0.00 0.16 

SuperfundDensCat 0.00 0.00 0.00 0.00 0.44 

TRIDensCat 0.00 0.00 0.00 0.00 0.49 

NPDESDensWs 0.00 0.00 0.00 0.00 0.02 

SuperfundDensWs 0.00 0.00 0.00 0.00 0.13 

TRIDensWs 0.00 0.00 0.00 0.01 0.34 

NPDESDensCatRp100 0.00 0.00 0.00 0.00 0.72 

TRIDensCatRp100 0.00 0.00 0.00 0.00 2.17 

NPDESDensWsRp100 0.00 0.00 0.00 0.01 0.10 
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SuperfundDensWsRp100 0.00 0.00 0.00 0.00 0.01 

TRIDensWsRp100 0.00 0.00 0.00 0.02 0.49 

Al2O3Cat 1.40 9.61 11.71 13.42 15.65 

CaOCat 0.41 1.54 2.90 5.78 48.20 

Fe2O3Cat 0.92 3.80 5.16 8.59 26.12 

K2OCat 0.32 1.68 2.16 2.61 4.18 

MgOCat 0.66 1.18 1.54 2.30 13.38 

Na2OCat 0.13 0.85 1.23 1.86 3.62 

P2O5Cat 0.08 0.13 0.15 0.19 2.97 

SCat 0.01 0.04 0.09 0.25 1.79 

SiO2Cat 7.11 55.36 61.21 65.48 79.84 

Al2O3Ws 4.30 8.97 10.51 12.39 15.65 

CaOWs 0.41 3.28 5.63 8.21 21.69 

Fe2O3Ws 1.98 3.98 4.77 6.21 26.12 

K2OWs 1.08 1.78 1.96 2.35 4.18 

MgOWs 0.66 1.77 2.48 2.63 5.09 

Na2OWs 0.13 0.95 1.38 2.03 3.62 

P2O5Ws 0.09 0.14 0.17 0.38 2.97 

SWs 0.01 0.06 0.21 0.34 1.79 

SiO2Ws 34.97 54.55 58.34 62.75 79.84 

NCat 0.00 0.03 0.08 0.48 0.91 

NWs 0.00 0.05 0.07 0.18 0.95 

HydrlCondCat 0.00 0.02 0.17 10.66 138.78 

HydrlCondWs 0.00 0.11 0.23 7.31 127.83 

CompStrgthCat 0.35 2.23 68.63 120.41 173.32 

CompStrgthWs 0.60 56.49 94.04 106.87 164.28 

CHYD_v2_1 0.82 0.94 0.97 0.98 1.00 

CCHEM_v2_1 0.32 0.64 0.77 0.83 0.94 

CSED_v2_1 0.89 0.95 0.96 0.98 1.00 

CCONN_v2_1 0.87 0.91 0.95 0.98 1.00 

CTEMP_v2_1 0.81 0.88 0.93 0.97 1.00 

CHABT_v2_1 0.74 0.92 0.94 0.97 1.00 

ICI_v2_1 0.16 0.46 0.56 0.68 0.88 

WHYD_v2_1 0.82 0.94 0.97 0.98 1.00 

WCHEM_v2_1 0.35 0.55 0.72 0.76 0.91 

WSED_v2_1 0.93 0.96 0.97 0.97 1.00 

WCONN_v2_1 0.86 0.95 0.97 0.97 1.00 

WTEMP_v2_1 0.82 0.93 0.95 0.96 1.00 

WHABT_v2_1 0.86 0.93 0.95 0.96 1.00 

IWI_v2_1 0.17 0.38 0.56 0.64 0.89 

AgKffactCat 0.00 0.00 0.01 0.04 0.26 

KffactCat 0.00 0.14 0.23 0.30 0.48 

AgKffactWs 0.00 0.01 0.05 0.08 0.20 

KffactWs 0.00 0.25 0.28 0.30 0.38 

PctNonCarbResidCat 0.00 0.00 0.00 0.00 100.00 



42 

 

