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Abstract

Insurance pricing nowadays is getting more and more interesting and challenging due to
the fact that the dimension of analysable data is evolutionarily exploding. It is an urgent
call for insurers to reconsider how to deal with the data more accurately and precisely.
To implement pricing sophistication in motor insurance products, we apply cutting edge
machine learning techniques including penalized GLM and boosting methods, which help
us identify the important features among massive amount of candidate variables, and
detect potential interactions without trying the endless two-way combinations manually.
In order to sufficiently make use of these methods, we need to deeply understand the
research objective, preliminary assumptions and statistical backgrounds.
Although there is some evidence indicating the existence of higher predictive power of
machine learning models compared with traditional GLM (Generalized Linear Models),
GLM is more convenient and interpretable, especially for multiplicative models. GLM
model is easier to be demonstrated to stakeholder, therefore we still achieve our risk
models in GLM, but absorbing the insights from our machine learning results.
The evaluation of models is done by progression, it is generally performed by residual
analysis of the training or validation dataset, and testing errors for the holdout dataset.
After peer review, we apply some adjustment in each model, to get models that are
significant and robust. They are expected to have high predictive power in the out-of-
sample data, thus can be used in the future.

Keywords: motor insurance, machine learning, pricing sophistication, penalized
GLM, boosting, GLM, residual analysis, training, validation, holdout
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Resumo

O pricing na atividade seguradora está a tornar-se cada vez mais interessante e desafi-
ador pelo facto de a dimensão dos dados a analisar estar a crescer de forma explosiva.
Torna-se assim urgente para as seguradoras reconsiderar a forma de lidar com este vol-
ume de dados.
Para implementar modelos sofisticados de pricing para produtos de seguro automóvel,
aplicámos técnicas de machine learning, incluindo modelos GLM penalizados e métodos
de boosting, que ajudam a identificar as características mais importantes de entre uma
grande quantidade de variáveis candidatas. Estes métodos também permitem detetar
potenciais interações sem testar as inúmeras combinações bidimensionais. Para um uso
eficiente desses métodos, é necessário compreender o objetivo do modelo, as hipóteses
que o suportam e dominar as metodologias estatísticas.
Embora haja alguma evidência de um maior poder preditivo dos modelos baseados em
machine learning quando comparados com os tradicionais GLM (Modelos Lineares Gen-
eralizados), estes últimos beneficiam de uma estrutura (especialmente para modelos mul-
tiplicativos), mais conveniente e mais interpretável. O modelo GLM é mais fácil de ex-
plicar às partes interessadas o que nos levou a utilizar os GLM na modelação do risco,
mas absorvendo os ensinamentos dados pelos modelos de machine learning.
A avaliação dos modelos é realizada pela análise dos resíduos quer na fase de treino quer
de validação quer ainda de teste.
Após a revisão pela equipa, aplicam-se alguns ajustes em cada modelo para reforçar a
sua significância e a sua robustez. Espera-se que eles tenham alto poder preditivo nos
dados fora da amostra e possam, portanto, ser usados no futuro.

Palavras-chave: seguro automóvel, machine learning, modelos sofisticação de pric-
ing, modelos GLM penalizados, boosting, GLM, análise dos resíduos, treino, validação,
teste
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Chapter 1

Introduction

This is a technical report of the internship work at Liberty Seguros®1 dedicated in the
“Portugal Auto Risk Modelling Project” during March 2020 to July 2020, at Liberty Mu-
tual Insurance Western European Market. This exciting high profile project consists of
different sub tasks, including data preparation, deciding risk modelling approach, build-
ing risk technical model, etc.

1.1 Motivation

This project is aimed at performing the best practice of pricing analysis, with the ambi-
tious goal of transforming how pricing is done in WEM2 by implementing cutting edge
pricing models, leading to unlock the profit potential on WEM accounts.

1.2 Objectives

The mains tasks of this project are:

• Incorporate best practice pricing and machine learning techniques, develop best in
class risk models collaborating with actuaries and data scientists across WEM, US
and global teams.

1Branch of Liberty Mutual Insurance in Portugal.
2Western European Market
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Xu Zhifeng CHAPTER 1. INTRODUCTION

• Work closely with key stakeholders in the business to deliver the optimal rates for
each distribution channel.

To be more specific, in the first 1.5 to 2 months, the task is to learn about the Portuguese
auto insurance business, investigate existing modelling SAS project and update datasets,
assist claims analysis to inform modelling strategy, data reconciliation, data enrichment
from external sources, preliminary feature engineering, process data and create files for
statistical softwares. The data enrichment and process part is continuously progressing
according to our modelling requirements.
In the following 2 months, the main task is to build machine learning model to detect
potential important features and interactions. At the same time model frequency and
severity for different perils as a team in GLM.
The last 2 months is for the technical model collaboration of GLM and machine learning
results, preparing impact analysis and proposal presentation to stakeholders.

1.3 Structure

Chapter 2 is the summary of Liberty’s main product’s coverage, and some essential
information of our data. The core methodology and practice procedure of machine
learning can be found in chapter 3. In this chapter we use machine learning to do features
and interactions selection, root in penalized GLM and extreme gradient boosting. The
sound background of GLM models is in chapter 4, including detail of the general models
and complex components. Following chapter 5 is for the technical model collaboration
procedure, for perils separate frequency and severity models, we combine them in this
chapter, for perils models as a whole, we address the final modelling decision before
restricted models. The last chapter is the conclusion of this project.

2



Chapter 2

Book Structure and Data

There are various products under auto insurance sector of Liberty Seguros, “Liberty So-
bre Rodas” [LibertySeguros, 2019b] and “Liberty 2 Rodas”[LibertySeguros, 2019a] have
the biggest market share. Here we introduce the product book structure of Liberty by
referencing general and special conditions in product “Liberty Sobre Rodas”.

2.1 Coverage

In table 2.1 we have the abbreviation of coverage (cobertura in Portuguese), and the
English coverage names of them. Under each coverage, there are one or several covers
(garantias in Portuguese). The covers information can be found in appendix A.

Table 2.1: List of coverage abbreviations with description

Portuguese abbreviation Coverage name in English

RC1 Third Party Liability
CCC Crash, Collision and Rollover
FRB Theft or Robbery
FN Natural Phenomena
AM Malicious Acts
IRE Fire, Lightning and Explosion
PT Total Loss

Continued on next page

1Including covers for property damage and personal injury
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Xu Zhifeng CHAPTER 2. BOOK STRUCTURE AND DATA

Table 2.1 – continued from previous page

Portuguese abbreviation Coverage name in English

QIV_L Broken Windscreen
AVPJ Roadside Assistance and Legal Protection
OCP Personal Accident
BAG Baggage
PP Personal Protection
OUT Convention or Agreement between Insurers
VS_L Vehicle Replacement

2.1.1 Main Covers

The perils we modelled in our GLM are considered as main covers. We choose the perils
by the aggregate loss. The five perils we chose add up to more than 95 % of loss in the
past 5 years.

