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Abstraction 

APPLICATION OF IMMOBILIZED PALLADIUM MONOLITHIC CATALYSTS IN SUZUKI-

MIYAURA AND TSUJI-WACKER REDOX REACTIONS 

By Sajjad Ghobadi, Ph.D. 

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of 

Philosophy in Chemical Engineering at Virginia Commonwealth University 

Virginia Commonwealth University, 2020 

Major Director: B. Frank Gupton, PH.D. 

Floyd D. Gottwald Jr. Endowed Chair, Department of Chemical and Life Science 

Engineering 

Virginia Commonwealth University, Richmond, Virginia 

Fine chemicals and pharmaceutical industries are among the most strategic fields for any 

country. Redox reactions are among the processes that have been actively used as the critical route 

to obtain desired organic products. Metal catalysis is one of the major approaches to improve the 

efficiency and rate of such reactions. Suzuki-Miyaura cross-coupling and Tsuji-Wacker oxidation 

are among the most common reactions in the field. Both of these reactions are catalyzed using 

metal species, with palladium (Pd) being the most common one. Although these two reactions 

have similar catalytic cycles, they use different metal species. Particularly, while Suzuki reactions 

use metallic (Pd0), whereas ionic species (PdII) are the actively utilized catalytic species.  

Additionally, two of the synthetic settings with the highest potential in future improvement in 

industrial synthesis are flow and electrochemical frameworks. Solid-supported catalyst production 
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Both of these settings require specific design considerations for catalyst synthesis. Preparing 

metal-decorated monolithic catalysts, where the support structure is a macroscopic highly porous 

with enhanced mechanical and electrical properties, is projected as the approach for preparing the 

next generation of high-performance solid-supported catalysts.  

Herein, a wholistic analysis of the viability of monolithic catalysts for redox reactions is 

presented. The interdisciplinary approach taken in this systematic study included preparation and 

investigation on Pd-on-carbon monoliths as catalysts in a flow and electrochemical settings.  

The Suzuki-Miyaura reaction-focused study led to rational design, preparation, and successful 

application of Pd0-on-graphene oxide (GO) monolithic catalysts in flow conditions. In this study 

a combination of chemical reduction, freeze-casting, and vapor-phase reduction processes was 

applied to Pd-GO structures leading to the preparation of these monoliths. The Suzuki flow 

synthesis reactions revealed that the monolithic structure led to significantly improved catalytic 

longevity compared to 2D solid-supported catalysts. Nonetheless, the turnover frequency and 

product metal contamination (leaching-off) analysis indicated superior performance for monolithic 

catalysts. 

Electrochemical Wacker-type oxidations are among the most common reactions in the 

industry. However, in order to prepare a rationally designed monolithic catalyst for this reaction, 

further catalyst studies were required. Therefore, a comprehensive study on 2-dimensional Pd-on-

graphene nanoplatelets was conducted, leading to a proposed industrial design space for oxidation 

catalyst manufacturing. Afterwards, as a proof of concept viability of PdII-on glassy carbon (GC) 

monoliths were used as catalytic electrodes for Wacker-type oxidation in the electrochemical 

setting.  
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Via this approach, a comprehensive investigation and validation of monolithic catalyst 

preparation and applications in industrially feasible synthetic processes, including catalytically 

different redox reactions in flow and electrochemical settings, were successfully attained. 
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1.1. Solid-Supported Catalysis in Organic Synthetic Processes 

Organic reactions have been identified as one of the main possible routes through which life 

was first created. To the day, they have not lost their level of importance in influencing human 

lives. 1 The ever-growing demand for fine and pharmaceutical chemicals since the second half of 

the 20th century has been the driving force for the development of more efficient organic synthetic 

processes (OSPs). 2 One of the significant strategies towards these process improvements is the 

utilization of reaction-promoting non-consumable species. 3  Catalysts are among this category of 

materials, a set of species that kinetically enhance the rate of reactions. 

Many OSPs are catalyzed via transition and rare-earth metallic particles. 4 These catalytic 

systems have revolutionized many industrial processes and enabled crucial discoveries in the field 

of fine chemicals and active pharmaceutical ingredients (APIs) synthesis. 5 

While the importance and positive role of metallic catalysts are undeniable, there are multiple 

process-focused as well as mechanism-oriented difficulties associated with them. 6 This cross-

disciplinary set of issues has resulted in the emergence of catalysis research among chemical 

engineers and process chemists. 

Transition metal catalysts, one of the most common groups of OSP catalysts, are often 

irreversibly dissolved in the reaction media.7 Considering the high costs of these metallic particles 

and strict mandates enforced by regulatory agencies (e.g., FDA regulation for the allowed amount 

of transition metal content in pharmaceutical products 8) this criterion must be met by any process 

pursuing commercialization.  
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The amount of soluble catalyst (known as a homogeneous catalyst) used in these reactions is 

very high (sometimes up to 50 mol% of reagents).9 Hence, rendering this approach commercially 

and technically inapplicable in industrial settings.  

In order to address these issues while benefiting the most from metal catalysis, solid-supported 

catalysis was adopted and advised in the second half of the 20th century. 10 During this process 

catalyzing species (metallic, 11 organometallic, 12 etc.) are immobilized on a solid substrate, known 

as the support. This support structure is often chosen from materials with high electrical and 

thermal conductivity while possessing mechanical strength (e.g. graphene, 13 carbon black, 14 and 

carbon nanotubes 15). 

A variety of difficulties associated with homogeneous catalysts are addressed through solid-

supported catalyst synthesis. In a desired solid-supported catalyst system, the catalyst particles are 

strongly immobilized on the high surface area solid support’s accessible surfaces.  This high 

surface area provides catalyst particles with the possibility of effectively interacting with reagents 

without the need for their dissolution in the reaction media. Therefore, the catalyst leaching off 

into the product mixture is minimized. 

In many organic syntheses, the catalyst is oxidized or reduced and then regenerated through its 

catalytic cycle (Figure  1.1). Solid supports often provide the system with a pool of excess 

delocalized electrons, which can effectively promote a faster catalyst redox process, regenerating 

the catalyzing species. Consequently, the amount of catalyst required for fast reaction completion 

is reduced, thus significantly improving the catalyst system’s potency. 
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Figure  1.1.  Catalyst redox cycle for Suzuki cross-coupling reactions 

Solid-supported catalysis has made some reactions possible that they were previously deemed 

practically impossible or industrially infeasible. Pericàs et al. 16 showed that the enantioselectivity 

required for various fine chemicals and pharmaceutical ingredients is heavily dependent upon the 

quality of chiral catalysts used. In some cases, the only way to control the catalyst chirality is to 

utilize solid-supported catalysts where the support dictates the deposited particle properties. 

In another investigation by Leitner and co-workers, 17 one the key intermediates for Janus 

kinase 2 (JAK2) inhibitor was prepared via solid-supported ruthenium catalysts with significantly 

higher selectivity while satisfying the green chemistry conditions. 

Although these improvements and novel process discoveries were achieved, the true API 

synthesis potential of catalysis was yet to be discovered as a viable route for industrial-scale 

manufacturing. 
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1.2. Assemblies of Monolithic Structures for Catalytic 

Applications 

One of the major advances in API synthesis was translating the conventionally performed batch 

reactions into synthesis in flow. 18 During this approach, the reaction is completed whilst its 

mixture is conveyed in a stream. This method yields significant improvements in the synthetic 

process efficiency.  

Tosso et al. 19 showed an improved industrial-scale synthesis route for ciprofloxacin with 

improved isolated yields of 83% compared to commercially practiced routes. The reduction in 

number of synthesis steps while increasing the process throughput achieved in that study were the 

direct results of the successful implementation of synthesis in flow approach. 

Usually, during the flow synthesis, catalysis is involved at various stages of the process. The 

catalysts in flow are often utilized via packed bed settings. 20 The catalyst packed beds allow the 

reaction stream to pass through them while keeping the bed in place, which allows the control of 

reagents residence time, and bed’s pressure and temperature control with desirable accuracy. 

Solid-supported catalysts, which provide advantageous properties for catalysis of such reactions, 

have been found to be the most suitable candidates for packed bed applications. 21 However, there 

are two major drawbacks associated with then in packed bed settings.  

Firstly, the backpressure of the stream is often dramatically increased when using a 

conventional heterogeneous catalyst packed bed. 22 This phenomenon happens due to catalyst 

overpacking (pressing against each other) (Figure  1.2-a). This results in dramatically lowered 

reaction throughout and in extreme cases, clogging in the system which can further inflict 
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noticeable financial damage in industrial settings and requires intensive cleaning and overhaul 

procedures. 

Secondly, as the reaction stream is flown through the 2-dimensional solid-supported catalyst 

packed beds, flow paths of least resistance can form within the packed bed bulk. This process is 

called microchanneling (Figure  1.2-b) which prevents the reagents from interacting with catalyst 

particles in the bulk of the bed (especially those away from microchannels). 23 Therefore, the true 

fraction of reacting catalyst becomes significantly lower than the intended amount (e.g. 

stoichiometric catalyst amount). There have been numerous reports of experimental and theoretical 

studies concerning these two issues from bench to industrial scales of production. 

 

Figure  1.2. Illustration of a) high backpressure and clogging, and b) microchanneling in 2D 

catalyst packed beds. (the green arrow, dark blue particles, and red gradients, represent the flow 

direction, solid-supported catalysts, and high pressure regions, respectively.) 

One of the most successful solutions proposed for these issues associated with 2D solid-

supported catalyst packed beds has always been to prepare a macroscopic assembly of catalytically 

active species. These structures then act as plug-and-play cartridges for catalyst packed beds. 

These structures are called monolithic catalysts. The highly porous, and at the same time, 
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mechanically robust structure of monolithic catalysts allow the uninterrupted flow of reaction 

stream while maintaining its originally designed shape. Thus, preventing the microchannel 

formation in the packed beds.  

Electrochemical organic synthetic processes (EOSs) are another type of synthesis approach 

with extremely high potential in profitability as well as in scientific discoveries. 24 The EOS 

methodology has been extensively utilized in the field of eco-friendly and renewable energy 

production. Similarly, there are several industrial EOS processes actively used for commodity 25 

(e.g. acetone, ammonia, and chlorine gas) as well as specialty chemicals (such as APIs 26,  and 

ultrapure polymers, 27) in industrial scale. The improvements in equipment enabling 

electrochemical production led to the rapid growth of EOS adoption by industry and academia. 

Currently, there are over 1500 commercial products synthesized through EOS approach. 25 

Despite the mentioned successful applications of EOS, the true potential of this approach has 

not been utilized to its utmost capacity. The EOS is a surface process that is heavily reliant upon 

the interaction between reagents and electrode(s). 28 This characteristic is a governing factor in 

preventing many EOS processes to be commercialized as almost all the completed reaction cycles 

(especially those require catalysts) happen at a less than 100µm distance from the electrode 

surface, rendering the process unscalable. Thus, there have been two major catalysis-oriented 

approached to address this drawback. 

I) As shown in Figure  1.3., during EOS, the reagents are oxidized or reduced (at the anode or 

cathode, respectively). This process often requires catalytic species. However, until recently, only 

homogeneous catalysts that can be dissolved and effectively interact with reagents at the electrode 

surface, were used. 29 This approach was successful in improving the chances of responding to 

difficulties associated with this method of catalysis in electrochemical settings. Firstly, the 
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catalytic species in a one-pot (known as an undivided cell) electrochemical cell, could promote an 

undesired reaction as the counter electrode is also present and could cause unwanted 

oxidation/reductions. Utilization of two half-cells connected via an ion bridge or a semi-permeable 

membrane (completing the electrical circuit) addressed this issue. 30 However, this design 

approach decreased the electrochemical regeneration rate due to the significantly lowered charge 

transfer rate in such configurations.  

 

Figure  1.3. Electrochemical Wacker oxidation of alkenes (left: oxidation of alkene to ketone at 

anode and right: reduction of electrolyte salt to sodium chloride(aq)) 

Secondly, similar to conventional OSPs, the filtration and recycling of dissolved homogeneous 

catalyst species (often rare-earth or transition metals) was extremely hard and virtually impossible 

in some cases. Hence, decreasing the product purity while increasing the cost by wasting the 

catalyst material. 31 Nonetheless, the potential clogging of a permeable membrane or ion-bridge 

input ports in case metallic salts crashing out and precipitation was another issue associated with 

this methodology. 32 The last difficulty can be exacerbated by using solid-supported catalysts. 
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II) Until recently, the utilization of retrievable high-activity solid-supported catalysts in EOS 

was deemed only available through immobilization of the catalyst on the electrode surface. 33 

However, due to the limited electrode surface area, and design limitations for efforts in increasing 

it, the catalyst loading was drastically lower than the required amounts for high throughput reaction 

completion. 

There has been a series of recent reports indicating that dispersion of solid-supported catalysts 

in the reaction electrolyte, while under rapid mixing, can be extremely beneficial to this approach. 

33 During this process, the quick contact and detachment of catalyst particles from the electrode 

allow them to complete their redox cycle and be readily available again for catalysis. 34 

Nonetheless, significantly higher amounts of catalyst allowed in this method increase the potential 

of EOS in performing hard-to-attain reactions.  

This novel catalyst incorporation methodology is called fluidized electrochemical catalysis and 

has proven to be one of the most reliable approaches for catalyzed EOS. In order to improve upon 

fluidized electrochemical catalysis, two difficulties must be addressed. First of all, as this method 

is only in developing bench-scale stages, the procedure to define the proper criteria for the 

preparation of catalysts for such reactions must be devised. Hence, a systematic approach for 

catalyst design space generation supported by experimental results is required. 33 

Moreover, the mentioned precipitation of 2D solid-supported catalysts on the permeable 

membrane slows the charge transfer between two half cells, hindering completion of a fast, 

minimally energy-consuming reaction. 35 To address this difficulty, a catalytic monolith electrode 

which contains catalyst particles in its highly porous structure can potentially be active while still 

benefiting from the advantages of fluidized electrochemical catalysis. 
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In order to provide systematic solutions to the drawbacks of using solid-supported catalysis in 

flow OSPs as well as EOS processes, the following research, tailored towards palladium (Pd) 

catalysis, is presented. In chapter 2, a rationally designed and robust method for preparation of 

mechanically sturdy, and highly porous graphene oxide monoliths for model Suzuki cross-

coupling reactions in flow is presented. Chapter 3 provides a comprehensive approach for the 

preparation of design space for specialty Pd-on-graphene nanoplatelets (Pd/GNP) solid-supported 

catalysts for fluidized electrochemical oxidation of electron-deficient olefins (Tsuji-Wacker 

reaction) is detailed. Chapter 4 depicts the design, manufacturing, and proof of concept 

performance of Pd on reticulated vitreous carbon (RVC) catalytic monolith electrodes for Wacker-

type electrochemical oxidation terminal olefins. 

Throughout these studies, in addition to the design and preparation of specialized solid-

supported catalyst structures, their superiority over homogeneous catalysts as well as the depiction 

of the positive impact they introduce to their respective reaction settings (flow and 

electrochemical) is pursued. 
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2.1. Pd-decorated GO monolith Manufacturing: Synthesis, 

Characterization  

2.1.1.Background and Motivation  

Since the 19th century, catalysts have been actively utilized in a variety of processes 36. These 

catalysts due to kinetic effects can accelerate the production of a certain product or efficiently 

generate energy by reducing the activation barrier of the reactions. The importance of catalyst 

development is highlighted by the tremendous amount of research being conducted to meet the 

rapidly growing demand for large quantities of synthetic products, improving reaction efficiency, 

and catalyzing more difficult reactions 37. 

Traditionally, many petrochemical and fine chemical industries use metal particles as their 

catalysts of choice for most catalyzed processes. Specifically, cross-coupling processes in the 

pharmaceutical industry have utilized selective transition metal catalysts 38-39. Homogeneous metal 

compounds 40-41 are favored for such applications due to their durability and high activity.  These 

homogeneous catalysts are usually expensive, require high catalyst loading, and are difficult to 

separate from products 42. It is noteworthy that the metal impurities in pharmaceutical products are 

highly regulated by agencies such as the Food and Drug Administration (FDA) (e.g. 10 ppm limit 

for Palladium in Q3D Elemental Impurity Guidance for Industry 8) making the separation of the 

metallic species from products a crucial and often costly issue. 

Heterogeneous catalysis is one of the most effective ways to address these drawbacks. For 

example, the utilization of solid-supported catalysts not only provides ease of separation, it also 

reduces or eliminates the amount of metal contamination of the products 43-46. Nevertheless, 
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additional improvements are sometimes required for a solid-supported catalyst to be technically 

and financially feasible on a commercial level. 

Overcoming the costs associated with solid-supported catalysts can be achieved by increasing 

the catalytic activity through synthesizing smaller metal particles on solid-supports. This approach 

results in increased active surface area to volume ratio. Another improvement pursued in solid-

supported catalysis is to utilize an electrically conducting support for fast and low activation 

energy redox cycle of metal particles during catalysis. This goal has been achieved by using 

conducting and cheap supports (e.g. graphene 47-49, activated charcoal 50 and carbon black 51). 

One challenge that recently has received interest is to effectively implement the use of solid-

supported catalysts in continuous or flow syntheses (e.g., catalyst packed bed reactor 

configuration) in petrochemical catalysis 18 and particularly, active pharmaceutical ingredients 

(APIs) 52-53. As stated by Buchwald et. al.  has identified multiple difficulties to be addressed in 

flow synthesis, and  importantly  the implementation of solid-supported catalysts was listed as one 

of the top challenges in that framework 39. Packed catalyst beds tend to have a high pressure-drop 

across the bed, flow channeling, or clogging, preventing their effective use and commercialization 

54-55.   

The high pressure-drop in flow synthesis can be a result of the solid-supported catalysts 

packing, which also reduces the available active sites and thus catalytic activity. Catalyst packing 

can also lead to accelerated deactivation 54.  Micro channeling of catalyst packed beds is another 

issue that prevents efficient catalysis as the reaction media can flow through these channels and 

interact less with the catalyst particles. In other words, the residence time as well as catalyst 

efficacy are both reduced 55. 
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Research efforts to address high pressure-drop and micro channeling of catalyst packed beds 

have been reported using various bottom-up assembly methods for large scale catalyst preparation. 

In Haswell and co-workers’ study 56, sol-gel bottom-up assembly of silica nanoparticles led to 

formation of a robust macroscopic structure. A three-dimensional (3D) Pd/silica monolithic 

catalyst was synthesized by physically adsorbing palladium salt precursors on silica nanoparticles. 