PctSilicicCat 0.00 0.00 0.00 0.00 100.00 

PctGlacTilLoamCat 0.00 0.00 0.00 1.69 100.00 

PctGlacTilCrsCat 0.00 0.00 0.00 10.27 100.00 

PctGlacLakeCrsCat 0.00 0.00 0.00 0.00 100.00 

PctGlacLakeFineCat 0.00 0.00 0.00 0.00 100.00 

PctAlluvCoastCat 0.00 0.00 0.00 99.11 100.00 

PctWaterCat 0.00 0.00 0.00 0.00 95.72 

PctCarbResidWs 0.00 0.00 0.00 2.28 23.37 

PctNonCarbResidWs 0.00 0.00 0.00 7.69 100.00 

PctAlkIntruVolWs 0.00 0.00 0.00 0.00 0.72 

PctSilicicWs 0.00 0.00 0.00 3.06 100.00 

PctExtruVolWs 0.00 0.00 0.00 0.00 10.62 

PctColluvSedWs 0.00 0.00 0.00 0.00 66.91 

PctGlacTilClayWs 0.00 0.00 0.00 1.26 50.67 

PctGlacTilLoamWs 0.00 0.00 0.00 46.85 100.00 

PctGlacTilCrsWs 0.00 0.00 1.07 33.75 100.00 

PctGlacLakeCrsWs 0.00 0.00 0.00 8.52 99.72 

PctGlacLakeFineWs 0.00 0.00 0.00 5.28 28.76 

PctHydricWs 0.00 0.00 0.00 0.00 1.41 

PctEolCrsWs 0.00 0.00 0.00 0.89 10.41 

PctEolFineWs 0.00 0.00 0.00 0.00 13.88 

PctSalLakeWs 0.00 0.00 0.00 0.00 0.04 

PctAlluvCoastWs 0.00 0.00 0.68 14.39 100.00 

PctWaterWs 0.00 0.00 0.04 0.96 15.72 

MineDensWsRp100 0.00 0.00 0.00 0.00 0.24 

NABD_DensCat 0.00 0.00 0.00 0.00 0.31 

NABD_NIDStorCat 0.00 0.00 0.00 0.00 40,015,916.55 

NABD_NrmStorCat 0.00 0.00 0.00 0.00 31,044,598.85 

NABD_DensWs 0.00 0.00 0.01 0.02 0.66 

NABD_NIDStorWs 0.00 0.00 71,198.49 121,253.77 375,787.34 

NABD_NrmStorWs 0.00 0.00 40,325.75 91,573.80 352,281.64 

SN_2008Cat 26.29 531.59 598.51 691.64 782.41 

InorgNWetDep_2008Cat 0.27 3.79 4.29 4.87 6.37 

NH4_2008Cat 0.19 2.22 2.39 2.67 4.65 

NO3_2008Cat 0.55 8.37 10.87 12.42 14.06 

SN_2008Ws 40.50 477.97 610.94 641.19 752.98 

InorgNWetDep_2008Ws 0.42 3.62 4.35 4.62 5.37 

NH4_2008Ws 0.31 2.24 2.41 2.53 4.22 

NO3_2008Ws 0.80 7.41 11.13 11.92 14.16 

PctNonAgIntrodManagVegCat 0.00 0.00 0.06 1.26 29.31 

PctNonAgIntrodManagVegWs 0.00 0.23 0.73 3.20 31.64 

PctNonAgIntrodManagVegCatRp100 0.00 0.00 0.00 0.94 28.45 

PctNonAgIntrodManagVegWsRp100 0.00 0.18 0.52 3.19 28.45 

prG_BMMI 0.09 0.22 0.32 0.45 0.89 

Pestic97Cat 0.00 0.60 4.63 27.91 2,833.47 
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Pestic97Ws 0.00 6.89 25.77 51.63 708.08 