Third Party Liability Property Damage

Losses ensuing from damage or injury to movable or immovable property or animals who,
as a result of an incident covered by this contract, suffers damage or injury that entitles
them to compensation or indemnification under the terms of civil law and this policy.

Third Party Liability Personal Injury

Losses ensuing from injury to physical or mental health for anyone who, as a result
of an incident covered by this contract, suffers damage or injury that entitles them to
compensation or indemnification under the terms of civil law and this policy.

Crash, Collision and Rollover

The following definitions apply for the purposes of this cover:
Collision: when the vehicle strikes any other object in motion;
Crash: when the vehicle strikes any other stationary object or the vehicle is struck while
stationary;

4
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Rollover: when the vehicle is no longer in its normal position, but not as the result of a
crash or collision.

Broken Windscreen

Through this Special Condition, Liberty Seguros covers the cost of repairs or replacement
of damage resulting from broken glass, or the equivalent in synthetic material, in the
windscreen, the rear window, the sunroof, the side windows or the panoramic sunroof.

Theft or Robbery

When this Special Condition is contracted, Liberty Seguros covers the cost of damage
to the insured vehicle, where this ensues from the disappearance, destruction or deteri-
oration of the same due to attempted or actual theft, robbery or unauthorised use.
Disappearance of the vehicle;
Theft of parts, devices, accessories or instruments; Damage in the event of attempted
theft or robbery; Replacement of keys and substitution of lock.

2.1.2 Non-Main Covers

For the remaining covers, we use one-way or two-way table to analysis their loss be-
haviour, without putting into GLM or machine learning models.

2.2 Bonus-Malus

We use NCD (No Claim Discount) system to implement the Bonus-Malus of auto insur-
ance premium. Since we have different coverage insured, there are 2 different tables of
Bonus-Malus applying for Third-Party Liability (marked as TPL) and Collision damage
(Crash, Collision, Rollover, Fire, Lightning Strike and Explosion and Acts of Vandalism).
Here we use TPL Bonus-Malus table for policyholder with one vehicle that joined Liberty
without previous insured history (started from 100%) as an example. The percentage
premium and transition rule matrix can be found in the tables below.

5
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Table 2.2: Bonus-Malus levels for TPL coverage based on no-claim years

Level Years without claims %Premium

1 9 45%
2 8 45%
3 7 50%
4 6 55%
5 5 60%
6 4 65%
7 3 70%
8 2 80%
9 1 90%
10 0 100%
11 110%
12 120%
13 130%
14 150%
15 180%
16 250%
17 325%
18 400%

Table 2.3: Transition rules for TPL Bonus-Malus levels

Next level if # claims in the year
Current level 0 1 2 3 4 5 6+

1 1 4 7 10 13 16 18
2 1 5 8 11 14 17 18
3 2 6 9 12 15 18 18
4 3 7 10 13 16 18 18
5 4 8 11 14 17 18 18
6 5 9 12 15 18 18 18
7 6 10 13 16 18 18 18
8 7 11 14 17 18 18 18
9 8 12 15 18 18 18 18
10 9 13 16 18 18 18 18
11 10 14 17 18 18 18 18
12 11 15 18 18 18 18 18
13 12 16 18 18 18 18 18
14 13 17 18 18 18 18 18
15 14 18 18 18 18 18 18
16 15 18 18 18 18 18 18
17 16 18 18 18 18 18 18
18 17 18 18 18 18 18 18

6
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2.3 Data and Software

The dataset is pre-processed in SAS® Enterprise Guide® software2, the main format
used for SAS data is .sas7bat file. We build our GLM models in Emblem®3, which use
.bid and .fac format data, so we convert our .sas7bdat data into .bid and .fac format.
For machine learning, we use RStudio®4.
The data can be separated by individual and company, or private and commercial. At
this stage we focus on the building tariff for individual and private policies. Our data
is aggreagated from different platforms and different sources. The data column cate-
gories include time (TI), model control (ADM), driver information (DR), policy infor-
mation (SA), vehicle (VH), geographical (GEO), claim experience (CL) and external
source (EXT), these columns construct the explanatory variable matrix. They can be
numerical or character variables. The column header for explanatory variable consists
of category, number and name, for example DR075_CONDUTOR_IDADE is the num-
ber 75 variable, and it is under category DR, the Portuguese name of it is condutor
idade (driver’s age). There are also some variables with different versions, for example
VH010b_VIATURA_MARCA_ETxTIA_b, the number of the variable is 10 and ver-
sion is b, which takes information from two sources ET and TIA.
Other columns include exposure, count and cost by different perils and aggregated to-
tal, it follows coverage name abbreviation or “TOT” (stands for total), the division of
these columns construct the response variables in frequency, severity or loss cost models.
For instance CNT_FRB is the count of theft claims in the record, EXP_FRB is the
exposure of theft and CST_FRB is the aggregate amount of theft claims. The response
variable for frequency model will be CNT_FRB/EXP_FRB, and the response variable
for severity will be CST_FRB/CNT_FRB. In case of aggregate model, the response
variable will be CST_FRB/EXP_FRB.
The data is partitioned into three parts: 40% goes to training set, 40% goes to validation
set, and remaining 20% is the holdout set. We model training and validation sets to-
gether simultaneously to build preliminary models. The holdout set is the test set which
evaluates the performance of models built in training and validation set. When the data
is thin, we may also build the model on 80% of data directly, to reduce variability.

2https://support.sas.com/en/software/enterprise-guide-support.html
3https://www.willistowerswatson.com/en-US/Solutions/products/emblem
4https://rstudio.com/
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Chapter 3

Discovering Features and Interactions

Our risk models are mainly built under generalized linear models [Nelder and Wedder-
burn, 1972] (marked as GLM). Under GLM, the risk premium is estimated to be a
function of linear combination of different risk factors. Normally the function is expo-
nential, which result in a multiplicative structure. Risk factor is always a variable or
a transformed variable. It is always interesting and challenging to figure out the best
combination of variables that are important for differentiating risks.
Given that we have a lot of information from various sources, it is unfeasible to test
all possible combinations of available variables in GLM model. Therefore, it is good to
filter the important variables before we test all of them, also find potential interactions
between different variables. For that purpose, we take advantages of machine learning
methods. The fundamental algorithms behind are regularization in GLM and gradient
boosting [Friedman, 2000] in decision tree. This chapter presents the latter methods
while we return to a more formal presentation of well known statistical methodologies
and extensions of GLM in chapter 4.

3.1 Variable Importance Ranking

There are massive amount of different variables in our frequency and severity models.
It is necessary to implement regularized models, in such a way that dimension can be
reduced to avoid overfitting and improve computational efficiency.