The preparation process was then completed by calcination of the silica monoliths which 

ultimately resulted in improved catalyst performance in flow synthesis. However, the harsh and 

non-reproducible conditions of both sol-gel as well as calcination processes were among the main 

drawbacks of this approach. 

In another study by Barbaro et. al. 57, it was shown that a Pd@sulfonated silica monolith was 

prepared as a catalyst for partial hydrogenation reactions. While the catalytic activity of the 

monolithic catalysts improved over four times in selectivity with respect to the two-dimensional 

Pd@silica, the catalyst preparation required the expensive commercial monolith and harsh 

functionalization treatment conditions thereof. 

Modak et al, prepared Pd particles immobilized inside hollow n-doped carbon tubes with holes 

in their structure. These macroscopic 3D supports were obtained through a top-down 

manufacturing process, during which highly cross-linked polymer tubes were carbonized in 

presence of Pd (II) ions. They showed such high surface area macroscopic structures possess 

significantly improved catalytic activity over their conventional 2D solid-supported counterparts. 

Such structures’ performance superiority was confirmed for Sonogashira and cyanation type C-C 

bond formation reactions as well as hydrogenation of nitrobenzene and compounds alike to their 

corresponding anilines 58. To have a large scale map of Pd particles inside carbon tubes was among 

the main challenges of this study. 
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An optimized monolithic catalyst has been the main interest of the related research community. 

Achieving this will require a straightforward, efficient, and low-cost preparation method. 

Additionally, the catalyst sustainability and ultimate flow catalytic longevity of these engineered 

hybrid nanomaterials need to be systematically studied 59-62.  

A rigorous study of 3D monolithic catalysts will require characterization of the pore structure 

on the macroscopic level. During multiple studies it was shown that the solvents and reagents are 

often entrapped within the nanoporous structure due to capillary conditions, making conventional 

porosity measurements ineffective. These problems have drawn the community’s focus towards 

more facile nondestructive analytical techniques 63. 

Recently there have been reports on using computer assisted tomography (CT-scan) scanning 

technique for evaluation of fillers and additive material orientations in polymer composites 64. 

During these investigations, the contrast was obtained by the difference in the X-ray diffraction of 

fillers and polymer matrix layers. CT-scanning was then used to study the interior structure of the 

composites. However, since both the matrix and the additives are carbon-based, no elemental 

distinction could be obtained at larger than nanometer scales 65.  

In Sheppard and co-workers’ report, ceria-doped gold monolithic catalysts were also studied 

by micro-CT scan imaging giving micrometer scale resolution of the structure 62. The study 

showed nanoporous gold/ceria monolith can be effectively used for catalysis and process 

intensification. However, the tomographic 3D mapping technique utilized, was not able to provide 

a ceria distribution map within the gold monolith structure. Large-scale structural alterations that 

occurred during the catalytic performance were not characterizable using micro-CT scan 

tomography. 
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 The present study first investigates a multi-step, all aqueous-phase assembly approach for 

preparation of palladium-decorated graphene-based monolithic catalysts for improved catalytic 

performance. Afterwards, investigations on a new monolithic catalyst characterization technique 

using nondestructive micro CT-scan tomography for elemental and porosity mapping on the 

centimeter-scale is presented.  The robustness of these monoliths to withstand synthesis in flow 

conditions was pursued via GO interlayer esterification; followed by a GO ethanol vapor partial 

reduction. The monolith structure was systematically analyzed and characterized by electron 

microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The catalytic longevity of 

the monolithic catalysts in flow packed bed configuration was tested using a model Suzuki cross-

coupling reaction and compared to the 2D catalyst. The feasibility and utility of the micro-CT 

mapping on the monolith structures was investigated with emphasis on microporosity alterations 

as well as Pd distribution throughout the entire monolithic structure. 

2.1.2.Materials and Methods 

 Materials 

Graphite flakes (>325 mesh size), 4-bromotoluene, and palladium chloride were purchased 

from Alfa-Aesar (Haverhill, MA, USA). Sulfuric acid, nitric acid, hydrogen peroxide, ethanol, 

polyvinyl alcohol (PVA) (99% hydrolyzed, MW. 8900-98000 g.mol-1), and ascorbic acid were 

purchased from Sigma-Aldrich (Saint Louis, MO, USA). Phosphoric acid, and hydrochloric acid 

were purchased from Fisher Scientific (Hampton, NH, USA). Sucrose, and 

tetraaminepalladium(II) chloride (Alfa Aesar, 99.9%), were purchased from Caisson Labs 

(Smithfield, UT, USA), Fluka (Muskegon, MI, USA), and Science Labs (USA), respectively. All 

the chemicals were used without further purification.  
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  GO monolith preparation 

Graphene oxide was synthesized from graphite flakes via a green iteration of Hummer’s 

modified method as described elsewhere 66. Briefly, graphite nanosheets were oxidized by using 

KMnO4, H2SO4, and H3PO4 for 24 hours, followed by dialysis in DI water until the GO mixture 

reached a pH of 5 and was then dried in a vacuum oven overnight. Once dried, the GO was 

dispersed in DI-water (5 mg/mL) by ultrasonication using an ultrasound bath (150 W, 100% 

amplitude, Branson® 1800) for 7 hours. Then, 2.5 mg sucrose and 0.25 mL of 1 wt/vol% aqueous 

solution of PVA (2.5 mg solid ca.) were added to 10 mL of the GO water dispersion under magnetic 

stirring at 500 rpm while kept at room temperature (25 °C) for two hours to yield the monolith 

precursor solution.  

The monolith precursor mixture was then poured into molds of the desired shape, to fit the 

packed bed cartridge, and freeze-casted by exposing the mold’s bottom surface to liquid nitrogen 

creating a temperature gradient (Figure 2.1.). The gradual growth of ice crystals is obtained in the 

monolith structure along the same axis. To achieve the maximum porosity, the approximate 

temperature gradient was about 2 °C.min-1, measured by infrared temperature gun 67. The freeze-

casted monoliths were then lyophilized using a Labconco freeze dryer for 24 hours. 
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Figure 2.1. The schematic illustration of monolithic catalyst preparation, the model Suzuki cross-

coupling reaction, and the flow synthesis using the monoliths 

The samples were coded based on their support (e.g., Pd@M for monolith and Pd@GO for 2D 

catalyst). In addition, their specific post synthesis treatment was included in the naming scheme. 

For example, Pd@M-MW is a Pd on GO monolith catalyst which is microwave treated.  

  Pd@M monolithic catalyst preparation 

The procedure for the Pd@M monolithic catalyst preparation followed the GO monolith 

precursor preparation, but with the addition of a Pd precursor salt (PdCl2 as the cationic, 

Pd(NH3)4Cl2 as the anionic salts) at 5 wt% metallic Pd with respect to GO, as well as ascorbic acid 

(2 molar equivalence with respect to metallic Pd) were added to monolith mixture prior to the 2-

hours esterification period. The Pd(NH3)4Cl2 and PdCl2 were first dissolved in DI-water, and 0.1 

M HCl aqueous solution, where PdCl4
2- species were formed before addition to the GO monolith 

precursor solution. 
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Partial reduction of the monolith (and monolithic catalysts) was performed using ethanol vapor 

as the reducing agent in a closed round bottom flask heated to 74 °C for 2 hours (Figure 2.1) 

located below the mold containing the monolith or monolith catalyst precursor solution. The 

treated monolith was then transferred to an autoclave reactor which was sealed and heated in an 

oven at 100°C for 24 hours.  

For comparison, in addition to Pd on GO monolith model sample prepared via use of PdCl2 

precursor, a Pd on graphene oxide (GO) 2D catalyst was prepared via the identical reduction 

technique as the Pd@M monolithic catalysts. However, the freeze casting and lyophilization steps 

were not applied for 2D catalysts.  

  Microwave-treatment  

A microwave treatment was implemented to further reduce the Pd nanoparticles, improving 

their interaction with GO by formation of Pd-graphene defects inside the support structure 45. The 

treatment was performed via a CEM Discover S microwave reactor by treating the sample at 100°C 

for 1.5 minutes under varied power.  

  Micro CT-Scan imaging 

The 3D micro CT scanning and imaging of the monoliths was performed using a Bruker 

Skyscan 1173 Micro-CT scanner. To obtain reliable maps, X-ray source potential was optimized 

at 130kV, and exposure time for each image was set at 4000 ms. During the imaging, 360° rotation 

of specimen at 5 mm canonical distance from the source was maintained while random movements 

were not included. CTVOX free reconstruction software was used to process images. For all 

samples, green color was specifically assigned to the Pd particles captured in the 3D map, and the 

carbon-based matrix was colored white.  
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  Materials Characterization 

Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and X-ray 

photoelectron spectroscopy (XPS), were done via a Hitachi SU-70 FE-SEM at 5 KV, a X’pert Pro 

PANanalytical XRD diffractometer (Cu Kα, λ=1.54 Å, scanned from 5° to 85°) and a Thermo 

Fisher ESCALAB 250 X-ray spectrophotometer with 2 eV step for survey and 0.1 eV step for high 

resolution elemental scans, respectively. The XPS spectra were studied via CASAXPS 2.3 19PR 

software using NIST standard database 20 version 4.1 for detailed analysis.  

The palladium metal uptake was determined by first dissolving the sample in 1 vol/vol % 

hydrochloric acid solution for 24 hours at 25°C. Afterwards, the mixture was filtered using a 0.2 

µm syringe filter and ten times dilution with DI-water. Then the Pd concentration was measured 

using an inductively coupled plasma-optical emission spectroscopy (ICP-OES) (Agilent 5110 ICP-

VCV-OES). 

The average %Pd leached from the solid-supported catalysts were measured using the same 

ICP-VCV-OES device using the following protocol. At each 30-minute time point, 0.1 mL of the 

downstream was collected and mixed with 0.1 mL of 12.1 M HCl for acid digestion. After 20 times 

dilution with DI-water, the metal content was measured via ICP analysis. Afterwards, total leached 

Pd content was calculated using the following equation: 

%leached Pd =(Pd conc. (ppm)× Vpassed (L))/total Pd (mg) ×100 

Where the Vpassed is the volume of passed liquid calculated based on the flow rate (0.01 L for 

each step). Then the average leached %Pd was calculated as the number average of each step’s 

record.  Remaining (or starting) Pd refers to the amount of retained (or starting) Pd on the catalyst.  
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2.1.3.Results and Discussion 

Evaluation of the monolithic graphene-based nanosheets decorated with Pd catalysts consisted 

of material characterization, optimization of reaction temperature and microwave irradiation 

conditions, testing of catalytic performance, and development of a micro-CT mapping 

characterization technique was evaluated. The monolithic catalysts were characterized using X-

Ray photoelectron spectroscopy (XPS) to determine the oxidation stateof Pd species and the 

catalysts were imaged using a scanning electron microscope (SEM). The effect of microwave 

treatment and reaction temperature on the monolith’s catalytic performance were optimized to 

preserve the monolithic structure and enhance the catalytic performance, which was evaluated 

using Suzuki cross-coupling reaction as a model. This model reaction was also used to evaluate 

the catalytic longevity of the 3D monolithic catalysts in comparison to the 2D catalyst packed bed. 

Finally, the micro-CT mapping was developed to provide a method of characterizing the Pd 

particle distribution throughout the monolith on a clear large-scale map. 

  X-ray Photoelectron Spectroscopy 

According to the XPS spectra (Figure 2.2), the oxygen content was significantly higher in 

monolithic catalysts compared to the 2D Pd@GO catalysts (Figure 2.2.). Therefore, the monolithic 

catalyst was more compatible with aqueous reaction media through the functional group 

interactions with water. Though the highly porous structure of the monolith was preserved by steric 

cross-linking, preventing the structural collapse while exposed to water. 
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Figure 2.2. XPS analysis of A, B) Pd@M-nonMW, C, D) Pd@M-MW, E, F) Pd@GO-nonMW, 

G, H) Pd@GO-MW 

From the XPS survey quantification analysis on catalysts (Figure 2.2-a, c, e and g) no  sulfur 

was detected at 162-170 eV binding energies, demonstrating the preparation method prevented 

sulfur-poisoning 68.  

Based on previous reports, metallic Pd(0) and the ionic Pd(II) palladirgies 69. The detailed 

elemental analysis on Pd species revealed that the metallic species to total palladium species ratio 
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in Pd@M (Figure 2.2-b), Pd@M- MW (Figure 2.2- D) monolithic catalysts and the 2D catalysts 

of Pd@GO (Figure 2.2-f), and Pd@GO-MW (Figure 2.2-h) were 34.2 ± 5.4%., 65.1 ± 7.6%, 19.4 

± 3.7% and 32 ± 3.9%, respectively.  

The significant difference among the monolithic catalysts and 2D Pd@GO catalysts recorded 

via XPS was that a palladium (IV) (Pd(IV)) species was detected in Pd@GO and Pd@GO-MW 

catalysts (Figure 2.2-f and h, respectively) while such species was absent in monoliths. Due to the 

oxide species formation, a longer reductive pretreatment activation (initial transformation of all Pd 

species to Pd(0)) was needed before performing the Suzuki cross-coupling reaction. The reason 

for the increase in Pd(IV) fraction from 9% to 22% based on  relative peak area could be attributed 

to the smaller particle size of the Pd(II) and Pd(0) species not masking the Pd(IV) species thus 

expressing the Pd(IV) peak more strongly in the microwave-treated catalyst compared to the as-

prepared one 70. .  

  XRD Analysis 

The X-ray diffraction analysis on the 2D Pd@GO catalysts (Figure 2.3-a and b) showed that 

the Pd deposition was achieved in both as-prepared Pd@GO and MW-treated Pd@GO-MW 

entries as the 40° peak of (100) planes of palladium was detected. The Pd calculated crystallite 

size using the Scherrer equation were higher in Pd@GO-MW compared to its non-treated 2D 

catalyst counterpart (Table 2.1.).  The exfoliation effect of MW treatment on the catalysts is evident 

as the 25° peak of sp2 carbon emerges upon treatment, indicating the de-functionalization of GO 

support. 

Table 2.1. Pd crystallite size of monolithic and 2D catalysts 

Catalyst System 
Pd Crystallite size 

(nm) 
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Pd@M 11.4 ± 1.9 

Pd@M-MW 8.7 ± 1.3 

-)2Pd@M (PdCl

MW 
17.2 ± 2.6 

Pd@GO 16.3 ± 3.4 

Pd@GO-MW 23.2 ± 2.8 

 

The X-ray diffraction analysis from Figure 2.3 of GO monolith, monolithic and Pd@GO 2D 

catalysts showed that  deposition of Pd particles was achieved as the distinctive 40°, and 47° peaks 

attributed to (111) and (200) Pd crystallite planes were detected 71. The average crystallite size  

was calculated by Scherrer method 72 (Table 2.1.). 

 

Figure 2.3. XRD spectra of various catalysts A) Pd@GO, B) Pd@GO-MW, C) Pd (PdCl2)@M, 

D) Pd@M, E) Pd@M-MW, F) GO Monolith, respectively 

It was also shown that the Pd particle deposition while using the PdCl2 precursor was achieved. 

However, the deposited palladium particle’s crystal structure was different than the TAPdCl2 

specimens as the single 47° peak was detected in PdCl2@M monolith indicating larger crystallites 

(Table 2.1.). The lower pH required for dissociation of PdCl2 in aqueous media, which had a 
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negative impact on the ascorbic acid’s performance, it could be considered as one of the main 

reasons resulting in lower Pd uptake, which was confirmed by ICP-OES analysis (Figure 2.2) 73.    

  Scanning Electron Microscopy 

Scanning electron microscopy revealed interesting differences in the Pd particle size and 

distribution as well as the microstructure of the different 2D Pd@GO and 3D Pd@M catalysts 

prepared using both chemical (vitamin C) and microwave irradiation reduction steps (Figure 2.4). 

The average Pd particle size of the 2D Pd@GO and Pd@GO-MWcatalysts (Figure 2.4-a and b) 

were 36.8 ± 6.2 and 28.3 ± 4.5 nm, respectively. In contrast the Pd particle size of the 3D 

monolithic catalysts, Pd@M and Pd@M-MW, were 27.8 ± 2.8 nm and 18.5 ± 1.2, respectively 

(Figure 2.4-c and d). Based on these size measurements it is thought that the potential active 

surface area of Pd nanoparticles for catalytic activity was higher in the monolithic catalyst samples 

and more so in MW entries which consist of smaller Pd particles.  

Although the Pd active site measurement via hydrogen chemisorption technique was attempted 

multiple times, due to the natural issues of these nanoporous structures the results were 

inconclusive. 
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Figure 2.4. SEM images of A) Pd@GO, B) Pd@GO-MW, C) Pd@M, D) Pd@M-MW (In the 

inset image: the Pd particles are the bright spots, and the holes into graphene are the dark spots, 

indicated by the red and yellow arrows, respectively.),and E, and F) overall porous structure and 

particle imaging of Pd@M after the reaction, respectively. The inset image scale bars are 50 nm 

Another important characteristic revealed by electron microscopy was physical evidence of 

defects in the support structure resulting from MW irradiation treated catalyst compared to the as-

prepared one. These hole-like defects formed within the GO sheets during microwave irradiation 

due to extremely high and localized temperatures surrounding the forming Pd nanoparticles during 

reduction74.  These graphene holes or defects supporting Pd have been demonstrated to provide 

enhanced catalytic activity of solid-supported catalysts 45, 49, 75-76. However, in monolithic materials 

these defects could result in reduced mechanical stiffness. Therefore, the formation of these holes 

needs to be optimized to provide enhanced catalytic performance while also retaining the 
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mechanical and structural properties of monolith materials required for use in continuous flow 

reactions. 

The comparison between the Pd particle size distribution before and after reaction (Figure 2.4.-

c, and f) showed that in Pd@M catalyst the average particle size after Suzuki cross-coupling flow 

synthesis was increased to 30.6 ± 11.7 nm. The significantly higher standard deviation value is 

due to the formation of larger Pd particles (>100nm). The post-reduction of Pd(II) particles to 

Pd(0) via electron donation from GO monolith to the Pd particles during the reaction could be the 

responsible phenomenon for such aggregation. 

The microstructure of Pd@M monolithic catalyst before and after flow (Figure 2.4.-c, and e, 

respectively) also revealed that while the macroporous structure of the monolith was preserved, 

the micropores were filled with organic compound crystal residue, indicating that mass transfer 

deactivation was one of the effects playing an important role in the lifetime of the monolith. 