Precip8110Cat 80.58 1,026.01 1,151.42 1,229.02 1,679.06 

Tmax8110Cat 12.28 14.93 16.89 21.11 31.19 

Tmean8110Cat 6.62 9.50 11.90 15.19 23.43 

Tmin8110Cat 0.96 4.01 6.66 8.94 18.22 

Precip8110Ws 370.54 1,062.63 1,155.33 1,198.38 1,406.43 

Tmax8110Ws 11.56 13.23 14.91 19.16 24.23 

Tmean8110Ws 5.99 7.52 9.16 12.79 17.77 

Tmin8110Ws 0.43 1.78 3.33 5.94 11.31 

RdDensCat 0.00 1.71 3.00 6.17 16.00 

RdDensWs 0.00 1.45 1.87 2.57 10.79 

RdDensCatRp100 0.00 1.93 3.41 6.90 30.86 

RdDensWsRp100 0.00 1.55 2.02 2.45 10.56 

RdCrsCat 0.00 0.00 0.21 0.54 17.97 

RdCrsSlpWtdCat 0.00 0.00 0.00 0.00 0.27 

RdCrsWs 0.00 0.34 0.43 0.59 17.97 

RdCrsSlpWtdWs 0.00 0.00 0.01 0.01 0.18 

RunoffCat 5.64 371.00 463.00 679.00 1,718.00 

RunoffWs 21.39 375.59 552.70 679.00 785.00 

ClayCat 3.96 7.41 16.77 24.91 64.88 

SandCat 3.38 26.62 36.28 46.17 88.37 

ClayWs 3.96 11.21 15.96 22.42 39.23 

SandWs 13.94 29.89 35.33 44.82 63.98 

OmCat 0.17 0.58 0.91 1.83 22.40 

PermCat 1.09 4.68 8.30 12.68 33.02 

RckDepCat 37.16 107.47 145.16 152.39 152.40 

WtDepCat 9.10 73.98 111.96 154.17 182.88 

OmWs 0.18 0.75 1.25 1.91 6.23 

PermWs 2.46 5.92 7.63 10.09 27.09 

RckDepWs 37.16 118.71 123.24 134.92 152.40 

WtDepWs 52.23 112.72 121.46 156.02 182.87 

HUDen2010Cat 0.27 8.19 38.39 171.75 7,091.80 

PopDen2010Cat 0.00 15.35 91.93 437.90 13,005.09 

HUDen2010Ws 0.27 10.42 19.83 34.56 647.97 

PopDen2010Ws 0.00 17.45 43.37 81.26 1,508.91 

HUDen2010CatRp100 0.27 9.23 35.39 143.36 3,316.63 

PopDen2010CatRp100 0.00 15.63 75.67 384.61 6,815.86 

HUDen2010WsRp100 0.27 8.90 18.29 32.35 596.46 

PopDen2010WsRp100 0.00 15.50 38.84 74.00 1,446.79 

WetIndexCat 561.55 774.73 857.11 1,017.36 1,607.29 

WetIndexWs 611.01 756.71 784.51 816.73 1,396.10 

PctOwCat 0.00 0.00 7.17 35.03 100.00 

PctIceCat 0.00 0.00 0.00 0.00 0.00 

PctUrbOpCat 0.00 2.85 6.99 13.95 48.68 

PctUrbLoCat 0.00 0.41 4.12 12.55 30.68 
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PctUrbMdCat 0.00 0.02 0.72 8.97 42.41 

