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ABSTRACT

In an effort to prove the effectiveness of a methodology that computes more efficiently

than traditional FEM methods, this paper details a method that allows for the accurate and

efficient solution of an elasticity problem using an hp-SEM code. The code can interchange

basis functions to allow us to compare Lagrange with Fekete basis functions, which have

the capability of high accuracy and efficiency. The code is applied to solve a traditional

elasticity problem with an analytical solution to judge the accuracy on a course mesh. This

gives us a method that provides greater accuracy than traditional FEM when comparing the

same mesh, and higher efficiency compared to Lagrange bases comparing matrix condition

numbers. This produces a flatter curve when varying p-order, which shows that higher

orders than the 9th-order methods tested here are easily achievable with this technique. The

flexibility of our code is shown by solving solutions with complex geometry and holes.
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CHAPTER 1

INTRODUCTION

The Finite Element Method (FEM) is used in engineering to solve problems of

complexities that are too complicated to be solved analytically. They work by approximating

their way toward an accurate solution, however this can come at a large cost to computational

overhead (time and computer capabilities) when using traditional FEM techniques. To

reduce overhead, the refinement of the mesh can be reduced which will subsequently reduce

the computational intensity. These traditional techniques, however, lose accuracy when

decreasing the meshing refinement (h-refinement). This can be overcome by increasing the

refinement of the basis functions which drive the approximation accuracy (p-refinement).

However, increasing the p-order on these traditional Lagrangian hp-FEM techniques increases

the complexity of the underlying matrix at extreme rates. By further modifying the

basis functions to spectral element method (SEM) polynomials, better matrix conditioning,

accuracy, and efficiency is gained, further increasing the complexity allowed with the same

resources.

It is a common theme in literature that SEM is generally only applied to problems

with smooth solutions, such as those found in fluid dynamics [2, 23, 38]. This paper details

a method to allow for accurate, efficient solution of SEM at a higher range of p-orders and

lower h-refinement. We will show the application of SEM to solid mechanics with elasticity

solutions. We achieve this using a traditional, but portable hp-SEM code, which allows us

to vary p-orders and also interchange basis functions. The ability to swap basis functions

allows us to compare traditional Lagrange basis functions with Fekete basis functions, which

have the capability of allowing for high p-order, low h-refinement SEM while maintaining
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accuracy and efficiency.

Overview

Here, we describe how the Fekete basis functions are derived and then later will 

be applied to the solution of a two-dimensional elasticity problem. Next, we give a 

background on the formulation of elasticity equations for spectral/finite element methods. 

Then, the equations of elasticity are solved using Finite Element formulation. Then, the 

implementation of the theory into code is detailed. We then apply this code to solve a 

traditional elasticity problem with an analytical solution to judge the accuracy of the solution 

on a course mesh, where the solution method is validated for a thin rectangular plate under 

tensile stress. There is a hole at the middle of the plate. The solution is then reevaluated 

using the Fekete spectral element method and compared to the results of the original solution 

using traditional techniques where there is good agreement with the solutions. We vary the 

p-order and compare to Lagrange FEM by comparing the matrix condition numbers. We 

also show the flexibility of our code by proving that it can also solve solutions with complex 

geometry and additional holes. Then, we discuss the results of the solution validation and 

provide a conclusion and recommendations for future research.

Literature Review

Many researchers have worked to improve upon the fundamental concepts of FEM 

to improve the efficiency of simulations to require less resources, so larger problems can be 

solved. To go about this, researchers have developed many novel solutions to the solution of 

finite element problems. Generally this is done by moving to high order elements in some form 

or fashion. High order elements involve increasing the p-order, also known as the polynomial 

order, of each element, basis, and shape functions, therefore increasing the number of both
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interior and boundary nodes per element, and for those elements on the boundary of an 

object, such boundary nodes should be curvilinear to match such a surface. Going to a 

high order element alone will not reduce the computation required, reducing the h-order, or 

elemental mesh refinement, should also be done to reduce the number of elements necessary 

to represent the geometry involved. Combining these methodologies create what we know as 

hp-FEM, however further technologies have been developed as well. Extending the hp-FEM 

technique by adopting spectral polynomials, we get SEM. In the following section, we will 

discuss the various background works of FEM, hp-FEM, SEM, and also other techniques 

and technologies related to these methodologies.