Additionally, the partially insoluble cross-coupling product residue on the monolithic catalyst 

structure, resulting in Pd particle-poisoning and deactivation. 

  Transmission Electron Microscopy 

As shown in Figure 2.5., the Pd particles were successfully deposited on the monolith structure. 

The particle size study (based on 250 counted particles), showed that compared to the non-

microwaved monolith, a narrower distribution in microwaved monoliths were observed (Figure 

2.5.-a & b, respectively). This phenomenon could be the result of Ostwald Ripening effect of the 

treatment 77 which was also observed in SEM images of the monoliths.  

The Figure 2.5.-c and d represent the crystal structure study and d-spacing measurement 

conducted on the Pd@M and Pd@M-MW monolithic catalysts, respectively. As shown in the 
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figure, the Pd particles pertain Pd’s typical cubic close-packed (CCP) crystal structure 78. The 

measured d-spacing were 2.06 ± 0.07 Å and  2.18 ± 0.02 Å for Pd@M and Pd@M-MW, 

respectively. The observation showed a slight increase in d-spacing through microwave treatment, 

while the distance between atomic layers were more consistent in Pd@M-MW monolith as the 

error value was decreased.  

 

Figure 2.5. HRTEM images of A) Pd@M, and B)Pd@M-MW and the representative particles 

used for d-spacing measurements and crystal structre analysis of C) Pd@M, and D)Pd@M-MW, 

respectively 

 Differential Scanning Calorimetry 

As shown in Figure 2.6., the endotherm starting at 80°C and ending at 120°C is attributed to 

glass transition of PVA followed by evaporation of water 79. The exotherm detected at 210°C is 

attributed to decomposition of PVA which then leads to formation of a completely graphitic 

structure. This observation was confirmed by the calorimetric behavior of the monolith as it was 

almost identical to that of GO after 230°C. Therefore, it could be concluded that the water 

entrapped within the structure plays a critical role in its properties; and its removal will irreversibly 

alter monolith’s properties, rendering any analysis on the “dehydrated” samples unreliable.  
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Figure 2.6. DSC analysis of the monolithic catalyst and GO 

2.1.4.Insights and Findings 

A state of art, all aqueous method for preparation and nondestructive analysis of palladium @ 

graphene monolithic catalysts was developed and systematically studied. The proposed route in 

this work it is the result of the optimized monolithic catalyst pursuing high catalytic activity as 

well as long lifetime for Suzuki cross-coupling model reaction in flow.  

In addition to the higher activity obtained from TAPdCl2-based monoliths compared to PdCl2-

based catalysts, it was shown that microwave treatment can have noticeable effects on these hybrid 

materials performances.  

The ICP-OES results recorded slightly higher Pd uptake in MW-treated monoliths. However, 

by XPS analysis it was shown that the majority of Pd species in those catalysts were Pd(II), 

requiring initial activation prior to contributing into the Suzuki catalytic cycle.  
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The scanning electron microscopy of monolithic catalysts showed that the average Pd particle 

size distribution went through a significant change during the flow chemistry. The formation of 

particles with over 200nm diameter in MW-treated monoliths after flow, was thought to be the 

result of Pd(II) to Pd(0) post-reduction phenomena. Hence, correlating closely with elemental 

analysis conducted via XPS.  

2.2. Palladium/Reticulated vitreous carbon monoliths as 

catalytic electrodes for electrochemical Wacker-type oxidation 

reactions.  

2.2.1.Motivation and Background 

Electrochemistry is a well-established method for synthesis. 24 Though, it has not been utilized 

to its utmost potential in complex organic molecules 24. The scalability and low throughput are 

considered as traditional drawbacks of this approach. It has been proven that the use of active 

electrocatalysts can reduce the activation energy of certain reactions by over 30% and 35% in 

oxygen reduction and hydrogen oxidation reactions, respectively 48. The conditions of such 

reactions are milder when performed electrocatalytically rather than via their conventional routes. 

For example, the metal-catalyzed Wacker chemistry is used for alkene oxidation, is typically run 

at over 70°C and require over 5 mol % of the homogeneous palladium catalysts 80. Nevertheless, 

the regioselectivity of oxidation reaction towards ketone or aldehyde products is one of the main 

challenges of Wacker-type reactions. Therefore, the conventional reaction conditions make it 

financially unfeasible 81. During Chapter 3 the design space for optimized catalyst synthesis as 

well as process conditions for high selectivity electrochemical oxidation of olefins were presented. 

The graphene-based monolithic catalysts as large-scale catalyst bodies have shown a significant 



45 

 

advantage in various reactions in batch and flow chemistry. 57 In Chapter 2 it was shown that their 

superior activity is mainly empowered by their high porosity structure, fast charge transfer through 

the structure, and lower metal particle leaching. 82 Hence, they could be considered as potential 

electrodes for electrochemical reactions. It has been shown 83-84 that the TEMPO used in Wacker-

type electrooxidation of terminal olefins is among the crucial reagents promoting a faster charge 

transfer between the solid-supported catalyst and the electrode in the current approach (refer to 

Chapter 3). Hence, significantly improving the redox cycle of the Pd catalyst yielding higher TOFs 

in electrochemical framework. However, since this mediator constitutes about 30% of the overall 

process cost, 84 it’s elimination through direct deposition of Pd particles on a highly conducting 

monolithic electrode could significantly improve the economy and throughput of the 

electrochemical route. 85 

To do so, a glassy carbon monolith with high mechanical and chemical robustness as well as 

electrical conductivity was identified as the suitable option for such catalytic electrodes 86. 

Considering the desired chemistry (Wacker) an extremely inexpensive, completely aqueous, and 

foam-templated method for preparation of such monoliths was developed in-house.  

2.2.2.Methodology and Characterizations 

The monolith preparation was based on hydrothermal polymerization of inexpensive 

hydrocarbons as the carbon precursor around a reticulated polyurethane foam template. 

Afterwards, through annealing the foam template would be removed while the polymer would be 

turned into a porous reticulated vitreous carbon monolith. 
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 Materials 

The sucrose, ammonium hydroxide (NH4OH), potassium hydroxide (KOH) palladium chloride 

(PdCl2), acetonitrile, and ethyl acetate were purchased from Caisson Labs (Smithfield, UT, USA), 

and Millipore-Sigma (NJ, USA), respectively. TEMPO, and 1-octene were purchased from Alfa-

Aesar (USA). The template used was a commercially available polyurethane foam. Colloidal silver 

(resistivity <2400 Ω/□) as well as conductive double-sided carbon tape, and adhesive epoxy resin 

were purchased from TED PELLA INC, USA. and Ellsworth Adhesives, USA., respectively. The 

22-gauge chemical resistant silver-coated stranded wire was purchased from McMaster-Carr, 

USA. The materials were used without any further purification. 

 Catalytic Electrode Preparation 

The detailed protocol for preparation of templated polymer network included incipiently 

wetting a commercial reticulated polyurethane foam with a 10:3 mixture of 2 g/mL sucrose in DI-

water and concentrated ammonium hydroxide (NH4OH).  Prior to incipient wetness of the template 

foam, the pore volume of the foam was measured as 32.5 mL/g. The sucrose/ammonium hydroxide 

mixture amount was calculated accordingly. The mixture was stirred for 10 minutes at 25°C at 500 

rpm. Finally, the foam was immersed in the solution and then was put in an autoclave enclosure 

and heat treated at 100°C for 24 hours.  

The polymerized, and templated monoliths were then dried in room temperature vacuum 

chamber followed by lyophilization for 12 and 24 hours, respectively. The dried monoliths were 

then annealed in a horizontal tube furnace under a mixture of compressed air (Air) and argon (Ar) 

atmosphere (flow 0.2 mL/min) for 1 hour (Figure 2.7.).  
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Figure 2.7. Image of the prepared Pd-glassy carbon monolith 

In order to deposit the Pd particles on the monolith, the incipient wetness impregnation (IWI) 

method (Section 3.3.2) was utilized (nominal 5 wt% Pd on carbon monolith) prior to annealing. 

The PdCl2 salt was used in this process. As proven by our group’s previous studies, microwave 

treatment was crucial for embedding the particles within the monolith structure, then minimizing 

the leaching of the Pd catalyst off the support. 49 This treatment was conducted using Discover S 

microwave reactor at 200 watts for 30 seconds. The effect of microwave treatment was studied via 

Hitachi SU-70 FE-SEM at 5 KV (Figure 2.8.). 

  Monolithic electrode Optimization 

In order to optimize the monolith preparation process, 2 different property modifications were 

pursued. 1. Although the amount of added solution to foam was controlled in the beginning, the 

final product often contained extra polymeric solution which then would be entrapped within the 

pores of the template and result in a low porosity, bulky structure. To address this issue, the 

monoliths prior to drying and subsequent annealing were put under a 50 lbf/cm2 compression for 

30 seconds. This process was repeated three times, pushing the extra sucrose polymer solution out 

of the templated structure.  

2. The annealing temperature suggested in the literature 67 was 200°C and 500°C. The 

thermogravimetric analysis (TGA) of identical monoliths annealed under the mentioned conditions 
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showed heterogeneity in results in terms of residual mass (Figure 2.10.). Therefore, to optimize 

the annealing conditions, a two-level of screening DOE was designed based on the temperature 

and atmosphere of the chamber (Table 2.2). 

Table 2.2. The screening DOE for annealing conditions optimization 

Entry Ar:Air ratio (%) Temperature (°C) 

Pd-GC-1 100:00 200 

Pd-GC-2 80:20 200 

Pd-GC-3 90:10 350 

Pd-GC-4 100:00 500 

Pd-GC-5 80:20 500 

 

The structural properties of the DOE samples were probed using a Phenom ProX (SEM/EDX), 

a Rigaku MiniFlex II X-Ray diffraction analyzer. The most promising trial was also characterized 

via a PHI VersaProbe III X-Ray photoelectron spectrometer utilizing Al k-Alpha X-ray source 

with a 2-6 eV pass energy resolution. The Pd content calculated in EDX was used as the basis for 

reaction screening design. 

2.2.3.Results and Discussion 

 Effect of Microwave Treatment 

As shown in chapters 2 and 3, the microwave treatment results in physical defect formation in 

the carbon-based support structure which then enables metallic (Pd in our case) to be embedded 

within the defects. 49 This process ensures the optimized interaction between the support and 

metallic catalyst particles. 82 Through scanning electron microscopy, it was shown that in the case 

of Pd-GC monolithic electrodes this treatment had the same effect yielding a successful embedding 

of Pd particles within the monolith structure while leaving the monolith structure undisturbed 

(figure 4.3.). 
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Figure 2.8. SEM images of the Pd-glassy carbon monolith (the dark spots around and near Pd 

particle bright circular textures are the indication of physical defect formation). 

 Monolithic Electrode Optimization 

The micro-CT scan imaging supported the finding as the compressed monolith (Figure 2.9-

top) showed a significantly higher porosity compared to the non-compressed one (Figure 2.9-

bottom).  

 

Figure 2.9. micro-CT scan imaging of top) compressed and bottom) non-compressed monoliths 
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The annealing temperature could affect the amount of the template foam elimination. The 

higher the annealing temperature, the higher the template elimination. Although the elevated 

temperatures are not financially favored, the TGA analysis (Figure 4.5.) showed that at the 

literature-suggested 200°C 67, 86 annealing temperature, there is about 50% lower mass fraction left 

to be eliminated from the structure. The 500°C annealing protocol depicted a steady profile 

signifying a successful elimination of the template. Thus, the latter temperature was chosen for 

further studies.  

 

Figure 2.10. TGA analysis of monoliths annealed at various temperatures 

In order to achieve the most optimal conditions for monolithic catalyst formation, the XPS and 

SEM/EDX analysis was conducted on the screening DOE trials. As the XRD graph (Figure 2.11.) 

shows, the Pd structure (specifically Pd(111) desired crystal structure) is only visible in Pd-GC-

3,4, and 5. This observation indicated that the catalytic aspect of monoliths can be attained at 

temperatures higher than 350°C. 
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Figure 2.11. XRD analysis of prepared trials for the screening DOE. The graphs are associated 

with Pd-GC-1 through 5 from bottom to top. 

The EDX analysis of the monoliths showed that the observed Pd structure transformation in 

XRD analysis, was accurate. The Pd content of the trials annealed at 200°C were significantly less 

than the ones with higher temperature treatments. This observation indicated that the Pd particles 

were potentially entrapped within the glassy carbon structure, rendering them ineffective for 

reaction catalysis.  Although the nominal value for Pd loading was 5 wt%, the amount of Pd in the 

Pd-GC-5 was recorded as over 50% of the structure.  

Table 2.3. EDX elemental analysis of the monolithic electrodes (3-point average) 

Entry Pd (wt%) N (wt%)  O (wt%) 

Pd-GC-1 <0.1 14.55 ± 2.39 4.09 ± 0.52 

Pd-GC-2 <0.1 6.71 ± 1.82 16.38 ± 2.26 

Pd-GC-3 1.43 ± 0.11 15.04 ± 1.20 32.17 ± 7.16  

Pd-GC-4 3.96 ± 0.23 12.45 ± 3.72 9.20 ± 2.05 

Pd-GC-5 52.67 ± 3.78 5.3 ± 1.33 29.96 ± 9.12 
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The SEM imaging of the Pd-GC-3,4, and 5 showed that the 10 and 20% Air content of 

atmosphere for Pd-GC-3 and 5 led to two undesired phenomena. In Pd-GC-3, although the 

temperature was lower (350°C) than Pd-GC-4, the redeposition of carbon resulted in Pd particle 

and the monolith porosity carbon coating (Figure 2.12-a). In Pd-GC-5, the presence of air resulted 

in complete decomposition of monolith structure, leaving a fragile shell mostly consisting of Pd 

clusters (Figure 2.12.-c). Therefore, the most optimal conditions were identified as the trial Pd-

GC-4 with 100% argon flow at 500°C (Figure 2.12.-b). 

 

Figure 2.12. SEM images of a) Pd-GC-3, b) Pd-GC-4, and c) Pd-GC-5 monoliths 

The XPS analysis of the optimal Pd-GC-4 (Figure 2.13) revealed two major points about this 

monolithic catalyst. Firstly, the monolithic structure was nitrogen-doped as the result of NH4OH 

presence during the annealing, which then led to an improved Pd immobilization as it provides a 

lower binding energy site for Pd particles to be adsorbed on the support surface. 87. Secondly, the 

Pd (II) fraction (desired ionic species for Wacker chemistry) was less than 40%.  
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Figure 2.13. The XPS spectra of Pd-GC-4 monolith a) Carbon, b) Oxygen, c) Palladium, and d) 

Nitrogen scans. 
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 Application of Pd-decorated GO monolithic catalysts for 

continuous Suzuki-Miyaura cross-coupling synthesis 
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3.1. Motivation 

Suzuki-Miyaura cross-coupling reaction is a well-known redox process that utilizes Pd0 as the 

active catalytic species. This process has been used and is actively executed in the pharmaceutical 

industry. The catalyst-driven improvement in continuous synthesis efficiency can have a 

potentially global impact in that field. Thus, a screening study of Pd-GO monoliths as packed bed 

cartridges was designed, and their performance and operational longevity were compared with 2D 

catalyst counterparts. As an innovative approach to study these materials, a CT-scan imaging 

approach was also utilized to have a wholistic view of the monoliths before and after the reaction. 

This study will provide a benchmark for application, diagnosis, and fine-tuning of monolithic 

catalysts in flow systems. 

3.2. Materials and methods 

3.2.1.Materials 

Dichloromethane, and acetonitrile (Sigma-Aldrich, USA) as well as potassium carbonate, and 

phenyl boronic acid (Fisher Scientific, USA) were used without further purification. Both 

Monolithic and 2D catalysts were also used without further modifications. 

3.2.2.Suzuki Cross-coupling Screening in Flow 

The Suzuki cross-coupling model reaction was investigated between 4-bromotoluene, and 

phenyl boronic acid (3.8 mmol) (0.08 and 0.0975 M, respectively) in a 40 mL mixture of ethanol-

DI water (1:1), with potassium carbonate (0.24M) to determine catalytic activity and longevity. 

The desired product was 4-phenyltoluene (Figure 2.1.) During this process, a H-Cube mini flow 

reactor by ThalesNano® was used which contains a CatCart (ID: 1.6mm, H: 7mm) packed with 
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either the 3D monolithic catalyst or the conventional 2D Pd@GO  catalyst (28.6 µg calculated Pd 

in each CatCart) samples to be tested. 

The continuous packed bed reactions were conducted at 0.2 mL.min-1 flow rate and at 80-90°C. 

The reaction affluent mixture was collected at the reactor outlet in 30-minute time increments. An 

aliquot of each incremental collection vial was taken for analysis on GCMS  after filtering with 0.2 

µm syringe filter and 10 times volumetric dilution with dichloromethane. 

To remove the reaction residue from CatCarts, after each reaction the whole system was purged 

with ethyl acetate, and a 1:1 ethanol:DI-water solution each for 10 minutes, respectively.  

3.3. Results and Discussion 

3.3.1.Suzuki Cross-Coupling Catalytic Activity and Catalyst 

Lifetime Analysis in Flow 

The model Suzuki reaction chosen for testing of the catalyst performance was the C-C bond 

formation between 4-bromotoluene and phenyl boronic acid, detailed in Figure 2.1. and the 

methods section. In order to systematically optimize the monolithic catalyst synthesis conditions 

for optimal material performance in continuous catalysis, various parameters were studied. The 

effect of Pd precursor used in catalyst synthesis, as well as the effect of reaction temperature during 

the first 60 minutes of the reaction in flow was studied (Figure 3.1-a, & b, respectively). 

Use of different palladium precursors, TAPdCl2 and PdCl2, were first investigated using the 

model Suzuki reaction (Figure 3.1-a). The Pd@M(PdCl2)-MW deactivation was recorded to be 

two times earlier than the Pd@M-MW entry. Hence the monolithic catalysts prepared using 

TAPdCl2 were more catalytically active and durable than materials prepared using PdCl2.  
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The catalytic activity drastically decreased at 90°C reaction temperature for the monolithic 

catalysts (Figure 2.4. B). This activity loss was related to the thermal decomposition of the ester 

bonds, causing the monolith to collapse and thus hinder mass transfer.  

