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Abstract

UTILIZING DESIGN STRUCTURE FOR IMPROVING DESIGN SELECTION

AND ANALYSIS

By Ahlam Ali Alzharani

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2020.

Director: David J Edwards,

Professor, PhD. Program in Systems Modeling and Analysis

Recent work has shown that the structure for a design plays a role in the

simplicity or complexity for data analysis. To increase the knowledge of research in

these areas, this dissertation aims to utilize design structure for improving design

selection and analysis. In this regard, minimal dependent sets and block diagonal

structure are both important concepts that are relevant to the orthogonality of the

columns of a design. We are interested in finding ways to improve the data analysis

especially for active effect detection by utilizing minimal dependent sets and block

diagonal structure for a design.

We introduce a new classification criterion for minimal dependent sets to en-

hance existing criteria for design selection. The block diagonal structure of certain

nonregular designs will also be discussed as a means of improving model selection. In

addition, the block diagonal structure and the concept of parallel flats will be utilized

to construct three-quarter nonregular designs.

Based on the literature review on the effectiveness for the simulation study for
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slight the light on the success or failure of the proposed statistical method, in this

dissertation, simulation studies were used to evaluate the efficacy of our proposed

methods. The simulation results show that the minimal dependent sets can be used

as a design selection criterion, and block diagonal structure can also help to pro-

duce an effective model selection procedure. In addition, we found a strategy for

constructing three-quarters of nonregular designs which depend on the orthogonality

of the design columns. The results indicate that the structure of the design has an

impact on development the data analysis and design selections. On this basis, it

is recommended that analysts consider the structure of the design as a key factor

in order to improve the analysis. Further research is needed to determine more con-

cepts related to the structure of the design, which could help to improve data analysis.
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CHAPTER 1

INTRODUCTION

Section 1.1 desribes the background of this dissertation.

1.1 Motivation

The area of experimental design is an open and monumental area for research.

It has many applications in our lives, such as in the areas of economics, education,

manufacturing and medicine. In this situation, the existing area of study needs to

improve in order to keep pace with the requirements of the time and new research.

The areas of constructing and analyzing the design are active research areas in the

experimental design field. Until now, researchers have not come to an agreement on

the best way to do the analysis and constructing designs. Therefore, new approaches

and methods are still needed to develop these areas.

To avoid the complexity of the design analysis, the experimenter should be very

careful in choosing a design in the first step. Screening designs are widely used in the

first stage of an experiment to determine which of many factors have an impact on a

response variable. Usually, there are a large number of factors, but only a few of them

believed to be active. This fact refers to the concept of the effects’ sparsity ( Box and

Meyer, 1986, and Hamada and Wu, 2000 ). Having prior knowledge of active factors

has a big impact on reducing the cost and resources for the experiments, such that the

inactive factors will be removed, while the active factors will be focused in further

follow-up experiments. Furthermore, this step is very important since it provides

information about the final model or the follow up experiment. Most of the time, this
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screening experiment does not provide the final model due to ambiguities between the

columns of the effects for the design, such as the aliasing, or the confounding between

the effects.

The aliasing which is confounding between the columns of effects can not be

ignored. In fact, it makes the analysis more difficult. However, several researchers

advise to utilize these ambiguities (aliasing) to aid in the data analysis. Hamada and

Wu, 1992, and Chipman et al., 1997, advocated for utilizing the complex aliasing of

the Placket-Burman design for proposing an analysis strategy that turns this com-

plex aliasing into advantages for the Placket-Burman design (Plackett and Burman,

1946). In fact, the structure of the design, which includes the orthogonality of the

columns, run sizes, the number of factors, number of center runs and the replication

runs, etc, having a big impact on the appearance of the aliasing. Thus, understanding

the structure of a design helps with understanding the aliasing relation, which carries

implications for both design choice and data analysis. So, improving our understand-

ing of the structure and the properties of screening designs is actual, important for a

design based analysis.

Thus, this dissertation investigates how to improve the analysis of the design,

how to construct a new type of design, and how to provide a new model selection

by utilizing and understanding the structure of the design. We proceed with these

research questions with the following specific goals as outline below.

1.1.1 Classification of Minimal Dependent Sets for Design Selection and

Analysis

In the design of experiment (DOE) literature, we found that minimal dependent

sets (MDSs) help to understand model resolvability/discrimination and its impact on

active effect detection; they can be used as criterion for design selection. Based on
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that, one of the primary goals of this dissertation is to explore the effect of MDSs on

design analysis. Especially, we are focusing on study the relation between the MDSs

and active effects detection. To accomplish that, first we are looking for a method

to classify the MDSs for a design based on the characteristics of each MDS, such as

size and number of factors. Next, we investigate the impact of the classification of

MDSs on design selection and analysis. Based on selected designs for a specific run

size and a number of factors, we perform a simulation study to evaluate our MDSs

classification. Orthogonal and non-orthogonal designs will be considered.

1.1.2 Constructing Three-Quarter Nonregular Designs

Omitting a quarter of run size has been soundly investigated for regular design,

however less research has been devoted to this technique of construction of nonregular

designs. We are interested in constructing three-quarter designs of fractional factorial

nonregular design by using the blocking technique. Based on the work of John, 1964,

not all factorial effects allow for splitting the nonregular design into 4 equal blocks.

We will investigate which factorial effects allow for splitting non-regular designs into 4

equal blocks, which then allows the construction of three-quarter designs, and which

factorial effects do not. Moreover, we tend to study the properties of constructed

three-quarters design based on the concept of MDSs and the number of flats, also, the

criterion for ranking designs, such as the generalized resolution, estimation capacity

and aliasing length pattern will be discussed.

1.1.3 Utilizing the Block Diagonal Structure of Nonregular Designs for

Data Analysis

The fact that the factorial effects that belong to different blocks are uncorrelated

led to create a block diagonal structure for a design. This structure is an interesting
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feature of a design, especially for estimating different models. Some studies have

found that the structure of the design is used explicitly in the design analysis. Based

on that, we utilize this structure for the experimental design to propose a new model

selection strategy. Via a simulation study, the proposed method is applied over a

number of parallel flats designs. We also consider a comparison for the performance

of the proposed method and the usual standard model selection procedures.

1.2 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 provides a re-

view of needed background and fundamental topics that are used in this dissertation.

Chapters 3, 4, and 5 are the distinct research topics on construction and analysis

screening design by utilizing the structure of the screening design. Each of these

chapters contains a literature review of the topic relevant to that chapter. Further-

more, the contents for each chapter will be as follows: Chapter 3 is an in-depth

exploration of MDSs which are considered as a specific criteria for a screening de-

sign. In this chapter, we provide additional background and literature review for this

topic. As well, we present the methodology used to catalog MDSs. This chapter also

contains a simulation study protocol, the results of the simulation and a conclusion

for this topic.

Chapter 4 introduces the second topic for this dissertation, which is construction

of three-quarters designs. This chapter also includes an additional background and

literature reviews relevant to the covered topic. In addition, we provide the method-

ology used for the construction of three-quarters designs. This chapter also provides

several theorems, with proofs, that related to the constructed design.

Chapter 5 provides the third topic, which is utilizing the blocks diagonal design

for data analysis. As with the previous chapters, this chapter includes additional
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background information and literature review for the covered topic. Also, we present

a simulation study protocol and the results. Finally, Chapter 6 provides the final

concluding comments and discussion of future work.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this chapter we provide a review of needed background and fundamental topics that

are used in this dissertation. The purpose of this chapter is to introduce the reader

to factorial designs, and provide general guidance on how to construct, analyze, and

evaluate factorial designs. First, we present the basic information about two-level full

factorial designs and fractional factorial designs. Then, we provide a summary of the

criteria that are used for ranking and evaluating screening designs. Next, there is a

brief section on the classic model selection procedures.

2.1 Two-level Full and Fractional Factorial Designs

Screening an experiment is the first step for the experiment. It sheds light on

the important factors that impact the response. Effects that have influence on the

response are called active effects, and factors that are involved in one or more active

effects are called active factors. Having prior knowledge of active factors, has a big

impact on reducing the cost and resources of the experiment, since these active factors

will be the focus of the follow up experiment. Usually, two-level factorial designs are

widely used for screening an experiment.

Two-level factorial designs are represented as 2k, where k indicates the factors

for the experiment. It requires 2k treatment combinations. In this case, a design

that contains all the treatment combinations is called a full factorial design (Fisher,

1936). These types of designs are the most common designs, because it is easier

to analyze and construct. With two-level designs, each factor is investigated at two
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levels. Often, the notation (−1) indicates the low level and (+1) indicates the high

level. For example, an experiment runs to test the effects for temperature (A), and

time (B) on the surface of copper, such that A has two levels: 80 in low level and 100

in high level. Also, factor B has two levels, 5 minutes in low level and 10 minutes

in high level. For this experiment we have k=2 factors A and B. The two-level

full factorial design for this experiment is represented as 22, which has 4 treatment

combinations. In fact, all experimental points are represented by a matrix which is

called a design matrix and it is denoted by D. The number of the rows in the design

matrix is the number of the run size (n), and each row represents one-treatment

combination, and each column represents one-factor (Montgomery, 2017). The Full

factorial design matrix for the example above is shown in Table 1.

Table 1.: Full factorial design matrix 22



A B

−1 −1

−1 1

1 −1

1 1



The design matrix is actually the design that is being used by the experimenter

to run the experiment, which tells nothing about the model. With 2k full factorial

design, there is a 2k − 1 degree of freedom which is the number of the independent

variables that a model can be estimated. The regression model contains k main effects

(MEs),
(
k
2

)
two-factor interactions (2FIs),

(
k
3

)
three-factor interactions,

(
k
n

)
n-factor

interactions, and one term of k-factor interactions. The model matrix is a matrix

that includes all the columns of effects that are involved in the desirable model with
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an additional column for the intercept (Montgomery, 2017). For example, the first

order model for the design matrix to the above example is

yi = β0 + β1A+ β2B + ei, (2.1)

where yi is the response at the observation i, β1, β2 are the parameters, and ei is the

error. The model matrix for this model is shown in Table 2.

Table 2.: Model matrix for first order model



1 −1 −1

1 −1 1

1 1 −1

1 1 1



If we want to include the 2FIs in the model we do the first order model with the

interactions which has the equation

yi = β0 + β1A+ β2B + β12AB + ei (2.2)

. Then, the model matrix for this model is shown in Table 3

Table 3.: Model matrix for first order model with 2FIs



1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

1 1 1 1



In practice, there are limitations for the time and the resources that control
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the experiment. When k (number of factors) is too large it takes too long to run

all treatment combinations. This makes the full factorial design not desirable. For

example, in 28 full factorial design, there will be 256 treatment combinations, and

there are 255 degrees of freedom for estimating the effects. MEs have 8 degrees of

freedom,2FIs have 28 degrees of freedom, three-factor interactions have 56 degrees

of freedom, and the remaining high order interactions have 163 degrees of freedom,

which are most likely negligible. Therefore, by this scenario, full factorial design

involves a waste of resource (Gunst and Mason, 2009). Instead of the full factorial

design, the best and acceptable design to use for solving this problem is a fractional

factorial designs (FFDs).

2.1.1 Two-Level Fractional Factorial Designs

Box and Hunter, 1961, introduced the idea of FFDs, which uses a fraction of

the runs needed. FFDs are denoted by 2k−p such that 1
2p

is the fraction of the 2k

full factorial design, and p is the number of columns to be generated from the basic

columns of the design matrix. So, with FFDs we have basic factors and generator

factors. The number of the basic factor is k− p, and the number of generator factors

is p. The generator’s p determines, the defining relation for a design, which states

the relation between the effects. The run size for FFDs is equal to 2k−p. To construct

FFDs, we begin with full factorial in the basic factors, then we used these factors to

generate the additional factors. For example, 24−1 is a 1
2

of the 24. Clearly, we have

k = 4, p = 1, and, n= 8, which calculated from 24−1=23 = 8. With 24−1, there is

one generator p = 1, and three basic factors which are A,B, and C, and we need to

generate D, which could be the high order interactions to the other factors, such as

D = ABC. Thus, in this case, the defining relation is I = ABCD (Montgomery,

2017). The design matrix for 24−1 is shown in Table 4.
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Table 4.: Design matrix for 24−1



−1 −1 −1 −1

−1 −1 1 1

−1 1 −1 −1

−1 1 1 −1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

1 1 1 1



2.1.2 Aliasing

The trade-off by using the FFDs is the appearance of aliasing (bias) between the

effects. With FFDs, the degree of freedom for estimating the effects will be decreased,

then some effects are aliased with each other. So, when two columns of a design are

identical, the corresponding effects are aliased. For example, consider 24−1, with four

MEs denoted by A,B,C, and D, such that D = ABC. The defining relation is

I = ABCD, where I is the intercept. Thus, the alias structure for 24−1 is D = ABC,

A = BCD, B = ACD, C = ABD, AB = CD, AC = BD, AD = BC.
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Table 5.: Design matrix for 24−1 with aliasing relation D = ABC



A B C D ABC

−1 −1 −1 −1 −1

−1 −1 1 1 1

−1 1 −1 −1 −1

−1 1 1 −1 −1

1 −1 −1 1 1

1 −1 1 −1 −1

1 1 −1 −1 −1

1 1 1 1 1



From the design matrix in Table 5, clearly, the column for D is identical to

column ABC, hence D is aliasing with ABC. This aliasing doesn’t mean to imply

that the effect of D is the same as the interaction of ABC on the response. However,

the experiment cannot distinguish the ME, D, from the interaction, ABC. There are

two types of aliasing: fully aliasing or partial aliasing. Fully aliasing occurs in both

regular and non-regular designs, while, partial aliasing, occurs only in nonregular

designs (Wass, 2010).

2.1.2.1 Aliasing for Regular Design

Regular design has a simple aliasing structure. This aliasing is constructed from

the defining relation for 2k−p design, as shown earlier. The aliasing chains demonstrate

the correlation between any two effects. In the regular design, the aliasing between any

two effects is fully confounding or orthogonal. If any two effect are fully confounding,

that means the correlation between these effects are either +1 or −1. In this case,
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it is impossible to separate the impact of these effects on the response, which makes

the analysis more difficult. On the other hand, if any two effect are orthogonal, that

means the correlation between these effects is 0, i.e., each effect has its own impact

on the response without any dependency from other effect (Deng et al., 2000). For

example, consider 25−2 design. This design has 5 MEs, denoted by A,B,C,D,E.

Since p = 2, two of theseMEs are generated by the other MEs. They are generated

as D = AB and E = AC. Thus, the defining relation for this design is I = ABD =

ACE = BDCE. The term BDCE is the product of ABD, and ACE such that

ABD ∗ ACE = A2BDCE = BDCE, (A2 = 1). The aliasing structure is A =

BD = CE = ABDCE, B = AD = ABCE = DCE, C = ABCD = AE = BDE,

D = AB = ACDE = BCE, E = ABDE = AC = BDC, etc. We can see from the

aliasing structure that A = BD, so the correlation amount between A and BD is 1.

Thus, A is fully confounding with BD. Figure 1 shows the correlation between the

effects for this design. We can see that the effects are either fully confounding (red

cube) or orthogonal.
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Fig. 1.: Correlation for regular design 25−2

2.1.2.2 Aliasing for Nonregular Design

Nonregular design has a complex aliasing structure, since a partial aliasing be-

tween the effects is produced. In this case, the correlation between effects might be

equal to a fraction between 0, and ±1. Figure 2 shows the correlation of the effects

for non-regular design (Placket-Burmun with n = 12). With the partial aliasing, the

correlated effects are shared the impact on the response. Also, the impact of corre-

lated effects on the response can not be separated, but the level of the confounding

is less than the full confounding. For example, consider a design 25−2, such that

generators are D = 0.5(AB) and E = 0.5(AC), so that the defining relation will be

I = 0.5(ABD) = 0.5(ACE) = 0.25(BDCE). By multiplying the defining relation by

A,B,C,D,E, we will have the aliasing chains for theMEs as follows:

A = 0.5BD = 0.5CE = 0.5ABCDE
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B = 0.5AD = 0.5CE = 0.25DCE

C = 0.5ABDC = 0.5AE = 0.25BDE

D = 0.5AB = 0.5ACED = 0.25BCE

E = 0.5ABDE = 0.5AC = 0.25BDC.

From the aliasing chains we can see that the MEs have a partial aliasing with the

2FIs. For instance, A = 0.5BD, so the correlation amount here is 0.5, so A is partial

aliasing with BD.

Because of the complex aliasing in the nonregular design, it seems that this type

of design is not desirable, especially when there are some 2FIs which are potentially

are important. However, several researches have shown an interesting attention for

nonregular design. Hamada and Wu, 1992, represented that some interactions could

be detected by considering fractional nonregular design. Lin and Draper, 1992, and

Wang and Wu, 1995, investigated the projection properties of some small Placket-

Burman designs. Moreover, Wu, 1993, and Lin, 1993, constructed supersaturated

design by using the Hadmard matrix, which is relies heavily on partial aliasing.
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Fig. 2.: Correlation for nonregular design (Placket-Burman design)

2.2 Criteria for Ranking the Designs

In design of experiment (DOE) literature review, there are criteria for selecting

and ranking designs under a number of factors and run sizes. We will talk briefly

about some of these criteria in this section, due to the usefulness in using these criteria

to evaluate and rank the factorial designs.

2.2.1 Resolution

The complete defining relation for a design contains all the columns for a de-

sign that are equal to the identity. Each term in this defining relation I is called

a word. Each word has a number of letters, which is defined to be the length or

size for this word. In fact, the generators are considered to be the foundation for

the defining relation. To get the complete defining relation, we should consider the

words in the defining relation and the generalized interaction for these words. So,
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for a particular design, a defining relation will always have 2p − 1 words without

including I. The length of the words in defining relation determine the resolution

of the design. So, the resolution for a design is defined as the length for the short-

est word in the defining relation (Box and Hunter, 1961). For example, consider a

26−2, such that the generators are defined as E = ABC, and D = BCF . So, the

complete defining relation for this design is I = ABCE = BCDF = ADEF . The

last word in this defining relation, ADEF , is the product of the first two words, so

(ABCE) ∗ (BCDF ) = AB2C2EDF = AEDF . Consequently, the resolution for this

design is IV since the length of shortest word in the defining relation is 4 (Montgomery,

2017).

The FFDs have been classified by Box and Hunter, 1961, according to the design’s

ability for separating MEs and 2FIs as follows:

1. Resolution III designs. The MEs in these designs are not confounded with other

MEs, however, they are confounded with 2FIs.

2. Resolution IV designs. The MEs are clear of the other MEs and 2FIs, however,

the 2FIs are confounded with the other 2FIs.

3. Resolution V designs. Both MEs and 2FIs are confounded only with the high-

order interactions.

Clearly, the choice of generators affects the aliasing structure, which consequently

affects the resolution for a design. So, it is important to select the generators p, such

that we obtain a design with highest resolution. For instance, consider 26−2 design

with the generators E = ABC, F = BCD, the defining relation is I = ABCE =

BCDF = ADEF , so, this generators produce a design of resolution IV. If we select

the generators such as E = ABC, and F = ABCD, in this case, the defining relation
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is I = ABCE = ABCDF = DEF , and this defining relation determine a design of

resolution III (Montgomery, 2017).

High resolution is an attractive feature for a design. Thus, resolution V design

is the most desirable design, because both MEs and 2FIs are confounding with three

or higher order interactions, which are usually considered as negligible effects in the

analysis. Back to the previous example, the design that has defining relation I =

ABCE = ABCDF = DEF has resolution III. We can see, that the shortest word

,DEF , has length 3. Clearly from this word DEF , the MEs are not confounded

to other MEs, but it confounded with 2FIs, so D = EF , E = DF , F = DE.

While the defining relation, I = ABCE = BCDF = ADEF , is determined to be a

resolution IV design, so with this design, 2FIs are confounded with the other 2FIs.

For instance, from a word ABCE, we have AB = CE, BC = AE, BE = AC. In fact,

some time the resolution is insufficient to distinguish between the designs. If we have

that all candidate designs have the same resolution, in this case we need to consider

the word length pattern for the defining relation to each design. Let Ai(D) be the

number of word of length i, that involved the defining relation of design D. Then,

W (D) = A1, A2, A3, ..., Ak is called word length pattern. The design that minimizes

the number of words, which are of minimum length, is the desirable design, and it is

called a minimum aberration design (Montgomery, 2017).

2.2.2 Strength and Generalized Resolution

Tang and Deng, 1999, introduced strength in context with the orthogonality for

a design, such that the orthogonality implies that for every two columns of a design

matrix, a 22 occurs equally. The treatment combinations for 22 are represented by

(++), (−+), (+−), and (−,−). In general, let OA(n, k, t) represent an orthogonal

array containing symbols of +1 and −1, with n run size, k factors, and t strength.
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Strength t means in every set of t columns of the design matrix, a full factorial 2t

occurs equally. A design with strength 3 implies independent estimation of the MEs

from the 2FIs, while a design with strength 2 implies independent estimation for the

MEs from other MEs. Therefore, a design with resolution, r, has a strength t = r−1.

Note that the run size for a strength, t, design has to be divisible by 2t. Thus, a

design with 16, 20, 28, and 32 runs all have strength 2, but a design with 24 runs

either has strength 2 or strength 3 because it is divisible by 22 = 4 and 23 = 8. Note

that the concept of strength can be extended to the non-orthogonal designs. In this

case, the strength for these designs is less than 2 (Tang and Deng, 1999), (Mee et al.,

2017).

Let D represent a regular design, then j-interaction column is denoted as the

product for j main effects. The sum for this column is either ±n or 0. If the sum is

n, that means this column forms a full aliasing word, which means it is difficult to

estimate this column. However, if the sum is 0, that corresponds to the orthogonality,

which allows for estimating this column independently from other columns. For non-

regular design, this sum may take different values than ±n or 0, which indicates

partial aliasing among the columns of the design. Let J represent the absolute value

for the maximum number of the sum of j-interaction columns. Generalized resolution

is defined as GR(D) = t+(2−J/n), such that t is the strength of the design, and n is

the run size. According to generalized resolution, GR(D), a design with high GR(D)

is preferred (Deng and Tang, 1999), (Tang and Deng, 1999), (Mee et al., 2017).

2.2.3 Estimation Capacity

Estimation capacity, EC, was first introduced by Cheng et al., 1999. Cheng

et al., 2002, defined the estimation capacity as the total number of models con-

taining all the MEs, k, and g 2FIs. Mee et al., 2017, defined EC as a vector,
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(EC1, EC2, EC3..., ECg), of the proportions of estimable models with all the k, MEs

and 1, 2, ..., g 2FIs. Jones et al., 2009, illustrated that the estimation capacity is the

key characteristic of the supersaturated designs. They defined estimation capacity

for supersaturated designs, ECg, as

number of estimable g-terms main-effect models

total number of g-term main-effect models

such that ECg = 1, indicates that all models with all k MEs, and g 2FIs are estimable.

It is desirable for a design to have large values of all entries of the vector EC. For

example, consider 26−2 design with the generators E = ABC, F = BCD that was

shown earlier. The estimation capacity vector for this design equals

(EC1, EC2, EC3, EC4, EC5, EC6) = (1, 0.9143, 0.7473, 0.5275, 0.3037, 0.1279)

. This vector indicates the following: every possible model with k = 6 and one 2FI is

estimable since EC1 = 1; there are 105 possible models with six MEs and two 2FIs,

9 of these model are not estimable since EC2 equals 0.9143; there are 910 possible

models with six MEs and three 2FIs, 229 of these model are not estimable since

EC3 equals 0.7473; there are 8190 possible models with six MEs and four 2FIs, 3870

of these model are not estimable since EC4 equals 0.5275; there are 72072 possible

models with six MEs and five 2FIs, 50184 of these models are not estimable since

EC5 equals 0.3037; there are 5460 possible models with six MEs and six 2FIs, 4762

of these models are not estimable since EC6 equals 0.1279.

2.2.4 Projection Estimation Capacity (PEC), and Projection Information

Capacity (PIC)

Loeppky et al., 2007 defined projection estimation capacity as ρk(D) for a design,

D, to be the number of estimable models containing k MEs and their associated
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2FIs. So, it could be represented as a sequence, PEC (ρ1, ρ2, ..., ρg), where ρi is the

proportion of estimable models that contain i MEs and their associated 2FIs. Li

and Aggarwal, 2008, defined the PEC as an integer q, such that the second order

model is estimable for every subset of q factors. The design that has large values for

all the entries in the sequence is desirable. So, for comparing candidate designs, we

should select the design that is maximizing the entries (ρ1, ρ2, ..., ρg). The maximum

value for ρi is 1 which means every possible model with iMEs and associated2FIs are

estimable. For example, consider two designs 26−2, the first one with the generators

(E = ABC,F = BCD). We denote this design as 16.6.1. The second one has the

generators (E = ABC,F = ABCD), and we denote it as 16.6.2 (we showed these

designs earlier). The projection estimation capacity for these design is shown in Table

6.

Table 6.: The projection estimation capacity PEC for designs 16.6.1, and 16.6.2

Designs ρ1 ρ2 ρ3 ρ4 ρ5 ρ6
16.6.1 1 1 1 0.8 0 0

16.6.2 1 1 0.9500 0.7333 0.1667 0

Clearly from Table 6, we can see that design 16.6.1 outperforms design 16.6.2

with respect to PEC. The third entry of the PEC for 16.6.1 is 1, which is is larger

than the third entry for 16.6.2. That means every possible model with k=3 MEs and

associated 2FIs is estimable for design 16.6.1.

Sun, 1994, Li and Nachtsheim, 2000, and Mee et al., 2017 defined the Projection

Information Capacity (PIC) as augmenting EC with the mean D-efficiency across

all models of equal size.
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2.2.4.1 Generalized Alias Length Pattern

Generalized Alias Length Pattern, GALP, was first produced by Cheng et al.,

2008, as a measure of aliasing for 2FIs to strength 3 arrays. Mee, 2013, defined this

criterion as the main diagonal of the matrix (X ′X/n)2, where X is the model matrix

for the 2FIs model. The minimum values for GALP is 1, which indicates that the

ith element column of the matrix (X ′X/n) is uncorrelated with other columns of

(X ′X/n).

2.2.5 Minimal Dependent Sets

A minimal dependent set, or MDS, is a set of linearly dependent effects, such

that if one of these effects is removed, all the effects in the resulting subset become

linearly independent. Miller and Tang, 2012, defined the size of a MDS as the number

of effects that are contained in the MDS. For example, consider a fractional factorial

design with 6 factors and 16 runs. It is denoted as 26−2, such that the generators

define as

E = (1/2)[AD +BD + ACDBCD], F = (1/2)[ADBD + CD + ABCD].

