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Abstract

Markov chains models are used in several applications and different areas of study. Usually a

Markov chain model is assumed to be homogeneous in the sense that the transition probabilities

are time invariant. Yet, ignoring the inhomogeneous nature of a stochastic process by disregarding

the presence of structural breaks can lead to misleading conclusions. Several methodologies are

currently proposed for detecting structural breaks in a Markov chain, however, these methods have

some limitations, namely they can only test directly for the presence of a single structural break.

This paper proposes a new methodology for detecting and testing the presence multiple structural

breaks in a Markov chain occurring at unknown dates.
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1 Introduction
Let {St, t = 0, 1, 2 · · · ,∞}, hereinafter {St}, be a stochastic process that involves a sequence of discrete
random variables with domain E = {1, · · · , q}. Furthermore, {St} is a first order Markov chain in the
sense that:

P (St = i0 | Ft−1) = P (St = i0 | St−1 = i1) ≡ Pi1i0 , (1.1)

where Ft−1 is the σ-field generated by all available information until the period t− 1.
Given an initial condition and once the domain E is known, St can be fully characterized with the

associated transition probability matrix (TPM) P . This matrix contains all possible one step ahead
transitions generated in the space E = {1, · · · , q}, such that, for the generic period t, may be written
as:

Pt =


Pt,11 Pt,12 · · · Pt,1q

Pt,21
. . . ...

... . . . ...
Pt,q1 · · · · · · Pt,qq

 (1.2)

Markov chain models have shown to be proficiently and interdisciplinary used. Notably in Eco-
nomics (Mehran, 1989), Finance (Siu et al., 2005; Fung and Siu, 2012), Financial Markets (Maskawa,
2003; Nicolau, 2014; Nicolau and Riedlinger, 2015), Biology (Gottschau, 1992; Raftery and Tavaré, 1994;
Berchtold, 2001), Environmental Sciences (Turchin, 1986; Sahin and Sen, 2001; Shamshad et al., 2005),
Physics (Gómez et al., 2010; Boccaletti et al., 2014), Linguistics1(Markov, 1913), Medicine (Li et al.,
2014), Forecasting (Damásio and Nicolau, 2013), Management (Horvath et al., 2005), Sports (Bukiet
et al., 1997), the estimation of expected hitting times (Nicolau, 2017; Damásio et al., 2018), Opera-
tional Research (Asadabadi, 2017; Tsiliyannis, 2018; Cabello, 2017), Economic History (Damásio and
Mendonça, 2018), among others; see, e.g. (Ching and Ng, 2006; Sericola, 2013).

Notwithstanding the common denominator of this research depicts the assumption about the ho-
mogeneous nature of the Markov chain. In fact, in all of the aforementioned studies the Markov chain
assumed to be homogeneous in the sense that Pt,i1i0 = Pi1i0 and Pt = P . In other words, the transition
probability matrix does not depend on time.

Ignoring the nonhomogeneous nature of a stochastic process by disregarding the presence of struc-
tural breaks can lead to misleading conclusions.2 As concluded by Hansen (2001) Structural change is
pervasive in economic time series relationships, and it can be quite perilous to ignore. Inferences about
economic relationships can go astray, forecasts can be inaccurate, and policy recommendations can be
misleading or worse (Hansen, 2001, p. 237). Structural breaks are, then again, a common issue in eco-
nomical environments. In fact, the economic dynamics is characterised by deep complex, and mutating,
patterns of interdependence between variables and aggregates. For this reason, it is of great relevance
to investigate whether the quantities Pt,i1i0 for ik ∈ E, k = 0, · · · , q are time invariant or, in contrast,
time dependent.

The change detection involving dependent observations such as Markov chains has been studied by
Lai (1995, 1998); Mei (2006); Yakir (1994); Tan and Yılmaz (2002); Polansky (2007); Höhle (2010);
Darkhovsky (2011); Xian et al. (2016), among others. Most of these approaches are essentially based
on the calculation of a cumulative sum (CUSUM) and are designed to detect a single structural break.

This paper proposes new methodology for detecting and testing the presence of multiple structural
1In 1913 A. A. Markov illustrated his chains for the first time with an example taken from literature. He investigated

a sequence of 20,000 letters in Pushkin’s text Eugeny Onegin to model probability transitions between consonants and
vowels, (Markov, 1913)

2The consequences of ignoring a structural break are widely documented in the literature, namely in the unit root
tests, see, e.g. Rappoport and Reichlin (1989); Perron (1989)
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breaks in a Markov chain occurring at unknown dates. It takes advantages of Qu and Perron (2007)
procedure to detected structural breaks in econometric type of models. The main advantage of our
approach is related to the power gains that can result by explicitly considering the possibility of multiple
breaks, as opposite to standard CUSUM tests where the alternative hypothesis allows just a single break.
Therefore, although a single break test may be consistent against multiple breaks, substantial power
gains can result from using tests for multiple structural changes (see Perron (2006), for a detailed
discussion of this topic).

The rest of this article is organized as follows. Section 2 exposes our the theoretical framework,
enumerating the assumptions that allow a Vector Autoregressive (VAR) representation of a Markov
chain and discussing the main results of inhomogeneity detection in a Markov chain. Section 3 presents
a Monte Carlo simulation where the power and the size of the proposed method is analysed, whereas
Section 4 illustrates the methodology with an economic application using the NASDAQ stock index.
Section 5 discusses some possible extensions of this methodology. Finally, Section 6 elaborates on the
summary of the main results and concludes.

2 The model and assumptions
In this section, we present the basic econometric context upon which our analysis will be elaborated.
Furthermore a new method for detecting and testing multiple structural breaks occurring at unknown
dates in non homogeneous Markov chains is proposed. Our strategy, which consists of representing a
Markov chain in the form of a VAR model3, comprises three distinct phases, namely:

1. To identify the conditions under which a Markov chain admits a VAR representation;

2. To represent a Markov chain into a VAR form;

3. To propose a theoretical econometric framework to detect and test for multiple structural breaks
occurring at unknown dates.

2.1 A vectorial autoregressive representation of a stationary Markov chain

Consider the following random q-dimensional vector

yt =
(
y1t · · · ykt · · · yqt

)′
(2.1)

whose k-th element ykt equals 1 {St = k}, (here 1 {·} denotes the indicator function, such that ykt = 1
if St = k and 0 otherwise).

Moreover, when St = i then k-th element of yt+1, yk,t+1, is a r.v. such that

P (St+1 = k | St = i) = P (yk,t+1 = 1 | yit = 1) = Pik (2.2)

and, by Markovian property and, without any loss of generality, assuming a first order MC it follows
that E

[
yt+1

∣∣St = i
]

= Pi•, the i-th row of P .
Given this result it follows that an ergodic MC with domain E = {1, · · · , q} admits the following

system representation:
3Markov chains have also proven to be a valuable tool when it comes to the approximation of VAR models, see e.g.

Tauchen (1986). The estimated transition probabilities might be relevant to find numerical solutions to integral equations
in the absence of integration.
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y1t = P11y1,t−1 + P21y2,t−1 + · · ·+ Pq1yq,t−1 + ε1t

y2t = P12y1,t−1 + P22y2,t−1 + · · ·+ Pq2yq,t−1 + ε2t

...
...

yq−1,t = P1,q−1y1,t−1 + P2,q−1y2,t−1 + · · ·+ Pq,q−1yq,t−1 + εq−1,t.

(2.3)

Or, equivalently, 
y1t = z′tP •1 + ε1t

...
...

yq−1,t = z′tP •q−1 + εq−1,t

, (2.4)

where z′t =
(
y1,t−1, · · · , yq,t−1

)
; εit ≡ yit−E [yit | Ft−1] for i = 1, · · · , q− 1; and P •k is the k-th

column of P , k = 1, · · · q.