Regarding the necessity of curvilinear boundaries, Bassi and Rebay in their work 

discuss the application of FEM to the solution of the 2D Euler equations. Their technique 

uses a course unstructured triangular grid structure upon which they found that "the method 

is inaccurate at curved solid walls if a piecewise linear approximation of the geometry of 

the boundary is employed." To achieve proper levels of high order accuracy, a high order 

boundary representation is utilized with "a dramatic improvement in the accuracy of the 

numerical approximation"[3].

Poya, Sevilla, and Gil discuss a method for the a posteriori generation of high-order 

curvilinear meshes. This a posteriori method of mesh generation is what we use in our work, 

albeit in a basic implementation comparative to the method they describe. The general a 

posteriori mesh generation method works basically by generating an initial low order mesh, 

then applying a high order meshing routine over this by adding the boundary nodes, curving 

the boundary nodes according the the part geometry, and then applying the interior nodes 

within the element. Poya, et al, describe this method as advantageous over direct methods 

which generate high order meshes directly from the CAD model to take advantage of the 

maturity of low-order meshing algorithms. They expand on this by describing a technique
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which, after the generation of the initial low order mesh, applies all of the high order nodes to

the mesh, then deforms the boundary nodes of the mesh according to the CAD model. The

displacements necessary to deform the mesh boundaries are then used in a solid mechanics

technique to subsequently deform the interior nodes. This technique deforms the nodes such

that the interior nodes curve and achieve the proper distribution according to the geometry

and basis functions utilized [27]. Xie, et al, in their work on the generation of arbitrary order

curved meshes for use in 3D FEM, again use the a posteriori method for mesh generation.

One of their goals is to correctly eliminate and low quality or invalid elements made in

the curving process of the linear mesh. They utilize a similar linear elastic model, but

employ a Fekete nodal distribution in their algorithm, as we do in our technique, since they

"substantially reduce the interpolation error compared to equally-spaced nodal distributions

when very high-order approximations are considered, say p ≥ 4" [39].

Looking over the history of the further development of finite element style methods,

we find several novel approaches to the solution of these problems. One of which is the

Virtual Element Method (VEM). According to Beirão da Veiga, Brezzi, and Marini, VEM

is an FEM based solution that starts off with much of the same parts as FEM, a mesh with

numerous elements, basis functions, quadratures, etc. with some additional functions and

selected such that the local stiffness matrices are able to be solved without the solution of

the local PDEs. To explain the term Virtual Element Method, they say, "The label virtual

depends on the fact that some of the basis functions are not explicitly known." The authors,

in their paper "Virtual Elements for Linear Elasticity Problems", then go on to describe the

application of VEM to linear elasticity and provide some test cases with their results [4].

Artioli, Beirão da Veiga, and Dassi, then go on to expand VEM to curvilinear

elements, as we see in high order FEM methods. The authors explain that the adaptation

of VEM to curvilinear elements is straightforward, describing the modification as, "By

changing the definition of the edge-wise space, the method is able to accommodate for
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general boundaries described by a given parametrization (for instance obtained by CAD)."

In code, this is only a change to the quadrature rules. This is advantageous over isogeometric

analysis (IGA) and isoparametric FEM requiring no further processing (parameterization or

positioning) to adapt the curvilinear elements to the analysis framework. After presenting

the theory, the authors describe the test cases which involved testing multiple quadrature

rules, as well as several application based problems and results that show good convergence

with only minimal extra computational expense over the standard VEM method [1].

Another concept for the solution of FEM problems is the Finite Cell Method (FCM).