PctUrbHiCat 0.00 0.00 0.09 2.57 48.19 

PctBlCat 0.00 0.00 0.00 0.14 9.76 

PctDecidCat 0.00 1.94 9.11 25.45 84.94 

PctConifCat 0.00 0.01 2.06 5.11 87.66 

PctMxFstCat 0.00 0.00 0.37 3.06 39.84 

PctShrbCat 0.00 0.00 0.20 2.33 79.48 

PctGrsCat 0.00 0.00 0.03 0.36 20.65 

PctHayCat 0.00 0.00 0.60 4.12 42.25 

PctCropCat 0.00 0.00 0.35 5.48 85.30 

PctWdWetCat 0.00 0.10 2.12 9.80 71.12 

PctHbWetCat 0.00 0.00 0.64 1.59 77.87 

PctOwWs 0.00 0.29 1.17 2.57 20.98 

PctIceWs 0.00 0.00 0.00 0.00 0.05 

PctUrbOpWs 0.00 3.50 4.75 6.37 48.68 

PctUrbLoWs 0.00 0.70 1.62 2.28 32.13 

PctUrbMdWs 0.00 0.09 0.65 1.00 42.41 

PctUrbHiWs 0.00 0.02 0.17 0.32 15.87 

PctBlWs 0.00 0.00 0.15 0.32 16.82 

PctDecidWs 0.00 14.67 34.07 40.45 85.19 

PctConifWs 0.00 4.29 10.70 16.67 84.70 

PctMxFstWs 0.00 1.12 4.16 10.18 24.82 

PctShrbWs 0.00 0.72 2.21 6.88 65.67 

PctGrsWs 0.00 0.22 0.61 3.06 41.88 

PctHayWs 0.00 2.29 8.65 11.08 38.87 

PctCropWs 0.00 1.33 5.13 10.58 87.23 

PctWdWetWs 0.00 0.57 4.29 7.67 42.85 

PctHbWetWs 0.00 0.14 0.54 0.66 20.92 

PctOwCatRp100 0.00 0.00 0.00 0.81 5.82 

PctUrbOpCatRp100 0.00 3.63 8.68 16.50 77.78 

PctUrbLoCatRp100 0.00 0.22 6.30 16.26 50.76 

PctUrbMdCatRp100 0.00 0.00 1.26 11.07 54.34 

PctUrbHiCatRp100 0.00 0.00 0.00 3.29 32.98 

PctBlCatRp100 0.00 0.00 0.00 0.77 39.58 

PctDecidCatRp100 0.00 0.73 7.76 25.39 84.62 

PctConifCatRp100 0.00 0.00 0.90 8.73 73.80 

PctMxFstCatRp100 0.00 0.00 0.00 2.79 37.61 

PctShrbCatRp100 0.00 0.00 0.10 2.37 84.56 

PctGrsCatRp100 0.00 0.00 0.00 0.25 22.65 

PctHayCatRp100 0.00 0.00 0.00 3.22 55.47 

PctCropCatRp100 0.00 0.00 0.00 4.25 39.35 

PctWdWetCatRp100 0.00 0.00 9.43 25.40 88.86 

PctHbWetCatRp100 0.00 0.00 3.44 11.75 76.13 

PctOwWsRp100 0.00 0.02 0.13 0.28 1.26 

PctIceWsRp100 0.00 0.00 0.00 0.00 0.02 
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PctUrbOpWsRp100 0.00 3.72 5.67 6.96 50.05 

PctUrbLoWsRp100 0.00 0.61 1.39 2.12 21.67 

PctUrbMdWsRp100 0.00 0.08 0.46 0.92 54.34 

PctUrbHiWsRp100 0.00 0.00 0.08 0.24 29.69 

PctBlWsRp100 0.00 0.00 0.18 0.34 9.84 

PctDecidWsRp100 0.00 14.67 26.30 30.82 84.62 

PctConifWsRp100 0.00 4.23 9.42 16.71 83.37 

PctMxFstWsRp100 0.00 1.31 5.24 10.01 27.65 

PctShrbWsRp100 0.00 0.62 3.03 6.65 63.15 

PctGrsWsRp100 0.00 0.12 0.57 3.46 43.28 

PctHayWsRp100 0.00 1.81 6.91 10.35 40.55 

PctCropWsRp100 0.00 0.81 4.58 7.73 71.28 

PctWdWetWsRp100 0.00 2.15 12.18 17.53 51.27 

PctHbWetWsRp100 0.00 0.34 1.49 2.22 36.23 

PctFireCat 0.00 0.00 0.00 0.00 0.00 

PctFireWs 0.00 0.00 0.00 0.00 8.37 

PctFireWsRp100 0.00 0.00 0.00 0.00 8.70 

PctFrstLossCat 0.00 0.00 0.02 0.06 4.33 

PctFrstLossWs 0.00 0.04 0.05 0.15 2.84 

PctFrstLossWsRp100 0.00 0.02 0.03 0.09 2.61 

PctFrstLossCatRp100 0.00 0.00 0.00 0.03 2.29 

PctImpCat 0.00 0.52 3.09 15.06 58.39 

PctImpWs 0.00 0.58 1.38 2.03 49.42 

PctImpCatRp100 0.00 0.67 3.91 18.92 65.94 

PctImpWsRp100 0.00 0.60 1.21 1.79 65.94 

PrecipWs_Avg 311.77 1,068.70 1,277.77 1,334.15 1,657.45 

PrecipCat_Avg 62.61 1,210.85 1,295.05 1,375.56 1,928.26 

TmeanWs_Avg 5.89 7.36 8.81 12.79 17.47 

TmeanCat_Avg 6.35 9.39 11.73 15.14 24.19 

MWST 0.56 2.21 3.57 6.20 10.66 

MAST 9.31 10.86 12.16 14.60 18.16 

MSST 16.63 19.76 22.01 23.08 26.03 

 

  



46 

 