8
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3.1.1 Shrinkage Methods in Penalized GLM

When we do the GLM with respect to all variables, the variance is high, at the same
time the model is complicated thus hard to interpret. We need to do subset selection to
construct a simpler model to avoid overfitting and reduce variability. The well-known
approach is elastic net regularization [Zou and Hastie, 2005] (a combination of LASSO
[Tibshirani, 1996] and Ridge [Hoerl and Kennard, 1970]), it shrinks the coefficients we
estimate in a linear predictor. The algorithm is implemented in R packages glmnet
[Friedman, Hastie and Tibshirani, 2010; Simon, Friedman, Hastie and Tibshirani, 2011]
and HDtweedie [Qian, Yang and Zou, 2013]. The methods of shrinkage force some of the
not important features or variables to have coefficients close to or exactly equal to zero,
by adding a penalty component besides the loss function of GLM. We will talk about
more detail of linear predictor in GLM in Chapter 4.
All these methods are trying to minimize the loss function we define in the model. The
loss function of GLM we are using is the weighted negative log-likelihood of the assumed
error distribution, i.e.,

LossGLM =
1

n

n∑
i=1

wi(−loglik(yi, ηi)) (3.1)

ηi = β0 +

p∑
j=1

βjxij (3.2)

where ηi is the linear predictor, n the sample size (number of observations), wi the weight
of the ith variable and p the number of predictors.

When we have too many parameters in the model, we tend to modify the loss function
by adding a penalty term. The loss function for shrinkage method is

Lossshrinkage =
1

n

n∑
i=1

wi(−loglik(yi, ηi)) + penalty (3.3)

Ridge

The penalty term in Ridge is the sum of squares of βs (excluding β0) multiplied by a
tuning parameter λ, i.e.,

LossRidge =
1

n

n∑
i=1

wi(−loglik(yi, ηi)) + λ

p∑
j=1

βj
2 (3.4)

9
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The Ridge regression tend to choose the model not only with small loss function but also
with lots of the βs close to 0. The tuning parameter λ balance the first and second term
of the loss function (3.4). The square root of the second term (not including λ) is known
as the `2 norm, or L2 norm 1 of the β vector. ||β||2 =

√∑p
j=1 βj

2, can be interpreted
as the Euclidean distance of the β with respect to 0 (the origin). The larger the λ, the
more it penalizes the large value of `2 norm. If λ is set to 0, then it is the same loss
function as GLM.
The λ is tuned by cross validation [Stone, 1974]. By default a 5-folded cross validation is
tuned. We partition our data into 5 pieces with almost equal size. Each time we take 4
of the pieces as our training set, and the remaining 1 piece is the validation set. We build
the model on the training set using different λ and get the test error on the validation
dataset for each λ we tried. Choose another piece of data as validation set and repeat
the procedure, get test error vector again. Repeat 5 times in total, traverse all 5 possible
partition ways, and average the test error at each level of λ, then choose the λ that gives
the lowest average test error.
Alternatively, choose the one that generates the test error equals to the lowest average
plus 1 times the standard error of the minimum. This is the default setting of cv.glmnet()
function in glmnet package, it reduce the penalty by bearing test error to be a little bit
higher than the minimum.
Need to notice that before performing the training, we have to standardize the data by
subtracting mean and dividing each component by its standard deviation. The reason is
that unlike in GLM, in shrinkage models the estimation of β vector is not scale invariant.
If we do not standardize the explanatory variables, the magnitude influence caused by
different λ and different unit of measurement of different variables will disrupt of the
relativity change of the result.

LASSO

For LASSO, the difference from Ridge is that the penalty term is proportional to the
sum of absolute values of β (excluding β0), i.e.,

LossLASSO =
1

n

n∑
i=1

wi(−loglik(yi, ηi)) + λ

p∑
j=1

|βj| (3.5)

1The Lp space or `p norm is introduced in [Riesz, 1910].

10
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The second term (not including λ) in (3.5) is the `1 norm (or Manhattan distance) of
β vector, ||β||1 =

∑p
j=1 |βj|. The different penalty term of these two algorithms make

them applicable in different situations. Due to the mathematical structure of `1 norm,
the problem to solve is not linear, and it will result in some of the βs to be shrunk
to exactly 0 when the λ is sufficiently large. The translation for βs by the tuning
parameter in LASSO is called “soft-thresholding”. It will select the important variables
to be estimated in the model, which is a good characteristic for our task. However, we
should not forget that the purpose is not only to minimize the number of important
variables, but also to assure a good level of model accuracy. So we still need to decide
the optimal λ, same as in Ridge, using 5-folded cross validation and select the best λ
based on average loss function defined by (3.5).

Elastic Net

The elastic net algorithm we normally applied in the glmnet and HDtweedie package is
actually called naïve elastic net [Zou and Hastie, 2005], but the penalty term of naïve
elastic net is commonly considered as “elastic net penalty”, i.e.,

Losselastic−net =
1

n

n∑
i=1

wi(−loglik(yi, ηi)) + λ[α

p∑
j=1

|βj|+
1

2
(1− α)

p∑
j=1

βj
2] (3.6)

To be strict, we need to transform the β by

penaltyelastic−net =

p∑
j=1

[α|βj|+
1

2
(1− α)β2

j ] =

p∑
j=1

(λ1|βj|+ λ2β
2
j ) (3.7)

and
β̂(elastic− net) = (1 + λ2)β̂(naive− elasticnet) (3.8)

The penalty term in (3.6) is a linear combination of penalty term in Ridge and
LASSO.
In [Hastie, Tibshirani and Friedman, 2001] the author illustrates the idea that minimizing
the loss function of Ridge in (3.4), is equivalent to minimizing the loss function of GLM
in (3.1) subject to a constraint:

p∑
j=1

βj
2 6 t (3.9)

11
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Similarly, minimizing the loss function of LASSO in (3.5) is equivalent to minimizing
(3.1) subject to the constraint

p∑
j=1

|βj| 6 t (3.10)

To visualize the constraint, we can plot a constraint for a β vector with 3 elements:
β1, β2 and β3, this will result in format of 3-D graph. We plot the constraint of Ridge
(3.9) and LASSO (3.10) in first quadrant in figure 3.1. This is one-eighth of the space
(all parameters are non-negative), and it can be extended to other seven quadrants and
complete as a sphere for Ridge or an octahedron for LASSO. The estimation of β is
constrained to be not beyond the surface. The loss function for Gaussian distribution is
in a elliptical contour, for Poisson and Gamma it is a bit different, but still we can mimic
the idea. Intuitively, the β contour is approaching from outside the space towards tangent
to the surface, while minimizing the loss function. It will result in feasible possibility for
LASSO surface to tangent the β contour on the edges, which means at least one of the
βs is 0.

beta_1 beta_2

beta_3

Ridge constrain in first quadrant

beta_1 beta_2

beta_3

LASSO constrain in first quadrant

Figure 3.1: Ridge and LASSO constrain surface for 3 element β vector

3.1.2 Practice Procedure

Downsampling

In practice, we can not test all the data in relatively limited time, so what we did is
downsample the data, particularly for frequency data. Keep in mind that our mission is
not to estimate the rate by machine learning, but to discover the important variables to
test in GLM, so as long as the relative ranking of variables is not mingled, we can refine
the input data in a proper way. In order to partition the data as described in section
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2.3, we have created a column of random integers range from 1 to 20, which partitions
the dataset into 20 subsets, rows with random digit range from 1 to 16 are training and
validation data, else are hold out data. Based on the law of large numbers, they should
be roughly identically distributed with equal size. So when we take one of the subsets, it
should contain most of the features of the entire dataset if the data size is huge enough.
We keep all the observations with claim count greater than 0, because they reflect the
information of levels in some variables indicate a high possibility of generating claim.
For the ones without claim, we keep those observations with random integer column
equals to 1, which takes roughly 5% of no claim observations. This method will result
in enlarging the estimation of frequency, but by a roughly proportional way, so that the
ranking of important variables is still stable.

