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Abstract: Coffee breeding based on root traits is important to identify productive genotypes under
adverse environmental conditions. This study assessed the diversity of root traits in Coffea canephora
and its correlation with plant height and crop yield. Undisturbed soil samples were collected down
to 60 cm from 43 coffee genotypes, in which one of them was propagated by seed and all others
by stem cutting. The roots were washed, scanned, and processed to quantify root length density,
root volume, root superficial area, and root diameter. Additionally, plant height and crop yield
were also assessed. Root length density ranged from 40 to 1411 mm cm−3, root volume from 6 to
443 mm3 cm−3, root superficial area from 61 to 1880 mm2 cm−3, and root diameter from 0.6 to 1.1 mm.
Roots were concentrated in the topsoil (0–20 cm) for most genotypes. In deeper depths (30–60 cm),
root length density, root volume, and root superficial area were higher in genotypes 14, 25, 31, and 32.
Positive correlations were found between root traits and both plant height and crop yield. The results
of this work may contribute to the overall cultivation of C. canephora, specially for crop breeding in
adverse environmental conditions.

Keywords: Conilon coffee; robusta coffee; crop breeding; root morphology; root diversity;
root architecture

1. Introduction

Coffee species (Coffea spp.) are economically important worldwide. A total of 174 million 60 kg-bags
of coffee are annually produced, of which ca. 60% is Coffea arabica and ca. 40% C. canephora [1]. However,
the production of C. canephora is threatened by climate change, as it is sensitive to both water deficit
and high temperature [2]. The selection of superior genotypes for adverse environmental conditions
and the evaluation of diverse genetic pools are therefore essential to ensure its sustainability [3,4].

C. canephora is a self-sterile, diploid and allogamous plant [5,6]. In this view, vegetative propagation
is the most common practice, ensuring uniform crop development, high yields, better coffee quality and
better maturation patterns [7–9], although it reduces the species genetic diversity. Therefore, exploring
the genetic diversity in coffee farms is of utmost importance to achieve crop sustainability [10,11].
Several studies have addressed this topic in order to identify elite genotypes of C. canephora [9,12,13].
Current studies have focused on morphological and agronomical traits, leaf anatomy, and nutritional
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aspects, aiming not only to identify genotypes with higher yields per se, but also genotypes with
higher adaptability and stability in conditions of abiotic stresses [14–17].

In perennial crops, such as C. canephora, the root systems are important not only for nutrient and
water uptake, but also for ecosystem services such as carbon sequestration, improving soil structure
and genetic conservation [18]. Regarding the mechanisms related to coffee adaptation in adverse
environments, studies about root performance in coffee during its productive stage are still scarce [19].
Such scarcity is related to the long crop cycle, as coffee is a permanent crop, along with the lack of proper
methods for assessing and monitoring coffee roots. According to Ryan et al. [20], such knowledge is
unquestionably important, as it has broad and significant implications for the global crop productivity.

Assessments related to root traits have been reviewed for selecting coffee genotypes with better
performance under drought conditions [21]. Deeper root systems were associated with drought
tolerance in C. canephora genotypes due to the larger root dry mass [22]. One of the reviewed studies
have assessed both root systems and crop yield, although root assessments were performed in
plantlets and yield data were retrieved from previous on-farm data [23]. As root assessments might
be cumbersome, they are not widely used in crop breeding programs. Thus, considering that root
development and performance are largely influenced by the environment, on-farm studies of the root
systems of coffee trees are essential to understand crop performance.

In this study we have characterized the diversity of root traits, plant height and crop yield of
43 C. canephora genotypes with a fourfold objective to: (i) assess root distribution (length density,
volume, superficial area, and diameter) at the reproductive stage, (ii) analyze the diversity of root traits,
(iii) identify potentially promising genotypes to cope with water stress conditions, and (iv) test the
correlation between root traits and both crop yield and plant height.

2. Materials and Methods

2.1. Study Site, Soil Characterization and Coffee Genotypes Studied

The study was performed in the municipality of Nova Venécia, northern Espírito Santo State,
Brazil (18◦39′43′′ S, 40◦25′52′′ W and 199 m above sea level). The region’s mean annual temperature
is 23 ◦C, with a Aw climate, tropical with hot and humid summer and dry winter, according to
Köppen classification [24]. The studied soil was classified as Ferralsol [25], which corresponds to
a Latossolo Amarelo in the Brazilian soil classification system [26]. Particle size distribution and soil
chemical properties are shown in Table 1.

Coffee plantlets with about five pairs of leaves were transplanted in May 2014 with spacing of
3 m × 1 m, which corresponds to a crop density of 3333 coffee trees per hectare. Coffee pruning
was performed in order to maintain from three to four orthotropic branches per tree (10,000–12,000
plagiotropic branches per hectare). Farming managements were performed according to the technical
guidelines for the crop, aiming to achieve nutritional and phytosanitary needs. Liming and fertilization
were performed according to the regional recommendations [27]. The annual rates for N, P2O5,
and K2O were 500, 100, and 400 kg ha−1, respectively. In relation to soil micronutrients, a total of
2 kg ha−1 Zn, 1 kg ha−1 B, 2 kg ha−1 Cu, and 10 kg ha−1 Mn were applied annually. The area was
irrigated by drip irrigation.

A total of 43 coffee genotypes were arranged in randomized blocks with three replicates.
Each genotype was considered as a treatment, wherein a group of seven coffee trees of the same
genotype constituted an experimental unit, leading to a total of 21 coffee treatments of each genotype
and a total number of 903 plants in the experiment. The design was arranged in the double factorial
6 × 43 (six soil depths and 43 coffee genotypes). From the 43 assessed genotypes, 42 were propagated
from stem cutting and one genotype was propagated by seed (genotype ID 39), as shown in Table 2.
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Table 1. Particle size distribution and soil chemical properties of six soil depths in an irrigated coffee
farm located in Nova Venécia, Brazil.

