
SECOND-GENERATION POLYALGORITHMS

FOR PARALLEL DENSE-MATRIX

MULTIPLICATION

by

Grace Nansamba

Anthony Skjellum Farah Kandah
Professor of Computer Science Professor of Computer Science
(Chair) (Committee Member)

Michael Ward
Professor of Computer Science
(Committee Member)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTC Scholar

https://core.ac.uk/display/344925166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SECOND-GENERATION POLYALGORITHMS

FOR PARALLEL DENSE-MATRIX

MULTIPLICATION

by

Grace Nansamba

A Thesis Submitted to the Faculty of the
University of Tennessee at Chattanooga

in Partial Fulfillment of the Requirements of the
Master of Science in Computer Science

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

December 2020

ii

Copyright c© 2020

Grace Nansamba

All Rights Reserved

iii

ABSTRACT

The polyalgorithm library, originally designed in 1991-1993 by Robert Falgout, Jin Li,

and Anthony Skjellum, includes fourteen dense matrix multiplication algorithms mapped onto

two-dimensional process grids using the Message Passing Interface (MPI). This thesis’ goal is

to achieve optimized performance of parallel, dense linear algebra algorithms by varying the

algorithm as a function of problem size, shape, data layout, concurrency, and architecture. We

integrate these algorithms with an intra-node BLAS DGEMM kernel designed by Thomas Hines

(Tennessee Tech), which improves the BLAS DGEMM performance in fat-by-thin dense matrix

multiplication region. We add a rank-k-based SUMMA algorithm, which performs better than

rank-1-based SUMMA. We studied performance on two cluster systems and results show the

performance and improvements achieved. We compare and contrast our results with COSMA, a

recent, highly optimized approach and verify that COSMA, using optimal 3D grid decompositions,

has significant advantages provided its preferred data layouts can be used.

iv

DEDICATION

To my father, Mr. Eddie-Bosco Senoga, the priest of my life, God’s perfect image to me!

For maama Nassimbwa, my best friend, the Proverbs 31 wife of Mr. Senoga, but above all my

mother.

v

ACKNOWLEDGMENTS

I thank God, for watching over me and guiding me with His loving eye, Hallelujah!

Dr. Anthony Skjellum, thank you for all the great things you have done for me. For all the

questions you have answered with patience and kindness, giving me a deeper understanding and

the big picture of what high-performance computing should be. I am delighted that I have had the

opportunity to continue learning more from you. You are the best advisor and professor. Thank

you for showing me that good things take time and that the more hours spent on a piece of code or

a paragraph, the more meaningful the results will be and the smarter I will become. Thank you for

teaching me to look for the most interesting part in anything I do and focus on that to make it even

better. Thank you for the financial support and for always asking whether everything else is okay.

Thank you for free pizza and for coming to game night. You are awesome!

My A-team: Thomas Gorham for listening to all my ideas and for sharing with me

whenever you discovered cool stuff and for proofreading and editing; Thomas Hines for teaching

me how to think smart and how to program and to stop and ask myself if I am happy with that

line of code; Justin Broaddus for always accepting to zoom meet and talk about the results and for

running my simulations at any hour possible; and, Derek Schafer for teaching me to organise my

tasks and have neat work and for fixing my bugs. Thank you all for always turning up for the zoom

meetings; I am grateful.

vi

I would like to extend my appreciation to my committee members: Dr. Farah Kandah and

Dr. Michael Ward, you have encouraged me to keep going and that I will make it at every step of

the way. Thank you for your time to read my thesis and for the useful feedback. All my professors

throughout my course, thank you for the knowledge you have imparted while at UTC.

Maxwell Omwenga and Evelyn Namugwanya Vaaye, you are my best friends. I would not

have made it without you. Thank you for always being here, in the highs and lows you carried me

and I was always happy just to know you are with me cheering me on and believing in me because

you are enough. To all Simcenter friends and staff, especially Amani Altarawneh for inspiring

me and Kim Sapp for the care and love, thank you for holding my hand and for encouraging me

always. Dr. Joseph Kizza and Dr. Immaculate Kizza, thank you for being my home away from

home. Finally, to my family and friends, thank you for the prayers, the earnest presence and for

loving me through it all. I love you all.

vii

TABLE OF CONTENTS

ABSTRACT . iv

DEDICATION . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . x

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiii

CHAPTER

1. INTRODUCTION . 1

1.1 Background . 2
1.2 Motivation . 5
1.3 Problem Statement and Objectives . 6
1.4 Contributions . 7
1.5 Outline . 8

2. BACKGROUND AND LITERATURE REVIEW . 10

2.1 Polyalgorithms . 10
2.2 Fat-by-Thin Matrix Multiplication . 14
2.3 SUMMA . 15
2.4 Additional Literature Review . 16
2.5 Summary . 19

3. METHODOLOGY . 20

3.1 Design Methodology . 20
3.2 Design of Experiments . 22
3.3 Ideal Performance . 24

viii

3.4 Implementation . 25
3.4.1 Description of the polyalgorithm library 25
3.4.2 X DGEMM algorithm . 26
3.4.3 Modern rank-k based SUMMA . 27

3.5 Summary . 31

4. PERFORMANCE EVALUATION . 32

4.1 Running on 117 . 33
4.2 Running on Stampede2 . 39
4.3 BB vs. rank-k SUMMA vs. rank-1 SUMMA . 39
4.4 COSMA vs. Polyalgorithms . 41
4.5 Comparisons . 49
4.6 Summary . 50

5. CONCLUSION AND FUTURE WORK . 52

5.1 Summary . 52
5.2 Future Work . 54

REFERENCES . 55

APPENDICES

A. RAW DATA FROM 117 CLUSTER RUNS . 60

B. RAW DATA FROM STAMPEDE2 RUNS . 88

C. SUMMARY OF TEST PROGRAMS . 117

VITA . 119

ix

LIST OF TABLES

3.1 Summary of parameters and dimensions used for experiments. Number of nodes is

the total number of nodes on the cluster that are used for a set of runs, P is the row

dimension of the process grid, Q is the columns dimension of the process grid, M is

the number of rows of a matrix A, N is the number of columns of matrix B, and K is

the number of columns of matrix A and rows of matrix B 30

4.1 A mapping of case number to specific parameter set 34

4.2 Comparison of BB, SUMMA K and SUMMA algorithms performance (seconds). BB

and SUMMA K have competitive performance because they both perform rank-k

updates. SUMMA is extremely slow compared to the SUMMA K and BB because

it performs rank-1 updates . 41

4.3 Stampede2: DGEMM run time(seconds) 20,000× 20,000× 20,000, on 2× 8 grid.

SUMMA K achieved best performance when a k-factor of 250 was used. An

appropriate selection of the k-factor can significantly improve the performance of

SUMMA K. (Bold numbers represent the lowest time(s) observed.) 42

4.4 COSMA vs. polyalgorithms average run time in seconds for M = K = N = 20,000

matrix shape on a 4× 4 process grid. In this table the Fox’ group (mm3 and mm4

both row and columns versions) algorithms achieved the same and best performance

considering the error bar. This is expected because for square grid there is no

synchronous problem for mm3 and no initial slides for mm4 [26]. (Bold numbers

represent the lowest time(s) observed.) . 44

x

4.5 COSMA vs. polyalgorithms average run time in seconds for M = K = N = 20,000

matrix shape on a 16× 1 process grid. For extremely non-square shapes where only

one dimension is indirectly used, COSMA is better than the polyalgorithms. (Bold

numbers represent the lowest time(s) observed.) . 45

4.6 COSMA vs. polyalgorithms average run time in seconds for M = K = N = 20,000

matrix shape on a 1× 16 process grid. For extremely non-square shapes where only

one dimension is indirectly used, COSMA is better than the polyalgorithms. (Bold

numbers represent the lowest time(s) observed.) . 46

4.7 COSMA vs. polyalgorithms average run time in seconds for M = K = N = 20,000

matrix shape on a 2×8 process grid. mm5 col achieved best performance because of

the P≤ Q grid shape. (Bold numbers represent the lowest time(s) observed.) 47

4.8 COSMA vs. polyalgorithms average run time in seconds for M = K = N = 20,000

matrix shape on a 8×2 process grid. mm5 row achieved best performance because of

the P≥ Q grid shape. (Bold numbers represent the lowest time(s) observed.) 48

xi

LIST OF FIGURES

3.1 Eight processes mapped to a 2×4 process grid . 21

3.2 X DGEMM algorithm (adapted from [18]) . 27

3.3 rank-k SUMMA algorithm . 29

4.1 Average run time of DGEMM vs. X DGEMM for Case 1. X DGEMM performs better

than DGEMM as expected for fat-by-thin cases. mm3 row achieved best performance

for X DGEMM while cannon ag was best for DGEMM which shows polyalgorithmic

behavior when different version of GEMM are used 35

4.2 Average run time of DGEMM vs. X DGEMM for Case 2. DGEMM performs better

than X DGEMM as expected for square cases . 36

4.3 Average run time of DGEMM vs. X DGEMM for Case 3. DGEMM and X DGEMM

achieved similar performance for some algorithms for some fat-by-thin cases on

extremely non-square grid shapes . 36

4.4 Average run time of DGEMM vs. X DGEMM for Case 4. DGEMM performs better

than X DGEMM as expected for square cases . 37

4.5 Average run time of DGEMM vs. X DGEMM for Case 5. mm5 col achieved best

performance for both DGEMM and X DGEMM due to the P≤ Q grid shape 37

4.6 Average run time of DGEMM vs. X DGEMM for Case 7. X DGEMM and DGEMM

had the same performance for most of the algorithms, evidently because of to the

square grid shape, which leads to similar sizes of the local matrices involved in the

multiplications . 38

4.7 Average run time for DGEMM vs. X DGEMM for Case 10 on Stampede2. DGEMM

performs better than X DGEMM as expected for square cases 40

xii

LIST OF ABBREVIATIONS

BLAS — Basic Linear Algebra Subprograms

BLIS — BLAS-like Library Instantiation Software

CARMA — Communication-Avoiding Recursive Matrix-multiplication Algorithm

COSMA — Communication Optimal S-partition-based Matrix multiplication Algorithm)

DDI — Data Distribution Independence

DGEMM — Double-precision Matrix-matrix Multiplication

KNL — Knight Landing

LAPACK —Linear Algebra Package

MKL — Math Kernel Library

MPI — Message Passing Interface

PUMMA — Parallel Universal Matrix Multiplication Algorithms

ScaLAPACK — Scalable LAPACK

SUMMA — Scalable Universal Matrix Multiplication Algorithm

xiii

CHAPTER 1

INTRODUCTION

Parallel dense matrix multiplication has been a popular research topic over the years.

Several algorithms have been designed to solve this common linear algebra operation. The aim

of polyalgorithms is to maximize performance by choosing which algorithm among many is most

efficient for a particular situation (problem size, data distribution onto logical process topologies

or grids, and specific layouts of the A, B, and C matrices). For example, COSMA [25] is nearly

communication-optimal for all combinations of matrix dimensions, and CARMA [7], which is best

for rectangular grids. The 2.5D algorithm [31] uses extra memory but has issues with non-square

matrix shapes. Cannon’s algorithm [4] was designed for square grid shapes and was extended

by Mathur-Johnsson’s algorithm [28] to deal with arbitrary process grid shapes. The PUMMA

algorithm [6] was designed for non-square grids and is an extension of Fox’s algorithm [10]. The

SUMMA algorithm [36] enhances communication patterns and requires less work space.

The authors of these diverse algorithms suggest that their algorithms have the best

performance for a particular situation or a variety of problems, sizes, shapes, and concurrencies.

We present results that the general claim of “best performance” is not true for all cases where

different process grid, matrix shapes, and problem sizes are considered. We restate the earlier

premise that no single algorithm has the best performance at all times, and polyalgorithms are

therefore inevitable in the design of high-performance linear algebra libraries. We also present an

integration of the new version of the GEMM (General matrix multiplication), which is useful for

fat-by-thin cases as compared to other BLAS libraries. A new version of the SUMMA algorithm

that is rank-k-based (and so is much faster than the original SUMMA rank-1 algorithm in the

original polyalgorithms library) is also included; this does away with a legacy limitation in the

1

prior work upon which this work is based. A scientific re-validation of a new and highly optimized

algorithm, COSMA [25], is also presented.

1.1 Background

Many powerful linear algebra libraries have been developed throughout the past four

decades focused on efficient and scalable implementation of dense matrix operations. The BLAS

API [8] is the origin of such libraries and software that are available for a variety of computer

architectures. Current libraries include OpenBLAS [39, 40], BLIS [37], MKL [20], and LAPACK

[2], all of which have implemented the General Matrix-Matrix multiplication (GEMM) efficiently

for various machines and architectures.

Parallel matrix multiplication algorithms have been a major topic in the high performance

computing field for many years. This is so because, behind significant computer science

applications including machine learning, data visualization, data mining, Computational Fluid

Dynamics (CFD) and the Finite Element Method (FEM), there is often a matrix multiplication

taking place. Parallel algorithms speed up a given computation by performing many tasks of

an operation concurrently, such as by using many cores provided on distributed systems of

servers. A parallel system is one in which unrelated processes work together as peers using

communication protocols to send and receive messages. A typical parallel system, a cluster

computer, combines off-the-shelf multicore servers (each with their own cores, caches, main

memory, busses, networking interfaces, and optional storage), optionally with GPU accelerators,

and a network (10Gbit/s Ethernet and 100Gbit/s InfiniBand are typical cluster networks).

The Message Passing Interface (MPI) is a popular protocol for transmitting messages

between peer processes that form a parallel job execution environment. It is a portable, efficient

and flexible standard for the message passing model of parallel computing [9]. Parallel applications

have routinely been written in MPI for the past 25+ years, and parallel libraries, including matrix

multiplication libraries, are typically written in MPI notation to support their use in MPI-based

applications.

2

The naive matrix multiplication has three loops involved in the multiplication and these

can be ordered in six ways namely: i jk, ik j, jik, jki,ki j, and k ji loop orderings. This is

the underlying technique behind the polyalgorithims, manipulated differently for the various

algorithms. The orderings perform differently in terms of speed depending on matrix shapes

and system architecture (e.g., cache). The technique reappears in the parallel solvers where

they are sometimes made faster by enhancing data distributions and always strive to use suitable

communication primitives (MPI functions). Goto et al. [12] explored the principles of highly

optimized matrix multiplication for high performance; his work is a subset of the GotoBLAS

library [11]. It uses five loops, which were implemented by Goto when he realized more

opportunities for parallelism within the third loop and added two more inner loops. In his paper

[12], smaller blocks and panels are created that can be loaded in smaller cache and, hence, yield

faster performance.

Dense matrix multiplication is relevant today since the growth of data is rampant and the

need to analyze it is also growing with every passing day. The physical storage in the computer

devices is finite and eventually gets full. Virtual storage in the cloud is the new way to store

data. This results in dense data types which must be manipulated for analysis. Dense matrix

multiplication is used in a variety of applications and is the core of many scientific computations

and data-analysis techniques. If we are able to make this operation faster and more scalable then

we would have accomplished the goal of many applications, which is to have high performance in

terms of speed of the application.

The polyalgorithm library was developed by Dr. Anthony Skjellum and his colleagues

during the period 1991–1995. This library contains algorithms that apply to the general case

of rectangular matrix multiplication on rectangular process grids and are classified according to

the communication primitives used [26]. A polyalgorithm refers to a group of related algorithms

that are grouped together to perform related operations. However none of them is the fastest

algorithm for all input parameters; yet, each can achieve the best performance based on certain,

given parameters. In the polyalgorithm library, the DGEMM kernel [21] was used for local matrix-

matrix operations; this a routine that performs the double-precision matrix-matrix multiplication

3

operation on subproblems that emerge during a parallel matrix-matrix multiplication within a

single process address space. This is available as a highly optimized routine available in several

libraries; here, we used the BLIS framework [37].

The general problem being solved in parallel is C = αA×B+βC, where A, B, and C are

dense matrices that are dimensionally compatible. A number of studies, such as [13], show that

the choice of algorithm in a given situation depends on the basic operations such as rank-1 update,

and matrix-vector operations and how they are implemented by duplication and redistribution.

When choosing an algorithm, one must consider the matrix with the most elements, then limit the

data movement in that matrix. It is good to note that all the “big” operations that go on in the

algorithms are a sequence of smaller operations. A complete matrix multiplication is a series of

rank-1 updates. rank-1 updates are also referred to as dot product which means multiply a row

with a column at any point of the multiplication. These can further be extended into matrix-vector

operations, rank-k updates, and block matrices updates. Together with other operations such as

reductions, and summing up of the C elements from the local matrices to get the final C result. The

goal of various ways of performing the multiplication is to arrive at one that works the fastest for a

given situation (matrix sizes and shapes and initial distribution across processes).

Fat-by-thin matrix multiplication refers to a matrix with fewer rows and comparatively

more columns multiplied by a matrix with many rows and fewer columns. C = A×B (of shape

M×K×N) is consequently one in which the A matrix is fat, and the B matrix is thin. That is,

K is much greater than either M or N. This means that the resulting C matrix is small relative to

both A and B. Many of the BLAS libraries are efficient for square matrices but their performance

deteriorates as the matrices become non-square. However, these edge cases are inevitable in most

tools that use BLAS, which inspired the research about performance of these libraries in fat-thin

regions. A new implementation of GEMM, X DGEMM was designed to improve the performance

in these regions by Hines et al. [18].

Van de Geijn and Watts developed SUMMA [36], a collection of highly efficient and

scalable matrix multiplication operations with the Message Passing Interface (MPI) as the

parallelization model [9]. A rank-1-based version of the SUMMA matrix multiplication was

4

prototyped in the polyalgorithms library [26]. rank-1 refers to a series of outer products, done one

at a time, to update a given C element in a C = A×B multiplication. In this work, we prototyped

a rank-k based SUMMA, SUMMA K which is more efficient and is faster compared to rank-1.

SUMMA K performs a number of k dot products concurrently, and this is what makes it faster.

The rank-k mode was evidently the original intent of Watts and Van de Geijn also in their work.

1.2 Motivation

Our motivation for this thesis is to prove that polyalgorithms are still relevant in the design

of matrix multiplication algorithms and linear algebra libraries. This is because different algo-

rithms have different ways of manipulating data especially the kind of data movements required to

complete the multiplication. Matrix multiplication is not memory bound but computation bound.

The data manipulation has different costs, both computational and communication-related. There

is always a trade-off that has to be done between computation and communication and we aim to

minimize the latter, in order to favor computation. Generally, the fewer the data movements, the

faster the algorithm. Because of these dynamics in the performance of algorithms, there is a need

to use a polyalgorithmic approach to maximize performance by having a set of algorithms solving

the same problem and then choosing the best for a given situation. Li et al. proved that no single

algorithm always achieves the best performance on different matrix and grid shapes [26]. Is this

still true two decades later considering the new tools and software? Do we reproduce trade-offs

using different algorithms in different use cases, or is one always the best? These are some of the

questions that triggered the second generation polyalgorithm for dense matrix multiplication. This

work aims to prove whether this is true for advanced technologies and tools. The difference in

performance for these algorithms depends on the shape and size of matrices and grid, the storage

type and the data mapping type. Sana et al. [23] acknowledged that the polyalgorithmic approach is

a promising answer to the problem of choosing the best algorithm for the ever changing execution

supports for parallel systems.

The second motivation is an implementation of a new version of BLAS called X DGEMM,

that aims to improve performance in the fat-by-thin regions in matrix-matrix multiplication. This

5

algorithm was designed and prototyped by Thomas Hines [18]; it has been shown to achieve

significantly increased performance in the fat-by-thin regions as compared to other BLAS libraries

such as: MKL [20], OpenBLAS [39], and BLIS [37]. We would like to analyze how this newer

version impacts the polyalgorithms. We also want to compare and contrast the performance

of X DGEMM vs. DGEMM while using the same matrix and grid dimensions. X DGEMM

could be ideal to test for polyalgorithmic behavior, which would further establishes the fact that

polyalgorithms are indeed important in the design of linear algebra libraries. The importance of

fat-by-thin dense matrix multiplication is their usefulness in many computer science applications;

for instance, the extreme edge shapes of the matrices and grids are common in machine learning.

As noted above, the term fat-by-thin means that the K-dimension has many values compared to the

M and N dimensions in an M×K by K×N matrix multiplication.