Furthermore let the sufficient statistics for P , nik, ∀i, k ∈ E, denote the number of transition
frequencies of the type i→ k in the sample, i.e.

nik =
n∑
t=1

1 {St = k, St−1 = i} , (2.5)

it can be shown that the likelihood function (the distribution is multinomial) is

l (Pik) ∝
∑
i

∑
k

niklog (Pik) (2.6)

and the maximum likelihood estimator for Pik is

P̂ik =

∑n
t=1 1 {St = k, St−1 = i}∑q

k=1

∑n
t=1 1 {St = k, St−1 = i}

=
nik
ni

(2.7)

see Basawa (2014); Billingsley (1961).
It is useful to represent models (2.3) and (2.4) in the following matrix form:

y1t

y2t
...

yq−1t

 =


z′t 0 · · · 0

0 z′t
...

... . . . 0

0 0 · · · z′t




P•1

P•2
...

P•q−1

+


ε1t

ε2t
...

εq−1t

 (2.8)

or equivalently,

yt
(q−1)×1

=

(
I

(q−1)×(q−1)
⊗ z′

1×q

)
vec (P ∗)

q(q−1)×q(q−1)

+ εt
(q−1)×1

(2.9)

= x′t
(q−1)×q(q−1)

× p
q(q−1)×1

+ εt
(q−1)×1
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where

P ∗ =


P11 P12 P1q−1

P21 P22 P2q−1
...

...
...

Pq1 Pq2 Pqq−1

 (2.10)

=
(
P•1 P•2 · · · P•q−1

)
, (2.11)

p ≡ vec (P ∗) =


P•1

P•2
...

P•q−1

 , (2.12)

and εt is a martingale difference sequence with covariance matrix Σ ≡ E [εtε
′
t] given by

Σ =


π1 −

∑q
k=1 πkP

2
k1 −

∑q
k=1 Pk1Pk2πk · · · −

∑q
k=1 Pk1Pkqπk

−
∑q

k=1 Pk1Pk2πk π2 −
∑q

k=1 πkP
2
k2 · · · −

∑q
k=1 Pk2Pkqπk

...
... . . . ...

−
∑q

k=1 Pk1Pkqπk −
∑q

k=1 Pk2Pkqπk πq −
∑q

k=1 πkP
2
kq

 , (2.13)

see Lemma (1), Mathematical Appendix.
Expression (2.9) suggests that, under certain conditions, a Markov chain may assume a VAR repre-

sentation.4 A clear implication of this circumstance is that detecting, and testing, non homogeneities in
a Markov chain stochastic process can be treated as a problem of testing for structural breaks in linear
systems of equations.

In this sense, the final model may be written as a VAR model (subject to m breaks) with m + 1
distinct regimes, or segments, such that:

yt =



x′tp1 + ε1, for t = T0 + 1, · · · , T1

x′tp2 + ε2, for t = T1 + 1, · · · , T2

...
...

x′tpm + εm, for t = Tm−1 + 1, · · · , Tm
x′tpm+1 + εm+1, for t = Tm + 1, · · · , Tm+1

(2.14)

or
yt = x′tpj + εj (2.15)

where εj is a martingale difference sequence with covariance matrix Σj; T0 = 0 and Tm+1 = T ; for
Tj−1 + 1 ≤ t ≤ Tj, j = 1, · · · ,m+ 1.

The main objective of this article is to consistently estimate the stacked vectors of parameters
θ ≡

(
p1, · · · ,pm+1; Σ1, · · · ,Σm+1

)
, and the m− dimensional break dates vector T = (T1, · · · , Tm).

With regard to estimating and testing for multiple structural breaks in systems of linear equations,
4We will explain such conditions later
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Bai et al. (1998) proposed a method for testing one single break and Hansen (2003) considered multiple
breaks occurring at known dates in a cointegrated system. Bai (2000) considered a problem of testing
multiple breaks occurring at unknown dates but, as far as we know, the most general theoretical frame-
work for testing the presence of structural breaks occurring at unknown dates is the one proposed by
Qu and Perron (2007). Within this approach it is possible to test within- and cross-equation restrictions
of the type g (p?, vec (Σ?)) = 0, where p? ≡

(
p′1,p

′
2, · · · ,p′m+1

)′ and Σ? ≡ (Σ1,Σ2, · · · ,Σm+1). This
is relevant in the sense that several interesting special cases can be approached: i) partial structural
change models (only a subset of the parameters are subject to change), ii) block partial structural change
models (only a subset of the equations are subject to change); iii) ordered break models (the breaks
can occur in a particular order across subsets of equations); among others. Additionally, the problem
of structural breaks in Markov chain models for panel data can be addressed. See Perron (2006) for a
discussion of some methodological issues related to estimation and testing of structural changes in the
linear models.

2.2 The model: main assumptions

In this subsection we present the main econometric theory that supports our strategy. For this purpose,
the following assumptions on the Markov chain are imposed.

Assumption A1. {St} is a first order, possibly, m-inhomogeneous Markov chain.

Remark 1. A Markov chain is said to be m-inhomogeneous if and only if the maximum number of
distinctive transition probability matrices is m - the number of segments is m + 1. Or, in other words,
the number of breaks is m.

Assumption A2. {St} is a positive recurrent MC and aperiodic in the sense that its states are positive
recurrent aperiodic, in each potential segment j = 1, · · · ,m+ 1.

Remark 2. A positive recurrent and aperiodic MC is said to be ergodic or irreducible. In these circum-
stances the process {St} admits a unique stationary distribution in each segment given by Πj, by the
Perron-Frobenius theorem and given that each P t, for Tj−1 + 1 ≤ t ≤ Tj, j = 1, · · · ,m + 1 matrix has
an eigenvalue λjt equal to one and all of them have roots outside the unity circle, see Suhov and Kelbert
(2008).

Assumption A3. ∃`0 : the minimum eigenvalues of

(1/`)

T 0
j +`∑

j=T 0
j +1

xtx
′
t

and of

(1/`)

T 0
j∑

j=T 0
j −`

xtx
′
t

are bounded away from zero, for j = 1, · · · ,m; ∀` > `0.

Assumption A4. The matrices
∑`

t=k xtx
′
t are invertible ∀ `− k ≥ k0, for some 0 < k0 <∞.

Assumption A3 requires that there is no local perfect collinearity in the regressors near the break
dates. This ensures that the break dates are identifiable. Assumption A4 is a standard invertibility
condition.
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These assumptions are plausible given that the Markov chain is positive recurrent and aperiodic for
each segment.

Within our theoretical framework the following propositions arise.

Propositon 1. Under Assumptions A1 and A2, the OLS estimator for (2.9) is, regardless of the sample
size, numerically equal to the one obtained through the ML that assumes a multinomial distribution in
(2.7)

Proof. See the Mathematical Appendix.

Henceforth we will use the superscript 0 to denote the true values of model parameters, such that(
p0

1, · · · ,p0
m+1

)
,
(
Σ0

1, · · · ,Σ0
m+1

)
, and T 0 = (T 0

1 , · · · , T 0
m) denotes, respectively, the true value of the

mean equations parameters, the true values of the error covariance matrix and the true break dates.
Furthermore let

θ0 ≡
(
p0

1, · · · ,p0
m+1; Σ0

1, · · · ,Σ0
m+1

)
(2.16)

represent the stacked value of the true parameters of the model.