This design has 3, 10, 5, 8, and 4 MDSs of size 5, 6, 7, 8, and 9, respectively. One

of the MDS of size 5 is {AD,AF,BD,BF,CE}. Based on the definition of MDS,

a model containing all these effects is not estimable, but if we remove one of these

effects, for example, if we remove AD, then a model containing {AF,BD,BF,CE}

is estimable. In this dissertation, in chapter 3, we will expand and investigate the

concept of the MDSs in more details.
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2.3 Model Selection

Model selection is an essential statistical technique, that simplifies the process of

selecting the best model from a set of candidate models. The basic and simple model

for data of observations yi, n > k is given by

yi = β0 +
m∑
j=1

βjxij + εi

where i = 1, 2, 3, ..., n, j = 1, 2, 3,..., k, such that n is the run size, and k is the

number of factors. xij represents the level of the factor xj at the run i and βj is the

parameter of factor xj, and it is assumed to not equal zero.

Various model selection procedures are founded. For example, all subset-selection

procedure, step wise regression which include forward selection and backward elimi-

nation, and dantzig selection. These model selections follow specific criteria for model

determination. For instance, R2, which defined as

R2 = 1− RSS

TSS

, where RSS = (y − (Xβ̂)T )(y − (Xβ)T ) is the residual sum of squares, and TSS =∑
(yi− ȳ)2 is the total sum of squares, which measure the variation in the data. R2 is

not an appropriate criterion, since it is increasing as the number of variables included

in the model is increasing. An alternative criterion is adjusted R2 (Wherry, 1931).

Adjusted R2 is given by

R2 = 1− RSS/(n− h− 1)

TSS/(n− 1)

, where n is the total number of observations, and h is the number of variables that

are included in the model. The difference between R2 and adjusted R2 is the degree

of freedom (n−h−1) in the numerator, and (n−1) in denominator. So, adjusted R2
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considers the reduction in the degrees of freedom for estimating the residual variance.

Another commonly used criterion is the Cp statistic (Mallows, 1973), which de-

fines as

Cp =
RSS

s2
− (n− 2p)

, where RSS is the residual sum of squares for a model, that contains p regression

coefficients, with the intercept term β0, and s2 is the mean square error for the full

factorial model. Furthermore, two commonly used criteria, are Bayesian Information

Criterion Schwarz et al., 1978, and Asymptotic Information Criterion Akaike, 1974.

They are defined as

AIC = n ln(RSS/n) + 2p

and

BIC = n ln(RSS/n) + p ln(n)

where, again, RSS is the residual sum of squares for a model, and p is the number

of regression coefficients in the model. These criteria (AIC and BIC) are the most

commonly criteria used in the stepwise regression (Wu and Hamada, 2011).

2.3.1 All Subset-Selection Procedure

All subset-selection procedure is one of the classical model selection procedures.

It aims to evaluate every possible subset of factors. For example, if we have three

independent variable x1, x2, and x3 for a dependent variable Y which is the response,

all possible simple linear models are as follows:

Y = β0 + ε

Y1 = β0 + β1x1 + ε1

Y2 = β0 + β2x2 + ε2
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Y3 = β0 + β3x3 + ε3

Y12 = β0 + β1x1 + β2x2 + ε12

Y13 = β0 + β1x1 + β3x3 + ε13

Y23 = β0 + β2x2 + β3x3 + ε23

Y123 = β0 + β1x1 + β2x2 + β3x3 + ε123

For three predictors, we have 8 = 23 models. In general, for h predictors, we have 2h

possible models.

2.3.2 Stepwise Regression

In fact, with a larger number of factors, the method of fitting a model for every

subset of factors is impossible. Stepwise is alternative procedure, which, depends on

sequentially adding or deleting the predictor (independent variable) xi to the given

model under a statistical value for the predictor, like mean squared error. The basic

idea is to compare a current model with the new model, that is obtained by adding

or deleting a predictor. Usually, the comparing of these two models conducts by

calculating the F-statistic, which is define by

RSScurrent mode −RSSnew model

RSSnew model/ν

where, RSS is the residual sum of squares, and ν is the degree of freedom of the RSS

of the new model. Stepwise regression has two main approaches:forward selection and

backward elimination.Wu and Hamada, 2011

2.3.2.1 Forward Selection Procedure

Forward selection procedure is a stepwise regression, which starts with a model

containing only the intercept, then sequential steps are started by adding one variable
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at a time. The added variable is the best choice based on a statistical criteria,

which could be lowest p-value, lowest AIC, highest adjusted R2, largest F statistic,

etc. After each step, a test is conducted on the new model for a selected statistical

criterion, and these steps are repeated until this criterion stops improving. In the end,

the selected variables will be the best selection for the final model (Wu and Hamada,

2011).

2.3.2.2 Backward Elimination Procedure

Backward elimination procedure is the opposite of forward selection. Instead of

starting with a small number of variables, which is the intercept with forward selec-

tion, backward elimination starts with the full model that contains all the variables.

Then, one insignificant variable is eliminated at a time, based on chosen criterion, and

then this process repeats until no more variable can be dropped (Wu and Hamada,

2011).

2.3.3 Dantzig Selection Procedure

Dantzig selector is a shrinkage estimator. It was introduced by Candes, Tao,

et al., 2007, as an estimator for model parameters for supersaturated design, where

the number of run size n is less than the number of factors, k. For Dantzig selector,

it should be assumed, that the true regression coefficients are sparse. Suppose we

have observations Y = X1β+ e, for k factors, n run size, X1 is the model matrix, β is

k ∗ 1 unknown parameter, and e is n ∗ 1 random error, where e ∼ N(0, σ2). Candes,

Tao, et al., 2007 proposed the Dantzig selector as a solution to the `1-regularization

problem

min‖β̃‖`1
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, such that β̃ ∈ Rk subject to

‖X1 ∗ r‖`∞ ≤ (1 + t−1)σ

where r is the residual vector Y −X1β̃, and t is a positive scalar.

Berk, 2008, showed the following formulation for dantzig selector

β̂ = min

k∑
j=1

|β|

subject to
n∑

i=1

|xijri|

for j = 1, 2, ..., k Berk, 2008, illustrated that the Dantzig selector uses the sum of the

absolute values of the regression coefficients as an argument. The formula provided

by Berk, 2008 aimed to minimizing the sum of the absolute values of the regression

coefficients, such that if this sum is equal to zero, the associated predictors are re-

moved from the analysis. Berk, 2008 advocated to restrict the amount
∑n

i=1 |xijri|

to a value λ. The main idea from restricted the amount
∑n

i=1 |xijri| is, that this

amount could captures any relation between the residual and each predictor. So,

when
∑n

i=1 |xijri| = 0, that means the predictor has no relation to the residual, while

if
∑n

i=1 |xijri| > 0, it means the predictor has relation with the residual and that will

introduced a bias. By restricted the amount
∑n

i=1 |xijri| to the value of λ, one can

introduce different levels of the relation between the predictors and the residuals, as

well different levels of bias for the estimated regression parameters Berk, 2008.

2.3.4 Group Lasso Procedure

Group lasso procedure introduced by Yuan and Lin, 2006 in order to allow for

selection of group of active effects. Consider the general regression problem with K
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factors:

Y =
K∑
j=1

Xkβk + ε,

where Y is a n× 1 vector, ε ∼ N(0, σ2I), Xk is a n× pk matrix corresponding to the

kth factor and βk is a coefficient vector. The group lasso defined as the solution to

1

2
‖Y −

∑ J∑
k=1

Xkβk‖2 + λ
K∑
k=1

‖βk‖Kk
,

where λ ≥ 0 is a tuning parameter, Kk is a positive definite matrices, and K is the

number of positive definite matrices.
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CHAPTER 3

CLASSIFICATION OF MINIMAL DEPENDENT SETS FOR DESIGN

SELECTION AND ANALYSIS

3.1 Introduction

A minimal dependent set (MDS) for a fractional factorial design is a set of linearly

dependent factorial effects, where if any one effect is removed from this set, the

factorial effects in the resulting subset are linearly independent. Previous work has

shown that the size of an MDS may have an impact on model discrimination and,

thus, can be utilized to develop criteria for design selection; MDS-resolution and MDS-

aberration are two examples. In this chapter, we investigate a new classification of

MDSs and its impact on design selection and analysis. Both orthogonal and non-

orthogonal designs will be considered. Via a simulation study, we see that as the

number of factors in an MDS increases, power for active effect detection also increases.

A screening experiment is often an important first step in experimentation in

order to determine which of many factors have an impact on a response variable of

interest. Factorial effects (such as main effects MEs), and two-factor interactions

(2FIs) that have a large impact on the response are called active effects and factors

that are involved in one or more active effects are called active factors.

Two-level fractional factorial designs (FFDs) are widely used for screening ex-

periments. Regular 2k−p FFDs (Box and Hunter, 1961; Fries and Hunter, 1980) are

easily the most common choice for screening experiments. These designs are straight-

forward to construct and have an aliasing structure that is well understood, in that

any two factorial effects are either orthogonal or fully aliased. Nonregular designs, on
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the other hand, have a more “complex” aliasing structure as factorial effects may be

partially aliased (neither fully confounded or orthogonal). Despite this, nonregular

designs offer considerable run size flexibility and have been shown to estimate more

models than regular designs (Wu and Hamada, 2011).

The analysis of screening designs is typically guided by three empirical principles

or regularities:

1. Effect sparsity: only a few of the many candidate factorial effects are truly

active,

2. Effect hierarchy: MEs are more likely to be active than 2FIs, and 2FIs are more

likely to be active than the three-factor interaction, and so forth,

3. Effect heredity: it is uncommon for an interaction to be active unless at least

one of the factors involved is an active ME. Strong heredity indicates that a 2FI

will be active only if both of its parent MEs are active. Weak heredity allows

for an active 2FI to have at least one parent ME that is active (Chipman, 1996).

Numerous criteria exist for ranking and selecting screening designs; for a review,

see Mee et al., 2017. One such criteria is based on the concept of minimal dependent

sets (MDSs). An MDS is a set of linearly dependent effects, such that if one of the

effects is removed, the remaining effects are estimable. Miller and Tang, 2012 showed

a set of vectors, V1, V2, ...Vm is an MDS if and only if Vm can be written as

Vm = a1V1 + a2V2 + .....am−1Vm−1

where a1, a2, ...am−1 are nonzero constants. As an example, consider a 26−2 nonregular

design with generators E = (1/2)[AD + BD + ACD − BCD] and F = (1/2)[AD −

BD + CD +ABCD] (Johnson and Jones, n.d.). This design has 30 MDSs involving
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MEs and 2FIs; 3 MDS of size 5, 10 of size 6, 5 of size 7, 8 of size 8, and 4 of size 9.

One MDS of size 5 is {D,AE,AF,BE,BF}. A model containing these five effects

is not estimable. However, if we remove, say, BE, then a model containing the MEs

and {D,AE,AF,BF} is now estimable.

The concept of MDSs was first introduced by Miller and Sitter, 2004 and was used

to evaluate partial aliasing of nonregular designs. Lin et al., 2008 also use MDS to

assess nonorthogonal foldover designs. Moreover, Edwards, 2011 compare and rank

semifoldover plans for orthogonal factorial designs based on the concept of MDSs.

Miller and Tang, 2012 compare designs based on the size of an MDS (i.e. the number

of factorial effects contained in an MDS). Miller and Tang, 2013 used MDSs to find

optimal supersaturated designs.

Miller and Sitter, 2005 illustrated that difficulties in distinguishing between mod-

els can be determined by the form of the linear dependencies among effects. For more

clarification, consider a 12-run nonorthogonal foldover design in 6 factors from Miller

and Sitter, 2005. One of the MDS for this design is {AB,AC,BF,CF} with the form

of the linear dependency given by cAB − cAC + cBF − cCF = 0, where c is a scalar

and 0 is a vector of zeros. Miller and Sitter, 2005 showed that if AB and AC are

active effects and the coefficients for these effects have same size but opposite signs,

then it may be difficult to distinguish a model containing {AB,AC} from a model

containing {BF,CF}. To see this, Miller and Sitter, 2005 illustrated a model of the

form y = 25 + 2A+ 2B + 2C + 2F + βABAB + βACAC + ε, where ε ∼ N(0, 1). Three

scenarios for the coefficients βAB, and βAC were considered: (a) βAB = 2, βAC = 2;

(b) βAB = 2, βAC = −4; and (c) βAB = 2, βAC = −2. It was shown that for (a) and

(b), a model that involves {AB,AC} is superior to other two-factors models that

were considered. For scenario (c), however, the model involving {AB,AC} has R2

equals to 0.975 while a model involving {BF,CF} has R2 equals to 0.974. Thus, it
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is difficult to distinguish between these two models.

In addition, Miller and Sitter, 2004 studied the difficulty of model discrimination

through the concept of MDSs. For example, consider Placket-Burman design with

n=12 and k=5 from Miller and Sitter, 2004. The MDSs for this design are as follows:

D + E + AB − AC −BD − CE,

C −D − AB − AD +BE + CE,

C + E − AC − AD −BD +BE,

B − C + AD + AE −BE − CD,

B −D − AB + AE − CD + CE,

B + E − AC + AE −BD − CD,

A− E + AC −BC +BD −DE,

A+D + AB −BC − CE −DE,

A+ C − AD −BC +BE −DE,

A+B + AE −BC − CD −DE.

Miller and Sitter, 2004 showed that the following five pair of 2FIs: (AB,CE),

(AC,BD), (AD,BE),(AE,CD), and (BC,DE) occur in 4 MDSs. Thus, if the true

model involves one of these pairs, then it may be difficult to distinguish it from four

other models. While, if the true model involves a pair of 2FIs that isn’t one of these

five pairs, then it may be difficult to distinguish it from only one other model. For

instance, a model containing {AB,CE} is difficult to distinguish from a model con-

taining (AC,BD), a model containing (AD,BE), a model containing (AE,CD), and

a model containing (BC,DE). On the other hand, a model containing (AB,DE) is
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difficult to distinguish from a model containing (BC,CE). In this case, MDSs help

to narrow down the set of the candidate models to identify the true model.

Lin et al., 2008 explored the relationship between MDS and resolvability, and

they showed that MDS for design provides a clearer assessment of the design’s ability

to distinguish computing models compared to resolvability. Lin et al., 2008 showed

that as the size of an MDS increases, its impact on model discrimination decreases.

The size of an MDS for a regular design is always 2. The factorial effects contained

in this MDS are fully confounding, thus, the correlation for these effects is either −1

or 1. In this case, this MDS may make a pair of models that could be impossible to

distinguish between. On the other hand, the size of an MDS for a nonregular design

differs from 2. The correlation for the factorial effects in this MDS is ±1 or ranges

in values between -1 and +1, which indicates partial aliasing. In this case, the MDS

tends to spread the correlation among the effects, which leads to an increase in the

design’s ability for estimating models. For example, consider this design where k=6,

and n=16, shown in Table 7.
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Table 7.: Design with k=6 factors, and n=16



−1 −1 −1 −1 1 −1

1 −1 −1 −1 −1 1

−1 1 −1 −1 −1 1

1 1 −1 −1 1 1

−1 −1 1 −1 1 1

1 −1 1 −1 −1 −1

−1 1 1 −1 −1 −1

1 1 1 −1 1 −1

−1 −1 −1 1 1 1

1 −1 −1 1 −1 −1

−1 1 −1 1 −1 −1

1 1 −1 1 1 −1

−1 −1 1 1 1 −1

1 −1 1 1 −1 1

−1 1 1 1 −1 1

1 1 1 1 1 1



This design has six MDS for the 2FI model. These MDSs are:

A−BE,

B − AE,

E − AB,

D + AD +BD − 2CF −DE,
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C + AC +BC − CE − 2DF,

F + AF +BF − 2CD − EF.

Clearly, three of these MDSs are of size 2 and three are of size 5. In Figure 3,

there are three off-diagonal elements corresponding to the following pairs of effects:

(A,BE), (B,AE), (E,AB). Obviously, the factorial effects in each of these pairs are

fully aliasing; consequently, three MDSs of size 2. With, for example, the MDS

{A,BE}, by MDS definition, a model containing the MEs and these effects is not

estimable. However, if we remove, say, A, then a model containing the MEs and BE

is now estimable. Thus, this MDS identifies two models that are indistinguishable.

Back to Figure 1, the remaining 12 off-diagonal elements correspond to three alias sets.

Each set involves one ME and four2FIs, such as (D,AD,BD,CF,DE). Therefore,

three MDSs of size 5 are produced. An MDS of size 5 identifies 5 models, each

containing one effect, where one might have a problem in distinguishing between two

models as shown earlier.
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Fig. 3.: MDSs of size 2, and 5 for the design in Table 7

Each MDS has its own special characteristics for the size and number of factors

involved. The question that arises is whether the number of factors that are involved

in the MDS has an impact on active effects detection. Mee et al., 2017 compared the

Estimation Capacity (EC), for two different designs with k=7 based on the concept

of MDSs. They showed that the superior design has 3 MDSs of size 8, such that 2

of these MDSs involve 7 factors. In contrast, the other design has 3 MDSs of size

6, where 2 of these MDSs involve only 5 factors. This work shows that there is

a difference between MDSs. This difference relates to the number of factors in the

MDS, which has an impact on the design’s ability for estimating models. Thus, in this

article, we suggest a new classification criterion for MDSs and investigate the ability
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of this criterion to distinguish designs with respect to their ability to identify active

effects. This criterion could be considered as a measurement for the design’s ability

of active effects detection, which aims to improve the design selection and analysis.

The remainder of this chapter is organized as follows. In Section 3.2, we provide a

review of the MDSs-criteria, which are MDS-word length pattern, MDS-resolution,

and MDS-aberration. In Section 3.3, we provide a new suggested classification for

MDSs that incorporates specific information regarding the number of factors and

effects in each MDS. Section 3.4 presents a simulation study and the results. Section

3.5 concludes the chapter.

3.2 Current MDSs Criteria

Lin et al., 2008 used the concept of MDSs to introduce MDS-resolution and MDS-

aberration. Edwards, 2011 compared and ranked semifoldover plans for orthogonal

designs based on MDS-resolution and MDS-aberration. To understand these criteria,

Lin et al., 2008 introduced MDS-word length pattern (MDS-wlp) (A1, A2, ...Ak) where

Ai represents the number of MDSs of size i. For example, if we have MDS-word length

pattern (0, 0, 0, 2, 5, 4), this indicates a design has no MDSs of size 1, 2, and 3, but

it has 2 MDSs of size 4, 5 MDSs of size 5 and 4 MDSs of size 6. MDS-resolution is

defined to be the smallest size MDS of a design. For instance, MDS-resolution for

a design with MDS-word length pattern represented by (0, 0, 0, 2, 5, 4) is 4. MDS-

aberration depends on sequential minimization of the entries for MDS-word length

pattern. For example, if two designs have sequences of MDS-word length pattern, as

follows:

(A11 , A21 , A31 , ..., Aj1 , ..., Am1),

(A12 , A22 , A32 , ..., Aj2 , ..., Am2),
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where Aj1,2 is the number of MDSs of size j for design 1 and 2, respectively, then

the design that has smallest entry, Aj, is a less MDS-aberration design. In contrast,

a design is said to have a minimum MDS-aberration if there is no design which has

less MDS-aberration than this design. For example, if we consider MDS-word length

pattern as follows (0, 0, 1, 0, 2), and (0, 0, 1, 1, 3), both of these MDS-word length

patterns represent designs which have MDS-resolution 3. However, the fourth entry

in the first sequence is less than the fourth entry for the second sequence. Therefore,

the design with the first MDS-word length pattern is the best based on the MDS-

aberration.

From the work of Mee et al., 2017, consider orthogonal and nonorthogonal designs

with k=7 and n=20 that are shown in Table 8. Orthogonal designs denote as 20.7.1,

20.7.2, and 20.7.3, and nonorthogonal designs denote as 20.7BayesD, 20.7PEC, and

20.7MEPI. Design 20.7BayesD is Bayesian D-optimal design with k=7 and n=20

(DuMouchel and Jones, 1994). 20.7PEC is projection estimation capacity optimal

design with k=7 and n=20, which seek, to optimize evaluation of models with all the

MEs and all the 2FIs in subsets of factors (Smucker and Drew, 2015). 20.7MEPI is

the ME plus interaction optimal design with k=7 and n=20, which tends to optimize

evaluation of models with all the MEs and a number of selected 2FIs (DuMouchel

and Jones, 1994; Smucker and Drew, 2015).
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Table 8.: Orthogonal and non-orthogonal designs

20.7.1 20.7.2 20.7.3

−1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 1 1
−1 −1 −1 −1 1 −1 1
−1 −1 1 1 −1 −1 1
−1 −1 1 1 1 1 −1
−1 1 −1 1 −1 −1 1
−1 1 −1 1 1 1 −1
−1 1 1 −1 −1 1 −1
−1 1 1 −1 1 −1 −1
−1 1 1 1 1 1 1
1 −1 −1 1 −1 1 −1
1 −1 −1 1 1 −1 −1
1 −1 1 −1 −1 1 −1
1 −1 1 −1 1 1 1
1 −1 1 1 1 −1 1
1 1 −1 −1 1 −1 −1
1 1 −1 −1 1 1 1
1 1 −1 1 −1 1 1
1 1 1 −1 −1 −1 1
1 1 1 1 −1 −1 −1





−1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 1 1
−1 −1 −1 −1 1 −1 1
−1 −1 1 1 −1 −1 1
−1 −1 1 1 1 1 −1
−1 1 −1 1 −1 −1 −1
−1 1 −1 1 1 1 −1
−1 1 1 −1 −1 1 1
−1 1 1 −1 1 1 −1
−1 1 1 1 1 −1 1
1 −1 −1 1 −1 1 −1
1 −1 −1 1 1 −1 1
1 −1 1 −1 −1 1 −1
1 −1 1 −1 1 −1 −1
1 −1 1 1 1 1 1
1 1 −1 −1 1 −1 −1
1 1 −1 −1 1 1 1
1 1 −1 1 −1 1 1
1 1 1 −1 −1 −1 1
1 1 1 1 −1 −1 −1





−1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 1 1 1
−1 −1 1 1 −1 −1 1
−1 −1 1 1 1 1 −1
−1 1 −1 1 −1 1 1
−1 1 −1 1 1 −1 −1
−1 1 1 −1 −1 1 1
−1 1 1 −1 1 1 −1
−1 1 1 1 1 −1 1
1 −1 −1 1 −1 1 −1
1 −1 −1 1 1 1 1
1 −1 1 −1 −1 1 1
1 −1 1 −1 1 −1 1
1 −1 1 1 1 −1 −1
1 1 −1 −1 1 −1 1
1 1 −1 −1 1 1 −1
1 1 −1 1 −1 −1 1
1 1 1 −1 −1 −1 −1
1 1 1 1 −1 1 −1



20.7BayesD 20.7PEC 20.7MPEI

1 1 −1 −1 −1 −1 −1
1 −1 1 1 1 1 −1
−1 1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 −1
1 −1 1 −1 −1 1 −1
1 −1 −1 1 1 −1 −1
−1 −1 1 −1 −1 −1 1
1 1 −1 1 1 −1 1
−1 1 −1 1 −1 1 −1
1 −1 1 −1 1 1 1
1 1 1 1 −1 1 1
1 −1 −1 1 −1 −1 1
−1 −1 −1 −1 −1 1 −1
1 1 −1 −1 −1 1 1
−1 1 1 1 1 1 −1
1 1 1 −1 1 −1 −1
−1 1 1 1 −1 −1 1
−1 −1 −1 −1 1 −1 1
−1 −1 −1 1 1 1 1
−1 1 −1 −1 1 1 −1





1 −1 −1 1 −1 1 1
−1 1 −1 1 −1 1 −1
1 1 1 1 1 1 −1
1 −1 1 1 1 1 −1
1 1 1 −1 −1 1 1
1 −1 −1 −1 1 −1 1
−1 1 1 −1 1 1 1
1 −1 1 1 1 1 1
−1 1 1 1 1 −1 −1
1 1 −1 −1 −1 1 −1
−1 1 1 −1 −1 −1 −1
−1 −1 −1 −1 −1 1 −1
−1 −1 −1 1 1 −1 1
1 1 1 1 −1 −1 1
1 −1 −1 1 −1 −1 −1
−1 −1 −1 1 1 1 −1
1 1 −1 1 1 −1 −1
1 −1 1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1 1
−1 −1 1 1 −1 1 −1





1 1 1 −1 −1 1 1
−1 −1 −1 −1 −1 −1 −1
−1 1 1 −1 1 −1 −1
−1 −1 1 −1 1 1 1
1 1 −1 1 −1 −1 −1
1 1 −1 −1 1 1 −1
−1 1 1 1 −1 1 −1
1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1
1 −1 1 −1 −1 1 −1
−1 1 1 −1 −1 −1 1
−1 −1 1 1 −1 −1 1
−1 −1 −1 1 1 1 −1
1 −1 1 1 1 −1 −1
−1 1 −1 1 1 −1 1
1 −1 −1 −1 −1 1 1
1 1 1 1 1 1 1
1 −1 −1 1 1 1 1
−1 1 −1 1 −1 1 1
−1 1 −1 −1 −1 1 −1



The MDS-word length pattern, and the MDS-resolution for designs in Table 8 are

given in Table 9. For the orthogonal designs, both design 20.7.1 and 20.7.2 outperform

design 20.7.3 based on MDS-resolution. They both have maximum value for MDS-

resolution, which equals to 8. In this case, we need to look for MDS-aberration

for these designs, since MDS-resolution does not help to distinguish these designs.

Based on MDS-aberration, design 20.7.1 is the best, since it has the least number

of MDSs of size 8. On the other hand, design 20.7PEC has the maximum value for

MDS-resolution among non-orthogonal designs. Thus, it is the winning design among

other non-orthogonal designs and also, among all the designs (orthogonal and non-
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orthogonal). Although, 20.7PEC is the best design based on the MDS-resolution but

it may not be the best design for detection the active effects, Mee et al., 2017 showed

that 20.7.1 is the recommended design on detective the active effects.

Table 9.: MDS word length pattern, and MDS-resolution for the designs in Table 8

Design MDS word length pattern MDS-resolution
20.7.1 (0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 4, 26, 45, 118, 286, 1001, 3327, 326, 71776, 372469) 8
20.7.2 (0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 2, 22, 30, 97, 297, 912, 3286, 14472, 73360, 428009) 8
20.7.3 (0, 0, 0, 0, 0, 4, 0, 11, 2, 29, 12, 112, 220, 762, 1718, 5657, 20072, 65300, 221300) 6

20.7 BayesD (0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 5, 20, 56, 138, 376, 1338, 5330, 23829, 129439) 9
20.7MPEI (0, 0, 0, 0, 0, 10, 0, 5, 2, 17, 8, 17, 21, 32, 51, 201, 605, 2235, 7157, 22235) 6
20.7PEC (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 9, 15, 39, 112, 338, 1405, 6593, 38654, 301524) 10

Not in all cases of comparison between designs, MDS-resolution and MDS-

aberration are able to distinguish between designs. Consider the following situation:

if we have two designs with MDS word-length pattern, as shown below:

(A11 , A21 , A31 , ..., Aj1 , ..., Am1),

(A12 , A22 , A32 , ..., Aj2 , ..., Am2),

where, Aj1 = Aj2 , such that Aj1 , and Aj2 is the number of MDSs of size j for design

1, and 2 respectively. Then, the question that arises is, which design is better?