We also compare the performance of the polyalgorithms set to COSMA [25], a recent, opti-

mized matrix multiplication algorithms. This new algorithm will be included in the polyalgorithms

library in the future for cases where its use is most effective and/or fastest. Expanding the library

by adding new algorithms such as COSMA and CARMA [7] that are more efficient is a great

motive for carrying out this research. With new algorithms, more arbitrary shapes of matrices will

be included and this will cater to special/edge cases involved in matrix multiplication operations.

This would greatly advance the functionality of the polyalgorithmic set and make it even more

ready to use by the public as a standard dense matrix multiplication library.

1.3 Problem Statement and Objectives

Achieving scalability for an algorithm is key for any system to be efficient and to effectively

utilize resources. In HPC, strong scaling (aka Amdahl’s law [17]) refers to increasing the use of

equivalent cores on a fixed size problem while weak scaling (aka Gustafson-Barsis’ Law [15])

refers to increasing the problem size as the core count as problem size increase. For strong

scaling, the goal is to minimize the time-to-solution while, for weak scaling, the goal is to achieve

constant time-to-solution for larger problems respectively. Second generation polyalgorithms aims

6

to leverage the available resources in a distributed system to achieve strong scalability. The

objectives of this thesis are as follows:

1. Integrate, test and compare the new BLIS version (X DGEMM) with the BLIS DGEMM.

2. Write a modern SUMMA algorithm that is rank-k based.

3. Test different use cases for different algorithms in the polyalgorithms library and to identify

which one performs better.

4. Compare and contrast the performance of the polyalgorithms with the new, highly optimized

matrix multiplication algorithm COSMA.

These are the research questions that we want to answer:

• Do we reproduce the trade-offs between using different algorithms in different use cases, or

is one always best?

• Does the using of the basic BLIS DGEMM vs. new BLIS version, X DGEMM, change

performance of the algorithm(s) in a significant way? Which algorithm is best for a given

“parameter sweep”?

• Does the new SUMMA algorithm outperform any of the older algorithms?

• Do the polyalgorithms set still achieve competitive performance when compared to newer

algorithms on current technologies?

1.4 Contributions

The list below shows the contributions we made in our research toward performance

improvement of dense matrix multiplication:

• Analyze whether a single algorithm performs best in all use cases of the polyalgorithm

library. In this thesis, we design new test scenarios of different matrix sizes and grid shapes.

The simulations were run on two powerful parallel computing clusters: 117 (OneSeventeen)

7

and Stampede2 of varied node, memory, and network performance characteristics. This

research offers extensive performance results for non-square matrix sizes and non-square

process grid shapes and a comprehensive analysis to show the importance of polyalgorithms.

In addition to the polyalgorithmic behavior demonstrated in the original polyalgorithms

library built 25+ years ago, new dimensions of similar behavior are discovered from the

new algorithms that we have added.

• Integrate a new version of BLAS, X DGEMM and compare it to the DGEMM in the BLIS

library to analyze whether it improves the performance of the algorithms especially for fat-

by-thin regions. Extreme fat-by-thin shapes are used to expose maximum parallelism in the

k-th dimension of the multiplication (within a multicore processor DGEMM operation) to

meet the purpose of this algorithm. In this algorithm, we also noticed the three dimensional

properties that are exposed in the shared memory of the multiple threads that perform the

DGEMM operation. We also show how polyalgorithmic behavior occurs in context of the

choice of BLAS and how it is necessary in the new BLAS version, X DGEMM itself.

• Design, implement, and evaluate a rank-k based SUMMA. This version performs faster

than the original SUMMA rank one based. It has the potential to perform faster than

other algorithms in the set depending on the choice of the k value and sizes of grid and

matrices. The algorithm will replace the rank-1 version which is abnormally slow because

of its inefficient BLAS utilization.

• Verify that COSMA is a highly optimized matrix multiplication algorithm that has good

performance for different combinations of grid shapes. We compare and contrast COSMA

results with the the polyalgorithms set results. While experimenting with COSMA, we

achieve scientific re-validation of the the research in the COSMA paper [25].

1.5 Outline

The remainder of the thesis is organized as follows: Chapter 2 includes the Background

and Related work. Chapter 3 presents the methodology and the implementation of the algorithms.

8

In Chapter 4, we discuss the results from experiments that we carried out. We conclude the thesis

in Chapter 5 by discussing our findings and by outlining future work.

9

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this chapter, we discuss what has already been attempted in the parallel matrix-

multiplication topic. First, we discuss the original polyalgorithm library made in 1993, specifically

its design and results that were achieved from experiments and comparisons of the different matrix-

matrix algorithms algorithms. Its suggested future work birthed this thesis. Second, we discuss the

fat-by-thin scenario of matrix multiplication: its advantages and applications in the computation

science. Third, we give a brief description of the SUMMA algorithm including its modifications

and application over the years. The rest of this chapter is a further literature review, in which

we discuss works related to matrix-multiplication algorithms plus their practical applications. We

conclude this chapter with an description of the COSMA algorithm, a recent communication-

optimal matrix-multiplication algorithm.

2.1 Polyalgorithms

The term polyalgorithms refers to having a group of related algorithms that perform

equivalent operations but none of them are known always to perform best for arbitrary problem

shapes, sizes, and/or concurrencies.. Our assertion is that polyalgorithms form a backbone in

the building of high-performance linear algebra libraries. We assert that we cannot have a

single algorithm in a library because its performance will deteriorate in different situations and

excel in other scenarios. Different algorithms operate differently with regard to computation,

communication, overheads, and potential overlaps, when one changes the dimensions of the grid

or the matrices. This leads to some algorithms changing for better and some become worse in

terms of performance. In the polyalgorithm paper by Jin Li et al., a two-dimensional logical grid

10

topology of processes is used with a notation of G(P,Q) [26]. The grid layout enables mapping

of matrix data to different processes in a parallel system. It also provides a platform to reference

and manipulate data elements in a matrix operation. The elements in the grid then communicate

to each other using MPI operations. The grid size aligns directly with the number of processes in

the MPI communicator; for example, if we have P = Q = 4 then we have 4× 4 (16) processors

for that execution1. Grid shape is also polyalgorithmic in that different shapes result into varied

performance of each algorithm and shape of matrices used. For example, Fox’s algorithm is faster

in terms of speed for square grids, yet the BB algorithm [26] is best for smaller size grids. Cannon’s

algorithm depends on the size of each of the matrices and is also good for square grid and matrix

shapes.

The set of fourteen algorithms in the polyalgorithms library was designed and categorized

into three groups: Cannon’s, Fox’s, and the Broadcast-Broadcast approach. A comprehensive

taxonomy of each group was given in [26]:

• Cannon’s group: Cannon C stationary, Cannon A stationary, Cannon B stationary, Cannon

C general, Cannon A general, Cannon B general. In this approach, two matrices are shifted

and it is preferable to leave the biggest matrix stationary. By doing this, communication

overheads are reduced and the general algorithm performance improves. The Cannon’s

group algorithms are memory efficient because during the computation, limited additional

memory is required.

• Fox’s group: mm3 row, mm3 col, mm4 row, mm4 col, mm5 row, mm5 col versions. This

consists of a one-to-all broadcast of one matrix and a shift of the other matrix. Blocks of

the A matrix are broadcast using the one-to-all primitive in the row dimension and blocks of

matrix B are shifted in the column dimension.

• Broadcast-broadcast group: BB version, SUMMA (1995 version). The only communica-

tion primitive is broadcast; it is simple to implement and is flexible.

Each of the algorithms are briefly defined here below.

1Multicore features of each process are handled strictly by the BLAS operations.

11

1. mm3 row: a direct extension of Fox’s to deal with a non-square grid. Broadcast the rows of

matrix A and shift rows of matrix B upward.

2. mm3 col: a direct extension of Fox’s to deal with a non-square grid. Broadcast the columns

of matrix A and shift rows of matrix B downward.

The mm3 algorithms are loosely synchronous leading to a time lag delay in terms of idle

time as it waits for unused rows and this makes the performance potentially sub-optimal.

3. mm4 row: it works similar to mm3 row. It is good for square grids and resolves the

synchronous issues of the mm3 algorithms.

4. mm4 col: it is similar to mm3 col but without synchronization issues.

5. BB: this is a simple implementation of matrix multiplication involving only one communica-

tion primitive, broadcast. Matrix A broadcasts its rows and B broadcasts columns. No initial

alignments are required, which eliminates extra alignment overheads. The BB algorithm

works well when the process counts are small, since increased communication cost in both

dimensions is expensive.

6. cannon c: This is the original Cannon’s algorithm.

7. cannon a: Used when matrix A is much larger than matrix B; this reduces the communica-

tion costs.

8. cannon b: Used when matrix B is much larger than matrix A.

9. cannon cg: keep matrix C stationary.

10. cannon ag: keep matrix A stationary.

11. cannon bg: keep matrix B stationary.

12. summa: this algorithm is a broadcast-broadcast approach. It is a series of dot products of

rows of matrix A and columns of matrix B. It is a simple implementation and flexible for

12

different matrix shapes and grid sizes. However, its performance deteriorates2 when the

process count increases and communication cost in both dimensions is expensive.

13. mm5 row: this algorithm works well when P≥Q grid shapes. It broadcasts the exact number

of columns of A that can be locally multiplied by matrix B. It requires less memory than mm3

and mm4.

14. mm5 col: this algorithm works best when P≤ Q grid shapes.

The authors in [26] discussed the communication cost analysis of the four communication

primitives used in the library: shift, slide, align, and broadcast and with modeled these operations

with predictive performance equations to show this [26]. A communication cost analysis for matrix

multiplication algorithms was also discussed for each of the three approaches. Most interestingly,

the expensive initial alignment of the Cannon group is explained. From this, a conclusion was

drawn that the communication cost can be reduced by choosing the appropriate version of Cannon’s

algorithms that allows the matrix with the largest size to remain stationary [26]. The authors also

showed situations where each of the MM versions performs best. mm5 is suitable for particular

grid shapes cases (i.e., the row versions is used when P ≥ Q and the columns versions is used for

situations where Q ≤ P). Memory-requirement analysis was done for each algorithm to account

for incremental memory overhead while doing the computation and can be summarised as follows:

The Cannon group is memory efficient because it only has slide and shift primitives and thus

requires no extra memory. Fox’s group requires temporary memory to store the local matrix that is

broadcast in either the row or column dimension and it was noted that mm5 requires less memory

than mm3 and mm4. The BB algorithm requires more incremental temporary memory to store

both the local matrix A and the local matrix B that are broadcast in the row and column dimensions

respectively [26].

Jin Li et al. concluded that “A polyalgorithm is a practical approach to maximize

performance by marrying multiple algorithms” [26]. No single algorithm discussed in their paper

achieved the best performance for all situation of different matrix and grid shapes. The authors

2Our retrospective on this is that the rank-k SUMMA should have been implemented originally. That is why we
did so in this work.

13

further found that for grid shapes where P≥Q, one should use the row version of the Fox’s group.

The choice of algorithm from the Cannon group is largely dependent on the size of the matrices,

and one should always choose to leave the largest matrix stationary. The BB algorithm is best for

small process counts. The performance of these algorithms is dependent on both communication

performance and memory.

Despite the many parallel algorithms that have been designed for different computer

architectures and machines, the challenge that the user faces is to decide which one will perform

better for a given system or application. Polyalgorithms is the solution to this problem. If we can

automate the process of choosing the best option using machine learning tools, we could easily

identify the best. In heterogeneous systems [3], one version of an algorithm will be suitable

for configurations in only one machine. Heterogeneous computing refers to systems that use

more than one kind of processor or cores. These systems gain performance or energy efficiency

not just by adding the same type of processors, but also by adding dissimilar coprocessors,

usually incorporating specialized processing capabilities to handle particular tasks such as massive

floating-point operations in GPUs. Therefore, in polyalgorithms we obtain the best performance

by having multiple algorithms and each can be the best in different contexts [23].

2.2 Fat-by-Thin Matrix Multiplication

A fat-by-thin matrix refers to multiplying a matrix that has fewer rows and comparatively

many columns with a matrix that has more rows and comparatively fewer columns. The resulting

matrix is a smaller size matrix as compared to either of the input matrices. Some applications

of the fat-by-thin multiplication include; data mining algorithms such as linear regression,

PCA, and highly optimised k-Means clustering, data analytics, Algorithm-Based Fault Tolerance

(ABFT)[18]5. Fat-by-thin regions can be found in large data sets and a decline in performance is

observed for edge cases while using the BLAS GEMM routine [18]. The solution is to devise a

means that speed up performance in the fat-by-thin regions while minimizing the communication

overhead. Notice that in a fat-by-thin multiplication, the size of matrix C (the output matrix) is

small so the cost to sum up the C matrix can be accommodated compared to the speedup from

14

parallelization in the K (inner multiplication) dimension. (We remind the reader that the entire

question of BLAS performance is encapsulated in the DGEMM operation used and complements

the choice of polyalgorithm applied at the global level on the P×Q process grid of MPI processes.)

While SGEMM/DGEMM operations are extremely well studied for square cases, GEMM

operations with fat-by-thin matrices has evidently not been fully studied. A few researchers

have implemented algorithms for tall-by-thin matrix multiplication [5], which can be closely

compared to fat-by-thin matrix multiplication. Chen et al. in particular presented the challenges

of optimizing GEMM for non-square matrix shapes and provided an algorithm for multiplying

square matrices by thin matrices [5]. Cody et al. proposed two high-performance, irregular shape

matrix-matrix multiplication algorithms on GPUs, with several optimization techniques focusing

on GPU resource utilization [30]. Some optimizations include making each thread perform more

work and interleaving the computation of each of the tiles.

2.3 SUMMA

SUMMA: The Scalable Universal Matrix Multiplication Algorithm [36] is a broadcast-

broadcast algorithm of the form:

C = αAB+βC (2.1)

The elements of C are given canonically as follows:

Ci j := α

K−1

∑
k=0

AikBk j +βCi j (2.2)

when size A (M×K) and B (K×N) are used. The Message Passing Interface (MPI) is used in

this algorithm to provide the performance-portable message passing abstractions [36]. All the

implementations of SUMMA are a generalization of the broadcast-broadcast approach. They

require less work space and overcome the need for a square 2D grid of processes. It is used by

PLAPACK [35] linear algebra packages. It’s simpler and more flexible implementation gives it an

advantage over other algorithms however, it is sensitive to communication overhead. The authors

of SUMMA concluded that it is the best algorithm to use for general purpose implementations of

15

matrix multiplication. They also concluded that SUMMA is suitable for the implementation of

distributed BLAS matrix multiplications that incorporate different combinations of transposed and

nontranposed matrices. Four different notations of the algorithms are presented in [36], where A

and B are not transposed and cases where either A or B or both A and B are transposed3. This

type of implementation shows the flexibility of the SUMMA algorithm. SUMMA algorithm uses

pipelining and blocking and it allows larger problem sizes on each node. Blocking, the splitting

of a matrix into smaller blocks, replaces the rank-one updates, which is slow (as noted above).

Because of its dependency on the broadcast approach, SUMMA passes a message around a logical

ring that forms the row or column; thus, it pipelines computation and communication. In the ring

format, each process only communicates to its neighbor, no broadcasts are done; hence, fewer

messages. Some other improvements have been made in the SUMMA algorithm; for example,

instead of broadcasting single rows and columns, block rows and columns are used.

2.4 Additional Literature Review

Researchers have explored the concept of polyalgorithms for many years. Jin Li et al.

[26] defined polyalgorithms as “the use of two or more algorithms to solve the same problem

with a high level decision-making process determining which of a set of algorithms performs

best in a given situation.” A polyalgorithm is needed because what is best changes as a function

of the input parameters. In Jeddi et.al. [23], the authors designed a set of solving algorithms

that have varying behaviors and performances with an aim to derive the best one for a target

parallel system. They showed that, as the systems are composed of collections of heterogeneous

machines, it is difficult and nearly impossible for a user to choose an adequate algorithm because

the execution requirements are continuously changing. One version will be well suited for a

parallel configuration and not for another. They concluded that using the polyalgorithmic approach

for a fast adaptation to the continuous changing of parallel and distributed systems is ideal. In 2004,

Nasri et al. [29] proposed a polyalgorithm that takes advantages of standard and fast algorithms.

3This thesis, in following the Polyalgorithms work that preceded it, only covers the non-transposed cases.

16

It is able to choose the most suitable algorithm automatically for computing the matrix matrix

multiplication of any dimension on a particular parallel system in a homogeneous cluster.

Several matrix multiplication algorithms have been developed, each designed to achieve

speed, flexibility, and scalability. Cannon presented a systolic 2D approach [4] which has been

extended over the years to accommodate a wide range of parameters ranging from square grids,

non-square grids, and non-square matrices. The challenge that Cannon algorithms face is the

initial and final alignments of the matrices, which was discussed in [26]. Fox’s algorithm is also

a popular algorithm for parallel dense matrix matrix multiplication [10]. Fox’s algorithm has

also been extended over the years to deal with non-square grids, row and column versions. The

SUMMA algorithm [36], which uses broadcast broadcast approach, is simple and flexible, and it

is used in linear algebra libraries such as [35]. Other matrix multiplication algorithms include;

Mathur-Johnsson’s algorithm [28] which extends Cannon’s algorithm (the matrix C-stationary

version) to deal with arbitrary matrices and grids. The PUMMA [6] extends Fox’s algorithm

to non-square grids but limits layouts ton block scattered data distributions in both dimensions.

In [34], a recursive algorithm for square matrices was designed. Strassen’s algorithm and its

later variants (and parallel variants) can be faster than the naive multiplication algorithm (with

sequential complexity of (O(MNK) because of lower algorithmic complexity; it may also performs

inefficiently for non-powers-of-two matrices and has lower accuracy. Its publication resulted in

much additional research about matrix multiplication with better parameter tuning [16]. Further

discussion of Strassen-type algorithms is beyond the scope of this thesis.

A 3D-approach to parallel matrix multiplication was introduced by Agarwal et al. in 1995,

with an algorithm that was shown to be load balanced for both, communication and computation

for parallel systems [1]. The advantage of 3D decomposition is that it reduces the communication

overhead through reduced data movement. However, it requires more memory to replicate the

matrices compared to the 2D algorithms; overall 3D algorithms have less total communication cost.

This led to the 2.5D [31] approach, which takes advantage of the extra memory while reducing

communication cost. In the paper [31], the goal was to minimize communication along the critical

path. It is a balance between 2D and 3D since it maximizes the advantages of both approaches.

17

Scalability is an important subject in dense matrix multiplication algorithms. Scalability

refers to the extent to which an algorithm’s performance remains efficient as the problem size

and/or the number of processes/cores is increased. Bryan et al. defines scalability as “the

ability to retain high performance as the number of processors is increased” [27]. Gupta et

al. presented a scalability analysis for classical matrix-multiplication algorithms [14]. The

authors confirmed that none of the algorithms are superior because there are various factors that

determine best performance. Some of the factors one must consider to determine scalability are

communicating and computation speeds, a small communication overhead does not necessarily

mean best performance.

COSMA is a recent, parallel matrix-matrix multiplication algorithm that was proposed by

Kwasniewski et al. in 2019 [25]. Their idea was based on the Red-Blue Pebble game abstraction

[24] to derive and model tight sequential and parallel I/O lower bounds. In this research, the authors

proved that their algorithm had near communication optimal performance and that COSMA

outperformed the best parallel BLAS libraries in all scenarios. COSMA aims to use local resources

optimally in order to overcome the limitations of the top-down approach, which operates by taking

the global problem and splits it into subsets that equal the number of ranks4. They used a sequential

schedule that optimizes the re-use of its local memory by accumulating the outer product within the

cache of a given tile. After that, they parallelize by extending the outer product across the global

domain of the distributed system and reduction is done by the first process, called the bottom-

up-approach. They form optimal square shape tiles and so the communication between ranks is

minimized. They presented proofs for sequential and parallel I/O lower bounds and a heuristic for

implementation optimizations. Their results show that COSMA is always has best performance and

has least communication of data as compared to CARMA [7], ScaLAPACK [22], and CTF [32].

They created a COSMA miniapp in their COSMA library that is open source and can be easily

used to test different run times for matrix multiplications and compare with other algorithms. We

compared our polyalgorithms with COSMA since it is one of the most recent matrix multiplication

algorithms to demonstrate whether it is faster in all cases as suggested by the authors. The results

are presented in Chapter 4.
4This is how all the previously mentioned parallel operations are derived.

18

2.5 Summary

This chapter presented the design of the original polyalgorithm library and defined the

14 algorithms in the library. We also discussed fat-by-thin matrix multiplication, followed by a

description of SUMMA algorithm. Literature review details polyalgorithms, matrix multiplication

approaches, scalability and recent parallel matrix-matrix multiplication algorithm showing their

advantages and constraints. From the reviews, matrix multiplication is a fundamental operation

in solving computer science related problems. Extensive research has been done in this area in

order to optimize the performance of matrix multiplication algorithms and in turn, speed up the

applications in which these algorithms are used.