Pre-selection of Variables

At the beginning of the project, we are not very familiar with all the variables, es-
pecially those variables created very recently. As people have few experience with
those variables, we keep those columns as they were, without grouping or converting
them into ordinal numbers. In this case, the explanatory matrix we generate from
the raw data will have too many columns if we include all variables. The method
we use is one-hot encoding, also known as dummy variable transformation. For ex-
ample in table 3.1 we are transforming the column MARCA (take 4 levels in variable
VH010b_VIATURA_MARCA_ETxTIA_b as an example) into 4 dummy columns with
boolean values 0 and 1. Notice that to be strict we should exclude 1 of these columns
to avoid multicollinearity in the regression model, but in practice at least one of the
variables will be set to zero, so it is OK to keep them like this.

Table 3.1: Dummy columns for categorical variable

MARCA_AUDI MARCA_BMW MARCA_CITROEN MARCA_ELSE

AUDI 1 0 0 0
BMW 0 1 0 0
CITROEN 0 0 1 0
ELSE 0 0 0 1

Apply one-hot encoding to all categorical variables will generate a matrix with thou-
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sands of columns thus almost impossible for the procedure to be processed without
memory overflow. To solve this problem, we apply the pre-selection using XGBoost
[Chen, He, Benesty, Khotilovich, Tang, Cho, Chen, Mitchell, Cano, Zhou, Li, Xie, Lin,
Geng and Li, 2020] (will talk about this in section 3.2).
When we apply the XGBoost, we first tune the parameter using a grid, which collect all
possible combinations of the different hyper parameters we chose in XGBoost. For ease
of application, we select the combination of parameters which generates the smallest
average cross validation error. Using the tuned parameter, we run XGBoost and get
the initial ranking list of variables. As a rule of thumb, we take the top 100 variables
appearing in the ranking list into the following procedure.

Ranking Variable Importance

Once the pre-selection is done, we take advantage of the shrinkage methods introduced
in section 3.1.1. The response variables are the same as in GLM, for frequency model it
is the frequency for the ith observation in (4.4) and for severity model it is the average
size of claim in (4.10). For the weight we typically use the exposure for frequency model
and count for severity model.
As can be seen in figure 3.2, the estimated βs shrinkage path is quiet similar among
different values of α in (3.6), however, when we extract the estimation for βs, LASSO
does really set some of the variables to exactly 0, while in Ridge there are a lot of small
βs close to 0 but not equal to 0. So we decided to run the function based on pure LASSO,
i.e., α = 1 to soft threshold the variables, keep less amount of variables to be fitted in
our model.
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Figure 3.2: Estimation of β shrinkage path among different α

We train our model on the different 5 training datasets, using the LASSO penalty.
We choose the optimal λ in (3.5) by comparing the cross-validated average loss. Then
the λ generating the lowest loss is selected as the optimal. In figure 3.3 we show the
iteration of Gamma loss of our theft severity model for LASSO and Ridge. Although
Ridge curves are more smoothly decreasing across iteration of λ, the Gamma loss in
different partition of validation dataset come closer than Ridge when it is converging, it
reassures the rationality of applying LASSO penalty.
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Figure 3.3: Gamma loss on cross validation dataset for theft severity peril

For each partitioned pair of training and validation set, we get the trained model
and optimal λ. We predict response variable on validation dataset using fitted model
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at tuning parameter equals the optimal λ. We average the estimated βs at optimal λ
across all 5 folds to get the resulting βs more credible.
There are multiple ways to select the important features. The first method is to rank the
importance of variables by their absolute values of βs. This method is used in R package
caret [Kuhn, 2020], where the λ of the model is selected to be the one that generates the
loss equals to the lowest possible loss plus 1 standard error of the minimum. This method
is meaningful only when we standardized the data before executing the function, and the
magnitude of β could be considered as an approximation of significance indices. If we
sort and plot them in a bar chart, we can easily identify the βs which are significantly
different from zero, and we simply keep the top variables in our GLM models. Or using
a threshold value to filter the ones with βs greater than the threshold value. In figure
3.4 we plot the sorted average βs in our best model. The labels are replaced by “v1”,
“v2”, etc. due to confidential reason. Note that we did not keep all the levels (almost
400 in total) so that the bars are not too thin to be visible.
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Figure 3.4: Ranking of average estimated beta by cross validation of the theft severity
model

The second method is to rank the variables by the entrance order in the model when
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we decrease the λ. This method is applicable for LASSO or elastic net with high propor-
tion assign to LASSO component (α close to 1). This is similar to the idea of forward
stepwise approach, but not exactly the same. When we set a huge λ, all the βs will be
set to 0, so we have a model with β0 only, that is the mean model. By decreasing the
λ gradually, there will be 1 variable appearing, and that variable should be the most
important variable. And then as we continue to decrease the λ, more variables will ap-
pear, and we ensemble the model by adding those variables one by one to our model,
until there are considerable amount of variables included. This method is more cautious
compared with the previous one, as it choose the variables which add value to the model
step by step, instead of a subset selected by one time.

In the last method, we first train our model using the same way above, then predict
the model in validation set, compute the error by defined loss function, and set it as the
referencing error. Further, we shuffle 1 column of the explanatory matrix in validation
set at each time by resampling that column, and then predict the response variable on
the validation set. We compute validation error, and compare it with the referencing
error. If the error increase significantly, it means that the shuffled column reduced the
predicting power significantly, so the variable is important. The difference can be ranked
and standardized to represent the importance. Compared with the previous method, the
advantage of this method is that it gives quantifiable importance of each variable.

Interpreting Results

Applying the last method, we get the importance ranking result similar to what is shown
in table 3.2.

Table 3.2: Feature importance ranking result.

Rank Variable Name Importance

1 VH0XX_4.abc 1.0000
2 SA1XX_c.xxx 0.7212
3 VH0XX_a.xx 0.3608
4 SA0XX_x 0.3391
5 GEOXX 0.3194
6 EXT0XX_e.xx 0.2707

Continued on next page
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Table 3.2 – continued from previous page

Rank Variable Name Importance

7 VH0XX 0.2079
8 SA0XX 0.1879
9 VH0XX_xxx 0.1497
10 VH0XX_xxxxx 0.1487
... ... ...

In this table we have the variables ranked by their importance. As described above,
the importance value is standardized by the error increment caused by shuffling that
variable column, in proportion with the error increment of the top 1 ranked variable.