Particle Size Distribution
Soil Depth (cm)

0–10 10–20 20–30 30–40 40–50 50–60

Sand (g kg−1) 434 352 188 368 366 376
Silt (g kg−1) 86 168 212 32 74 124

Clay (g kg−1) 480 480 600 600 560 500

Soil Chemical Properties
Soil depth (cm)

0–10 10–20 20–30 30–40 40–50 50–60

K (mg kg−1) 110 95 74 57 52 46
S (mg kg−1) 15 11 29 15 15 17

Ca (cmol kg−1) 3.8 3.4 1.9 1 0.7 0.6
Mg (cmol kg−1) 1 0.9 0.4 0.3 0.1 0.1
Al (cmol kg−1) 0 0 0.3 0.7 0.8 0.8

H + Al (cmol dm−3) 1.6 1.8 2.4 2.9 3.1 3.1
pH-H2O 6.6 6.5 5.3 4.8 4.8 4.8

SOM (dag kg−1) 2.1 1.7 1.1 0.8 0.7 0.5
Fe (mg kg−1) 140 138 126 94 88 87
Zn (mg kg−1) 10.2 4.5 2.9 1.1 0.6 0.5
Cu (mg kg−1) 3.4 4.3 3 1.9 1.2 1
Mn (mg kg−1) 207 174 104 46 44 40
B (mg kg−1) 0.81 0.83 0.58 0.55 0.56 0.61

Na (mg kg−1) 11 37 8 6 5 4
CEC (cmol kg−1) 6.73 6.50 4.92 4.37 4.06 3.94

H + Al: potential soil acidity, SOM: soil organic matter, CEC: cation exchange capacity.

Table 2. Identification of 43 genotypes of C. canephora cultivated in Nova Venécia, Brazil.

ID Name ID Name ID Name

1 Verdim R 16 Pirata 31 Cheique
2 B01 17 Peneirão 32 P2
3 Bicudo 18 Z39 33 Emcapa 02
4 Alecrim 19 Z35 34 Emcapa 153
5 700 20 Z40 35 P1
6 CH1 21 Z29 36 LB1
7 Imbigudinho 22 Z38 37 122
8 AD1 23 Z18 38 Verdim D
9 Graudão HP 24 Z37 39 Sementes

10 Valcir P 25 Z21 40 Emcapa 143
11 Beira Rio 8 26 Z36 41 Ouro negro 1
12 Tardio V 27 Ouro Negro 42 Ouro negro 2
13 AP 28 18 43 Clementino
14 L80 29 Tardio C
15 Bamburral 30 A1

Most of the genotypes have not been tested in experimental studies before, as they were selected
by regional coffee farmers. Within the C. canephora groups, the genotypes assessed are part of the
conilon coffee group, which is genetically distinct of the robusta group [28,29]. Genotype 33 belongs
to the Emcapa 8111 cultivar, and the genotypes 34 and 39 belong to the Emcapa 8131 cultivar [30],
which are late-season cultivars. The genotypes IDs 1, 11, 15, 16, 30 and 43 belong to the Tributum
cultivar [8,31], which is recommended for areas under 500 m of altitude in the Brazilian States of
Espírito Santo, Southern Bahia, and East Minas Gerais. The genotypes IDs 30 and 35 belong to the
Andina cultivar [9], which is recommended for Brazilian states with latitude lower than 22◦ S, altitude
lower than 900 m and minimum air temperature not lower than 8 ◦C for more than 10 days in a year.
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2.2. Root Traits, Plant Height and Crop Yield Assessments

Undisturbed soil samples of about 27 cm3 were taken with a tubular sampler from six different
soil depths (0–10; 10–20; 20–30; 30–40; 40–50; 50–60 cm) in each treatment during February 2018.
From each experimental unit, the soil samples were taken from the fourth coffee trees in each one of
the three replicates of the experimental plot, which led to a total of 774 soil samples (43 genotypes,
three replicates and six soil depths). Each sample was taken from a distance of 30 cm from the coffee
stem in relation to the inter-row (Figure 1A), which is a region known for concentrating coffee roots [32].
The reason for sampling the soil down to 60 cm in the soil profile is because this depth best reflects the
coffee plant’s water status, due to the relation between the vegetative vigor of coffee plants and soil
moisture in the root zone [33].

Figure 1. Approach used for sampling the roots of 43 C. canephora genotypes, including soil sampling
(A), washing (B) and roots used for scanning (C).

The samples were placed in plastic bags, sealed, and stored under−10 ◦C until further assessments.
The samples were thereafter washed (Figure 1B) under running water in a 30 mesh (0.595 mm) sieve
in order to separate the roots from the soil (Figure 1C). The few roots with more than 3 mm were
excluded from the data set as they were considered outliers. The roots were thereafter scanned with a
Nikon 24.1 MP camera model D5200 (Tokyo, Japan), and the images were taken 50 cm above the roots.
The resulting images were analyzed with the Safira software version 1.1 [34]. The following traits were
assessed: root length density (mm cm−3), root volume (mm3 cm−3), root superficial area (mm2 cm−3),
and root diameter (mm).

Coffee tree height was assessed with a measuring tape, from base to top. Crop yield was assessed
as coffee production per unit of area. It is important to note that the coffee plantlets were transplanted
in 2014 and assessments were performed in 2018, wherein the coffee tree height was related to the
four-year-old plagiotropic branches. In relation to crop yield, as the coffee plantlets were transplanted
in May 2014, the crop yield was assessed annually for three years (2015, 2016, and 2017), and the
average crop yield within these three years was used to calculate the correlations with root traits.
For both coffee tree height and crop yield, three plants in each experimental unit were assessed in the
three replicates, totaling nine plants for each genotype.

2.3. Statistical Analyses

In order to check the analysis of variance assumptions, the data normality was tested by the
Shapiro-Wilk test (p > 0.05) and the homogeneity of variances by the Bartlett’s test (p > 0.05) for each
soil depth. As the assumptions were not met, data transformation was performed according to the
method of Box and Cox [35], using a lambda value (λ) of −1 and the transformed data (Y) equals
to Y−1 = 1/Y1. After data transformation, the assumptions of normality and homogeneity were met.
Thereafter, an analysis of variance for the root traits (variables) versus different coffee genotypes
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(treatments), considering the different soil depths as different environments, and a Scott–Knot test
(p < 0.05) were performed in R version 3.6.1 [36].