∆14C-POC 

  Quantile 

Variable 0.00 0.25 0.50 0.75 1.00 

CatAreaSqKm 0.08 1.22 3.51 9.82 39.07 

WsAreaSqKm 0.53 23.65 1,431.41 21,279.64 3,133,386.89 

MineDensCat 0.00 0.00 0.00 0.00 0.03 

MineDensWs 0.00 0.00 0.00 0.00 0.01 

PctAg2006Slp20Cat 0.00 0.00 0.00 0.30 4.12 

PctAg2006Slp10Cat 0.00 0.00 0.44 2.38 22.67 

PctAg2006Slp20Ws 0.00 0.01 0.24 0.41 4.12 

PctAg2006Slp10Ws 0.00 0.34 1.90 4.23 22.67 

CBNFCat 0.00 0.06 0.67 3.51 21.10 

FertCat 0.00 0.13 1.88 6.59 34.86 

ManureCat 0.00 0.00 0.05 0.87 29.89 

CBNFWs 0.00 0.43 1.82 5.57 16.21 

FertWs 0.00 1.84 3.92 11.33 32.42 

ManureWs 0.00 0.03 1.20 2.31 10.48 

BFICat 21.00 35.00 45.72 50.75 58.00 

BFIWs 29.11 40.17 45.84 49.13 53.55 

CanalDensCat 0.00 0.00 0.00 0.00 33.33 

CanalDensWs 0.00 0.00 0.00 0.01 33.33 

CoalMineDensCat 0.00 0.00 0.00 0.00 0.00 

CoalMineDensWs 0.00 0.00 0.00 0.00 0.07 

DamDensCat 0.00 0.00 0.00 0.00 0.61 

DamNIDStorCat 0.00 0.00 0.00 0.00 190,038.26 

DamNrmStorCat 0.00 0.00 0.00 0.00 166,706.83 

DamDensWs 0.00 0.00 0.01 0.02 0.66 

DamNIDStorWs 0.00 0.00 12,690.05 117,204.96 311,521.49 

DamNrmStorWs 0.00 0.00 8,908.38 68,575.88 193,021.40 

ElevCat 0.00 12.23 46.52 139.03 377.75 

ElevWs 6.32 195.73 348.00 413.73 941.66 

NPDESDensCat 0.00 0.00 0.00 0.00 0.16 

SuperfundDensCat 0.00 0.00 0.00 0.00 0.05 

TRIDensCat 0.00 0.00 0.00 0.00 0.34 

NPDESDensWs 0.00 0.00 0.00 0.00 0.00 

SuperfundDensWs 0.00 0.00 0.00 0.00 0.02 

TRIDensWs 0.00 0.00 0.00 0.01 0.34 

NPDESDensCatRp100 0.00 0.00 0.00 0.00 0.72 

TRIDensCatRp100 0.00 0.00 0.00 0.00 2.17 

NPDESDensWsRp100 0.00 0.00 0.00 0.00 0.01 

SuperfundDensWsRp100 0.00 0.00 0.00 0.00 0.01 

TRIDensWsRp100 0.00 0.00 0.00 0.01 0.03 

Al2O3Cat 1.40 9.08 10.97 13.00 16.00 

CaOCat 0.41 1.48 3.10 6.53 48.20 
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Fe2O3Cat 0.92 3.64 4.58 7.66 26.12 