3.2 Interaction Detection

3.2.1 Extreme Gradient Boosting

When we have one variable related with another variable in a multivariate GLM in terms
of coefficients, that means there are very likely to be interactions between these two vari-
ables. It is not computationally easy to find the interactions exhaustively especially when
we have huge number of variables.
We apply the extreme gradient boosting [Chen and Guestrin, 2016] method (marked as
XGB), which is an implementation of gradient boosting [Friedman, 2000].

Loss Function and Approximation

The loss function to be minimized in extreme gradient boosting is

LossXGB =
n∑
i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk) (3.11)

where l(yi, ŷi) is the loss function of the ith prediction ŷi, Ω(fk) is the penalty term for
the kth tree, which decompose as in (3.12)
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Ω(fk) = γTk +
1

2
λ

Tk∑
j=1

ωj
2 (3.12)

including tuning parameters γ for Tk number of leaves in the kth tree and λ for sum of
squares of weights (denoted by ωj) of all Tk leaves.
By applying Taylor expansion to the tth iteration of the loss function, we get

LossXGB
(t) ≈

n∑
i=1

l(yi, ŷ
(t−1)
i + gift(xi) +

1

2
hif

2
t (xi)) + Ω(ft) (3.13)

where gi and hi are gradient ∇ and Hessian ∇2 of the ith prediction’s loss function at
the (t − 1)th iteration. With this structure, the sequential tree can be built to find the
minimization solution.

Sequential Tree Ensemble

XGB build trees starting from the simplest constant model, which is usually 0.5 by
default, we mark it as T0, and calculate the loss based on T0 in (3.11), we mark it as
Residual0. Grow a tree on Residual0 to get the T1, ensemble T0 and T1 by the learning
rate η, we get the model M1 = T0 + ηT1, again we calculate the loss for M1, and grow
another tree T2 on Residual1, ensemble M2 = M1 + ηT2. Repeat this procedure round
after round, until the loss is almost not reducing during some pre-defined rounds.

Interaction Detection

The interaction we are trying to detect is the so called “two-way interaction” which we
will implement in our technical GLM model using Emblem software (see section 4.2.2).
Interactions are ideally built on the residual of the main effects. Under this scope, the
algorithm is: build a depth-1 ensemble tree with main effect captured first, and then
build a depth-2 ensemble tree on the residual of the depth-1 tree. The variables used
to split the branches in depth-2 tree model are collected as possible interaction pairs,
ranked by gain quality in XGB.
However, this method is always generating few pairs of variables, due to the fact that
when we are training the depth-1 model, the main effect is well captured by the model
already, so the residual is not applicable to grow various different trees. As a result, we
usually try another approach to detect the interactions, i.e., run the depth-2 tree model
directly to generate more possible interacting results. The drawback is that we did not
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take off the main effect from depth-1 model. But at the same time, the main effect in
XGB depth-1 model is not the same as the linear predictor without interactions and
polynomials in GLM model. So we are not losing a lot of robustness.

3.2.2 Practice Procedure

As described, we are trying to reduce the number of coefficients to be estimated in our
GLM model without ignoring important features, i.e., we should take advantage of all
the information we have. But there are some realistic restrictions and considerations
that we will talk through in the following paragraphs.

Data Cleaning

In the original dataset, we have extreme case values for some of the variables, for example
in the replicated theft frequency curve by variable driver age, as shown in figure 3.5:

Figure 3.5: Rescaled frequency average graph by variable driver age for theft peril

The yellow bars stand for exposure, and the values for observed and fitted averages
are rescaled by dividing the value with the highest exposure (in this case age 44), the
rescaled value close to 1 means it is close to the base. If we include observations in all
range, the tree boosting procedure will be very likely to split the data at the “far left”
or “far right” points on the horizontal axis, which is not a valuable information most of
the time. Therefore, we pick the values that lies between feasible left and right points of
the axis. (For instance in the driver’s age variable we pick those between 21 and 75.)
This method also applies to the zero weighting of small exposure levels that can not
provide solid fitting. We exclude those variables which do not have enough exposure
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especially when they generate extreme rates.

Variable Converting

In the original data, there are different levels in each variable. Some of them are numeric,
but most of them are bands or categorical strings. We need to transform the columns
which has a numerical ordinal nature into numerical columns. For instance the band
level 22.00-22.99 in some variable with ordinal nature, will be transformed to 22.5 in
XGB explanatory matrix cell, which is the middle point of the band, so that the column
will not be converted into dummy columns.

Parameter Tuning

The procedure of tuning parameter is subjective. Most of the time we have a grid of
parameters to walk through, which is a matrix built up by combination of different
parameters. After trying all the parameters in the grid, we can make our decision based
on the lost behaviour in training set and/or validation set.
Here we use the example of the tuning parameters in the severity model of third party
liability property damage peril. Figure 3.6 shows the validation error (negative log-
likelihood of gamma distribution) iteration along number of rounds. Different curves
have different parameters. Here we are tuning the parameter for η (stands for learning
rate) and γ (stands for conservation of the model, which means minimum loss reduction
to apply a new leaf note).
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Figure 3.6: Validation error iteration of different parameters of third party liability
(property damage) severity model

In this figure we can observe that most of the parameter combinations have a rapid
decrease along the first 20 rounds, and some of them turned to be flat afterwards while
some of them fluctuate. We tend to choose number of rounds equals to the turning point,
and the parameters that make the curve flat after the turning point. We choose η to be
0.2, γ to be 12 and number of rounds to be 20 in this example.

Ranking potential interactions

Applying the XGB procedure and using the tuned parameters, we can get the ranking
presented in table 3.3, the “sImp” stands for split importance, and “intImp” stands for
interaction importance.

Table 3.3: Potential interactions ranking result.

rank var1 split1 var2 split2 sImp intImp

1 DR0XX_XXX # VHXX_XX ## 1 1
2 SA0XX_XXX ##### TI0XX_XXX ##### 0.5693 0.6039
2 SA0XX_XXX ***** TI0XX_XXX ***** 0.4307 0.6039

Continued on next page
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Table 3.3 – continued from previous page
rank var1 split1 var2 split2 sImp intImp

3 DR0XX_XX ## VH0XX_XX ## 1 0.5673
4 GEO_XX #### VH0XX_XX ### 1 0.431
5 GEO_XX #### VH0XX_XX ### 1 0.3678
6 EXT0XX_XX # TI0XX_XX ### 0.6525 0.3615
6 EXT0XX_XX * TI0XX_XX *** 0.3475 0.3615
... ... ... ... ... ... ...