The 2D catalysts (Pd@GO and Pd@GO-MW) and 3D monolithic catalysts (Pd@M and 

Pd@M-MW) were next investigated for catalyst lifetime in continuous packed bed configuration 

(Figure 3.1-c). Most notably, the 3D monoliths, particularly Pd@M, had better catalyst 

performance with respect to catalyst lifetime. The rapid completion of the cross-coupling reaction 

by Pd@M within the first 5 minutes of reagent passage (prior to physical deactivation) signified 

the advantage of the proposed EtOH-assisted deposition method in preparation of highly active Pd 

particles. Longer reaction times at similar cross-coupling reaction conditions were reported for 

other Pd preparation techniques such as conventional hydrazine 88 and hydrogen gas 89 (Table 3.2.).  

According to XPS analysis, Pd@M-MW contained almost 2 times Pd(0) species content compared 

to Pd@M. The Pd(0) content as the reported effect of microwave treatment on Pd particle 

anchoring and activity increase 45  were attributed to the higher initial activity over the non-

microwaved monolithic catalyst. However, the Pd@M outperformed the Pd@M-MW from the 

longevity perspective, which was attributed to the defects or holes created by microwave 

irradiation, decreasing the structural integrity of the monolith. The abrupt collapse of the monolith 

into a highly packed single piece was the reason for the observed deactivation of the MW-treated 

monolithic catalyst (Pd@M-MW), thus resulting in drastically reduced catalytic activity.  
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Figure 3.1. Suzuki cross-coupling screening in flow study of the effect of A) Palladium precursors 

(TAPdCl2-black, and PdCl2-red), B) reaction temperature, and C) various catalyst materials. All 

the reactions were conducted at 0.2 mL.min-1 and 80°C (except Figure 3.1.-B) 

The backpressure of all materials was important to measure as an ideal packed bed 

configuration will have minimal backpressure across the packed column. No backpressure was 

recorded for the Pd@M monolithic catalyst during the reaction indicating this material was more 

suitable for flow chemistry compared to the 4-bar backpressure of the conventional 2-D catalyst. 

This advantage enabled a uniform flow rate through the reactor as well as higher overall 

throughput, potentially improving the process economy. 

Table 3.1. Catalyst system oxygen and palladium contents as well as operating backpressure and 

lifetime in flow chemistry 

Catalyst 

System 

Oxygen 

content 
*(wt%) 

Palladium 

content 
§(wt%) 

Backpressure 

(PSI) 

Lifetime 

(min) 

TON 

(Average 

@ >20% 

conversion) 

Average 

%Pd 

leached 

every 30 

minutes 
§ 

Total 

%Pd 

leached 
§ 

Pristine GO 

Monolith 
39.17 - - - - - -- 
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Pd@M-non 

MW 
23.73 3.79 0 330 3591 

1.11± 

0.54 

11.6 ± 

2.3 

Pd@M-

MW 
19.46 4.45 0 120 2340 

2.64 ± 

1.39 

19.9 ± 

3.4 

Pd@M 

-)2(PdCl

MW 

20.31 3.29 1 60 1671 
9.72 ± 

2.34 

33.1 ± 

6.6 

Pd@GO-

non MW 
28.71 2.86 4 120 2088 

13.46 ± 

2.89 

51.2 ± 

14.7 

Pd@GO-

MW 
14.19 3.16 4 90 76 

11.97 ± 

3.11 

47.5 ± 

9.2 
*Measured by XPS analysis 

§Measured by ICP-OES 

The other significant advantage of the monolithic over conventional 2D Pd@GO catalysts was 

demonstrated by a Pd leaching study (Table 3.1.). It was determined that for every 30 minutes of 

operation, almost over 12% of Pd is leached off from the 2D Pd@GO catalysts into the reaction 

media. Compared to the 2D Pd@GO catalyst, the amount of Pd leached was significantly reduced 

4-fold with the monolithic catalyst.  

Table 3.2. The comparison between the previous Pd catalyzed Suzuki cross-coupling reactions in 

flow and the current study 

Catalyst (mol% Pd) 
Temperature 

(°C) 

Reactor 

(minute 

residence time) 

Flow rate 

)1-(mL.min 

1st-hour 

average 

conversion (GC 

RPA%) 

Ref. 

Pd on Polyurea (--) 55 
HPLC column 

packed bed (4) 
0.2 100 90 

Pd on Fibercat (--) 120 X-Cube (3) 0.155 30 38 

MOF  2NH-101-Pd@MIL

(w/ glass beads) (1) 
50 

House-made 

Packed bed 

(35-40) 

0.05 94 91 

(1) *Pd on CuO  80 Batch (10) -- ~88 88 

(0.5) §Alumina -Pd on γ 60 Batch (24 hrs) -- ~65 89 

Pd@M-MW (0.5) 80 
H-Cube mini 

(7) 
0.2 93 

This 

study 
*Deposition via hydrazine 

§Deposition via H2 gas 
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Table 4.3. shows the comparison between previous reports of the same Suzuki cross-coupling 

reaction in flow between the Pd@M and other catalysts. Notably, the prepared Pd@M catalyst 

does not require a diluent, such as glass beads, due to their customizability and flexibility of shape 

design. The monolithic catalysts effectively outlive the conventional catalysts and maintain higher 

activity and physical integrity at elevated temperatures.  

 

Figure 3.2. 1H-NMR spectrum of the reaction effluent collected from Pd@M-non MW in flow 

As shown in Greco et al.’s work on Suzuki reactions in flow 38, packed beds of Pd(0) catalysts 

struggle to maintain conversion above 30% throughout the first hour of the process. However, 

Pd@M monolithic catalysts demonstrated over 70% average conversion during that same period 

(Figure 3.1-c).The superior longevity and sustainability of monolithic Pd@M catalysts over 

previously reported catalyst packed beds while  reliably Maintain their activities for over 5 hours 

can be attained.  
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3.3.2.Computed Tomographic (CT) Scan Mapping of Monolithic 

Catalysts 

In order to accurately characterize the Pd decorated 3D monolithic structure, a macroscopic 

characterization technique is needed to evaluate the distribution of Pd throughout the entire 

monolith material. Therefore, micro CT-mapping was investigated as a new technique to provide 

this characterization. Micro CT-mapping is applicable because such imaging is based on the 

intensity of diffracted X-rays. More specifically, two main factors provide resolution between Pd 

and graphene final images: the atomic number of constituent elements and the crystallinity of the 

materials. The heavier Pd atoms and their highly crystalline structures result in higher X-ray 

diffraction in comparison to the carbon of GO. This difference in X-ray diffraction provided the 

necessary resolution and contrast to distinguish the two materials and, therefore, the distribution 

of Pd throughout the GO monolith. In addition, the opacity of the 3D image can give an indirect 

measurement of the porosity of the structure, which was important in qualitatively evaluating the 

monolith for use in continuous packed bed reactors. This indirect macroscopic characterization of 

the structure was significant in evaluating porosity before and after reactions since complete 

solvent elimination was technically difficult. Consequently, surface area analysis via conventional 

methods (such as physisorption techniques) was not possible on ‘wet’ materials. The micro-CT 

scan analyses of the 3D monolithic catalysts, Pd@M and Pd@M-MW, show that a relatively 

uniform distribution of Pd particles were achieved throughout the entire monolith structure. 

(Figure 3.3-a and b). Micro-CT mapping also reveals the density of Pd detected is slightly lower 

in non-treated monolithic catalyst (Figure 3.3-b). This result was consistent with lower Pd uptake 

of Pd@M compared to Pd@M-MW (Table 4.2.) as determined by ICP-OES. 
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Figure 3.3. Micro-CT analysis of A) Pd@M- MW, B) Pd@M-non MW, and C) Pd@M-non MW 

after flow reaction 

A section of reacted monolith in flow was characterized (Figure 3.3-c). The drastic change in 

contrast between Figure 3.3.-b and c, particularly the opacity and texture of the obtained image, 

indicates that a significant amount of X-ray diffraction was detected in this specimen. The two 

possible hypotheses for the observation are: the geometrical diffraction caused by physical 

deactivation and collapse of porous structure of the monolith, and/or the entrapment of crystallized 

4-phenyltoluene as well as 4-bromotoluene (Figure 3.3.) inside the structure. The first hypothesis 

was less likely as the SEM imaging showed that the porous structure was preserved through the 

flow synthesis (Figure 2.4.-e). The electron microscopy technique also revealed that the texture of 

graphene nanosheets was altered after the reaction as they were covered with a crystalline residue. 

Therefore, the bulky, and opaque 3D image of monolith obtained via micro-CT technique gives a 

clear indication that micropores of the structure was filled with reaction product residue, which 

was confirmed by the SEM technique.   

3.4. Insights and Findings 

According to both reaction screening tests, the MW-treated monoliths collapsed at a faster pace 

compared to non-MW treated entries, leading to a lower catalytic lifetime. The longevity and 

backpressure of the monoliths in flow were compared to 2D Pd @ graphene oxide catalyst packed 
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beds. Significant improvements in both characteristics were recorded for 3D monolithic catalysts. 

Specially, a 300% increase in longevity of monolithic catalysts compared to 2D catalysts was of 

great importance. 

Finally, the proof of concept for the preparation of a model structure for large-scale elemental 

analysis of micro-CT was successfully demonstrated as both Pd particle distribution as well as 

porosity studies on monolithic catalysts were reported.  

The 3D map of Pd particles size distribution throughout the monolith can provide valuable 

information not only from an experimental optimization perspective but also as a reference model 

to be used for further computational studies on solid-supported flow catalysis. 
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 Application of Pd-decorated RVC monolithic catalysts for 

electrochemical Tsuji-Wacker cross-coupling synthesis 
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4.1. Background and Motivation 

Electrochemical organic synthesis (EOS) has long been a significant focus of the synthetic 

chemistry and energy generation communities.92 Despite the substantial progress made in 

electrochemical processes for energy applications, industrial electroorganic synthesis research was 

almost idle during the first half of the 20th century.24 Equipment processes developed in the 1970s 

revitalized EOS manufacturing, showing an increase from 300 to over 1500 products by the 2000s. 

93  

The EOS is critical in a variety of reactions as it provides flexibility in controlling reaction 

conditions and heat-sensitive reagents by utilizing electricity as the source of energy instead of 

heat.94 Although the advantages of catalysis in EOS are generally widely appreciated, 

homogeneous catalysts that have proven successful for thermally-driven batch chemistries both on 

laboratory and industrial scales are often not ideally suited to electrochemistry.95 Indeed, the direct 

application of homogeneous catalysts typically used in a thermally-driven reaction to EOS can be 

challenging and often leads to decreased reaction efficiency. Consequently, higher catalyst loading 

is needed due to the introduction of new decomposition pathways, presenting unique challenges 

in product separation, catalyst recovery, and recyclability. 

In an exemplary study, Baran et al. synthesized dixiamycin B, a rare N–N linked dimeric 

natural product, using electrochemistry.96 A unique electrochemical dimerization of carbazoles 

and carbolines made it possible to selectively “dial in” the oxidation potential  at a critical oxidation 

step en route to the successful total synthesis. The 20 wt% homogeneous Pd catalyst required for 

that oxidative dimerization could limit the scalability of this synthetic approach.     
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In another example, Chen and co-workers developed a protocol for generating nitriles from 

aldehydes using 10 mol% each of various homogeneous soluble copper (Cu) salts (2,2,6,6-

tetramethylpiperidin-1-yl)oxidanyl (TEMPO) as the mediator. This method proceeded under mild 

conditions and generated nitriles with yields of over 70% from both aromatic and aliphatic 

aldehydes.94 Although the electrochemical approach showed successful results, the complexity of 

the reaction, notably the product isolation, was exacerbated by the incorporation of non-retrievable 

Cu and Pd salt catalysts.  

Fluidized EOS is a novel method that is projected to revolutionize electrochemical synthesis.97 

While in traditional EOS, the catalyst is immobilized on the electrode surface, the catalyst species 

in the fluidized method are dispersed in the media. This approach optimally utilizes the catalyst 

surface area through performing the reaction at the ternary interaction surface (catalyst, reagents, 

and electrode) is significantly increased.  

One of the most critical considerations in catalyst design for such processes is the allowed 

transition metal contents in pharmaceutical ingredients, implemented by regulatory agencies.8 The 

large amounts of non-recyclable catalyst usage cannot satisfy that design criterion.41 As a result, 

the development of catalyst systems optimally suited for synthetic electrochemistry is an area of 

active research and remains an unmet need. 

An optimal catalyst for electrochemical organic synthesis, and particularly the fluidized 

approach, must possess two main qualities. First, it should be more active and selective, ideally at 

lower catalyst loadings, compared to its homogeneous counterpart (if one exists).82 Second, the 

metallic species should be readily separated from the reaction media and reused (especially for 

higher throughput syntheses and processes intended for scale-up). Successful anchoring of metallic 

particles on solid supports ensures the satisfaction of both considerations.41 
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Such solid-supported catalysts are now readily produced and utilized both in conventional and 

electrochemical processes in the industry. Traditionally, the metal deposition is completed via 

chemical reduction (CHEM) of metallic salts (in solution) in the presence of solid supports.48 This 

approach has minimal control over the properties of individual metallic particles and results in 

adsorption onto the support without any anchoring.45 Therefore, despite the intrinsic scalability of 

CHEM, it is not a favored method, especially for industrial catalyst synthesis.  

The primary method for large-scale production that can yield efficient anchoring is incipient 

wetness impregnation (IWI), during which the metallic salt solution incipiently covers all the 

support micropore volume.98 This approach is rapid and ensures active entrapment of metallic 

particles within support micropores, all while maintaining their accessibility to reaction reagents. 

However, control over the structural properties of the deposited metallic species is limited, and 

consequently, (the method’s) ability to tune the catalyst rationally. 

Indeed, the discovery of advanced solid support materials, as well as robust, scalable methods 

for impregnating precious metal ions into those frameworks, continue to restrict widespread 

adoption of electrochemical synthesis, especially on industrially relevant scales. 

Recent studies in our group have found that strong electrostatic adsorption (SEA) could yield 

extremely active and firmly anchored catalysts through electrostatic affinity between metal ions 

and the support’s surface charge.45, 49 This method has been successfully employed for anchoring 

metal ions onto graphene, with the effective interfacial connection between the metal and the 

support resulting in a faster charge transfer between them, promoting a higher rate of catalyst 

regeneration, and potentially leading to a significant increase in catalytic activity. Microwave 

treatment (MW) also results in local heating of the metal particles, which effectively lodges them 

within the support.99 These generated defects act as high-activity spots improving the interaction 
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between the particles and the support and, therefore, the catalytic activity. Consequently, our 

synthetic efforts have been concentrated on synergistically combining the SEA method with 

microwave treatment to produce the optimal solid-supported catalysts.  

SEA-MW catalysts are proven to be among the most active catalysts for Suzuki cross-coupling 

reactions that require metallic (Pd(0)) species. Mainly because through the SEA-MW method, the 

ionic species are reduced to the metallic state. On the other side, the mechanism of the Pd-catalyzed 

oxidation reaction, e.g., Wacker oxidation (Figure 4.1.), readily uses ionic species (Pd(II)) as active 

catalytic species. Therefore, to make SEA-MW a viable method for Wacker oxidation reactions, a 

deeper understanding of the available design space to favor the production of the Pd(II) catalyst is 

needed. Identification of the optimal design parameters should lead to the discovery of solid-

supported catalyst materials that are tailor-made for efficient electrochemical synthesis.  

The Wacker oxidation is an iconic transition metal-catalyzed industrial process for the 

synthesis of aldehydes and ketones from olefins.30 Adapting the reaction to an electrochemical 

framework has been found to noticeably improve the reaction throughput as the catalyst redox can 

be controlled and further promoted under electrochemical conditions.24 However, applying the 

traditionally-utilized homogeneous catalyst (e.g. PdCl2) to the electrochemical process suffers 

from the difficulties mentioned above (e.g. product contamination, additional purification steps, 

and economical feasibility),42 rendering a scalable electrochemical Wacker process challenging to 

attain.  
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Figure 4.1. A) the schematic and B) the catalytic mechanism of the electrochemical Wacker 

oxidation 

In order to be able to prepare a suitable monolith, a systematic study of the catalyst preparation 

process for this reaction and reaction setting combination is required. Herein, the electrochemical 

Pd-catalyzed Wacker-type oxidation of terminal olefins (Figure 4.1.) was studied. A set of Pd on 

graphene nanoplatelet (Pd/GNP) catalysts were rationally designed and prepared to enable Wacker 

oxidation of 1-octene comparing new graphene-based solid-supported catalyst materials and 

conventional homogeneous catalysts in both batch and electrochemical routes. In addition, the 

throughput obtained from the electrochemical route compared to conventional batch was evaluated 

as a measure of industrial suitability. Furthermore, a statistical analysis of the catalyst structure-

activity relationships was conducted, leading to the identification of a catalyst design space within 

which catalysts could exceed industrial benchmarks. Lastly, to identify the preparation method 

yielding the most active catalyst for the electrochemical Wacker route, electrochemical surface 

area analysis was utilized as a reliable tool to compare catalyst oxidation capabilities 

quantitatively. Afterward, utilizing the knowledge in the catalyst preparation and considering the 

reaction setting requirements, a set of electrodes for Pd-RVC monolithic catalysts were prepared 

and as a proof of concept, the first-in-kind, monolithic electrode application for Wacker-type 

oxidation of terminal olefin was successfully depicted. 
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4.2. Materials and Methods 

4.2.1. Materials 

Graphene nanoplatelets (500 m2/g), hydrochloric acid (HCl, 12.1 M in DI-water), and 1-octene 

were purchased from Alfa-Aesar, USA. Ascorbic acid, palladium chloride (PdCl2), 

tetraaminepalladium chloride monohydrate (TAPdCl2•H2O), acetonitrile, hydrogen peroxide 

(H2O2, 30 vol% in DI-water), ethyl acetate, and TEMPO were purchased from Millipore-Sigma, 

USA. Isopropanol, potassium chloride (KCl), and potassium hydroxide (KOH, pellets) were 

purchased from Fisher Scientific, USA. Nafion solution (5 wt% in aliphatic alcohols) was 

purchased from Fuel Cell Store, USA. All the materials were of synthesis grade and used without 

further purification. 