Thus, there is still a need to explore and develop new features for MDSs. It seems

useful to explore the number of factors in MDSs, especially when comparing designs

that have minimum MDS aberrations. Lin et al., 2008 showed that the small MDS

has a destructive impact on the model discrimination, more than the large MDS.

Investigating the influence of the number of factors that are involved in each MDS of

a design can easily lead to similar thoughts. What is the difference between an MDS

which has a greater number of factors, and another MDS which has fewer factors?

In particular, what effect does this difference have on active effect detection? These

questions led to the establishment of a new classification for MDSs that incorporates
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specific information regarding the number of factors and effects in an MDS. The next

section provides the new suggested classification of MDSs.

3.3 Classification Suggested for the MDSs

Our purpose in this chapter is to suggest a new classification criterion for MDSs

and investigate the ability of this criterion to distinguish designs with respect to

their ability to identify active effects. To achieve this aim, we provide a classification

for the MDSs that focuses on the appearance of the factors at each MDS. We only

consider MDSs that involve MEs and 2FIs, since they are the most important effects.

Our classification tends to divide an MDS into 2 subsets. The first subset contains

only MEs, and the second subset contains only 2FIs. Then, we count the common

factors among MEs and 2FIs subsets, the unique factors that appeared at the MEs

subset, and the unique factors that appeared at the 2FIs subset. Thus, an MDS can

be represented as h : (l,m, f), where

1. h represents the size of an MDS.

2. l represents the number of common factors that appear in the MEs and 2FIs

subsets.

3. m represents the number of factors that appear only in MEs subset.

4. f represents the number of factors that appear only in 2FIs subset.

For example: consider design 20.7.1, shown in Table 2. One of its MDSs of size 12

is {A,B,C,G,AD,BC,BE,CF,DG,EF,EG, FG}. Clearly, this MDS contains two

subsets. The first one is {A,B,C,G}, which represents the MEs subset, and the sec-

ond one is {AD,BC,BE,CF,DG,EF,EG,FG} , which represents the 2FIs subset.

The MEs subset contains 4 factors, while the2FIs subset contains 7 factors. There
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are four common factors between the MEs and 2FIs subsets {A,B,C,G}. There is

no factor that showed up only at the MEs subset. There are 3 factors that appeared

only at 2FIs subset {D,E, F}. Thus, this MDS of size 12 represented as 12 : (4, 0, 3).

Also, consider another MDS for design 20.7.3 of size 6 {AE,AG,BF,BG,CE,CF}.

This MDS does not have MEs. All the factorial effects are 2FIs. Therefore, there are

no common factors between the MEs and 2FIs subsets. The number of factors that

show up only at the MEs subset is zero, and the number of factors that show up only

at the 2FIs subset is 6. Thus, this MDS represented as 6 : (0, 0, 6). For orthogonal

and non-orthogonal designs, introduced earlier in Section 2, there are a variety of

MDS sizes and types. Tables 10 and 11 list the MDSs classifications of these designs,

respectively. We used R software to generate code for MDSs classification which is

shown in the Appendix section for this chapter. In this regards, we used the circuits

function in the software 4ti2 team, n.d. to generate the MDSs for the MEs and 2FIs

for a design.
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Table 10.: The categorization for MDSs to orthogonal designs that are shown in
Table 8

20.7.1 20.7.2 20.7.3
h:(l,m,f) number of h:(l,m,f)
8:( 2, 0, 5) 1
10:( 2, 0, 5) 4
10:( 4, 0, 1) 2
11:( 0, 1, 5) 1
11:( 1, 0, 6) 2
11:( 4, 0, 2) 1
12:( 0, 0, 6) 1
12:( 0, 1, 6) 2
12:( 2, 0, 5) 14
12:( 3, 0, 4) 4
12:( 4, 0, 3) 4
12:( 4, 1, 2) 1
13:( 1, 0, 6) 8
13:( 2, 0, 5) 8
13:( 3, 0, 4) 8
13:( 4, 0, 3) 18
13:( 5, 0, 2) 1
13:( 6, 0, 1) 2
14:( 0, 1, 6) 2
14:( 2, 0, 5) 35
14:( 3, 0, 4) 40
14:( 4, 0, 3) 20
14:( 4, 1, 2) 1
14:( 5, 0, 2) 12
14:( 6, 0, 1) 6
14:( 7, 0, 0) 2
15:( 0, 0, 7) 2
15:( 1, 0, 6) 11
15:( 2, 0, 5) 30
15:( 3, 0, 4) 90
15:( 4, 0, 3) 89
15:( 5, 0, 1) 2
15:( 5, 0, 2) 29
15:( 5, 1, 1) 2
15:( 6, 0, 1) 23
15:( 7, 0, 0) 8
16:( 1, 0, 6) 9
16:( 2, 0, 5) 83
16:( 2, 1, 4) 4
16:( 3, 0, 4) 338
16:( 4, 0, 2) 2
16:( 4, 0, 3) 319
16:( 4, 1, 2) 2
16:( 5, 0, 2) 167
16:( 6, 0, 0) 2
16:( 6, 0, 1) 63
16:( 6, 1, 0) 4
16:( 7, 0, 0) 8
17:( 0, 0, 7) 2
17:( 1, 0, 6) 33
17:( 1, 1, 5) 1
17:( 2, 0, 4) 4
17:( 2, 0, 5) 130
17:( 2, 1, 4) 2
17:( 3, 0, 4) 646
17:( 3, 1, 3) 4
17:( 4, 0, 3) 1300
17:( 4, 1, 2) 2
17:( 5, 0, 1) 6
17:( 5, 0, 2) 875
17:( 5, 1, 1) 18
17:( 6, 0, 1) 270
17:( 6, 1, 0) 2
17:( 7, 0, 0) 32
18:( 1, 0, 6) 12
18:( 2, 0, 5) 314
18:( 3, 0, 4) 2000
18:( 4, 0, 3) 4736
18:( 5, 0, 1) 4
18:( 5, 0, 2) 4686
18:( 5, 1, 1) 4
18:( 6, 0, 1) 1890
18:( 6, 1, 0) 6
18:( 7, 0, 0) 272
19:( 1, 0, 6) 48
19:( 2, 0, 5) 798
19:( 3, 0, 4) 5892
19:( 4, 0, 2) 4
19:( 4, 0, 3) 18040
19:( 4, 1, 2) 12
19:( 5, 0, 1) 4
19:( 5, 0, 2) 27561
19:( 5, 1, 1) 57
19:( 6, 0, 1) 16034
19:( 6, 1, 0) 16
19:( 7, 0, 0) 3310
20:( 1, 0, 6) 48
20:( 2, 0, 5) 2132
20:( 3, 0, 4) 16006
20:( 4, 0, 3) 64470
20:( 4, 1, 2) 5
20:( 5, 0, 1) 1
20:( 5, 0, 2) 133252
20:( 5, 1, 1) 119
20:( 6, 0, 0) 1
20:( 6, 0, 1) 121517
20:( 6, 1, 0) 158
20:( 7, 0, 0) 34760

h:(l,m,f) number of h:(l,m,f)
8:( 2, 0, 5) 3
10:( 4, 0, 1) 2
11:( 0, 1, 6) 1
11:( 4, 0, 2) 1
12:( 0, 0, 7) 3
12:( 1, 0, 6) 6
12:( 2, 0, 5) 8
12:( 4, 0, 3) 4
12:( 4, 1, 2) 1
13:( 1, 0, 6) 4
13:( 2, 0, 5) 8
13:( 3, 0, 4) 6
13:( 4, 0, 3) 8
13:( 5, 0, 2) 2
13:( 6, 0, 1) 2
14:( 1, 0, 6) 16
14:( 2, 0, 5) 8
14:( 3, 0, 4) 18
14:( 4, 0, 3) 39
14:( 4, 1, 2) 1
14:( 5, 0, 2) 14
14:( 6, 0, 1) 1
15:( 1, 0, 6) 25
15:( 2, 0, 5) 68
15:( 2, 1, 4) 2
15:( 3, 0, 4) 82
15:( 3, 1, 3) 2
15:( 4, 0, 3) 80
15:( 5, 0, 2) 36
15:( 6, 0, 1) 2
16:( 1, 0, 6) 16
16:( 2, 0, 5) 99
16:( 3, 0, 4) 224
16:( 4, 0, 2) 2
16:( 4, 0, 3) 352
16:( 4, 1, 2) 2
16:( 5, 0, 2) 160
16:( 6, 0, 1) 53
16:( 7, 0, 0) 4
17:( 1, 0, 6) 22
17:( 2, 0, 4) 4
17:( 2, 0, 5) 308
17:( 3, 0, 4) 850
17:( 4, 0, 2) 2
17:( 4, 0, 3) 1078
17:( 4, 1, 2) 4
17:( 5, 0, 1) 8
17:( 5, 0, 2) 754
17:( 5, 1, 1) 8
17:( 6, 0, 1) 234
17:( 6, 1, 0) 2
17:( 7, 0, 0) 12
18:( 1, 0, 6) 26
18:( 2, 0, 5) 630
18:( 3, 0, 4) 2448
18:( 3, 1, 3) 4
18:( 4, 0, 3) 4548
18:( 4, 1, 2) 8
18:( 5, 0, 1) 4
18:( 5, 0, 2) 4497
18:( 5, 1, 1) 20
18:( 6, 0, 1) 2094
18:( 6, 1, 0) 4
18:( 7, 0, 0) 189
19:( 1, 0, 6) 12
19:( 2, 0, 5) 994
19:( 3, 0, 4) 6556
19:( 4, 0, 2) 4
19:( 4, 0, 3) 18318
19:( 4, 1, 2) 8
19:( 5, 0, 1) 4
19:( 5, 0, 2) 27698
19:( 5, 1, 1) 68
19:( 6, 0, 1) 17344
19:( 6, 1, 0) 20
19:( 7, 0, 0) 2334
20:( 2, 0, 5) 362
20:( 3, 0, 4) 15172
20:( 4, 0, 3) 79630
20:( 4, 1, 2) 8
20:( 5, 0, 1) 4
20:( 5, 0, 2) 152914
20:( 5, 1, 1) 162
20:( 6, 0, 0) 15
20:( 6, 0, 1) 134511
20:( 6, 1, 0) 210
20:( 7, 0, 0) 45021

h:(l,m,f) number of h:(l,m,f)
6:( 0, 0, 6) 4
8:( 0, 0, 6) 3
8:( 2, 0, 5) 8
9:( 2, 0, 5) 2
10:( 0, 0, 7) 6
10:( 2, 0, 5) 20
10:( 4, 0, 1) 3
11:( 2, 0, 5) 12
12:( 0, 0, 6) 6
12:( 0, 0, 7) 6
12:( 2, 0, 5) 70
12:( 3, 0, 4) 8
12:( 4, 0, 3) 22
13:( 2, 0, 5) 120
13:( 2, 1, 4) 4
13:( 3, 0, 4) 46
13:( 4, 0, 3) 50
14:( 2, 0, 5) 248
14:( 3, 0, 4) 87
14:( 3, 1, 3) 4
14:( 4, 0, 2) 30
14:( 4, 0, 3) 238
14:( 4, 1, 2) 4
14:( 4, 2, 1) 2
14:( 5, 0, 2) 108
14:( 6, 0, 1) 41
15:( 0, 0, 7) 24
15:( 2, 0, 5) 398
15:( 2, 1, 4) 4
15:( 3, 0, 4) 260
15:( 3, 1, 3) 4
15:( 4, 0, 3) 704
15:( 4, 1, 2) 4
15:( 5, 0, 2) 314
15:( 6, 0, 1) 4
15:( 7, 0, 0) 2
16:( 2, 0, 5) 638
16:( 2, 1, 4) 4
16:( 3, 0, 4) 808
16:( 3, 1, 3) 20
16:( 4, 0, 3) 2310
16:( 4, 1, 2) 24
16:( 5, 0, 2) 1522
16:( 5, 1, 1) 8
16:( 6, 0, 1) 272
16:( 7, 0, 0) 51
17:( 0, 0, 7) 6
17:( 2, 0, 5) 794
17:( 2, 1, 4) 8
17:( 3, 0, 4) 1846
17:( 3, 1, 3) 12
17:( 4, 0, 3) 6678
17:( 4, 1, 2) 100
17:( 5, 0, 1) 36
17:( 5, 0, 2) 7480
17:( 5, 1, 1) 88
17:( 6, 0, 1) 2694
17:( 6, 1, 0) 22
17:( 7, 0, 0) 308
18:( 2, 0, 5) 926
18:( 3, 0, 4) 2136
18:( 4, 0, 2) 12
18:( 4, 0, 3) 12048
18:( 4, 1, 2) 152
18:( 5, 0, 1) 12
18:( 5, 0, 2) 27822
18:( 5, 1, 1) 248
18:( 6, 0, 0) 12
18:( 6, 0, 1) 18310
18:( 6, 1, 0) 134
18:( 7, 0, 0) 3488
19:( 4, 0, 3) 18512
19:( 4, 1, 2) 80
19:( 5, 0, 1) 12
19:( 5, 0, 2) 75936
19:( 5, 1, 1) 396
19:( 6, 0, 0) 60
19:( 6, 0, 1) 90242
19:( 6, 1, 0) 588
19:( 7, 0, 0) 35474
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Table 11.: The categorization for MDSs to non-orthogonal designs that are shown
in Table 3

20.7 BayesD 20.7PEC 20.7MEPI
h:(l,m,f) number of h:(l,m,f)
9:( 2, 0, 5) 1
10:( 2, 0, 5) 2
11:( 1, 0, 6) 1
11:( 2, 0, 5) 1
11:( 4, 0, 2) 1
11:( 4, 0, 3) 2
12:( 2, 0, 5) 3
12:( 3, 0, 4) 2
12:( 3, 1, 3) 1
12:( 4, 0, 2) 1
12:( 4, 0, 3) 4
13:( 2, 0, 5) 3
13:( 3, 0, 4) 8
13:( 4, 0, 3) 5
13:( 5, 0, 2) 2
13:( 6, 0, 1) 2
14:( 2, 0, 5) 8
14:( 3, 0, 4) 24
14:( 4, 0, 3) 20
14:( 5, 0, 1) 1
14:( 5, 0, 2) 3
15:( 0, 0, 7) 1
15:( 2, 0, 5) 9
15:( 3, 0, 4) 36
15:( 4, 0, 3) 58
15:( 5, 0, 2) 29
15:( 6, 0, 1) 5
16:( 1, 0, 6) 1
16:( 2, 0, 5) 18
16:( 3, 0, 4) 90
16:( 4, 0, 2) 3
16:( 4, 0, 3) 128
16:( 4, 1, 2) 1
16:( 5, 0, 2) 108
16:( 6, 0, 1) 26
16:( 7, 0, 0) 1
17:( 1, 0, 6) 3
17:( 2, 0, 5) 46
17:( 3, 0, 4) 236
17:( 4, 0, 2) 1
17:( 4, 0, 3) 452
17:( 4, 1, 2) 2
17:( 5, 0, 1) 2
17:( 5, 0, 2) 443
17:( 5, 1, 1) 6
17:( 6, 0, 0) 2
17:( 6, 0, 1) 129
17:( 6, 1, 0) 2
17:( 7, 0, 0) 14
18:( 1, 0, 6) 6
18:( 2, 0, 5) 112
18:( 3, 0, 4) 694
18:( 3, 1, 3) 2
18:( 4, 0, 3) 1524
18:( 4, 1, 2) 5
18:( 5, 0, 2) 1861
18:( 5, 1, 1) 10
18:( 6, 0, 1) 977
18:( 6, 1, 0) 5
18:( 7, 0, 0) 134
19:( 1, 0, 6) 12
19:( 2, 0, 5) 252
19:( 3, 0, 4) 1854
19:( 3, 1, 3) 2
19:( 4, 0, 3) 5831
19:( 4, 1, 2) 10
19:( 5, 0, 2) 8728
19:( 5, 1, 1) 14
19:( 6, 0, 1) 5916
19:( 6, 1, 0) 16
19:( 7, 0, 0) 1194
20:( 1, 0, 6) 46
20:( 2, 0, 5) 882
20:( 3, 0, 4) 6526
20:( 4, 0, 3) 24285
20:( 4, 1, 2) 5
20:( 5, 0, 1) 3
20:( 5, 0, 2) 44434
20:( 5, 1, 1) 43
20:( 6, 0, 0) 7
20:( 6, 0, 1) 39602
20:( 6, 1, 0) 67
20:( 7, 0, 0) 13539

h:(l,m,f) number of h:(l,m,f)
10:( 2, 0, 5) 1
11:( 0, 0, 7) 1
11:( 2, 0, 5) 1
12:( 0, 0, 6) 1
12:( 0, 0, 7) 1
12:( 2, 0, 5) 1
12:( 4, 0, 3) 1
13:( 2, 0, 5) 6
13:( 3, 0, 3) 1
13:( 4, 0, 3) 1
13:( 5, 0, 2) 1
14:( 2, 0, 5) 12
14:( 2, 1, 4) 1
14:( 4, 0, 3) 1
14:( 5, 0, 2) 1
15:( 2, 0, 5) 14
15:( 3, 0, 4) 6
15:( 4, 0, 3) 17
15:( 5, 0, 2) 2
16:( 0, 0, 7) 1
16:( 2, 0, 5) 27
16:( 3, 0, 4) 28
16:( 4, 0, 3) 42
16:( 5, 0, 2) 12
16:( 6, 0, 1) 2
17:( 2, 0, 5) 45
17:( 3, 0, 4) 83
17:( 4, 0, 3) 126
17:( 5, 0, 2) 67
17:( 6, 0, 1) 16
17:( 7, 0, 0) 1
18:( 2, 0, 5) 67
18:( 3, 0, 4) 281
18:( 4, 0, 3) 521
18:( 5, 0, 2) 402
18:( 6, 0, 1) 125
18:( 7, 0, 0) 9
19:( 2, 0, 5) 129
19:( 3, 0, 4) 782
19:( 4, 0, 2) 1
19:( 4, 0, 3) 2098
19:( 5, 0, 2) 2455
19:( 6, 0, 1) 980
19:( 6, 1, 0) 2
19:( 7, 0, 0) 146
20:( 2, 0, 5) 197
20:( 3, 0, 4) 2167
20:( 4, 0, 3) 8507
20:( 4, 1, 2) 2
20:( 5, 0, 2) 14817
20:( 5, 1, 1) 6
20:( 6, 0, 1) 10633
20:( 6, 1, 0) 11
20:( 7, 0, 0) 2314
21:( 2, 0, 5) 164
21:( 3, 0, 4) 4084
21:( 4, 0, 3) 31539
21:( 5, 0, 2) 96215
21:( 5, 1, 1) 17
21:( 6, 0, 0) 4
21:( 6, 0, 1) 120194
21:( 6, 1, 0) 59
21:( 7, 0, 0) 49248

h:(l,m,f) number of h:(l,m,f)
6:( 0, 0, 6) 10
8:( 0, 0, 6) 1
8:( 0, 0, 7) 4
9:( 0, 0, 7) 2
10:( 0, 0, 6) 2
10:( 0, 0, 7) 15
11:( 0, 0, 7) 8
12:( 0, 0, 6) 2
12:( 0, 0, 7) 14
12:( 4, 0, 3) 1
13:( 0, 0, 7) 20
13:( 4, 0, 3) 1
14:( 0, 0, 7) 18
14:( 4, 0, 3) 13
14:( 5, 0, 2) 1
15:( 0, 0, 7) 4
15:( 4, 0, 3) 42
15:( 5, 0, 2) 5
16:( 4, 0, 3) 156
16:( 5, 0, 2) 45
17:( 4, 0, 3) 491
17:( 5, 0, 2) 107
17:( 5, 1, 1) 1
17:( 6, 0, 1) 6
18:( 4, 0, 3) 1408
18:( 5, 0, 2) 654
18:( 5, 1, 1) 2
18:( 6, 0, 1) 171
19:( 4, 0, 3) 2858
19:( 5, 0, 2) 2011
19:( 5, 1, 1) 11
19:( 6, 0, 1) 2277
20:( 5, 0, 2) 4036
20:( 5, 1, 1) 21
20:( 6, 0, 1) 18178
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3.4 Simulation Study and the Results

Power is defined as the average proportion of correctly identified active effects.

It can be used as a measurement for the effectiveness of screening designs. It is a very

useful tool for comparing the performance of designs on detecting the active effects.

The usual method that uses the power as a tool for comparing designs is through

employing a simulation study to conduct it.

In this section, with consideration of our MDSs classification, we report simula-

tions for comparing selected MDSs of a 7-factor design with 20 runs, a 6-factor design

with 16 and 20 runs, and a 5-factor design with 20 runs. The 7-factor designs with 20

runs are the orthogonal and nonorthogonal designs that were shown earlier in Table

8. All the remaining designs that were used in the simulation are displayed in the

Appendix section.

For our simulation, we use forward selection as a procedure for selecting models.

It has a simple implementation and it is available in many software packages like

R. Forward selection procedure is a stepwise regression, which starts with the model

containing just an intercept, and then, sequentially, steps start by adding one variable

at a time. The added variable is the best choice based on some criteria which could

be lowest p-value, lowest AIC, highest adjusted R2, largest F statistic, etc. Then,

these steps repeat by adding one variable at a time until the criteria stop improving.

In the end, the selected variables are the best selection for the final model.

3.4.1 The Methodology for the Simulation

For each MDS under comparison, the methodology for the simulation study is

applied as follows. In each of 1000 iterations:

1. Consider a matrix M of k MEs columns and g 2FIs columns, which are corre-
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sponding columns to the 2FIs for the k MEs.

2. Consider a sub matrix, M1, from the matrix M , which represents the columns

for the factorial effects, that involved the selected MDS.

3. Let X be the matrix which contains columns that are randomly selected from

M1, so that X is corresponding to the matrix of active effects.

4. The number of active effects is starting from 3 until the size for the selected

MDS. So, if we have an MDS of size p, such that p > 3, the number of selected

active effects from M1 starts from 3 effects up to p.

5. The response vector is generated as y= Xβ + ε, where ε ∼ N(0, 1).

6. The coefficients, β, for the active effects are obtained by randomly sampling

(with replacement) values from the set {−3,−2,−1, 1, 2, 3}.

7. The set of significant effects is chosen by using forward selection procedure.

8. At the end of 1000 iterations, the power (the average proportion of correctly

identified active effects, that include both MEs and 2FIs), power for MEs (the

average proportion of correctly identified active MEs), and power for 2FIs (the

average proportion of correctly identified active 2FIs) are recorded.

3.4.2 Simulation Results

3.4.2.1 Orthogonal designs with k=7, n=20

Section 3.3 showed the classification of MDSs for orthogonal and nonorthogonal

designs that were shown in Table 2. Due to the wide variety of MDS sizes and types,

we randomly selected MDSs with sizes 12 and 16 for these designs to employ the

simulation. For instance, for design 20.7.1, the selected MDSs are as follows: 12:( 0,
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0, 6), 12:( 0, 1, 6), 12:( 2, 0, 5), 12:( 3, 0, 4), 12:( 4, 0, 3), 12:( 4, 1, 2), 16:( 1, 0, 6),

16:( 2, 0, 5) 16:( 2, 1, 4), 16:( 3, 0, 4), 16:( 4, 0, 2), 16:( 4, 0, 3), 16:( 4, 1, 2), 16:( 5, 0,

2) 16:( 6, 0, 0), 16:( 6, 0, 1), 16:( 6, 1, 0), and 16:( 7, 0, 0). Based on our simulation

protocol, we display the results of simulations for these designs in Figures 4, 5, 6,

and 7. In Figure 4, X-axes for the plots represent the number of active effects. The

Y-axes represents power in sub figures (a), (b), and (c) while it represents power for

MEs in sub figures (d), (e), and (f), and it represents power for 2FIs in sub figures

(g), (h), and (i) to 20.7.1, 20.7.2, and 20.7.3 respectively. Each color line represents

a type of MDS of size 12.

Figure 5 is organized in the same way as Figure 4 but for MDSs of size 16. The

results of the simulation for nonorthogonal designs are displayed in Figures 6 and 7

for MDSs of size 12 and 16, respectively. In Figure 6, X-axes for the plots represent

the number of active effects. In sub figures (a), (b), and (c), the Y-axes represent

power while in sub figures (d), (e), and (f), the Y-axes represent power for MEs, and

in sub figures (g), (h), and (i) the Y-axes represent power for 2FIs to 20.7BayesD,

20.7PEC, and 20.7MEPI, respectively. Again, each color line represents a type of

MDS of size 12. Also, Figure 7 is organized in the same way as Figure 6 but for

MDSs of size 16.
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(a) 20.7.1 (b) 20.7.2 (c) 20.7.3

(d) 20.7.1 (e) 20.7.2 (f) 20.7.3

(g) 20.7.1 (h) 20.7.2 (i) 20.7.3

Fig. 4.: Power, power for MEs, and power for 2FIs for MDSs of size 12 to orthogonal
designs in Table 2
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(a) 20.7.1 (b) 20.7.2 (c) 20.7.3

(d) 20.7.1 (e) 20.7.2 (f) 20.7.3

(g) 20.7.1 (h) 20.7.2 (i) 20.7.3

Fig. 5.: Power, power for MEs, and power for 2FIs for MDSs of size 16 to orthogonal
designs in Table 2
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(a) 20.7BayesD (b) 20.7PEC (c) 20.7MEPI

(d) 20.7BayesD (e) 20.7PEC (f) 20.7MEPI

(g) 20.7BayesD (h) 20.7PEC (i) 20.7MEPI

Fig. 6.: Power, power for MEs, and power for 2FIs for MDSs of size 12 to nonorthog-
onal designs in Table 2

49



(a) 20.7BayesD (b) 20.7PEC (c) 20.7MEPI

(d) 20.7BayesD (e) 20.7PEC (f) 20.7MEPI

(g) 20.7BayesD (h) 20.7PEC (i) 20.7MEPI

Fig. 7.: Power, power for MEs, and power for 2FIs for MDSs of size 16 to nonorthog-
onal designs in Table 2

Overall, our classification of MDSs showed a significant impact on the active

effect detection of the designs that under were consideration. The MDS that has a

large number of factors exhibits more power, power for MEs, and power for 2FIs. Our

comments for the simulation results as follows:

1. For all designs and types of MDSs, as the number of active effects increases, the

power, power for MEs, and power for 2FIs are decreasing.

2. It is worth noting that the value of l in the MDSs classification affects power,

power for MEs, and power for 2FIs, especially for orthogonal designs. As can
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be seen from Figures 2 and 3, the simulation results show that the MDS with a

larger l exhibit better power, power for MEs, and power for 2FIs.

3. We see some benefit from the value of m. Both design 20.7.1, and 20.7.2 have

two MDSs with the same value l 12: (4, 0, 3) and 12: (4, 1, 2). Both of these

types of MDS have 4 common factors between MEs and 2FIs subsets, but they

have a different number of factors, which are present in only MEs and 2FIs

subsets. By considering the power for MEs to test which MDS performance is

better, 12:(4, 1, 2) exhibits better power for MEs than 12:(4, 0, 3), especially

for design 20.7.2 (Figure 4(b), and 4(e)). Obviously, 12: (4, 1, 2) has a larger

m, which is the number of factors that only appear in MEs subset.