In table 3.3 the results are ranked by the accumulating weighted gain on each
pair of variables (var1 and var2), for instance the pair of variables SA0XX_XXX and
TI0XX_XXX ranks number 2 in terms of the weighted gain. And inside this interaction,
there are two different ways of splitting the variables: first way is to split SA0XX_XXX
by #####, and split TI0XX_XXX by #####; second way is to split SA0XX_XXX
by *****, and split TI0XX_XXX by *****. The relative importance score between these
two splitting methods are 0.5693 and 0.4307, respectively, add up to 1.

Testing Interactions in GLM models

The result is ensemble tree built on XGB, it gives us the ranking of interactions based
on the gains of each pair of variable combinations, it does not reflect the interaction
under linear multiplication structure. To test the interactions performance in a GLM
model, we first apply a GLM on these results. For instance, to pre-test the first inter-
action’s significance in a GLM model, we run a GLM in R based on the combination of
these variables: DR0XX_XXX*VHXX_XX, that is: DR0XX_XXX, VHXX_XX and
DR0XX_XXX:VHXX_XX which stands for DR0XX_XXX multiplied by VHXX_XX.
We need to take care of the magnitude of the product. If we multiply two variables with
huge values, we could get convergence problem. So when we do the testing, normally
we just test those pairs of variables with considerable values. The result will be like below:
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Table 3.4: Pre-testing of interactions

variable name estimate SE z-value p-value

(Intercept) -84671.18 48537.14 -1.74 0.08
... -14.86 10.08 -1.47 0.14
DR0XX_XXX 134.5 1654.51 0.08 0.94
VHXX_XX 15.15 32.79 0.46 0.64
DR0XX_XXX:VHXX_XX 2.81 0.57 4.91 0.00
... ... ... ... ...

We can see that the p-value for the interaction term is quiet credible, regardless of
the fact that the p-value for original variables are not so small which means this pair
of variable is worth looking at in the full GLM model. This is a considerable finding
because this indicates that the combined effect of these two variables are very significant
and should be further analysed. The naive approach of testing this in the full GLM
model is to split the variable by the split1 and split2 suggested by XGB. Which means
we separate the data into two parts for each variable, resulting in only one extra term
in the GLM, fit the splited factors and interactions in GLM model, looking at the betas
and significance levels in both training and validation set. If they are both significant
and in the same direction, then this pair of interaction is valid. In practice some of the
interactions detected does not have a sensible meaning, then we may also not implement
that although it is significant.
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Chapter 4

Generalized Linear Models

Generalized linear models [Nelder and Wedderburn, 1972] (GLM) is a common insur-
ance pricing predictive model. Although nowadays there are a lot of powerful machine
learning tools to build regression models, the GLM still remains the key role in insurance
pricing, due to the fact that GLM can efficiently establish tariff for regulatory purpose,
and ease the communication between underwriting team and risk modelling team.

4.1 General Structure

The loss is separated by perils, for each peril we build different GLM models. Under
each peril, our loss cost model is built on assumption that frequency is independent of
severity, and claim count is Poisson distributed while severity is Gamma distributed, by
assuming that they are independent, the aggregate loss can be modelled as a compound
Poisson distribution.
The expected value of ith response variable is

µi = E(Yi) = g−1(ηi) (4.1)

where ηi is the linear predictor of ith response variable.
The variance of ith response variable in GLM is:

V ar(Yi) =
φV (µi)

ωi
(4.2)

25



Xu Zhifeng CHAPTER 4. GENERALIZED LINEAR MODELS

where φ is the scale parameter and V (µi) is the variance function in terms of µi.

4.1.1 Frequency Model

For the frequency models we use Poisson regression, with logarithmic link-function. We
assume that the number of claims occurring in the kth unit of exposure in the ith obser-
vation (denoted by Nik) is Poisson distributed with parameter fi, and the exposure of
ith observation is ωi. By definition of Poisson distribution, we have:

E(Nik) = V ar(Nik) = fi (4.3)

So the response variable Yi which represent the frequency of the ith observation is calcu-
lated by:

Yi =

∑ωi

k=1Nik

ωi
(4.4)

By further assuming that each unit of exposure is independent [Anderson, Feldblum,
Modlin, Schirmacher, Schirmacher and Thandi, 2007], we can get:

E(Yi) =

∑ωi

k=1(E(Nik)

ωi
=
ωifi
ωi

= fi (4.5)

V ar(Yi) =
1

wi2

ωi∑
i=1

V ar(Nik) =
1

wi2
ωifi =

fi
ωi

(4.6)

so here the variance can be expressed as

V ar(Yi) =
µi
ωi

(4.7)

V (µi) is just µi and scale parameter is 1. Note that in practice we have unfixed scale
parameter for quasi-Poisson [Wedderburn, 1974], i.e., a scale parameter not equals to 1,
it is also called the overdispersion parameter, because the variance is higher than the
variance in the original distribution.

4.1.2 Severity Model

For the severity model we use Gamma regression, with logarithmic link-function as well
(there is no analytical bearer in statistical software to apply non-canonical link-function
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so we choose logarithmic link-function to ease the expression of the model). We assume
that the size of the kth claim in the ith observation (denoted byXik) is Gamma distributed
with parameter αi and θi, and the claim count of ith observation is ωi. By definition of
Gamma distribution, we have:

E(Xik) = αiθi (4.8)

V ar(Xik) = αiθi
2 (4.9)

So the response variable Yi which represent the severity of the ith observation is calculated
by:

Yi =

∑ωi

k=1Xik

ωi
(4.10)

By further assuming that each claim is independent, we can get:

E(Yi) =

∑ωi

k=1(E(Xik)

ωi
=
ωiαiθi
ωi

= αiθi (4.11)

V ar(Yi) =
1

wi2

ωi∑
i=1

V ar(Xik) =
1

wi2
ωiαiθi

2 =
αiθi

2

ωi
(4.12)

so here the variance can be expressed as

V ar(Yi) =
1
αi
µi

2

ωi
(4.13)

V (µi) is µ2
i and scale parameter is 1

αi
.

4.2 Complex Components

There are some components we need to add to explain the special characters that are not
able to be captured in an ordinary GLM model. Including the orthogonal polynomials
and interactions, etc.

4.2.1 Orthogonal Polynomials

Under linear predictor structure, for each explanatory variable (or each level of categori-
cal variable), there is one beta assigned to it, and the component is linear as βixi for the
ith variable. However, sometimes when we look at the observed values versus explana-
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tory variable, there is a trend with curvature, then it is better to fit a polynomial. For a
order q polynomial, the expression of the polynomial component will be

∑q
m=1 βiqx

q
i . It

is not linear in terms of explanatory variable xi, but it is linear in terms of βs, so we can
estimate it with the same algorithm for linear predictor. The new coefficients β∗s to be
estimated in orthogonal polynomials are not coefficients for original variate powers xi,
x2i , ... , xqi , but the transformed variate powers P1(xi), P2(xi) , ... , Pq(xi) where Pt(xi)
itself is a tth order polynomial of xi, the q polynomials subject to constraint

n∑
i=1

Pr(xi)Ps(xi) = 0, r 6= s, r, s ∈ 1, 2, ..., q (4.14)

The orthogonal polynomial predictor of variable xi to be estimated is

η(orth_poly)xi
= αo + α1P1(xi) + α2P2(xi) + ...+ αqPq(xi) (4.15)

After applying orthogonal transformation, the different orders of components under the
same variable are not correlated, and there will be no alias or generalized matrix inverse
problems. However, the order of orthogonal polynomials should not be too high, to avoid
overfitting and to ease the expression of the model.