FCM is a hybridization of the fictitious domain method and high order FEM, in which the

domain is generalized in such a form that a structured mesh can be generated that greatly

simplifies the meshing process over traditional techniques. The use of a structured mesh

is significantly different from the unstructured techniques we use. It is less flexible than

an unstructured mesh and can be harder to generate, but that comes with the advantages

of generally easier algorithms when it comes to computation. The implementation of the

structured mesh in FCM is highly rasterized compared to the curvilinear meshes we use as

well, which does not conform to the boundary exactly due to the standard element shape

used. This gives generally less accuracy at the boundary comparatively unless significant

refinement is applied at the boundary. Düster, Parvizian, Yang, and Rank describe a method

that applies FCM to 3D solid mechanics. After describing and deriving the FCM process,

the authors showcase several examples of the application of FCM in solid mechanics. Of

particular note is the thick wall plate with hole example, which is similar to the example

we use for validating our results. They perform multiple tests from p = 1...8 to which they

see good agreement with the analytical solution. They showcase another example applying

FCM to Computed Tomography (CT) scan data, which shows the power of their voxel based

meshing routine on highly complex geometries which they compared with the commercial

software Abaqus with good agreement. These examples showcased the flexibility of this
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method and the versatility of its applications [8]. Schillinger, Kollmannsberger, Mundani,

and Rank then extend this method to nonlinear FCM, which to this point have only been

applied to linear elasticity problems. They point out that the traditional methods of p-

FCM, as previously reviewed, do not perform well in nonlinear analyses, generally due

to the rasterized boundaries causing oscillations. To get around this, the authors adapt

B-splines to the boundaries to reduce the oscillatory effects. The use of B-splines still

maintains the primary advantage of FCM, the ease of meshing, but adds generally curvilinear

boundaries and sets the method up for greater success on the solution of nonlinear problems

[30]. Schillinger, Cai, Mundani, and Rank then take FCM further into nonlinear analysis by

applying T-splines in place of B-splines and exhibit its application with the modal analysis of

a ship’s propeller and with stress analysis of an open cell foam structure. They prove that an

increase in p-order "improves the reproduction of the geometrically nonlinear behavior of the

foam." These examples well exhibit the flexibility of this technology for complex geometry

[29].

Isogeometric Analysis (IGA) is another such technique for the solution of FE-like

problems. IGA modifies FEM by utilizing the same basis functions for both geometry

and analysis, which gives exact representation of the geometry instead of the approximated

representation seen in classical FEM. Rank, et al, adapted IGA to FCM to create a hybrid

technique. When adapting CAD models to IGA, not all NURBS (Non-Uniform Rational

B-Splines) surfaces adapt well to the IGA approach, being that, while there are multiple

ways of constructing a geometry in CAD, not all methods are adaptable and parts should

be modeled to be aware of the analysis technique for successful IGA. But as previously

discussed, FCM is adaptable to nearly any geometry, so it can work well as an interface to

work with the IGA approach by creating a fictitious boundary that IGA can then represent

easily. The authors give some examples demonstrating this technique and state that the
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expansion of the technique to other than Neumann boundary conditions will be the subject

of future research in this topic [28].

Looking further at IGA purely, Hughes, Cottrell, and Bazilevs explain the method

as it was developed. They explain it as having commonality with both FEM and meshless

methods, but it’s primary goal is to be mostly geometrically based so as to retain exactness

with the geometry no matter the density of the mesh. As such, it is intended to tie closely

with CAD. The authors claim that roughly 80% of the time it takes for analysis is involved

in the mesh creation process, as such, creating a technique that simplifies this process was

an important necessity for performing analysis in industries where CAD changes quicker

than meshes can be created. Adding to this, the approximation in the meshes can be less

than perfect, which can compound into accuracy problems in the analysis. To achieve this

goal and get around the deficiencies of traditional techniques, the authors developed IGA to

utilize NURBS to match the CAD geometry and then construct a course mesh of NURBS

based elements from that. The authors then detail the derivation of NURBS and the analysis

framework built upon it from there, before showcasing the application of IGA, including the

example with a hole in thin plate, like we use in our technique detailed in this paper. They

tested this solution through multiple levels and techniques of refinement to find the best

strategy for IGA refinement, which they determine to be k-refinement, a unique parameter

for IGA which refers to the elevation of curve order coupled with insertion of unique knot

value (knots being the analog for mesh nodes/edges in classical FEM), therefore increasing

the continuity of the functions used. They also demonstrated some examples showing how

this technique can be applied for fluid analysis as well, showcasing the versatility of this

technique [16].