In order to group the coffee genotypes according to the assessed traits (root length density,
root volume, root superficial area and root diameter), Mahalanobis distance was calculated and used
as a measure for dissimilarity. Cluster analysis was then performed by two methods, the Tocher
optimization method [37] and the hierarchical unweighted pair group method using arithmetic
averages (UPGMA) [38]. The relative contribution of each trait for the diversity within 43 genotypes
was analyzed according to Singh [39]. Moreover, Pearson correlation between root traits and both
plant height and crop yield were calculated. The analyses were performed in the software Genes [40].

3. Results

3.1. Root Length Density, Volume, Superficial Area, and Root Diameter

Most roots sampled were either short or average-sized (Table 3), with an average mean value for
all genotypes and soil depths of 321.13 mm cm−3. The short roots were mostly whitish colored with less
than 1 mm diameter. Significant differences were observed between the 43 genotypes of C. canephora
and the six soil depths for root length density (Table 3), root volume (Table 4), root superficial area
(Table 5), and root diameter (Table 6). There was no interaction between coffee genotype and soil
depth for root diameter (Table 7), suggesting different root distribution patterns within the assessed
coffee genotypes.

Table 3. Average root length density of 43 C. canephora genotypes in six soil depths.

Root Length Density (mm cm−3)

ID 0–10 cm 10–20 cm 20–30 cm 30–40 cm 40–50 cm 50–60 cm

1 598.67 Ab 252.46 Bc 408.23 Aa 191.19 Bb 191.80 Bb 212.70 Bb
2 458.86 Ac 327.43 Ac 108.47 Bc 69.29 Bc 76.75 Bc 118.53 Bc
3 958.89 Aa 753.29 Aa 392.22 Ba 253.41 Bb 152.59 Cc 154.06 Cc
4 1223.22 Aa 524.14 Bb 305.28 Cb 237.74 Cb 167.39 Cc 143.97 Cc
5 1151.99 Aa 361.13 Bb 246.98 Bb 249.24 Bb 55.82 Cc 53.53 Cd
6 1038.86 Aa 269.18 Bc 213.55 Bb 206.88 Bb 200.18 Bb 134.21 Bc
7 684.90 Ab 222.33 Bc 244.23 Bb 189.09 Bb 140.92 Bc 137.38 Bc
8 577.47 Ab 269.98 Bc 200.29 Bc 297.53 Bb 375.66 Ba 320.27 Ba
9 1041.41 Aa 385.07 Bb 143.48 Cc 219.99 Cb 159.67 Cc 92.93 Cd

10 886.69 Aa 332.29 Bc 115.42 Cc 101.29 Cc 156.29 Cc 120.78 Cd
11 643.51 Ab 287.73 Bc 169.73 Cc 131.66 Cc 126.92 Cc 107.75 Cc
12 808.37 Aa 272.60 Bc 126.21 Cc 105.56 Cc 84.38 Cc 133.20 Cc
13 1038.56 Aa 533.22 Bb 331.69 Cb 276.04 Cb 150.67 Dc 85.54 Dd
14 954.66 Aa 902.55 Aa 654.78 Aa 610.63 Aa 410.51 Ba 419.35 Ba
15 844.12 Aa 295.78 Bc 359.16 Ba 209.02 Bb 210.17 Bb 226.18 Bb
16 545.08 Ab 208.68 Bc 187.97 Bc 150.98 Bc 158.23 Bc 156.50 Bc
17 924.88 Aa 532.41 Bb 155.40 Cc 108.92 Cc 98.96 Cc 125.60 Cc
18 913.18 Aa 333.6 Bc 224.36 Bb 144.61 Cc 150.83 Cc 135.34 Cc
19 894.91 Aa 664.16 Aa 429.52 Ba 212.14 Cb 179.70 Cc 200.67 Cb
20 439.05 Ac 176.23 Bd 94.50 Bc 222.94 Bb 135.48 Bc 159.05 Bb
21 945.22 Aa 364.88 Bb 121.98 Cc 165.99 Cc 142.98 Cc 101.70 Cd
22 532.43 Ab 317.34 Bc 151.95 Cc 100.55 Cc 125.68 Cc 99.04 Cd
23 347.84 Ac 205.32 Bc 173.45 Bc 154.13 Cc 107.64 Cc 78.54 Cd
24 1107.84 Aa 459.30 Bb 280.22 Bb 134.91 Cc 155.38 Cc 155.43 Cc
25 1127.29 Aa 737.96 Ba 527.82 Ca 255.99 Cb 332.09 Ca 295.84 Ca
26 850.98 Aa 339.77 Bc 256.65 Bb 56.94 Cc 103.93 Cc 138.18 Cc
27 623.14 Ab 190.75 Bd 138.87 Bc 102.75 Bc 69.45 Cc 39.56 Cd



Agronomy 2020, 10, 1394 6 of 17

Table 3. Cont.

Root Length Density (mm cm−3)

ID 0–10 cm 10–20 cm 20–30 cm 30–40 cm 40–50 cm 50–60 cm

28 528.74 Ab 178.76 Bd 156.95 Bc 142.98 Bc 142.76 Bc 129.70 Bc
29 441.14 Ac 257.89 Bc 144.72 Cc 136.42 Cc 97.82 Dc 56.67 Dd
30 870.18 Aa 407.97 Bb 317.66 Bb 232.64 Cb 224.72 Cb 167.00 Cb
31 334.02 Ac 119.36 Bd 206.52 Ab 132.78 Bc 109.45 Bc 230.45 Ab
32 1411.17 339.12 Bc 314.49 Bb 225.44 Bb 182.07 Cb 141.21 Cc
33 493.82 Ab 143.53 Bd 118.96 Bc 123.64 Bc 109.14 Bc 70.62 Bd
34 799.76 Aa 392.70 Bc 160.75 Cc 133.34 Cc 140.51 Cc 139.59 Cc
35 935.75 Aa 414.44 Bb 234.07 Cb 221.27 Cb 187.26 Cb 192.63 Cb
36 710.54 Ab 405.30 Bb 235.65 Cb 192.58 Cb 137.05 Cc 184.30 Cb
37 941.13 Aa 207.82 Bc 157.60 Bc 143.09 Bc 94.33 Bc 111.28 Bc
38 1138.42 Aa 440.56 Bb 217.78 Cb 180.90 Cc 295.66 Ba 183.65 Cb
39 651.18 Ab 255.66 Bc 255.83 Bb 161.77 Cc 124.25 Cc 141.16 Cc
40 1113.61 Aa 709.92 Ba 435.70 Cb 275.21 Cb 256.85 Cb 256.94 Cb
41 1035.80 Aa 504.23 Bb 316.17 Cb 294.56 Cb 151.05 Dc 146.91 Dc
42 537.34 Aa 104.66 Bd 79.05 Bc 134.27 Bc 70.82 Bc 72.66 Bd
43 1013.91 Aa 397.49 Bb 283.02 Bb 205.45 Cb 209.41 Cb 118.23 Cc

Different lowercase letters in the same column and different uppercase letters in the same row statistically differ
from each other according to the Scott-Knott test (p < 0.05).