Propositon 2. Under Assumptions A1 and A2 we have

`−1
j

T 0
j−1+`j∑

t=T 0
j−1+1

xtx
′
t
a.s.→ Qj, (2.17)

a non random positive definite matrix, as `j →∞, for each j = 1, · · · ,m+ 1 and `j ≤ T 0
j − T 0

j−1 + 1.

Proof. See the Mathematical Appendix

This proposition ensures the verification of all necessary conditions for the application of the central
limit theorem.

Propositon 3. Under Assumptions A1 and A2:

1. {xtεt,Ft} forms a martingale difference sequence;

2. E [xtεt] = 0;

Proof. See the Mathematical Appendix

Proposition 3 naturally holds if xt is replaced by εt (or by εtε′t −Σj).

2.3 The estimation procedure

The main objective of this section is to discuss the estimation procedure, as well as to expose the limiting
distribution of parameter estimators. Let us focus now on the estimation of the parameters θ, we will
elaborate on the estimation and inference of the break fractions latter on. Assuming that the transition
probabilities change in known periods5, conditioning on a partition of the sample T , the parameters
of the model (2.15) can be consistently estimated through the quasi-maximum likelihood method. The
quasi-likelihood function is:

L (p,Σ) =
m+1∏
j=1

Tj∏
t=Tj−1+1

f
(
yt | xt;pj,Σj

)
(2.18)

5Or that we have consistent estimators for T .
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and the the quasi-likelihood ratio may be written as:

LR =

∏m+1
j=1

∏Tj
t=Tj−1+1 f

(
yt | xt;pj,Σj

)
∏m+1

j=1

∏T 0
j

t=T 0
j−1+1

f
(
yt | xt;p0

j ,Σ
0
j

) (2.19)

with

f
(
yt | xt;pj,Σj

)
=

1

(2π)
(q−1)/2 |Σj|

1/2

exp

{
−1

2

(
yt − x′tpj

)′
Σ−1
j

(
yt − x′tpj

)}
(2.20)

The estimators for pj and Σj are obtained as(
p̂j, Σ̂j

)
≡ argmax

(T ,pj ,Σj)
log (LR (p,Σ)) (2.21)

resulting in the following joint closed solutions

p̂j =

 Tj∑
t=Tj−1+1

xtx
′
t

−1
Tj∑

t=Tj−1+1

xtyt (2.22)

Σ̂j =
1

Tj − Tj−1

Tj∑
t=Tj−1+1

(
yt − x′tp̂j

) (
yt − x′tp̂j

)′ (2.23)

with this maximization being taken over some set of admissible partitions T in the set:

Λε = {(Tλ1, ..., Tλm)); |λj+1 − λj| ≥ ε, λ1 ≥ ε, λm ≤ 1− ε} , (2.24)

where ε is a trimming parameter that imposes a minimal length for each segment and λj denotes the
break fractions in such a way that Tj = Tλj. It should be noticed that, although the distribution
of epsilons are not normal, the use of the log likelihood function based on the Gaussian distribution
lead to a consistent estimators. Actually, they coincide with the maximum likelihood estimators (see
Proposition 1). To prove consistency and asymptotic normality of p̂j we treat p̂j as an M -estimator.
In fact, the associated objective function might be written as a sample average T−1

∑T
t=1m (w, θ).
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Furthermore, the log likelihood ratio (2.19) can be decomposed as follows:

logLR = log

∏m+1
j=1

∏Tj
t=Tj−1+1 f

(
yt | xt;pj,Σj

)
∏m+1

j=1

∏T 0
j

t=T 0
j−1+1

f
(
yt | xt;p0

j ,Σ
0
j

)


=
m+1∑
j=1

Tj∑
t=Tj−1+1

log f
(
yt | xt;pj,Σj

)
−

m+1∑
j=1

T 0
j∑

t=T 0
j−1+1

log f
(
yt | xt;p0

j ,Σ
0
j

)
=

T∑
t=1

[{
1 {t ∈ seg1} l (wt;θ1)− 1

{
t ∈ seg0

1

}
l
(
wt;θ

0
1

)}
+ · · ·+

+
{
1 {t ∈ segm+1} l (wt;θm+1)− 1

{
t ∈ seg0

m+1

}
l
(
wt;θ

0
m+1

)}]
=

T∑
t=1

[
m+1∑
j=1

{
1 {t ∈ segj} l (wt;θj)− 1

{
t ∈ seg0

j

}
l
(
wt;θ

0
j

)}]

=
T∑
t=1

m (wt,θ) (2.25)

where 1 {t ∈ segj} means that we are in the j-th segment or, in other words, that Tj−1 + 1 ≤ t ≤ Tj
for j = 1, · · · ,m, and maximizing the objective function

∑T
t=1m (w, θ) is equivalent to maximizing

T−1
∑T

t=1m (w, θ).
As the parameter set is compact (θ involves only the transition probabilities Pij which are obviously

bounded between 0 and 1) and the identification condition automatically holds by Proposition 2, we
just need to assume the standard dominance condition

E [supθ∈Θ |l (wt,θj)|] <∞, j = 1, · · · ,m+ 1

and Newey and McFadden (1994) Theorem 2.5 is verified, hence we have p̂j
p→ p0

j .
Moreover, assuming that for each j = 1, · · · ,m, the standard mild conditions for the asymptotic

normality of an M-Estimator6 and Newey and McFadden (1994) Theorem 3.3 is automatically verified
and we have, in these circumstances,√

Tj − Tj−1

(
p̂j − p0

) d→ N
(
0, Avar

(
p̂j
))
, (2.26)

where Avar
(
p̂j
)

=

[
plim

(
1

Tj−Tj−1

∑Tj
t=Tj−1+1 ztz

′
t

)−1

⊗Σj

]
, for j = 1, · · · ,m.

Let us know focus on the estimation of the break dates

(T̂1, · · · , T̂m) = (T λ̂1, ..., T λ̂m)

elaborating on the estimation of the parameters in a very general setup such that (within and cross-

6More precisely, that θ0 is in the interior of Θ; f
(
yt | xt;θj

)
is twice continuously differentiable in θj for all (yt,xt);

E [s (wt,θ0)] = 0 and −E [H (wt,θ0)] = E
[
s (wt,θ0) s (wt,θ0)′

]
is non singular; and local dominance condition for the Hessian;

where s (wt,θ) =
∂m(wt,θ)

∂θ and H (wt,θ0) =
∂s(wt,θ)

∂θ′
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equation) restrictions of the type g (p?, vec (Σ?)) = 0 are allowed7. We will follow the Qu and Perron
(2007) strategy adapted to our model.

To establish theoretical results about the consistency and limit distribution of the estimates of the
break dates, some standard conditions on the asymptotic framework and on the break dates must be
adopted. We also assume here that the break dates are asymptotically distinct (A5); and some conditions
under which the breaks are asymptotic nonnegletable (A6). More precisely we consider the following
Assumptions.

Assumption A5. The following inequalities hold 0 < λ0
1 < · · · < λ0

m < 1 and T 0
i = [Tλ0

i ] , where [·]
denotes the greatest integer for i = 0, · · · ,m+ 1.

Assumption A6. The magnitudes of the shifts satisfy ∆p0
j = p0

j−p0
j−1 = vδj, ∆Σ0

j = Σ0
j−Σ0

j−1 = vΦj,
for (δj,Φj) 6= 0, and do not depend on T . v is a positive quantity independent of T ; or we have v → 0
but
√
Tv/ (logT )2 →∞, being v a sequence of positive numbers.