4. For the two sizes of MDSs of design 20.7BayesD, there is no dramatic difference

between the classification of MDSs. However, with MDSs of size 16, it is obvious

that the type of MDS with the least l 16: (1, 0, 6) exhibits the worst power,

power for MEs, and power for2FIs.

5. For design 20.7PEC, MDS of type 12:(2, 0,4) exhibits better power, power for

MEs, and power for 2FIs than 12:(4, 0, 2), which is unexpected. However, as

the case of design 20.7BayesD, it is clear that MDS of type 12:(0, 0, 6) gives

the worst power.

6. For design 20.7MEPI, it is obvious that the performance of an MDS with a

larger l is better for power, power for MEs and power for 2FIs.

7. According to our simulation study, it can be said that the type of MDS with a

larger l is more preferred than the type of MDS with less l. Therefore, for the

designs comparison, it can be said that the design with more of these MDSs (the

type of MDS with a larger l ) could be recommended for active effect detection.
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3.4.2.2 k=6, n= 16, 20

The classification of the MDSs for the orthogonal designs with k=6, and n=20,

16 that were used in the simulation are shown in Table 12. We denote to these

designs as 16.6 and 20.6. For these design, we randomly selected MDSs of size 6 for

design 16.6.1, and MDSs of size 14 for design 20.6.1. The result of the simulation of

these design are displayed in Figure 8. In Figure 8, X-axes for the plots represent

the number of active effects. The Y-axes represents power in sub figures (a) and (b)

while it represents power for MEs in sub figures (d) and (e), and it represents power

for 2FIs in sub figures(g) and (h) to 16.6 and 20.6, respectively. Again, each color

line represents a type of MDS.

Table 12.: The classification for MDSs to orthogonal designs with k=6, and n=16,
and 20

16.6.1 20.6.1
h : (l,m, f) number of h : (l,m, f)
5:( 2, 0, 3) 3
6:( 0, 0, 6) 4
6:( 2, 0, 3) 4
6:( 2, 0, 4) 2
7:( 2, 0, 4) 4
7:( 2, 1, 3) 1
8:( 2, 0, 4) 6
8:( 2, 1, 3) 2
9:( 2, 0, 4) 2

h : (l,m, f) number of h : (l,m, f)
10:(0, 0, 6) 1
10:(4, 0, 1) 2
12:(2, 0, 4) 4
13:(4, 0, 2) 1
14:(2, 0, 4) 2
14:(4, 0, 2) 3
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(a) 16.6.1 (b) 20.6.1

(c) 16.6.1 (d) 20.6.1

(e) 16.6.1 (f) 20.6.1

Fig. 8.: Power, power for MEs, and power for 2FIs to orthogonal designs with k=6,
and n=16, 20

Our comments on the displayed results are as follows:

1. As with the seven-factor case, the MDS with a larger l provides better perfor-

mance with respect to power, power for MEs, and power for 2FIs.
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2. It is obviously recommended to consider MDS of type 6: (2, 0, 4) and 14: (4,

0, 2) of design 16.6 and 20.6, respectively, for active effect detection. Thus, we

prefer to see more of these types of MDSs than another type of MDS.

3.4.2.3 Other Run Sizes

The reported simulation result for designs with k=7, n=20, and k=6, n=20, 16

show a pattern that repeated for other cases. Generally, MDSs that involve a large

number of factors most likely exhibit more power than the other MDS. This finding

highlights the differences between the MDSs of the designs and can be used as a

measure of the effectiveness of candidate designs.

3.5 Conclusion

In this chapter, we have investigated the structure for a design by considering the

minimal dependent sets, MDSs, for this design, which could be used as a criterion for

design selection. We focused on discovering the effect of the number of factors for an

MDS on the ability for a design to identify the active effects. We accomplished that,

by providing a classification for the MDSs of a design. This classification is focused

on counting the number of factors in MEs and 2FIs that are involved in an MDS.

Then, we conducted a simulation study, which aimed to test the effectiveness of our

classification of MDSs on power for active effect detection. For MDSs that have the

same size, it was seen that when the number of common factors between MEs and

2FIs is increasing, the power to detect the active effects is increasing, too, especially

for orthogonal design. This aspect of the research suggested that, for comparison

between designs, a design that has a greater number of MDSs, which involve a large

number of common factors between MEs and 2FIs, is preferable.

Our classification for the MDSs of a design focused on the appearance of factors
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in MEs and 2FIs. There are many ways to classify the MDSs for a design, which

have not been explored yet. It will be important that future research investigate

the comparison between different size of MDSs with respect to power or another

statistical concept, for instance, false discovery rate, estimation capacity, generalize

aliasing length, etc. Also, our classification was tested with respect to the power.

Future research could continue to explore the impact of this classification for another

statistical concept, such as false discovery rate.

3.6 Appendix

Table 13.: Orthogonal design with k=6 factors, and n=16



−1 1 −1 −1 1 −1
1 −1 1 −1 1 1
−1 −1 1 1 −1 −1
−1 −1 −1 1 1 −1
−1 1 −1 1 −1 1
1 1 −1 −1 −1 −1
−1 1 1 1 1 1
1 1 −1 1 1 1
1 1 1 1 1 −1
−1 1 1 −1 −1 −1
1 1 1 −1 −1 1
−1 −1 1 −1 1 1
1 −1 −1 1 −1 1
−1 −1 −1 −1 −1 1
1 −1 1 1 −1 −1
1 −1 −1 −1 1 −1



Table 14.: Orthogonal design with k=6 factors, and n=20



1 1 1 1 1 1
1 1 −1 −1 −1 −1
1 −1 1 1 −1 −1
−1 1 1 1 −1 −1
−1 −1 1 −1 1 −1
−1 −1 −1 1 −1 1
−1 1 1 −1 −1 1
1 1 −1 1 1 −1
1 −1 −1 −1 1 1
1 1 1 1 −1 1
−1 −1 1 1 1 1
−1 1 −1 −1 1 −1
−1 1 −1 −1 −1 1
−1 −1 −1 1 1 −1
1 −1 −1 −1 −1 1
1 1 1 −1 1 −1
−1 −1 1 −1 −1 −1
−1 1 −1 1 1 1
1 −1 −1 1 −1 −1
1 −1 1 −1 1 1


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Table 15.: Orthogonal design with k=5 factors, and n=20



1 1 1 1 1
1 1 1 −1 −1
1 1 −1 1 −1
−1 −1 −1 −1 1
1 −1 1 1 −1
−1 −1 1 1 −1
−1 1 1 1 −1
−1 −1 1 1 −1
1 −1 −1 −1 −1
1 −1 −1 −1 −1
−1 1 −1 −1 −1
−1 1 −1 −1 −1
1 1 −1 1 1
1 1 −1 1 1
−1 −1 −1 1 1
−1 −1 −1 1 1
1 −1 1 −1 1
1 −1 1 −1 1
−1 1 1 −1 1
−1 1 1 −1 1



3.6.1 R Code for MDSs Classification

#i n p u t s :

#X: MDSs matrix f o r MEs and 2 FIs ( coded as +/−1 and 0)

#” Get t ing MDSs matrix by use 4 t i 2 s o f t w a r e ”

#output :

#matrix f o r MDSs c l a s s i f i c a t i o n ;

#columns : MDS, (h , l ,m, f )

l ibrary ( s t r i n g r )

l ibrary ( r l i s t )

l ibrary ( s t r i n g i )

X<−as . data . frame (X)

k=ncol (X)

X<−s i m p l i f y 2 a r r a y (

apply (

X[ 1 : k ] , 1 ,
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function ( x ) paste (naMEs(X[ 1 : k ] ) [ x != 0 ] , c o l l a p s e = ” ” )

)

)

E<−function ( x ){

h<−( s t r count (x , ”\\w+” ) )

b<−s t r sp l i t (x , ” ” )

c<−as . l i s t ( s t r sp l i t (x , ’ \\ s+’ ) [ [ 1 ] ] )

g<−l i s t . sort (nchar ( c ) )

s p l i t e d <− sp l i t (c , f = g )

d1<−s p l i t e d $ ’ 1 ’

d2<−s p l i t e d $ ’ 2 ’

d12<−unlist ( d1 ) #MEs s u b s e t

n1<−length ( d12 )

s13<−paste ( d12 , sep=”” , c o l l a p s e=”” )

vf1<−rawToChar (unique ( charToRaw( s13 ) ) )

a1<−vf1

d22<−unlist ( d2 ) #2 FIs s u b s e t

n2<−length ( d22 )

s3<−paste ( d22 , sep=”” , c o l l a p s e=”” )

vf2<−rawToChar (unique ( charToRaw( s3 ) ) )

b1<−vf2

pasteOccurrence <− function ( x ){

ave (x , x ,FUN=function ( x ) paste0 (x , seq along ( x ) ) ) } ;
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a11<−paste ( c o l l a p s e=’ ’ ,

substr ( setd i f f ( pasteOccurrence ( s t r sp l i t ( a1 , ’ ’ )

[ [ 1 L ] ] ) , pasteOccurrence ( s t r sp l i t ( b1 , ’ ’ ) [ [ 1 L ] ] ) ) ,

1L , 1L) )

b11<−paste ( c o l l a p s e=’ ’ ,

substr ( setd i f f ( pasteOccurrence ( s t r sp l i t ( b1 , ’ ’ )

[ [ 1 L ] ] ) , pasteOccurrence ( s t r sp l i t ( a1 , ’ ’ ) [ [ 1 L ] ] ) ) ,

1L , 1L) )

m<−nchar ( a11 )

f<−nchar ( b11 )

a <− unlist ( s t r sp l i t ( vf1 , ”” ) )

b <− unlist ( s t r sp l i t ( vf2 , ”” ) )

l<−sum( ! i s . na(pmatch( a , b ) ) )

return ( as . matrix ( c (h , l ,m, f ) , ncol=1))

}

q<−lapply (X,E)

q1<−as . array (q)

q2<−as . data . frame ( q1 )

r e s u l t <−cbind (X, q2 )

df <− apply ( r e s u l t , 2 , as . character )
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write . csv ( df , f i l e = ” r e s u l t . csv ” )
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CHAPTER 4

CONSTRUCTING THREE-QUARTER NONREGULAR DESIGNS

4.1 Introduction

Omitting a quarter of run size from a complete 2k factorial design produces a

three-quarter design. Research has shown that a three-quarter from a regular 2k could

be able to estimate all the main effects (MEs) and two-factor interactions (2FIs).

In this paper, we investigate the construction and theoretical properties of three-

quarter design of regular and nonregular design. Via blocking technique on a pair

of factorial effects we provide three-quarter designs that have impressive values for

ranking designs criteria. Through the use of indicator function and parallel flats

designs, general properties of constructed three-quarter design will be discussed.

A screening experiments is often conducted in the early stage of experimentation

in order to determine the few important factors from a larger set of candidate factors.

The two-level fractional factorial designs (FFDs) are the most popular designs used

for screening experiments. Regular 2k−p FFDs (Box and Hunter, 1961; Fries and

Hunter, 1980) are the common choice for screening experiments. These designs are

straightforward to construct and have a simple aliasing structure, in which any two

factorial effects are either orthogonal or fully aliased. Nonregular design, on the other

hand, have a more complex aliasing structure in that factorial effect may be partially

aliased (neither fully aliased or orthogonal). Nonetheless, the nonregular designs offer

run size flexibility and high ability to estimate more models than the regular design

(Wu and Hamada, 2011).

The three-quarter design is a fractional factorial design, which can be obtained by
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omitting one quarter of the full run size of a design. This design aims to improve run

size economy without too much sacrifice in the estimability of low-order effects. The

easiest way to construct a three-quarter design is to divide a design into four blocks

of equal size, and then eliminate any block so that the final design has three blocks

of run size. Mee (2009) shows an example for three-quarter design that constructed

by partitioning the 24 into four blocks using blocking technique on the effects ABC

and ABD as shown in Table 16. Mee, 2009 illustrates that the three-quarter of 24 is

able to estimate all MEs and 2FIs, which is shown in Table 17.

Table 16.: Partition 24 into 4 blocks

A B C D ABC ABD

-1 -1 -1 -1 -1 -1
-1 1 1 1 -1 -1
1 1 -1 -1 -1 -1
1 -1 1 1 -1 -1

-1 -1 -1 1 -1 1
1 1 -1 1 -1 1

-1 1 1 -1 -1 1
1 -1 1 -1 -1 1

-1 1 -1 1 1 -1
1 -1 -1 1 1 -1
1 1 1 -1 1 -1

-1 -1 1 -1 1 -1

1 1 1 1 1 1
-1 -1 1 1 1 1
-1 1 -1 -1 1 1
1 -1 -1 -1 1 1
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Table 17.: Three-quarter design of 24

A B C D

-1 -1 -1 -1
-1 1 1 1
1 1 -1 -1
1 -1 1 1

-1 -1 -1 1
1 1 -1 1

-1 1 1 -1
1 -1 1 -1

-1 1 -1 1
1 -1 -1 1
1 1 1 -1

-1 -1 1 -1

The first block of run for 24 (first four runs in Table 16) has the defining relation

I = ABC = −ABD = CD.

With a 24 there are 16 columns in the full factorial model. These columns defined by a

principal group and co-sets. The principal group is the group containing the identity

(i.e, the intercept), the terms in the defining relation I = −ABC = −ABD, and the

generalized interaction of these terms. Thus, the principal group is I = −ABC =

−ABD = CD, and clearly it has 4 effects. The remaining 12 effects are partitioned

into 3 co-sets of size 4. Multiplying the principal group by A,B, and C, respectively,

we obtain all the co-sets:

A = −BC = −BD = ACD,

B = −AC = −AD = BCD,

C = −AB = −ABCD = D.

Three-quarter design has a special structure for its information matrix, namely

a block diagonal structure. With this structure, any two factorial effects belonging to
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different blocks are uncorrelated. It is a very attractive structure since it mitigates

some of the aliasing complexity. Figure 9 shows the block diagonal structure for the

three-quarter design of 24 which was shown earlier in Table 17.

Fig. 9.: Block diagonal structure for
three-quarter design of 24

There is a rich literature on the construction of three-quarter designs of regular

2k−p. First of all, Davies et al., 1954 discusses three quarter design of regular 25, where

not all MEs and 2FIs are estimable. John, 1961 provides a three-quarter design of 24

and 25 by omitting a quarter of the run size, where the MEs and 2FIs can be estimated.

In addition, Addelman, 1969 constructs three-quarter designs of regular designs by

using two contrasts to divide the design into 4 blocks, then eliminating one of them.

Addelman, 1961 proposes three-quarter designs of 2k for up to 6 factors. For example,

consider 25−2, which is defined by the defining relation I = ABC = ADE = BCDE.

Addelman, 1961 shows that the treatment combinations of this design split into 4

quarters. Each quarter satisfies the following relations:

• x1 +x2 +x3 = 0 (mod 2), x1 +x4 +x5 = 0 (mod 2), x2 +x3 +x4 +x5 = 0 (mod

2),
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• x1 +x2 +x3 = 0 (mod 2), x1 +x4 +x5 = 1 (mod 2), x2 +x3 +x4 +x5 = 1 (mod

2),

• x1 +x2 +x3 = 1 (mod 2), x1 +x4 +x5 = 0 (mod 2), x2 +x3 +x4 +x5 = 1 (mod

2),

• x1 +x2 +x3 = 1 (mod 2), x1 +x4 +x5 = 1 (mod 2), x2 +x3 +x4 +x5 = 0 (mod

2),

where the treatment combinations, xi, is either 0 or 1 for i = 1, 2, 3, 4, 5. These four

relations could be represented by the four defining relations:

I = −ABC = −ADE = BCDE,

I = −ABC = −ADE = BCDE,

I = −ABC = ADE = −BCDE,

I = −ABC = −ADE = BCDE.

Each defining relation corresponds to a quarter. Addelman, 1961 showed that a three-

quarter design of 25−2 may be obtained by selecting any treatment combinations that

occur in any three of the four quarters of 25−2. For instance, combining the treatment

combinations that occur in I = −ABCDE = BCDE, I = −ABC = −ADE =

BCDE, and I = −ABC = ADE = −BCDE represent a three-quarter design of

25−2.

John, 1962 points out that a set of fractions that correspond to blocks, where

the defining relations for these fractions have the same terms but differ in the sign, is

called a family of 2k−p. Also, John, 1962 defines that a combination of three designs

from the same family is called a 3(2k−p) design. Addelman, 1969 proposes a plan for

designs with 6 to 11 factors that were all constructed by combining regular fractional

64



factorial designs from the same family.

Cheng et al., 2004 discusses blocked nonregular two-level fractional factorial de-

signs. Also, Briggs, 2011 constructs three-quarter design from nonregular design

Plackett-Burman. Based on the previous works, the goal of this paper is to focus on

the construction of three-quarter designs of two-level fractional factorial regular and

nonregular designs by using blocking technique on a pair of factorial effects to divide

a design into 4 equal blocks, then eliminating a block ( a quarter of the run size).

The rest of this chapter is organized as follows. In Section 4.2, we review needed

background on indicator function, minimal dependent sets (MDSs), and parallel flats

designs (PFDs). In Section 4.3, we discuss the construction of three-quarter designs of

regular designs. In Section 4.4, we explain our method for constructing three-quarter

designs of nonregular designs, and provide some theories related to the constructed

designs. Next, in Section 4.5 we examine three-quarter designs with the concept of

MDSs. Then, in Section 4.6, we provide a comparison between three-quarter designs

of regular designs and three-quarter designs of nonregular designs, based on standard

criteria for ranking the designs. Finally, Section 4.7 is the conclusion and ideas for

future work.

4.2 Foundations

4.2.1 Indicator Function

Most of the properties of factorial designs could be studied via their indicator

functions. Indicator functions were introduced by Fontana et al., 2000 as a tool for

studying the fractional factorial designs. In this section we provide a brief background

of the indicator function. For more details, see Kenny et al., 2003 and Fontana et al.,

2000. Let F represent a full factorial design 2k, with x = {x1, x2, ..., xk} (xi=±1,
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i = 1, 2, ...k). Consider D to be a fractional factorial with n runs and k factors. The

indicator function of D is denoted as FD which is defined as,

FD(x) =


ax, if x ∈ D

0, if x ∈ F \ D
(4.1)

where ax denotes the number of replicates of x in D. Let’s define Xl(x) =
∏

i∈l xi

for l ∈ P , where P is the collection of all subsets of {1, 2, ..., k}. Then, the indicator

function of D has the following form

FD(x) =
∑
l∈P

blXl(x), (4.2)

with coefficients

bl =
1

2k

∑
x∈D

Xl(x). (4.3)

The constant term of the indicator function FD is the sum of the intercept column

divided by 2k, which is

b� = n/2k. (4.4)

Each term in the indicator function is called a word. Cheng et al., 2004 mentioned

that the value of bl/b� is the correlation between the two effects columns. For instance,

consider D which is a 27−3, with factors A−D and E=ABC, F=BCD, and G=EF ,

the indicator function for this design is

FD = 16 + 16x1x4x7 + 16x5x6x7 + 16x1x2x3x5 + 16x1x4x5x6

+16x2x3x4x6 + 16x1x2x3x6x7 + 16x2x3x4x5x7

(4.5)

From the word (16x1x4x7), the correlation betweenX1 andX4X7 is given by b147/b�=16/16=1,

(more examples in this scene will be presented on next sections).
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4.2.2 Minimal Dependent Sets (MDSs)

MDS for a design is a set of linearly dependent effects, that has a special property,

where if one of the effects from this set is removed, all the rest of the effects become

linearly independent. For example, consider a 26−2, such that E = AC, F = 1/2[CD+

ACD + BCD − ABCD] (Johnson and Jones, n.d.). This design has the following

MDSs for MEs and 2FIs model:

E − AC

C − AE

A− CE

E + C +BC −BE − 2DF

F + AF − CD −DE

D + AD − CF − EF

For this design, there are 3, 2, and 1 MDSs of size 2, 4, and 5, respectively. One of

these MDSs is {F,AF,CD,DE}. By the definition of MDS, a model contains all the

effects in this MDS is not estimable, while, if one effect is removed, for instance, AF ,

then a model contains the rest of the effects {F,CD,DE} is estimable.

The concept of MDSs was utilized first by Miller and Sitter, 2004 to rank de-

signs based on their ability to identify active effects. Miller and Sitter, 2004 show

that MDSs help to narrow down the set of candidate models. Also, Lin et al., 2008

investigate the effect of MDSs on model discrimination and develop criteria (MDS-

resolution and MDS-aberration) to evaluate nonorthogonal foldover designs. In this

case, a design with a larger MDS is preferable to a design with a smaller MDS, which

means that MDS resolution (the number of smallest MDS size) is to be maximized;

MDS-aberration ranks designs based on sequentially minimizing the number of small-
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est MDS size.

4.2.3 Parallel Flats Designs

A regular 2k−m fractional factorial design is called single flat design. The runs for

fractional factorial design satisfy aliasing relations. This type of design can defined

by the alias matrix A, and consist of all treatment combinations x = (x1, ..., xk)
′

satisfying Ax = c, where A is an m × k matrix of rank m, and, c is an m × 1

vector with two level ±1. Suppose S1, S2, ..., Sf are single flat designs that defined

by the same alias matrix A, and c1, c2, ..., cf respectively. Then parallel flats design

(f -PFD) is the combining of these f single flats. Thus, a f -PFD could be determined

by (A,C), where, C is an m × f matrix containing the vectors c1, c2, ..., cf . It is

obvious that the run size for f -PFD is equal to n = f × 2k−m (Liao and Chai, 2004).

For example, consider a design 26−2, which is shown in Table 18.

Table 18.: Nonregular design with k=6 and n=16

A B C D E F

-1 -1 -1 -1 1 1
1 -1 -1 -1 1 -1

-1 1 -1 -1 -1 1
1 1 -1 -1 -1 1

-1 -1 1 -1 1 -1
1 -1 1 -1 -1 -1

-1 1 1 -1 1 1
1 1 1 -1 -1 -1

-1 -1 -1 1 -1 -1
1 -1 -1 1 -1 1

-1 1 -1 1 1 -1
1 1 -1 1 1 -1

-1 -1 1 1 -1 1
1 -1 1 1 1 1

-1 1 1 1 -1 -1
1 1 1 1 1 1
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This design is determined by (A,C), where A and C are

A =



0 0 1 1 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1



C =



1 −1 1 1

1 −1 −1 1

−1 −1 1 1

−1 1 −1 1


The number of columns for matrix C determines the number of single flats for

the design. So, this design is 8-PFD. Since the run size for this design is n = 16,

and it has 8 single flats, each flat has a run size equaling 16/8 = 2 runs. So, each

flat represents a regular 26−5 that satisfies I = ±A, I = ±B, I = ±C, I = ±DE,

I = ±DF .

Parallel flats designs were introduced by Connor and Young, 1961. Srivastava

et al., 1984 provided general theories of parallel flats designs. One of these theories

is that the information matrix of a parallel flats design is always expressed as a block

diagonal matrix if f ≤ n, where f is the number of flats, and n is the number of runs.

The information matrix is X ′X, which can be written as

X ′X =



X ′1X1 0 . . . 0

0 X ′2X2 . . . 0

...
...

. . . . . .

0 0 . . . X ′gXg


where X is the model matrix for a general linear model y = Xβ+ε, and ε ∼ N(0, σ2I).
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Each submatrix X′jXj in the diagonal of the information matrix corresponds to an

aliasing set, and g is the number of aliasing sets. All the off-diagonal are zero matrices,

which indicates the orthogonality among the submatrices.

4.2.3.1 4-PFD

In this section, we will introduce four examples of 4-PFD. The first one is a non-

regular design, 26−2, where n = 16 and k=6. We denote this design by 16.6.2, and

display it in Table 19. Figure 10 shows the block diagonal structure of 16.6.2. Obvi-

ously, we can see that any two effects belonging to different blocks are uncorrelated,

and we can see that there is a partial correlation between the effects within a block.

Table 19.: Nonregular design 16.6.2.

A B C D E F

-1 -1 -1 -1 1 -1
1 -1 -1 -1 -1 1

-1 1 -1 -1 -1 1
1 1 -1 -1 1 1

-1 -1 1 -1 1 1
1 -1 1 -1 -1 -1

-1 1 1 -1 -1 -1
1 1 1 -1 1 -1

-1 -1 -1 1 1 1
1 -1 -1 1 -1 -1

-1 1 -1 1 -1 -1
1 1 -1 1 1 -1

-1 -1 1 1 1 -1
1 -1 1 1 -1 1

-1 1 1 1 -1 1
1 1 1 1 1 1
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Fig. 10.: Block diagonal structure for
16.6.2.

The second 4-PFD design is 26−1 with n = 32 and k=6, such that F = 0.5E(AB+

AC +BD−CD). The columns of the full factorial model of 26−1 appear in 8 co-sets

of size 8. These co-sets are defined by the principal group, which is the set that

contains the identity (i.e., intercept), and the interactions in the defining relation

I = 0.5EF (AB + AC + BD − CD), and generalized interactions. So the principal

group for 26−1 is

{I, AD,BC,ABCD,ABEF,ACEF,BDEF,CDEF},

and the co-sets for this design is obtained by multiplying the principal group by

A,B,E, F , AB,AE, and AF , such as, A co-set is

{A,D,ABC,BCD,BEF,CEF,ABDEF,ACDEF}.

If we arrange the columns of full factorial model for 26−1 based on the principal group

and the co-sets, we obtained a block diagonal structure with 8 blocks of size 8, where

each block has rank 4. Thus, with 4-PFD, the maximum size of MDSs must be 5,

since the rank for each block is 4.

Another example of 4-PFD with n=16, and k=7 is shown in Table 20. This design
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was provided by Edwards, 2011. Edwards, 2011 provides a semifoldover plans for

two-level orthogonal design. Semifolding technique is adding half of foldover fraction

design as an alternative to foldover technique which require adding a fraction which

has same size as the initial design. One of initial designs that Edwards, 2011 used is

4-PFD, which is in Table 20.

Table 20.: 4-PFD with n=16 and k=7

A B C D E F G

1 1 1 1 1 1 1
1 1 1 -1 -1 -1 -1
1 1 -1 1 1 -1 -1
1 1 -1 -1 -1 1 1

-1 -1 -1 -1 -1 1 1
-1 -1 -1 1 1 -1 -1
-1 -1 1 -1 -1 -1 -1
-1 -1 1 1 1 1 1
1 -1 1 1 -1 1 -1
1 -1 1 -1 1 -1 1
1 -1 -1 1 -1 -1 1
1 -1 -1 -1 1 1 -1

-1 1 -1 -1 1 -1 1
-1 1 -1 1 -1 1 -1
-1 1 1 -1 1 1 -1
-1 1 1 1 -1 -1 1

The fourth example of 4-PFD design is 27−1 where n=64 and k=7, such that

G = 0.5EF (AB + CD + AC − BD). The number of blocks for a 4-PFD is n/4.