K2OCat 0.32 1.69 2.09 2.38 2.82 

MgOCat 0.74 1.21 1.64 2.20 3.90 

Na2OCat 0.13 0.70 0.93 1.41 3.34 

P2O5Cat 0.08 0.14 0.17 0.38 2.97 

SCat 0.02 0.05 0.20 0.56 1.79 

SiO2Cat 7.11 54.56 59.10 65.20 79.84 

Al2O3Ws 4.30 8.65 9.92 11.98 15.22 

CaOWs 0.41 3.20 6.01 9.23 21.69 

Fe2O3Ws 1.98 4.16 4.88 5.92 12.10 

K2OWs 1.08 1.72 1.91 2.10 3.03 

MgOWs 0.76 1.72 2.48 2.85 5.09 

Na2OWs 0.13 0.88 1.04 1.50 3.06 

P2O5Ws 0.11 0.15 0.17 0.35 2.97 

SWs 0.02 0.06 0.24 0.37 1.79 

SiO2Ws 35.06 55.02 58.30 62.99 79.84 

NCat 0.01 0.05 0.15 0.61 1.27 

NWs 0.02 0.05 0.07 0.19 0.95 

HydrlCondCat 0.00 0.02 0.20 8.18 127.83 

HydrlCondWs 0.00 0.15 0.35 6.37 24.19 

CompStrgthCat 0.26 1.33 38.75 75.17 155.50 

CompStrgthWs 0.60 54.60 78.71 98.37 153.14 

CHYD_v2_1 0.89 0.93 0.96 0.98 1.00 

CCHEM_v2_1 0.44 0.61 0.75 0.81 0.91 

CSED_v2_1 0.90 0.95 0.96 0.98 1.00 

CCONN_v2_1 0.87 0.93 0.96 0.98 1.00 

CTEMP_v2_1 0.83 0.89 0.94 0.97 1.00 

CHABT_v2_1 0.78 0.91 0.94 0.96 1.00 

ICI_v2_1 0.27 0.46 0.54 0.68 0.87 

WHYD_v2_1 0.89 0.93 0.96 0.98 1.00 

WCHEM_v2_1 0.43 0.55 0.70 0.78 0.92 

WSED_v2_1 0.93 0.96 0.97 0.98 0.99 

WCONN_v2_1 0.93 0.95 0.97 0.98 0.99 

WTEMP_v2_1 0.88 0.93 0.95 0.97 0.99 

WHABT_v2_1 0.89 0.93 0.95 0.97 0.99 

IWI_v2_1 0.27 0.38 0.57 0.69 0.86 

AgKffactCat 0.00 0.00 0.01 0.07 0.18 

KffactCat 0.01 0.20 0.27 0.32 0.48 

AgKffactWs 0.00 0.01 0.05 0.09 0.20 

KffactWs 0.20 0.27 0.29 0.31 0.35 

PctNonCarbResidCat 0.00 0.00 0.00 0.00 100.00 

PctSilicicCat 0.00 0.00 0.00 0.00 100.00 

PctGlacTilLoamCat 0.00 0.00 0.00 4.98 100.00 

PctGlacTilCrsCat 0.00 0.00 0.00 0.00 100.00 

PctGlacLakeCrsCat 0.00 0.00 0.00 0.00 32.21 
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PctGlacLakeFineCat 0.00 0.00 0.00 0.00 100.00 

PctAlluvCoastCat 0.00 0.00 0.00 100.00 100.00 

PctWaterCat 0.00 0.00 0.00 0.00 74.14 

PctCarbResidWs 0.00 0.00 0.00 0.00 6.12 

PctNonCarbResidWs 0.00 0.00 0.00 27.16 100.00 

PctAlkIntruVolWs 0.00 0.00 0.00 0.00 2.33 

PctSilicicWs 0.00 0.00 0.00 0.98 67.57 

PctExtruVolWs 0.00 0.00 0.00 0.00 3.68 

PctColluvSedWs 0.00 0.00 0.00 0.00 30.34 

PctGlacTilClayWs 0.00 0.00 0.00 1.29 50.67 

PctGlacTilLoamWs 0.00 0.00 19.50 57.01 100.00 

PctGlacTilCrsWs 0.00 0.00 0.00 15.80 100.00 

PctGlacLakeCrsWs 0.00 0.00 0.00 3.53 55.22 

PctGlacLakeFineWs 0.00 0.00 0.00 4.04 28.76 

PctHydricWs 0.00 0.00 0.00 0.00 0.18 

PctEolCrsWs 0.00 0.00 0.00 0.82 4.19 

PctEolFineWs 0.00 0.00 0.00 0.00 6.65 

PctSalLakeWs 0.00 0.00 0.00 0.00 0.00 

PctAlluvCoastWs 0.00 0.00 1.85 11.19 100.00 

PctWaterWs 0.00 0.00 0.00 0.69 2.38 

MineDensWsRp100 0.00 0.00 0.00 0.00 0.00 

NABD_DensCat 0.00 0.00 0.00 0.00 0.31 

NABD_NIDStorCat 0.00 0.00 0.00 0.00 252,599.61 

NABD_NrmStorCat 0.00 0.00 0.00 0.00 103,486.18 

NABD_DensWs 0.00 0.00 0.01 0.01 0.66 

NABD_NIDStorWs 0.00 0.00 23,130.93 116,589.88 365,566.01 

NABD_NrmStorWs 0.00 0.00 9,441.89 77,490.82 245,611.01 

SN_2008Cat 79.75 540.75 573.26 605.97 725.08 

InorgNWetDep_2008Cat 0.83 3.78 4.11 4.32 5.33 

NH4_2008Cat 0.59 2.20 2.28 2.48 3.85 

NO3_2008Cat 1.65 8.58 10.41 11.30 13.28 

SN_2008Ws 111.16 464.48 581.33 623.39 699.05 

InorgNWetDep_2008Ws 1.12 3.78 4.18 4.47 4.93 

NH4_2008Ws 0.79 2.24 2.35 2.48 3.03 

NO3_2008Ws 2.18 7.29 10.66 11.51 13.35 

PctNonAgIntrodManagVegCat 0.00 0.00 0.20 1.73 29.31 

PctNonAgIntrodManagVegWs 0.00 0.28 0.72 3.08 31.64 

PctNonAgIntrodManagVegCatRp100 0.00 0.00 0.00 1.31 28.45 

PctNonAgIntrodManagVegWsRp100 0.00 0.20 0.56 2.79 28.45 

prG_BMMI 0.09 0.20 0.32 0.41 0.67 

Pestic97Cat 0.00 1.11 8.00 27.44 355.32 

Pestic97Ws 0.00 6.88 20.35 47.98 240.27 

Precip8110Cat 391.26 1,049.19 1,144.37 1,220.42 2,090.65 

Tmax8110Cat 12.28 14.42 16.26 20.95 25.68 

Tmean8110Cat 6.62 9.07 11.22 14.88 21.03 
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Tmin8110Cat 0.96 3.50 6.06 8.72 17.66 