4.2.2. Catalyst synthesis 

Catalyst preparation was performed utilizing two Pd salts (PdCl2 and TAPdCl2•H2O) and three 

various immobilization methods (described in-depth below). Once formed, all Pd particle catalysts 

were further activated via a Discover S-series microwave reactor. The microwave treatment 

protocol was adapted from Ghobadi et al. utilizing a constant temperature approach (holding at 

135 ℃ for 10 min). 100   

I. Strong electrostatic adsorption (SEA). The SEA catalysts were prepared by the addition of 

323 mL of DI-water followed by the dissolution of Pd salt in it (5 wt% Pd/support) to 1.0 g of 

GNP support. 45 The pH of the mixture was then adjusted according to the point of zero surface 

charge (PZC) of the support, measured via gradual titration of its aqueous dispersions with varying 

ionic strengths (i.e., 0.0001 to 1 M aqueous solutions of KCl).101 The PZC for our GNP support 
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was determined as 3.56. Afterward, the mixture was shaken at 200 rpm for 1 hour. Finally, the 

catalysts were filtered and rinsed with DI-water and dried overnight in a vacuum oven at 80 °C.  

II. Incipient wetness impregnation (IWI). To prepare the IWI catalysts, a GNP pore volume 

was determined through a method denoted as tapping-induced coagulation.98 Specifically, 100 mg 

of GNPs were added to an empty centrifuge tube and titrated with DI-water. Throughout the 

titration, the centrifuge tube was repeatedly tapped after reaching set titration volumes. The 

titration was complete when tapping resulted in a single agglomerated mass of GNP. A pore 

volume of 0.646 mL/g was measured and was utilized to create solutions containing Pd (5 wt% 

with respect to GNP). The prepared solutions were added to 1.0 g GNPs and tapped, forming a 

single coagulated piece of wetted GNP and then allowed to dry overnight in a vacuum oven at 25 

°C. The catalyst loaded supports were then washed with DI-water to remove any unbound Pd 

particles. The resulting catalyst was dried in an oven at 100 ℃ for 24 h.   

III. Chemical reduction (CHEM). Chemically reduced Pd/GNP catalysts were conventionally 

made by adding 1.0 g of GNP to 40 mL aqueous solutions of Pd (150 ppm, ca. 5 wt% Pd/GNP) 

and L-ascorbic acid (2 molar equivalents to moles of Pd).49, 82 The mixture was stirred for 2 h 

under reflux at 25 ℃ in a round bottom flask. The catalysts were then washed repeatedly with DI-

water and ethanol:DI-water solutions (1:1, v:v). The final washing step was performed with DI-

water and the catalyst was filtered via a Büchner filtration system. The chemically reduced 

catalysts were dried at 100 ℃ for 24 h.  

Homogeneous PdCl2, and heterogeneous Pd-carbon catalysts were used positive control trials 

both in batch and electrochemistry settings. For clear identification of each catalyst, the “method-

treatment” nomenclature. For example, the catalyst prepared via SEA method and was treated with 

microwave was coded as SEA-MW. 
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4.2.3.Catalyst structural analysis 

X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted 

on catalysts using a Bruker X’pert Pro PANanalytical XRD spectrometer with Cu Kα, λ=1.54 Å, 

2ϴ = 5° to 85° and a Thermo Fisher ESCALAB 250 X-ray spectrophotometer with a 2 eV step 

size for the survey, respectively.  Inductively Coupled Plasma-Optical Emission Spectroscopy 

(ICP-OES, Agilent 5110 ICP-VCV-OES) was utilized to determine Pd content of the synthesized 

catalysts and reaction media (leached Pd) via acid digestion (12.1 M HCl). Electron microscopy 

was conducted via an FEI Titan high-resolution transmission electron microscope (HR-TEM). 

4.2.4.Reaction screening 

Batch oxidation. Wacker-type oxidations were adapted from Jiang et al., where catalysts (ca. 

5 mol% Pd/1-octene) were added to 0.05 mM 1-octene in acetonitrile (10 mL).83 The mixtures 

were heated in 20 mL glass vials to 60 ℃ at 500 rpm and allowed to stabilize., 6 molar equivalents 

of H2O2 were added dropwise to the mixtures after they were stabilized. The reaction vials were 

held at 60 ℃ and 500 rpm for 6 hrs under airtight condition. The characterization aliquots were 

sampled at various time-points to monitor the conversion of reaction. The aliquots were filtered 

using 0.2 µm syringe filters to remove residual solids and then diluted with ethyl acetate (20-fold). 

The diluted aliquots were then passed through a silica column (3-cm, height) to remove dissociated 

Pd and then analyzed on an Agilent 5977A GC-MS system. The relative peak area percentile 

(RPA%) of the product(s) were utilized to calculate the percent conversion (Equation 1) of the 

starting material and the reaction selectivity (Equation 2). 

Conversion (%) = (
∑ Product (RPA%)

∑ Substrate & Products (RPA%)
) × 100                        (1) 
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Selectivity (%) = (
desired product (RPA%)

∑ All products (RPA%)
) × 100                      (2) 

Electrocatalytic oxidation. The electrochemical Wacker-type oxidation of 1-octene was 

studied in a divided H-Cell (24/12 PINE research), where 20 mL of 0.05 M NaClO4 in CH3CN: 

DI-water (7:1, v:v) was added to each half cell.84, 94 Next, 0.5 mol% of Pd catalyst and 28 mol% 

TEMPO (proportional to the 314 µL starting material) were added to the anodic half-cell. Graphite 

rods (diameter: 0.615 cm) were used as the working and counter electrodes for both half cells and 

maintained at an exact immersion depth of 1.5 cm per electrode (area: 2.495 cm2). An Ag/AgCl 

(solution: 4 M KCl) reference electrode was set inside the anode half-cell. The reactions were 

conducted in a three-electrode system operated by a Gamry Instruments Reference 600 potentiostat 

in galvanostatic mode. A current density of 5 mA/cm2 was applied for 6 hr under constant stirring 

(320 rpm). The aliquot sampling, preparation, and analysis were identical to the batch 

configuration.  

In order to quantitatively compare the catalyst performances in conventional batch and 

electrochemical frameworks, the turnover number (TON) and turnover frequency (TOF) were 

calculated for each catalyst as an activity indicator (Equations 3 and 4, respectively). 

TON =
mp

mc
                   (3) 

TOF (hr−1) =
mp

mc×t
           (4) 

Where mp, mc, and t are moles of product (2-octanone), moles of catalyst (Pd), and reaction 

time (hr), respectively. 

Statistical analysis 
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The response surface of least square fits on conversion and selectivity of reactions in 

electrochemical and batch frameworks as a function of the Pd uptake (wt%) and Pd (II) content 

(%) factors were conducted using JMP 14.0 software (licensed to Virginia Commonwealth 

University, College of Engineering). The validities of the fits were confirmed by their P-value 

study (acceptance limit: 0.05) and R2
 values.  

The prediction profiler tool of the JMP software was used to overlay the response surface for 

all conversion and selectivity fits, constrained by the industrial benchmark of Wacker oxidation of 

olefins (55% mass conversion of the substrate with 80% selectivity towards the desired ketone 

product102). This constrained map of fits yielded the identification of a design space for solid-

supported Pd catalysts specialized in such oxidation reactions. The desirability analysis of control 

points, depicted in the supplementary information (Table A. 1), determined the optimum factor 

values.  

4.2.5.Electrochemical active surface area calculation 

The electrocatalytic activities of prepared catalysts were determined via cyclic voltammetry. 

A glassy carbon (area: 0.07065 cm2), platinum (Pt) wire and Ag/AgCl electrodes were utilized as 

the working, counter and reference electrodes, respectively. Prior to electrode preparation, the 

glassy carbon electrode was polished with 0.1 µm diamond solution until a mirror finish was 

achieved. 103 Catalyst inks were prepared (2 mg/mL dispersion in isopropanol) and drop-casted 

onto the glassy carbon working electrode (4.5 µL). The film was then dried at room temperature 

inside the fume hood. Nafion solution was then drop-casted (3 µL) on top of the previous cast to 

create an ionomer layer. Cyclic voltammograms (CVs) were obtained for each catalyst over a 

potential range sweeping from -1.2 V to 1.6 V at a scan rate of 25 mV s-1 for three cycles in 1.0 M 

KOH.104 The absolute and the normalized values electrochemical active surface area (ECSA) 
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based on Pd content were measured based on the oxidation peak (0.75 to 1.0 V vs Ag/AgCl) 

integration using Equations 5 and 6, respectively. 

Q(mC. cm−2) =
E(mA.V)

vs(V.s−1)
×

1

Ae(cm2)
        (5) 

Where Q, E, vs, and Ae are total ECSA the integration area under the oxidation peak, scan rate, 

and electrode area, respectively. Subsequently, the normalized ECSAs were calculated through the 

equation below: 

Qn(mC. cm−2. mmol−1) =
Q(mC.cm−2)

Mc(mmol)
           (6)  

where Mc is the millimoles of Pd in the catalysts drop-casted on the working electrode. The 

CV spectra can be found in supplementary information in Figure AII.1 (Appendix II). 

4.2.6.Monolith electrochemical Analysis and reaction screening 

The monolithic electrodes were prepared by attaching a layer of carbon tape to one face of the 

monolith prior to annealing. After annealing, a chemical resistant silver wire was attached to the 

tape surface (separating the wire from the electrolyte) via silver paste. Afterwards, the wire surface 

and its juncture with monoliths were covered with chemically resistant epoxy resin adhesive. 

(Figure 4.2-a) 
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Figure 4.2. a) Image of the prepared monolithic electrodes, and b) electrochemical reaction setup 

Both electrochemical analyses, as well as Wacker-type oxidation screening of 1-octene on 

monolithic electrodes (Pd-GC), were conducted using a Gamry Reference 600 potentiostat in a 

Pine Research H-cell in a 3-electrode setting with graphite rod (Princeton Applied Research), and 

Ag/AgCl (CH-Instruments) as counter and reference electrodes, respectively. The open circuit 

potential was continued for 200 seconds. The cyclic voltammetry was conducted through 3 cycles 

from -1.2 to 0.8 V vs. reference with scan rate of 10 mV/s.The electrolyte used for CV analysis 

was a 1M KOH aqueous solution. 

As proof of concept, the electrochemical Wacker-type oxidation of 1-octene using the 

monolithic electrodes was conducted in the same H-cell and electrode settings as CV analysis for 

6 hours at 25°C under 250 rpm stirring. The cathode half-cell contained the electrolyte (20 mL of 

0.05M NaClO4 in acetonitrile:DI-Water (7:1) mixture). The anolyte included the electrolyte 

solution (20 mL) with 0.05mM of 1-octene and 0.28 molar equivalent of the TEMPO with respect 

to 1-octene. The reaction was conducted under galvanostatic mode at 5mA/cm2 of the electrode. 

The volume of the electrode immersed was adjusted to approximately contain 1 mol% Pd with 

respect to 1-octene (Figure 4.2.-b). The conversion and selectivity of the reaction was tested via 

the obtained relative peak area from GC-MS analysis of a 10 times diluted mixture (0.2 mL of 
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anolyte diluted with ethyl acetate) following its filtration using silica column and 0.2 µm syringe 

filter. 

4.3. Results 

The catalysts prepared and analyzed herein possess specific structural properties owing to 

enhanced catalytic activities. Regardless of the reaction framework (batch or electrochemistry), 

the SEA method yielded the most active catalysts as their turnover frequency exceeded 

commercially available homogeneous PdCl2, and heterogeneous Pd-carbon positive control 

catalysts by approximately 25%, and 220%. The TOF analysis of SEA and SEA-MW catalysts 

categorically shows that they have surpassed the performance of solid-supported catalysts 

(Pd/CNT-CuCl2 system 30) for Tsuji-Wacker chemistry in batch by over 100%. In addition to 

improved catalytic performance in batch, PdCl2-based Pd/GNP catalysts were designed to best 

operate in electrochemical oxidation conditions. Hence, significantly improving the potential 

scalability and commercialization of a room-temperature, low-waste, and energy-efficient 

procedure for conversion of heavily electron-deficient terminal olefins into ketone reagents.  

The significance of the research results extends beyond that of performance improvement as a 

statistically-derived catalyst design space to ensure the satisfaction of industrial catalytic activity 

criteria, rapid conversion of starting material while exceeding the minimum acceptable selectivity 

towards the desired product, is presented and the design space’s ability to predict the performance 

of potential catalysts is demonstrated.  

It is noteworthy that the catalysts prepared using TAPdCl2, despite successful Pd uptake and 

particle formation (Figure 4.3), had negligible catalytic activities due to noticeably different Pd 

properties compared to PdCl2-based catalysts (Section S.1. in supplementary information). In order 
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to maintain the focus of this study, further optimization on those catalysts for a sustainable 

performance will be presented in future presentations. 

4.3.1.Pd Uptake methods and binding GNP  

Palladium (Pd)-loaded graphene nano-platelets (GNPs) were formed via three separate 

methods that resulted in varying Pd loading, the amount of Pd(II) species, and metal-substrate 

adhesion (Table 4.1.). Of the three catalysts loading methods, the chemical reduction (CHEM) 

method showed the highest uptake of Pd, confirmed via ICP-OES. However, the CHEM method 

was observed as a mild reduction process and resulted in a large amount of the nucleated particles 

being physically adsorbed to the surface, with limited favorable binding to the support.82 The IWI 

and SEA methods yielded a stronger anchoring effect of particles to the GNP compared to the 

CHEM method, despite a lower recorded Pd uptake. The formation of the Pd particles and their 

uptake on the graphene support was confirmed by transmission electron microscopy. An analysis 

on the TEM images showed the average particle sizes of 8.67 ± 2.19, 17.44 ± 9.82, and 26.21 ± 

18.89 nm for SEA, IWI, and CHEM catalysts, respectively (Figure 4.3.). The SEA catalyst with 

the smallest particles can provide the reagents with a higher accessible catalyst surface, potentially 

leading to superior catalytic activities. 

 

Table 4.1. Structural properties of the prepared catalysts 

Entry  Catalyst  Preparation Method  Pd 

Uptake 

(wt%)  

Pd(II) 

Content(%)  

1  Pd-

Carbon  

Commercial  9.93 ± 

0.12  

42.5 ± 11.2 

2  SEA  SEA  3.20 ± 

0.42  

70.6 ± 12.3 

3 SEA-MW  SEA-Microwave   3.63 ± 

0.18 

57.1 ± 8.4 
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4  CHEM  Chemical Reduction  4.87 ± 

0.06  

68.8 ± 5.2 

5 CHEM-

MW 

Chemical Reduction-Microwave 4.31 ± 

0.17  

68.8 ± 16.7 

6 IWI  Incipient Wetness Impregnation  2.19 ± 

0.07  

65.3 ± 12.3 

7 IWI-MW Incipient Wetness Impregnation-

Microwave 

2.30 ± 

0.19  

73.7 ± 7.5 

 

 

Figure 4.3. HR-TEM images of A) SEA-MW, B) IWI-MW, and C) CHEM-MW catalysts 

An investigation on the effect of microwave treatment on the amount of Pd uptake (wt%) as 

well as Pd(II) % was found to be limited. However, this treatment was found to be crucial to obtain 

any catalytic activity regardless of reaction framework (Table 3.2.), as the interaction between the 

catalyst particles and the support were drastically improved after microwaving. The microwave-

induced formation of Pd particle-bearing physical defects into the GNP support structures leads to 

establishing an interface between the catalyst and support, further promoting a faster charge 

transfer. This phenomenon is a necessity for a rapid catalyst regeneration through redox 

processes.45, 82  

The X-ray diffraction analysis was done using an X’pert Pro PANanalytical XRD 

diffractometer (Cu Kα, λ=1.54 Å, scanned from 5° to 85°). The change in the crystalline structure 

of loaded palladium particles compared to their precursor was studied for each synthesis method.   
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Figure 4.4. XRD spectra of No-MW (top) and MW treated (bottom) a) TAPdCl2-SEA, b) PdCl2-

SEA, c) TAPdCl2-IWI, d) PdCl2-IWI, e) TAPdCl2-Chem, f) TAPdCl2-Chem, and g) Pd-Carbon 

(commercial) 

While comparing the Pd precursors, TAPdCl2 (Figure 4.4-a, c, and e) generally results in the 

formation of (220) and (311) crystallite structures (68° and 83° 2θ, respectively), the PdCl2 (Figure 

4.4- b, d, and f) leads to a dominant peak at 40° indicating the (111) plane.  This noticeable change 

can then affect the catalytic performance of the attributed catalysts during the Wacker oxidation. 

However, in the commercial catalyst (Figure 4.4-g), there is no clear indication of a dominant 

crystalline orientation showing that the Pd-carbon does not contain a preferential crystalline 

orientation.  
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4.3.2.Investigation on Catalytic Activities 

Once the formed Pd/GNP catalysts (Table 4.2., Entries 3-8) were characterized based upon 

composition, the catalysts were further screened for the effectiveness of traditional batch and 

electrochemical Wacker-type oxidations. The faster charge transfer between catalyst and support 

in the prepared solid-supported catalyst systems, coupled with their optimized Pd(II)%, led to 

significantly higher turnover frequencies (TOFs) compared to the reports in the literature (Table 

4.2., Entries 9-13) as well as our control trial of homogeneous PdCl2 in batch oxidation (Table 

4.2., Entry 1). This observation not only showed that lower amounts of catalytic Pd were used, but 

also that these catalysts led to over 3 times higher selectivity towards the desired ketone product 

(Table 4.2.). Specifically, the SEA-MW catalyst (Table 4.2. Entry 4), with the most robust catalyst-

support binding, showed the highest activity among the prepared catalysts. 

In this study the amount of catalyst used in the electrochemically driven reactions was lowered 

by 80% compared to the batch-type experiments (Table 4.2. Entries 1-8); conversion and 

selectivity of the Wacker-type oxidation were also improved by at least 20% for each of the 

prepared catalysts (Table 4.2. Entries 3-8). The enhancement of the electrochemical configuration 

arose from a faster Pd(II) regeneration in solid-supported Pd/GNP catalysts.  

A comparison between the activities of prepared catalysts mentioned in Table 4.2. Entries 3-8 

revealed a clear superiority of the electrochemical approach over batch by efficiently converting 

the 1-octene substrate to 2-octanone product. Specifically, over 500% increase in turnover number 

(TON) and turnover frequency (TOF) values were reported simply by this reaction setup transfer. 