Table 4. Average root volume of 43 C. canephora genotypes in six soil depths.

Root Volume (mm3 cm−3)

ID 0–10 cm 10–20 cm 20–30 cm 30–40 cm 40–50 cm 50–60 cm

1 139.45 Ac 43.70 Bd 92.78 Aa 53.01 Ba 44.41 Bb 35.71 Ba
2 97.48 Ad 45.72 Bd 30.75 Cc 10.14 Cb 20.65 Cc 51.90 Ba
3 181.41 Ab 177.47 Aa 137.26 Ac 41.70 Ba 34.21 Bb 40.39 Ba
4 254.84 Ab 192.45 Aa 89.94 Bb 52.88 Ba 62.25 Bb 67.22 Ba
5 206.97 Ab 63.97 Aa 59.62 Bb 42.47 Ba 6.40 Dd 18.10 Cb
6 215.30 Ab 50.59 Aa 48.24 Bb 57.00 Ba 47.22 Bb 36.14 Ba
7 142.79 Ac 39.16 Bd 56.78 Bb 39.57 Ba 24.73 Bc 28.36 Bb
8 118.40 Ac 72.91 Bc 45.07 Bc 56.52 Ba 122.75 74.61 Ba
9 208.03 Ab 94.18 Bb 66.22 Bb 39.61 Ba 41.64 Bb 65.60 Ba

10 132.91 Ac 77.84 Bc 40.06 Bc 17.24 Cb 43.60 Bb 21.14 Cc
11 146.55 Ac 57.12 Bc 42.72 Bc 21.12 Bb 24.96 Bc 20.76 Bb
12 158.97 Ac 93.18 Bb 29.87 Bc 14.35 Bb 14.67 Bd 52.17 Ca
13 184.40 Ab 82.86 Bb 72.23 Cb 60.58 Ca 23.47 Dc 30.66 Db
14 170.40 Ab 169.08 Aa 128.91 Aa 138.04 Aa 112.82 Aa 62.72 Ba
15 189.33 Ab 109.41 Ab 95.05 Aa 45.47 Ba 53.83 Bb 69.09 Ba
16 153.04 Ac 55.08 Bc 48.52 Bb 32.06 Ba 35.29 Bb 42.49 Ba
17 207.37 Ab 144.26 Aa 51.33 Bb 25.83 Cb 30.80 Cc 25.06 Cb
18 131.88 Ac 61.09 Bc 46.63 Cc 18.28 Cb 18.25 Cc 23.70 Cb
19 209.27 Cb 132.40 Ab 66.20 Bb 40.53 Ba 31.33 Bc 34.53 Ba
20 77.74 Ad 34.06 Bd 17.49 Bc 45.50 Aa 25.72 Bc 63.76 Aa
21 243.65 Ab 94.60 Bb 49.29 Cc 30.09 Cb 36.35 Cc 32.02 Cb
22 104.91 Ad 50.30 Bc 27.48 Cc 19.60 Cb 16.10 Cc 11.80 Cc
23 67.69 Ad 84.44 Ab 28.47 Bc 50.12 Aa 48.20 Ab 11.86 Bc
24 161.48 Ac 101.61 Ab 66.99 Bb 25.19 Bb 33.81 Bb 38.65 Ba
25 198.28 Ab 146.62 Aa 88.86 Ba 46.28 Ba 71.60 Ba 70.19 Ba
26 194.94 Ab 87.04 Bc 71.30 Bb 8.95 Cb 21.27 Cc 63.81 Ba
27 127.98 Ac 39.23 Bd 45.38 Bc 17.21 Cb 10.92 Cd 11.18 Cc
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Table 4. Cont.

Root Volume (mm3 cm−3)

ID 0–10 cm 10–20 cm 20–30 cm 30–40 cm 40–50 cm 50–60 cm

28 128.08 Ac 40.12 Bd 34.61 Bc 34.16 Ba 25.02 Bc 37.52 Ba
29 69.87 Ad 52.54 Ac 29.72 Bc 33.77 Ba 40.24 Bc 7.67 Cc
30 215.35 Ab 97.90 Bb 72.05 Bb 35.62 Ca 55.37 Bb 36.50 Ca
31 86.23 Ad 28.13 Bd 32.45 Bc 48.67 Ba 30.53 Bc 68.58 Aa
32 443.29 Aa 70.35 Bc 69.37 Bb 70.23 Ba 45.69 Bb 28.38 Cb
33 133.90 Ac 32.03 Bd 22.45 Bc 26.68 Bb 24.01 Bc 12.06 Bc
34 148.04 Ac 92.20 Bc 34.17 Bc 64.90 Ba 36.05 Bc 49.08 Ba
35 219.62 Ab 65.81 Bc 56.99 Bb 40.46 Ba 29.57 Bc 33.82 Ba
36 158.61 Ac 101.46 Ab 41.31 Bc 49.75 Ba 32.27 Bc 49.70 Ba
37 208.15 Ab 39.48 Bd 19.81 Bc 30.13 Ba 25.23 Bc 18.64 Bb
38 210.20 Ab 118.58 Bb 35.63 Cc 35.34 Ca 43.58 Cb 58.47 Ca
39 162.86 Ac 54.46 Bc 41.93 Bc 33.50 Ba 25.03 Bc 50.54 Ba
40 220.27 Ab 125.44 Ab 98.37 Bb 82.77 Ba 48.32 Bb 45.25 Ba
41 251.32 Ab 103.31 Bb 64.03 Cb 56.82 Ca 39.69 Cb 34.25 Ca
42 112.76 Ac 24.20 Bd 17.52 Bc 11.23 Bb 8.26 Bd 11.15 Bc
43 282.15 Ab 165.73 Aa 50.08 Bc 44.80 Ba 55.55 Bb 25.72 Bb

Different lowercase letters in the same column and different uppercase letters in the same row statistically differ
from each other according to the Scott-Knott test (p < 0.05).