As a segue into the advanced FEM and Spectral Element Methods (SEM) that we

will be discussing for the remainder of this text, we review that authors Gervasio, Dedè,

Chanon, and Quarteroni have carried out a comparison of IGA and SEM in their article, A
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Computational Comparison Between Isogeometric Analysis and Spectral Element Methods:

Accuracy and Spectral Properties. They explain that these methods "can be seen as two

different paradigms for high order approximation of partial differential equations," although

the intent of IGA was not for that. It can be used as such with the use of specific basis

functions. The authors explain further that both can be applied to the Galerkin method and

in both "the induced approximation error decays more than algebraically fast with respect

to the local polynomial degree." After performing extensive testing of the two methods,

the authors conclude that although the two methods are comparable when examining their

accuracy, the computational costs are much different, matrix assembly for SEM required

much less resources than IGA when comparing CPU time and memory. When examining

the condition number of the matrices over p, SEM again outperforms IGA, with algebraic

versus exponential growth respectively [11]. It can be seen from this that the utilization of

SEM over IGA, at least from a computational perspective, has advantages.

Explaining further FEM and SEM, Babuška explains that "there are three versions

of the finite element method," h, p, and hp. h-FEM is the classical approach to FEM which

uses mesh refinement alone to achieve accuracy. p-FEM uses a fixed mesh and refines the

p-order of the mesh to achieve accuracy. hp-FEM is the combination thereof. Regarding

the implementation, the author explains that h- and hp-FEM gives great flexibility in the

change of degrees of the elements and that this has to be implemented in the program’s

architecture, generally through the use of hierarchical shape functions. p-FEM, with its

larger elements also requires attention to the curved boundaries. Babuška suggests that it

is advantageous to describe the boundary exactly using polynomials and not approximated,

and for this reason he states that "the architecture of the p version finite element program has

essential differences from the h version." Judging the computational cost and complexity of

the methods, it can be seen in his results that increasing p increases the computational time,

but after about p = 4, it increases somewhat linearly. The author concludes from this that
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"the conventional h version with p = 1, 2 will practically never lead to an accuracy of order of

1 percent for any reasonable computational effort if the problem is not very simple." Speaking

to how robust this method is, he states that better accuracy is achieved with the same mesh

by increasing the order p. Babuška then shares the industrial experience with p- and hp-

FEM. He explains that in industry, users are generally more concerned with the human time

factor than computational time, but overall time elasped to give a correct solution is still

important as deadlines can be critical in industrial settings. In addition to this, the author

claims that easy learning, flexibility of mesh design, and rapid convergence and flexibility are

important factors for industry for such a program. The author also addresses the similarity of

p- and hp-FEM to spectral methods (SEM). He defines SEM as "expanding the solution of the

problem in high order Fourier or polynomial series, the coefficients of which are determined

by weighted residual projections." He says that the use of polynomial approximation in SEM

closely matches that of p-FEM. He notes that SEM (at the time of publication) had mostly

only been applied to fluids and problems with smooth solutions [2]. Later in this thesis, it

will be demonstrated how SEM can be applied to solid mechanics problems with complex

geometry, far from the smooth type solutions Babuška describes.

Netz, Düster, and Hartmann provide a comparison between high order and low order

mixed FEM formulations. They compare two trains of thought when it comes to solving

problems. They claim there is an "h-community", who uses linear mixed element formulations

to solve small strain problems, and a "p-FEM community", who utilizes fewer elements

with increased polynomial order and employ "Jacobi polynomial-based hierarchical shape

functions" for these same problems. The authors compare the methods describing that error

is removed much faster in the p-FEM approach, but this approach comparatively has a

much higher amount of implementation due to the coupling to neighboring elements. They

conclude their comparison by describing the results of their research, stating for finite strain

hyperelasticity that traditional linear methods perform poorly converging to the correct
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results. Linear mixed elements improve upon this, but only for stresses on problems that are

bending dominated. They have early failure when considering large deformations. p-FEM

overcomes these difficulties for these situations and are generally applicable to any smooth

constitutive model [22].