A comparative analysis among the prepared catalysts (Table 4.2. Entries 3-8) and previous reports 

(Table 4.2. Entries 9-13) depicted an overall 400% improvement in TOF of batch reactions. It is 



82 

 

worthy to note that most of the reports (Table 4.2. Entries 9-12) utilize unrecyclable homogeneous 

catalysts at approximately one order of magnitude smaller reaction scales.30, 105  
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Table 4.2.  Batch and electrochemical catalytic performance of the prepared and commercial catalysts 

Entry Reagent Catalyst 

Batch 

(5 mol% Pd, 1.8 mol equiv H2O2 oxidant) 

Electrochemical 

(1 mol% Pd, 0.28 mol equiv TEMPO mediator) 

Conversi

on 

(RPA%) 

Selectivity 

(%) 

TON/T

OF 

(hr-1) 

Metal 

Leached 

(wt%) 

Conversi

on 

(RPA%) 

Selectivity 

(%) 

TON/TO

F 

(hr-1) 

Metal 

leached 

(wt%)  

1 1-octene PdCl2 
98.87 ± 

0.97 
24 ± 11.19 

4.75/0.7

9 
- 

74.13 ± 

3.27 

44.91 ± 

12.83 
56.8/9.5 100 

2 1-octene Pd-Carbon 
85.57  ± 

8.83 

20.36 ± 

26.87 

3.42/0.5

7 

13.16 ± 

3.52 

17.21 ± 

6.33 

21.51 ± 

9.18 
2.3/0.4 

17.86 ± 

4.13 

3 1-octene SEA 
67.24 ± 

1.63 

76.41 ± 

2.85 
10.3/1.7 3.28 ± 1.06 

98.33 ± 

0.25 

84.62 ± 

9.47 

83.21/13.

86 
5.33 ± 2.25 

4 1-octene SEA-MW 
74.5 ± 

5.31 

83.52 ± 

4.66 

12.45/2.

07 
2.91 ± 1.27 

98.43 ± 

0.73 

98.49 ± 

1.16 
96.9/16.2 3.67 ± 1.23 

5 1-octene CHEM 0 0 0 
14.64 ± 

6.21 
0 0 0 

14.88 ± 

3.19 

6 1-octene 
CHEM-

MW 

87.82 ± 

4.18 
100 

17.56/2.

93 

11.43 ± 

2.83 

76.22 ± 

6.87 

86.19 ± 

12.33 
65.7/11 

12.59 ± 

3.88 

7 1-octene IWI 
77.91 ± 

6.18 

93.1 ± 

1.45 

14.51/2.

42 
9.79 ± 3.33 100 

81.23 ± 

4.31 

81.23/13.

54 

10.22 ± 

3.86 

8 1-octene IWI-MW 
91.84 ± 

2.88 
100 

18.37/3.

06 
7.16 ± 4.22 

91.26 ± 

4.49 

84.4 ± 

10.56 
77/12.8 8.26 ± 4.91 

9 
Cycloalkenes 

106 
Pd(OAc)2 - - - - 100 59-85 17/0.9 100 

10 
Heterocyclic 

amines 107 
Cu(OAc)2  - - - - 100 61-80 2.7/0.11 100 



84 

 

11 
cinnamyl 

alcohol 105 
FeCl2 100 92 

9
.2

/3
.7

 

100 - - -  

12 
Terminal 

olefins 84 
Pd(OAc)2 - - - - 100 82 8.2/0.51 100 

13 Styrene30 
Pd/CNT-

CuCl2 
100 93 16.6/0.7 <1% - - - - 
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4.3.3.Pd Leaching Study 

The leaching study in both batch and electrochemical frameworks showed about 40% lower 

leaching from IWI (Entries 7 and 8) compared to CHEM (Entries 5 and 6) catalysts. Additionally, 

SEA catalysts (Entries 3 and 4) showed the lowest leaching (less than 4%) due to the strong 

electrostatic affinity established between catalyst particles and the support. Nonetheless, the 

amounts of leached Pd in all the prepared (Pd/GNP) catalysts (Entries 3-8) were lower than the 

commercial Pd-carbon catalyst (Entry 2) depicting the superior anchoring of the Pd particles on 

the support via developed methods.   

4.3.4.ECSA Analysis 

While the advantage of electrochemical over conventional batch oxidation approaches, as well 

as the proposed design space for such catalysts over conventional homogeneous and commercially 

available counterparts have been established, the identification of the most suitable solid-supported 

catalyst preparation method, specifically for the electrochemical application, required further 

analysis. Cyclic voltammetry of the catalysts (Figure 4.5.) led to respective electrochemical surface 

area calculations (Figure 4.6). 
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Figure 4.5. Cyclic voltammetry spectra of catalysts utilized for ECSA calculation 

The ECSA analysis measures a normalized oxidation capability of each catalyst. Additionally, 

the deactivation of catalysts was observed through the decay in the ECSA measurement over 

multiple cycles. There are various reasons for catalyst deactivation. The interactions between the 

highly conducting GNP support and Pd particles were formed in the prepared catalysts leading to 

three orders of magnitude higher ECSA than both the commercial Pd-carbon and the homogeneous 

PdCl2 catalysts. Particle anchoring in those catalysts was more effective as the Pd leaching was 

50% lower than the commercial Pd-carbon catalyst throughout all the tested reaction frameworks.   
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Figure 4.6. Specific ECSA of A) prepared catalysts and B) commercial and homogeneous 

catalysts 

In an overall look, it is evident that the prepared catalysts except for the CHEM trial, prior to 

microwave treatment, were catalytically more active compared to the homogeneous and 

heterogeneous positive controls both in batch and electrochemical settings. The effect of 

microwave treatment showed an overall positive influence in catalytic activity and reaction 

selectivity induced by the catalysts.  

While comparing the prepared catalysts in the batch setting, the SEA catalysts showed slightly 

lower activity compared to IWI and CHEM working catalysts. The possible reason for this 

observation could be the higher Pd leaching in the latter trials, promoting a potential secondary 

homogeneous catalysis. Nonetheless, SEA-MW catalyst with optimized Pd particle 

immobilization showed the highest catalytic activity with the least Pd leaching in electrochemical 
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activity, projecting the discovery of high-performance, true solid-supported catalysts for fluidized 

electrochemical organic synthesis. Therefore, the design space for rational preparation of these 

catalysts, presented in the discussion section, can pave the way for further studies on catalysts for 

more complex reactions in fluidized electrochemistry configuration. 

4.4. Discussion 

4.4.1.Analysis of 2-dimensional Pd/GNP catalyst preparation and 

design space generation for Wacker-type oxidations 

Due to the nature of the chemical reduction process (CHEM), which utilizes a weak reducing 

agent (vitamin C), there is limited control over nucleation, growth, and adsorption of Pd particles 

on the surface of the GNPs.108 The procedural design of IWI and SEA catalysts (e.g., accurate pore 

volume measurement, and pH adjustment to PZC of the support, respectively) ensure the physical 

wetting of the surface support by the Pd solution, then promoting the electrostatic adsorption of 

the Pd ions on the support.109  

As previously reported, 45, 76 microwave treatment induces abrupt vibrations of the Pd particles, 

sintering them through the support and embedding the metal clusters within the graphene structure. 

According to electromagnetic relative permittivity (ℰr) equation of elements (Equation 7), the real 

(ℰr
′) and arbitrary (ℰr

") components account for the electromagnetic energy transmitted and 

absorbed through the material, respectively. These values are functions of the wave frequency and 

unique to each element.110 This absorbed energy is lost through atomic vibrations. The loss 

component for Pd and the support (C) for the microwave used are 13.70111 and 0.0112, respectively. 

Thus, during microwave treatment, the Pd particles were embedded within the physical defects of 

graphene sheets via extreme heating. 



89 

 

ℰr(ω) = ℰr
′(ω) − iℰr

"           (7) 

The particle size analysis of the prepared catalysts (Figure 4.3.) depicts that the SEA method 

was highly controlled and yielded ca. 50% and 72% smaller mean particle sizes compared to IWI 

and CHEM methods. Nevertheless, the narrower distribution of SEA-prepared particles signified 

improved consistency of this method both in nucleation and growth of Pd particles. Reducing the 

catalyst particle size provides reagents with a higher accessible surface area leading to significant 

increases in reaction conversion and selectivities.113 

The driving force for reaction activation in the electrochemical setup and catalyst turnover was 

the electrical charge instead of the traditionally utilized thermal heating. Therefore, potential heat-

sensitive reactions can be carried out effectively. Nevertheless, the optimized tri-component 

interactions among the electrodes, reagents, and catalysts were established by using high 

conductivity and surface area GNP supports, leading to a faster redox cycle necessary for catalyst 

regeneration in the electrochemical framework. This phenomenon led to obtaining industrially 

acceptable conversion and selectivity values at room temperature, with 80% less Pd catalyst used 

in comparison with batch setups.  

A previous report for Wacker-type batch oxidations using solid-supported catalysts (Pd on 

carbon nanotubes) utilized lower content of Pd than the syntheses reported in this study.30 

However, utilizing low Pd loadings only facilitated conversion when the vessel was pressurized 

with oxygen at 101 KPa for 24 hrs. In addition to the four times longer reaction time, consequently 

five times lower TON and TOF, and the associated risks of pressurized pure O2, the required 5 

mol% CuCl2 co-catalyst added to the cost and complexity of the Wacker oxidation. Hence, the 

catalysts synthesized herein are more efficient and viable, even with lower metal loadings. The 

significance of the observation on prepared catalyst activities is also shown by comparing to 
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literature where the GNP supported catalysts described in this study significantly exceeded the 

reaction throughput (both in TON and TOF) compared to batch 30, 105, and electrochemical84, 106  

Wacker-type oxidations (Table 4.2.). 

A comparison of the performance between the prepared catalysts and literature for an 

electrochemical framework showed that all of the prepared catalysts yielded higher reaction 

selectivity with an order of magnitude lower Pd content.84 The SEA, CHEM, and IWI catalysts 

possess meticulously-controlled properties, such as less than 10% particle size distribution, 

strongly adsorbed to the graphene support leading to improved catalytic performance consistency 

observed in Wacker oxidation screening. The activity of prepared catalysts was in corroboration 

with the observed structural features. Mainly a higher catalytic performance was observed when 

the catalysts constituted increased Pd (II) % and reduced average particle sizes.  

A Pd metal leaching investigation via ICP-OES analysis of the analyte post-reaction was 

carried out, showing that all prepared catalysts incurred at least 14% lower loss of catalyst particles 

compared to the commercial Pd-carbon catalyst. The microwave treatment embedded the Pd 

particles within the graphene nanosheets was a significant factor in lowering the amount of Pd 

leached into the reaction media (Table 4.2.). The electrochemical oxidation for all the prepared 

catalysts had a decrease in Pd leaching by ca. 10% compared to both literature and the commercial 

catalyst, attributed to the microwave treatment. The merit of the SEA catalysts over other catalysts 

was expected based on a higher TOF and lower Pd leaching. A specific ECSA analysis confirmed 

that the SEA preparation method yielded catalysts with 33, 300, and 10,000 % higher ECSA 

compared to the IWI, CHEM, and commercial Pd-carbon catalysts, respectively.   

The response plots (Figure 4.7-a–d) for the prepared catalysts fit by a least square method 

correlated the catalytic activity parameters with respect to the catalyst particles' properties (Pd 
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uptake (wt%) and Pd(II) %) in batch and electrochemical setups provided an opportunity to 

compare the expected results with industrial benchmarks. The validity of the approach for this 

statistical study was confirmed by eigenvalue analysis (Figure AII.1) depicted as scree plot of 

variables. As the scree plot showed, only 2 exploratory factors could explain, over 99% of the 

observed phenomena.  
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Figure 4.7. Response surface of the least square fit for A) batch conversion, B) batch selectivity, 

C) electrochemistry conversion, D) electrochemical selectivity, and E) design space for catalyst 

preparation for Wacker-type oxidation 

The overlay plot of response surfaces while constrained with the industrial benchmark for the 

oxidation of terminal olefins revealed the design space of Pd catalyst preparation for such reactions 

(depicted in white,  Figure 4.7-e). This design space depicts of two acceptable regionsat both low and 

high Pd uptake sections. In order to study the efficacy of the design space a desirability analysis was 

conducted. The desirability analysis of various points within these regions (Table 4.3, Figure AII.2) 
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revealed the most desirable conditions within the design space with the maximum theoretical desirability 

value as 86.23% according to the JMP software.  

Table 4.3. The predicted activities and the related desirability of control-points 

Point 

Pd 

Uptake 

(wt%) 

Pd (II) 

Content 

(%) 

Batch 

Conversion 

(%) 

Batch 

Selectivity 

(%) 

Electrochemical 

Conversion (%) 

Electrochemical 

Selectivity (%) 

Desirability 

(%) 

A 2.48 73.0 84.59 95.49 99.08 90.48 84.71 

B 4.28 94.9 84.75 91.36 92.08 84.10 81.38 

C 3.69 44.5 71.64 84.88 83.26 88.44 76.56 

D 3.63 58.0 73.21 82.83 92.46 91.63 78.81 

  

The desirability analysis of control-points shows that the highest desirability (depicted as 

activity) was achieved in point A, with less than 2% deviation from maximum desirability. The 

reduction in desirability for points in the high-Pd uptake (wt%) (Points C and D) signifies the 

importance of Pd(II) content over the total amount of Pd present. Hence, we have provided 

experimental evidence with statistical proof that with meticulous control of the Pd particle ionic 

properties during their synthesis, the most active catalysts can be achieved with uptakes as low as 

2.3 wt%.  

4.4.2.Electrochemical analysis and proof of concept reaction 

screening of Pd-GC monolithic electrodes 

The open circuit potential (OCP) graph of the Pd-GC-4 monolithic electrode (Figure 4.8-a) 

shows a stable current passage indicating that the contact between the monolith and attached wire 

is successfully made with minimal fluctuation over time.  The CV analysis of the prepared 

monolithic electrode (Figure 4.8-b) depicted a noticeable Pd redox set of peaks where the oxidation 

peak was located at 0.68 and reduction at 0.43 V vs. Ag/AgCl reference electrode. 114 The 

asymmetric redox process is proportional to the ionic species present in the Pd particles (Pd(0) and 
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Pd(II)) where over multiple cycles, the Pd(0) species are oxidized which then improves the 

oxidative abilities of the monolithic electrode. This phenomenon is evident as from cycle 1 to 3 

there was an approximately 10% increase in power consumption and generation in Pd oxidation 

and reduction steps, respectively. These ratios were obtained via integration of area under the redox 

peaks.  

 

Figure 4.8. A) OCP graph and C) CV diagram of Pd-GC-4 monolithic electrodes 

The proof of concept Wacker reaction conducted using the Pd-GC-4 monolithic electrode 

(Figure 4.9.) yielded 36.19 % conversion and 82.44% selectivity towards the 2-octanone product. 

The byproducts were mainly 2- and 3-octene, which are the results of isomerization of the starting 

material. It is noteworthy that only 1 of 11 electrodes prepared was able to complete the reaction 

time. Hence, further emphasizing the design and preparation details require to consider for such 

electrodes. 
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Figure 4.9. The Proof of concept Wacker-electrooxidation of 1-octene using Pd-Glassy carbon 

monolithic electrode. 

4.5. Insights and Findings 

Graphene nanoplatelets–supported palladium catalysts (Pd/GNP) with enhanced structural 

properties were prepared via three different methods, among which the optimal catalyst with 

significantly higher throughput in Tsuji-Wacker oxidations of electron-deficient substrates was 

discovered. Of the various preparation methods, the strong electrostatic adsorption (SEA) method 

provided added control over catalyst synthesis conditions when compared with the conventional 

chemical reduction (CHEM) and incipient wetness impregnation (IWI) methods. Furthermore, 

SEA, in combination with microwave treatment, led to improved Pd particles embedding within 

graphene structures as well as narrower particle size distributions. Microwave treatment aided in 

Pd particle-substrate bonding for all catalysts and preparation methods. Two Tsuji-Wacker 

oxidation reaction configurations were developed, a conventional batch and an electrochemical 

configuration, to evaluate the efficiency and selectivity of the prepared catalysts as well as an 

enhancement of traditional chemistries enabled via electrochemistry. The prepared catalysts 

yielded faster and more efficient Tsuji-Wacker oxidations in both configurations. In addition, it 

was confirmed that the Pd (II) content was found to directly correlate to catalyst performance, 

whereas the overall Pd content (wt%) did not directly relate to high throughput. Furthermore, the 

turnover numbers (TONs) and frequencies (TOFs), as reaction throughput indicators, reported 
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superior conversion for the electrochemical oxidation process over the conventional batch process. 

The highest TON values were achieved using SEA-MW catalyst at 12.45 and 96.9 for batch, and 

electrochemical oxidation, respectively. The electrochemical configuration allowed for an 

electrochemical surface area (ECSA) analysis, which justified the high activity of the SEA 

catalysts. The ECSA for the SEA catalysts was higher than the other prepared-catalysts, and the 

homogeneous catalyst by 2 and 4 orders of magnitude, respectively. The average throughput of 

the electrochemical trials was at least 350% higher than the batch reactions (using the same 

catalysts), significantly surpassing the turnover characteristics of homogeneous, as well as 

commercial Pd-carbon trials by 25%, and 220%, respectively. Nonetheless, the SEA-MW catalyst 

surpassed electrochemical solid-supported catalyzed (Pd/CNT) reports in the literature by 100%. 

A least-square fitting method was utilized to correlate the catalysts to industrially relevant design 

space and show that by satisfying the minimum Pd(II) content of 60.5%, only a 2.3 wt% Pd loading 

on GNP support was required to obtain excellent structural properties for both batch and 

electrochemical frameworks. 