Assumption A6 states that the magnitudes of the shifts can be either fixed (v is a positive number
independent of T ) capturing large shifts asymptotically or shrinking (v shrinks and

√
Tv/ (logT )2 →∞)

corresponding to small shifts in finite samples. It is worth noting that the assumption on the nature
of the magnitudes does not impact the test itself or its asymptotic distribution, as we will show later.8
Research by Perron (2006) discusses in length the implications of considering fixed shifts or shrinking
shifts.

As noted by Qu and Perron (2007) these Assumptions ensure four important results regarding the
estimation process of the break dates. First, Tj being unknown does not change the distribution of the
estimators. Formally, under Assumptions A1 to A6 the limiting distribution of

√
T
(
p̂j − p0

j

)
is the same

regardless of whether the breaks occur at known or at unknown dates, hence the asymptotic normality
and consistency of the estimator of the probabilities is established.

Second, the convergence rates of the estimators are as follows:

Tv2
(
T̂j − T 0

)
= Op (1) , for j = 1, · · · ,m (2.27)

√
T
(
p̂j − p0

j

)
= Op (1) , for j = 1, · · · ,m+ 1 (2.28)

√
T
(
Σ̂j −Σ0

j

)
= Op (1) , for j = 1, · · · ,m+ 1 (2.29)

which means that the break dates (or the break fractions) converge faster than p̂j, such that the
asymptotic distribution of the latter is not affected by the former.

Third. As a consequence of the last result, that the maximazation of the likelihood function might
be done in a subset of the parameter set CM and in a neighbourhood of the respective true values, such
that:

CM =
{(

T ,pj,Σj

)
: v2

∣∣Tj − T 0
j

∣∣ ≤M for j = 1, · · · ,m, (2.30)∣∣∣√T (pj − p0
j

)∣∣∣ ≤M,
∣∣∣√T (Σj −Σ0

j

)∣∣∣ ≤M for j = 1, · · · ,m+ 1
}

where M , which can be set to be arbitrarily large, denotes the maximum number of breaks allowed.
7Those restrictions might play an important role because, among other cases, they permit the generation of partial

change models (only a subset of coefficients are allowed to change). This class of models allows inhomogeneities to be
tested in just a few lines of the matrix of transition probabilities, while the rest remain homogeneous. Furthermore, the
imposition of relevant restrictions in the parameters of the model might also contribute to power increments.

8On the contrary, this assumption only influences some minor technical issues related to the distribution of the break
dates.
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Finally, the log-likelihood ratio might be decomposed into two asymptotically independent compo-
nents - one that concerns the estimation of the break dates and another one that refers to the estimation
of the stacked vector of parameters θ. Let lr and rlr denote, respectively, the log likelihood ratio and
the restricted likelihood ratio, such that the objective function is:

rlr = lr + λ′g (p?, vec (Σ?)) (2.31)

Under Assumptions A1 to A6, rlr may be decomposed as follows:

max
(T ,p,Σ)∈CM

rlr = max
T ∈CM ,p0,Σ0

m∑
j=1

lr
(1)
j

(
Tj − T 0

j

)
(2.32)

+ max
(p,Σ)∈CM ,T 0

[
m+1∑
j=1

lr
(2)
j + λ′g (p,Σ)

]
(2.33)

+ op (1)

where,

lr
(1)
j (0) = 0,

lr
(1)
j (r) =

1

2

T 0
j∑

t=T 0
j +r

ε′t

[(
Σ0
j

)−1 −
(
Σ0
j+1

)−1
]
εt −

r

2

(
log
∣∣Σ0

j

∣∣− log
∣∣Σ0

j+1

∣∣)

− 1

2

T 0
j∑

t=T 0
j +r

(
p0
j − p0

j+1

)′
xt
(
Σ0
j+1

)−1
x′t
(
p0
j − p0

j+1

)

−
T 0
j∑

t=T 0
j +r

(
p0
j − p0

j+1

)′
xt
(
Σ0
j+1

)−1
εt

for r = −1,−2, · · · ,

lr
(1)
j (r) = − 1

2

T 0
j +r∑

t=T 0
j +1

ε′t

[(
Σ0
j

)−1 −
(
Σ0
j+1

)−1
]
εt −

r

2

(
log
∣∣Σ0

j

∣∣− log
∣∣Σ0

j+1

∣∣)

− 1

2

T 0
j +r∑

t=T 0
j +1

(
p0
j − p0

j+1

)′
xt
(
Σ0
j+1

)−1
x′t
(
p0
j − p0

j+1

)

−
T 0
j +r∑

t=T 0
j +1

(
p0
j − p0

j+1

)′
xt
(
Σ0
j+1

)−1
εt
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for r = 1, 2, · · · , and

lr
(2)
j =

1

2

T 0
j∑

t=T 0
j +1

(
yt − x′tpj

)′
Σ−1
j

(
yt − x′tpj

)
−
T 0
j − T 0

j−1

2
log |Σj|

+
1

2

T 0
j∑

t=T 0
j +1

(
yt − x′tpj

)′ (
Σ0
j

)−1 (
yt − x′tpj

)
+
T 0
j − T 0

j−1

2
log
∣∣Σ0

j

∣∣ .
This result implies that the estimator of the break dates are asymptotic independent of the estimator

of θ. Additionally, eventual restrictions on the parameters do not affect the distribution of the break
dates. Moreover, the estimation procedure is as follows. Firstly, the break dates are consistently
estimated assuming that we know the true values of the parameters θ0, then the mean parameters are
estimated, possibly subject to restrictions of the type g (p?, vec (Σ?)) = 0, keeping the break dates
fixed at their true values T 0. Thus, under fixed magnitudes of shifts, it is straightforward to derive the
asymptotic distribution of the estimates on the break dates.9

Propositon 4. Under Assumptions A1 to A6, assuming a fixed v, we have:

T̂j − T 0
j

d→ argmaxrlr
(1)
j (r) for j = 1, · · · ,m (2.34)

Proof. See Qu and Perron (2007).

It is worth noting some considerations about the computational procedure underlying the estimation
of the model parameters. A standard grid search procedure would require the computation of a number
of QMLE of an order of magnitude of Tm, which would be virtually impossible with m > 2. However,
the maximum number of possible segments is actually

∑T
t=1 t = 1 + 2 + · · ·+ T = T (1+T )

2
and therefore

of an order of magnitude of T 2, no matter the number of breaks m. Thus, a method is required to select
which combination of segments leads to a minimum value of the objective function. Here, we follow the
dynamic programming algorithm, based on a iterative GLS approach to evaluate the likelihood functions
for all segments, proposed by Bai and Perron (2003) and extended by Qu and Perron (2007, pp 476-478).

2.4 Testing for multiple and endogenous inhomogeneities in Markov chains

In this section we consider the problem of testing for inhomogeneities in a Markov chain. Put otherwise,
testing structural changes in the one-step transition probabilities occurring at unknown periods. Without
any lost of generality we assume a pure structural change model, such that all parameters are allowed to
vary over time. In a first moment we will expose the standard likelihood ratio test. This statistic intends
to determine a presence of at least one structural break. Next, we discuss the potential of two possible
extensions concerning confirmatory analysis. A sequential test that allows us to select the number of
changes, given that, sequentially, we test a null of l breaks against l + 1 breaks - the Seq (`+ 1| `); and
the WDmax for testing no breaks against an unknown (up to some pre-specified maximum) number of
breaks. These procedures are interesting because they do not require the prespecification of the number
of breaks under the alternative hypothesis, unlike the supLR test.

Nevertheless, the following two Assumptions, on the regressors and on the errors, must be adopted
to obtain theoretical results about limiting distribution of the tests, under the null hypothesis of no
breaks, m = 0.