19

CHAPTER 3

METHODOLOGY

In this chapter, we discuss the approach that was used for this research. We used

experimental data by controlling and manipulating variables to produce the desired results for

analysis. The first section describes the design methodology, which shows the fundamental ideas of

the polyalgorithm library: the logical grid and data distribution independence (DDI). The following

sections describe the methods for data collection and measurements used to quantify the data. We

also define the software and equipment and their architecture as used for the experiments.

3.1 Design Methodology

The fundamental idea for the design of the polyalgorithms library depends on two key

factors: the Logical 2D process grid and data distribution independence. A logical grid is a

collection of processes logically assigned a shape P× Q; the processes are named p and q

respectively. A logical grid allows the process to be referenced by its coordinates within a grid

and this is how mapping of data occurs on a grid. Logical grids can be readily mapped to physical

node topologies, which makes the design simple and flexible to apply in general applications.

Figure 3.1 shows an example of a process grid and process mapping where eight processes are

mapped to a 2× 4 process grid. For a grid shape P×Q, the grid has indexes p,0 ≤ p < P and

q,0 ≤ q < Q respectively and the indexes are used for mapping the processes onto the logical

grid. Data Distribution Independence (DDI) separates the organization of the data in parallel

from the correctness of the answers; performance may change, but correctness does not change.

DDI prevents explicit data redistributions, which is costly and useful for building scalable parallel

libraries. DDI allows application steps before and after an algorithm to make choices of how

20

Figure 3.1 Eight processes mapped to a 2×4 process grid

they store data, rather than simply conforming to a specific, rigid data layout. For instance, in

SCALAPACK [22], block scatter in 2D is the only distribution, where you can set the blocksize.

You can vary P×Q, and blocksize, but arbitrary distributions aren’t allowed. The blocksize in

SCALAPACK might be related to the application or to the algorithm; both are possible, and

generally would not be the same size, so this is about how big your checkerboard elements are.

There are two types of blocking; algorithmic blocking and application blocking. Blocking is much

more rigid than DDI, which could take advantage of blocking or not, but doesn’t mandate it.

For any logical grid of processes P×Q, a DDI linear algebra problem distributes matrix

rows and columns that are “compatible” in which they store data with regard to each other.

However, in both the row and column dimension of the grid of processes, any one-to-one, onto,

and invertible mapping is allowed. This is the data distribution for each dimension of the matrix

object. This means that one can map coefficients as linear, scatter, block scatter, etc. Once

one has compatible data storage, then, regardless of what that is, the algorithm adapts to it and

produces the right output. What is “compatible” can be “all in the right place from the start” or

“the algorithm rearranges to make the right pieces be in the right places.” In matrix multiplication

in the polyalgorithms library, there is a requirement for basic compatibility of the objects when they

start (A, B, C) and the library maintains that as the algorithms evolve step-by-step. This kind of

dynamic compatibility is a super-set of what SCALAPACK [22] with PUMMA [6] does. A super-

DDI algorithm would work for any original distribution of A, B, and C in the matrix multiplication

21

situation, simply by moving the data around extra. In the polyalgorithms library, the types of DDI

algorithms do not do that extra work.

3.2 Design of Experiments

One of the goals of this research is to determine whether the conclusions that were

presented in the polyalgorithm library circa 1995 are still valid or not. We aim to show that the

trade-offs between using different algorithms are still valid, but examine the potential superiority

of using only one algorithm. The simulations were carried out the one-seventeen cluster (117) at

the SimCenter, at the University of Tennessee at Chattanooga. This is a powerful cluster with 33

nodes and a login node. The compute nodes are configured as follows: two (dual-socket) Intel

Xeon E5-2680 v4, 2.4GHz chips, each with 14 cores for a total of 28 cores per compute server.

There is 128 GB of RAM per compute server for about 4.5 GB of RAM per core. One NVidia

16GB P100 GPU with 1792 double precision cores is available on each node (but was not used in

this study). Theoretical peak performance of about 1 TFLOPs (CPU only) or roughly 5.7 TFLOPs

(CPU/GPU).

The test runs design was based on the need to analyze the performance of the algorithms

for different grid shapes and sizes and considering the capacity of the cluster (117). Three sweeps

of data were designed while named according to the number of nodes (with one MPI process per

server/node) involved in a given experiment: 16 , 24, and 30 nodes. Each of these was tested

with grid shapes that were varied in terms of factors of the number of nodes. That is, a 16-nodes

sweep includes: 1×16, 16×1, 8×2, 2×8, and 4×4. A 24-node sweep: 1×24, 24×1, 12×2,

2× 12, 8× 3, 3× 8, 6× 4, and 4× 6. Finally, a 30- node sweep; 1× 30, 30× 1, 15× 2 ,2× 15,

5× 6, and 6× 5. These sweeps vary the grid shapes P×Q at constant total processes and this

enables us to analyze how different algorithms perform when P > Q or P < Q, because some of

the algorithms were specifically designed to deal with particular grid shapes. This also shows

how data distribution of the matrices is affected by different grid shapes, which in turn affects the

overall performance of the algorithms. It was interesting to discover how the extreme grid shapes

affect performance and this is applicable in the data (perfectly square matrix sizes on square grids)

22

analysis world since it is rare to find perfect data in practical applications. Data almost always has

extremes and edges that most researchers sometimes leave out.

We studied both square and fat-by-thin matrix shapes. The matrix sizes used were 20,000×

20,000×20,000: matrix A of size 20,000×20,000, matrix B of size 20,000×20,000 resulting

into matrix C of size 20,000×20,000 for the square case. We used the shape 1,000×1,000,000×

1,000 for the fat-by-thin case; thus, matrix A is of size 1,000× 1,000,000, matrix B is of size

1,000,000× 1,000 resulting into a relatively small size square matrix C of size 1,000× 1,000.

The importance of the size choices used will be discussed in the following paragraphs. Table 3.1

is a summary of all the dimensions and parameters described in this paragraph and the previous

paragraph. The number of nodes mentioned is the total number of nodes on the cluster that will be

used for a set of runs. For each case, P is the row dimension of the process grid, Q is the columns

dimension of the process grid, M is the number of rows of a matrix A, N is the number of columns

of matrix B, while K is the number of columns of matrix A and rows of matrix B.

The experiments were designed in in such a way that each algorithm runs 10 times and the

average run time (measured in seconds) is what we used to measure performance. The variance

(sample standard deviation of the mean) is given for this value. (Similar mean and deviations are

computed for the minimum mean runtimes for each case, but not used elsewhere in this thesis.)

We also tested the original BLIS DGEMM and X DGEMM (that leverages BLIS within itself) on

the same test cases. Tables that show performance of the different algorithms and comparisons of

the performance will be discussed in Chapter 4.

Further, we performed test runs on XSEDE stampede2 [33]. Stampede2 is one of the

Texas Advanced Computing Center (TACC) systems, and is one of the University of Texas at

Austin’s flagship supercomputers. The first phase of the Stampede2 roll out featured the second

generation of processors based on Intel’s Many Integrated Core (MIC) architecture. Stampede2’s

4,200 Knights Landing (KNL) nodes represent a radical break with the first-generation Knights

Corner (KNC) MIC coprocessor. Unlike the legacy KNC, a Stampede2 KNL is not a coprocessor:

each 68-core KNL is a standalone, self-booting processor that is the sole processor in its node.

23

Phase 2 added to Stampede2 a total of 1,736 Intel Xeon Skylake (SKX) nodes. SKX nodes are

what we used for experiments in this research.

The measurement metric used for this study was time taken for an algorithm to run, which

was measured in seconds. The smaller the number of seconds that an algorithm takes to run, the

faster it’s performance is. Different algorithms had varying run times for the arbitrary situations

considering the type of test, whether square or fat-by-thin. The analysis in this thesis was primarily

based on numbers (quantitative) and a focus on fastest times (time to solution), while noting

uncertainty in fastest times where significant. The use of quantitative data analysis methods was

the best option to use. This is because we are dealing with numbers, run times and performance

measurement. It is easy to compare, contrast, and accurately note all the variations in the data

outputs from the test runs. From these numbers we were able to determine which algorithm was

more efficient for a particular situation. We drew conclusions about how the current performance

of algorithms is similar or different from those reported in the earlier work from the 1990’s. The

implementations of the new versions of the BLAS brought about performance changes and the

the measure of performance as stated earlier was fastest run time in seconds. Tables, graphs and

visualizations were used for analysis in Jin Li’s paper [26]. The results presented enabled the

replication of their work to perform similar tests. This prompted us to use similar tools to what

they evidently employed.

3.3 Ideal Performance

From the experiments we designed for this work, we expected to observe polyalgorithmic

behavior from the simulations, meaning that that not one single algorithm should perform best for

all cases. This had been shown in [26]. Like the earlier work, we varied the test parameters in

terms of grid shapes and matrix sizes and therefore, we expected the results to differ from those

made in the original paper. The new version of the BLIS X DGEMM was also expected to deliver

better performance as compared to the original BLIS DGEMM for fat-by-thin matrix size cases.

This improvement had been proposed and demonstrated in [18]; they compared the new algorithm

with optimized baseline BLAS libraries and the results showed the significant improvement with

24

the new algorithm. For us, these performance variations suggested that X DGEMM would change

the best algorithm’s performance, and potentially change which algorithm was fastest by reducing

inefficiencies of on-node BLAS for the fat-by-thin case.

Md Mosharaf Hossain et.al. in [19], showed that performance degradation is higher for

fat-by-thin matrix multiplication for edge cases in big data sets. Likewise, the original DGEMM

performs better than the X DGEMM for square size matrix cases, according to the numerous

experiments made in this research. So, we did not expect to use X DGEMM in all situations.

Further, the problem sizes are different in each process given non-square grids and/or non-square

processes, meaning that choice of DGEMM vs. X DGEMM actually is a process-by-process and

subproblem-by-subproblem issues. However, in this thesis, we only addressed the all-or-none case

of either using normal DGEMM or else X DGEMM in all processes of a parallel multiplication.

We left as future work an internal selection mechanism and tradeoff of DGEMM vs. X DGEMM

modes of operation, which we considered a polyalgorithmic optimization for the BLAS library

itself.

Ideally, the SUMMA K algorithm added should perform faster than the original rank-1-

based SUMMA. rank-1-based SUMMA is slow, due to the series of dot products that are done

one at a time, which is inefficient given the memory hierarchy of a node. From the polyalgorithm

set, we expect mm5 row to work best for cases where P > Q and mm5 col to work best for cases

where P < Q, based on the prior results from Li et al. Likewise, based on the earlier work, we

expect Fox’s group algorithms: mm3, mm4, mm5 should have similar performance [26].

3.4 Implementation

In this subsection, we discuss how the polyalgorithm library works. The design of the new

algorithms is described and sample pseudo-code is presented.

3.4.1 Description of the polyalgorithm library

The parallel dense matrix multiplication algorithms were designed in C. As with other

libraries, the Message Passing Interface (MPI), a standardized application programmer interface

25

(API) for the message-passing model of parallel computing among unrelated processes, was

used to send and receive messages. In particular, we employed Open MPI version 3.1.0. The

OpenMP notation for on-node concurrency was used to implement the new algorithms X DGEMM

extension for shared memory inside the BLAS. The BLAS library used for our study is BLIS [37].

A brief discussion of the test programs is given in Appendix C.

3.4.2 X DGEMM algorithm

The new algorithm was motivated by the fact that the the General Matrix-Matrix Multi-

plication (GEMM) is slow for fat-thin regions. X DGEMM was designed by Thomas Hines in

his research work at the Tennessee Technological University [18]. He analyzed the performance

of DGEMM using three BLAS libraries and confirmed that it was slow for the fat-by-thin region

across all three libraries. The idea is that many single threaded DGEMMs can be run in the fat-

by- thin regions with high performance. As noted above, fat-by-thin multiplication refers to a

matrix with fewer rows and comparatively columns multiplied by a matrix with many rows and

comparatively fewer columns. The advantage is that we now have a small size of C so the sum

reduction over partial C sums will not be expensive in terms of memory (because C is replicated).

The algorithm was specifically designed for fat-by-thin regions and is not practical otherwise.

Using a large K value will typically yield good performance taking into account the available

computing resources (such as extra memory). The X DGEMM also works with sub-block matrices

(m 6= lda 6= ldc, k 6= ldb), and this supports sub-blocking compatibility in the DGEMM call within

the X DGEMM.

The X DGEMM algorithm works as described in [18]: “The main idea of the algorithm is

to split A and B in the k dimension. A becomes a 1-by-t block matrix, and B becomes a t-by-1

block matrix. C has no k dimension and so becomes a 1-by-1 block matrix. The multiplication

turns into a dot product where the t elements of A and B are multiplied pairwise and the resulting

1 by 1 block matrices are summed to form C. The t block matrix multiplications are performed by

calling single-threaded GEMMs. Each GEMM writes to the entire C matrix. As we want all the

26

Require: A, an m by k matrix (input)
Require: B, a k by n matrix (input)
Require: C, an m by n matrix (input / output)
Require: nthreads, the number of threads to use

1: Partition A and B in the k dimension into nthreads submatrices: A0, A1, ...
2: Allocate space for nthreads C matrices: C0, C1...
3: Call GEMM nthreads times with Ai, Bi, and Ci as parameters
4: Sum reduce Cis to C

Figure 3.2 X DGEMM algorithm (adapted from [18])

GEMMs to run at the same time, each is given scratch space to write its own partial C. Finally, all

the partial Cs are sum reduced to the full C 1” [18]; this algorithm has been shown in Figure 3.2.

Again, note that X DGEMM is a superstructure over the underlying BLIS kernel for

DGEMM; the performance tuning effect of X DGEMM derives from re-parametrizing the total

distribution of concurrent OpenMP threads as compared to BLIS’ default mechanism [18].

3.4.3 Modern rank-k based SUMMA

The idea is to improve the efficiency of the rank-1 SUMMA previously coded in the

polyalgorithm library by increasing the opportunity for on-node parallel efficiency. rank-1 refers

to a series of outer products done one at a time to update a given C element in a A× B = C

multiplication. Rank-k, on the other hand, carries out k number of column or row broadcasts

at the same time (followed by rank-k type BLAS operations locally in each process). SUMMA

is a broadcast-broadcast approach. In the broadcast approach, we use local matrices Â and B̂.

The number of columns in Â and the number of rows in B̂ is what determines the rank of the

algorithm. Matrix Â and B̂ are temporary buffers for storing the local matrices broadcast. Each

process computes as much of the matrix multiplication as can locally after each communication

phase.

In rank-1 SUMMA, each local matrix Â has size of mÂ× 1 and local matrix B̂ has size

of 1× nB̂ rows and columns. So during the MPI broadcast, a given root process on the grid will

1Note that the block dimension referred to is nominally b k
t c.

27

broadcast rows of matrix Â with size of mÂ. A root process in matrix B̂ will broadcast columns of

size nB̂. BLAS performance on each node is limited for this case.

Figure 3.3 shows the rank-k SUMMA algorithm (SUMMA K) where the size of each local

matrix Â is mÂ×k and the local matrix B is of size k×nB̂. So at every process, the process at root

will broadcast a count of mÂ× k rows for matrix Â . The root process in B̂ will broadcast a count

of k× nB̂ columns. The mapping and data distribution functions are also adjusted in the rank-k

version, instead of incrementing once at every iteration in the global indexes, we increment by a

factor of k. When all data distributions are complete, we use the local DGEMM (or X DGEMM)

matrix multiplication to multiply the matrices and update the local C.

28

1: C := βC; // Scale matrix C (input/output)
2: k := g; // Initialization of k (input)
3: mÂ := Â→ m;
4: mB̂ := B̂→ n; // Initialization of local matrix sizes
5: kA := 0;
6: kB := 0; //Initialization of the process communicator
7: for I = 0; I < K; I += K do
8: if kA == q then
9: Â← row broadcast(kA)A; // Row broadcast matrix A at root kA

10: // Broadcast mÂ× k rows
11: kA := kA+1; // For all in process grid
12: end if
13: if kB == p then
14: B̂← col broadcast(kB)B; // Col broadcast matrix B at root kB
15: // Broadcast k×nB̂ columns
16: end if
17: // Actually use the DGEMM or X DGEMM multiplication multiply
18: for i = 0; i < mÂ; i++ do
19: for j = 0; j < nB̂; j++ do
20: for ik = 0; ik < k; ik++ do
21: /* Update local matrix C*/
22: C(mÂ× j+ i) :=C+a× Â(mÂ× ik+ i)× B̂(k× j+ ik);
23: end for
24: end for
25: end for
26: end for

Figure 3.3 rank-k SUMMA algorithm

29

Table 3.1 Summary of parameters and dimensions used for experiments. Number of nodes is the
total number of nodes on the cluster that are used for a set of runs, P is the row dimension
of the process grid, Q is the columns dimension of the process grid, M is the number of
rows of a matrix A, N is the number of columns of matrix B, and K is the number of
columns of matrix A and rows of matrix B

Number of nodes P Q M K N
16 nodes square

16 1 20,000 20,000 20,000
8 2 20,000 20,000 20,000
4 4 20,000 20,000 20,000
2 8 20,000 20,000 20,000
1 16 20,000 20,000 20,000

fat-by-thin
16 1 1,000 1,000,0000 1,000
8 2 1,000 1,000,0000 1,000
4 4 1,000 1,000,0000 1,000
2 8 1,000 1,000,0000 1,000
1 16 1,000 1,000,0000 1,000

24 nodes fat-by-thin
24 1 1,000 1,000,0000 1,000
12 2 1,000 1,000,0000 1,000
8 3 1,000 1,000,0000 1,000
6 4 1,000 1,000,0000 1,000
4 6 1,000 1,000,0000 1,000
3 8 1,000 1,000,0000 1,000
2 12 1,000 1,000,0000 1,000
1 24 1,000 1,000,0000 1,000

30 nodes fat-by-thin
30 1 1,000 1,000,0000 1,000
15 2 1,000 1,000,0000 1,000
6 5 1,000 1,000,0000 1,000
5 6 1,000 1,000,0000 1,000
2 15 1,000 1,000,0000 1,000
1 30 1,000 1,000,0000 1,000
10 3 1,000 1,000,0000 1,000
3 10 1,000 1,000,0000 1,000

30

3.5 Summary

We discussed the design methodology of the polyalgorithm library, which is made of a

logical grid and data distribution independence. The design of experiments was described for

future reference. The architecture of the servers (nodes) used for the study were defined with

their limitations and advantages. We also presented the ideal performance for the library and

the new algorithms (rank-k SUMMA), suggesting reasons for the expected results. A detailed

flow of operations and test programs that make up the polymath library was indicated with a

forward reference to Appendix C. Pseudo-code depicting the specific parameters, X DGEMM

design, SUMMA K design was provided.

31

CHAPTER 4

PERFORMANCE EVALUATION

In this section, we present the results from the experiments that were performed for

our research to compare performance of various parallel matrix-multiplication algorithms using

two GEMM multiplication kernels (DGEMM and X DGEMM) on two computer clusters. The

algorithms were tested on the “117” and “Stampede2” clusters. We have arrived at the following

discoveries and reaffirmations of previous results. We are able to conclude that:

• The Fox’s (MM) group of algorithms perform better than other algorithms for arbitrary grid

shapes and matrix sizes. These algorithms in the MM group show polyalgorithmic behavior

for some cases but experiments show that the mm5 version predominantly has the best

performance for grid shapes where P < Q or P > Q. Usually, non-square grid shapes were

used in the experiments and therefore, the mm5 group had the best performance primarily

where the grid was extremely non-square. Other MM algorithm had the best performance in

cases where the grid shape was square or nearly square.

• In some of the tests that were carried out on square grids, the polyalgorithmic behavior was

reproduced for different situations. In such cases, just like in the [26], no single algorithm

had best performance for all the different matrix shapes.

• X DGEMM is significantly faster than the original DGEMM for fat-by-thin matrix multipli-

cation. The difference is smaller when the grid shape is square or nearly square.

• X DGEMM is also polyalgorithmic for special non-square matrix cases. X DGEMM has

similar trends of performance with DGEMM and the MM group had best performance with

polyalgorithmic behavior based on the grid shape.