Precip8110Ws 566.14 1,077.16 1,154.71 1,208.28 2,020.45 

Tmax8110Ws 11.56 13.02 14.89 19.37 22.16 

Tmean8110Ws 5.99 7.43 9.21 12.98 15.31 

Tmin8110Ws 0.43 1.70 3.44 6.30 9.52 

RdDensCat 0.00 1.97 3.03 5.92 14.73 

RdDensWs 1.15 1.45 1.68 2.33 7.42 

RdDensCatRp100 0.00 2.36 3.21 5.05 30.86 

RdDensWsRp100 1.24 1.55 1.82 2.37 7.26 

RdCrsCat 0.00 0.00 0.29 0.51 7.49 

RdCrsSlpWtdCat 0.00 0.00 0.00 0.00 0.27 

RdCrsWs 0.00 0.29 0.38 0.51 1.87 

RdCrsSlpWtdWs 0.00 0.00 0.01 0.01 0.06 

RunoffCat 54.00 390.36 560.20 714.00 1,517.00 

RunoffWs 54.57 360.51 644.94 710.04 1,511.46 

ClayCat 4.78 14.60 19.32 27.76 69.00 

SandCat 3.38 23.07 31.04 38.28 54.54 

ClayWs 5.01 12.36 18.74 25.52 35.08 

SandWs 20.32 27.64 31.66 40.67 54.54 

OmCat 0.18 0.80 1.30 2.07 36.20 

PermCat 1.96 4.22 7.99 12.92 29.03 

RckDepCat 86.16 130.62 145.61 152.37 152.40 

WtDepCat 2.40 64.27 104.31 143.00 182.88 

OmWs 0.18 0.86 1.22 1.91 4.40 

PermWs 2.46 5.01 6.50 8.67 17.91 

RckDepWs 71.54 120.79 126.61 138.91 152.40 

WtDepWs 52.23 100.81 123.23 151.05 181.83 

HUDen2010Cat 0.29 5.73 21.85 134.31 884.49 

PopDen2010Cat 0.51 11.75 45.99 265.08 1,657.76 

HUDen2010Ws 1.86 6.52 13.81 28.43 198.31 

PopDen2010Ws 3.36 12.69 27.12 61.88 893.83 

HUDen2010CatRp100 0.19 5.93 25.68 126.62 1,119.63 

PopDen2010CatRp100 0.43 12.36 48.46 255.13 1,959.97 

HUDen2010WsRp100 2.17 5.92 13.31 21.25 156.79 

PopDen2010WsRp100 3.46 13.16 24.88 46.42 773.46 

WetIndexCat 627.13 779.03 850.62 1,002.55 1,648.92 

WetIndexWs 604.32 740.77 779.37 814.31 935.44 

PctOwCat 0.00 0.00 2.87 19.08 100.00 

PctIceCat 0.00 0.00 0.00 0.00 0.00 

PctUrbOpCat 0.00 3.30 7.02 13.28 48.92 

PctUrbLoCat 0.00 0.38 3.13 10.84 23.12 

PctUrbMdCat 0.00 0.01 0.23 4.70 25.04 

PctUrbHiCat 0.00 0.00 0.01 1.79 11.52 

PctBlCat 0.00 0.00 0.00 0.11 15.77 

PctDecidCat 0.00 0.76 15.32 26.59 80.11 
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PctConifCat 0.00 0.65 3.31 17.68 44.55 