9For the derivation of the asymptotic distribution of the break dates estimator under shrinking magnitudes of shifts
see, e.g. Qu and Perron (2007, pp 471-472) or Bai (2000, p312)
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Assumption A7. We have T−1
∑[Ts]

t=1 xtx
′
t

p→ sQ uniformly in s ∈ [0, 1] for some Q positive definite.

Assumption A7 imposes that the limit moment matrix of the regressors is homogeneous over all
sample.

Assumption A8. We have E [εtε
′
t] = Σ0 ∀t; T−1/2

∑[Ts]
t=1 xtεt

d→ Φ
1/2W (s) where W (s) is a vector

of independent Wiener processes, and

Φ = plimT−1

T∑
t=1

xt
(
I(q−1) ⊗Σ0

)
x′t.

Also we have, T−1/2
∑[Ts]

t=1

(
ηtη

′
t − I(q−1)

) d→ ξ (s), where ξ (s) is a (q−1) square matrix of Brownian
motion processes with Ω = var (vec (ξ (1))); and ηt ≡ (ηt1, · · · , ηt,q−1)′ =

(
Σ0
)−1/2

εt. In addition we
assume that E [ηtkηtlηtm] = 0 ∀k, l,m, t; k 6= m ∨ k 6= l.

Assumption A8 states that the functional central limit theorem might be employed. This is a
mild weak condition, given that, by construction, under null the hypothesis of homogeneity, xtεt is a
martingale difference sequence with respect to F t. Moreover, xt and εt are bounded which ensures the
existence of all moments of xtεt, in particular, the Corollary 29.19 of Davidson (1994) can be immediately
applied. Both Assumption A7 and A8 are crucial to the derivation of the limiting distribution of the
tests under H0.

Regarding the limiting distribution of the supLR(m, q, ε) test, let

p̃ =

(
T∑
t=1

xtx
′
t

)−1 T∑
t=1

xtyt (2.35)

denote the transition probabilities estimator under the null hypothesis of homogeneity (absence of struc-
tural breaks) and let L̃ denote the associated likelihood, where

log L̃ = −T (q − 1)

2
(log 2π + 1)− T

2
log
∣∣∣Σ̃∣∣∣ , (2.36)

being Σ̃ the error covariance matrix under homogeneity, verifying

Σ̃ =
1

T

T∑
t=1

(yt − x′tp̃) (yt − x′tp̃)
′
. (2.37)

Let additionaly log L̂ (T1, · · · , Tm,) denote the log likelihood statistic for a given partition T associated
with the QML (2.18).

The observable value for this test is the supremum of the likelihood ratio:

2
[
log L̂ (T1, · · · , Tm,)− log L̃

]
(2.38)

evaluated over all possible partitions Λε (expression 2.24). Formally, we have

supLR(m, q, ε) = sup
(λ1,··· ,λm)∈Λε

2
[
log L̂ (T1, · · · , Tm)− log L̃

]
= 2

[
log L̂

(
T̂1, · · · , T̂m

)
− log L̃

]
, (2.39)
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where T̂1, · · · , T̂m results from the maximization (2.32). This statistic depends on three parameters: i)
the number of breaks allowed, m ; ii) the trimming parameter, ε; and iii) the dimension of the space state
of the Markov chain (the number of states). The critical values are presented in Bai and Perron (1998,
2003). Regarding the limiting distribution of the supLR(m, q, ε) statistic under the null hypothesis of
homogeneity, Proposition 5 holds.

Propositon 5. Under Assumptions A1 to A8 the limiting distirbution of the supLR statistic is as
follows.

supLR
d→ sup

m∑
j=1

‖λjWq (λj+1)− λj+1Wq (λj+1)‖2

(λj+1 − λj)λjλj+1

(2.40)

where Wq (·) denote a q-dimensional vector of independent Wiener processes.

Proof. See Qu and Perron (2007, p. 487).

We extend our analysis to a sequential test procedure. Actually, the Seq (`+ 1| `) statistic proposed
by Bai and Perron (1998) to the univariate case and adapted by Qu and Perron (2007) to the multivariate
case, can be used to select the number of different segments in an inhomogeneous Markov chain. Let us
consider a model with ` breaks, whose estimates, (T̂1, · · · , T̂`), were obtained by a global maximization
procedure. This statistic tests, sequentially, H0 : ` breaks against H1 : ` + 1 breaks by performing a
single-break test for for each one of the segments (T̂1, · · · , T̂`) and then evaluating the significance of
the maximum of the tests. Formally we have:

Seq (`+ 1 | `) = max
1≤j≤`+1

sup
τ∈Λj,ε

lr
(
T̂1, · · · , T̂j−1, τ, T̂j, · · · T̂`

)
− lr

(
T̂1, · · · , T̂`

)
, (2.41)

where
Λj,ε =

{
T̂j−1 +

(
T̂j − T̂j−1

)
ε ≤ τ ≤ T̂j −

(
T̂j − T̂j−1

)
ε
}
. (2.42)

The limiting distribution of this statistic under the null of ` breaks can be found in Qu and Perron
(2007) and the critical values were tabulated in Bai and Perron (1998, 2006).

An important feature concerning the supLR(m, q, ε) statistic relates to the need to specify a priori
the number of breaks to be tested, m, under the alternative hypothesis. That is frequently not the
case and one may still not want to specify the number of breaks under the alternative hypothesis. For
this purpose, Bai and Perron (1998) suggested a class of tests called double maximum tests. One of
these statistics is the WDmaxLR(M), that tests for a null of no breaks against an unknown number of
breaks between 1 and some upper limit M . The mechanic of this test consists on the evaluation of the
maximum of the supremum of the supLR(m, q, ε) over the number of possible breaks from 1 to M , as
follows

WDmaxLR(m, q, ε) (M, q) = max
1≤m≤M

am × supLR(m, q, ε)
(λ1,··· ,λm)∈Λε

. (2.43)

The terms am are the weights of the test,10

am ≡
c (q, α, 1)

c (q, α,m)
, (2.44)

the ratio between the asymptotic critical values of the supLR(m, q, ε) for m = 1 (c (q, α, 1)) and for
m = 1, · · · ,M (c (q, α,m)), so that a1 = 1. Critical values might be found in Bai et al. (1998) and in
Bai and Perron (2006).

10An unweighted version of this test, the UDmaxLR(m, q, ε), reported poor power, mainly as m increases (Bai et al., 1998;
Bai and Perron, 2006).
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3 Monte Carlo Experiments
In this section we evaluate the size of the tests through a Monte Carlo experiment. We consider a
simple process with two categories St with three states (q = 3). The Markov chain is simulated, using
the GAUSS package, according to the algorithm:

1. Define m+ 1 q-dimensional transition probability matrices whose elements are the probabilities

Pj,i1i0 ≡ Pj (St = i0|St−1 = i1) (3.1)

- see the definition of the data generating process (DGP) below;

2. Initialize the process {St} by assigning values to STj−1
, for j = 1, · · · ,m accordingly to the sta-

tionary distributions Πj;

3. Simulate a continuous random variable W uniformly distributed, W ∼ U (0, 1);

4. Given the initial values STj−1
(step 2), simulate the process {St} , t = Tj−1 + 1, .., Tj, for j =

1, · · · ,m+ 1 as follows:

(a) Let Pi,j ≡ Pj (St = i|S1t−1 = i1), t = Tj−1 + 1, .., Tj; j = 1, · · · ,m+ 1;

(b) St =


1 if 0 ≤ W < P1,j

2 if P1,j ≤ W < P1,j + P2,j

3 if P1,j + P2,j ≤ W < 1;

5. Repeat the steps 1-4 until t = Tm+1.

In all simulations, computed with 5000 replications, a trimming parameter is set to be ε = 0.15. Sample
sizes of 250, 500 and 1000 were considered. The proportion of times when the null hypothesis was
rejected is reported. Several levels of persistency of the regimes of the Markov chain are analysed. The
analysis is also extended to the situation where the regimes are independent.