32

• The new algorithm Rank k SUMMA is faster than the rank-1 SUMMA; it sometimes

outperforms than other algorithms in the library. We also noted that the SUMMA K

algorithm showed similar performance to the Broadcast-Broadcast (BB) algorithm due to

Li et al. This is because both algorithm use the same operations (broadcast primitives) and

both are outer product based. The BB algorithm had competitive performance in range with

other algorithms, there was no case where it was the best.

• The Cannon group had competitive performance with the other algorithms for square matrix

size cases. Most of the Cannon group algorithms executed successfully for small grid sizes

(16 nodes) but the performance deteriorated as the grid size was increased and we had to

eliminate most of the algorithms that failed to execute. The only times that an algorithm

from the Cannon group had best performance was where the grid shape was square: 4× 4,

5×5. This is not unexpected given prior knowledge.

Some of the algorithms that were tested in 1993 have not been included in some test scenarios.

This is because of our discovery of some constraints in those algorithms in terms of what matrix

and grid shapes plus sizes. Some of the algorithms in the Cannon group were excluded for certain

experiments. All result tables have been included in Appendices A and B for reference. Table 4.1

presents a few of the cases that will be discussed in the remainder of this chapter. The cases

are for both fat-by-thin matrix shapes (1,000×1,000,000×1,000) and square shapes (20,000×

20,000× 20,000). The results presented are for the 16 nodes sweep; 1× 16,16× 1,2× 8,8× 2

and 4×4. More data including the other two sweeps are given in the aforementioned appendices.

4.1 Running on 117

The specifications of the 117 cluster were discussed in Chapter 3. The results show that

the algorithms have different performance for various grid shapes and matrix sizes. The following

graphs show the performance changes among algorithms for the two GEMM versions. When

we change the dimensions of the matrix, it will evidently also behave differently in terms of

performance for arbitrary grid sizes. Figure 4.1 depicts a bar graph for the average run times

in seconds for DGEMM vs X DGEMM for a fat-by-thin (1k×1m×1k) matrix shape on a 16×1

33

Table 4.1 A mapping of case number to specific parameter set

Case M K N P Q
1 1k 1m 1k 16 1
2 20k 20k 20k 16 1
3 1k 1m 1k 8 2
4 20k 20k 20k 8 2
5 1k 1m 1k 2 8
6 20k 20k 20k 2 8
7 1k 1m 1k 4 4
8 20k 20k 20k 4 4
9 1k 1m 1k 1 16

10 20k 20k 20k 1 16

process grid. We can see that the difference in performance that X DGEMM indeed performs

better than DGEMM for the fat-by-thin cases. On the other hand, Figure 4.2 shows that DGEMM

has better performance than X DGEMM for square matrix shapes. Figure 4.3 shows that DGEMM

and X DGEMM achieved comparable performance. Overall X DGEMM performed better except

when used in the BB and SUMMA K algorithms. Comparing Figure 4.3 with Figure 4.1, we

realized that for extremely non-square grid shapes, in which one of the dimensions is such as

16× 1 or 1× 16, X DGEMM highly outperformed DGEMM. This is because the local matrices

become more non-square as well, further taking advantage of the k-dimension in X DGEMM.

Figure 4.4 shows a situation where a different grid shape was used on the same matrix size, the

fact that DGEMM performs better than X DGEMM for square matrix shapes is thus affirmed.

Figure 4.5 is a case that shows that mm5 col algorithm achieved best performance when a P ≤ Q

grid shape was used, this is because this algorithm was particularly designed for such grid shapes

whereas mm5 row is best for P ≥ Q as showed in Figure 4.4. Figure 4.6, shows that DGEMM

and X DGEMM can sometimes have same performance for square matrix grids. This is because

the local matrices are less non-square. Figure 4.6 shows results from the SUMMA K runs where

different K-factors were used. For some algorithms, DGEMM performed better than X DGEMM

for fat-by-thin regions .

34

Figure 4.1 Average run time of DGEMM vs. X DGEMM for Case 1. X DGEMM performs better
than DGEMM as expected for fat-by-thin cases. mm3 row achieved best performance
for X DGEMM while cannon ag was best for DGEMM which shows polyalgorithmic
behavior when different version of GEMM are used

We also confirmed that X DGEMM algorithm performs significantly better than the BLIS

DGEMM for fat-by-thin matrix multiplication. It puts all parallelization in the K dimension, so K

must be large and M and N must be small. X DGEMM also has polyalgorithmic characteristics

because there is no time when a single algorithm is best for all cases. For square cases of matrix

sizes, the BLIS DGEMM outperforms X DGEMM.

35

Figure 4.2 Average run time of DGEMM vs. X DGEMM for Case 2. DGEMM performs better
than X DGEMM as expected for square cases

Figure 4.3 Average run time of DGEMM vs. X DGEMM for Case 3. DGEMM and X DGEMM
achieved similar performance for some algorithms for some fat-by-thin cases on
extremely non-square grid shapes

36

Figure 4.4 Average run time of DGEMM vs. X DGEMM for Case 4. DGEMM performs better
than X DGEMM as expected for square cases

Figure 4.5 Average run time of DGEMM vs. X DGEMM for Case 5. mm5 col achieved best
performance for both DGEMM and X DGEMM due to the P≤ Q grid shape

37

Figure 4.6 Average run time of DGEMM vs. X DGEMM for Case 7. X DGEMM and DGEMM
had the same performance for most of the algorithms, evidently because of to the
square grid shape, which leads to similar sizes of the local matrices involved in the
multiplications

38

4.2 Running on Stampede2

Stampede2 results have quite similar trends of performance to the 117 cluster. The only

difference is that Stampede2 is faster in terms of time that the algorithms take to run. This is

because stampede2 has better processors (nodes) than 117. Stampede2 also has more cores per

processor than 117: 1,736 SKX compute nodes each with 48 cores per node compared to 117 which

has 33 nodes each with 28 cores per node. The Stampede 2 processor is an Intel Xeon Platinum

8160 (”Skylake”) while 117 is equipped with Intel Xeon E5-2680 v4. Some of the advantages of

the Intel Xeon Platinum 8160 over Intel Xeon E5-2680 v4 include faster core speed, higher RAM

speed, more CPU cores1, bigger L2 cache, more memory channels, faster bus transfer rate, and

higher turbo clock speed [38]. All these are some of the factors that made the performance of

the algorithms better on Stampede2. The specifications of these servers are detailed in Chapter 3.

X DGEMM and DGEMM versions have similar trends of performance such that the best algorithm

is the same for both versions. Generally, the mm5 algorithm performed best for most cases. The

Fox’s (MM) group most often has the best performance throughout the experiments. Figure 4.7

and show the performance of DGEMM vs. X DGEMM on a 1x16 grid shape. From the figures,

we confirm that indeed X DGEMM performs better for fat-by-thin cases than DGEMM. DGEMM

performs better for square matrix shapes on Stampede2. This is evidence that the polyalgorithms

achieve good performance on current systems architectures and technologies. The trend of the

algorithms performance is similar on both 117 and Stampede2. DGEMM performs better than

X DGEMM as expected for square cases. Individual performance of the algorithms is significantly

better on Stampede2 as compared to performance than 117. Compare Table A.1 and Table B.1 for

the difference in performance of the two clusters.

4.3 BB vs. rank-k SUMMA vs. rank-1 SUMMA

In this research, we discovered that both BB and SUMMA K algorithms use an outer

product during the matrix multiplication. This is based on the format in which these two algorithms

1the DGEMM and X DGEMM algorithms transparently access this multicore concurrency. Note that all the
configurations done in this work use one MPI process per node.

39

Figure 4.7 Average run time for DGEMM vs. X DGEMM for Case 10 on Stampede2. DGEMM
performs better than X DGEMM as expected for square cases

broadcast the matrix elements. The difference between the two algorithms is that for SUMMA K,

we are able to choose the k factor. In this way, performance is improved by not maximizing

the k value during matrix multiplication. Therefore, the SUMMA K algorithm can have better

performance than BB for particular cases of the k value. Another interesting observation is that

the rank-k SUMMA K algorithm also performs differently with different values of k. This is a

polyalgorithmic behavior within the SUMMA K. Therefore, we need to be careful while choosing

the value of k in order to achieve maximum performance from this algorithm. The BB and

SUMMA K algorithms are similar and their performance was also similar from the experiments.

The results for SUMMA K were as expected to be faster than the rank-1 SUMMA algorithm.

We carried out tests of the original SUMMA algorithm in the polymath library on 16 nodes:

8× 2 and 4× 4 grid shapes. We compared the results with the new rank-k-based SUMMA K

algorithm. There is a significant increase of speed in performance for the SUMMA K algorithm

as shown in Table 4.2. From Table 4.2, we noted the similarities and differences between the

BB and SUMMA K algorithms. For a fat-by-thin multiplication on an 8× 2 grid, SUMMA K

40

performed better than BB with a k value of 62,500. While with the same matrix dimension, on a

4x4 grid, BB performed better than SUMMA K. This shows how the k factor makes SUMMA K

polyalgorithmic for different matrix shapes and that when BB chooses the largest value of k, its

performance may deteriorate. A small k gives poor performance for a large size matrix since

it will be performing relatively inefficient GEMM-type operations. A large k also gives poor

performance; this could be because SUMMA is communication overhead sensitive; more study

may be warranted in future work. Table 4.3 shows a case where SUMMA K achieved the best

performance out of all the polyalgorithms on a 2× 8 grid and 20,000× 20,000× 20,000 matrix

size using a k factor of 250. This further highlights the importance of using the appropriate

k factor while using the SUMMA K algorithm. The performance of SUMMA K with other k

factors 1250 and 625 is significantly slower than when k = 250 but competitive with the rest of the

polyalgorithms.

Table 4.2 Comparison of BB, SUMMA K and SUMMA algorithms performance (seconds). BB
and SUMMA K have competitive performance because they both perform rank-k
updates. SUMMA is extremely slow compared to the SUMMA K and BB because it
performs rank-1 updates

P Q M K N k-factor-
SUMMA K Agorithm name avg max avg min

8 2 103 106 103 SUMMA 43.39± .05 43.39± .05
62,500 SUMMA K 5.61± .15 5.55± .15

BB 5.77± .02 5.73± .02

4 4 103 106 103 SUMMA 38.48± .02 38.48± .02
62,500 SUMMA K 4.47± .11 4.43± .11

BB 4.16± .05 4.08± .00

4.4 COSMA vs. Polyalgorithms

From our experiments, we validated that COSMA [25] is indeed an optimal algorithm for

different matrix multiplication situations. In the experiments, we tested a square matrix shape on

16 nodes. Table 4.4 represents the performance of polyalgorithms and COSMA on a square grid

41

Table 4.3 Stampede2: DGEMM run time(seconds) 20,000× 20,000× 20,000, on 2× 8 grid.
SUMMA K achieved best performance when a k-factor of 250 was used. An appropriate
selection of the k-factor can significantly improve the performance of SUMMA K. (Bold
numbers represent the lowest time(s) observed.)

Algorithm name avg max dev max avg min dev min
mm3 row 2.178206 0.018087 2.160626 0.018022
mm3 col 2.177041 0.020087 2.110852 0.006659
mm4 row 2.149056 0.02052 2.128406 0.022695
mm4 col 2.049804 0.064312 1.799479 0.058719
bb 2.213366 0.014942 2.170275 0.017982
cannon c 2.258626 0.03154 1.926514 0.030959
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 2.184387 0.041438 1.863977 0.040397
cannon ag 2.975107 0.061201 2.660054 0.057914
cannon bg 2.36045 0.044266 2.039952 0.042943
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 1.720906 0.100718 1.667862 0.084922
summak= 1,250 2.163689 0.037726 2.152244 0.027705
summak=625 2.374226 0.083487 2.363193 0.074538
summak=250 1.653983 0.059084 1.648238 0.056313

and square matrix shape. Ultimately, competitive performance between the polyalgorithms and

COSMA is achieved. Algorithms from the Fox’s group achieved the best performance; COSMA

was better than some algorithms from the Cannon group. In Table 4.5, COSMA performed

significantly faster than the polyalgorithms. This may result from the high level of optimizations

that the COSMA algorithms does, meaning that it also works extremely well for non-square grid

shapes; further study may be warranted. The good performance of COSMA for non-square grids

is further presented in Table 4.6, where it still significantly outperforms the polyalgorithms. As

the grid gets less non-square, as displayed in Table 4.7 and Table 4.8, COSMA’s performance

deteriorates since we force it to indirectly operate in 2D rather than its default 3D decomposition

strategy. COSMA was still competitive with the polyalgorithms in Table 4.8 but slow for the case

42

in Table 4.7. For these case the mm5 row performed best for the case where P≥Q while mm5 col

was best for P≤ Q.

It is important to report that, 25 years later, the polyalgorithms set is still competitive with

current algorithms such as COSMA [25]. COSMA can thus be considered polyalgorithmic as the

rest of the algorithms in the polymath library. The set of runs in this section exhibited perfect

polyalgorithmic behavior. The shapes we used are suboptimal given the fact that they do not

explore the 3D dimensional capability of the COSMA algorithm. We determine the grid shape;

that is, the 2D grid shape which is polymath based. In this case, the COSMA algorithm is forced

to adopt a nearly 2D distribution, which will not fully take advantage of the 3D functionalities of

COSMA. For a fixed number of processor S = P×Q×R, the third dimension R for COSMA is

forced to be R = 1 in such cases. For a 16 node sweep, the divisions strategy could be 8× 2× 1,

4× 2× 1, or 1× 16× 1. If COSMA’s default is used where the algorithm implicitly chooses the

grid shape, COSMA achieved best performance of approximately 1.08s. COSMA uses a division

strategy depending on the number of assigned processors and in this way, chooses the best grid

shape dimensions to perform the matrix multiplication. For the experiment used in our research on

16 nodes, the default division strategy was 2×2×4 for P×Q×R as represented as a 3D logical

grid topology. The authors in of the COSMA paper [25] concluded that their algorithm is superior

to other algorithms when it is possible to work on the problem in the optimal configuration and

that they apparently discount as lower-order work the costs of pre- and post- reorganizations and

replications of data needed to work in their optimal 3D layout of the matrices. These results offer

proof that polyalgorithms are still important even when compared to recent, innovative algorithms

such as COSMA.

43

Table 4.4 COSMA vs. polyalgorithms average run time in seconds for M =K =N = 20,000 matrix
shape on a 4×4 process grid. In this table the Fox’ group (mm3 and mm4 both row and
columns versions) algorithms achieved the same and best performance considering the
error bar. This is expected because for square grid there is no synchronous problem for
mm3 and no initial slides for mm4 [26]. (Bold numbers represent the lowest time(s)
observed.)

Algorithm name avg max dev max avg min dev min
mm3 row 1.597341 0.024794 1.533709 0.019031
mm3 col 1.563012 0.036022 1.512657 0.023392
mm4 row 1.58353 0.040723 1.521707 0.028928
mm4 col 1.545319 0.022784 1.500303 0.01224
bb 1.891934 0.036561 1.813445 0.033924
cannon c 1.733719 0.067762 1.491295 0.05684
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 1.784764 0.064621 1.567013 0.057309
cannon ag 2.277589 0.099263 2.067456 0.105484
cannon bg 2.270355 0.063714 2.064399 0.063468
summa N/A N/A N/A N/A
mm5 row 1.743822 0.051897 1.655398 0.022168
mm5 col 1.751378 0.034258 1.647067 0.035906
COSMA 1.8126 N/A N/A N/A

44

Table 4.5 COSMA vs. polyalgorithms average run time in seconds for M = K = N = 20,000
matrix shape on a 16×1 process grid. For extremely non-square shapes where only one
dimension is indirectly used, COSMA is better than the polyalgorithms. (Bold numbers
represent the lowest time(s) observed.)

Algorithm name avg max dev max avg min dev min
mm3 row 2.585334 0.045147 2.451067 0.046238
mm3 col 3.463056 0.015206 3.444748 0.015015
mm4 row 2.688545 0.032001 2.462185 0.031552
mm4 col 3.455902 0.016743 3.439662 0.017589
bb 3.436845 0.009315 3.42145 0.008023
cannon c 2.682052 0.045513 2.444983 0.029263
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 2.65708 0.030479 2.439806 0.028526
cannon ag 2.793409 0.036987 2.576428 0.036979
cannon bg 4.154851 0.10849 3.940715 0.108349
summa N/A N/A N/A N/A
mm5 row 2.292658 0.053389 2.216903 0.052696
mm5 col N/A N/A N/A N/A
COSMA 1.2047 N/A N/A N/A

45

Table 4.6 COSMA vs. polyalgorithms average run time in seconds for M = K = N = 20,000
matrix shape on a 1×16 process grid. For extremely non-square shapes where only one
dimension is indirectly used, COSMA is better than the polyalgorithms. (Bold numbers
represent the lowest time(s) observed.)

Algorithm name avg max dev max avg min dev min
mm3 row 3.578719 0.029591 3.562803 0.030027
mm3 col 2.755198 0.038175 2.616753 0.046191
mm4 row 3.592684 0.030402 3.572687 0.027991
mm4 col 2.877741 0.082514 2.604477 0.043191
bb 3.556445 0.011625 3.542672 0.00963
cannon c 2.867763 0.032626 2.644708 0.031319
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 2.843202 0.024139 2.624548 0.023815
cannon ag 4.226014 0.118736 4.014871 0.118009
cannon bg 2.902392 0.030229 2.68472 0.028154
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.332504 0.066513 2.266316 0.067785
COSMA 1.4025 N/A N/A N/A

46

Table 4.7 COSMA vs. polyalgorithms average run time in seconds for M = K = N = 20,000
matrix shape on a 2×8 process grid. mm5 col achieved best performance because of the
P≤ Q grid shape. (Bold numbers represent the lowest time(s) observed.)

Algorithm name avg max dev max avg min dev min
mm3 row 2.111144 0.030962 2.094617 0.028245
mm3 col 2.118654 0.020739 2.053215 0.008508
mm4 row 2.07584 0.013178 2.057578 0.010599
mm4 col 2.043327 0.067366 1.816637 0.066054
bb 2.170646 0.017821 2.144723 0.019418
cannon c 2.211638 0.045994 1.857015 0.044505
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 2.161477 0.041353 1.848058 0.041646
cannon ag 3.044329 0.081283 2.71306 0.068561
cannon bg 2.363414 0.030135 2.044465 0.02871
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 1.773298 0.03927 1.698227 0.038807
COSMA 3.0456 N/A N/A N/A

47

Table 4.8 COSMA vs. polyalgorithms average run time in seconds for M = K = N = 20,000
matrix shape on a 8× 2 process grid. mm5 row achieved best performance because of
the P≥ Q grid shape. (Bold numbers represent the lowest time(s) observed.)

Algorithm name avg max dev max avg min dev min
mm3 row 2.005457 0.029538 1.945231 0.025401
mm3 col 1.971702 0.022117 1.949778 0.006275
mm4 row 1.899726 0.040621 1.657638 0.036981
mm4 col 1.972492 0.018618 1.954382 0.016725
bb 2.036383 0.008788 2.017463 0.008488
cannon c 2.023054 0.037908 1.712544 0.034213
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 2.028953 0.041459 1.717536 0.043512
cannon ag 2.239083 0.045515 1.924992 0.046112
cannon bg 2.805638 0.083675 2.492211 0.08282
summa N/A N/A N/A N/A
mm5 row 1.593167 0.051841 1.543465 0.051492
mm5 col N/A N/A N/A N/A
COSMA 1.8394 N/A N/A N/A

48

4.5 Comparisons

We made these comparisons by testing the matrix multiplication algorithms with different

matrix sizes and grid shapes:

• For square matrix shapes, DGEMM had best performance as compared to X DGEMM for

tested the different grid shapes. We did a 20,000× 20,000× 20,000 matrix size on 16

nodes and a significant difference in performance was noticed. This is because the DGEMM

operations efficiently works for square and nearly square matrices. It was also noted that

performance of algorithms on the square grids is better than on non-square grids. This results

from the non-square shapes of the local matrices that become more non-square as the grid

becomes extremely non-square.

• Fox’s group (MM algorithms) are the best for square matrix shapes on non-square grids. For

DGEMM, mm5 performs best for all grid shapes (mm5 row when P>Q and mm5 col when

P < Q). For the 4×4 square grid mm4 col performs best.

• Runs with X DGEMM as the local BLAS operation shows more polyalgorithmic behavior

than with DGEMM (this is unsurprising because X DGEMM is only beneficial when

most local subproblems are non-square within the totality of the matrix operations done

in the process grid over the course of a single parallel multiplication). Different MM

algorithms exhibit their best performance for different grid shapes and the Cannon group

has competitive performance with the MM group considering the error bar for (4× 4 and

1×16 grid) cases.