PctMxFstCat 0.00 0.12 1.28 5.30 39.80 

PctShrbCat 0.00 0.00 0.51 3.64 25.12 

PctGrsCat 0.00 0.00 0.05 0.55 18.92 

PctHayCat 0.00 0.00 2.28 10.80 54.79 

PctCropCat 0.00 0.00 1.40 5.97 34.21 

PctWdWetCat 0.00 0.75 3.23 7.50 54.82 

PctHbWetCat 0.00 0.00 0.59 1.91 82.85 

PctOwWs 0.00 0.12 0.94 1.72 4.94 

PctIceWs 0.00 0.00 0.00 0.00 0.01 

PctUrbOpWs 0.22 3.61 4.34 5.48 48.92 

PctUrbLoWs 0.00 0.41 1.22 1.87 13.51 

PctUrbMdWs 0.00 0.05 0.21 0.70 10.70 

PctUrbHiWs 0.00 0.00 0.07 0.21 5.10 

PctBlWs 0.00 0.00 0.10 0.29 1.16 

PctDecidWs 0.01 15.55 27.85 39.56 85.41 

PctConifWs 0.83 4.83 11.03 22.14 83.15 

PctMxFstWs 0.93 3.43 7.26 10.96 23.95 

PctShrbWs 0.00 1.23 2.69 6.87 54.39 

PctGrsWs 0.00 0.22 0.74 4.15 24.95 

PctHayWs 0.00 2.75 9.49 13.91 38.63 

PctCropWs 0.00 1.55 5.53 12.91 33.66 

PctWdWetWs 0.00 1.93 4.51 6.86 39.63 

PctHbWetWs 0.00 0.06 0.52 0.79 8.75 

PctOwCatRp100 0.00 0.00 0.17 1.52 6.53 

PctUrbOpCatRp100 0.00 4.57 7.46 16.87 48.53 

PctUrbLoCatRp100 0.00 0.33 3.90 11.74 33.54 

PctUrbMdCatRp100 0.00 0.00 0.53 7.48 26.87 

PctUrbHiCatRp100 0.00 0.00 0.00 0.84 43.35 

PctBlCatRp100 0.00 0.00 0.00 0.71 52.57 

PctDecidCatRp100 0.00 0.62 10.89 22.58 86.80 

PctConifCatRp100 0.00 0.00 4.34 10.98 43.65 

PctMxFstCatRp100 0.00 0.00 1.65 6.13 37.69 

PctShrbCatRp100 0.00 0.00 0.60 3.73 31.82 

PctGrsCatRp100 0.00 0.00 0.00 0.48 9.47 

PctHayCatRp100 0.00 0.00 0.83 4.27 38.43 

PctCropCatRp100 0.00 0.00 0.00 3.98 27.00 

PctWdWetCatRp100 0.00 1.22 10.37 21.80 83.77 

PctHbWetCatRp100 0.00 0.00 4.60 11.90 84.66 

PctOwWsRp100 0.00 0.00 0.18 0.26 1.54 

PctIceWsRp100 0.00 0.00 0.00 0.00 0.01 

PctUrbOpWsRp100 0.00 3.77 4.96 6.82 32.82 

PctUrbLoWsRp100 0.00 0.39 1.13 1.72 10.29 

PctUrbMdWsRp100 0.00 0.05 0.25 0.64 8.64 

PctUrbHiWsRp100 0.00 0.00 0.03 0.16 2.85 
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PctBlWsRp100 0.00 0.00 0.09 0.34 1.39 

PctDecidWsRp100 0.01 14.13 21.40 28.87 84.93 

PctConifWsRp100 0.00 4.89 9.40 22.90 82.23 

PctMxFstWsRp100 1.13 3.21 8.49 10.89 35.88 

PctShrbWsRp100 0.00 1.27 3.61 6.75 53.49 

PctGrsWsRp100 0.00 0.17 0.69 3.42 25.03 

PctHayWsRp100 0.00 1.98 6.95 10.42 39.46 

PctCropWsRp100 0.00 1.12 4.58 9.10 21.75 

PctWdWetWsRp100 0.00 4.83 13.19 19.48 50.76 

PctHbWetWsRp100 0.00 0.17 1.55 2.26 22.97 

PctFireCat 0.00 0.00 0.00 0.00 0.00 

PctFireWs 0.00 0.00 0.00 0.00 6.38 

PctFireWsRp100 0.00 0.00 0.00 0.00 6.18 

PctFrstLossCat 0.00 0.01 0.02 0.12 2.06 

PctFrstLossWs 0.00 0.03 0.08 0.28 2.28 

PctFrstLossWsRp100 0.00 0.02 0.05 0.12 1.88 

PctFrstLossCatRp100 0.00 0.00 0.02 0.08 2.45 

PctImpCat 0.00 0.44 1.78 10.66 34.33 

PctImpWs 0.08 0.39 0.85 1.53 15.97 

PctImpCatRp100 0.00 0.44 2.78 10.82 58.47 

PctImpWsRp100 0.00 0.42 0.89 1.38 11.68 

PrecipWs_Avg 458.79 1,132.47 1,254.13 1,332.98 1,864.97 

PrecipCat_Avg 287.59 1,209.21 1,254.13 1,372.35 1,919.26 

TmeanWs_Avg 5.89 7.30 8.94 12.74 15.61 

TmeanCat_Avg 6.35 8.73 10.17 15.03 21.33 

MWST 0.56 1.94 3.97 6.64 8.33 

MAST 9.55 10.70 11.19 14.58 18.16 

MSST 16.69 19.21 20.91 22.69 25.65 
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