Through chapter 4, the need for elimination of TEMPO mediator via deposition of Pd particles on 

a highly conducting monolithic structure as the route for further process intensification was 

identified. A protocol for the preparation of glassy carbon monoliths decorated with Pd particles 

as the desired structure for catalytic electrodes was developed. The rational optimization of the 

manufacturing protocol as well as Pd particle deposition (including microwave-assisted 

immobilization) was achieved. Further analyses determined the optimized conditions for annealing 

the monoliths (including atmosphere composition and temperature) were identified through a 

screening DOE. As a proof of concept, the catalytic activity of the monolithic Pd-GC electrodes 

as the replacement for conventional graphite electrodes used for electrochemical oxidation of 1-
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octene was demonstrated. Further manufacturing and reaction condition optimizations can 

potentially lead to higher reaction efficacy using the prepared electrodes.   
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This multi-disciplinary systematic research on solid-supported palladium catalysts focuses on 

three major aspects related to this family of catalysts. Firstly, fundamental analysis on the 

properties of the supports (all carbon-based) as well as catalyst synthesis parameters and their 

effects on catalyst properties, including catalytic activity and metallic particle leaching, was 

pursued. Secondly, the application-driven comparison between the optimally prepared catalyst and 

the homogeneous as well as commercially available solid-supported Pd catalysts, as positive 

controls, were investigated. During this objective, the superiority of prepared catalysts in 

maximizing the catalytic activity and minimizing the Pd particle leaching was pursued. Lastly, the 

improvement upon conventional 2D solid-supported catalysts was made through the preparation 

of 3D macroscopic monolithic structures as supports for Pd particles. During this process, the 

advantage of monolithic catalysts over conventional 2D solid-supported catalyst packed beds for 

Suzuki cross-coupling of aryl halides and boronic acids in flow was analyzed via a preparation 

method developed by the author utilizing techniques from chemistry, ceramics engineering, and 

process chemistry. It was shown that Pd-graphene oxide (GO) monolithic catalyst packed beds 

had 300% higher catalytic longevity, with over 60% reduction in Pd leaching into the reaction 

stream. In order to comprehensively analyze the interior structure of the monolithic catalysts, a 

creative approach was taken during that analysis the microCT-Scan was utilized to study the effect 

of reaction mixture precipitation into the porous monolith structure as well as the desirable 

distribution of Pd particles within the structure was successfully studied.  

The secondary reaction setting chosen as the engineering challenge was electrochemical 

Wacker oxidation of terminal olefins. In order to assist revitalizing this synthetic approach for 

commercialization purposes, Pd on graphene nanoplatelets (Pd-GNP) catalysts were prepared via 

3 different methods, and their efficacy in catalyzing fluidized electrochemical oxidation of 
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electron-deficient olefins towards ketone products was pursued. The superiority of catalyst 

prepared via strong electrostatic adsorption (SEA) method in this application with respect to 

catalytic activity and minimized Pd particle leaching over positive controls, reports in the 

literature, and the other two prepared catalysts signified the advantage of this method over the 

others as it yields smaller particles with stronger binding to the support. In order to provide a 

catalyst synthesis roadmap, a design space based on least square fitting of conversion and 

selectivity of catalysts in batch and electrochemistry was prepared. The dependent variables were 

the Pd uptake and Pd (II) species content. The acceptable criteria for this design space were 

selected based on the industrial benchmark for the electrochemical Wacker-type reaction that was 

used. Lastly, a monolithic catalyst-oriented approach was taken to prepare catalytic monoliths as 

anodes used for electrochemical Wacker oxidation of 1-octene as the model olefin substrate. The 

optimized synthesis process included the deposition of Pd particles on glassy carbon monoliths, 

which then showed reliable electrical stability and catalyst redox activity tested via open circuit 

potential and cyclic voltammetry analyses. The proof of concept reaction screening using the Pd-

GC monolithic electrodes yielded 36% conversion of starting material with over 80% selectivity 

towards the interested ketone product.  

The main takeaway of this work is that a monolithic catalyst is a viable option for process 

intensification in unconventional synthetic processes such as synthesis in flow and in 

electrochemical frameworks. Since these methodologies have strong potential for process 

intensification in industrial scales, the future work is suggested as follows. 

The preparation scope of such monolithic metal-GO catalysts can be expanded through the 

utilization of other 2D support structures such as boron nitride, which have been proven to be 

useful for various reactions. Nonetheless, utilization of other metal particles as catalytic species 
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such as platinum and ruthenium for hydrogenation and other cross-coupling reactions could be 

explored.  

In case of electrochemical reaction, the 2D catalyst preparation design space can be expanded 

to other reactions. Specifically, the utilization of such an approach for bimetallic catalysts for both 

organic and energy electrochemistry can be significantly interesting for industrial applications.  

Further optimization of the Pd-GC monolithic electrode is required to make sure they are desired 

for the reaction of interest. The parameters to focus on are the electrode preparation process as 

well as metallic particle properties (e.g. ionic species content). The latter parameter can be 

predicted using a design space, in which its generation process was detailed in the previous section. 
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Appendix I. X-ray induced preparation of metal-decorated GO 

monoliths and their catalytic applications 

The study presented below is an example of application for GO monoliths as substrate for X-

ray induced deposition of metallic particles. The prepare hybrid materials can be used for a variety 

of applications including catalysis. During this study the catalytic activity of the structure as well 

as confirmation on formation of particles within the bulk of monoliths is described. 

AI.1. Abstract 

Gold (Au), palladium (Pd), and Ruthenium (Ru) nanoparticles were synthesized onto 2D and 

3D graphene oxide using X-ray induced synthesis. Absorbed doses of ~ 20 kGy produced Pd and 

Au nanoparticles of ~ 5 nm and ~17 nm in size, respectively. Higher absorbed doses such as 60 

kGy, generated Ru nanoparticles with an average size of ~ 3 nm. CT-scan imaging confirmed 

metal particle formation inside the 3D graphene oxide supports, an advantage of X-ray induced 

synthesis over conventional approaches. The catalytic activity of Ru/GO monoliths, the smallest 

nanoparticles produced on monoliths, was tested through the olefination of alkyl acrylates. Results 

showed the high catalytic activity of the heterogeneous Ru catalysts structures similar to the 

homogeneous catalysis reported in the literature. Overall, this work demonstrates that X-ray 

assisted synthesis is a method that allows for nanoparticle formation at mild conditions of room 

temperature and pressure, in the absence of harsh chemicals in aqueous media suitable to fabricate 

catalysts in 2D and 3D carbon supports.  

AI.2. Introduction 
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Noble metal nanoparticles are of great importance for diverse fields such as electronics, 

sensing, catalysis, medicine, and energy storage, among others, due to their non-conventional 

physical and chemical properties [1–6]. Nowadays, metal nanoparticles are commonly synthesized 

using wet chemistry methods, whereby features such as size, shape, composition, and crystalline 

structure can be tuned by the reagents used and other synthesis parameters [7]. One of the 

challenges faced in the synthesis of nanoparticles in suspension is their tendency to aggregate, and 

this phenomenon causes a decrease in the surface area of the nanomaterial, which would ultimately 

lead to a reduced material performance for various applications [8]. The deposition of 

nanoparticles onto multifunctional supports is an alternative approach to avoid aggregation. Metal 

nanoparticles have been successfully supported on oxides such as TiO2, Al2O3, ZnO, CeO2 [9–15], 

and carbon-based supports that include carbon nanotubes, graphene oxide (GO), graphite, and 

mesoporous carbon [16–21]. In particular, carbon-based supports deserve special attention because 

of their chemical and structural versatility, since they can be designed with different functional 

groups that facilitate a strong particle/support interaction [22]. Moreover, carbon supports offer 

various features such as tunability of the water permeability and charge surface properties, which 

allow them to respond to different physicochemical reactions with little effect on their stability 

[23–25]. Overall, the deposition of noble metal onto carbon supports allows for synergistic effects, 

where the physical and chemical properties of both support and particles are combined, leading to 

a nanomaterial with a superior performance [25,26]. Catalysis, for instance, is one of the fields 

that have benefited from the use of composites made of metal nanoparticles supported on carbon-

based structures [17, 27–33]. Nanomaterials have a high surface area that favors the interaction of 

reactants onto their surfaces [7, 29–34]. Furthermore, nanomaterials have a high number of active 

sites, which leads to high catalytic activity and improved selectivity, and they can be easily cleaned 
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and reused in several cycles [28]. The final characteristics of the nanomaterials intended for 

catalysis can be controlled and optimized through the synthesis process. Both computational and 

experimental results have demonstrated that graphene-based materials may enhance catalytic 

activities by serving as charge reservoirs for cross-coupling reactions [29–33]. Despite the 

significant advantages of transition metals on graphene-based supports for the catalysis field, these 

systems still tend to agglomerate, leading to an abrupt decrease in performance  [33,35]. The 

engineering of 3D graphene structures, such as graphene monoliths, is an alternative to avoid 

agglomeration of these systems mainly because the restacking of the graphene layers is completely 

impeded. Nevertheless, other challenges like the formation of stable and active catalysts in the 

interior of the monoliths must be addressed. Therefore, fabrication methods that depart from 

conventional wet chemistry approaches are sought to explore new methodologies with improved 

efficiencies, minimal waste generation, low energy consumption, and able to form active catalysts 

inside of complex supports [35–37]. 

Alternative fabrication methods to synthesize metal nanoparticles include sonochemical 

synthesis, hydrothermal synthesis, UV- and, ionizing radiation-assisted synthesis [38–42].  Among 

these different fabrication methods, ionizing radiation synthesis has shown to be an efficient and 

reliable method for nanomaterial production [39,43–45]. Even more, this method has the 

advantage of being carried out at ambient temperature and pressure, in the absence of harsh 

chemicals and reducing agents while exploiting the ability of ionizing radiation to penetrate deep 

in the materials [43,46]. In radiation synthesis, high energy photon beams such as X-rays and 

gamma rays interact with aqueous solutions containing a metallic salt [46–48]. The interaction of 

ionizing radiation with water leads to the creation of species such as e-
aq, H

•, H+, OH•, O2
•-, H3O

+, 

H2, and H2O2 [11,45,46]. The species formed during the radiolysis of water are classified as 
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reducing and oxidizing species. Species such as e-
aq and H•  reduce the metal ions in solution into 

metal atoms [43]. These atoms can either dimerize or interact with the remaining metal precursor 

ions in a multi-step process that leads these species to coalesce progressively and eventually form 

nanoparticles [45]. On the other hand, radicals such as OH• are oxidizing species that may interact 

with the ions or atoms present in the solution, bringing them to a higher valence state [43]. To 

prevent these oxidation processes, scavengers such as isopropanol are added to the reaction 

mixture. Oxidizing species such as OH• and reducing species such as H• interact with isopropanol 

creating secondary reducing radicals such as (CH3)2COH and COO•- [43]. X-rays synthesis of 

nanoparticles is a highly controllable process since the nucleation and growth are regulated by the 

dose and dose rate used during synthesis. Nonetheless, despite the advantages of gamma and X-

rays radiolytic synthesis, there are few reports of supported particles using X-rays. Literature about 

X-rays radiolytic synthesis refers to gold-platinum, copper, silver and gold nanoparticles deposited 

onto different supports such as titanium dioxide (TiO2), polymethyl methacrylate (PMMA), 

Polymeric acid-polyethyleneimine (PAA-PEI) films, polytetrafluoroethylene (PTFE) and 

polyimide (PI) films [49–53]. Although the penetration of ionizing radiation is materials is a well-

known fact, to date, there are no systematic studies on the use of X-rays to synthesize metal 

nanoparticles in the interior of these 2D and complex 3D graphene-based supports. 

Ma et al., prepared gold film on polyimide substrates using synchrotron radiation X-rays. 

During that photoinduced selective deposition, technique it was shown the gold particles from salt 

solution were successfully deposited on flange-patterned polyimide substrates. The thickness of 

the prepared film was directly controlled by irradiation dosages.  

In the early stages of investigating the irradiation-induced metal particle formation, Rosenberg 

et al. showed that a variety of particles can be precisely formed due to the unique absorption 
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energies at certain lengths It was shown the substrate modification could also be accomplished 

through this process via irradiation-driven etching, which led to specific interactions between 

formed particles and the substrate. This process led to formation of metallic particles with strictly 

controlled dimensional, crystallographic, chemical properties.  A study by Karadas et al. showed 

that via a similar methodology gold (Au) particles can be formed on poly(methyl methacrylate) 

(PMMA) patterned substrates (F. Karadas et al., Langmuir 21 (2005) 437). The XPS spectra of 

particles formed via variating irradiation times showed that by increasing that period, formation of 

ionic gold (Au3+) species were favored over metallic (Au0) species, depicting the effective control 

over the formed species achieved via irradiation-driven particle synthesis.   

Yamaguchi and co-workers have done extensive research on formation of metallic particles on 

patterned substrates via photochemical synthesis utilizing synchrotron irradiation. In their study 

on preparation of gold nanoparticles (Yamaguchi et al., Material Chemistry and Physics 160 

(2015) 205), it was shown that by controlling the substrate functionality (through patterning) and 

irradiation dosage gold nanoparticles assemble into higher order particles with fractal-like 

properties. These Au clusters (~ 500 nm) possessed the same structural features as the individual 

particles of less than 10 nm as their Raman spectra didn’t shows any significant shift. They utilized 

the same process and equipment to produce highly crystalline copper (Cu) particles (Japanese 

Journal of Applied Physics, 55 (2016) 055502) with tunable geometries that can be readily used 

for micromanufacturing and electroplating purposes. The fine-tuned spike-like cupric (CuO) 

particles was also prepared on a silica substrate by dipping the substrate into the metal aqueous 

solution and exposing to irradiation for only 5 minutes (Journal of Synchrotron Radiation 24 

(2017) 653). These particle properties (average diameter, geometry, and elemental composition) 

were controlled by changing the ratio of a co-solvent (ethanol). The geometries obtained were 
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ranged from multi-crystalline spike shapes to cubical formations. The team’s most recent study 

(Journal of Synchrotron Radiation 26 (2019) 1986) also showed the chain length of the alcohol 

co-solvent used can control, diversify and fine-tune the cupric particle size.  

Bharti and co-workers have recently revealed an effective method of preparing silver (Ag) 

particles using gamma rays in aqueous media and polymeric species (A. Bharti et al. Scientific 

Report 6 (2016) 22394). This method compared to traditional solution-based reduction approach 

was shown to yield particles with smaller average diameters with narrower polydispersity. 

Additionally, the Mie theory analysis on the TEM micrographs showed a significantly higher 

stability in particle size distribution when the presented method was used. Hence, rendering the 

gamma-induced particle formation a more effective and consistent method than the conventional 

counterparts. 

Given the potential of radiation synthesis to fabricate well-dispersed metal nanoparticles onto 

organic and inorganic supports, this work presents X-ray synthesis of Gold (Au), Palladium (Pd), 

and Ruthenium (Ru) onto 2D and 3D GO nanostructures. Furthermore, as a proof of concept, the 

catalytic activity of Ru supported on 3D GO structures, the smallest particles obtained in the study, 

was tested through olefination reactions. These reactions are crucial to the fine chemical industry. 

GO is a 2D nanomaterial that has high adsorption capacity, high thermal conductivity, and 

mechanical strength. For these reasons, it has been studied in the fields of sensing, drug delivery, 

energy storage, fuel cells, and catalysis. In catalysis, GO has been successfully used in chemical 

reactions such as selective oxidation of carbon monoxide and alcohols, reduction of nitroarenes, 

hydrogenation, cross-coupling reactions, fuel production, and pollutant removal [17,28–33]. 

Seeking for more robust carbon catalysts, 3D networks of GO also known as carbon monoliths, 

have been successfully used as supports [35,54]. The type of metals deposited on 2D and 3D GO 
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are current catalysts used in several chemical industries. For instance, Ru is a stable metal at low 

temperatures, while at high temperatures, it forms compounds such as Ruthenium oxide (RuO2), 

hydrous ruthenium oxide (RuO2xH2O), and other Ru-based oxides (RuOx) [39,55]. Overall, 

deposition of  Ru and Ru oxides on carbon supports such as carbon nanotubes, GO, and 

mesoporous carbon has improved electrical conductivity and catalytic activity on these 

systems[55–57]. Similarly, supported Au nanoparticles onto carbon supports have also been 

studied as a catalyst due to the strong absorption, stability, and conductivity of Au [58]. However, 

due to its high-cost Au nanoparticles have been anchored to inexpensive inorganic and organic 

supports, to modify surface functionalities and improve the catalytic activity. Results indicated 

that Au supported GO catalysts have high stability, and they are good candidates for gas-solid 

oxidation reactions [18]. Finally, Pd-based catalysts have shown an enhanced oxidation activity 

for hydrazine, alcohols, and hydrogenation of unsaturated hydrocarbons in Suzuki reactions. 

Among the noble metals used as catalysts, Pd has gathered the most attention due to its activity, 

abundance, and stability [18,59,60]. Herein, the ability of X-ray synthesis to produce well-

dispersed nanoparticles of the aforementioned metals onto supports with intricate 3D geometries 

is shown, a feature that is not always achievable with conventional chemical methods. This feature 

could potentially push forward the fabrication of active catalysts for different industrial 

applications.   

AI.3. Experimental Procedure 

AI.3.1. Materials and Reagents 

Chloroauric acid (HAuCl4•3H2O, ≥ 99.9%), Sodium tetrachloropalladate (Na2PdCl4 ≥ 98%), 

Sodium Dodecyl Sulfate (SDS≥ 99.0%) , sulfuric acid, nitric acid, dichloromethane, hydrogen 



117 

 

peroxide, ethanol, polyvinyl alcohol (PVA) (99% hydrolyzed, MW. 89000-98000 g/mol), 

acetonitrile, (2-bromovinyl)benzene, acetyl acrylate, dimethylformamide, sodium acetate, and 

isopropanol (IPA) (C3H8O, ≥ 99.7%) were obtained from Sigma-Aldrich.  Ruthenium chloride 

hydrate (RuCl3•xH2O ≥ 99.9%), graphite flakes (> 325 mesh size), Sucrose, phenylboronic acid, 

and 4-bromotoluene were purchased from Alfa Aesar.   

AI.3.2. Synthesis of Carbon Monolith 

The detailed preparation procedure for the carbon monoliths was presented in our previous 

study [35]. Briefly, after oxidation of graphite flakes into GO through Hummers modified method, 

the covalent bonding between GO layers was conducted in the aqueous phase. The aqueous 

esterification of GO sheets was catalyzed by PVA/sucrose (5 wt% each with respect to GO) system 

for 2 hours under stirring at 500 rpm at room temperature (25°C).  

Afterward, the monolith solution was poured into molds of the desired shape and went through 

the freeze-casting process. This process is made by generating a temperature gradient from bottom 

to top of the mold by exposing the base to liquid nitrogen. Lyophilization is then ensued, providing 

the 3D monolith structure. The monoliths were exposed to ethanol vapor (1 hour at 74°C) followed 

by overnight autoclave partial reduction (24 hours at 100°C).  

AI.3.3. X-ray induced synthesis of noble metals onto carbon 

supports 

The synthesis of solid-supported metal composites were conducted through the following 

process. In case of GO-supported structures, the GO was first dispersed in DI-water:IPA mixture. 