3.1 Size Analysis

We now examine three different DGP (i.e. three different cases) for homogeneous Markov chains, m = 1,
so that T0 = 1 and T1 = T as follows. The regimes are persistent in Case 1, and not persistent in Case
2. Finally, the regimes are independent in Case 3.

Case P11 P12 P13 P21 P22 P32 P31 P32 P33

1 0.4 0.3 0.3 0.2 0.4 0.4 0.6 0.2 0.2

2 0.55 0.25 0.2 0.25 0.55 0.2 0.2 0.25 0.55

3 0.5 0.3 0.2 0.5 0.3 0.2 0.5 0.3 0.2

Next, we consider two cases: (1) one break is allowed, (2) two breaks are allowed. In the first case
both the supLR and the WDmax tests 0 breaks against 1 break. To simplify the notation we consider
supLR(0 | 1) and WDmax(0 | 1). In the second situation the supLR tests 0 breaks against 2,
supLR(0 | 1), and theWDmax 0 against an undetermined number of breaks up to 2, WDmax(0 | 1, 2).
Figures 1 and 2 display the results. In general, there appear to be no size distortions of the tests, as
expected. The exception is the supLR(0 | 2) for the Case 2, where the regimes are persistent, that
tends to be slightly oversized (Figure 2b). It should also be noted that WDmax tends to present an
undersize behaviour in all situations, in that it tends to under-reject the null hypothesis.
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Figure 1: Homogeneous Markov chain, one break is allowed (nominal size: 5%)
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Figure 2: Homogeneous Markov chain, up to two breaks are allowed (nominal size: 5%)
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3.2 Power Analysis

To access the power of the tests either in finite samples and asymptotically, our analysis includes six
cases for inhomogeneous Markov chains. Cases 4, 5, 6 correspond to Markov chains generated with one
structural break m = 1, so that T0 = 1 , T1 = [T/2] and T2 = T . Cases 7, 8, 9 concern chains generated
subject to three breaks ( T0 = 1, T1 = [T/3], T2 = [2T/3] and T3 = T ). As follows:

Case Regime P11 P12 P13 P21 P22 P32 P31 P32 P33

4 1 0.4 0.3 0.3 0.2 0.4 0.4 0.6 0.2 0.2

4 2 0.2 0.4 0.4 0.2 0.6 0.2 0.6 0.2 0.2

5 1 0.55 0.25 0.2 0.25 0.55 0.2 0.2 0.25 0.55

5 2 0.45 0.2 0.35 0.3 0.45 0.25 0.15 0.40 0.45

6 1 0.5 0.3 0.2 0.5 0.3 0.2 0.5 0.3 0.2

6 2 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3

7 1 0.4 0.3 0.3 0.2 0.4 0.4 0.6 0.2 0.2

7 2 0.2 0.4 0.4 0.2 0.6 0.2 0.3 0.4 0.4

7 3 0.4 0.3 0.3 0.2 0.4 0.4 0.6 0.2 0.2

8 1 0.55 0.25 0.2 0.25 0.55 0.2 0.2 0.25 0.55

8 2 0.45 0.2 0.35 0.3 0.45 0.25 0.15 0.4 0.45

8 3 0.55 0.25 0.2 0.25 0.55 0.2 0.2 0.25 0.55

9 1 0.5 0.3 0.2 0.5 0.3 0.2 0.5 0.3 0.2

9 2 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.4 0.3

9 3 0.5 0.3 0.2 0.5 0.3 0.2 0.5 0.3 0.2

In general, the tests are consistent in the sense that the respective power tends to 1. The exception
is Case 8, where the regimes exhibit some persistency and there are three different regimes, in that
the supLR(0 | 1) and the WDmax(0 | 1, 2) presents low asymptotic power. Considering only two
regimes, both the power of the supLR(0 | 1) and of the WDmax(0 | 1, 2) is satisfactory, even with high
persistency.

As expected, with one break (Cases 4, 5, 6) the supLR(0 | 1) always performed better than the
WDmax(0 | 1). When two breaks are present, the supLR(0 | 2) outperformed the WDmax(0 | 1, 2),
however the WDmax(0 | 1, 2) surpassed the supLR(0 | 1). This suggests that if we are not sure about
the number of breaks the WDmax might be a good option.

Furthermore, the Seq(1 | 2) behaves as expected. It tends to correctly reject 1 break against 2 in all
situations, both in small and in large samples, except for the case of highly persistent regimes (Figure
3b).

In small samples, with persistent regimes and in the presence of two breaks the tests tend to evidence
lack of power, notably the supLR(0 | 1) and the WDmax(0 | 1, 2), Figure 4b. In turn, in finite samples
with two breaks, against an alternative of one single break the null hypothesis of no break is only rejected
about 18.3% of the time by the supLR(0 | 2) and around 20% by the WDmax(0 | 1, 2), which is far
from being positive. However, the DGP was quite extreme, as the induced magnitude of the shifts is
relatively small, the regimes are persistent in all of the three segments, and DGP of the first segment
equals the third one. When two breaks are present, the supLR(0 | 2) always present a good power,
larger than the WDmax(0 | 1, 2) in all circumstances. This is the expected result, given that H1 fully
specified supLR(0 | 2). In a nutshell, the higher the persistency of the regimes the lower the power
of the tests. It must, however, be pointed out that the multiple breaks have been induced in such a
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Figure 3: Inhomogeneous Markov chain with two segments, one break is allowed (nominal size: 5%)

way that they are difficult to detect: two breaks with the first and third regimes the same and small
magnitudes (Perron, 2006, p 32).

A practical recommendation of this exercise may involve the joint use of the various tests to detect
and test inhomogeneities in a Markov chain. In fact, one can use the supLR(0 | m) for several levels of
m, in conjunction with a confirmatory analysis with the other tests. The WDmax may be used with
an arbitrary large M to confirm if there is at least one structural break, then the Seq(` | ` + 1) can be
employed to corroborate the number of breaks of the process.
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Figure 4: Inhomogeneous Markov chain with three segments, two breaks are allowed (nominal size: 5%)

4 Example
In this section, which is far from being the main focus of this article, we provide a brief illustration
of the method with an application on the NASDAQ stock index. Weekly data from January 1990 to
January 2019 has been considered, with 1517 observations. The purpose of We start by considering a
simple AR(1) on NASDAQ returns (rt = 100 × log(Pt/Pt−1), where Pt denotes the closing prices), as
follows:

rt = α + φrt−1 + εt.

Although the process is univariate, for the sake of comparison we apply Qu and Perron (2007) approach
for detecting structural breaks. We set M = 3 so that three breaks and four regimes are allowed. There
is no trace of structural breaks (Table 1). A trimming parameter ε = 0.15 was considered.