4.2.2 Interactions

Interaction [Pedhazur and Schmelkin, 1991] in the linear model occurs when the effect on
one variable is dependent on the level of another variable. [Anderson, Feldblum, Modlin,
Schirmacher, Schirmacher and Thandi, 2007, pp. 59–77] interprets the interactions in
GLM very well.
The simplest interaction is the two-way interaction, which involves two variables. Due
to the nature of variable type, we have three scenarios:
1) Two categorical variables: variable 1 with k1 levels interact with variable 2 with k2

levels. For each variable there is 1 level assumed as base, the remaining levels can be
packed with the non base levels in another variable. Result in adding (k1 − 1)(k2 − 1)

factors in the original linear predictor (excluding those packed levels that does not have
exposure), all the added factors are binary variables, with value taking either 0 or 1.
2) Two numerical (considered as continuous) variables, the interaction part is the product
of them, that is adding one additional coefficient to be estimated. In figure 4.1, on the
left hand-side panel is a flat plate stand for the linear predictor η = β0 + β1x1 + β2x2,
where β0 = 0, β1 = 2, β2 = 1. The middle and right hand-side panel are nothing but the
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linear predictor plus an interaction term, i.e.,

η = β0 + β1x1 + β2x2 + β12x1x2 (4.16)

where β12 = 1 for the middle and β12 = −1 for the right. We can easily see that when we
have an interaction, the plate turns into a concave or convex surface. We can re-write
the equation as

η = β0 + β1x1 + (β2 + β12x1)x2 (4.17)

The relative increase (or decrease) with respect to each unit of x2 is (β2 + β12x1). If
the sign of β12 is the same as both β1 and β2, then velocity of increasing (or decreasing if
negative sign) is linearly increasing (or decreasing), like the graph in the middle. And if
the sign of β12 is opposite to both β1 and β2, the interaction term will act like an offset
to the prediction. i.e., it will weaken the aggregate impact of increasing (or decreasing)
in the original linear predictor.

x_1 x_2

y

Linear predictor

x_1 x_2

y

Positive interaction

x_1 x_2

y

Negative interaction

Figure 4.1: Adding interaction effect to two continuous variables in the linear predictor

3) One numerical variable interact with another categorical variable with k levels,
there will be (k − 1) new coefficients added in the model.

4.3 Model Selection Criteria

The criteria we use to select our model is not unilateral. Intuitively, the goal is to make
the predicted curve fit the observed as good as possible without over or under estimation,
at the same time avoid overfitting. To achieve this goal, we look at the graph as in figure
3.5, and analysis the statistics below.

29



Xu Zhifeng CHAPTER 4. GENERALIZED LINEAR MODELS

4.3.1 Deviance and Chi-squared Test

When two models are nested (one model is a sub model of another), we usually test the
models by investigating their deviance. The deviance is nothing but minus 2 times the
log-likelihood. Assuming the two models are with p1 and p2 parameters respectively, the
model with p2 parameters is a sub model of the model with p1 parameters. The difference
of two models’ deviance should asymptotically following a chi-square distribution with
p1 − p2 degrees of freedom, the test statistic is in equation (4.18).

∆Deviance = −2
n∑
i=1

loglik(yi, ηip2)− (−2
n∑
i=1

loglik(yi, ηip1))
a∼ χ2

(p1−p2) (4.18)

The chi-squared percentage (chi-squared p-value) is the probability of a random vari-
able chi-squared distributed with p1 − p2 degrees of freedom to be greater than the
deviance difference of the two models. If the percentage is smaller than our significance
threshold α, then the model with more parameters are significantly better than the model
with less parameters.

4.3.2 Akaike Information Criterion

Akaike information criterion [Akaike, 1973], known as AIC, is a good tool to compare
two models when they are not nested. AIC is simply the deviance plus 2 times numbers
of parameters. AIC is a trade-off between deviance and model complexity. Normally we
can compare two models by AIC values, and the smaller the better.
There are also some corrected versions of AIC, e.g. AICc [Sugiura, 1978].

AICc = AIC +
2p(p+ 1)

n− p− 1
= −2

n∑
i=1

loglik(yi, ηi) + 2p+
2p(p+ 1)

n− p− 1
(4.19)

If the number of observations is large enough, then the AICc should be similar to AIC.

4.4 Residual Analysis

The residual analysis is important for our model diagnosis and useful to detect departing
such as under or over estimation.
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There are multiple expressions of residual. The most common one is Pearson residual.

ri_pearson =
yi − µi√
V (µi)

(4.20)

In practice we use standardised Pearson residual most often, which is a modified version
of Pearson residual.

rstdi_pearson =
ri_pearson√

1− hi
(4.21)

where hi is the ith element in the diagonal of the hat matrix H. The hat matrix is as
below, where X is the design matrix and W is the weight diagonal matrix.

H = W
1
2X(XTWX)−1XTW

1
2 (4.22)

For a good model, the residuals should be centered around 0, and the ones with residuals
higher than 0 should offset the ones with negative residuals in a balanced way. In the
following figure, the axis “Transformed Fitted Value” is the linear predicted value, i.e.,
log(fitted value) under log-link structure, the axis “Standardized Pearson Residuals ” is
the residual calculated by (4.21). The vertical axis is the frequency of it. We can see that
the residual of third party liability property damage (marked as RCM) severity model
is mostly distributed around 0, and the most popular fitted value is close to the log of
mean, in this case around 7.1.

Figure 4.2: Residual of RCM severity model
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Chapter 5

Risk Technical Models

5.1 Initial Model Constructing

As discussed in the previous chapters, the risk technical models are built under GLM
for main perils. We do forward stepwise regression for each model. As a team, we fo-
cus on the same categories of variables mentioned in section 2.3 for different perils and
testing the performance of our models in training and validation set, mainly focus on
the consistency of the magnitude of estimated β, significance level or standard error
percentage, and the relative impact of deviance (if only add component to the model) or
AIC. We typically test the variables from the previous GLM models first, after adapting
the previous model, we add new variables one by one, preferentially test the top ranked
variables in our feature importance results (as in table 3.2).
After testing all the categories of variables, we begin to test interactions. The results
from interactions detection (as in table 3.3) will be tested in the GLM models. The
criteria of accepting the interaction is similar with the linear terms, i.e., β consistency,
low standard error rate and significant reduction in deviance or AIC score.