Then a solution of metal salt in the same solvent mixture was prepared and added to the GO 

dispersion, followed by irradiation.  The irradiation of the solution was carried out in an X-RAD 
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225 XL, an X-ray irradiator from PXI with a tungsten (W) source, operating at a voltage and 

current conditions of 225 kV and 13.3 mA and irradiation rate of 127 Gy/min. Afterwards the 

mixture was washed by centrifuging and re-dispersing in DI-water: IPA mixture multiple times to 

ensure removal of unreacted and oxidizing species.  

In case of metal@monolith samples, first the solution of metal precursor was prepared in DI-

water:IPA mixtures, followed by immersion of the monolith into those solutions. Afterwards the 

monoliths were extracted, and immersed in another DI-water:IPA solution, followed by irradiation 

and washing steps identical to that of the GO samples. The details of preparation conditions for 

each sample are presented in Table 1. 

Table 4. The preparation process details of metal@support composite structures 

Sample 

Support 

(concentratio

n mg/mL) 

Metal Salt 

(Concentratio

n mM) 

Meta

l Uptake 

(wt%) 

DI-

water:IP

A 

Solution 

ratio 

Irradiation 

Perio

d (hrs) 

Dos

e (kGy) 

Au@GO GO (5.3) 

HAuCl4 

(2) 

10 9:1 3 22.8 

Au@Monolit

h 

Monolith 

(9.7) 

HAuCl4 

(2) 

5 9:1 3 22.8 

Ru@GO GO (1) 

RuCl3 

(1.15) 

10 9:1 8 60 
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Ru@Monolit

h 

Monolith 

(9) 

RuCl3 

(1.15) 

10 2:1 8 60 

Pd@GO-10 GO (1) 

Na2PdCl4 

(2) 

10 1:4 2 15.2 

Pd@GO-1 GO (1) 

Na2PdCl4 

(2) 

1 1:2 2 15.2 

 

AI.3.4. Catalysis assessment of noble metal onto carbon supports 

The catalytic activity screening of metal-decorated carbon monoliths was conducted through 

reactions best known for being able to catalyze. Smaller particle sizes are easily related to high 

catalytic activity, and therefore, the Ru decorated monoliths were the system selected for the 

assessment. An olefination of alkyl acrylates, particularly (2-bromovinyl) benzene, and acetyl 

acrylate was the test reaction. The conversion and selectivity of reactions towards the product were 

analyzed via an Agilent gas chromatography-mass spectroscopy (GC-MS) analysis of the reaction 

effluent after 10 times volumetric dilution by dichloromethane, and ethyl acetate, respectively.  

 

AI.3.5. Material’s characterization of noble metal deposited on 

carbon-based supports 

Morphology and particle size analysis were performed with scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), and computed tomography (CT-scan). SEM 

characterization used a Phenom ProX microscope at an operating voltage of 10 kV. For this 

purpose, dry samples of the metal-loaded  carbon supports were dispersed in acetone using an 
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ultrasonic probe to ensure a homogeneous solution. Then, a drop of the solution was pipetted onto 

a silicon wafer. For TEM analysis, a drop of the suspension was deposited onto formvar/carbon 

coated grid and analyzed with a Zeiss Libra 120 Plus operating at 120 kV. High-resolution TEM 

was performed in an FEI Titan 30, operated at 300 keV. Moreover, scanning transmission electron 

microscopy (STEM) was carried out in a Hitachi FE-SEM Su-70, at an operating voltage of 30 

kV. Micro CT-scan of the Au@Monolith was conducted, as a proof of concept for large scale 3D 

mapping of particle distribution within such structures, using a Bruker Skyscan 1173 Micro-CT 

scanner at 130 kV with 4000ms exposure time. The CT image reconstruction was completed using 

CTVOX free software.  The crystalline structure of the nanomaterials was evaluated using an X-

ray diffractometer PANalytical Empyrean with a copper anode at a voltage and current of 45 kV 

and 40 mA respectively. For this purpose, the samples were dried in an oven at a mild temperature 

of 50°C and powders of the nanomaterials were place onto low background silicon. The wafer was 

placed onto a spinning stage with an angular velocity of 120 rpm, and the XRD patterns were 

analyzed using HighScore Xpert. Finally, X-ray photoelectron spectroscopy (XPS) in PHI 

Versaprobe III Scanning XPS microprobe was used for chemical analysis. The samples were 

prepared by dispersing the nanomaterial in acetone and depositing the suspension onto a silicon 

wafer; then samples were allowed to dry at room temperature.  

AI.4. Results and Discussion 

AI.4.1. Crystalline structure Analysis of supported 

nanoparticles   

The XRD patterns of metal nanoparticles supported onto GO and carbon monoliths are shown 

in Figures 1a and 1b respectively. The 2D and 3D GO supports revealed a hexagonal closed pack 
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(HCP) crystalline structure (pdf 01-075-1621), typical of these graphitic structures. Ruthenium 

nanoparticles showed HCP crystal structure (pdf 00-006-0663). Palladium and gold nanoparticles 

showed face cubic centered crystal structures (pdf 01-088-2325 and pdf 01-071-4614, 

respectively). Furthermore, the crystallite size of the particles was calculated using the Scherrer 

equation. The crystallite size of the Pd nanoparticles in  Pd@GO, was ~ 9.7 nm, whereas the Au 

in the Au@GO  and Au@monolith systems showed crystallite sizes of 32.9 nm, and  15.9 nm. 

Finally, Ru on the Ru@GO and Ru@Monolith systems showed a particle size of 3.1 nm and 4.2 

nm, respectively. The sharp peak observed at 2𝜃= 40° in Figure 1b corresponds to PVA residues 

on the monolith.  

 

 

Figure 1. XRD patterns of a) Metals@GO b) Metals@Monolith 

AI.4.2. Morphology analysis of supported nanoparticles  

The SEM images of GO and the carbon monolith prior to noble metal particle deposition are 

shown in Figures 2a and 2c, respectively. The Figures 2b, 2d, 2e, and f are representative SEM 
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images at low magnification of the different noble metals deposited on both GO and GO monoliths. 

These images evidence the formation of metal particles on the surface of the various supports, and 

since most of the experiments attempt a nominal loading of about 10 wt%, it is expected to form 

aggregates after small nanoparticles are created. For instance, the Au@GO micrograph (Figure 

2b) evidenced the presence of Au aggregates with a mean particle size of 0.71 ± 0.22 µm. 

Similarly, while Au@Monolith showed Au particles in the micron size with a mean of 0.12 ± 0.04 

µm (Figure 2e), a more significant fraction of smaller nanoparticles were identified under STEM, 

having an average size of 16.3 ± 4.2 nm as shown in Figure 2f. Ru nanoparticles with a mean 

particle size of 13.2 ± 3.4 nm (Figure 2e) were observed on the monolith, though some scattered 

aggregates were present. In X-ray radiolytic synthesis, the interaction of photons with water 

molecules induces radiolysis of water, a process that generates reducing species such as e-
aq and 

H• with a high reducing potential of E° (H2O/e-
aq) = -2.87 VNHE and E0 (H+/H•) = -2.3 VNHE [61]. 

These species will reduce metal ions in solution, avoiding the need for chemical reducing agents 

typically used in traditional synthesis methods [45,49]. Once metal ions are reduced, they interact 

with other species in solution, to dimerize and form nucleation centers, that will coalesce and grow 

into nanoparticles [43,62]. This process is controlled by the dose rate; high absorbed dose rates 

produce an abundance of reducing species that will form a high number of nucleation centers 

leading to well-dispersed nanoparticles with a narrow particle size distribution [11,44]. The metal 

concentration is also an essential factor to be controlled, particularly in the synthesis of 

nanoparticles on supports which adds the restriction of available surface area. Once the surface of 

the support has been saturated with nanoparticles, the presence of metal species in solution will 

rather lead to aggregates or nanoparticles free from the support. Therefore, managing the quality 

of the final product requires the adjustment of various parameters. Another critical variable is the 
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addition of stabilizers during synthesis; they may also allow for better control of nanoparticle 

growth [44]. Nanoparticles in suspension are easily attracted to each other by Van der Waals 

forces. Nanoparticle stability is attained when there is an equilibrium between the repulsive and 

attractive forces through electrostatic or steric interactions. The stabilization of particles can be 

attained with polymers with functional groups such as NH2, -COOH, and -OH, which have high 

affinity for metal atoms. Some of the stabilizers agents used in synthesis of nanoparticles include 

Polyvinyl alcohol (PVA), Polyvinylpyrrolidone (PVP) and Sodium Dodecyl Sulfate (SDS) 

[39,43,63–65]. Furthermore, the addition of surfactants or stabilizers to the reaction volume prior 

to irradiation may also play a role as may contribute to better control over the particle size and, 

preventing aggregation [44]. In Figures 2b and 2e, aggregation of Au and Ru nanoparticles is 

observed. In this case, stabilizing agents were not added to the solution’s prior irradiation. 

Nonetheless, these images also display very small particles at other areas where less aggregates 

are present.  
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Figure 2. SEM images of a) Pristine GO b) Au@GO c) Pristine carbon monolith d) 

Au@Monolith e) Ru@Monolith. f) STEM of Au@Monolith 

TEM images of pristine GO and Pd particles and Ru particles onto GO are presented in Figures 

3 a-d. In radiolytic synthesis, as in conventional aqueous routes, the final nanoparticle size is also 

dependent upon the initial ion concentration in solution. Then, since aggregates are expected at 

high metal loadings, this hypothesis was evaluated using different Pd metal loadings on GO. When 

the Pd loading was set to 10 wt%, the obtained particle size was ~8.4 ± 2.6 nm.  A reduction in the 

mean particle size down to ~4.9 ± 2.5 nm was reached by reducing the metal loading to 1 wt%. 

Also, it is possible to see through close inspection under electron microscopy that samples loaded 

with 10 times more nominal Pd metal present more clusters. Small Ru nanoparticles formed when 

using  60 kGy with a mean size of 2.9 ± 1.0 nm, evidencing a narrow size distribution even at a 



125 

 

high metal loading of 10 wt%. A larger absorbed dose was set for the synthesis of Ru nanoparticles 

as our preliminary work evidenced a partial reduction of metal ions in solution at lower doses.  

 

 

 

 

Figure 3. TEM micrographs of a) Pristine GO b)) Pd@GO-1% loading c) Pd@GO-10% 

loading d) Ru@GO. 

The micro CT-scan imaging of Au@monolith (Figures 4a and b) and Ru@Monolith (Figures 

4c, and b) structures proved that the metal particles successfully reduced and immobilized within 

the 3D structure. It was established that the bright spots within the slice of the structure (Figure 

4b) to be attributed to metal particles, which then confirms the incorporation of Au particles not 

only on the surface but also inside of the monolithic structure [35]. As the two extremes cases in 
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particle size both largest for Au and smallest for Ru nanoparticles on monolith, these specimens 

were analyzed using CT-scan. High contrast is evidenced for the Au-containing sample and the 

aggregates are easily identified since their size, in the micrometer range, is close the resolution of 

the CT-scan. In the case of Ru on monolith, the contrast differences are less evident because 

particles are much smaller overall, and fewer aggregates were produced in the sample. However, 

this imaging tool still allows to see particles forming on large volumes of the monoliths.  

 

Figure 4. Micro CT-scan images of a) the Au@monolith, and b) Image taken from middle of the 

structure, (The inset shows the cross-section of the slice), c and d) the Ru@monolith 

AI.4.3. Surface Chemistry Analysis of supported metal 

nanoparticles. 

Catalysis is one significant field where transition metal nanoparticles deposited on GO and GO 

monoliths can provide the most benefit. It is also relevant to have the particles evenly distributed, 

and small particle size would generally increase the activity due to the higher number of active 



127 

 

sites present at the surface. However, other important aspects such as the chemistry and electronic 

state must be understood. To further investigate the catalytic activity of these systems, the Ru on 

GO monolith was selected for the analysis largely due to the small particle size obtained while 

using 60 kGy. The high-resolution XPS results of Ru@Monolith are displayed in Figure 5. The 

analysis of Ru3p state (Figure 5a) revealed both Ru(0) and Ru(IV) chemical states. It was observed 

that even both chemical states are present, Ru(0) prevailed over the Ru(IV) species, showing the 

power of reduction of the chosen process. The XPS analysis of the Ru may be performed by using 

either Ru3d or Ru3p peaks. However, the spectral lines of Ru3d overlap with the peaks that 

correspond to the carbon peak C1s. Therefore, the Ru3p was chosen for analysis [66].  Peaks at 

binding energies of 463.4 and 485.8 eV were identified as stable Ru(0) and peaks located at binding 

energies of 466.8 and 492.1 eV referred to Ru (IV) [39,66,67]. Moreover, peaks at energies of 

463.4 and 466.8 eV have been linked to RuO2 and RuOx signals [68]. The evaluation of the C1s 

peak (Figure 5b) showed peaks at binding energies of 284.8, 285.7, 287.1, 288.8, and 289.9 eV; 

these peaks were associated with C sp2, C sp3, C-O-C, O=C-OH and -COOH respectively [39,69]. 

In Figure 5b,  a peak at 282.3 eV is also observed, which peak corresponds to Ru3d [70].  Analysis 

of the oxygen O1s (figure 5c) showed three different peaks located at binding energies of 531.5, 

532.9, and 534.9 eV. The peak at 531.5 eV is associated with Ru-O bonds; this could indicate that 

Ru NPs bond with the monolith support through oxygen found within the functional groups on the 

surface of the support [39,66]. The peaks located at 532.9 and 534.9 eV are associated with C-O 

and H2O chemical bonds respectively [39]. 
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Figure 5. High-resolution XPS spectra of a) Ru3p b) C1s and c) O1s 

AI.4.4. Catalytic performance of supported nanoparticles   

The proof of concept as an application of the prepared metal@Monolith structures was 

conducted through various reactions. The catalytic activity of Ru@Monolith was tested through 

the olefination of alkylates (Figure 6). The olefination reaction catalyzed by Ru@Monolith yielded 

to 86.4% and 58% conversion and selectivity ratios towards the (E)-acetic (E)-4-phenylbut-3-enoic 

anhydride product, respectively. Both of the results were reliable for further optimizations, making 

the metal-decorated monoliths as potentially viable catalysts for a variety of reactions. While these 

reactions were tested in batch, it is possible, based on the robustness of the monolithic supports, to 

implement the reactions in-flow. The ability to cast the monoliths into any desired shape and 

further on deposit virtually any nanoparticle made of active catalysts allow for numerous setups 

in-flow. In particular, using modular instrumentation where the catalysts can be inserted as a plug-

and-play cartridge while forcing reagents to pass through the channels, which ultimately will form 

the desired product as long as resident time and flow are properly optimized. 
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Figure 6. Olefination reactions used for catalytic screening of metal decorated monoliths 

In this work, several important hypotheses have been tested in order to demonstrate the 

potential applications of X-ray induced synthesis of metal nanoparticles on 2D and 3D GO 

supports. It is also implicit that any metal can be produced by this method on complex supports as 

long as the parameters are optimized to be able to reduce the starting metal ions into their metallic 

state. Even more, controlling processing and design parameters, particle size and uniformity are 

likely to be narrowed to the desired values. The penetration depth of X-rays is by far more powerful 

than similar methods of UV irradiation. CT-scans are powerful methods to assess particles inside 

3D supports, but higher resolution nano-CT-scan systems will likely provide more insights. The 

proof of concept in catalysis is a very straightforward test to evidence the applicability of the 

concept of X-ray synthesis as a whole. Particularly, olefination reactions performed in these newly 

designed Ru@GO monolith systems were compared to the homogeneous phase standards 

available in the literature. A similar conversion was obtained but the fact of using heterogeneous 

systems makes this approach a powerful alternative since the separation of the catalyst out of the 

reagents and products can be easily made by physical means. While the homogenous counterpart 

has intrinsically a tedious workup of separating the catalyst made in the same liquid phase. All in 

all, the presented results are an attempt to open new areas of applications of radiation-induced 

synthesis where other techniques may underperform due to the lack of control or ability to form 

nanoparticles in hidden and inaccessible places. 
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AI.5. Conclusions 

Au, Ru, and Pd nanoparticles were successfully deposited on the surface on 2D, and 3D GO 

supports. SEM, TEM and CT-scan analysis proved the potential of X-rays to produce 

homogeneously distributed nanoparticles throughout the whole volume of a 3D support due to 

their high penetration in matter. Moreover, noble metal nanoparticles were synthesized onto 

multifunctional supports using clean solvents such as water and isopropanol, in a method that does 

not require harsh chemical reducing agents or extensive nanoparticle purification processes. Ru 

nanoparticles showed a small particle size of ~ 3 nm obtained at high absorbed doses of ~ 60 kGy 

during the irradiation process. Additionally, Pd nanoparticles were synthesized in the presence of 

stabilizing agents at two conditions of metal loadings of 1 and 10 wt%, the former one resulting in 

smaller and better-dispersed nanoparticles than the latter one. Finally, Au nanoparticles of ~17 nm 

were obtained on both 2D and 3D carbon structures. The nanoparticle synthesis on the supports 

was carried out in the absence of surfactants,  resulting in sub-micron sized aggregates. The micro 

CT-scan imaging of the metal-decorated carbon monoliths proved that the particles were formed 

and deposited within the monolith structure. These results showed that parameters such as the 

chemistry and concentration of the precursors, and absorbed dose influence the characteristics of 

the final product, e.g. particle size and size distribution. Furthermore, our results indicated high 

catalytic activity of the Ru@monolith versus the homogeneous control values from literature, 

showing that X-ray synthesis of nanomaterials has the potential to be implemented as a reliable 

method to fabricate catalysts for pharmaceutical and fine chemical reactions.  
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Appendix II. Statistical analysis information for Pd/GNP catalyst 

design space 

Herein, the detailed results of statistical operations conducted during the preparation of the 

design space for solid-supported catalysts for batch and electrochemical Tsuji-Wacker oxidation 

reactions is presented. During this process the JMP 14.0 software (licensed to the College of 

Engineering at Virginia Commonwealth University) was used. 

AII.1. Statistical study 

Table AII. 1. The P-value and R2 parameters of least square fits 

Fit P-Value R2 

Batch Conversion 0.0047 0.72 

Batch Selectivity 0.005 0.71 

Electrochemical 

Conversion 

<0.0001 0.92 

Electrochemical 

Selectivity 

0.0006 0.80 
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Figure AII. 1. Scree Plot of eigenvalue analysis 
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Figure AII. 2. Desirability analysis of control points in the design space 
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