Figure 11, shows the block diagonal structure for this design, and it is clear there

are 16 orthogonal blocks. We will focus deeply on the construction of three-quarter

designs of 4-PFD using this design in Section 4.4.
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Fig. 11.: Block diagonal structure for 27−1.

4.3 Construct Three-Quarters Based on Regular Designs

In this section, we discuses a class of three-quarter design constructed by block-

ing a regular design using a pair of factorial effect. Consider a regular design 26−2,

with generators E = ABC and F = ABD. The principal group for this design

is {I, ABCE,ABDF,CDEF}. The full factorial model for 26 has 64 columns of

effects, four of these effects appear in the principal group, and the remaining ef-

fects are partitioned into 15 co-sets of size 4. Multiplying the principal group by

A,B,C,D,E, F,AB,AC,AD,BC,BD,CD,DE,BCD, and ACD, we obtain all the

co-sets as follows:

{A,BCE,BDF,ACDEF},

{B,ACE,ADF,BCDEF},

{C,ABE,ABCDF,DEF},

{D,ABCDE,ABF,CEF},

{E,ABC,CDF,ABDEF},

{F,ABD,CDE,ABCEF},
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{AB,CE,DF,ABCDEF},

{AC,BE,BCDF,ADEF},

{AD,BCDE,BF,ACEF},

{BC,AE,ACDF,BDEF},

{BD,ACDE,AF,BCEF},

{CD,ABDE,ABCF,EF},

{DE,CF,ABEF,ABCD},

{BCD,ADE,ACF,BEF},

{ACD,BDE,BCF,AEF}.

As we mentioned earlier, a common way to construct a three-quarter design is

to divide the design into four blocks, using factorial effects for blocking, and then

eliminate any block. In fact, the effects in the principal group of a regular design

have one level either 1 or -1. In this case, we can’t use any effects in the principal

group of a regular design for blocking, since the columns of these effects form a matrix

with one unique row. This doesn’t allow for dividing the design into 4 equal blocks.

Thus, we need to select a pair of factorial effects from co-sets (either within a co-set

or two different co-sets), since these effects have two levels 1 and -1.

First, let’s consider blocking the design 26−2 by a pair of effects (BCD,ACD),

whereBCD andACD belong to two different co-sets. The pair of effects (BCD,ACD)

forms a matrix with four unique rows, (−1,−1), (−1, 1), (1,−1), and (1, 1), which re-

sults in dividing the design into four equal blocks as shown in Figure 12. So, if we

remove any block (for example the fourth block), the resulting design is a three-

quarter design with n=12. Table 21 shows this three-quarter design.
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Fig. 12.: Blocking the design 26−2 on
the pair (BCD,ACD).

Table 21.: Three-quarter design of 26−2.

A B C D E F

-1 -1 -1 -1 -1 -1
1 1 1 -1 1 -1

-1 -1 1 1 1 1
1 1 -1 1 -1 1

-1 1 -1 1 1 -1
1 -1 1 1 -1 -1

-1 1 1 -1 -1 1
1 -1 -1 -1 1 1
1 -1 -1 1 1 -1

-1 1 1 1 -1 -1
-1 1 -1 -1 1 1
1 -1 1 -1 -1 1

Second, let’s consider another case where the pair of effects that are used for

blocking are selected from the same co-set. For example, blocking the design 26−2

by the pair of effects (DE,CF ), where DE, and CF belong to the same co-set

{DE,CF,ABEF,ABCD}. This pair of effects forms a matrix with two unique rows

(−1,−1) and (1, 1), which results in dividing the design into two equal blocks as

shown in Figure 13. Therefore, we can’t construct a three-quarter design from the

regular design 26−2 by using this pair for blocking.
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In fact, this case is equivalent to a case where one effect is selected from the

principal group and the other effect is selected from any co-set. Since each effect in

the principal group has only one level either 1 or -1, and the other effect in any co-sets

has two level 1 and -1, using a pair of these effects for blocking forms a matrix with

two unique rows. This creates two equal blocks. For instance, blocking 26−2 by the

pair (CDEF,DE), where CDEF belongs to the principal group, and DE belongs

to the co-set {DE,CF,ABEF,ABCD}, divides the design into two equal blocks

as shown in Figure 14. Thus, based on these examples, the only way to construct

a three-quarter design from a regular design is to use a pair of factorial effects for

blocking, where these effects belong to two different co-sets.

Fig. 13.: Blocking the design 26−2 on
the pair (DE,CF ).
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Fig. 14.: Blocking the design 26−2 on
the pair (CDEF,DE).

The previous examples serve to illustrate the following results.

Theorem 1 Let D be a n-run regular design. Blocking D by using a pair of factorial

effects, where these effects selected from two different co-sets of D, divides D into four

equal blocks. By eliminating one block, we obtain a three-quarter design.

Theorem 2 Three-quarter design of regular design is always 3-PFD.

Proof. Let D be an n-run regular design. From Theorem 1, blocking D by a pair

of effects were selected from two different co-sets, divides D into four equal blocks.

By the definition of PFDs, the terms in the principal group form a matrix with rows

that are constant within each flat, while the terms in each co-set are not necessarily

constant within a flat. Thus, since D is a two-level orthogonal design, each effect of

a co-set has two levels, -1 and 1, within a flat. Thus, the terms in two co-sets formed

a matrix with four unique rows within a block. Since, D is regular design which is

1-PFD, and it has four blocks, then a matrix formed by the terms in two co-sets has

one unique row within each block. So, each block is corresponding to a single flat.

Clearly, by removing one block, the resulting three-quarter design is 3-PFD.
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4.4 Methodology to Construct Three-Quarter of Nonregular 4-PFD

In this section we are focusing on constructing three-quarter of 4-PFD. As we

mentioned earlier, one strategy for constructing a three-quarter design is to use a pair

of factorial effects to block a design. This results in dividing a design into four equal

blocks; we then eliminate any block to get three-quarter of the design. Consider the 4-

PFD which is 26−1, with the factor A−E and F = 0.5(ABE+ACE+BDE−CDE),

as shown earlier in Section 4.2. The principal group for this design is

{I, AD,BC,ABCD,ABEF,ACEF,BDEF,CDEF}.

Blocking this 4-PFD by the pair (BC,ABCD), and (AD,ABEF ), where the factorial

effects in these pairs belong to the principal group are shown in Figure 15.
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(a) Blocking 26−1 by (BC,ABCD). (b) Blocking 26−1 by (AD,ABEF ).

Fig. 15.: Blocking 26−1 by factorial effects selected from the principal group.

The pair of factorial effects (BC,ABCD) divides the 4-PFD into four equal

blocks while the pair (AD,ABEF ) divides it into 3 unequal blocks as shown in

Figure 15. Therefore, using (BC,ABCD) to block the 4-PFD can construct three-

quarter. On the other hand, (AD,ABEF ) cannot construct three-quarter. So, not

all the pairs of effects that are selected from the principal group of a 4-PFD generate

four blocks of the same size. By finding the correlation matrix between the effects

columns in the principal group of the 4-PFD, we found that the uncorrelated effects

can divide the design into 4 equal blocks, while the correlated effects cannot. Figure

16 shows the correlation matrix for the effects in the principal group of the 4-PFD

that is 26−1.
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Fig. 16.: The correlation matrix to the
effects columns of the principal group for
26−1.

Theorem 3 Let D be a two-level orthogonal n-run design. Let (U1, U2) be a pair of

uncorrelated effects belonging to D. Using (U1, U2) for blocking D led to splitting D

into 4 equal blocks of size n
4
. Then, omitting one of these blocks, the resulting design

is a three-quarter design. In contrast, a pair of correlated effects doesn’t allow for the

construction of a three-quarter design, since it doesn’t split the design into 4 equal

blocks.

Proof. Let (U1, U2) represent a pair of uncorrelated effects that belong to D. Since

U1 and U2 are uncorrelated effects, it means the sum of the columns for each of these

effects is equal to zero. By the definition of the indicator function, the columns of

these effects will not appear in the indicator function of D. Based on Kenny et al.,

2003; and Cheng et al., 2004, two columns in D can be used to generate 22 blocks of

equal size if and only if no word of these columns appeared on the indicator function

for D. Thus, it follows that using a pair of uncorrelated effects is able to construct

22=4 equal blocks, then, by omitting any block, we obtain a three-quarter design.

In contrast, for a pair of correlated effects the sum of the columns for each of these

effects doesn’t equal zero, so these effects appear at the indicator function for D.

Using a pair of these effects, we would be unable to construct 22 equal blocks, hence,

we can’t construct a three-quarter design.

As we mentioned earlier 4-PFD has a block diagonal structure, so for this type

of design, any two factorial effects from two different co-set are uncorrelated. This
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means we can construct a three-quarter design by using two factorial effects that were

selected from two different co-sets for blocking. In this context, correlated effects exist

only within a co- set. Therefore, our methodology for selecting factorial effects which

will be used for blocking 4-PFD is based on the following three different plans:

1. Select uncorrelated factorial effects from the principal group,

2. Select uncorrelated factorial effects, where one factorial effect is from the prin-

cipal group and the other is from any co-set,

3. Select uncorrelated factorial effects, where these effects are from different co-

sets.

Note that selecting two effects from same co-set are equivalent to selecting one

effect from the principal group and the other from any co-set, as shown in the examples

of Section 4.3.

4.4.1 Both Effects from The Principal Group

Consider 4-PFD which is 27−1 with n=64, and k=7, such that G=0.5(ABEF +

CDEF + ACEF − BDEF ). Again, the principal group is the group that contains

the identity (i.e. intercept), the effects in the defining relation I = 0.5G(ABEF +

CDEF+ACEF−BDEF ) and their generalized interactions. So, the principal group

for this design is

{I, ABEFG,CDEFG,ACEFG,BDEFG,BC,AD,ABCD}.

With 27, there are 128 columns for the full factorial model. The principal group

contains 8 effects of them, so the remaining effects are partitioned into 15 co-sets,
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each of size 8. Multiplying the principal group by

A,B, F,G,E,AB,BE,BG,BG,EF,EG,FG,AE,AF,AG

we obtain all the co-sets for the design as follows:

• A co-set {A,D,ABC,BCD,BEFG,ACDEFG,CEFG,ABDEFG},

• B co-set {B,C,ABD,ACD,AEFG,BCDEFG,ABCEFG,DEFG},

• F co-set {F,BCF,ADF,ABCDF,ABEG,CDEG,ACEG,BDEG},

• G co-set {G,BCG,ADG,ABCDG,ABEF,CDEF,ACEF,BDEF},

• E co-set {E,BCE,ADE,ABCDE,ABFG,CDFG,ACFG,BDFG},

• AB co-set{AB,AC,BD,CD,EFG,ABCDEFG,BCEFG,ADEFG},

• BE co-set {BE,CE,ABDE,ACDE,AFG,BCDFG,ABCFG,DFG},

• BG co-set {BG,CG,ABDG,ACDG,AEF,BCDEF,ABCEF,DEF},

• BF co-set {BF,CF,ABDF,ACDF,AEG,BCDEG,ABCEG,DEG},

• EF co-set {EF,BCEF,ADEF,ABCDEF,ABG,CDG,ACG,BDG},

• EG co-set {EG,BCEG,ADEG,ABCDEG,ABF,CDF,ACF,BDF},

• FG co-set {FG,BCFG,ADFG,ABCDFG,ABE,CDE,ACE,BDE},

• AE co-set {AE,ABCE,DE,BCDE,BFG,ACDFG,CFG,ABDFG},

• AF co-set {AF,ABCF,DF,BCDF,BEG,ACDEG,CEG,ABDEG},

• AG co-set {AG,ABCG,DG,BCDG,BEF,ACDEF,CEF,ABDEF}.
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Figure 17 shows the color map and the correlation matrix for the effects columns

of the principal group. Based on the following pairs of uncorrelated effects: (BC,AD),

(BC,ABCD), and (AD,ABCD), we can construct three-quarter designs of this 4-

PFD. We evaluate these designs based on some criteria for ranking the designs, such

as the number of MDSs, the number of flats, generalized resolution, the number of

estimated MEs and 2FIs, and the orthogonality of MEs as shown in Table 22.

(a) Color map of correla-
tion for the effects of the
principal group.

(b) Correlation matrix of the effects for the prin-
cipal group.

Fig. 17.: The correlation of the effects for the principal group.

Table 22.: Properties for constructed three-quarter designs from the principal group
of 27−1.

Pairs of factorial effects Number of MDSs Number of flats Generalized resolution Number of estimate MEs and 2FIs Orthognality of MEs

(BC, AD) one MDS {AB,AC,BD,CD} 3 2.6667 7 MEs, 17 2FIs not orthogonal of MEs

(BC, ABCD) one MDS {AB,AC,BD,CD} 3 2.6667 7 MEs, 17 2FIs not orthogonal of MEs

(AD, ABCD) one MDS {AB,AC,BD,CD} 3 2.6667 7 MEs, 17 2FIs not orthogonal of MEs

Theorem 4 Let D be a two-level orthogonal n-run 4-PFD design. Let (U1, U2) be a

pair of uncorrelated effects belonging to the principal group of D. Then, using (U1, U2)

for blocking D, produce 4 equal blocks. By omitting any block, the resulting design is

a three-quarter design which is 3-PFD.

Proof. Let D be a two-level orthogonal n-run 4-PFD design, and (U1, U2) be a pair

of uncorrelated effects belonging to the principal group of D. By Theorem 3, using
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(U1, U2) for blocking D divides D into four equal blocks. By the definition of PFDs,

the terms in the principal group are constant within each flat, while the terms in

each co-set are not necessarily constant within each flat. Thus, since D is a two-level

orthogonal design, each effect of the principal group has one level, either 1 or -1,

within each flat. Therefore, the terms of the principal group form a matrix with one

unique row within a block. Since, D has four blocks, then a matrix formed by the

terms of the principal group has one unique row within each block, so each block for

D has one unique row. So, each block is corresponding to a single flats. It follows

that removing one block corresponds to removing a single flat. Thus, the resulting

three-quarter design is 3-PFD.

Example : Consider 4-PFD which is the nonregular 27−1 that shown earlier. The

principal group for this design is

{I, ABEFG,CDEFG,ACEFG,BDEFG,BC,AD,ABCD.}

Figure 18 shows that the effects in the principal group form a matrix with an unique

row for each block which means each block corresponds to a single flat. Thus, for

instance, blocking this 4-PFD by the pair of effects (AD,BC) will have one unique

row (−1,−1) in first block, (−1, 1) in the second block, (1,−1) in the third block,

and (1, 1) in the fourth block. By eliminating a block (for example, the fourth block),

we will have three-quarter with 3 flats.
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(a) First block (b) Second block

(c) Third block (d) Fourth block

Fig. 18.: Principal group within all the blocks of design 27−1.

We now consider the proprieties of three-quarter designs which depend on the

indicator function for the design. In this regard, the following lemma will be useful.

Lemma 1 (Lemma 3 in Edwards, 2014) Let FA and FB be indicator functions of two

disjointed designs, A and B, respectively. The indicator function of design A ∪ B is

then FA∪B = FA + FB.

Theorem 5 Let Df3 be an n-run, k-factor, and three-parallel flat design 3-PFD.

Then, the correlation (or inner product) between any two factorial effect columns are

either 0, ±1
3
, or ±1.

Proof. Let S1, S2, and S3 denote the flats that Df3 is composed with, respectively.
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The indicator function of Df3 is given by FDf3
= FS1 + FS2 + FS3 , where

FS1(x) =
∑
l∈P

b1lXl(x),

FS2(x) =
∑
l∈P

b2lXl(x),

FS3(x) =
∑
l∈P

b3lXl(x),

Xl(x) =
∏

i∈l xi for l ∈ P , P is the collection of all subsets of {1, 2, ..., k}, and

bl = 1
2k

∑
x∈Hf3

Xl(x). Then,

FDf3
=
∑
l∈P

b1lXl(x) +
∑
l∈P

b2lXl(x) +
∑
l∈P

b3lXl(x)

FDf3
=
∑
l∈P

(b1l + b2l + b3l )Xl(x).

SinceDf3 is 3-PFD with n-run, by the definition of f -PFD,Df3 is the combination

of three single flat of size n
3
. Thus, any bjl 6= 0 will equal ±n

3
/2k, since with regular

design, the effects are either orthogonal or fully confounding, where j = 1, 2, 3, so

|b1l | = |b2l | = |b3l |. Thus, it follows that b1l + b2l + b3l equals ±n/2k, or ±n
3
/2k.

The constant term of the indicator function is b� = n/2k. So, the correlation

amount between any two factorial effect columns is as follows:

if bjl = ±n/2k, then, bjl /b� = (±n/2k)/(n/2k) = ±1,

if bjl = ±n
3
/2k, then, bjl /b�=(±n

3
/2k)/(n/2k) = ±1

3
.

Example : Consider 4-PFD with k=7 and n=64, such that G=0.5(ABEF +

CDEF + ACEF − BDEF ), which was shown earlier. Blocking this design by

(AD,ABCD), where AD and ABCD belong to the principal group, generates four

blocks of equal size, each block has run size equals n=16. The indicator function to

each block as follows:
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1. FS1(x) = 1/27(16+16x1x4−16x2x3−16x1x2x3x4+16x1x2x5x6x7+16x1x3x5x6x7−

16x2x4x5x6x7 − 16x3x4x5x6x7),

2. FS2(x) = 1/27(16−16x1x4−16x2x3+16x1x2x3x4+16x1x2x5x6x7−16x1x3x5x6x7−

16x2x4x5x6x7 + 16x3x4x5x6x7),

3. FS3(x) = 1/27(16−16x1x4−16x2x3−16x1x2x3x4−16x1x2x5x6x7+16x1x3x5x6x7−

16x2x4x5x6x7 + 16x3x4x5x6x7),

4. FS4(x) = 1/27(16+16x1x4−16x2x3+16x1x2x3x4+16x1x2x5x6x7+16x1x3x5x6x7+

16x2x4x5x6x7 + 16x3x4x5x6x7).

Fontana et al., 2000 propose and prove that if the absolute values of the nonzero

coefficients for an indicator function are constant, then the associated design is reg-

ular. Otherwise, if the absolute values of the nonzero coefficients are not constant,

then the associated design is nonregular design. In the example above, the absolute

value of the coefficients to the words in all the indicator functions are constant, which

means each indicator function corresponds to a regular design. Now, by omitting

S4 without loss of generality, we obtain a three-quarter design that is 3-PFD. The

indicator function to this design, D3/4, is

FD3/4
(x) = 1/27(48−16x1x4−16x2x3−16x1x2x3x4+16x1x2x5x6x7+16x1x3x5x6x7−

48x2x4x5x6x7 + 16x3x4x5x6x7).

From the indicator function to D3/4, we can see that the correlation amount

between X1, X4 is (−16/27)/(48/27) = −1/3, and the correlation between X2X4 and

X5X6X7 is (−48/27)/(48/27) = −1.
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4.4.2 One Effect from the Principal Group and the Other from Any Co-

Set

In this subsection, we consider the case in which one effect is selected from the

principal group and the other effect is selected from any co-set. As the case of regular

design, this case is equivalent to the case where two factorial effects are selected within

the same co-set, as shown in Section 4.3. Figure 19 shows the color map correlation

and the correlation matrix to the effects of the principal group and A co-set for the

4-PFD, that was shown in the previous subsection. Table 23 shows the pairs of

uncorrelated effect that can be used to construct three-quarter designs of this 4-PFD,

and the criteria associated with these designs, which are the same as those used in

the previous subsection.

Table 23.: Properties for three-quarter designs constructed by blocking using effects
from the principal group and A co-set.

Pairs of factorial effects Number of MDSs Number of flats Generalized resolution Number of estimate MEs and 2FIs Orthogonality of MEs

(A, BC) one MDS {B,C,AB,AC} 6 1.6667 5 MEs, and 19 2FIs not orthogonal of MEs

(A, AD) one MDS {I, A,D,AD} 6 1.6667 5 MEs, and 19 2FIs not orthogonal of MEs

(A, ABCD) No MDSs 6 1.6667 all MEs, and 2FIs not orthogonal of MEs

(ABC, BC) one MDS {B,C,AB,AC} 6 1.6667 5 MEs, and 19 2FIs not orthogonal of MEs

(ABC, AD) No MDSs 6 2.6667 all MEs, and 2FIs not orthogonal of MEs

(ABC, ABCD) No MDSs 6 1.6667 all MEs, and 2FIs not orthogonal of MEs

(D, BC) one MDS {B,C,BD,CD} 6 1.6667 5 MEs, and 17 2FIs not orthogonal of MEs

(D, AD) one MDS {I, A,D,AD} 6 1.6667 6 MEs, and 17 2FIs not orthogonal ofMEs

(D, ABCD) No MDSs 6 1.6667 all MEs, and 2FIs not orthogonal of MEs

(BEFG,BC) one MDS {B,C,AB,AC} 6 1.6667 5 MEs, and 19 2FIs not orthogonal of MEs

(BEFG,AD) No MDSs 6 2.6667 all MEs, and 2FIs not orthogonal of MEs

(BEFG,ABCD) No MDSs 6 1.6667 all MEs, and 2FIs not orthogonal of MEs

(ACDEFG,BC) one MDS {B,C,BD,CD} 6 1.6667 5 MEs, and 19 2FIs not orthogonal of MEs

(ACDEFG,AD) one MDS {I, A,D,AD} 6 1.6667 6 MEs, and 19 2FIs not orthogonal of MEs

(ACDEFG,ABCD) No MDSs 6 1.6667 all MEs, and 2FIs not orthogonal of MEs

(CEFG,BC) one MDS {B,C,AB,AC} 6 1.6667 5 MEs, and 19 2FIs not orthogonal of MEs

(CEFG,AD) one MDS{I, A,D,AD} 6 1.6667 6 MEs, and 19 2FIs not orthogonal of MEs

(CEFG,ABCD) No MDSs 6 1.6667 all MEs, and 2FIs not orthogonal of MEs

(ABDEFG,BC) No MDSs 6 1.6667 all MEs, and 2FIs not orthogonal of MEs

(ABDEFG,AD) No MDSs 6 2.6667 all MEs, and 2FIs not orthogonal of MEs

(ABDEFG,ABCD) No MDSs 6 1.6667 all MEs, and 2FIs not orthogonal of MEs

88



(a) Color map of correla-
tion of the effects for the
principal group and A co-
set

(b) Correlation matrix of the effects for the prin-
cipal group and A co-set

Fig. 19.: The correlation among the effects for the principal group and A co-set

For this case, we notice that some cases of uncorrelated effects don’t divide

the design into 4 equal blocks. That is because they are equivalent to correlated

effects, such that these effects are selected from the same co-set. For instance, we

can see in Figure 19(a), ABC and ABEFG are uncorrelated effects, but we can see

in Figure 20(a) they don’t divide the 4-PFD into 4 equal blocks. In fact, the pair

of effects (ABC,ABEFG) is equivalent to (ABC,CEFG), where both ABC and

CEFG belong to the A co-set, and they are correlated effects. Figure 20(b) shows

that these effects don’t divide the 4-PFD into 4 equal blocks.
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(a) Blocking 27−1 by (ABEFG,ABC). (b) Blocking 27−1 by (ABC,CEFG).

Fig. 20.: Blocking nonregular 27−1 by (ABEFG,ABC), and (ABC,CEFG).

Theorem 6 Let D be a two-level orthogonal n-run 4-PFD design. Let (U1, U2) be

a pair of uncorrelated effects, where U1 belongs to the principal group of D, and U2

belongs to a co-set of D. Then, using (U1, U2) for blocking D produce 4 equal block,

by omitting any block. The resulting design is a three-quarter design which is 6-PFD.

Proof. Let D be a two-level orthogonal n-run 4-PFD design, and (U1, U2) be a pair

of uncorrelated effects, where U1 belongs to the principal group of D, and U2 belongs

to a co-set of D. By theorem 3, using (U1, U2) for blocking D divides D into four

equal blocks. By the definition of PFDs, the terms in the principal group are constant

within each flat, while the terms in each co-set are not necessarily constant within

each flat. Thus, since D is a two-level orthogonal design, each effect of the principal

group has one level, either 1 or -1 within each flat, however each effect of a co-set
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has two levels, -1 and 1, within each flat. Therefore, the terms of the principal group

and the co-set form a matrix with two unique rows within a block. Since D has four

blocks, then a matrix formed by the terms of the principal group and the co-set has

two unique rows within each block. So, each block is corresponding to two single

flats. Thus, it follows that removing one block corresponds to removing two-single

flats. Thus, the resulting three-quarter design is 6-PFD.

Example : Consider the 4-PFD in the previous subsection. The principal group

for this design is

{BC,AD,ABCD,ABEFG,CDEFG,ACEFG,BDEFG}

and the A co-set is

{A,D,ABC,BCD,BEFG,ACDEFG,CEFG,ABDEFG}.

Figure 21 shows the effects of the principal group and A co-set within each blocks

for the 4-PFD. It is clear that the effects of the principal group and the A co-set form

a matrix with two unique rows within each block, therefore, each block corresponds to

two-single flat. Thus, blocking the 4-PFD by a pair of effects, such that one effect is

selected from the principal group, and the other from the A co-set, means combining

8 single flat together. Figure 22 shows blocking the 4-PFD by (BC,ABC) where BC

is from the principal group, and ABC is from the A co-set. We can see that the first

block has two unique row (−1, 1) and (−1,−1), which correspond to two flat with

the following defining relations:

• I = −A = −D = −AD = −BC = ABC = −BCD = −ACDEFG =

CDEFG = ABDEFG = −ACEFG = −BEFG = −BDEFG = CEFG =

ABEFG = ABCD,
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• I = −A = −D = −AD = −BC = ABC = BCD = ACDEFG = CDEFG =

−ABDEFG = −ACEFG = BEFG = −BDEFG = −CEFG = ABEFG =

ABCD.

The second block has (−1, 1) and (−1,−1), which correspond to two single flat with

the following defining relations:

• I = −A = −D = AD = BC = ABC = BCD = −ACDEFG = CDEFG =

ABDEFG = ACEFG = BEFG = −BDEFG = −CEFG = −ABEFG =

−ABCD,

• I = A = D = AD = −BC = −ABC = −BCD = ACDEFG = CDEFG =

−ABDEFG = ACEFG = −BEFG = −BDEFG = CEFG = −ABEFG =

−ABCD.

In addition, the third block has (1,−1) and (1, 1), which correspond to two single flat

with the following defining relations:

• I = −A = D = −AD = −BC = −ABC = BCD = ACDEFG = −CDEFG =

ABDEFG = ACEFG = −BEFG = −BDEFG = −CEFG = ABEFG =

−ABCD,

• I = A = −D = −AD = BC = ABC = −BCD = −ACDEFG = −CDEFG =

−ABDEFG = ACEFG = BEFG = −BDEFG = CEFG = ABEFG =

ABCD.