Table 5. Average root superficial area of 43 C. canephora genotypes in six soil depths.

Root Superficial Area (mm2 cm−3)

ID 0–10 cm 10–20 cm 20–30 cm 30–40 cm 40–50 cm 50–60 cm

1 1119.52 Aa 340.73 Bc 479.65 Bb 311.03 Bb 297.10 Bb 286.74 Bb
2 671.87 Ac 411.53 Bc 184.47 Cc 89.26 Cc 122.37 Cc 246.17 Cb
3 1342.31 Aa 1209.47 Aa 668.95 Ba 342.59 Cb 228.01 Cc 258.40 Cb
4 1761.73 Aa 994.44 Ba 524.58 Cb 380.70 Cb 293.16 Cb 289.08 Cb
5 1571.17 Aa 497.98 Ac 420.11 Bb 335.19 Bb 65.38 Cc 100.15 Cc
6 1518.57 Aa 382.24 Bc 326.79 Bc 334.58 Bb 317.67 Bb 218.98 Bb
7 985.56 Ab 305.62 Bd 373.46 Bb 276.44 Bb 196.48 Bc 197.99 Bc
8 852.72 Ab 441.67 Bc 307.49 Bc 427.98 Bb 618.60 Aa 505.74 Ba
9 1511.61 Aa 599.40 Bb 240.40 Cc 310.70 Cb 249.68 Cb 189.45 Cc

10 1138.91 Aa 519.54 Bc 212.45 Cc 141.90 Cc 257.78 Bb 165.41 Cc
11 981.87 Ab 410.42 Bc 316.26 Bc 175.54 Cc 186.52 Cc 155.21 Cc
12 1161.38 Aa 462.23 Bc 198.85 Cc 131.95 Cc 117.55 Cc 252.56 Cb
13 1436.98 Aa 702.89 Bb 478.14 Cb 404.17 Cb 197.90 Dc 153.64 Dc
14 1324.95 Aa 1279.19 Aa 953.64 Aa 795.00 Aa 661.81 Ba 541.55 Ba
15 1284.13 Aa 567.63 Bb 597.01 Ba 318.89 Cb 342.14 Cb 402.29 Ca
16 912.52 Ab 340.19 Bc 291.56 Bc 225.26 Bc 239.60 Bb 256.00 Bb
17 1355.46 Aa 853.76 Ba 274.34 Cc 171.25 Cc 137.15 Cc 186.58 Cc
18 1149.74 Aa 459.71 Bc 326.75 Bc 174.73 Cc 179.76 Cc 188.08 Cc
19 1344.29 Aa 949.55 Aa 559.85 Ba 300.47 Cb 247.82 Cc 274.31 Cb
20 596.36 Ac 255.65 Bd 134.17 Bc 321.61 Bb 193.16 Bc 311.98 Bb
21 1526.81 Aa 584.46 Bb 189.16 Cc 230.20 Cc 230.56 Cc 175.50 Cc
22 735.33 Ab 418.15 Bc 208.48 Cc 146.86 Cc 152.82 Cc 117.64 Cc
23 503.41 Ac 391.36 Ac 234.10 Bc 224.70 Bc 204.52 Bc 102.76 Bc
24 1418.18 Aa 671.54 Bb 415.63 Cb 191.43 Cc 233.44 Cb 249.29 Cb
25 1555.80 Aa 1054.59 Aa 713.45 Ba 355.22 Bb 481.37 Ba 463.25 Ba
26 1328.02 Aa 548.88 Bc 429.96 Bb 75.08 Cc 155.60 Cc 265.21 Bb
27 925.87 Ab 280.76 Bd 230.19 Bc 139.76 Bc 92.45 Cc 61.10 Cc
28 817.34 Ab 276.28 Bd 239.70 Bc 227.28 Bc 214.10 Bc 210.39 Bb
29 578.51 Ac 382.57 Ac 215.90 Bc 212.17 Bc 189.10 Bc 70.72 Cc
30 1384.86 Aa 641.57 Bb 567.97 Ba 305.39 Cb 349.21 Cb 250.36 Cb
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Table 5. Cont.

Root Superficial Area (mm2 cm−3)

ID 0–10 cm 10–20 cm 20–30 cm 30–40 cm 40–50 cm 50–60 cm

31 542.14 Aa 144.26 Bd 213.46 Bc 238.77 Bb 180.93 Bc 374.49 Aa
32 1879.78 Aa 486.59 Bc 461.56 Bb 359.13 Bb 293.41 Cb 202.88 Cc
33 779.34 Ab 210.92 Bd 169.13 Bc 185.81 Bc 166.28 Bc 97.03 Bc
34 1136.64 Aa 328.50 Bc 243.13 Cc 279.35 Cb 220.12 Cc 254.56 Cb
35 1407.29 Aa 540.49 Bb 371.29 Bb 314.73 Bb 243.98 Bb 268.54 Bb
36 1060.10 Aa 622.37 Bb 329.52 Cc 306.99 Cb 218.98 Cc 298.66 Cb
37 1418.26 Aa 295.47 Bd 200.46 Bc 216.26 Bc 158.65 Bc 128.33 Bc
38 1589.96 Aa 720.32 Bb 285.75 Cc 285.86 Cb 264.60 Cb 320.76 Cb
39 1041.81 Ab 384.43 Bc 343.62 Bc 239.21 Bb 181.00 Bc 264.06 Bb
40 1606.03 Aa 962.71 Ba 631.57 Cc 397.19 Cb 378.15 Cb 352.45 Ca
41 1614.90 Aa 750.93 Bb 528.71 Cb 417.36 Cb 280.94 Cb 232.87 Cb
42 804.68 Ab 163.67 Bd 121.59 Bc 89.85 Bc 101.34 Bc 95.77 Bc
43 1694.49 Aa 787.90 Bb 392.30 Cb 308.25 Cb 328.07 Cb 177.76 Cc

Different lowercase letters in the same column and different uppercase letters in the same row statistically differ
from each other according to the Scott-Knott test (p < 0.05).