This lack of statistical success in detecting structural breaks may be due to three reasons. First,
no breaks exist and hence they are not correctly detected. Second, the breaks exist somewhere in the
higher moments of the probabilistic structure of the process, but not at its conditional mean. Third,

Test Test obs 1% Critical Value 5% Critical Value 10% Critical Value

supLR(1) 4.005 15.711 12.092 10.434

supLR(2) 5.047 23.953 19.258 17.086

supLR(3) 6.273 31.007 25.280 22.620

WDmaxLR(3) 4.005 16.743 12.715 10.892
Table 1: Structural Break Tests for the Original Process (AR(1) approach)
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Test Test obs 1% Critical Value 5% Critical Value 10% Critical Value

supLR(1) 50.883 42.687 35.878 33.025

supLR(2) 151.469 68.324 60.155 57.066

supLR(3) 187.179 93.365 83.612 80.193

WDmaxLR(3) 90.338 45.375 38.618 36.098

Seq ( 2| 1) 63.912 135.772 31.734 17.811

Seq ( 3| 2) 36.239 129.198 27.787 13.765
Table 2: Structural Break Tests for the Reconstructed Process (Markov Chain Approach)

there are non-linearities in the conditional mean of the process that are not captured by a simple AR(1)
but may be captured by the Markov Chain, i.e., the conditional mean was misspecified by the AR(1).

To investigate this, the original process was reconstructed into a 5-state Markov chain, in accordance
with the following rule:

St =



1 if rt < q̂0.2

2 if q̂0.2 < rt < q̂0.4

3 if q̂0.4 < rt < q̂0.6

4 if q̂0.6 < rt < q̂0.8

5 if rt > q̂0.8

(4.1)

where q̂α is the estimated quantile of order α of the marginal distribution of rt. Then, the Markov chain
was represented in a VAR form, see equation 2.9, and the proposed method was applied.

Unlike the AR(1) we have evidence of 3 structural breaks: 22/06/1998 (1998w25); 07/04/2003
(2003w14); and 23/01/2012 (2013w4). The results are summarised in Table 2. Figure 5 shows the
breaks, both in the Prices (Figure 5b) and in the Returns (Figure 5a), represented by a vertical dash
line. The identified regimes are consistent with NASDAQ’s historical dynamics. On the one hand,
with regard to the first segment, 1990-1998, it was a calm period, with increasing prices and a slightly
volatile returns. This regime has some similarities with the Regime 4 - 2012 onwards, after the end of
the subprime crisis. On the other hand, Regime 2 (1998-2003) captures the rise and fall of the NASDAQ
that featured the Dotcom era. This period is turbulent, where very fast and asymmetric movements
in Prices - in 1999 NASDAQ became, for a while, the world’s largest stock market by dollar volume
- are coupled with extremely volatile returns. Similarly, Regime 3 is also turbulent and unstable as it
coincides with the financial and subprime crisis.

In each segment, the Markov chain state space is (obviously) finite and irreducible (all states com-
municate). Hence, the Markov chain in each segment is positive recurrent and thus has a stationary
distribution, see for example, Karlin and Taylor (1981). Figure 6 displays the four transition matrices.
Each figure represents a regime. For example, in figure 6a, Panel P(1|i0) represents the first row of P1,
Panel P(2|i0) represents the second row of P1, and so on. In general, panel P(j|•) represents the j-th
row of each Pi, i = 1, 2, 3, 4. The regimes can be compared vertically, i.e., Panel by Panel. For exam-
ple, Panels P(1|i0) of Figures 6a and 6b report the probabilities of the first and second second regime,
respectively, when St−1 = 1. The main conclusion from Figures 6a to 6d is that the regimes behave
quite differently, especially if we compare the regimes related to the bull periods (regimes 1 and 4) with
those of bear periods (regimes 2 and 3). Some examples of this fact: (i) Panel P(1|i0) of Figure 6a (first
regime) shows that the probabilities P (St = i|St−1 = 1) for i = 1, 2, ..., 5, are approximately equal; in
contrast, Panel P(1|i0) of Figure 6b (second regime) shows that these same probabilities present a U
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Figure 5: Structural Breaks from the Markov chain

shape. This U shape implies, for example, that if prices dropped in the previous period (St−1 = 1,
that is, if the return is below the 0.10 quantile), then the probability of the prices falling in the same
magnitude (St = 1), or skyrocketing in the next period, is relatively high. This result was expected given
that regime 2 corresponds to the period of financial crises and high market volatility. (ii) To reinforce
the previous point, we note that all the panels associated with the second regime present the U shape.
(iii) in the regime 4 (Figure 6d), which can be identified as the bull period, the market quickly changes
from a price fall to a price increase (see panel Panel P(1|i0) of Figure 6d).

A way to summarize some of the main regime dynamic features is to compute the first two conditional
moments. In general, the Markov chain does not allow us to calculate such moments, if the states are
(nominal) categories. However, in our case, the 5 states represent a class interval of type

[
q̂(k−1)0.2, q̂k0.2

]
,

where q̂α is the quantile of order α, and k = 1, 2, ..., 5. Hence, we may consider a representative value for
each interval, e.g. the corresponding midpoint, say mk, and then estimate the approximate conditional
mean and variance on state St−1 = j as follows:

µ̂ (r, j) =
5∑

k=1

mk × P̂r (k|St−1 = j)

σ̂2 (r, j) =
5∑

k=1

m2
k × P̂r (k|St−1 = j)− µ̂ (j)2

This procedure is also suggested in Nicolau (2014). Figure 7 shows the conditional mean and variances
across the various regimes. The conditional moments’ differences across regimes are quite obvious. For
example, regime 4 has a conditional mean on St−1 = 1 quite high (this moment is represented by
µ̂ (4, 1)); it means that a significant drop in the previous period tends to lead to a sharp increase in
the following period. In other words, the market tends to recover rapidly after a significant drop. The
opposite occurs with regime 1 and to some extend with regime 2 and 3. The conditional variance also
displays quite different behavior. For example, the conditional variance of regime 2 is the highest among
the four, regardless of the state of the process in the previous period (i.e., σ̂2 (r, j) (2, •) > σ̂2 (r, j) (r, •) ,
r = 1, 3, 4). In regime 2 (financial crisis) the conditional mean is generally lower and volatility is generally
higher than in the other regimes, as shown in figure 2. This is expected and has been extensively
described in the extant literature. What is more subtle, but also clear from Figures 6 and 7, is that
the market in regime 2 does not recover easily after a fall, since P (St = 1|St−1 = 1) is relatively high
(see for example Panel P(1|i0) of Figure 6b and Figure 7a); furthermore, it is also interesting to observe
that P (St = 3|St−1 = 3) is very low when compared to other regimes, which means that the process
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Figure 6: Transition Matrices
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Figure 7: Conditional Mean and Variance

in regime 2 does not spend much time in the “quiet” state St = 3 (this state includes all the values of
returns that lie between the quantiles 0.4 and 0.6).