Thus, combining three blocks together will produce a three-quarters design of 6-PFD.
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(a) First block

(b) Second block

(c) Third block

(d) Fourth block

Fig. 21.: Principal group and, A co-set within the blocks of the 4-PFD.
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(a) First block (b) Second block

(c) Third block (d) Fourth block

Fig. 22.: Blocking the 4-PFD by (BC,ABC).

Theorem 7 Let Df6 be an n-run, k-factor, and six-parallel flat design 6-PFD. Then,

the correlation (or inner product) between any two factorial effect columns are either

0, ±1
3
, ±2

3
, or ±1.

Proof. Let S1, S2, S3,...,S6 denote the flats that Df6 is composed with, respectively.
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The indicator function of Df6 is given by FDf6
= FS1 + FS2 + FS3 + ...+ FS6 ,where

FS1(x) =
∑
l∈P

b1lXl(x),

FS2(x) =
∑
l∈P

b2lXl(x),

FS3(x) =
∑
l∈P

b3lXl(x),

...

FS6(x) =
∑
l∈P

b6lXl(x),

Xl(x) =
∏

i∈l xi, for l ∈ P , where P is the collection of all subsets of {1, 2, ..., k}, and

bl = 1
2k

∑
x∈Hf6

Xl(x).

Thus,

FDf6
=
∑

l∈P b
1
lXl(x) +

∑
l∈P b

2
lXl +

∑
l∈P b

3
lX
Xl(x) + ...+

∑
l∈P b

6
lXl(x),

FDf6
=
∑

l∈P (b1l + b2l + b3l + ...+ b6l )Xl(x).

Since Df6 is 6-PFD with an n-run, based on the definition of f -PFD, Df6 is the

combination of six single flat of size n
6
. Thus, any bjl 6= 0 will equal ±n

6
/2k, since

with regular design, the effects are either orthogonal or fully confounding, where

j = 1, 2, 3, ..., 6. So, |b1l | = |b2l | = |b3l | = ... = |b6l |. Thus, it follows that b1l + b2l + b3l +

b4l + b5l + b6l equals ±n/2k,±(4n
6

)/2k,±(2n
6

)/2k, or 0.

As in the previous theorem, the constant term of the indicator function of Df6

is b� =n/2k. The correlation amount between any two factorial effect columns as

follows:

if bjl = ±n/2k, bjl /b� = (±n/2k)/(n/2k) = ±1,

if bjl = ±4n
6
/2k, bjl /b� = (±4n

6
/2k)/(n/2k) = ±2

3
,

if bjl = ±2n
6
/2k, bjl /b� = (±2n

6
/2k)/(n/2k) = ±1

3
,

if bjl = 0, bjl /b� = 0.
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Example : Consider the 4-PFD with n=64, and k=7, such that G=0.5(ABEF +

CDEF+ACEF−BDEF ) that was shown earlier. Blocking this design by (ABCD,A),

where ABCD is selected from the principal group, and A is selected from A co-set

generates four blocks, each of size 16. Since, the effects that used for blocking are

selected from the principal group and A co-set respectively, based on Theorem 7 each

block corresponds to two single flats. So, all four blocks contain 8 single flat. Let

S1, S2, S3, ..., S8 denotes to these flats, the indicator function of each flat as follows:

1. FS1(x) = 1/27(8−8x1 +8x4−8x1x4−8x2x3 +8x1x2x3−8x2x3x4 +8x1x2x3x4−

8x2x5x6x7+8x3x5x6x7+8x1x2x5x6x7−8x1x3x5x6x7−8x2x4x5x6x7+8x3x4x5x6x7+

8x1x2x4x5x6x7 − 8x1x3x4x5x6x7),

2. FS2(x) = 1/27(8−8x1−8x4−8x1x4−8x2x3−8x1x2x3 +8x2x3x4 +8x1x2x3x4 +

8x2x5x6x7−8x3x5x6x7+8x1x2x5x6x7−8x1x3x5x6x7−8x2x4x5x6x7+8x3x4x5x6x7−

8x1x2x4x5x6x7 + 8x1x3x4x5x6x7),

3. FS3(x) = 1/27(8−8x1−8x4 +8x1x4−8x2x3 +8x1x2x3 +8x2x3x4−8x1x2x3x4 +

8x2x5x6x7−8x3x5x6x7−x1x2x5x6x7+8x1x3x5x6x7−8x2x4x5x6x7+8x3x4x5x6x7+

8x1x2x4x5x6x7 − 8x1x3x4x5x6x7),

4. FS4(x) = 1/27(8+8x1 +8x4 +8x1x4−8x2x3−8x1x2x3−8x2x3x4−8x1x2x3x4−

8x2x5x6x7+8x3x5x6x7−8x1x2x5x6x7+8x1x3x5x6x7−8x2x4x5x6x7+8x3x4x5x6x7−

8x1x2x4x5x6x7 + 8x1x3x4x5x6x7),

5. FS5(x) = 1/27(8−8x1 +8x4−8x1x4 +8x2x3−8x1x2x3 +8x2x3x4 +8x1x2x3x4−

8x2x5x6x7−8x3x5x6x7+8x1x2x5x6x7+8x1x3x5x6x7+8x2x4x5x6x7−8x3x4x5x6x7+

8x1x2x4x5x6x7 + 8x1x3x4x5x6x7),

6. FS6(x) = 1/27(8+8x1−8x4−8x1x4 +8x2x3 +8x1x2x3−8x2x3x4−8x1x2x3x4 +
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8x2x5x6x7+8x3x5x6x7+8x1x2x5x6x7+8x1x3x5x6x7−8x2x4x5x6x7−8x3x4x5x6x7−

8x1x2x4x5x6x7 − 8x1x3x4x5x6x7),

7. FS7(x) = 1/27(8−8x1−8x4 +8x1x4 +8x2x3−8x1x2x3−8x2x3x4 +8x1x2x3x4−

8x2x5x6x7−8x3x5x6x7+8x1x2x5x6x7+8x1x3x5x6x7+8x2x4x5x6x7+8x3x4x5x6x7−

8x1x2x4x5x6x7 − 8x1x3x4x5x6x7),

8. FS8(x) = 1/27(8 + 8x1 + 8x4 + 8x1x4 + 8x2x3 + 8x1x2x3 + 8x2x3x4 + 8x1x2x3x4 +

8x2x5x6x7+8x3x5x6x7+8x1x2x5x6x7+8x1x3x5x6x7+8x2x4x5x6x7+8x3x4x5x6x7+

8x1x2x4x5x6x7 + 8x1x3x4x5x6x7).

By removing a quarter of the run size, which is involved two single flat, we obtain a

three-quarter design D3/4, that is six flat with indicator function given by:

FD3/4
(x) = 1/27(48−16x1x2−16x2x3−16x1x2x3x4+16x1x2x5x6x7+16x1x3x5x6x7−

48x2x4x5x6x7 + 16x3x4x5x6x7)

From the indicator function of D3/4, the correlation amount between X2, and

X3X4 is (−16/27)/(48/27) = −1/3, and the correlation between X2X4 and X5X6X7

is (−48/27)/(48/27) = −1.

4.4.3 Both Effects from Different Co-sets

With block diagonal structure design, any two effects belonging to different blocks

are uncorrelated. In fact, these blocks are corresponding to the co-sets for a design.

That means for 4-PFD, we are able to construct three-quarter designs from any two

effects, where they are from two different co-sets. Figure 15 shows the correlation of

the effects for A, and B co-sets for the 4-PFD that was shown in the previous subsec-

tion. Table 9 shows the properties of three-quarter designs, which were constructed

by blocking the 4-PFD by a pair of effects where they were selected from A and B

co-sets.
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(a) Color map of corre-
lation

(b) The correlation matrix

Fig. 23.: The correlation of the effects for A and B co-sets.
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Table 24.: Properties for three-quarter designs constructed by blocking using effect
from A and B co-sets.

Pairs of factorial effects number of MDSs Number of flats Generalized resolution Number of estimate MEs and 2FIs Orthogonality of MEs

(A, B) one MDS {I, A,B,AB} 12 1.6667 5 MEs, and 20 2FIs not orthogonal to MEs

(A, C) one MDS {I, A,C,AC} 12 1.6667 5 MEs, and 20 2FIs not orthogonal to MEs

(A, ABD) one MDS {B,D,AB,AD} 12 1.6667 5 MEs, and 19 2FIs not orthogonal to MEs

(A, ACD) one MDS {C,D,AC,AD} 12 1.6667 5 MEs, and 19 2FIs not orthogonal to MEs

(A, AEFG) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(A, BCDEFG) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(A, ABCEFG) No MDSs 12 1.6667 All MEs, and 2FIs not orthogonal to MEs

(A, DEFG) No MDSs 12 1.6667 All MEs, and 2FIs not orthogonal to MEs

(D, B) one MDS {I,B,D,BD} 12 1.6667 5 MEs, and 20 2FIs not orthogonal to MEs

(D,C) one MDS {I, C,D,CD} 12 1.6667 5 MEs, and 20 2FIs not orthogonal to MEs

(D,ABD) one MDS {A,B,AD,BD} 12 1.6667 5 MEs, and 19 2FIs not orthogonal to MEs

(D,ACD) one MDS {A,C,AD,CD} 12 1.6667 5 MEs, and 19 2FIs not orthogonal to MEs

(D, AEFG) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(D, BCDEFG) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(D,ABCEFG) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(D,DEFG) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(ABC,B) one MDS {I,B,D,BD} 12 1.6667 all MEs, and 20 FIs not orthogonal toMEs

(ABC,C) one MDS {I, C,D,CD} 12 1.6667 5 MEs, and 20 2FIs not orthogonal toMEs

(ABC,ABD) one MDS {A,B,AD,BD} 12 1.6667 5 MEs, and 19 2FIs not orthogonal toMEs

(ABC,ACD) one MDS {A,C,AD,CD} 12 1.6667 5 MEs, and 19 2FIs not orthogonal toMEs

(ABC,AEFG) No MDSs 12 1.6667 all MEs, and 2FI not orthogonal to MEs

(ABC,BCDEFG) No MDSs 12 1.6667 all MEs, and 2FI not orthogonal to MEs

(ABC,ABCEFG) No MDSs 12 1.6667 all MEs, and 2FI not orthogonal to MEs

(ABC,DEFG) No MDSs 12 1.6667 all MEs, and 2FI not orthogonal to MEs

(BCD, B) one MDS {C,D,BC,BD} 12 1.6667 5 MEs, and 19 2FIs not orthogonal to MEs

(BCD, C) one MDS {B,D,BC,CD} 12 1.6667 5 MEs, and 19 2FIs not orthogonal to MEs

(BCD, ABD) No MDSs 12 2.6667 all MEs, and 2FIs not orthogonal to MEs

(BCD, ABD) No MDSs 12 2.6667 all MEs, and 2FIs not orthogonal to MEs

(BCD, ACD) No MDSs 12 2.6667 all MEs, and 2FIs not orthogonal to MEs

(BCD, AEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(BCD, BCDEFG) No MDSs 12 1.8333 All MEs, and 2FIs not orthogonal to MEs

(BCD, ABCEFG) No MDSs 12 1.8333 All MEs, and 2FIs not orthogonal to MEs

(BCD, DEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(BEFG, B) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(BEFG,C) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(BEFG,ABD) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(BEFG, ACD) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(BEFG, AEFG) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(BEFG,BCDEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(BEFG, ABCEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(BEFG, DEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(CEFG, B) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(CEFG, C) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(CEFG, ABD) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(CEFG, ACD) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(CEFG, AEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(CEFG, BCDEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(CEFG, ABCEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(CEFG, DEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(ACDEFG, B) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(ACDEFG, C) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(ACDEFG, ABD) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(ACDEFG, ACD) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(ACDEFG, AEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(ACDEFG, BCDEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(ACDEFG, ABCEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(ACDEFG, DEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(ABDEFG, B) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(ABDEFG, C) No MDSs 12 1.6667 all MEs, and 2FIs not orthogonal to MEs

(ABDEFG, ABD) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(ABDEFG, ACD) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(ABDEFG, AEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(ABDEFG, BCDEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(ABDEFG, ABCEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

(ABDEFG, DEFG) No MDSs 12 1.8333 all MEs, and 2FIs not orthogonal to MEs

Theorem 8 Let D be a two-level orthogonal n-run 4-PFD design. Let (U1, U2) be a

pair of uncorrelated effects, where U1 and U2 belong to different co-sets of D. Then,
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using (U1, U2) for blocking D, produce 4 equal blocks by omitting any block. The

resulting design is a three-quarter design which is twelve flats.

Proof. Let D be a two-level orthogonal n-run 4-PFD design, and (U1, U2) be a pair

of uncorrelated effects, where U1 and U2 belong to two different co-sets of D. By

Theorem 3, using uncorrelated (U1, U2) for blocking D, divides D into four equal

blocks. By the definition of PFDs, the terms in the principal group are constant

within each flat, while the terms in each co-set are not necessarily constant within

each flat. Thus, since D is a two-level orthogonal design, each effect of a co-set has two

levels, -1 and 1, within each flat. Therefore, the terms of two different co-sets form a

matrix with four unique row within a block. Since, D has four blocks, then a matrix

formed by the terms of two different co-sets has four unique row within each block.

So, each block is corresponding to four-single flat. Thus, it follows that removing

one block corresponds to removing four-single flat. Thus, the resulting three-quarter

design is 12-PFD.

Example : Consider the 4-PFD with n=64, and k=7, such that G=0.5(ABEF +

CDEF + ACEF −BDEF ) as was shown earlier. The B and F co-sets of D are

{B,C,ABD,ACD,AEFG,BCDEFG,ABCEFG,DEFG},

{F,BCF,ADF,ABCDF,ABEG,CDEG,ACEG,BDEG}

respectively. Since any two effects from B, and F are uncorrelated, then blocking

the 4-PFD by a pair of effects, that selected from B and F , divides the 4-PFD into

4 blocks of size n=16. Figure 24 shows the effects of B and F co-sets within each

block. It is clear that the effects for the co-sets B and F form a matrix with four

unique rows for each block. So, using a pair of effects, for example, (ABD,ADF ) to
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block the 4-PFD such that ABD and ADF are selected from B and F , respectively,

divides the 4-PFD into 4 equal blocks, each block has four single flats of size 4. Figure

25 shows the four blocks of the 4-PFD when using the pair of effects (ABD,ADF )

for blocking. Thus, this 4-PFD is a combination of 16 single flats. By removing one

block, which contains four single flats, the three-quarter design is twelve flats.

(a) First block

(b) Second block

(c) Third block

(d) Fourth block

Fig. 24.: B, and F co-sets within the blocks for the 4-PFD.
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(a) First block (b) Second block

(c) Third block (d) Fourth block

Fig. 25.: Blocking the 4-PFD by (ABD,ADF ).

Theorem 9 Let Df12 be an n-run, k-factor, and twelve-parallel flat design 12-PFD.

Then, the correlation (or inner product) between any two factorial effect columns are

either ±1, ±5
6
, ±2

3
, ±1

2
, ±1

3
, ±1

6
, or 0.

Proof. Let S1, S2, S3,...,S12 denote the flats that Df12 is composed with, respectively.

The indicator function of Df12 is given by FDf12
= FS1 +FS2 +FS3 +FS4 + ...+FS12 ,

where
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FS1(x) =
∑
l∈P

b1lXl(x),

FS2(x) =
∑
l∈P

b2lXl(x),

FS3(x) =
∑
l∈P

b3lXl(x),

...

FS12(x) =
∑
l∈P

b12l Xl, (x)

where Xl(x) =
∏

i∈l xi, for l ∈ P , where, P is the collection of all subsets of

{1, 2, ..., k}, and bl = 1
2k

∑
x∈Df12

Xl(x).

Thus,

FDf12
=
∑

l∈P b
1
lXl(x) +

∑
l∈P b

2
lXl +

∑
l∈P b

3
lX
Xl(x) + ...

∑
l∈P b

12
l Xl(x),

FDf12
=
∑

l∈P (b1l + b2l + b3l + ...+ b12l )Xl(x).

Since Df12 is twelve flats with n-run, based on the definition of f -PFD, Df12 is

combination of twelve single flats of size n
12

. Thus, any bjl 6= 0 will equal ± n
12
/2k, since

with regular design, the effects are either orthogonal or fully confounding, where j =

1, 2, 3, ..., 12. So, |b1l | = |b2l | = |b3l | = ... = |b12l |. Thus, it follows that b1l +b
2
l +b

3
l +...+b

12
l

equals ±n/2k,±(10n
12

)/2k,±(8n
12

)/2k,±(6n
12

)/2k,±(4n
12

)/2k,±(2n
12

)/2k or 0.

As in the previous theorems, the constant term of the indicator function for Df12

is b� =n/2k. The correlation amount will be as follows:

if bjl = ±n/2k, then bjl /b� = (±n/2k)/(n/2k) = ±1,

if bjl = ±10n
12
/2k, bjl /b� = (±10n

12
/2k)/(n/2k) = ±5/6,

if bjl = ±8n
12
/2k, then bjl /b� = (±8n

12
/2k)/(n/2k) = ±2/3,

if bjl = ±6n
12
/2k, then bjl /b� = (±6n

12
/2k)/(n/2k) = ±1/2,

if bjl = ±4n
12
/2k, then bjl /b� = (±4n

12
/2k)/(n/2k) = ±1/3,

if bjl = ±2n
12
/2k, then bjl /b� = (±2n

12
/2k)/(n/2k) = ±1/6.
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Example : Consider the 4-PFD, which is 27−1, with the generatorsG = 0.5(ABEF+

CDEF + ACEF − BDEF ) that was shown earlier. By blocking this design by

(ABC,ABEG), where they belong to A and F co-sets respectively, we obtain 4

blocks, each of size n=16. By removing the fourth block without loss the generality,

we have a three-quarter design D3/4, with an indicator function as follows: FDf12
(x) =

1/27(48 − 16x1 − 16x4 − 16x1x4 − 16x3x5x6x7 + 32x1x2x5x6x7 + 16x1x3x5x6x7 −

32x2x4x5x6x7 + 16x3x4x5x6x7 − 16x1x3x4x5x6x7)

The coefficient of the words in the indicator function of three-quarter design

D3/4 is either ±16, or ±32. So, the correlation amount between any effects for this

three-quarter design is either ±1/3, or ±2/3. For example, the correlation amount

between X1X4 is (−16
64

)/(48
64

) = −1
3

, and the correlation between X2 and X4X5X6X7 is

(−32
64

)/(48
64

) = 2
3
.

4.5 Three-Quarter Designs and MDSs

In the previous section, we found that some three-quarter designs produce an

MDSs of size 4, while in some cases, three-quarter designs do not produce MDSs. For

example, consider the AG co-set of the 4-PFD, which is 27−1 that was shown earlier.

{AG,ABCG,DG,BCDG,BEF,ACDEF,CEF,ABDEF}.

From this co-set, we are able to construct three-quarter designs based on 12 pairs of

uncorrelated effects, 6 of these pairs are producing one MDS of size 4, while the other

6 pairs are not. Table 25 shows the pairs of effects that are producing/not producing

MDSs from the AG co-set.
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Table 25.: Pairs of blocking effects that producing/not producing MDSs from AG
co-set of the 4-PFD.

Pairs of factorial effects MDSs

(AG, ABCG) {AB,AC,BG,CG}
(AG, DG) {I, AD,AG,DG}

(DG, BCDG) {BD,BG,CD,CG}
(BEF,CEF) {AB,AC,BG,CG}

(ACDEF, CEF) {I, AD,AG,DG}
(ACDEF, ABDEF) {BD,BG,CD,CG}

(AG, BCDG) No MDSs

(ABCG, DG) No MDSs

(ABCG, BCDG) No MDSs

(CEF, ABDEF) No MDSs

(BEF, ACDEF) No MDSs

(BEF, ABDEF) No MDSs

Consider Generalized Alias Length Pattern (GALP) to evaluate three-quarter

designs that produce MDSs and those that do not. GALP was first produced by

Cheng et al., 2008 as a measure of aliasing for 2FIs to strength 3 arrays. Mee,

2013 defined this criterion for strength 3 arrays as the main diagonal of the matrix

(X ′X/n)2, where X is the model matrix for the 2FIs interaction model. Mee, 2013

noted that the minimum value for the ith element of (X ′X/n)2 is 1, which would

indicates that the ith column is uncorrelated with every other column.

Fig. 26.: GALP distribution for three-
quarter design that constructed from AG
co-set of the 4-PFD.
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Figure 26 shows GALP distribution for the three-quarter designs that were con-

structed by blocking the 4-PFD using a pair of effects that were selected from the

AG co-set. The GALP distribution of three-quarter designs, that were constructed

based on blocking the 4-PFD by the following pairs of effects:

(AG,BCDG), (ABCG,DG), (ABCG,BCDG),

(CEF,ABDEF )(BEF,ACDEF ), (BEF,ABDEF )

(4.6)

are overlapping, which is represented by the orange line in Figure 26. Table 25 shows

that using one of these pairs for constructing three-quarter design of the 4-PFD

doesn’t produce an MDS. Thus, it seems reasonable that these pairs of effects have

the same GALP distribution.

Also, the GALP distribution for three-quarter designs, that constructed by block-

ing on the following pairs: (DG,BCDG), (ACDEF,ABDEF ) are overlapping, which

represented by blue line in Figure 26. Each of these pairs provides a three-quarter

design, that produces the same MDS, which is {BD,BG,CD,CG} as shown in Table

25, which might be the reason to have same GALP distribution.

Moreover, the GALP distribution for three-quarter designs, that were constructed

by blocking on the following pairs: (AG,ABCG), (BEF,CEF ), are overlapping,

which is represented by dark red line in Figure 18 and again they produce same MDS.

Also, the purple line in Figure 18 represents the GALP distribution of three-quarter

designs that were constructed by blocking the 4-PFDs on the pairs of uncorrelated

effects (AG,DG), (ACDEF,CEF ), and they produce the same MDS as shown in

Table 25.

Based on the plot in Figure 26, the three-quarter designs that don’t produce

MDSs (orange line) have less distinct values of GALP than the other three-quarter

designs. Also, the largest value for the GALP to these designs is 1.22, which is less
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than the other three-quarter designs, which have 1.33. Also, the GALP for these

designs have the lowest aliasing for MEs and 2FIs. Thus, our recommendation is that

the three-quarter designs that don’t produce MDSs are the best designs among the

other three-quarter designs, especially, for identifying the active MEs and 2FIs.

4.6 Comparison between Three-Quarter of Regular Design and Three-

Quarter of 4-PFD Design

In this section, we provide a comparison between three-quarter of a regular design

and three-quarter of 4-PFD design. We will compare these designs based on the usual

criteria for ranking designs, such as estimation capacity (EC), projection estimation

capacity (PEC), projection information capacity (PIC), and generalized aliasing

length pattern (GALP ).

4.6.1 Projection Estimation Capacity PEC

Loeppky et al., 2007 defined a PEC as a sequence (k1, k2, ..., kr), where ki is the

proportion of estimable models for i MEs and their associated 2FIs. Li and Aggarwal,

2008 defined the PEC as an integer q, such that the 2FIs model is estimable for

every subset of q factor. In this subsection, we will compare three-quarter design

of regular/4-PFD design based on PEC. Let D1r denote a three-quarter design of

regular design 27−1, with generator G = ABCDEF . Consider the 4-PFD which is a

nonregular 27−1 as was shown in Section 4.4. Let D1f3 denote a three-quarter design

that was constructed by blocking the 4-PFDs using two effects from the principal

group, D1f6 denotes a three-quarter design that was constructed by blocking the 4-

PFD using two effects, where one effect is from the principal group and the other

from any co-set, and D1f12 denotes a three-quarter design that was constructed by

blocking the 4-PFD, using two effects from different co-sets.
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Table 26.: Projection estimation capacity criteria for three-quarter designs with
k=7 and n=48

Design PEC1 PEC2 PEC3 PEC4 PEC5 PEC6 PEC7

D1r 1 1 1 1 1 1 1

D1f3 1 1 1 0.9714 0.8571 0.5714 0

D1f6 1 1 1 1 1 1 1

D1f12 1 1 1 1 1 1 1

Table 26, shows that D1r, D1f6 , and D1f12 have identical PEC. Based on the

assumption of factor sparsity, by using these designs, the 2FIs model can be estimated

for any subset of 1 to 7 factors. For instance, for designD1f6 , the two factor interaction

model is estimable for any subset of 7 factor since PEC7=1, while for design D1f3 ,

there is no 2FIs model that could be estimable for any subset of 7 factors because

PEC7=0 for this design. For the considered designs, we notice that PEC for three-

quarter of regular design D1r is better than PEC for D1f3 , while, it is equivalent to

D1f6 and D1f12 . This could suggest an equal efficiency for both three-quarter designs

of regular/4-PFD designs, based on PEC of the considered designs.

Let D2r denote a three-quarter design of regular design 26−1, with generator

F = ABCD. Consider the 4-PFD which is a nonregular design 26−1 with n=32, and

k=6, such that F = 0.5E(AB+AC +BD−CD) that was shown in Section 4.2. Let

D2f3 denote a three-quarter design that was constructed by blocking this 4-PFD using

two effects were selected from the principal group, D2f6 denote a three-quarter design

that was constructed by blocking this 4-PFD using two effects, where one effect was

selected from the principal group and the other from any co-set, and D2f12 denote a

three-quarter design that was constructed by blocking this 4-PFD, using two effects

were selected from different co-sets. Table 27 shows the comparison of these designs
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based on PEC.

Table 27.: Projection estimation capacity criteria for three-quarter designs with
k=6 and n=24

Design PEC1 PEC2 PEC3 PEC4 PEC5 PEC6

D2r 0.9809 0.9028 0.7680 0.5622 0.2978 0

D2f3 1 0.9924 0.9803 0.8324 0.2978 0

D2f6 0.9905 0.9771 0.9155 0.7327 0.2691 0

D2f12 0.9953 0.9866 0.9660 0.9104 0.8075 0

In this example, we found that all three-quarters designs of 4-PFD design D2f3 ,

D2f6 , and D2f12 are better than three-quarter deign of regular design D2r based on

PEC. For design D2f12 the two factor interaction model can be estimated around 14

out of the 15 four-factor projections, and for D2f3 the two factor interaction model can

be estimated for 12 out of the 15 four-factor projections. Design D2f6 is slightly worse

with around 11/15, while D2r is the worst among designs with around 8/15. Thus,

D2f12 is recommended design for estimating a large number of two factor interaction

models.

4.6.2 Estimation Capacity (EC)

Estimation capacity (EC) is a vector, (EC1, EC2, EC3..., ECg), of the propor-

tions of estimable models with all k MEs and {1, 2, ..., g} 2FIs. Jones et al., 2009

illustrated that the estimation capacity is the key characteristic of the supersaturated

designs. Jones et al., 2009 defined estimation capacity, for supersaturated designs as

number of estimable g-term main-effect models

total number of g-term main-effect models
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such that ECg = 1, which indicates that all models with k MEs, and g 2FIs are

estimable. Table 28 shows this criteria for a three-quarter design of the regular

design 27−1, and four cases of three-quarter design of the 4-PFD that we discussed in

the previous subsection.