Table 6. Average root diameter of 43 C. canephora genotypes in six soil depths.

Root Diameter (mm)

ID 0–10 cm 10–20 cm 20–30 cm 30–40 cm 40–50 cm 50–60 cm

1 0.79 Aa 0.73 Ab 0.77 Aa 0.73 Aa 0.71 Aa 0.74 Aa
2 0.88 Aa 0.73 Ab 0.71 Ab 0.66 Aa 0.68 Aa 0.7 Aa
3 0.94 Aa 1.01 Aa 0.92 Aa 0.75 Ba 0.73 Ba 0.74 Ba
4 0.95 Aa 0.84 Aa 0.88 Aa 0.79 Aa 0.79 Aa 0.79 Aa
5 0.82 Aa 0.88 Aa 0.85 Aa 0.82 Aa 0.62 Ba 0.66 Ba
6 1.01 Aa 0.79 Bb 0.77 Ba 0.76 Ba 0.73 Ba 0.71 Ba
7 0.76 Aa 0.79 Ab 0.64 Ab 0.77 Aa 0.75 Aa 0.74 Aa
8 0.9 Aa 0.87 Aa 0.75 Ab 0.79 Aa 0.85 Aa 0.84 Aa
9 0.99 Aa 0.97 Aa 0.78 Ba 0.77 Ba 0.75 Ba 0.74 Ba

10 0.88 Aa 0.81 Ab 0.79 Aa 0.74 Aa 0.67 Aa 0.64 Aa
11 0.92 Aa 0.83 Aa 0.83 Aa 0.70 Ba 0.70 Ba 0.67 Ba
12 1.01 Aa 0.92 Aa 0.75 Bb 0.67 Ba 0.65 Ba 0.87 Aa
13 0.92 Aa 0.79 Ab 0.74 Ab 0.73 Aa 0.70 Aa 0.7 Aa
14 0.95 Aa 0.93 Aa 0.88 Aa 0.84 Aa 0.81 Aa 0.77 Aa
15 0.95 Aa 0.86 Aa 0.84 Aa 0.81 Aa 0.79 Aa 0.80 Aa
16 1.07 Aa 0.79 Bb 0.77 Ba 0.73 Ba 0.75 Ba 0.76 Ba
17 0.99 Aa 0.90 Aa 0.96 Aa 0.74 Ba 0.66 Ba 0.79 Ba
18 0.92 Aa 0.75 Bb 0.69 Bb 0.62 Ba 0.65 Ba 0.66 Ba
19 0.99 Aa 0.70 Bb 0.75 Bb 0.73 Ba 0.70 Ba 0.75 Ba
20 0.87 Aa 0.78 Ab 0.74 Ab 0.81 Aa 0.79 Aa 0.76 Aa
21 1.04 Aa 0.83 Ba 0.79 Ba 0.80 Ba 0.78 Ba 0.73 Ba
22 0.93 Aa 0.81 Ab 0.79 Aa 0.66 Ba 0.66 Ba 0.64 Ba
23 0.88 Aa 0.73 Bb 0.65 Bb 0.67 Ba 0.66 Ba 0.64 Ba
24 1.02 Aa 0.86 Ba 0.78 Ba 0.70 Ba 0.75 Ba 0.73 Ba
25 0.92 Aa 0.88 Aa 0.79 Aa 0.77 Aa 0.78 Aa 0.80 Aa
26 0.93 Aa 0.83 Aa 0.81 Aa 0.72 Aa 0.77 Aa 0.84 Aa
27 0.91 Aa 0.75 Ab 0.79 Aa 0.66 Ba 0.62 Ba 0.64 Ba
28 0.88 Aa 0.70 Bb 0.66 Bb 0.66 Ba 0.65 Ba 0.65 Ba
29 0.83 Aa 0.75 Ab 0.73 Ab 0.71 Aa 0.69 Aa 0.66 Aa
30 0.97 Aa 0.71 Bb 0.69 Bb 0.71 Ba 0.73 Ba 0.70 Ba
31 0.92 Aa 0.75 Ab 0.84 Aa 0.77 Aa 0.75 Aa 0.82 Aa
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Table 6. Cont.

Root Diameter (mm)

ID 0–10 cm 10–20 cm 20–30 cm 30–40 cm 40–50 cm 50–60 cm

32 0.94 Aa 0.79 Bb 0.97 Aa 0.97 Aa 0.91 Aa 0.76 Ba
33 1,00 Aa 0.83 Ba 0.79 Ba 0.79 Ba 0.70 Ba 0.69 Ba
34 0.91 Aa 0.76 Ab 0.84 Aa 0.83 Aa 0.79 Aa 0.81 Aa
35 0.97 Aa 0.85 Aa 0.86 Aa 0.83 Aa 0.75 Aa 0.79 Aa
36 0.94 Aa 0.82 Aa 0.78 Aa 0.78 Aa 0.75 Aa 0.77 Aa
37 1.00 Aa 0.71 Bb 0.62 Bb 0.69 Ba 0.65 Ba 0.68 Ba
38 0.85 Aa 0.91 Aa 0.84 Aa 0.79 Aa 0.84 Aa 0.88 Aa
39 0.97 Aa 0.80 Bb 0.79 Ba 0.70 Ba 0.68 Ba 0.75 Ba
40 0.97 Aa 0.92 Aa 0.59 Bb 0.71 Ba 0.70 Ba 0.70 Ba
41 0.92 Aa 0.83 Aa 0.8 Aa 0.75 Aa 0.71 Aa 0.70 Aa
42 0.79 Aa 0.70 Ab 0.66 Ab 0.66 Aa 0.64 Aa 0.65 Aa
43 1.00 Aa 0.92 Aa 0.79 Ba 0.75 Ba 0.80 Ba 0.73 Ba

Different lowercase letters in the same column and different uppercase letters in the same row statistically differ
from each other according to the Scott-Knott test (p < 0.05).

Table 7. Analysis of variance of four root traits (root length density, root volume, root superficial area,
and root diameter) for 43 genotypes of C. canephora grown in Nova Venécia, Brazil.