There are more features that emerge from figures 1 and 2, but the point is the following: the
dissimilarities between the transition probability are clear, which confirm the structural breaks uncovered
by the proposed methodology. By contrast, the standard autoregressive model is unable to detect
structural changes. This may be attributed to the fact that returns usually display very weak linear
autocorrelations in any regime, and nonlinearities of any form cannot be detected by a vanilla AR
process. On the contrary, Markov processes (with a large number of states) can potentially detect any
form of nonlinearity of a Markov process of order one.
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5 Conclusions
This article proposes a new approach for detecting and testing inhomogeneities in Markov chains oc-
curring at unknown periods. The usual methods described in the literature for testing inhomogeneities
in Markov chains have some limitations. Namely that they can only test for the presence of a single
structural break; and either the break is assumed to occur at a known date or the limiting distribution
of the test is unknown. Our strategy relies on the fact that, under certain conditions, an ergodic Markov
chain admits a stationary vectorial autoregressive representation. The numerical equivalence between
the MLE estimator for the one-step transition probabilities and the VAR mean parameter estimators
is proved. Taking advantage of the possibility of representing a Markov chain in VAR form, the meth-
ods that usually apply to a VAR model remain valid for the Markov chains, namely, the supLR, the
WDmax, and the Seq (`+ 1| `). These procedures are applied for the first time to Markov chains. A
Monte Carlo simulation study points to a higher power of supLR tests compared toWDmax tests when
the alternative hypothesis is correctly specified. This evidence occurs with one and with two structural
breaks. As for size analysis, with one and with two breaks, there were no size distortions in either small
or large samples, for all tests. An illustration of the proposed method using the NASDAQ stock index
was also provided. The advantages of the proposed methodology were demonstrated for the reason that,
unlike the traditional AR(1), it is possible to detect breaks that make sense in light of the historical
dynamics of the NASDAQ. Namely, the rise and fall of NASDAQ during the dotcom crash, as well as
the financial crisis of 1998-2012. With regard to power analysis, in general the tests were asymptotically
consistent. Since the power increased substantially with T converging to 1. However, as DGP implied an
increase in the persistence of regimes, the asymptotic power of the tests worsened slightly, in particular
in the supLR(0 | 1) and in the WDmax when two breaks are present. Regarding further research we
believe that inhomogeneity in Markov chains will continue to deserve analytical work as well as close
care in accounting for its consequences in practical forecasting exercises.
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Appendix 1: Mathematical Appendix
Propositon 1. Under Assumptions A1 and A2, the OLS estimator for (2.9) is, regardless of the sample
size, numerically equal to the one obtained through the ML that assumes a multinomial distribution in
(2.7)

Proof. The proof is immediate by the Frisch-Waugh-Lovell theorem, given that the variables of the
right-hand side of the equation (5) are, by construction, orthogonal.

In fact, the stacked vector p̂ of the estimators P̂ •i is given by

p̂ =
T∑
t=1

(xtx
′
t)
−1

T∑
t=1

xtyt

=


∑T

t=1 ztz
′
t 0 · · · 0

0
∑T

t=1 ztz
′
t · · ·

...
...

... . . . 0

0 0 · · ·
∑T

t=1 ztz
′
t


−1

∑T
t=1 zty1t∑T
t=1 zty2t

...∑T
t=1 ztyq−1t

 ,

thus, the i-th estimator is given by

P̂ •i =

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztyit.
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In view of the fact that

ztz
′
t =

 y1t−1
...

yqt−1

( y1t−1 · · · yqt−1

)

=


y2

1t−1 0 · · · 0

0 y2
2t−1 · · · 0
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... . . . ...

0 · · · 0 y2
qt−1
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0 · · · 0

0 1∑T
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... . . . ...
0 · · · 0 1∑T

t=1 yqt−1

 .

Therefore, the k-th entry of P̂ •i is

P̂ki =
1∑T

t=1 ykt−1

T∑
t=1

zktyit

=

∑T
t=1 ykt−1yit∑T
t=1 ykt−1

=

=

∑
1 (ykt−1 = 1, yit = 1)∑

1 (ykt−1 = 1)

=

∑
1 (St−1 = k, St = i)∑

1 (St−1 = k)

=
nik
ni
.

This expression numerically equals expression (9) as we have orthogonal partitioned regressions.

Propositon 2. Under Assumptions A1 and A2 we have

`−1
j

T 0
j−1+`j∑

t=T 0
j−1+1

xtx
′
t
a.s.→ Qj, (2.17)

a non random positive definite matrix, as `j →∞, for each j = 1, · · · ,m+ 1 and `j ≤ T 0
j − T 0

j−1 + 1.

Proof. {St} is a stationary and ergodic Markov chain sequence and E [|St|] is finite, therefore, using, for
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example, the pointwise ergodic theorem for stationary sequences (Stout, 1974; White, 2014) we have

1

`j

T 0
j−1+`j∑

t=T 0
j−1+1

ztz
′
t =

 1

`j

T 0
j−1+`j∑

t=T 0
j−1+1

1 {St−1 = i}


=

 1

`j

T 0
j−1+`j∑

t=T 0
j−1+1

yit−1


i=1,··· ,q

as→ Ej [yit] = πi (j) (5.1)

Using the continuous mapping theorem

1

`j

∑
xtxt

′ as→ Πj ,

where Πj is the vector of stationary probabilities for the j-th segment.

Propositon 3. Under Assumptions A1 and A2:

1. {xtεt,Ft} forms a martingale difference sequence;

2. E [xtεt] = 0;

Proof. The vector εt is, by construction, a martingale difference sequence with respect to Ft, given that
εit = yit − E [yit | Ft]. Hence, {xtεt} is also a martingale difference sequence because E [xtεt | Ft] =
xtE [εt | Ft] = 0. Therefore, E [xtεt] = 0 (by the law of iterated expectations), {ztεt} is an uncorrelated
sequence and as a direct consequence {xtεt,Ft} forms a martingale difference sequence and, thus, a
strongly mixing sequence.

Lemma 1. The covariance matrix (15) Σ ≡ E [εtε
′
t] given by

Σ =


π1 −

∑q
k=1 πkP

2
k1 −

∑q
k=1 Pk1Pk2πk · · · −

∑q
k=1 Pk1Pkqπk

−
∑q

k=1 Pk1Pk2πk π2 −
∑q

k=1 πkP
2
k2 · · · −

∑q
k=1 Pk2Pkqπk

...
... . . . ...

−
∑q

k=1 Pk1Pkqπk −
∑q

k=1 Pk2Pkqπk πq −
∑q

k=1 πkP
2
kq

 .

Proof. The covariance writes:

E [εitεij] = E [(yit − x′tP•i) (yjt − x′tP•j)] =

= E [yityjt − yitx′tP•j − x′tP•iyjt + x′tP•ix
′
tP•j]

= E [yityjt]− E [yitx
′
tP•j]− E [x′tP•iyjt] + E [x′tP•ix

′
tP•j]

= 0−
q∑

k=1

PkjPkiπk −
q∑

k=1

PkiPkjπk +

q∑
k=1

πkPkiPkj

= −
q∑

k=1

PkiPkjπk.
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Since, by construction yityjt = 0, i 6= j, then

E [yityj,t−1] = P (St = i, St−1 = j) = P (St = i|St−1 = j)P (St−1 = j)

= Pjiπj

E [yitx
′
tP•j] = E [yit (y1,t−1P1j + ...+ yq,t−1Pqj)] =

q∑
k=1

PkjE [yityk,t−1]

=

q∑
k=1

PkjPkiπk

E [x′tP•iyjt] = E [yjtx
′
tP•i] =

q∑
k=1

PkiPkjπk

E [x′tP•ix
′
tP•j] = E [P ′•ixtx

′
tP•j] = P ′•iE [xtx

′
t]P•j =

= P ′•i


π1 0 · · · 0

0 π2 · · · 0
... . . . ...
0 0 · · · πq

P•j =

q∑
k=1

πkPkiPkj.

On the other hand, E [ε2
it] may be written as

E
[
ε2
it

]
= E

[
(yit − x′tP•i)

2
]

=

= E
[
y2
it − 2yitx

′
tP•i + (x′tP•i)

2
]

= E
[
y2
it − 2yitx

′
tP•i + P ′•ixtx

′
tP•i
]

and

E [yityit] = E
[
y2
it

]
= E [yit] = πi

E [yitx
′
tP•i] =

q∑
k=1

P 2
kjπk

E [P ′•ixtx
′
tP•i] =

q∑
k=1

πkP
2
ki,

therefore

E
[
ε2
it

]
= πi − 2

q∑
k=1

P 2
kjπk +

q∑
k=1

πkP
2
ki

= πi −
q∑

k=1

πkP
2
ki.
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