• Runs with X DGEMM as the local BLAS operation performs better than DGEMM for fat-

by-thin cases except for square matrices one square grids.

• Stampede2 generally performs better than the 117 cluster because it uses more advanced

technologies in terms of CPU, memory, cache, etc.

49

• The performance trend on Stampede2 is similar to 117; the MM group is the best, and

Cannon is not competitive in any case. Further, we noted that DGEMM and X DGEMM-

enabled runs yield the same algorithm performing best for most grid shapes (that is, mm5)

except for 4× 4, where mm3 row is the best. 16× 1 is the only case that where the best

algorithm varies for the two DGEMM options.

• COSMA vs. polyalgorithm results on stampede2 show that COSMA is not always faster than

polyalgorithms for square matrices on 2×8, 8×2 and 4×4, 1×16, and 16×1 grids.

• SUMMA K is competitive with other algorithms and has comparable performance to the

BB algorithm. It also achieved best performance for particular cases when the appropriate

K value is used, an example is shown in Table 4.3 Interesting, BB was among the best

algorithms for several scenarios in [26].

4.6 Summary

The experimental results from our research were analyzed and discussion was presented

regarding why different algorithms performed differently in certain situations. Generally, the mm5

algorithm performed best for non-square grid shapes. Other algorithms were competitive with each

other in their respective groups. The BB algorithm and the SUMMA K algorithm have similar

performance but the latter allows the user to choose the K-factor and this can be optimized and so

sometimes is better than the BB algorithm, which always maximizes the k value. The results of

our experiments compare the performance of polyalgorithms with COSMA showed that the poly

algorithms are still competitive, except if COSMA’s optimal 3D layouts are supported in terms

of matrix redistribution and memory replication. That is, we had better performance when we

predefined the grid, but when we allowed the new algorithm COSMA to maximize its default

setting, it had better performance2.

2Further study is needed for operational sequences to determine if the cost of moving between optimal and near
optimal COSMA layouts and application-relevant layouts will yield the minimum time to solution. A operational
sequence computes A and B, redistributes A and B into the COSMA 3D grid format, computes with COSMA with the
lowest runtime, then redistributes C into the application-relevant layout. If redistirbution costs can be overlooked, then
COSMA will be the algorithm of choice for that scenario. The ability to do some partial matrix multiplication work

50

The new algorithm, X DGEMM, yielded better parallel run times for most fat-by-thin cases

as expected, whereas DGEMM did well for the square matrix shapes. The trends of performance of

these two algorithms on the both clusters used was similar, but Stampede2 has faster performance,

as expected based on its newer and higher-end node architecture.

while redistributing into the COSMA format could further reduce the overheads noted of such reorganizations. All
these matters are left for future work.

51

CHAPTER 5

CONCLUSION AND FUTURE WORK

This chapter concludes the research presented in this thesis. The new findings are affirmed

and summarized, thereby presenting the usefulness of polyalgorithms. Future work and areas that

need further investigation are also suggested.

5.1 Summary

We suumarized the work done in this thesis by answering the following research question:

• Do we reproduce the trade-offs between using different algorithms in different use

cases, or is one always best?

Polyalgorithms are still a core in building linear algebra libraries; we do not choose to design

a library with just one algorithm1. This fact is reinforced by the results presented with the

diversity of algorithmic performance. However, for this particular study, we mostly used

non-square grid shapes and fat-by-thin matrix shapes. For this reason, one specific algorithm,

mm5, showed best performance for most of the cases presented. The mm5 algorithm was

specifically designed to deal with cases where P<Q or P>Q. The conclusions from Li et al.

[26] remain valid for square matrix grid shapes and no single algorithm performs best for all

cases of arbitrary matrix shapes and grid sizes. We also explored the relative impacts of two

systems of different performance by performing the same set of experiments on both. Some

of the differences of the two clusters are the CPU speed, RAM bandwidth, CPU threads,

cache size, size of memory channels, bus transfer rate, and turbo clock speed. It is important

1We compared with COSMA quite a bit in this thesis. Generally speaking, COSMA should be one of several
options in a next-generation polyalgorithms library, not be considered as a sole alternative.

52

to note the system specifications when comparing performance of various algorithms across

the experiments presented here.

• Does the using of the basic BLIS DGEMM vs. new BLIS version, X DGEMM, change

performance of the algorithm(s) in a significant way? Which algorithm is best for a

given “parameter sweep”?

As one might expect, using different versions of DGEMM may significantly change the

performance of all the parallel algorithms. The original BLIS DGEMM version is best

for square matrix shapes while the new X DGEMM version is best for fat-by-thin matrix

shapes. It is therefore important to choose the right DGEMM version in order to achieve the

best performance for arbitrary grid shapes and matrix sizes. The DGEMM versions in this

research are polyalgorithmic themselves since they achieve distinct levels of performance

for different grid shapes and matrix sizes. None of the parallel algorithms had the best

performance based on the “sweep”; best performance mostly relied on the grid shapes as

explained earlier in the thesis.

• Does the new SUMMA algorithm outperform any of the older algorithms?

The SUMMA K algorithm performed better than the rank-1 SUMMA algorithm and its

primary advantage is that we can choose the k-factor that will achieve best performance

for a particular situation rather than maximizing K which could decrease performance.

SUMMA K also outperformed some of the old algorithms, especially algorithms in the

Cannon group. It achieved best performance for a case presented in Table 4.3. SUMMA K

performance was particularly similar to the BB algorithm for most cases where an

appropriate k-value was used. We noted that BB is a limiting case of the rank-k SUMMA

algorithm.

• Does the polyalgorithms set still achieve competitive performance when compared to

newer algorithms on current technologies?

The polyalgorithms that were designed in 1991–95 and describewd in Li et al. [26]

are still competitive with newer algorithms and achieve good performance on current

53

systems architectures and technologies. This is a strong indication that polyalgorithms are

still practical and important for maximizing performance of parallel dense matrix-matrix

multiplications. The COSMA algorithm that was compared to the polyalgorithms in this

work achieved best performance when optimal 3D decomposition are used. COSMA is

also found to be competitive for non-optimal 2D decompositions and this validates the

research in the COSMA paper [25]. In a future polyalgorithms library, we would include

both COSMA and 2.5/3D decompositions of the algorithms presently offered in 2D form in

the polyalgorithms library, but with the added guarantee of the DDI behavior described in

this thesis and reported previously in Jin et al.’s paper.

5.2 Future Work

In addition to those ideas and extensions already mentioned, in the future, we hope to use

machine learning to select the best algorithm for given situations automatically, including both the

algorithmic cost, and the cost of moving the data to/from its application-relevant organization as

needed by steps before and after the matrix multiplication (the cost of redistribution is only lower

order work asymptotically, and can matter). Another step would be to reformulate the library

in C++, taking advantage of modern C++ for flexibility, compile-time optimizations (including

potential for algorithmic selection), and supporting data-distribution and layout decisions at

compile-time where possible. Further, we can envisage using a parallel backend to a deep-learning

algorithm (that uses parallel dense matrix-matrix multiplication) that provides the optimization

parameters for its own deep learning use cases, creating a closed-loop deep-learning that solves

application problems while tuning its own runtime performance. As of now, all matrices are

handled as they are allocated by the test program or application; we would prefer to be able

to reorganize (remap) them also, when appropriate, especially since we will also be including

the COSMA algorithm moving forward. We would also like to determine the actual cost of

redistribution and have a high quality matrix (data distribution and grid shape) re-organizer for

the library.

54

REFERENCES

[1] Agarwal, R. C., Balle, S. M., Gustavson, F. G., Joshi, M., and Palkar, P. (1995). A

three-dimensional approach to parallel matrix multiplication. IBM Journal of Research and

Development, 39(5):575–582. 17

[2] Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J., Du Croz, J.,

Greenbaum, A., Hammarling, S., McKenney, A., et al. (1999). LAPACK Users’ guide. SIAM.

2

[3] Braun, T., Siegel, H., and Maciejewski, A. (2001). Heterogeneous computing: Goals, methods,

and open problems. pages 307–320. 14

[4] Cannon, L. E. (1969). A cellular computer to implement the Kalman filter algorithm. PhD

thesis, Montana State University-Bozeman, College of Engineering. AAI7010025. 1, 17

[5] Chen, J., Xiong, N., Liang, X., Tao, D., Li, S., Ouyang, K., Zhao, K., DeBardeleben, N.,

Guan, Q., and Chen, Z. (2019). Tsm2: Optimizing tall-and-skinny matrix-matrix multiplication

on gpus. In Proceedings of the ACM International Conference on Supercomputing, ICS ’19,

page 106–116, New York, NY, USA. Association for Computing Machinery. 15

[6] Choi, J., Walker, D. W., and Dongarra, J. J. (1994). Pumma: Parallel universal matrix

multiplication algorithms on distributed memory concurrent computers. Concurrency: Practice

and Experience, 6(7):543–570. 1, 17, 21

[7] Demmel, J., Eliahu, D., Fox, A., Kamil, S., Lipshitz, B., Schwartz, O., and Spillinger, O.

(2013). Communication-optimal parallel recursive rectangular matrix multiplication. 2013

IEEE 27th International Symposium on Parallel and Distributed Processing, pages 261–272. 1,

6, 18

55

[8] Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. S. (1990). A set of level 3 basic

linear algebra subprograms. ACM Trans. Math. Softw., 16(1):1–17. 2

[9] Forum, M. P. I. (2015). MPI: A Message-passing Interface Standard, Version 3.1 ; June 4,

2015. High-Performance Computing Center Stuttgart, University of Stuttgart. 2, 4

[10] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., Walker, D., and White, R. L. (1989).

Solving problems on concurrent processors vol. 1: General techniques and regular problems.

Computers in Physics, 3(1):83–84. 1, 17

[11] Goto, K. (2005). Tacc R© gotoblas library. https://www.tacc.utexas.edu/systems/software.

Accessed: 09.16.2020. 3

[12] Goto, K. and Geijn, R. A. v. d. (2008). Anatomy of high-performance matrix multiplication.

ACM Trans. Math. Softw., 34(3). 3

[13] Gunnels, J., Lin, C., Morrow, G., and van de Geijn, R. (1998). A flexible class of parallel

matrix multiplication algorithms. In Proceedings of the First Merged International Parallel

Processing Symposium and Symposium on Parallel and Distributed Processing, pages 110–116.

4

[14] Gupta, A. and Kumar, V. (1993). Scalability of parallel algorithms for matrix multiplication.

In 1993 International Conference on Parallel Processing - ICPP’93, volume 3, pages 115–123.

18

[15] Gustafson, J. L. (1988). Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533. 6

[16] Hedtke, I. (2010). Strassen’s matrix multiplication algorithm for matrices of arbitrary order.

ArXiv, abs/1007.2117. 17

[17] Hill, M. D. and Marty, M. R. (2008). Amdahl’s law in the multicore era. Computer, 41(7):33–

38. 6

56

https://www.tacc.utexas.edu/systems/software

[18] Hossain, M. M., Hines, T. M., Ghafoor, S. K., Islam, S. R., Kannan, R., and Sukumar, S. R.

(Dec 2018). A flexible-blocking based approach for performance tuning of matrix multiplication

routines for large matrices with edge cases. 2018 IEEE International Conference on Big Data

(Big Data). xii, 4, 6, 14, 24, 26, 27

[19] Hossain, M. M., Hines, T. M., Ghafoor, S. K., Rabiul Islam, S., Kannan, R., and

Sukumar, S. R. (2018). A flexible-blocking based approach for performance tuning of matrix

multiplication routines for large matrices with edge cases. In 2018 IEEE International

Conference on Big Data (Big Data), pages 3853–3862. 25

[20] Intel (2003). Intel R© math kernel library. https://software.intel.com/content/www/us/en/

develop/tools/math-kernel-library.html. Accessed: 08.18.2020. 2, 6

[21] Intel (2020). Multiplying matrices using dgemm. https://software.intel.com/content/www/

us/en/develop/documentation/mkl-tutorial-c/top/multiplying-matrices-using-dgemm.html. Ac-

cessed: 09.16.2020. 3

[22] Jaeyoung Choi and Dongarra, J. J. (1995). Scalable linear algebra software libraries for

distributed memory concurrent computers. In Proceedings of the Fifth IEEE Computer Society

Workshop on Future Trends of Distributed Computing Systems, pages 170–177. 18, 21

[23] Jeddi, S. and Nasri, W. (2005). A poly-algorithm for efficient parallel matrix multiplication

on metacomputing platforms. In 2005 IEEE International Conference on Cluster Computing,

pages 1–9. IEEE. 5, 14, 16

[24] Jia-Wei, H. and Kung, H.-T. (1981). I/o complexity: The red-blue pebble game. In

Proceedings of the thirteenth annual ACM symposium on Theory of computing, pages 326–333.

18

[25] Kwasniewski, G., Kabić, M., Besta, M., VandeVondele, J., Solcà, R., and Hoefler, T. (2019).

Red-blue pebbling revisited: Near optimal parallel matrix-matrix multiplication. In Proceedings

of the International Conference for High Performance Computing, Networking, Storage and

57

https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/documentation/mkl-tutorial-c/top/multiplying-matrices-using-dgemm.html
https://software.intel.com/content/www/us/en/develop/documentation/mkl-tutorial-c/top/multiplying-matrices-using-dgemm.html

Analysis, SC ’19, New York, NY, USA. Association for Computing Machinery. 1, 2, 6, 8, 18,

41, 43, 54

[26] Li, J., Skjellum, A., and Falgout, R. D. (1995). A poly-algorithm for parallel dense matrix

multiplication on two-dimensional process grid topologies. x, 3, 5, 11, 13, 16, 17, 24, 25, 32,

44, 50, 52, 53

[27] Marker, B., Van Zee, F. G., Goto, K., Quintana-Ortı́, G., and van de Geijn, R. A.

(2007). Toward scalable matrix multiply on multithreaded architectures. In Kermarrec, A.-M.,

Bougé, L., and Priol, T., editors, Euro-Par 2007 Parallel Processing, pages 748–757, Berlin,

Heidelberg. Springer Berlin Heidelberg. 18

[28] Mathur, K. K. and Johnsson, S. L. (1994). Multiplication of matrices of arbitrary shape on a

data parallel computer. Parallel Computing, 20:919951. 1, 17

[29] Nasri, W. and Trystram, D. (2004). A polyalgorithmic approach applied for fast

matrix multiplication on clusters. In 18th International Parallel and Distributed Processing

Symposium, 2004. Proceedings., page 234. IEEE. 16

[30] Rivera, C., Chen, J., Xiong, N., Song, S., and Tao, D. (2020). Ism2: Optimizing irregular-

shaped matrix-matrix multiplication on gpus. ArXiv, abs/2002.03258. 15

[31] Solomonik, E. and Demmel, J. (2011). Communication-optimal parallel 2.5d matrix

multiplication and lu factorization algorithms. In Proceedings of the 17th International

Conference on Parallel Processing - Volume Part II, Euro-Par’11, page 90–109, Berlin,

Heidelberg. Springer-Verlag. 1, 17

[32] Solomonik, E., Matthews, D., Hammond, J., and Demmel, J. (2013). Cyclops tensor

framework: Reducing communication and eliminating load imbalance in massively parallel

contractions. In 2013 IEEE 27th International Symposium on Parallel and Distributed

Processing, pages 813–824. 18

58

[33] Stanzione, D., Barth, B., Gaffney, N., Gaither, K., Hempel, C., Minyard, T., Mehringer,

S., Wernert, E., Tufo, H., Panda, D., and Teller, P. (2017). Stampede 2: The evolution of an

xsede supercomputer. In Proceedings of the Practice and Experience in Advanced Research

Computing 2017 on Sustainability, Success and Impact, PEARC17, New York, NY, USA.

Association for Computing Machinery. 23

[34] Strassen, V. (1969). Gaussian elimination is not optimal. Numer. Math., 13(4):354–356. 17

[35] van de Geijn, R. A. (1997). Using PLAPACK: Parallel Linear Algebra Package. MIT Press,

Cambridge, MA, USA. 15, 17

[36] Van De Geijn, R. A. and Watts, J. (1997). Summa: Scalable universal matrix multiplication

algorithm. Concurrency: Practice and Experience, 9(4):255–274. 1, 4, 15, 16, 17

[37] Van Zee, F. G. and van de Geijn, R. A. (2015). BLIS: A framework for rapidly instantiating

BLAS functionality. ACM Transactions on Mathematical Software, 41(3):14:1–14:33. 2, 4, 6,

26

[38] Versus (2020). Intel xeon e5-2690 v4 vs intel xeon platinum 8160. https://versus.com/en/

intel-xeon-e5-2690-v4-vs-intel-xeon-platinum-8160. Accessed: 09.16.2020. 39

[39] Wang, Q., Zhang, X., Zhang, Y., and Yi, Q. (2013). Augem: automatically generate

high performance dense linear algebra kernels on x86 cpus. In SC’13: Proceedings of the

International Conference on High Performance Computing, Networking, Storage and Analysis,

pages 1–12. IEEE. 2, 6

[40] Xianyi, Z., Qian, W., and Yunquan, Z. (2012). Model-driven level 3 blas performance

optimization on loongson 3a processor. In 2012 IEEE 18th International Conference on Parallel

and Distributed Systems, pages 684–691. IEEE. 2

59

https://versus.com/en/intel-xeon-e5-2690-v4-vs-intel-xeon-platinum-8160
https://versus.com/en/intel-xeon-e5-2690-v4-vs-intel-xeon-platinum-8160

APPENDIX A

RAW DATA FROM 117 CLUSTER RUNS

60

In this section, we have included all the data from the run that were done. We made the runs

on two servers: 117 and Stampede2. The graphs include all results for the different nominal nodes

using both the DGEMM and X DGEMM algorithms. Performance is measured as run-time in

seconds. The first set of tables are for runs made of 117, followed by tables of runs on Stampede2.