Expanding on the use of high order FEM and SEM in solid mechanics, Bittencourt,

Vazquez, and Nogueira describe a method of applying high order FEM to nonlinear structural

elastic problems. In their paper, the authors compare two types of high order bases, the

Sherwin-Karniadakis and the fully tensorial bases for triangles (which the authors refer as

Bittencourt basis), by their condition numbers, then apply the Bittencourt basis to nonlinear

elasticity and compares that to an ANSYS solution. The high order mesh uses 23 p = 5

elements which showed superior rates of convergence compared to the low order ANSYS

mesh, which uses 303 elements. The two solutions had good agreement, so the authors

concluded that the high order technique is valid for use in nonlinear elasticity [5].

Tews and Rachowicz explore an automatic method for hp-FEM to generate adaptive

meshing for 3D linear elasticity. The method they propose is intended to reduce the meshing

process to just a one-click approach of applying the CAD model and having a solution that

converges to zero approximation error. The authors discuss that this is generally possible

with hp-FEM, but there is large amounts of memory required to process the high order

elements. The authors also conclude that the generation of coarse elements for complex

geometry may not be easy [36].

Of high interest in the realm of the application hp methods is the question of how

high order is actually needed for the efficient and accurate solution of FEM/SEM problems.

Mitchell explains that high order FEM is more efficient than low order FEM for the solution of

partial differential equations (PDEs), but how high is measureably beneficial when examining

accuracy versus computational resources? He explores three different problems with three

different techniques each, smooth solutions, steep gradients, and problems with singularities
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and applies h-, p-, and hp-FEM techniques to determine which has advantages for each type

of problem and to what degree of refinement is necessary. The author explains that at lower

orders, increasing the order drastically changes the convergence rates, but when the order

is high, increasing the order sees much lower change in convergence rates. Increasing the

order of FEM also increases the computational requirements by introducing higher degree

basis functions, high order quadrature, and denser global matrix. Mitchell concludes that

traditional h-FEM is suitable enough for low accuracy requirements near 1% relative error,

the singular problems had no need for higher than p = 2 and nonsingular problems only

beneficial up to p = 4. He continues that for high accuracy, higher orders are justified, but

only up to roughly p = 10, or p = 8 when looking solely at optimal computational time,

except in cases of smooth problems, where p-refinement is most effective [21]. In this thesis,

we examine p-refinement the most, and only have demonstrated up to p = 9, though the

method shows capabilities of much higher p, without significant resource requirements due

to the use of specular elements and the Fekete basis functions which was not examined in

this article.

Melenk, Gerdes, and Schwab describe hp-FEM as flexible in the combination of h-

and p-refinement, which makes it superior to h- and p-FEM individually as well as SEM,

but it is perceived as computationally expensive due to stiffness matrix generation and

slow solution algorithms. They go on to state that h-FEM has simple stiffness matrix

generation and efficient solvers available and that SEM has a reputation of speed due to

several techniques including sum factorization, preconditioning, and weighted collocation

in place of quadrature. To combat this perception, the authors developed a fast stiffness

matrix generation technique using a hybridization of hp-FEM and SEM, which they call hp-

spectral Galerkin FEM. This method utilizes decoupled quadrature rules from the elemental

p-order, localized mesh refinement using hanging nodes, parallelization, decoupled geometric

representation from the finite element space (which allows exact geometric representation)
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and hp-isoparametric elements. From SEM, they integrate to hp-FEM the use of sum

factorization and the adaptation of the shape functions to the quadrature rule. They are

able to prove that these efforts show a speed up from orders of p = 5 through p = 10. This

comes at the expense of worse matrix condition numbers compared to SEM alone, but with

comparable CPU times [20]. Overall this generates a technique similar to that which we use,

though in this thesis, we demonstrate its application to elasticity.