Table 28.: Estimation capacity for three quarters designs with k=7 and n=48

Design EC1 EC2 EC3 EC4 EC5 EC6 EC7

D1r 0.9524 0.9048 0.8571 0.8095 0.7619 0.7143 0.6667

D1f3 1 1 1 0.9998 0.9992 0.9975 0.9942

D1f6 1 1 1 1 1 1 1

D1f12 1 1 1 1 1 1 1

From Table 28, we have two cases of three-quarter designs of 4-PFD D1f6 and

D1f12 having 100% for all the sequences of EC, which indicate high efficiency of these

designs for estimating every possible model with k=7 MEs and g=7 2FIs. However,

the three-quarter design of regular design D1r has around 95% for EC1, which means

not all possible models of 7 MEs, and only 1 2FIs, are estimable. Thus, the EC of

three-quarter design of 4-PFD is impressive, since it is guaranteed to find the true

model for 7 MEs, and at most 7 2FIs, by using D1f6 or D1f12 .

Again consider the three-quarter design of regular design D2r which is 26−1, and

the four cases of three-quarters design of the 4-PFD which is a nonregular design

26−1, that were shown in the previous subsection. Table 29 shows the comparison

of these designs based on EC. The estimation capacity is excellent for all these

designs. Design D2f12 has the highest estimation capacity. As the previous example

of comparing three-quarter design of regular/4-PFD design, all three quarter designs

of 4-PFD design are superior to three-quarter of regular design. This comparing
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indicates the effectiveness of these designs for estimation models with MEs and 2FIs.

Table 29.: Estimation capacity for three quarters designs with k=6 and n=24

Design EC1 EC2 EC3 EC4 EC5 EC6

D2r 0.9333 0.8667 0.7934 0.7092 0.6117 0.5017

D2f3 1 0.9714 0.9143 0.8293 0.7186 0.5870

D2f6 1 0.9905 0.9692 0.9341 0.8831 0.8152

D2f12 1 1 1 1 0.9997 0.9980

For the two cases designs with factors k=6 and 7, we note the highest EC asso-

ciated with the 12-PFD. The reason of that is a design with a larger number of flats

means fewer (but larger) aliasing sets than a design with a smaller number of flats.

As a result, the MDSs of a 12-PFD are larger than a design with a smaller number

of flats, which leads to increased model estimation, and enhanced EC.

4.6.3 Projection Information Capacity (PIC)

Sun, 1994, Li and Nachtsheim, 2000, and Mee et al., 2017 defined the Projection

Information Capacity (PIC) as augmenting EC with the mean D-efficiency across all

models of equal size. Table 30 shows the PIC sequence of the comparative designs for

the case of k=7 and n=48, and Table 31 shows the PIC sequence of the comparative

designs for the case of k=6 and n=24.
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Table 30.: Projection information capacity for three-quarter designs with k=7 and
n=48

Design PIC1 PIC2 PIC3 PIC4 PIC5 PIC6 PIC7

D1r 0.9990 0.9943 0.9853 0.9714 0.9518 0.9253 0.8891

D1f3 1.0000 0.9946 0.9859 0.9499 0.8331 0.5534 0

D1f6 0.9918 0.9837 0.9775 0.9696 0.9579 0.9417 0.9208

D1f12 0.9918 0.9837 0.9782 0.9716 0.9620 0.9478 0.9275

Table 31.: Projection information capacity for three-quarter designs with k=6 and
n=24

Design PIC1 PIC2 PIC3 PIC4 PIC5 PIC6

D2r 0.9809 0.9028 0.7680 0.5622 0.2978 0

D2f3 1.0000 0.9924 0.9803 0.8324 0.2978 0

D2f6 0.9905 0.9771 0.9155 0.7327 0.2691 0

D2f12 0.9953 0.9866 0.9660 0.9104 0.8075 0

For case k=7 and n=48, clearly, D1f12 and D1r both have the highest values for

the sequences of PIC, so these designs are the best designs with respect to PIC. The

case with k=6 and n=24, all the design have excellent PIC, however, three-quarter

of regular design is slightly worse. Again this show the effectiveness of these designs

for estimating models.

4.6.4 Generalize Resolution (GR)

Let, j− interaction columns be denoted as the product for j MEs. For a regular

design, the sum for this column is either ±n or 0. If the sum is n, that means this

column forms a full aliasing, which means it is difficult to estimate this column. How-

112



ever, if the sum is 0, that corresponds to orthogonality, which allows for estimating

this column independently from other columns. For nonregular designs, this sum may

take different values than±n or 0, which indicates partial aliasing among the columns.

The absolute value for the maximum number of the sum of j − interaction columns

is called J-characteristic. Generalized resolution is defined as p = t+ (2− J/n), such

that t is the strength of the design, J is the J-characteristic, and n is the run size.

Table 32.: Generalize resolution for three-quarter designs with 7 factors and n=48
runs

Design GR

D1r 1.9167

D1f3 2.6667

D1f6 1.6667

D1f12 1.8333

Table 32 shows the generalized resolution for the comparison designs with k=7

and n=48, and Table 33 shows the generalized resolution for the comparison designs

with k=6 and n=24 that were shown earlier. The highest generalized resolution is

associated with D1f3 and D2f3 respectively. In fact, the high resolution is desirable

for a design to be an efficient in estimating the effects independently.
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Table 33.: Generalize resolution for three-quarter designs with 6 factors and n=24

Design GR

D2r 1.6667

D2f3 2.6667

D2f6 1.6667

D2f12 1.8333

4.6.5 Generalize aliasing length pattern (GALP)

As we mentioned earlier, Generalized Aliasing Length Pattern (GALP) is the

main diagonal of the matrix (X ′X/n)2, where X is the model matrix for the MEs

and 2FIs model. In this section, we evaluate three-quarter design of regular/4-PFD

design based on GALP.

Fig. 27.: GALP distribution for three-quarter designs of k=7 and n=48

Figure 27 shows the GALP distribution for the three-quarter designs of regular/4-

PFD designs. It is clear that three-quarter design of regular design D1r has more

distinct values than the other designs. Three-quarter designs of 4-PFD design have

the lowest aliasing for the MEs, but the highest aliasing for the 2FIs. This indicates

that the three-quarter designs of 4-PFD designs may do well identifying the active
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MEs, more than the three-quarter design of regular design. However, they will have

more difficulty in identifying the active 2FIs.

Fig. 28.: GALP distribution for three-quarter designs of k=6 and n=24

Figure 28 shows the GALP distribution for the three-quarter designs of regular/4-

PFD designs with k=6 and n=24 that was shown earlier. In this case, three-quarter

design of 4-PFD D2f6 has more distinct value than the three-quarter design of regular

design. Also, for this case, it seems that three-quarters of 4-PFD have the lowest

aliasing for the MEs, but the highest aliasing for 2FIs. Therefore, these observations

again indicate that three-quarters of 4-PFD designs may identify active MEs better

than three-quarters of regular designs, but these designs may still have difficulty on

identifying active 2FIs.

4.7 Conclusion

In this chapter, we have constructed a new type of nonregular design by omitting

a quarter of run size of regular design and 4-PFD. General properties for constructed

design were developed using the concepts of parallel flats design and indicator func-

tion. We also provided a comparison between three-quarter design of regular/4-PFD

based on the standard criteria for ranking designs. It was seen that in some cases,

removing a quarter of the run size permits estimation of all MEs and 2FIs with or-

thogonality to the MEs. Also, it was noted and proved that three-quarter of 4-PFD
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belong to the family of parallel flats designs. Almost all the considered criteria show

the effectiveness of three-quarter designs of 4-PFD.

Due to the orthogonality of some constructed three-quarters designs, future work

includes investigating more properties of three-quarter design and finding the ideal

selection of blocking effects to get orthogonal three-quarter design. Also, our research

focused deeply on construction three-quarter design of regular design and 4-PFD.

What is the difference if we use different than theses design? Consider designs such

as 3-PFD, 6-PFD, 8-PFD could be open research problems, and should be considered

for future work. This suggests to welcome further research about the efficiency and

the features of this type of designs. We hope this project gives more improvement for

the area of the construction of nonregular designs and design choices.
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CHAPTER 5

UTILIZING THE BLOCK DIAGONAL STRUCTURE OF

NONREGULAR DESIGNS FOR DATA ANALYSIS

5.1 Introduction and Motivation

One strategy for improving the data-analysis is to consider the structure of a

design. Standard model selection strategies such as stepwise regression (forward se-

lection and backward elimination procedure) and dantzig selector are general tools

that do not take any advantages of the structure about the design. In this chapter,

we propose a new model selection procedure for block diagonal structure designs.

These designs have a special structure, such that for any two effects belong to dif-

ferent blocks are uncorrelated, resulting in the creation of orthogonality between the

blocks. We leverage this structure for block diagonal designs to develop an effective,

design-based model selection procedure. The simulation results show improvement in

the data-analysis by using the new approach for model selection.

The main contribution to screening designs is providing potential factors that

have an impact on the response. Two-level fractional factorial designs FFDs are

widely used for screening experiments to identify the active factors. The most com-

mon choice for screening are regular designs. These designs are constructed by gen-

erating additional factors, through using the product of the factors for a full factorial

design. The aliasing structure for these designs is simple, such that any two factorial

effects are either orthogonal or fully aliased. However, these design are limited in

choice of the run size which must be power of 2. On the other hand, nonregular

designs are more complected than regular designs, since they have a complex aliasing
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structure, due to the appearance of partial aliasing between its effects. However,

nonregular designs are considered an alternative choice for regular designs, due to the

flexibility of run sizes for these designs, which are multiples of 4.

Researchers were avoiding using Plackett-Burman design because of the complex

aliasing between2FIs. However, Hamada and Wu, 1992 proposed a procedure that

uses foldover technique to analyze the complex aliasing for Plackett-Burman design.

Hamada and Wu, 1992 illustrated that the major advantages of using a foldover for

Plackett-Burman design is that the identification of active MEs is not affected by the

presence of active 2FIs. The reason for using a foldover technique in this work is the

orthogonality between the set of MEs and the set of 2FIs, that is produced using this

technique.

In addition, Miller and Sitter, 2001 proposed an effective sequential approach to

analyze Placket-Burman design using foldover technique. This approach consists of

two steps: first is to estimate the MEs by using standard methods to select active

effects, second, use only the active MEs selected in the first step to create a design

matrix, and then use weak-heredity principle to consider the second-order model, and

use all subset procedure to select the final model.

Miller and Sitter, 2005 evaluated the structure and performance of a design

obtained by folding over non-orthogonal design. They demonstrated that the orthog-

onality between MEs and 2FIs could have an impact on the design’s ability to identify

active MEs and 2FIs, which makes the analysis simpler. Also, Miller and Sitter, 2005

provided a simple two-step procedure, which is similar to that provided on Miller and

Sitter, 2001. Moreover, Jones et al., 2019 constructed a new type of supersaturated

designs, which have the property of group orthogonality. Jones et al., 2019 utilized

this property to produce an efficient model selection procedure for these designs.

All the previous works provide strategies, which explicitly utilize the structure of
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a design into the analysis. A design with a block diagonal structure has orthogonality

between blocks, where any two effects belong to different blocks and are uncorrelated.

This property of this type of design is very attractive for estimating the effect sepa-

rately. Also, it seems very useful for understanding the aliasing structure of a design.

Based on that, our purpose for this chapter is utilizing the block diagonal structure

for a design to improve the analysis. As mentioned on Edwards and Mee, 2020, one

possible strategy for a design analysis is performing a model selection separately for

each block. Building on that, we propose a new model selection strategy for block

diagonal structure design, which focuses on performing model selection for each block,

and we investigate this strategy through a simulation research. Also, our goal is to

test the effectiveness of the proposed method by comparing its performance with the

performance of the classical standard model selection method.

The remainder of this chapter is organized as follows: in Section 5.2 we provide

background on parallel flats designs, block diagonal structure. In Section 5.3, we

provide our proposed method of model selection for block diagonal structure designs.

Section 5.5, contains the simulation results, and Section 5.6 concludes the chapter.

5.2 Foundation

5.2.1 Parallel Flats Designs

A regular fractional factorial design 2k−m, is known as a single-flat design. An

aliasing relation between its effects appears due to reducing the run size for these

design. Thus, a single-flat design can be defined by the alias matrix A, and the coset

indicator vector ci, such that Ax = ci, where x = (x1, ..., xk), A is m× k of elements

aij ∈ {1, 0}, and m is the rank of A. Suppose that f single flat designs are all defined

by A, then combining these f single flat designs produce a design called f − PFD.
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Thus, f − PFD defined by two matrices A, and C such that C is a coset indicator

matrix contains coset indicator vectors c1, ..., cf . So, clearly f − PFD has run size

equals to n = f × 2k−m.

For example, consider a design where n = 16 and k=6 that is shown in Table 34.

Table 34.: Nonregular design with k=6 and n=16

A B C D E F

-1 -1 -1 -1 1 1
1 -1 -1 -1 1 -1

-1 1 -1 -1 -1 1
1 1 -1 -1 -1 1

-1 -1 1 -1 1 -1
1 -1 1 -1 -1 -1

-1 1 1 -1 1 1
1 1 1 -1 -1 -1

-1 -1 -1 1 -1 -1
1 -1 -1 1 -1 1

-1 1 -1 1 1 -1
1 1 -1 1 1 -1

-1 -1 1 1 -1 1
1 -1 1 1 1 1

-1 1 1 1 -1 -1
1 1 1 1 1 1

This design is determined by (A,C) where A, and C are

A =



0 0 1 1 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1



C =



1 −1 1 1

1 −1 −1 1

−1 −1 1 1

−1 1 −1 1


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This design is 4-PFD, since there are 4 columns in C matrix. Each row in the A

matrix represents a term in the defining relation for a flat. So, each flat is a regular

26−4 satisfying I = ±CDF = ±A = ±B = ±E.

Connor and Young, 1961 were the first ones to introduce the parallel flats designs.

General theories and features of parallel flats designs were provided by Srivastava et

al., 1984. One of the special properties of parallel flats design with f ≤ n is the block

diagonal matrix of its information matrix. The information matrix is X ′X, which

can be written as

X ′X =



X ′1X1 0 . . . 0

0 X ′2X2 . . . 0

...
...

. . . . . .

0 0 . . . X ′gXg


where X is the design matrix, and the effects of each submatrix represent an alias set,

g is the number of alias sets, and all off-diagonal submatrices are zero matrices. The

zero matrices indicate the orthogonality between the diagonal submatrices. Thus, any

effects belonging to two different submatrices are orthogonal, meaning these effects

can be estimated independently.

5.2.2 Block Diagonal Structure

The block diagonal structure of a design is a special property for the design.

The effects for this design are portioned on separate blocks where any two effects

belonging to two different block, are uncorrelated. The reason for this structure is

that the effects for this design are arranged into alias sets. Common designs that have

block diagonal structure are parallel flat designs (PFD), foldover designs, semifoldover

designs, and three-quarters of regular/non-regular designs. For example, consider a

nonregular design with n=16, and k=5 that shown in Table 35.
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Table 35.: 25−1 design



1 1 1 1 1
1 1 1 −1 −1
1 −1 −1 1 −1
1 −1 −1 −1 1
−1 −1 −1 −1 −1
−1 −1 −1 1 1
−1 1 1 −1 1
−1 1 1 1 −1
−1 1 −1 −1 −1
−1 1 −1 1 1
−1 −1 1 1 1
−1 −1 1 −1 −1
1 −1 1 1 −1
1 −1 1 −1 1
1 1 −1 −1 1
1 1 1 1 −1



This design is 4-PFD, and it is from Edwards, 2011. This design is determined

by A and C, where

A =


1 0 0 1 1

1 1 0 1 1

1 0 1 1 1



C =


−1 −1 −1 1

−1 1 1 1

1 −1 1 1


Each flat for this design satisfies {I = ±ADE = ±ABDE = ±ACDE = ±B =

±C = ±BC = ±ABCDE}. The principal group is that containing the identity

(intercept), the terms in the defining relation, and every possible interaction. So, the

principal group for this design is

{I, ADE,ABDE,ACDE,B,C,BC,ABCDE}.

For 25, there are 32 columns for the full factorial model. In the principal group 8

of these columns are listed, so there are 24 columns divided into 3 co-sets of size 8.

Multiplying the principal group with A,E,D, respectively, we obtained the following
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alias sets:

{A,DE,BDE,CDE,AB,AC,ABC,BCDE}

{E,AD,ABD,ACD,BE,CE,BCE,ABCD}

{D,AE,ABE,ACE,BD,CD,BCD,ABCE}

If we arranged the identical columns of this design, we would have block diagonal

structure. The block diagonal structure for this design is shown in Figure 29.

Fig. 29.: Block diagonal structure for
desgin in Table 35

The block diagonal structure is appealing for understanding the aliasing relation

to a regular/nonregular design. Consider a 1-PFD, which is a regular design, 26−2

with n=16, and k=6, such that E = ABC and F = ABD. The defining relation for

26−2 is I = ABCE = ABDF = CDEF . The effects for the full factorial model for

this design are partitioned into 16 aliasing sets, each of size 4. Figure 2 shows the

separation of the effects into 16 blocks, for the full factorial model to the design 26−2.

It is noticeable from Figure 30 that the effects within each block are fully confounding.
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In fact, the complete aliasing between the factorial effects is undesirable, due to the

difficulty distinguishing between the estimated effects.

Fig. 30.: Block diagonal structure for
regular design 26−2

As shown earlier, we can see in Figure 30 that the effects for non-regular design

separate into separate alias sets, but not all effects within alias set are completely

confounded. In this case, partial aliasing appears between some factorial effects within

each alias set. So, the block diagonal structure for a design helps to better understand

the aliasing relation between the effects for a design, which can have an impact on

design choice and data analysis.

5.3 Proposed Method

In this section, we describe our model selection procedure, which is motivated by

the works of Jones et al., 2019, Miller and Sitter, 2005, and Jones and Nachtsheim,

2017. They advocated for separating the analysis based on the structure of the design.

Miller and Sitter, 2005 used foldover technique to separate the analysis of MEs from

the analysis of 2FIs, since, as we mentioned earlier foldover technique creates an

orthogonality between MEs and 2FIs. Jones and Nachtsheim, 2017 exploited the

properties of Definitive Screening Designs for the same purpose of Miller and Sitter,
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2005. Miller and Sitter, 2005, and Jones and Nachtsheim, 2017 showed that the

sample space for the response can be separated into sub-sample spaces spanned by

the MEs and its orthogonal complement.

The factorial effects for a design of block diagonal structure split into orthogonal

blocks, such that any two effects belonging to two different blocks are uncorrelated.

Since the blocks are orthogonal, we could test the significant effects of each block

separately as in the works of Jones et al., 2019, and Miller and Sitter, 2005, Jones

and Nachtsheim, 2017. Let D denote a design with block diagonal structure, and

G1, G2, G3, ..., Gg each denote a block of effects. As usual, we focus on MEs and 2FIs,

and assume that third and higher-order effects are negligible, so a model with MEs

and 2FIs has the formula

yi = β0 +
k∑

j=1

βjxij +
k−1∑
j=1

k∑
t=j+1

βjkxijxit + ε

for i = 1, ..., n, j = 1, ..., k, and t = 1, ..., k − 1, where the parameters β0, ..., βkk

are unknown, and ε is a random error such that ε ∼ N(0, I). Let D1 denote the

columns of the first block G1, D2 denote the columns of the second block G2, and D3

denote the columns of the third block G3, and Dg denote the columns of g block Gg.

The model may be written in matrix form as:

Y = µ+D1βD1 +D2βD2 +D3βD3 + ...+DgβDg + ε

where Y is an n× 1 response vector , µ is an n× 1 constant vector, D1 is n× d1, βD1

is d1×1, D2 is n×d2, βD2 is d2×1, ,...,Dg is dg×1, βDg is dg×1 where d1, d2, ..., dg is

the number of columns for D1, D2,..., Dg respectively, and ε is the error vector which

is n× 1, and it assumed to be normal distribution such that ε ∼ N(0, Iσ2).

Let Pr = Dr(D
′
rDr)

−D′r denote an orthogonal projection for the columns space
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of Dr, r = 1, 2, ..., g. Since the blocks of effects are orthogonal, we generate a separate

response vector for each block by obtaining the projections of the columns in a block.

In this case, we are separating the space of the response into several sub-spaces

P1 ∗Y, P2 ∗Y, ..., Pr ∗Y, ..., and Pg ∗Y each correspond to a block. Since each block of

effects has its own response vector, in this case, the presence of active effects in other

blocks will not cause inflation to the residual for the fitted model for a block. So,

our proposed method process as follows. First, for each block we consider a standard

general model selection to select the active effects. In this context, we aim to test the

performance of two model selection procedures, such as forward selection and dantzig

selector.

Second, we pool together all the active effects from all blocks in one matrix

denoted by Df . Third, we fit a final model, by using Df and Y response vector.

So, the effects in the final model are the union of the active effects that are found

in each block. Then, we conduct the power and type 1 error. The power defined

as the average proportion of correctly identified active effects, while type 1 error is

the average proportion of identified inactive effects. We called this procedure Block

Forward, and Block Dantzig, based on the procedure that used to select the active

effects form each block. We denoted these procedures by SBT Forward and SBT

Dantzig, respectively.

Next, we evaluate the proposed method in comparison with standard model

selection techniques such as forward selection and dantzig selector. With standard

model selection techniques, the effects in the final model are selected without using

any information with regards to the structure of the design. For both dantzig and

forward, we use AIC as a criterion to pick the final model.
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5.4 Simulation Study

In this section, we report simulations for comparing selected 5-factor designs

with n=12 runs, 6-factor designs with n=16 runs, and 7-factor design with n=12,

16, 20, 40, and 48 runs. We consider a comparison for the simulation result in two

parts; first, we compare the performance of analysis methods for the power and type

1 error. Then, we compare the performance of the design for the power and type 1

error based on the number of flats (number of flats =n / number of blocks).

5.4.1 Protocol of Simulation Study

We compared four analysis methods in the simulation study, namely Block For-

ward (SBT Forward), Block Dantzig (SBT Dantzig), forward, and dantzig. For for-

ward and dantzig procedure, we follow Mee et al., 2017. For each design under study,

our simulation is carried out as follows. In each of 1000 iterations:

1. We consider the columns of a design matrix, m columns are randomly assigned

as the active MEs. The number of active MEs, m is conducted from 2 to 5 for

the simulation.

2. Under the assumption of weak effects heredity, and based on the selection of

the active MEs, g 2FIs are randomly assigned as the active 2FIs. The number

of active 2FIs g, is conducted from 1 to 7 for the simulation.

3. The coefficients, β, for the active effects are obtained by randomly sampling

(with replacement) from {0.5, 1, 1.5, 2, 2.5, 2, 3.5}. For each coefficient a sign (+

or -) is randomly applied.

4. The response vector, Y , is generated as Y = X ∗ β + e, where X is the matrix

which corresponds to the active effects and e ∼ N(0, 1).
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5. Apply each of the four model selection approaches, SBT Forward, SBT Dantzig,

forward, and dantzig, to each design under study.

At the end of 1000 iterations, the power of the overall effects is recorded which is

defined as the average proportion of correctly identified effects (MEs and 2FIs).

Also, power of the MEs, which is the average proportion of correctly identified

MEs, and the power of 2FIs, which is the average proportion of correctly iden-

tified 2FIs, are recorded. Moreover, we calculate the type 1 error for overall,

MEs, and 2FIs effects.

5.4.2 Simulation Result

5.4.2.1 k=5, n=12

We display the results of our simulation for 5-factor designs with n=12 runs in

Figure 31 and 32. We denoted these designs as 12.5.3f and 12.5.6f, which refer to a

design with n=12 runs, k=5, and f=3, or 6 respectively. For these figures, each sub

figure consists of four rows and four columns. Each row represent, the result for the

simulation to a number of active MEs which differ from 2 to 5, while each column

represents an analysis method, which is as follows; dantzig selector, SBT Dantzig,

forward selection, and SBT Forward. The colored plotted lines show overall power,

MEs power, 2FIs power, overall type 1 error, MEs type 1 error, and 2FIs type 1 error

for up to seven active 2FIs two for the different designs, 12.5.3f and 12.5.6f.
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(a) (b)

(c)

Fig. 31.: Simulation result for n=12, k=5. X-axes for the plots represent the
number of active 2FIs. Y-axes:(a) Overall effects power; (b) MEs power; (c) 2FIs
power. Blue line:12.5.3f; Red line:12.5.6f
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(a) (b)

(c)

Fig. 32.: Simulation result for n=12, k=5. X-axes for the plots represent the
number of active two-factor interactions. Y-axes:(a) Overall type 1 error; (b) MEs
type 1 error; (c) 2FIs type 1 error. Blue line:12.5.3f; Red line:12.5.6f

Our comparison of analysis methods focuses on forward comparison with Forward

SBT and dantzig comparison with Dantzig SBT. As well, we are curious about which

procedure (forward, dantzig) has good performance for the proposed method. Figures

31 and 32 show that for the 12.5.6f design using Forward SBT, the power (overall,

MEs, 2FIs) is slightly improved, and type 1 errors (especially 2FIs type 1 errors) have

changed significantly. Also, by comparing Dantzig SBT with Dantzig, using Dantzig

SBT, we can observe a slight improvement in (overall, ME, 2FI) power, while for

(overall, ME, 2FI) type 1 errors have hardly decreased. Thus, it is recommended to
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use both Dantzig SBT and Forward SBT methods.

Now, let’s compare the analysis method (forward, Dantzig) and the proposed

method (SBT Forward, SBT Dantzig) for 12.5.3f, respectively. Unlike design 12.5.6f,

the overall and MEs power of design 12.5.3f using Forward SBT and Danzig SBT are

reduced, and we see an increase in2FIs power. From Figure 32 (a, b, c) we can see

that the overall type 1 error using Forward SBT and Dantzig SBT is not fixed, it

is decreases for 2, 3 and 4 MEs, and increases for 5 active MEs. MEs type 1 error

is decreased by using Forward SBT and Dantzig SBT. However, 2FIs type 1 error is

increased by using Forward SBT and Dantzig SBT. Thus, the performance for our

proposed method for 3 flats design was unexpected.

From Figures 31 and 32, we can see that in almost all analysis methods, the

performance of 12.5.6f is better than 12.5.3f, especially the overall power and 2FIs

power. Also, by using the two analysis methods of Forward SBT and Dantzig SBT,

12.5.6f produces less type 1 errors (overall, MEs, 2FIs) than 12.5.3f. However, when

using forward and Dantzig, 12.5.6f will give an unfixed (overall, MEs, 2FIs) type 1

error. Therefore, the performance of 12.5.6f is better than 12.5.3f especially with

respect to the power. Thus, design 12.5.6f is more highly recommended than design

12.5.3f for active effects detection.