Table A.1 117 cluster: DGEMM Run-Time(seconds) 20,000×20,000×20,000, on 16×1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.004114 0.089586 2.852661 0.091707
mm3 col 4.174975 0.34167 4.150421 0.323331
mm4 row 3.102586 0.133188 2.863519 0.123914
mm4 col 4.179767 0.279268 4.157584 0.281229
bb 4.719917 0.038954 4.690012 0.040476
cannon c 3.138984 0.093306 2.864152 0.112676
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.145616 0.132011 2.905035 0.132137
cannon ag 3.245361 0.102395 3.005661 0.102403
cannon bg 4.756179 0.107676 4.51,2508 0.107822
summa N/A N/A N/A N/A
mm5 row 2.684945 0.126424 2.627342 0.094087
mm5 col N/A N/A N/A N/A

61

Table A.2 117 cluster: X DGEMM Run-Time(seconds) 20,000×20,000×20,000, on 16×1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 9.807986 0.091137 9.339222 0.115536
mm3 col 10.234802 0.297784 10.123398 0.298362
mm4 row 10.292248 0.07337 9.715777 0.096508
mm4 col 10.117461 0.106569 9.995225 0.105703
bb 10.792354 10.792354 10.666155 0.078611
cannon c 10.083978 0.116911 9.533392 0.15164
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 10.223631 0.149714 9.983826 0.149744
cannon ag 10.42875 0.103419 10.205293 0.101851
cannon bg 12.062024 0.066946 11.826327 0.066841
summa N/A N/A N/A N/A
mm5 row 10.220091 0.043336 9.956149 0.021391
mm5 col N/A N/A N/A N/A

Table A.3 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 16×1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 10.057969 0.227202 9.74641 0.183809
mm3 col 13.925253 1.262522 13.869742 1.25967
mm4 row 10.004802 0.302435 9.370544 0.273511
mm4 col 15.352479 0.70173 15.296557 0.701991
bb 17.914256 0.008055 17.870258 0.006057
cannon c 9.913032 0.206929 9.221466 0.223969
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 9.892918 0.170405 9.274711 0.170651
cannon ag 9.728389 0.205295 9.096664 0.205768
cannon bg 10.358781
summa N/A N/A N/A N/A
mm5 row 12.104181 0.186454 10.073063 0.247597
mm5 col N/A N/A N/A N/A

62

Table A.4 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 16× 1
grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.026592 0.16276 2.896384 0.16687
mm3 col 4.333003 0.394342 4.304782 0.393918
mm4 row 3.190416 0.11956 2.917259 0.088837
mm4 col 4.304849 0.274472 4.260647 0.276986
bb 4.826139 0.099824 4.80445 0.105569
cannon c 3.158663 0.119964 2.903084 0.119718
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.203345 0.220134 2.961556 0.220144
cannon ag 3.328331 0.22169 3.084653 0.221633
cannon bg 5.016202 0.156771 4.762207 0.156939
summa N/A N/A N/A N/A
mm5 row 2.794082 0.160895 2.668053 0.093165
mm5 col N/A N/A N/A N/A

Table A.5 117 cluster: DGEMM Run-Time(seconds) 20,000×20,000×20,000, on 8×2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.104391 0.123473 3.004158 0.082401
mm3 col 3.105573 0.068623 3.054157 0.073608
mm4 row 2.843934 0.120926 2.466518 0.092181
mm4 col 3.05586 0.06514 2.988244 0.065338
bb 3.2842 0.063683 3.204386 0.020394
cannon c 3.197274 0.143192 2.672129 0.118622
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.030174 0.153434 2.592266 0.153556
cannon ag 3.237907 0.078029 2.799402 0.078119
cannon bg 3.879122 0.116756 3.498527 0.116427
summa N/A N/A N/A N/A
mm5 row 2.456145 0.125266 2.363079 0.095889
mm5 col N/A N/A N/A N/A

63

Table A.6 117 cluster: X DGEMM Run-Time(seconds) 20,000×20,000×20,000, on 8×2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 6.880494 0.066767 6.572668 0.048774
mm3 col 6.798455 0.056455 6.66033 0.069793
mm4 row 7.038601 0.022697 6.610789 0.038731
mm4 col 6.737182 0.042547 6.622553 0.059701
bb 7.089602 0.021556 6.923108 0.027314
cannon c 7.295701 0.105666 6.790563 0.065147
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 7.295074 0.138681 6.853461 0.138832
cannon ag 7.608736 0.049439 7.15834 0.048941
cannon bg 8.193423 0.051755 7.749879 0.051545
summa N/A N/A N/A N/A
mm5 row 6.775231 0.023891 6.66992 0.035763
mm5 col N/A N/A N/A N/A

Table A.7 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 8×2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.289764 0.094543 5.17076 0.082301
mm3 col 4.843809 0.28812 4.728267 0.264463
mm4 row 4.572714 0.069358 3.759876 0.125709
mm4 col 4.771813 0.162862 4.664777 0.115745
bb 5.773333 0.024624 5.729975 0.011002
cannon c 5.267049 0.128561 4.152796 0.133519
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 5.037954 0.147177 3.950869 0.141284
cannon ag 4.961636 0.094926 3.875407 0.096832
cannon bg 5.316073 0.113255 4.208152 0.111541
summa 43.393309 0.051926 43.393223 0.051949
mm5 row 3.493115 0.111571 3.308793 0.083013
mm5 col N/A N/A N/A N/A
summak= 62,500 5.60572 0.149145 5.550417 0.145323
summak=31,250 5.625967 0.037938 5.563215 0.03324
summak=15,625 5.635896 0.170954 5.574486 0.176853

64

Table A.8 117 cluster: X DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 8×2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.827699 0.059626 4.780027 0.068865
mm3 col 4.997269 0.287585 4.971626 0.291044
mm4 row 4.125989 0.039004 3.228847 0.082819
mm4 col 4.872022 0.041889 4.859593 0.041686
bb 5.912459 0.01025 5.507978 0.010381
cannon c 4.708409 0.128773 3.744426 0.087419
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 4.535183 0.035756 3.440054 0.036128
cannon ag 4.490902 0.013836 3.437396 0.011911
cannon bg 4.9859 0.075267 3.889889 0.061019
summa N/A N/A N/A N/A
mm5 row 2.806208 0.184184 2.691557 0.133161
mm5 col N/A N/A N/A N/A
summak= 62,500 5.530408 0.034883 5.474745 0.035216
summak=31,250 5.719671 0.193283 5.658157 0.193626
summak=15,625 5.593211 0.118783 5.529109 0.107637

Table A.9 117 cluster: DGEMM Run-Time(seconds) 20,000×20,000×20,000, on 4×4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 2.554772 0.067991 2.440048 0.080905
mm3 col 2.586245 0.131499 2.485543 0.118272
mm4 row 2.533918 0.112229 2.417407 0.095751
mm4 col 2.538205 0.11661 2.432643 0.080889
bb 2.743331 0.107562 2.675613 0.087649
cannon c 2.824683 0.187615 2.492293 0.154594
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 2.523293 0.179543 2.308209 0.179549
cannon ag 2.83235 0.109847 2.617463 0.10925
cannon bg 3.076794 0.129853 2.751346 0.129767
summa N/A N/A N/A N/A
mm5 row 2.600132 0.104624 2.465986 0.087082
mm5 col 2.610751 0.148734 2.497223 0.101187

65

Table A.10 117 cluster: X DGEMM Run-Time(seconds) 20,000×20,000×20,000, on 4×4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.905616 0.107547 3.774039 0.087028
mm3 col 4.001572 0.038902 3.898343 0.03627
mm4 row 3.983841 0.017431 3.886098 0.009403
mm4 col 4.013215 0.018047 3.869312 0.010206
bb 4.239633 0.014753 4.071826 0.016979
cannon c 4.435158 0.010509 4.068065 0.009844
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 4.079392 0.016737 3.858012 0.016998
cannon ag 4.403749 0.022573 4.175929 0.022419
cannon bg 4.514618 0.024273 4.194499 0.023726
summa N/A N/A N/A N/A
mm5 row 4.070637 0.026807 3.985425 0.017176
mm5 col 4.060671 0.025365 3.98565 0.018975
summak= 62,500 N/A N/A N/A N/A
summak=31,250 N/A N/A N/A N/A
summak=15,625 N/A N/A N/A N/A

66

Table A.11 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 4×4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.672814 0.224535 3.560813 0.215449
mm3 col 3.544421 0.150348 3.43488 111300
mm4 row 3.640113 0.171183 3.47388 0.097796
mm4 col 3.506616 0.139265 3.381051 0.115133
bb 4.175733 0.045755 4.084926 0.003978
cannon c 4.133527 0.045718 3.45612 0.086638
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.626133 0.101716 2.962833 0.1,00094
cannon ag 3.613001 0.153531 3.054591 0.126627
cannon bg 3.421078 0.098859 2.889669 0.095378
summa 38.477298 0.024092 38.477116 0.024091
mm5 row 3.728349 0.130747 3.590537 0.06835
mm5 col 3.660328 0.158836 3.477348 0.107694
summak= 62,500 4.46597 0.112223 4.429396 0.112805
summak=31,250 4.325335 0.124371 4.29311 0.119803
summak=15,625 4.348232 0.183979 4.306223 0.189218

67

Table A.12 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 4× 4
grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.651921 0.111527 3.529917 0.105842
mm3 col 3.552332 0.075631 3.442905 0.084738
mm4 row 3.559412 0.062854 3.454921 0.061221
mm4 col 3.526929 0.094232 3.437655 0.073984
bb 4.185282 0.064527 4.131923 0.033066
cannon c 4.146038 0.159305 3.471973 0.183963
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.65848 0.106228 3.004872 0.105518
cannon ag 3.52477 0.107053 2.970659 0.09432
cannon bg 3.494098 0.116045 2.969172 0.115908
summa N/A N/A N/A N/A
mm5 row 3.667567 0.144066 3.50564 0.084442
mm5 col 3.589096 0.094507 3.444496 0.050592
summak= 62,500 4.29752 0.109586 4.262886 0.108901
summak=31,250 4.425282 0.190869 4.401204 0.190316
summak=15,625 4.472903 0.179782 4.434156 0.179585

68

Table A.13 117 cluster: DGEMM Run-Time(seconds) 20,000×20,000×20,000, on 2×8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.050797 0.105518 2.95816 0.087967
mm3 col 3.152321 0.074975 3.226733 0.051303
mm4 row 3.324212 0.074975 3.226733 0.051303
mm4 col 2.941664 0.187384 2.60006 0.093016
bb 3.06895 0.07682 2.955071 0.028471
cannon c 3.268867 0.120419 2.795767 0.101205
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.15243 0.129845 2.682396 0.129126
cannon ag 4.030698 0.09531 3.499185 0.094703
cannon bg 3.289265 0.112578 2.819897 0.113076
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.535425 0.151602 2.434492 0.114446
summak= 62,500 N/A N/A N/A N/A
summak=31,250 N/A N/A N/A N/A
summak=15,625 N/A N/A N/A N/A

Table A.14 117 cluster: X DGEMM Run-Time(seconds) 20,000×20,000×20,000, on 2×8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 7.679111 0.223376 7.578926 0.223872
mm3 col 7.947279 0.072991 7.83734 0.06894
mm4 row 8.13212 0.020043 8.04218 0.02286
mm4 col 7.853115 0.027801 7.521231 0.03284
bb 7.878829 0.007786 7.759382 0.009535
cannon c 8.372337 0.203652 7.892582 0.191184
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 8.40751 0.017652 8.019497 0.017506
cannon ag 9.031702 0.037362 8.635826 0.038829
cannon bg 8.588519 0.040684 8.127759 0.039795
summa N/A N/A N/A N/A
mm5 row 0.000002 0.000003 0.000001 0.000002
mm5 col 7.703817 0.029472 7.411596 0.025598

69

Table A.15 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 2×8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 8.195272 0.181465 8.127514 0.187312
mm3 col 8.89789 0.049263 8.778078 0.052295
mm4 row 9.757232 0.068386 9.633832 0.03858
mm4 col 8.177215 0.165181 7.478362 0.174695
bb 9.256326 0.006383 9.230341 0.003973
cannon c 9.098165 0.132656 7.764621 0.149583
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 8.753082 0.1102 7.625635 0.110741
cannon ag 9.043917 0.100804 7.874272 0.075587
cannon bg 8.786284 0.047815 7.665578 0.047224
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 7.001529 0.135105 6.887903 0.094991
summak= 62,500 9.25885 0.028569 9.175043 0.028565
summak=31,250 9.366887 0.034752 9.279534 0.034711
summak=15,625 9.146521 0.030841 9.062226 0.030768

70

Table A.16 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 2× 8
grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.385591 0.141031 4.306348 0.160715
mm3 col 4.823953 0.048917 4.783931 0.049543
mm4 row 5.898224 0.087832 5.838839 0.109524
mm4 col 4.183099 0.05283 3.475151 0.09389
bb 5.386932 0.007 5.37966 0.006266
cannon c 5.012098 0.125997 3.791895 0.128165
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 4.734167 0.071588 3.573558 0.071842
cannon ag 5.071166 0.07473 3.940617 0.070804
cannon bg 4.766935 0.053921 3.605236 0.054509
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.860369 0.19526 2.763426 0.145105
summak= 62,500 5.375917 0.140651 5.303192 0.144338
summak=31,250 N/A N/A N/A N/A
summak=15,625 N/A N/A N/A N/A

71

Table A.17 117 cluster: DGEMM Run-Time(seconds) 20,000×20,000×20,000, on 1×16 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.24695 0.036424 4.230039 0.035559
mm3 col 3.065601 0.049501 2.96687 0.035908
mm4 row 4.906686 0.117064 4.88042 0.113211
mm4 col 3.243534 0.049167 2.973007 0.04682
bb 4.800987 0.018126 4.785862 0.015149
cannon c 3.261526 0.046843 2.973649 0.040279
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.304488 0.04595 3.047362 0.045891
cannon ag 4.984504 0.065223 4.723674 0.065061
cannon bg 3.378881 0.055228 3.118533 0.05615
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.7797 0.050615 2.708755 0.056394
summak= 62,500 N/A N/A N/A N/A
summak=31,250 N/A N/A N/A N/A
summak=15,625 N/A N/A N/A N/A

72

Table A.18 117 cluster: X DGEMM Run-Time(seconds) 20,000× 20,000× 20,000, on 1× 16
grid

Algorithm name avg max dev max avg min dev min
mm3 row 10.954598 0.074044 10.83657 0.079228
mm3 col 10.499467 0.029476 10.228963 0.016863
mm4 row 11.494188 0.148509 11.380996 0.148396
mm4 col 10.866928 0.035813 10.558586 0.074165
bb 11.490831 0.091332 11.383701 0.091168
cannon c 10.925632 0.035783 10.360635 0.155385
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 10.912119 0.041656 10.679809 0.041
cannon ag 12.64365 0.09125 12.405948 0.091045
cannon bg 11.001981 0.054501 10.767641 0.056371
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 10.584375 0.029371 10.245091 0.068257
summak= 62,500 N/A N/A N/A N/A
summak=31,250 N/A N/A N/A N/A
summak=15,625 N/A N/A N/A N/A

Table A.19 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 1× 16
grid

Algorithm name avg max dev max avg min dev min
mm3 row 9.506201 0.470391 9.488248 0.465892
mm3 col 4.849476 0.093473 4.642501 0.056113
mm4 row 12.58785 0.011255 12.570569 0.009831
mm4 col 5.170553 0.009201 4.563987 0.008543
bb 10.825191 0.010449 10.819677 0.010589
cannon c 5.183785 0.007139 4.580853 0.006809
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 5.379653 0.123209 4.750989 0.118898
cannon ag 5.81584
cannon bg 10.228605 0.123475 9.621917 0.128256
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 9.027007 0.152136 8.797246 0.113245

73

Table A.20 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 24×1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 8.277652 0.183249 7.719422 0.145028
mm3 col 12.614204 1.11824 12.551237 1.113973
mm4 row 8.219189 0.03588 7.718527 0.039594
mm4 col 13.14542 1.469705 13.083617 1.469467
bb 15.667921 0.012626 15.623418 0.012763
cannon c 8.432319 0.290238 7.790356 0.09091
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 8.269445 0.069254 7.855751 0.06973
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A
mm5 row 7.637168 0.177512 7.20609 0.10901
mm5 col N/A N/A N/A N/A

Table A.21 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 24× 1
grid

Algorithm name avg max dev max avg min dev min
mm3 row 7.905346 0.304585 5.880218 0.20412
mm3 col 11.937141 0.633023 11.790512 0.666229
mm4 row 8.593247 0.351341 6.385729 0.203765
mm4 col 12.110588 0.864861 11.955695 0.884422
bb 11.603471 0.152037 11.450136 0.129502
cannon c 8.827907 0.361374 6.574008 0.231057
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 8.872749 0.246963 8.453835 0.246962
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 7.841697 0.140351 5.851113 0.160187
mm5 col N/A N/A N/A N/A

74

Table A.22 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 1×24 grid

Algorithm name avg max dev max avg min dev min
mm3 row 12.708139 0.476209 12.6852 0.473325
mm3 col 8.810144 0.075449 8.374924 0.116966
mm4 row 14.271543 0.122454 14.249858 0.122386
mm4 col 8.261561 0.057774 7.832586 0.040741
bb 13.398971 0.018287 13.386314 0.018401
cannon c 8.296713 0.075067 7.855906 0.068286
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 8.317732 0.03611 7.906559 0.03616
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 7.592804 0.121829 7.42827 0.067271

Table A.23 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 1× 24
grid

Algorithm name avg max dev max avg min dev min
mm3 row 8.436811 0.358767 8.37875 0.355653
mm3 col 5.21341 0.201451 4.742025 0.100803
mm4 row 10.104417 0.260126 10.045261 0.22356
mm4 col 5.836928 0.379183 4.86 0.146479
bb 10.906115 0.274895 10.881611 0.239607
cannon c 5.595362 0.355432 4.639839 0.105265
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 6.01676 0.366017 5.575004 0.366056
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 4.96719 0.110307 4.317125 0.121891

75

Table A.24 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 12×2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 8.155617 0.152833 7.753132 0.076672
mm3 col 9.084359 0.055306 9.054605 0.055197
mm4 row 7.794312 0.015147 6.665349 0.053644
mm4 col 8.78163 0.369829 8.533531 0.369237
bb 9.759138 0.19609 9.258754 0.096375
cannon c 8.843081 0.055106 7.369898 0.068586
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 7.256081 0.031664 6.486028 0.018025
mm5 col N/A N/A N/A N/A

Table A.25 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 12× 2
grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.016872 0.079693 4.619336 0.064571
mm3 col 5.823837 0.419396 5.789203 0.419848
mm4 row 3.705507 0.048792 3.145052 0.018939
mm4 col 5.851084 0.189386 5.645621 0.192158
bb 6.419063 0.015455 6.07164 0.096508
cannon c 4.439845 0.172308 3.547339 0.148953
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.833241 0.194516 2.643571 0.193441
mm5 col N/A N/A N/A N/A

76

Table A.26 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 2×12 grid

Algorithm name avg max dev max avg min dev min
mm3 row 8.360173 0.061364 8.274832 0.061033
mm3 col 7.836562 0.074348 7.505397 0.069345
mm4 row 8.636001 0.427579 8.498593 0.42726
mm4 col 7.567457 0.039951 6.591008 0.077796
bb 9.752465 0.029003 9.360372 0.016875
cannon c 8.625536 0.047929 7.255965 0.025839
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 6.731072 0.086537 6.136918 0.068075

Table A.27 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 2× 12
grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.39587 0.463774 5.299252 0.439574
mm3 col 5.068792 0.13206 4.720074 0.100202
mm4 row 6.497521 0.224668 6.371469 0.224907
mm4 col 3.987239 0.129534 3.257971 0.062737
bb 6.522373 0.357037 6.362599 0.294475
cannon c 5.093367 0.254834 4.18314 0.231113
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 3.471539 0.240552 3.023848 0.202893

77

Table A.28 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 6×4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.23908 0.07192 3.057954 0.079454
mm3 col 3.746472 0.153754 3.71399 0.12483
mm4 row 3.779406 0.068145 3.337772 0.065403
mm4 col 3.973444 0.14231 3.643815 0.12389
bb 3.956565 0.010578 3.890766 0.007096
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col N/A N/A N/A N/A

Table A.29 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 6× 4
grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.411982 0.153692 3.118854 0.115694
mm3 col 3.692251 0.182783 3.635881 0.153468
mm4 row 3.530008 0.066448 3.108971 0.048179
mm4 col 3.98254 0.161504 3.549455 0.135286
bb 4.118643 0.096264 3.936409 0.061849
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 3.444333 0.164456 3.323492 0.139378
mm5 col N/A N/A N/A N/A

78

Table A.30 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 4×6 grid

Algorithm name avg max dev max avg min dev min
mm3 row 6.042612 0.088612 5.985112 0.072089
mm3 col 5.584795 0.079407 5.355801 0.073593
mm4 row 6.309155 0.02956 5.950634 0.037071
mm4 col 5.946651 0.053852 5.50302 0.030063
bb 5.882264 0.026684 5.850024 0.022049
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 5.843155 0.048247 5.621361 0.048374

Table A.31 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 4× 6
grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.769065 0.105776 3.636135 0.100905
mm3 col 3.288956 0.058488 3.045613 0.054742
mm4 row 3.97135 0.066274 3.645849 0.06438
mm4 col 3.737667 0.1097 3.24509 0.061775
bb 3.8943 0.109047 3.762724 0.063711
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 3.045159 0.124608 2.864296 0.109519

79

Table A.32 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 3×8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.941311 0.004607 5.917854 0.003593
mm3 col 6.427264 0.067619 6.277239 0.075211
mm4 row 7.201848 0.009072 6.926737 0.009201
mm4 col 6.009803 0.067411 5.533805 0.092317
bb 6.419483 0.012063 6.283853 0.010096
cannon c 6.920871 0.055174 5.862715 0.053662
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 6.880652 0.066198 5.863518 0.066857
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 5.690901 0.047681 5.479689 0.044332

Table A.33 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 3× 8
grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.345468 0.04407 3.325504 0.027403
mm3 col 3.691979 0.076939 3.556967 0.103921
mm4 row 4.459966 0.010466 4.199915 0.010118
mm4 col 3.236577 0.050663 2.750708 0.060178
bb 3.737314 0.02033 3.589997 0.017811
cannon c 4.178907 0.060371 3.134632 0.037055
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 4.123989 0.051 3.11014 0.051083
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.767081 0.079505 2.610261 0.077018

80

Table A.34 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 8×3 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.433816 0.064044 4.207472 0.044913
mm3 col 3.952358 0.215372 3.900937 0.172892
mm4 row 3.672156 0.148774 3.240419 0.124684
mm4 col 4.17466 0.104854 3.763696 0.106383
bb 4.513156 0.123794 4.415134 0.128925
cannon c 4.601369 0.181123 3.518478 0.158133
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 4.567851 0.184818 3.471512 0.187373
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 3.174379 0.178214 3.035684 0.152473
mm5 col N/A N/A N/A N/A