Mean Square

Trait Mean value Genotype Soil depth Genotype x soil depth Residue
Root length density (mm cm−3) 321.13 82.08 ** 2599.75 ** 10.79 ** 5.03

Root volume (mm3 cm−3) 71.68 14.87 ** 350.12 ** 2.76 ** 1.14
Root superficial area (mm2 cm−3) 477.79 174.31 ** 5320.79 ** 23.04 ** 10.60

Root diameter (mm) 0.79 0.06 ** 1.02 ** 0.01 0.02

The Mean Square only applies to the four columns in the right. ** Significant at p < 0.05 by the F test.

Most coffee roots were concentrated in the 0–10 and 10–20 cm depths. This layer (0–20 cm)
concentrated 61.56 % of total root length density (Table 3), 61.57% of total root volume (Table 4),
and 61.10% of total root superficial area (Table 5). Results from deeper depths were more
evenly distributed.

Three out of the four root assessments, root length density (Table 3), root volume (Table 4), and root
superficial area (Table 5), grouped the studied genotypes in four distinct groups (as the lowercase letters
ranged from a to d) based on data from all depths combined. However, considering the assessed soil
depths, the 20–30 and 30–40 cm layers formed at least three distinct groups for all four root assessments
(Tables 3–6).

3.2. Cluster Analyses

Coffee genotypes were grouped into four different groups (Figure 2), considering a cut-off point of
38% of dissimilarity in the dendogram, as recommended by Mojena [31]. In order to better understand
the five different groups formed, the mean averages for root length density, root superficial area,
and root volume were calculated for each group (Figure 3). Group I was composed of genotypes ID 1,
2, 5, 6, 7, 9, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 26, 27, 28, 29, 31, 33, 34, 36, 37, 39, and 42. This group
differed from the others with 39% of accuracy. Root length density (Figure 3A), root volume (Figure 3B)
and root superficial area (Figure 3C) were lower in this group than all others. Furthermore, it allocated
genotypes ID 21 and 34, which showed the highest similarity between two genotypes. Within group I,
the genotype ID 31 concentrated 20.35% of total root length density (Figure 3B), 23.28% of root volume
(Figure 3D) and 22.11% of root superficial (Figure 3F) area in the 50–60 cm soil depth.
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Figure 2. Dissimilarity within 43 C. canephora genotypes using the Mahalanobis distance and the
unweighted pair group method with arithmetic mean (UPGMA), considering four root traits (root length
density, root volume, root superficial area, and root diameter) and six soil depths (0–10, 10–20, 20–30,
30–40, 40–50, and 50–60 cm).

Figure 3. Mean values (A,C,E) and relative distribution within each group (B,D,F) for root length
density (A,B), root volume (C,D), and root superficial area (E,F) in six soil depths (0–10, 10–20, 20–30,
30–40, 40–50, and 50–60 cm).
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Group II was composed of genotypes ID 3, 4, 8, 13, 15, 19, 24, 30, 35, 38, 40, 41, and 43. Group III
was composed only of genotype ID 32, which had the highest root volume (Figure 3C), mainly
concentrated in the topsoil (Figure 3D). The root traits of group IV (comprising genotypes ID 14 and
25) were more evenly distributed within the six soil depths than all other groups (Figure 3). Group IV
differed from all other groups, with a dissimilarity to all other genotypes over 99%. This group had the
highest root length density (Figure 3A,B) and root superficial area (Figure 3E,F).

It is important to note the results for the seed-propagated genotype (genotype 39) in relation to
all others, propagated by stem cutting. This genotype is within group I, the group with the highest
number of different coffee genotypes (Figure 2). Intermediate values were found for the root traits in
the seed-propagated genotype, in which other genotypes (propagated by stem cutting) had higher,
similar, and lower values.

The Tocher clustering method formed ten distinct groups (Table 8). The higher number of groups
indicates a broad genetic diversity between coffee genotypes, as the method seeks to minimize
intragroup distance and maximize intergroup distance. Most (25 out of 43) of the genotypes were
located within groups I and II. Group III was composed of five coffee genotypes (ID 02, 27, 29, 33,
and 42). Groups IV, V, VI, VII, VIII, and IX were composed of two genotypes each, and group X was
composed of only one coffee genotype (31). Root superficial area, root length density, root volume
and root diameter had a relative contribution for the diversity within genotypes of 43.1%, 33.9%,
and 6.5%, respectively.

Table 8. Comparison clusters by each clustering method using the Mahalanobis distance (UPGMA
and Tocher methods) of 43 genotypes of C. canephora considering four root traits (root length density,
root volume, root superficial area, and root volume) and six soil depths (0–10, 10–20, 20–30, 30–40,
40–50, and 50–60 cm).

Groups (Tocher) Genotype ID Corresponding Group (UPGMA)

I 21, 34, 26, 16, 17, 12, 39, 36, 20, 11, 10, 06, 05, 07, 24 *, 37

I
III 27, 29, 02, 33, 42
VI 23, 28

VIII 18, 22
X 31

II 19, 40, 13, 01 *, 30, 41, 03, 08, 43
IIIV 04, 15

V 35, 38

IX 09 *, 32 III

VII 14, 25 IV

* Genotype 24 was placed in group II by UPGMA, genotypes 1 and 9 were both placed in group I by UPGMA.

3.3. Root Traits, Plant Height and Crop Yield Correlations

There were significant positive correlations between root traits and plant height, as well as root
traits and crop yield (Figure 4), with different levels of significance. However, such correlations were
weak (r < 0.3) or moderate (0.3 < r < 0.6). Within root traits, the highest correlation was found between
root length density and superficial area (0.99), followed by root superficial area and root volume (0.96).
The lowest correlations were found for root diameter and plant height (0.25), rot diameter and crop
yield (0.25), and plant height and crop yield (0.22).
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Figure 4. Correlation root length density, root volume, root superficial area, root diameter, plant height,
and crop yield from 43 C. canephora. * Significant at p < 0.1, ** significant at p < 0.05, *** significant at
p < 0.01. The red lines indicate the trend lines between variables. RLD: root length density, RV: root
volume, RSA root superficial area, RD: root diameter, PH: plant height, CY: crop yield.