5.4.2.2 k=6, n=16

The results of the simulation for 6-factor designs with n=16 runs are displayed

in Figures 33 and 34. We denoted these designs as 16.6.4f and 16.6.8f, which refers to

a design with n=16 runs, k=6 and f=4, or 8 respectively. As the case of 5-factor, we

consider the comparison based on forward comparison with Forward SBT, and dantzig

comparison with Dantzig SBT. Design 16.6.8f, by comparing the analysis method

Forward SBT with forward, Forward SBT has no dramatic change with respect to
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overall, MEs, and 2FIs power, and the same was noticed when comparing the Dantzig

SBT comparison with Dantzig. However, as in the case of 12.5.6f design, we see

significant change in2FIs type 1 errors, for both analysis methods Forward SBT and

Dantzig SBT. Similarly, for design 16.6.4f, we have no improvement in overall, MEs,

2FIs power, although we have seen a reduction in 2FIs type 1 errors, especially for

the forward SBT analysis method. Therefore, it is recommended to use the proposed

method (especially Forward SBT) particularly for detective active 2FIs.

For 2FI detection, we recommended design 16.6.8f, and both Dantzig SBT and

Forward SBT, since with these methods design 16.6.8f gives higher 2FIs power than

16.6.4f, while both of these designs give similar 2FIs type 1 error.
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(a) (b)

(c)

Fig. 33.: Simulation result for n=16, k=6. X-axes for the plots represent the
number of active2FIss. Y-axes:(a) Overall effects power; (b) MEs power; (c) 2FIs
power. Blue line:16.6.4f; Red line:16.6.8f
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(a) (b)

(c)

Fig. 34.: Simulation result for n=16, k=6. X-axes for the plots represent the
number of active 2FIs. Y-axes:(a) Overall type 1 error; (b) MEs type 1 error; (c)
2FIs type 1 error. Blue line:16.6.4f; Red line:16.6.8f

5.4.2.3 k=6, n=24

The simulation study for the designs with 6-factor and 24 runs are displayed

in Figures 35 and 36. We denoted these designs as 24.6.3f, 24.6.6f and 24.6.12f,

which refer to a design with n=24 runs, k=6 and f=3, 6, and 12 respectively. As

in the a previous case, we have seen improvements in the analysis of the 2FIs type

1 errors of the proposed method, especially in the case of Forward SBT. There is

slight improvement in the overall, MEs, and 2FIs power for both design 24.6.6f, and

24.6.12f. There is also decreasing in overall, MEs, and 2FIs type 1 error using the
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method Dantzig SBT and Forward SBT. Again, our proposed method for 3 flats design

is not recommended since the power, MEs, and 2FIs power are decreasing. For MEs

active detection, design 24.6.3f is recommended with the forward analysis method, and

for 2FIs active detection, design 24.6.6f is recommended with the proposed method

Forward SBT.

(a) (b)

(c)

Fig. 35.: Simulation result for n=16, k=6. X-axes for the plots represent the
number of active2FIs. Y-axes: Overall power; (b) MEs power; (c) 2FIs power. Blue
line:24.7.3f; Red line:24.7.6f; Green line 24.7.12f
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(a) (b)

(c)

Fig. 36.: Simulation result for n=24, k=6. X-axes for the plots represent the
number of active 2FIs. Y-axes:(a) Overall type 1 error; (b) MEs type 1 error; (c)
2FIs type 1 error. Blue line:24.6.3f; Red line:24.6.6f; Green line 24.6.12f

5.4.2.4 k=7, n=20

For this subsection, we have just one design, 20.7.10f, which has n=20, k=7 and

f=10. The results for the simulation for 20.7.10f are displayed in Figures 37 and 38.

Thus, here, we consider only the comparison between the analysis methods. There is

no obvious difference, between the performance for dantzig and Dantzig SBT, for the

power and type 1 error. However, when we compare between forward and Forward

SBT, again, with Forward SBT, there is a slight improvement in (overall, MEs, 2FIs)

power, and there is reduction for type 1 error, especially 2FIs. So, again, the analysis
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method Forward SBT is recommended.

(a) (b)

(c)

Fig. 37.: Simulation result for n=20, k=7. X-axes for the plots represent the
number of active2FIs. Y-axes: (a) Overall power; (b) MEs power; (c) 2FIs power.
Blue line:20.7.10f
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(a) (b)

(c)

Fig. 38.: Simulation result for n=20, k=7. X-axes for the plots represent the
number of active2FIs. Y-axes: (a) Overall type 1 error; (b)MEs type 1 error; (c)2FIs
type 1 error.Blue line:20.7.10f

5.4.2.5 k=7, n=40

Here we consider foldover the design in the previous subsection which gives a

design 40.7.10f that has n=40, k=7 and f=10. The result for of the simulation is

shown in Figures 39 and 40. Again, in this case, there is no comparison for design

with regard to number of flat. We only consider comparison between the analysis

methods. Also, here we see the same pattern as in the case of 20.7.10f. There is

no obvious difference between the performance for the dantzig and Dantzig SBT on

the power and type 1 error. However, there is a slight improvement for (overall,
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MEs, 2FIs) power, when we compare between forward and Forward SBT. As well,

Forward SBT provides less 2FIs type 1 error. So, also, with 40.7.10f, Forward SBT

is recommended.

(a) (b)

(c)

Fig. 39.: Simulation result for n=40, k=7. X-axes for the plots represent the
number of active 2FIs. Y-axes:(a) Overall power; (b) MEs power; (c) 2FIs power.
Black plotted line:40.7.10f
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(a) (b)

(c)

Fig. 40.: Simulation result for n=40, k=7. X-axes for the plots represent the
number of active 2FIs. Y-axes:(a) Overall type 1 error ; (b) MEs type 1 error; (c)
2FIs type 1 error. Black plotted line:40.7.10f

5.4.2.6 k=7, n=48

The results for the simulation for designs with n=48 and k=7 are displayed in

Figures 41 and 42. We denoted these designs as 48.7.3f, 48.7.6f, and 48.7.12f. The

figures are organized in the same way as those in the previous subsections. Our

comments for the results are as follows. There is no difference for the performance

of 48.7.3f, 48.7.6f, and 48.7.12f on the power and type 1 error, by using dantzig and

forward. Also, 48.7.6f and 48.7.12f have the same performance for overall, MEs, 2FIs

power and type 1 error by using Dantzig SBT and Forward SBT. However, 48.7.3f
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has less overall, MEs, 2FIs power and type 1 error than 48.7.6f, and 48.7.12f, by using

Dantzig SBT and Forward SBT. In this case, both 48.7.6f and 48.7.12f are better than

48.7.3f regarding power and type 1 error for all analysis methods, except that 48.7.3f

is the best for overall, MEs, 2FIs type 1 error using Forward SBT. Based on the plots

in Figures 13 and 14, again, we see improvement on the analysis, when we compare

forward and Forward SBT for 48.7.3f, 48.7.6f, and 48.7.12f. This improvement is

observed with 2FIs type 1 error, where this error is decreased using Forward SBT.

For active MEs detection and 2FIs, both design 48.7.6f and 48.7.12 are recommended.

Therefore, in general, we can see the same results in all subsections. The pro-

posed method, especially the Forward SBT, is recommended for active 2FIs detection

because it produces less 2FIs type 1 errors, but the proposed method is not recom-

mended for 3 flats.
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(a) (b)

(c)

Fig. 41.: Simulation result for n=48, k=7. X-axes for the plots represent the
number of active 2FIs. Y-axes: Overall power; (b) MEs power; (c) 2FIs power. Blue
line:48.7.3f; Red line:48.7.6f; Green line 48.7.12f
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(a) (b)

(c)

Fig. 42.: Simulation result for n=48, k=7. X-axes for the plots represent the
number of active2FIs. Y-axes: (a) Overall type 1 error; (b) MEs type 1 error; (c)
2FIs type 1 error. Blue line:48.7.3f; Red line:48.7.6f; Green line 48.7.12f

5.5 Fitting model

In sections 5.3, we describe the designs and compare the results of the simulation

study based on different numbers of flats and the performance for the four model se-

lection procedures. Here in this subsection, we describe the analysis of the simulation

results for varying factors, that include number of MEs, number of 2FIs, run size,

factors, flats, and analysis methods, by fitting MEs and 2FIs order model using the

standard forward stepwise procedure, based on minumum AICc. Figures 43, and 44

show the table of effects test for the MEs and 2FIs model for overall power, MEs
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power, 2FIs power, overall type 1 error, MEs type 1 error, and 2FIs type 1 error. Fig-

ures 43 and 44 shows that all MEs, and almost all 2FIs, are statistically significant.

That means they are have an impact on the overall, MEs, 2FIs power and overall,

MEs, and 2FIs type 1 error.

(a) (b)

(c)

Fig. 43.: Effect tests to: (a) overall power; (b) MEs power; (c) 2FIs power
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(a) (b)

(c)

Fig. 44.: Effect Tests to: (a) overall type 1 error; (b)MEs type 1 error ; (c)2FIs
type 1 error

In order to understand this effect more clearly, we use other graphs as the pre-

dicted values of the model to show the overall, MEs, 2FIs power and overall, MEs,

and 2FIs type 1 errors, as shown in Figure 45. This is achieved by using the profile

plots with the statistical software JMP. In general, the results are as expected in

some concepts, however, it is unexpected in others. Figure 45(a) shows one setting

for the factors that gives high value for overall power. We can see in Figure 45(a)

that by using the proposed method for both forward selection and dantzig selector,

the overall power is reduced, which is unexpected. It can be clearly seen from Figure

45(a) that when the number of run size increases, the overall power will also increase.

In addition, as the number of MEs and the number of 2FIs increase, the overall power
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also increases. Similarly, the number of flats also affects the overall power. The pre-

diction profile in Figure 45(a) shows that increasing the number of flats will result in

an increase in overall power.

Figure 43(b) shows that all factors, including the number of flats, the number

of factors, the number of MEs, the number of 2FIs, the analysis method, and the

run size, have a statistically significant effect on the MEs power. Also, the 2FIs

of these factors have an impact on the MEs power. Figure 45(b) shows a setting

of these factors, which provides a high value for the power of MEs. It is obvious

that as the number of MEs and 2FIs increases, the power of MEs also increases.

Figure 45(b) shows that there is a strong relationship between the number of flats

and the method used. With a high number of flats, which is 12 flats, the new proposed

methods (Forward SBT, Dantzig SBT) give higher MEs power than the usual forward

and dantzig. While with a small number of flats like 3 flats, the proposed methods

give few MEs power. Also, there is a statistically significant interaction between the

number of flats and the run size that has an impact on the MEs power.

As the overall power and MEs power, the 2FIs power is affected by all the MEs

(the number of flats, the number of factors, the number of MEs, the number of 2FIs,

the method of analysis, and the run size) and several two-factor interaction, which are

clearly obvious in the predicted profile plots in Figure 45(c) and the table of effects

test in Figure 43(c).

The result for overall type 1 error is similar to the result for the overall power.

All the MEs and some of the 2FIs have impact on type 1 error. There are an infinite

number of settings for the factors that give the minimum value to overall type 1

error. One of these settings is in Figure 45(d). It is clear from Figure 45(d) that

as the number of MEs and 2FIs is increasing, the overall type 1 error is decreasing.

Also, the overall type 1 error is affected by the method of model selection that is used.
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From the predicted profile plots in Figure 45(d), it shows that the proposed method,

especially Forward SBT, has lowest type 1 error. Also, this result is repeated for MEs

type 1 error and2FIs type 1 error. Again, the proposed method is recommended,

especially for active 2FIs detection.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 45.: Prediction Profiler: (a) overall power; (b) MEs power ; (c) 2FIs power;
(d) overall type 1 error; (e) MEs type 1 error; (f)2FIs type 1 error
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5.6 Discussion

In this chapter we develop a new model selection approach for block diagonal

structure designs. We provide a new method to analyze these types of designs, making

explicit use of the structure of the design. We are utilizing the special property for

the block diagonal structure designs, which is the concept of blocks of factors that

are orthogonal. Our approach focused on separating the response vector into several

responses, each response corresponds to a block. In conclusion, this new approach

has a benefit for the analysis, especially for 2FIs type 1 error. From our experience

working with these types of designs (block diagonal structure designs) we can provide

some recommendations:

1. The proposed methods are not recommended for 3 flats designs. By using the

proposed methods, the simulation results for 3 flats design give less power than

the standard model selection procedures. We consider the reason for this to be

that a high correlation between the effects with 3 flats may cause decreasing on

the power.

2. We also consider a method where one selects the active effects from each block,

by using the standard method (forward, and Dantzig), then conduct the power

and type 1 error by taking the union of these active effects. This method gives

superior power, however, the type 1 error for this procedure is inflated so that

this procedure cannot be recommended.

3. We considered the group lasso method as procedure for selecting the active

blocks. Then, using the standard method (forward and Dantzig) for selecting

significant effects from each selected active blocks. Next, consider the union

of these significant effects, then conduct the power and type 1 error based on
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this union of effects. Although the result shows less type 1 error by using this

method, it gives much less power when we compare it with results for usual

forward and Dantzig, which was unexpected.

5.7 Appendix

12.5.3f 12.5.6f

−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 1 1
−1 −1 −1 1 1
−1 1 1 −1 −1
−1 1 1 −1 −1
−1 1 1 1 1
−1 1 1 1 1
1 −1 1 −1 1
1 −1 1 −1 1
1 −1 1 1 −1
1 −1 1 1 −1





−1 −1 −1 1 −1
−1 −1 −1 −1 1
−1 1 −1 1 −1
−1 1 −1 −1 1
−1 −1 1 1 1
−1 −1 1 −1 −1
−1 1 1 1 −1
−1 1 1 −1 1
1 −1 −1 1 1
1 −1 −1 −1 −1
1 1 −1 1 −1
1 1 −1 −1 1



16.6.4f 16.6.8f

−1 −1 −1 −1 1 −1
1 −1 −1 −1 −1 1
−1 1 −1 −1 −1 1
1 1 −1 −1 1 1
−1 −1 1 −1 1 1
1 −1 1 −1 −1 −1
−1 1 1 −1 −1 −1
1 1 1 −1 1 −1
−1 −1 −1 1 1 1
1 −1 −1 1 −1 −1
−1 1 −1 1 −1 −1
1 1 −1 1 1 −1
−1 −1 1 1 1 −1
1 −1 1 1 −1 1
−1 1 1 1 −1 1
1 1 1 1 1 1





−1 −1 −1 −1 1 1
1 −1 −1 −1 1 −1
−1 1 −1 −1 −1 1
1 1 −1 −1 −1 1
−1 −1 1 −1 1 −1
1 −1 1 −1 −1 −1
−1 1 1 −1 1 1
1 1 1 −1 −1 −1
−1 −1 −1 1 −1 −1
1 −1 −1 1 −1 1
−1 1 −1 1 1 −1
1 1 −1 1 1 −1
−1 −1 1 1 −1 1
1 −1 1 1 1 1
−1 1 1 1 −1 −1
1 1 1 1 1 1



20.7.10f

−1 1 −1 −1 −1 1 1
−1 1 1 1 1 −1 1
1 1 1 1 −1 1 −1
1 −1 −1 1 −1 −1 1
1 −1 1 −1 −1 −1 −1
−1 −1 −1 1 −1 −1 −1
1 1 −1 1 1 −1 −1
1 −1 −1 1 1 1 1
1 1 −1 −1 −1 −1 1
−1 −1 −1 −1 1 −1 −1
1 −1 1 1 1 −1 −1
1 −1 −1 −1 −1 1 −1
−1 −1 −1 −1 1 −1 1
−1 1 1 −1 1 1 −1
−1 1 −1 1 1 1 1
1 1 1 −1 1 1 1
−1 −1 1 −1 −1 1 1
−1 1 1 −1 −1 −1 −1
−1 −1 1 1 1 1 −1
1 1 1 1 −1 1 1


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24.6.3f 24.6.6f 24.6.12f

−1 1 1 1 −1 1
1 1 1 −1 1 1
1 1 1 −1 −1 −1
−1 −1 −1 1 −1 −1
−1 1 1 1 1 −1
1 −1 −1 −1 −1 1
−1 −1 −1 1 1 1
1 −1 −1 −1 1 −1
1 −1 1 −1 −1 −1
1 −1 1 −1 1 1
−1 1 −1 1 −1 −1
−1 1 −1 1 1 1
−1 −1 1 1 1 −1
1 1 −1 −1 −1 1
1 1 −1 −1 1 −1
−1 −1 1 1 −1 1
−1 1 −1 −1 −1 1
1 −1 1 1 −1 1
−1 1 −1 −1 1 −1
1 1 −1 1 1 1
1 −1 1 1 1 −1
−1 −1 1 −1 1 1
1 1 −1 1 −1 −1
−1 −1 1 −1 −1 −1





−1 1 −1 −1 −1 1
−1 1 −1 −1 1 −1
−1 −1 1 −1 1 1
−1 1 −1 1 −1 −1
−1 1 −1 1 1 1
−1 −1 1 1 1 −1
−1 −1 1 1 −1 1
−1 −1 1 −1 −1 −1
1 −1 1 1 −1 1
1 −1 1 −1 −1 −1
1 −1 1 −1 1 1
1 1 −1 1 1 1
1 −1 1 1 1 −1
1 1 −1 1 −1 −1
1 1 −1 −1 −1 1
1 1 −1 −1 1 −1
−1 1 1 1 −1 1
−1 −1 −1 1 −1 −1
−1 1 1 1 1 −1
−1 −1 −1 1 1 1
−1 −1 −1 −1 1 1
−1 1 1 −1 1 −1
−1 1 1 −1 −1 1
−1 −1 −1 −1 −1 −1





1 1 1 −1 1 1
−1 −1 1 −1 1 1
1 1 1 −1 −1 −1
−1 −1 1 1 1 −1
−1 −1 −1 −1 1 1
−1 −1 1 1 −1 1
−1 −1 1 −1 −1 −1
−1 −1 −1 −1 −1 −1
−1 1 −1 −1 −1 1
−1 1 −1 −1 1 −1
−1 1 −1 1 −1 −1
−1 1 −1 1 1 1
1 −1 −1 −1 −1 1
1 −1 −1 −1 1 −1
−1 1 1 −1 1 −1
−1 1 1 −1 −1 1
−1 1 1 1 −1 1
1 −1 1 1 −1 1
1 −1 1 −1 −1 −1
1 −1 1 −1 1 1
1 −1 −1 1 −1 1
1 −1 1 1 1 −1
1 −1 −1 1 1 −1
−1 1 1 1 1 −1



48.6.3f 48.6.6f 48.6.12f

1 −1 1 −1 −1 1 1
1 −1 1 −1 1 −1 1
−1 1 −1 1 1 −1 1
−1 1 −1 1 −1 1 1
1 −1 1 −1 −1 −1 −1
1 −1 1 −1 1 1 −1
−1 1 −1 1 −1 −1 −1
−1 1 −1 1 1 1 −1
−1 −1 1 1 −1 −1 1
−1 −1 1 1 1 1 1
1 1 −1 −1 1 1 1
1 1 −1 −1 −1 −1 1
−1 −1 1 1 1 −1 −1
1 1 −1 −1 1 −1 −1
−1 −1 1 1 −1 1 −1
1 1 −1 −1 −1 1 −1
1 −1 1 1 1 1 1
−1 1 −1 −1 −1 −1 1
−1 1 −1 −1 1 1 1
1 −1 1 1 −1 −1 1
−1 1 −1 −1 −1 1 −1
−1 1 −1 −1 1 −1 −1
1 −1 1 1 −1 1 −1
1 −1 1 1 1 −1 −1
−1 −1 1 −1 −1 1 1
−1 −1 1 −1 1 −1 1
1 1 −1 1 1 −1 1
1 1 −1 1 −1 1 1
−1 −1 1 −1 1 1 −1
−1 −1 1 −1 −1 −1 −1
1 1 −1 1 1 1 −1
1 1 −1 1 −1 −1 −1
1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 1 1 −1
−1 1 1 1 −1 −1 −1
−1 1 1 1 1 1 −1
−1 1 1 1 1 −1 1
1 −1 −1 −1 1 −1 1
−1 1 1 1 −1 1 1
1 −1 −1 −1 −1 1 1
−1 −1 −1 1 −1 1 −1
1 1 1 −1 −1 1 −1
1 1 1 −1 1 −1 −1
−1 −1 −1 1 1 −1 −1
−1 −1 −1 1 −1 −1 1
1 1 1 −1 −1 −1 1
1 1 1 −1 1 1 1
−1 −1 −1 1 1 1 1





−1 1 −1 −1 1 1 1
1 1 −1 1 1 −1 1
−1 1 1 −1 −1 −1 −1
1 1 1 1 −1 1 −1
−1 1 −1 −1 1 −1 −1
1 1 −1 1 1 1 −1
1 1 1 1 −1 −1 1
−1 1 1 −1 −1 1 1
1 −1 1 1 1 1 1
−1 −1 1 −1 1 −1 1
1 −1 −1 1 −1 −1 −1
−1 −1 −1 −1 −1 1 −1
−1 −1 1 −1 1 1 −1
1 −1 1 1 1 −1 −1
−1 −1 −1 −1 −1 −1 1
1 −1 −1 1 −1 1 1
1 −1 −1 −1 −1 −1 −1
−1 −1 −1 1 −1 1 −1
1 −1 1 −1 1 −1 1
−1 −1 1 1 1 1 1
−1 −1 −1 1 −1 −1 1
1 −1 −1 −1 −1 1 1
−1 −1 1 1 1 −1 −1
1 −1 1 −1 1 1 −1
−1 1 1 1 −1 −1 −1
1 1 1 −1 −1 1 −1
−1 1 −1 1 1 −1 1
1 1 −1 −1 1 1 1
1 1 1 −1 −1 −1 1
−1 1 1 1 −1 1 1
1 1 −1 −1 1 −1 −1
−1 1 −1 1 1 1 −1
1 1 1 −1 1 −1 −1
−1 1 1 1 1 1 −1
1 1 −1 −1 −1 −1 1
−1 1 −1 1 −1 1 1
−1 1 1 1 1 −1 1
1 1 1 −1 1 1 1
1 1 −1 −1 −1 1 −1
−1 1 −1 1 −1 −1 −1
1 −1 −1 −1 1 1 −1
−1 −1 −1 1 1 −1 −1
1 −1 1 −1 −1 1 1
−1 −1 1 1 −1 −1 1
1 −1 −1 −1 1 −1 1
−1 −1 −1 1 1 1 1
1 −1 1 −1 −1 −1 −1
−1 −1 1 1 −1 1 −1





1 −1 1 1 −1 −1 1
1 1 −1 1 −1 1 1
−1 1 1 −1 −1 −1 −1
−1 −1 −1 −1 −1 1 −1
−1 1 1 1 −1 −1 −1
−1 −1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 1
1 1 −1 −1 −1 −1 1
−1 −1 −1 1 −1 −1 1
−1 1 1 1 −1 1 1
1 −1 1 −1 −1 −1 −1
1 1 −1 −1 −1 1 −1
1 −1 1 1 −1 1 −1
1 1 −1 1 −1 −1 −1
−1 −1 −1 −1 −1 −1 1
−1 1 1 −1 −1 1 1
1 −1 1 1 1 1 1
1 1 −1 1 1 −1 1
−1 1 1 −1 1 1 −1
−1 −1 −1 −1 1 −1 −1
−1 −1 −1 1 1 −1 −1
−1 1 1 1 1 1 −1
1 −1 1 −1 1 −1 1
1 1 −1 −1 1 1 1
−1 1 1 1 1 −1 1
−1 −1 −1 1 1 1 1
1 1 −1 −1 1 −1 −1
1 −1 1 −1 1 1 −1
1 1 −1 1 1 1 −1
1 −1 1 1 1 −1 −1
−1 −1 −1 −1 1 1 1
−1 1 1 −1 1 −1 1
−1 −1 1 −1 −1 1 1
−1 1 −1 −1 −1 −1 1
1 −1 −1 1 −1 −1 −1
1 1 1 1 −1 1 −1
1 −1 −1 −1 −1 −1 −1
1 1 1 −1 −1 1 −1
−1 −1 1 1 −1 −1 1
−1 1 −1 1 −1 1 1
1 1 1 −1 −1 −1 1
1 −1 −1 −1 −1 1 1
−1 −1 1 1 −1 1 −1
−1 1 −1 1 −1 −1 −1
−1 −1 1 −1 −1 −1 −1
−1 1 −1 −1 −1 1 −1
1 1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1
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CHAPTER 6

CONCLUSION AND FINAL COMMENTS

Data analysis is an important area in the field of experimental design. It aims on

discovering new information, enhancing or contradicting existing assumptions, and

finding new applications that are helpful for prediction. This dissertation aimed to

identify effective strategies for improving data analysis. Based on simulation studies

that comprehensively focus on detecting the active effects, it can be concluded that

the structure of the screening design is an important factor to consider when ana-

lyzing data. The result indicates that the orthogonality between the factors and the

considered model is one of the features of a design that has an impact on the analysis.

One of the important structural properties of the screening design is the depen-

dency between its columns. This dependency might cause difficulties in discriminat-

ing between models. So, MDS is one of the biggest concerns regarding screening

designs. However, several researchers used the concept of MDSs for understanding

and improving the data analysis, especially for the model discrimination. Therefore,

in this dissertation, we focused on utilizing the MDSs for screening designs on the

data analysis. In Chapter 3, we provided a new classification for the MDSs and test

the effectiveness of this classification in active effects detection through a simulation

study. We found there is a benefit for using our classification on the power, as we

expected. In fact, our approach for the classification was focusing on the impact

of the number of factors in a MDS. However, there are infinite ways to classify the

MDSs that have not been explored yet. There are still different ways to consider

and extend this work. For example, MDSs may have an impact on other statistical
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concepts, not just power. For instance, false discovery rate, estimation capability,

projection estimation capability, generalized alias length, etc. Thus, further research

on finding other ways to classify MDSs is considered an open research area needing

more improvement and discovery.

While omitting a quarter of run size has been soundly investigated for regular

design, less research has been devoted to this technique of construction design for

non-regular designs. In Chapter 4, we provided a new strategy for the construction of

a new type of non-regular design, which is three quarters design of non-regular design.

This strategy focused on dividing the 4-PFD into 4 equal sets by using blocking, and

then dropping one block to get three quarters designs. We found a relation between

the orthogonality of the effects and blocking the design. Also, there is a relation

between belonging of the blocking effects to aliasing sets and the number of flats

for the resulting design. Our research focused deeply on construction three-quarter

design of 1-PFD and 4-PFD. What is the difference if we use different than theses

design? Consider designs such as 3-PFD, 6-PFD, 8-PFD could be open research

problems, and should be considered for future work. What is the optimal choice for

the effects that are used for blocking, which provides an orthogonal three quarters

design? So, these questions are open research problems, and should be considered for

future works.

In Chapter 5, we provided a new approach for model selection. Our approach

has an impact on improving the data analysis, as we expected. It gave a decreasing

type 1 error, especially for 2FIs by using the forward selection as a model selection

procedure. While we do not notice a dramatic increase on the power by our approach.

Consistently, the rate of the power gives insight into searching further about the reason

for that and how to improve it. Our method focused on using two model selection

procedures, forward selection and danzing selector, is there another analysis method
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available in the literature, that might help to improve our proposed method ?
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