Table A.35 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 8× 3
grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.089301 0.094796 3.836033 0.044396
mm3 col 3.63176 0.154435 3.571395 0.130299
mm4 row 3.467076 0.044583 3.004129 0.081941
mm4 col 4.097665 0.025381 3.733532 0.025412
bb 4.149715 0.115838 3.990766 0.048797
cannon c 4.333116 0.11522 3.29889 0.112673
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 4.472289 0.110709 3.36948 0.110719
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.92707 0.08835 2.762622 0.063144
mm5 col N/A N/A N/A N/A

81

Table A.36 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 3×10 grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.658576 0.030364 5.516253 0.029879
mm3 col 6.044017 0.107095 5.830446 0.096565
mm4 row 5.968206 0.032444 5.578032 0.031064
mm4 col 5.621032 0.068459 4.970533 0.068837
bb 6.195687 0.024764 5.914449 0.023563
cannon c 6.527976 0.104975 5.560402 0.075452
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 6.42601 0.129621 5.626838 0.129384
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 5.38035 0.067028 4.942287 0.057666

Table A.37 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 3× 10
grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.361506 0.057846 3.308901 0.059096
mm3 col 3.773656 0.116328 3.52887 0.116931
mm4 row 3.769395 0.089326 3.525667 0.059297
mm4 col 3.118827 0.146727 2.60058 0.140186
bb 4.193947 0.075422 3.899466 0.067344
cannon c 3.976602 0.183455 2.957747 0.196558
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.702559 0.118242 2.910946 0.117193
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.647606 0.150038 2.39658 0.111943

82

Table A.38 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 10×3 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.331042 0.040055 4.044473 0.065154
mm3 col 3.772255 0.112424 3.695666 0.112225
mm4 row 3.22704 0.060704 2.879021 0.055365
mm4 col 4.028443 0.137934 3.700095 0.160385
bb 4.524471 0.151264 4.30107 0.090595
cannon c 4.08308 0.203586 3.215353 0.198393
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 4.076479 0.09697 3.225377 0.097085
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.723728 0.135088 2.582524 0.135852
mm5 col N/A N/A N/A N/A

Table A.39 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 10× 3
grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.16118 0.166135 3.767824 0.064417
mm3 col 3.602342 0.204186 3.534657 0.197787
mm4 row 2.960542 0.062001 2.558269 0.052308
mm4 col 3.708714 0.179388 3.488363 0.18055
bb 4.429548 0.068823 4.10144 0.03835
cannon c 3.736268 0.13508 2.876797 0.143757
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.686949 0.180508 2.826036 0.181002
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.369775 0.096946 2.224609 0.035516
mm5 col N/A N/A N/A N/A

83

Table A.40 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 30×1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 7.74168 0.135983 6.934071 0.093455
mm3 col 12.017695 0.85497 11.968479 0.850446
mm4 row 7.832086 0.112914 7.126988 0.108305
mm4 col 13.593331 0.806504 13.545818 0.806467
bb 15.937639 0.018766 15.908537 0.018672
cannon c 7.860598 0.136744 7.117615 0.104309
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 7.992033 0.069894 7.64791 0.069932
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 7.507258 0.085654 6.744218 0.070468
mm5 col N/A N/A N/A N/A

Table A.41 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 30× 1
grid

Algorithm name avg max dev max avg min dev min
mm3 row 6.443398 0.377536 5.245961 0.20251
mm3 col 11.250942 1.303781 11.152174 1.325466
mm4 row 7.125105 0.520599 5.634596 0.254473
mm4 col 11.111163 0.734538 11.062897 0.713675
bb 10.543812 0.226271 10.451876 0.228575
cannon c 7.029017 0.464902 5.41941 0.44225
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 6.9942 0.575133 6.646455 0.57524
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 6.577775 0.306185 5.074156 0.378611
mm5 col N/A N/A N/A N/A

84

Table A.42 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 2×15 grid

Algorithm name avg max dev max avg min dev min
mm3 row 7.532195 0.033244 7.427399 0.034702
mm3 col 7.367456 0.076981 7.078931 0.064433
mm4 row 8.897254 0.038259 8.636502 0.038356
mm4 col 6.20054 0.056742 5.510332 0.046038
bb 9.069572 0.006403 8.614552 0.003564
cannon c 7.025849 0.0637 6.067 0.06312
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 6.994801 0.103069 6.187791 0.103312
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 5.584336 0.0815 5.321612 0.067384

Table A.43 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 2× 15
grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.818474 0.148632 5.787106 0.1808
mm3 col 5.000154 0.105162 4.621051 0.058237
mm4 row 7.176419 0.099827 6.945173 0.09979
mm4 col 3.458848 0.179643 2.851203 0.042788
bb 6.823433 0.063346 6.618808 0.116469
cannon c 4.402799 0.24331 3.311483 0.133038
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 4.315871 0.44215 3.51601 0.440841
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.796528 0.119844 2.600186 0.101171

85

Table A.44 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 5×6 grid

Algorithm name avg max dev max avg min dev min
mm3 row 6.261006 0.101686 5.777143 0.102417
mm3 col 5.433641 0.071195 5.138297 0.062578
mm4 row 6.159344 0.041186 5.709461 0.046373
mm4 col 5.994861 0.017517 5.361392 0.017172
bb 6.035153 0.004102 5.807901 0.00428
cannon c 6.92523 0.067782 5.847134 0.071656
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 6.748876 0.071624 5.93346 0.072681
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 5.944865 0.068752 5.656613 0.030769

Table A.45 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 5× 6
grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.691431 0.17162 3.375068 0.168859
mm3 col 2.732705 0.095267 2.509271 0.065791
mm4 row 3.428537 0.218373 3.022396 0.143852
mm4 col 3.082165 0.029336 2.729782 0.051363
bb 3.428679 0.094941 3.330151 0.089533
cannon c 3.752579 0.328614 2.679432 0.214604
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.658458 0.300035 2.849253 0.289468
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 3.323145 0.12203 3.081725 0.066143

86

Table A.46 117 cluster: DGEMM Run-Time(seconds) 1,000×1,000,000×1,000, on 6×6 grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.127599 0.07795 4.955492 0.068715
mm3 col 5.919727 0.210218 5.467323 0.210379
mm4 row 5.729786 0.036668 5.284339 0.047631
mm4 col 5.763377 0.058944 5.341638 0.053793
bb 5.839115 0.020458 5.67865 0.016797
cannon c 6.16325 0.047117 5.47865 0.048904
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 6.226938 0.056079 5.411826 0.037845
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 5.661105 0.003186 5.472099 0.003339
mm5 col N/A N/A N/A N/A

Table A.47 117 cluster: X DGEMM Run-Time(seconds) 1,000× 1,000,000× 1,000, on 6× 5
grid

Algorithm name avg max dev max avg min dev min
mm3 row 2.835786 0.139896 2.647434 0.102929
mm3 col 3.393552 0.160402 3.083157 0.156762
mm4 row 3.15113 0.04096 2.830466 0.02848
mm4 col 3.337536 0.091479 3.009792 0.094253
bb 3.735427 0.056979 3.510252 0.057275
cannon c 3.587058 0.161621 2.733039 0.179476
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.436548 0.182387 2.617134 0.190478
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 3.133371 0.123768 2.888467 0.173353
mm5 col N/A N/A N/A N/A

87

APPENDIX B

RAW DATA FROM STAMPEDE2 RUNS

88

Table B.1 Stampede2: DGEMM Run-Time(seconds) 20kx20kx20k, on 16x1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 2.781787 0.090894 2.67702 0.048309
mm3 col 3.641537 0.01537 3.627309 0.018168
mm4 row 2.825459 0.061571 2.589572 0.046353
mm4 col 3.644668 0.010152 3.631606 0.009818
bb 3.653826 0.012297 3.640809 0.011967
cannon c 2.858778 0.034343 2.639316 0.022007
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 2.84269 0.053122 2.62709 0.056352
cannon ag 2.959602 0.044541 2.746206 0.044116
cannon bg 4.316988 0.140226 4.106365 0.13864
summa N/A N/A N/A N/A
mm5 row 2.307429 0.103681 2.248955 0.09019
mm5 col N/A N/A N/A N/A
summak=1250 3.535665 0.037091 3.518732 0.035377
summak=625 3.768682 0.038324 3.757743 0.039015
summak=250 4.183685 0.052424 4.178481 0.053159

89

Table B.2 Stampede2: X DGEMM Run-Time(seconds) 20kx20kx20k, on 16x1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 10.5638 0.26663 10.033047 0.09836
mm3 col 11.04146 0.069297 10.903602 0.068812
mm4 row 11.09142 0.142112 10.385731 0.128191
mm4 col 11.038767 0.060433 10.889493 0.053762
bb 10.9865 0.115236 10.85584 0.112233
cannon c 10.833055 0.122747 10.322224 0.158513
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 11.094455 0.038426 10.861638 0.007348
cannon ag 11.255783 0.125771 11.038024 0.125063
cannon bg 12.979559 0.063691 12.767189 0.062854
summa N/A N/A N/A N/A
mm5 row 10.839376 0.189131 10.226774 0.137236
mm5 col N/A N/A N/A N/A
summak= 1250 10.501177 0.112763 10.381507 0.112231
summak=625 18.847259 0.262214 18.714434 0.254911
summak=250 43.209114 1.008515 43.088213 0.996716

90

Table B.3 Stampede2: DGEMM Run-Time(seconds) 20kx20kx20k, on 1x16 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.721197 0.023215 3.70298 0.026661
mm3 col 2.793188 0.052383 2.682351 0.02295
mm4 row 3.705667 0.01519 3.690697 0.014622
mm4 col 2.952792 0.063358 2.725152 0.06392
bb 3.707692 0.011358 3.693089 0.010659
cannon c 2.992992 0.068722 2.759803 0.038073
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 2.960102 0.057623 2.740712 0.057444
cannon ag 4.434341 0.134848 4.221224 0.133209
cannon bg 3.040574 0.042223 2.817793 0.041794
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.380452 0.116267 2.32298 0.09519
summak= 1250 3.592225 0.033082 3.574372 0.035315
summak=625 3.736233 0.029571 3.720949 0.031025
summak=250 4.090763 0.033732 4.085094 0.033356

Table B.4 Stampede2: X DGEMM Run-Time(seconds) 20kx20kx20k, on 1x16 grid

Algorithm name avg max dev max avg min dev min
mm3 row 11.073586 0.121923 10.922636 0.124183
mm3 col 10.704742 0.179754 10.195957 0.114066
mm4 row 11.211824 0.102536 11.05454 0.104986
mm4 col 10.935694 0.223104 10.338617 0.158416
bb 10.98566 0.092076 10.831358 0.075502
cannon c 11.063379 0.199083 10.421793 0.127362
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 10.952076 0.157104 10.738861 0.157171
cannon ag 13.047051 0.124595 12.827471 0.128155
cannon bg 11.374654 0.085352 11.157551 0.085269
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 10.683153 0.21005 10.11201 0.148845
summak= 1250 10.757767 0.162068 10.633830 0.159782
summak=625 18.970190 0.365688 18.835942 0.359578

91

Table B.5 Stampede2: DGEMM Run-Time(seconds) 20kx20kx20k, on 8x2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 2.160356 0.046074 2.08393 0.025741
mm3 col 2.113326 0.021485 2.088769 0.021455
mm4 row 1.976474 0.03739 1.735596 0.031953
mm4 col 2.103251 0.019088 2.077999 0.011975
bb 2.177195 0.037186 2.141646 0.006661
cannon c 2.091218 0.037345 1.773757 0.049114
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 2.107715 0.044901 1.797311 0.042125
cannon ag 2.267914 0.042042 1.957826 0.044525
cannon bg 2.883409 0.090229 2.556079 0.086415
summa N/A N/A N/A N/A
mm5 row 1.593792 0.046396 1.561728 0.041971
mm5 col N/A N/A N/A N/A
summak= 1250 2.123396 0.025102 2.101459 0.027603
summak=625 2.269564 0.032824 2.261642 0.032603
summak=250 1.685542 0.074503 1.678678 0.074444

Table B.6 Stampede2: X DGEMM Run-Time(seconds) 20kx20kx20k, on 8x2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.829654 0.086489 5.638389 0.08703
mm3 col 5.925174 0.042597 5.795448 0.037617
mm4 row 5.867925 0.100847 5.474437 0.067227
mm4 col 5.898397 0.024651 5.75964 0.035594
bb 5.901189 0.015819 5.603319 0.04061
cannon c 6.219219 0.006134 5.715006 0.029968
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 6.10593 0.064629 5.782994 0.066513
cannon ag 6.503421 0.11164 6.187174 0.113738
cannon bg 7.217602 0.046582 6.89713 0.04789
summa N/A N/A N/A N/A
mm5 row 5.708056 0.153206 5.467709 0.169103
mm5 col N/A N/A N/A N/A
summak=1250 9.848178 0.104170 9.718495 0.100391
summak=625 18.581733 0.079641 18.447612 0.075655

92

Table B.7 Stampede2: DGEMM Run-Time(seconds) 20kx20kx20k, on 2x8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 2.178206 0.018087 2.160626 0.018022
mm3 col 2.177041 0.020087 2.110852 0.006659
mm4 row 2.149056 0.02052 2.128406 0.022695
mm4 col 2.049804 0.064312 1.799479 0.058719
bb 2.213366 0.014942 2.170275 0.017982
cannon c 2.258626 0.03154 1.926514 0.030959
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 2.184387 0.041438 1.863977 0.040397
cannon ag 2.975107 0.061201 2.660054 0.057914
cannon bg 2.36045 0.044266 2.039952 0.042943
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 1.720906 0.100718 1.667862 0.084922
summak= 1250 2.163689 0.037726 2.152244 0.027705
summak=625 2.374226 0.083487 2.363193 0.074538
summak=250 1.653983 0.059084 1.648238 0.056313

Table B.8 Stampede2: X DGEMM Run-Time(seconds) 20kx20kx20k, on 2x8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.766913 0.097106 5.657572 0.103068
mm3 col 5.75177 0.055777 5.575617 0.045228
mm4 row 5.762985 0.022461 5.636158 0.030075
mm4 col 5.966553 0.031713 5.612762 0.036581
bb 5.880814 0.029139 5.601784 0.034195
cannon c 6.209049 0.022052 5.707688 0.053382
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 6.00845 0.103226 5.693742 0.10474
cannon ag 7.169963 0.064818 6.852157 0.06436
cannon bg 6.438192 0.051365 6.114714 0.051761
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 5.754381 0.008952 5.510686 0.049643
summak= 1250 9.815227 0.140657 9.692203 0.137320

93

Table B.9 Stampede2: DGEMM Run-Time(seconds) 20kx20kx20k, on 4x4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 1.715549 0.036488 1.658283 0.028918
mm3 col 1.721091 0.047677 1.652185 0.025321
mm4 row 1.739423 0.045115 1.665969 0.032649
mm4 col 1.719584 0.049705 1.65757 0.039481
bb 1.950508 0.037679 1.904439 0.014983
cannon c 1.873396 0.061284 1.643583 0.056254
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 1.949031 0.041982 1.729718 0.047018
cannon ag 2.395361 0.040062 2.200311 0.046517
cannon bg 2.359316 0.064383 2.150774 0.06178
summa N/A N/A N/A N/A
mm5 row 1.895056 0.076066 1.763404 0.049523
mm5 col 1.899374 0.040792 1.787484 0.033205
summak= 1250 2.191787 0.160748 2.131948 0.127206
summak=625 2.383149 0.136051 2.379411 0.136246
summak=250 2.596985 0.103635 2.587019 0.098707

Table B.10 Stampede2: X DGEMM Run-Time(seconds) 20kx20kx20k, on 4x4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.510406 0.057565 3.384522 0.088097
mm3 col 3.538849 0.052219 3.44696 0.046102
mm4 row 3.560631 0.04339 3.466854 0.042327
mm4 col 3.59904 0.037082 3.47895 0.036957
bb 3.732406 0.017893 3.572639 0.00919
cannon c 3.741176 0.045123 3.521032 0.035665
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.744007 0.030398 3.522951 0.029137
cannon ag 4.18289 0.03432 3.980191 0.036256
cannon bg 4.196543 0.041242 3.975273 0.039116
summa N/A N/A N/A N/A
mm5 row 3.69321 0.053846 3.575891 0.076973
mm5 col 3.684001 0.074108 3.449531 0.051415
summak= 1250 9.678787 0.150045 9.550333 0.147053

94

Table B.11 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 16x1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.738962 0.083517 5.433079 0.045086
mm3 col 7.48876 0.012003 7.453662 0.012118
mm4 row 5.833786 0.046033 5.265165 0.045266
mm4 col 7.488633 0.011174 7.456309 0.010868
bb 7.444492 0.011646 7.411649 0.011439
cannon c 5.877859 0.150466 5.301826 0.132116
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 5.820165 0.052336 5.272106 0.072784
cannon ag 5.851473 0.056287 5.300519 0.056182
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col N/A N/A N/A N/A

Table B.12 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 16x1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.653682 0.104966 5.371229 0.091355
mm3 col 7.521545 0.010601 7.491058 0.012902
mm4 row 5.889552 0.091338 5.317088 0.063364
mm4 col 7.52251 0.019253 7.493305 0.021095
bb 7.488498 0.009259 7.463464 0.010165
cannon c 5.901989 0.080636 5.33691 0.075043
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 5.869044 0.069127 5.314036 0.069242
cannon ag 5.807341 0.096016 5.245784 0.095304
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col N/A N/A N/A N/A

95

Table B.13 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 1X16 grid

Algorithm name avg max dev max avg min dev min
mm3 row 7.735438 0.021647 7.703688 0.022421
mm3 col 5.608723 0.048987 5.42666 0.055741
mm4 row 7.687203 0.01673 7.657675 0.016033
mm4 col 6.026921 0.057329 5.449322 0.064139
bb 7.640521 0.021457 7.611523 0.019517
cannon c 5.981446 0.061259 5.435711 0.060641
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 5.956073 0.063972 5.416753 0.063945
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col N/A N/A N/A N/A

Table B.14 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 1X16 grid

Algorithm name avg max dev max avg min dev min
mm3 row 7.452418 0.044339 7.423282 0.043084
mm3 col 5.487094 0.141911 5.256505 0.117795
mm4 row 7.43297 0.014037 7.400243 0.013732
mm4 col 5.756797 0.080023 5.217998 0.077223
bb 7.422669 0.013424 7.39153 0.013252
cannon c 5.706446 0.101514 5.162247 0.083754
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 5.667892 0.066134 5.140944 0.065195
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col N/A N/A N/A N/A

96

Table B.15 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 2X8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.262806 0.03065 4.213576 0.03464
mm3 col 4.197872 0.033265 4.083128 0.032126
mm4 row 4.228498 0.018209 4.202092 0.022274
mm4 col 3.958016 0.043948 3.406046 0.03462
bb 4.422545 0.015353 4.377503 0.009953
cannon c 4.394054 0.038217 3.583541 0.030055
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 4.301309 0.031906 3.517384 0.031933
cannon ag 4.278885 0.050151 3.494111 0.057449
cannon bg 4.321825 0.084361 3.537836 0.084096
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.931949 0.080208 2.86153 0.072125
summak= 62500 4.394717 0.033610 4.361812 0.033293
summak=31250 4.356114 0.017053 4.338945 0.018001
summak=15625 4.515287 0.036462 4.503864 0.030831

97

Table B.16 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 2X8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.933289 0.039866 3.90542 0.041735
mm3 col 3.970964 0.01829 3.863822 0.024559
mm4 row 3.953631 0.027084 3.931302 0.025789
mm4 col 3.630889 0.050354 3.108206 0.057096
bb 4.140487 0.007097 4.103479 0.00589
cannon c 4.064698 0.019351 3.260979 0.016716
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.91861 0.029584 3.14584 0.027402
cannon ag 3.831314 0.03503 3.039961 0.029134
cannon bg 3.921933 0.040472 3.143978 0.040751
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.5369 0.054973 2.494047 0.036845
summak= 62500 4.153626 0.064796 4.134559 0.064476
summak=31250 4.081104 0.066222 4.072584 0.066876
summak=15625 4.331057 0.096921 4.324720 0.097092