4. Discussion

4.1. Root Length Density, Volume, Superficial Area, and Root Diameter

Short or average-sized (Table 3) roots are considered absorbing roots [41]. In ideal conditions for
root development, coffee genotypes grow efficiently with absorbing roots concentrated within the
topsoil (down to 30 cm deep). However, under adverse conditions, such as severe drought, coffee
genotypes with deeper roots may access more water and thus be better adapted to such conditions [42].
Studies from Ronchi et al. [43] and Isaac et al. [44] indicated that the root system is directly related to
crop adaptation and crop yield.

The root distribution patterns, which were concentrated in the topsoil, are in accordance with
the work of Partelli et al. [45], who found about 60% of coffee roots within soil depths of 0–20 and
25–50 cm. Furthermore, in the subsoil, the 20–30 and 30–40 cm layers formed at least three distinct
groups for all four root assessments (Tables 3–6). Similarly, Defrenet et al. [46] assessed root biomass
and necromass in a coffee agroforestry system and found that most roots were fine and located in the
topsoil. Crop breeding for potentially promising coffee genotypes under water stress should thus be
performed in soil depths of 40 cm or deeper.

It is also important to note that deeper soil depths generally imply higher soil resistance to root
penetration due to higher soil compaction [47], although coffee roots may penetrate down to four
meters in the soil profile [46]. Another possible factor related to higher resistance to root penetration
in the soil subsurface is the higher aluminum content, which is responsible for soil acidity [48].
The above-mentioned relationships are in accordance with this study results, as the 20–40 cm layer
presented higher Al content (Table 1) and lower root abundancy (Tables 3–6) than the topsoil.

According to Rao et al. [49], crop adaptation for infertile soils may be achieved from two options:
either the growing medium may be changed or the plant genotype may be bred. Considering the
current concerns about climate change and soil degradation, both options should be integrated [19].
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According to Gould et al. [50], architectural root traits, as the ones studied in this work, positively impact
soil structure, forming effective hydraulic pathways in the soil, and promoting a better environment
for water and nutrients uptake.

4.2. Cluster Analyses

The cluster analysis suggests that group IV comprises promising genotypes to cope with water
stress conditions, as their roots were more evenly distributed within soil depths, and it had consequently
higher root abundance in deeper layers in comparison with groups I, II and III. The deeper root
abundance in C. canephora genotypes are commonly related to drought tolerance due to the larger
root dry mass [22]. Thus, genotypes from group IV (ID 14 and 25) may be a promising alternative for
C. canephora breeding due to their root system distribution.

The intermediate root traits values for the seed-propagated genotype (39), suggest that the root
system development is more related to the plant genetic than to the propagation method, as other
genotypes (propagated by stem cutting) had higher, similar, and lower values. Partelli et al. [7] found
similar results, with no difference in the root system distribution of C. canephora plants propagated by
seeds in relation to plants propagated by stem cutting.

According to Hair Jr. et al. [51], cluster analyses may be divided in hierarchical and non-hierarchical
methods. Ideally, studies should consider both approaches and thereafter ensure a more detailed
result. Thus, apart from the UPGMA clustering (hierarchical method), this study also tested the Tocher
optimization method (Table 8) by using the Mahalanobis distance as the genetic dissimilarity between
genotypes. The Tocher method had been successfully used in C. canephora in previous studies [13,14,52]
to identify promising genotypes with greater genetic variability.

Both clustering methods led to somehow similar results (Table 8). Genotypes ID 14, 25, and 32
were grouped separately in both methods, which strengthens the suggestion that they are promising
alternatives for C. canephora breeding due to their distinct root system distribution. The UPGMA
groups I and II were divided into subgroups by the Tocher method. The UPGMA group I, for example,
were parted into five groups by the Tocher method, in which only genotypes 01 and 24 did not
corresponded within both methods. Likewise, the UPGMA Group II were parted into three Tocher
groups, whereas only the genotype 09 did not match the corresponding group. Similarities between
the Tocher optimization method and the hierarchical unweighted pair group method using arithmetic
averages (UPGMA) were also found by Giles et al. [31] and Dubberstein et al. [53]. In relation to
the relative contribution of each root trait, as the root diameter has the lowest contribution (6.55%),
it should not be considered as a main root trait for C. canephora breeding.

4.3. Root Traits, Plant Height and Crop Yield Correlations

The positive correlation between root traits and coffee yield suggests that the more abundant
the root systems, higher coffee yield. As the correlations between root traits and plant height were
weak or moderate, the root system of C. canephora genotypes should not be inferred merely based on
plant height. Moreover, the correlation between plant height and coffee yield was weak. According to
Carvalho et al. [54], plant height is more related to environmental aspects than to crop yield.

4.4. Main Limitations of the Study

There are a few limitations in this study which should be noted. Firstly, there was no water
stress in the assessed coffee trees, as plants were irrigated by drip irrigation. The introduction of
any stress may therefore cause differences in crop yield and root distribution. Secondly, neither soil
porosity nor soil resistance to penetration have been assessed. It is well known that the soil structure
and aggregation are closely related to root distribution and to the potential of water storage in the
soil and the extraction by plant roots. Thirdly, there was only one genotype propagated by seeds,
which makes it difficult to infer about the differences between genotypes propagated by stem cutting



Agronomy 2020, 10, 1394 14 of 17

and by seeds. Future works should therefore fill these gaps in order to consolidate the knowledge
about the relationship between root abundance and drought tolerance.

5. Conclusions

In this work, the diversity of root traits in 43 C. canephora genotypes and its correlation with plant
height and crop yield were analyzed. Most roots were concentrated in the topsoil (0–20 cm) for all
assessed genotypes. Considering the 30–60 cm depth, genotypes ID 14, 25, 31, and 32 had more roots
than most others coffee genotypes, which suggest they are promising under adverse environmental
conditions, such as drought.

Root traits significantly varied within the genotypes propagated by stem cutting, and the
seed-propagated genotype (39) had intermediate values, indicating that root development is mostly
related to the plant genetic background than to the propagation method.

There were positive correlations between the assessed root traits and both crop yield and plant
height. The results of this work may contribute to the overall cultivation of C. canephora, especially for
crop breeding towards abiotic stress tolerance.
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