5.2 Reviewing and Adjustments

The model is checked and reviewed in different phases of modelling. Since in practice,
the data is modified or regrouped by demand of analyzing, there are some back and forth
among different versions of datasets and models. We adapt the model for previous data
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into the new data, and see if there is any level or variable missing. We also test the
significance and consistency repeatedly.
We perform machine learning not only in the beginning of features and interactions
selection. Because we changed our data structure, the variables and their levels are
changing from the beginning of modelling, so we have to rerun the functions to get the
most up-to-date results. Also, it is sometimes helpful to do the residual test, especially
for the interaction detection. That is, take the residual of response variable after fitting
a GLM using the fitted variables, and then run the depth-2 XGB tree function and get
the potential interactions. But this requires a suitable transformation of residual, to be
in cope with the distribution and link function structure. (For example non-negative
response variable for log-link, natural number for Poisson distribution.)
The adjustment is applied when there are some validating new features to add in or
non-validating old features to exclude from the model, either by newer result of machine
learning or peer review.

5.3 Special Claims

5.3.1 Third Party Liability Personal Injury

If we split third party liability personal injury (marked as RCC) claims by a threshold
of, for example, 500 thousand of euros, calculate the capped amount of RCC and excess
amount exceeding 500 thousands, then we can find that more than 14% of the total
amount of RCC claims comes from the excess claims, however the count of claims higher
than 500 thousands is only about 0.2% of all claims. Meanwhile, about one-third of
the claim counts are under a low threshold, let us say, 250 euros, which is a small size
compared with average severity.
The original GLM model is built on all range of observed values. However, based on
the special behavior described above, we focus our GLM on the claims higher than 250
euros and capped at 500 thousands euros, for the amount lower than 250 or excess of 500
thousands, we apply flat loading, and the probability of exceeding 250 euros is modelled
by a logistic regression.
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5.3.2 Windscreen

Although the assumed distribution is for the fixed explanatory variable rather than for
the whole range of explanatory variable, it worth have a look at the whole data loss
distribution. The severity of windscreen does not follow a Gamma distribution, as can
be seen in the following figure, in the ECDF, there is clearly a jump around 250 euros,
which means the severity has degenerate structure around some values. This is due to
the distinction between windscreen repair claims and windscreen replacement claims.

Figure 5.1: Gamma fit test of windscreen severity

When we add a split point at 252, which is slightly higher than the jumping point
in ECDF, and take the excess claims higher than 252, we can see there is no longer any
degenerate value.
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Figure 5.2: Gamma fit test of windscreen excess loss severity

The precise cut-off point for the degenerate value is hard to determine, and the
probability of generating a large claim is not converging in the logistic regression model
we fitted. When we dig deeper into the claims, we can see that the policies with repair
shop agreements have much more stable severity compared with those policies without
agreements. Almost all of the claims for policies with agreement are less than 255, while
only around 40% of claims without agreement are less than 255. Therefore we split our
severity data into two groups by having agreement or not, and model the severity without
agreements by GLM, while using simplified model for the policies has agreements. By
doing so, our estimation for the severity is more specific and accurate.
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Chapter 6

Conclusions

6.1 Concluded Works

The preliminary risk technical models are successfully built for main perils, the variable
categories are enriched, the accuracy of modelling dataset is improved.
The top ranked variables from penalized GLM play important roles in our GLM models,
particularly, the ranking lists suggest the variables to look at in priority for the newly
introduced variables. The XGB detected interactions also provide valuable information
to bring in the model. All the perils have at least one interaction validating well in the
models, but due to consideration of underwriting, we exclude some of them in the model.
(e.g., one level in a variable is no longer going to be sold in the corresponding new tariff,
so the interaction built based on the split by that level is excluded from the model.)
When we combine the training and validation sets, adapt our model to the 80% data,
more than 95% of the estimated coefficients are strongly significant, and are consistent
with the training and validation estimation in sign.

6.2 Next Steps

Although the models are validating well in our preliminary testing, we need to test our
models on the holdout dataset. The comparison between prediction and observed curves
will give us more information about our models’ predictiveness, the closer the curves,
the more confident we are with our model. The models will be refreshed if necessary.
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The models will be imported into Earnix®1 and/or Radar®2 to perform rate aggregation
and impact analysis.
After all, we will build restricted models by considering compliance, IT and economic
issues. After the final testing and refreshment, we will deliver our model and present it
to the stakeholder.

1https://earnix.com/
2https://www.willistowerswatson.com/en-US/Solutions/products/radar
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Appendix A

Covers Table

Table A.1: Coverage and covers (garantias) under different groups

Group Coverage Covers Description for covers

Base Third Party Liability (RC) RCM Compulsory Civil Liabil-
ity (Property Damage)

Base Third Party Liability (RC) RCC Compulsory Civil Liabil-
ity (Personal Injury)

Base Third Party Liability (RC) RCF Optional Civil Liability
Base Assistance (AVPJ) AV Travel Assistance
Base Assistance (AVPJ) AVB Travel Assistance Plus
Base Assistance (AVPJ) PJ Legal Protection
Base Personal Injury (OCP) MIP_OCUP Death or Permanent Dis-

ability. (All Occupants)
Base Personal Injury (OCP) DT_OCUP Treatment Expenses (All

occupants)
Base Personal Injury (OCP) ITHA_OCUP ITHA (All occupants)
Base Personal Injury (OCP) MIP_COND Death or Permanent Dis-

ability. (Driver Only)
Base Personal Injury (OCP) DT_COND Treatment Expenses for

Driver
Base Personal Injury (OCP) ITHA_COND ITHA Driver
Own Damage Crash, Collision and Rollover

(CCC)
CCC Crash, Collision and

Rollover
Own Damage Fire, Lightning Strike or Explo-

sion (IRE)
IRE Fire, Lightning Strike or

Explosion
Own Damage Total Loss (PT) PTCI Total CCCI Loss
Own Damage Total Loss (PT) PTFR Total FR Loss

Continued on next page
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Table A.1 – continued from previous page

Group Coverage Covers Description for covers

Own Damage Natural Phenomena (FN) FN Natural Phenomena
Own Damage Malicious Acts (AM) AM Malicious Acts
Own Damage Convention or Agreement be-

tween Insurers (OUT)
OUT Convention or Agreement

between Insurers
Own Damage Personal Protection (PP) PP Personal Protection
Own Damage Theft or Robbery (FRB) FRB Theft or Robbery
Own Damage Baggage (BAG) BAG Baggage
Broken Glass Broken Windscreen (QIV_L) QIV Broken Window Normal
Broken Glass Broken Windscreen (QIV_L) QIVC Broken Window with

Agreement
Vehicle Replace-
ment

Vehicle Replacement (VS_L) VS Vehicle Replacement

Vehicle Replace-
ment

Vehicle Replacement (VS_L) IMD Vehicle Replacement

Vehicle Replace-
ment

Vehicle Replacement (VS_L) VSA Vehicle Replacement

Vehicle Replace-
ment

Vehicle Replacement (VS_L) VSM Vehicle Replacement
Maintenance

Vehicle Replace-
ment

Vehicle Replacement (VS_L) VSS Vehicle Replacement
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