98

Table B.17 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 8x2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.214909 0.015194 4.136341 0.023237
mm3 col 4.073732 0.014319 4.040215 0.015117
mm4 row 3.729855 0.054938 3.168406 0.042156
mm4 col 4.102313 0.038124 4.062709 0.035695
bb 4.302904 0.016558 4.254546 0.012367
cannon c 4.205115 0.042712 0.042712 0.033712
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 4.136069 0.042626 3.332678 0.044775
cannon ag 4.019952 0.048972 3.239578 0.04012
cannon bg 3.98165 0.043959 3.199116 0.047832
summa N/A N/A N/A N/A
mm5 row 2.720745 0.081657 2.668047 0.067295
mm5 col N/A N/A N/A N/A
summak= 62500 4.277147 0.030453 4.258347 0.019875
summak=31250 4.148420 0.024456 4.135920 0.023636
summak=15625 4.309977 0.022043 4.299258 0.022856

99

Table B.18 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 8x2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.055317 0.033084 3.911126 0.037647
mm3 col 3.973925 0.012593 3.946825 0.013045
mm4 row 3.63912 0.053744 3.1194 0.039113
mm4 col 3.959473 0.008977 3.932838 0.010365
bb 4.126256 0.008871 4.078065 0.006156
cannon c 4.075613 0.056711 3.272461 0.058197
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 4.026461 0.046892 3.243728 0.043026
cannon ag 3.907203 0.037716 3.13685 0.037493
cannon bg 3.842685 0.032123 3.060884 0.047861
summa N/A N/A N/A N/A
mm5 row 2.649031 0.082122 2.59096 0.065382
mm5 col N/A N/A N/A N/A
summak= 62500 4.175258 0.034787 4.149201 0.029637
summak=31250 4.056620 4.056620 4.043206 0.025781
summak=15625 4.330239 0.018880 4.321053 0.017460

100

Table B.19 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 4x4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.203153 0.068965 3.096638 0.066479
mm3 col 3.129 0.033202 2.99895 0.037072
mm4 row 3.173233 0.052567 3.072323 0.044028
mm4 col 3.107457 0.045969 3.004562 0.031968
bb 3.876474 0.017606 3.840092 0.014238
cannon c 3.542897 0.074237 3.053601 0.071775
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.57502 0.041449 3.084943 0.038046
cannon ag 3.541813 0.074767 3.033528 0.101516
cannon bg 3.575321 0.060357 3.077167 0.063835
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 3.387456 0.045475 3.256848 3.256848
summak= 62500 3.901732 0.041087 3.850946 0.036295
summak=31250 3.772787 0.017295 3.761962 0.015786
summak=15625 3.959038 0.013488 3.946298 0.013273

101

Table B.20 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 4x4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 2.839411 0.041068 2.762465 0.032706
mm3 col 2.793943 0.014931 2.715991 0.028313
mm4 row 2.82084 0.031039 2.740449 0.023687
mm4 col 2.821432 0.045188 2.730391 0.027149
bb 3.618108 0.019769 3.564933 0.0063
cannon c 3.129582 0.042002 2.603955 0.054401
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.209889 0.050087 2.691529 0.057724
cannon ag 3.144318 0.040328 2.659598 0.047086
cannon bg 3.188132 0.062252 2.675017 0.062166
summa N/A N/A N/A N/A
mm5 row 2.945723 0.035036 2.864223 0.037891
mm5 col 2.929245 0.038861 2.833816 0.035598
summak= 62500 3.635329 0.034364 3.589823 0.037431
summak=31250 3.614295 0.027068 3.607060 0.027223
summak=15625 3.832672 0.021941 3.828678 0.021785

Table B.21 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 1x24 grid

Algorithm name avg max dev max avg min dev min
mm3 row 8.45839 0.021523 8.427345 0.025684
mm3 col 5.726837 0.085555 5.360642 0.03012
mm4 row 8.442294 0.018277 8.410518 0.018394
mm4 col 5.460098 0.028983 5.107415 0.030643
bb 8.445527 0.034651 8.422815 0.034973
cannon c 5.495547 0.035806 5.139393 0.035265
cannon a 5.488725 0.019606 5.123699 0.019726
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 4.396079 0.110864 4.261504 0.092716
mm5 col N/A N/A N/A N/A

102

Table B.22 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 1x24 grid

Algorithm name avg max dev max avg min dev min
mm3 row 8.38215 0.044878 8.356134 0.043363
mm3 col 5.59121 0.11584 5.379425 0.074502
mm4 row 8.319037 0.028694 8.29219 0.028812
mm4 col 5.577472 0.042847 5.222875 0.04289
bb 8.313715 0.020968 8.293889 0.020852
cannon c 5.625993 0.066275 5.270311 0.039199
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 5.622802 0.05763 5.262799 0.057476
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 4.31915 0.274214 4.171234 0.255951

Table B.23 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 24X1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.65601 0.080213 5.270823 0.030611
mm3 col 8.344213 0.038761 8.311609 0.043717
mm4 row 5.279027 0.040525 4.903033 0.043972
mm4 col 8.319632 0.057649 8.293763 0.05798
bb 8.275923 0.037704 8.255105 0.038211
cannon c 5.363099 0.064787 4.988217 0.062832
cannon a N/A N/A N/A N/A
cannon b 5.321795 0.031881 4.958703 0.037603
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 4.337421 0.15214 4.231628 0.126008
mm5 col N/A N/A N/A N/A

103

Table B.24 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 24X1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.840285 0.076161 5.61341 0.039287
mm3 col 8.377076 0.02276 8.347141 0.019958
mm4 row 5.79778 0.0713 5.417092 0.047292
mm4 col 8.389939 0.050351 8.347916 0.015609
bb 8.370216 0.008956 8.338602 0.010537
cannon c 5.792052 0.046904 5.426762 0.028081
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 5.783374 0.034093 5.393122 0.034435
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 4.515002 0.206727 4.361538 0.165978
mm5 col N/A N/A N/A N/A

Table B.25 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 12X2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.328413 0.018401 3.8539 0.048035
mm3 col 4.401844 0.014249 4.380015 0.01248
mm4 row 3.558425 0.049529 3.176455 0.064476
mm4 col 4.82329 0.013667 4.683989 0.013227
bb 4.545437 0.010635 4.51123 0.007552
cannon c 4.056724 0.034728 3.39884 0.054532
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.838548 0.035863 2.76039 0.035247
mm5 col N/A N/A N/A N/A

104

Table B.26 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 12X2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.283733 0.047612 3.855587 0.042021
mm3 col 4.339678 0.011752 4.321973 0.010727
mm4 row 3.577238 0.042983 3.220233 0.057073
mm4 col 4.7731 0.017513 4.616497 0.017315
bb 4.478846 0.013113 4.439388 0.010069
cannon c 4.106531 0.042369 3.429956 0.050785
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.698222 0.075327 2.638715 0.064311
mm5 col N/A N/A N/A N/A

Table B.27 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 3X8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.352797 0.017312 3.312307 0.014975
mm3 col 3.535287 0.01873 3.430297 0.008898
mm4 row 3.651113 0.035717 3.329517 0.019782
mm4 col 3.147572 0.028107 2.720499 0.027057
bb 3.503153 0.023311 3.434125 0.023503
cannon c 3.960935 0.056582 3.023022 0.051233
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.947293 0.077164 3.02448 0.090275
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.866903 0.015111 2.770972 0.01393

105

Table B.28 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 3X8 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.179909 0.030605 3.133902 0.031569
mm3 col 3.429871 0.020838 3.33795 0.008213
mm4 row 3.478981 0.033973 3.16107 0.008101
mm4 col 3.032952 0.054987 2.619552 0.050194
bb 3.322138 0.010813 3.259055 0.012552
cannon c 3.834265 0.065851 2.893359 0.058547
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.779584 0.059361 2.886051 0.058027
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.663021 0.02219 2.590837 0.01452

Table B.29 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 8X3 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.505393 0.034106 3.407168 0.031964
mm3 col 3.248058 0.021183 3.21024 0.024634
mm4 row 3.103884 0.035893 2.707429 0.028878
mm4 col 3.571994 0.031927 3.256261 0.018786
bb 3.398381 0.0227 3.323218 0.012216
cannon c 3.905596 0.089938 2.977605 0.06427
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.888331 0.063813 2.966737 0.060206
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.767815 0.021237 2.679015 0.018975
mm5 col N/A N/A N/A N/A

106

Table B.30 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 8X3 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.513424 0.029809 3.387817 0.03705
mm3 col 3.187358 0.013369 3.131347 0.010076
mm4 row 3.032882 0.064184 2.632228 0.053707
mm4 col 3.508774 0.022052 3.195344 0.020867
bb 3.308673 0.006467 3.234233 0.007019
cannon c 3.855943 0.088553 2.925804 0.07412
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.836439 0.064748 2.914107 0.066995
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.646421 0.023586 2.573228 0.022015
mm5 col N/A N/A N/A N/A

Table B.31 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 6X4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.160832 0.037778 2.976554 0.026889
mm3 col 3.248382 0.027495 3.166304 0.02357
mm4 row 3.396989 0.057084 3.079719 0.049937
mm4 col 3.617156 0.03322 3.25897 0.023269
bb 3.344351 0.019605 3.299733 0.010001
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 3.007754 0.035207 2.882488 0.020396
mm5 col N/A N/A N/A N/A

107

Table B.32 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 6X4 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.046412 0.039844 2.887525 0.02951
mm3 col 3.155118 0.026347 3.094892 0.025028
mm4 row 3.254924 0.020002 2.919847 0.083947
mm4 col 3.485395 0.03544 3.119913 0.016384
bb 3.237799 0.017807 3.184951 0.010161
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.835384 0.055644 2.716264 0.031296
mm5 col N/A N/A N/A N/A

Table B.33 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 4X6 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.345744 0.032026 3.275283 0.020191
mm3 col 3.138826 0.02008 2.957825 0.015805
mm4 row 3.676762 0.030009 3.314785 0.01393
mm4 col 3.440351 0.025458 3.120354 0.013242
bb 3.376627 0.021567 3.332475 0.021953
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 3.037468 0.052676 2.909494 0.041564

108

Table B.34 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 4X6 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.218744 0.032966 3.158233 0.034832
mm3 col 3.017851 0.018722 2.850026 0.011723
mm4 row 3.462503 0.018531 3.117569 0.012224
mm4 col 3.299377 0.049833 2.920159 0.079418
bb 3.229824 0.014196 3.19323 0.010022
cannon c N/A N/A N/A N/A
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg N/A N/A N/A N/A
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.894791 0.063406 2.772078 0.063643

Table B.35 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 10X3 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.514858 0.01367 3.325621 0.008122
mm3 col 3.581997 0.010092 3.487422 0.007226
mm4 row 2.870717 0.041385 2.520075 0.061059
mm4 col 3.658376 0.020346 3.39813 0.013543
bb 3.488661 0.014617 3.450064 0.013549
cannon c 3.40215 0.076734 2.647186 0.07138
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.318689 0.078509 2.60855 0.067382
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.510632 0.045239 2.427399 0.031088
mm5 col N/A N/A N/A N/A

109

Table B.36 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 10X3 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.500899 0.035638 3.260365 0.033977
mm3 col 3.533815 0.008569 3.445624 0.009695
mm4 row 2.777297 0.068878 2.404114 0.03959
mm4 col 3.612043 0.026721 3.342159 0.012045
bb 3.409142 0.015286 3.367717 0.014057
cannon c 3.157822 0.060354 2.452814 0.075366
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.160184 0.058897 2.438898 0.057878
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.335101 0.046256 2.27162 0.038967
mm5 col N/A N/A N/A N/A

Table B.37 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 3X10 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.757077 0.018986 3.671671 0.012994
mm3 col 3.536374 0.007454 3.361788 0.022038
mm4 row 3.801957 0.033509 3.547532 0.025433
mm4 col 3.011143 0.050239 2.663315 0.05965
bb 3.673503 0.016808 3.617787 0.010663
cannon c 3.478287 0.065792 2.75625 0.04395
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.473586 0.053429 2.791566 0.048048
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.650887 0.027816 2.560581 0.019219

110

Table B.38 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 3X10 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.587176 0.037604 3.489033 0.030261
mm3 col 3.468597 0.013486 3.225098 0.017994
mm4 row 3.622106 0.041971 3.365743 3.365743
mm4 col 2.756187 0.058557 2.388885 0.033558
bb 3.472019 3.472019 3.472019 0.009364
cannon c 3.309094 0.05307 2.612884 0.034711
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.328692 0.064763 2.609425 0.061198
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.341024 0.041335 2.280672 2.280672

Table B.39 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 15X2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.29837 0.051705 3.920812 3.920812
mm3 col 3.920812 0.018768 4.421479 0.015555
mm4 row 3.218701 0.078583 2.859497 0.046316
mm4 col 4.705823 0.019068 4.47726 0.013508
bb 4.472857 0.221796 4.439948 0.228622
cannon c 3.70359 0.061336 3.009066 0.058045
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.716928 0.052876 3.022234 0.051743
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.831777 0.047748 2.747272 0.035346
mm5 col N/A N/A N/A N/A

111

Table B.40 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 15X2 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.368235 0.043347 3.959199 0.045686
mm3 col 4.489708 0.021787 4.465323 0.020755
mm4 row 3.184423 0.135599 2.836097 0.126174
mm4 col 4.732523 4.732523 4.498371 4.498371
bb 4.374367 0.032356 4.326145 0.024157
cannon c 3.749523 0.099634 3.056503 0.09932
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.735474 0.081331 3.048426 0.085474
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 2.7764 0.057209 2.716735 0.051187
mm5 col N/A N/A N/A N/A

Table B.41 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 2X15 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.537496 0.018019 4.517639 0.015055
mm3 col 4.283722 0.023754 3.965412 0.017423
mm4 row 4.843161 0.020365 4.619049 0.022802
mm4 col 3.331805 0.087465 2.971812 0.05567
bb 4.539502 0.01738 4.474962 0.009298
cannon c 3.953567 0.083517 3.268627 0.079354
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.947715 0.097082 3.268721 0.075353
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.898471 2.898471 2.826505 0.07025

112

Table B.42 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 2X15 grid

Algorithm name avg max dev max avg min dev min
mm3 row 4.506144 0.018922 4.486898 0.019619
mm3 col 4.22307 0.0139 3.926386 0.031005
mm4 row 4.720304 0.020659 4.497234 0.014164
mm4 col 3.20567 0.108612 2.829852 0.09955
bb 4.440573 0.019602 4.395036 0.010968
cannon c 3.89975 0.061623 3.245693 0.06778
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.833345 0.052451 3.171206 0.050631
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.831264 0.041963 2.776026 0.033707

Table B.43 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 1X30 grid

Algorithm name avg max dev max avg min dev min
mm3 row 8.852186 0.096911 5.398056 0.029981
mm3 col 8.861799 0.043633 8.819533 0.019454
mm4 row 8.861799 0.043633 8.819533 0.019454
mm4 col 5.389181 0.044735 5.088852 0.040424
bb 8.838018 0.016282 8.803336 0.014641
cannon c 5.391435 0.017308 5.081901 0.017725
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 5.368639 0.018572 5.068666 0.018196
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 4.532408 0.099982 4.399734 0.097491

113

Table B.44 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 1X30 grid

Algorithm name avg max dev max avg min dev min
mm3 row 8.897819 0.044805 8.866161 0.041318
mm3 col 5.650716 0.089897 5.439874 0.026054
mm4 row 8.898598 0.036385 8.847434 0.015697
mm4 col 5.538136 0.056598 5.240385 0.051751
bb 8.814915 0.019445 8.782449 0.018156
cannon c 5.534651 0.075329 5.249275 0.066419
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 5.546148 0.046314 5.248003 0.047168
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 4.620335 0.144842 4.436738 0.133359

Table B.45 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 30x1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.776788 0.130887 5.305695 0.044333
mm3 col 8.772705 0.017406 8.739611 0.01666
mm4 row 5.223377 0.055667 4.892938 0.030422
mm4 col 8.749091 0.019171 8.716653 0.019039
bb 8.691961 0.01368 8.674242 0.014123
cannon c 5.186697 5.186697 4.87013 4.87013
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 5.190609 0.030463 4.88004 0.033113
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 4.4046 0.033113 4.263045 0.126637
mm5 col N/A N/A N/A N/A

114

Table B.46 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 30x1 grid

Algorithm name avg max dev max avg min dev min
mm3 row 5.999449 0.063811 5.689894 0.037963
mm3 col 8.926476 0.03225 8.88464 0.021936
mm4 row 5.648814 0.037875 5.344519 0.02944
mm4 col 8.897074 0.018547 8.859861 0.015481
bb 8.882847 0.021721 8.854683 0.022376
cannon c 5.68718 0.079879 5.373852 0.061781
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 5.699088 0.041086 5.378356 0.031133
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row 4.700531 0.222084 4.523871 0.201087
mm5 col N/A N/A N/A N/A

Table B.47 Stampede2: DGEMM Run-Time(seconds) 1kx1mx1k, on 5X6 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.411531 0.019788 3.103697 0.013191
mm3 col 2.68632 0.019168 2.550471 2.550471
mm4 row 3.105214 0.028839 2.770949 0.043365
mm4 col 2.919297 0.02479 2.602031 0.031491
bb 3.198404 0.012501 3.112315 0.012311
cannon c 3.28702 0.094339 2.520919 0.083752
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.219742 0.026986 2.509193 0.026738
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.922301 0.032711 2.838288 0.034756

115

Table B.48 Stampede2: X DGEMM Run-Time(seconds) 1kx1mx1k, on 5X6 grid

Algorithm name avg max dev max avg min dev min
mm3 row 3.2025 0.04168 2.901067 0.033822
mm3 col 2.532934 0.028159 2.402534 0.035942
mm4 row 2.827535 0.031552 2.543495 0.022738
mm4 col 2.757272 0.048684 2.428585 0.032532
bb 2.956305 0.015096 2.914598 0.010835
cannon c 3.016148 0.055457 2.320354 0.034354
cannon a N/A N/A N/A N/A
cannon b N/A N/A N/A N/A
cannon cg 3.055042 0.070141 2.3453 0.067721
cannon ag N/A N/A N/A N/A
cannon bg N/A N/A N/A N/A
summa N/A N/A N/A N/A
mm5 row N/A N/A N/A N/A
mm5 col 2.681195 0.020289 2.595165 0.022055

116

APPENDIX C

SUMMARY OF TEST PROGRAMS

117

Once the library is built, a couple of test programs are used to generate experimental data

files and to run the tests as described in the methodology. The gen1.c program is used to generate

the data file with all the required parameters as defined by the user. The program provides a prompt

and the user is able to to select from the available options as listed below:

• Select one or more algorithms from the polyalgorithms set.

• Input the mesh dimension: grid shape or size in the form of P×Q.

• Select the storage type: row major or column major.

• Input the dimensions of matrix A and B.

• Select the type of row and columns mapping: linear, scatter, block linear, block scatter,

virtual scatter, virtual block scatter.

• Input alpha and beta for scaling.

• Select the data type: all one, uniform or random.

The above steps generate the data file called data. We then run the main test program which uses

the generated data file. A simple test run with four processors can be: mpirun -np 4 ./main1 data.

118

VITA

Grace Nansamba was born in 1993 and raised in Kiwoko, Uganda. She graduated in 2015

from Makerere University with a Bachelor of Information Technology. She came to America

in 2018 to pursue a Master’s degree in Computer Science at the University of Tennessee at

Chattanooga; She worked as a graduate research assistant for Dr. Anthony Skjellum, focusing

on high performance computing. She also worked as a teaching Assistant at UTC, assisting the

instructor in the preparation of course materials and lecturing. She won a ChaTech (Chattanooga

Technology) Scholarship in 2019. Grace plans to advance her education further through a PhD.

program in Computational Science at the University of Tennessee at Chattanooga.

119

	Title
	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Problem Statement and Objectives
	1.4 Contributions
	1.5 Outline

	2 Background and Literature Review
	2.1 Polyalgorithms
	2.2 Fat-by-Thin Matrix Multiplication
	2.3 SUMMA
	2.4 Additional Literature Review
	2.5 Summary

	3 Methodology
	3.1 Design Methodology
	3.2 Design of Experiments
	3.3 Ideal Performance
	3.4 Implementation
	3.4.1 Description of the polyalgorithm library
	3.4.2 X_DGEMM algorithm
	3.4.3 Modern rank-k based SUMMA

	3.5 Summary

	4 PERFORMANCE EVALUATION
	4.1 Running on 117
	4.2 Running on Stampede2
	4.3 BB vs. rank-k SUMMA vs. rank-1 SUMMA
	4.4 COSMA vs. Polyalgorithms
	4.5 Comparisons
	4.6 Summary

	5 Conclusion and Future work
	5.1 Summary
	5.2 Future Work

	REFERENCES
	A Raw Data from 117 Cluster Runs
	B Raw Data from Stampede2 Runs
	C Summary of test programs
	VITA