So far in describing the different methods used to further develop traditional FEM

techniques we have looked at VEM, FCM, IGA, and high order FEM techniques. We will

finish this discussion by focusing on SEM, which is the predominant technology we utilize

in this thesis. Pavarino, Zampieri, Pasquetti, and Rapetti explain that Spectral and hp-

FEM are several of the most successful high order methods used for the solution of PDEs.

The authors note that generally SEM is using quadrilateral element structured meshes, but

researchers have made using triangular element unstructured meshes feasible. Like us, they

are using Fekete basis functions coupled with triangular elements on the unstructured meshes

for analysis. The authors explain that the discrete matrices produced by these methods

generally have poor conditioning which makes the implementation of efficient iterative solvers

difficult. To get around this difficulty, the authors have developed preconditioners that give

generous overlap between domains. This gives convergence rates that are independent of

the number of subdomains and, because of the overlap, the p-order. This comes at the cost

of being limited to planar regular structured meshes [25]. Pasquetti and Rapetti have also

analyzed the differences in SEM between the use of triangular and quadrilateral meshes.

They state that the primary advantage of SEM is the exponential convergence of smooth

solutions, but that SEM doesn’t handle complex geometries well. To combat this, there have

been numerous techniques to work around this drawback. One being the use of quadrilateral

elements. These elements, however, still cannot handle the highly complex geometry, so the

use of triangles are necessary in these situations. Past research had attempted to transform
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the quadrangle technique for triangles by using coordinate shifting or mesh restrictions,

but the author explains their use of Koornwinder–Dubiner polynomials and Fekete points

to implement triangles efficiently. The authors perform a variety of tests to check the

convergence capabilities of triangle based SEM. They show similar performance (though with

slightly higher condition numbers) compared with quadrilateral based SEM. The authors

conclude that although triangle based SEM has better capabilities of handling complex

geometry, their usage of Fekete points gives several drawbacks including: a lack of Gauss

quadrature rules and the computation of derivatives is such that it is more computationally

expensive [23]. Pasquetti and Rapetti continue their research of unstructured SEM meshes

with Fekete based elements with an analysis of four different adaptations to this routine.

They propose TSEM-1 through TSEM-4. TSEM-1 they describe as the general Fekete

triangular SEM technique with Lagrange polynomials. TSEM-2 extends TSEM-1 using a

semi-analytical integration rule. TSEM-3 uses a Gauss point integration rule. TSEM-4 is

TSEM-3 with mass lumping. Their testing shows that TSEM-1 and TSEM-4 do not yield

satisfactory results in regards to the collocation method with a sample PDE with Dirichlet

boundary conditions applied, but TSEM-2 and TSEM-3 do. TSEM-2 however had a longer

computational time. Continuing their study with TSEM-3, they determine the method has

similar conditioning behavior as hp-FEM. The authors conclude that this method with Fekete

approximation points and Gauss quadrature points with derivatives gives a computational

efficiency not usually seen with SEM [24].

Taylor and Wingate continue with the use of Fekete triangle based SEM. Again,

the authors explain that traditional SEM uses quadrilateral elements. They tend to give

a diagonal mass matrix, which allows for computational efficiency. They explain that the

diagonal mass matrix has only been achievable on structured quadrilateral meshes due to the

Gauss-like quadrature rules which are believed to not exist with triangles. To get around this

deficiency, the authors propose a technique for diagonal mass matrix SEM based on Fekete
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points. They conclude with a comparison of the Fekete method to the Dubiner method, and

while the Fekete does not have as much accuracy, it converges at the same rate with lower

computational cost due to not having the need of inverting the mass matrix [35].

Konovalov, Vershinin, Zingerman, and Levin discuss the implementation of SEM

into a computer aided engineering (CAE) system for the solution of elasticity problems on

curvilinear meshes. The authors detail that SEM is advantageous over FEM due to its

ability to maintain high approximation accuracy with small numbers of elements. SEM has

no need to rebuild or refine meshes to check convergence either since the mesh can remain

in its initial state by changing the order of the elements. They describe that its efficiency

in parallelization makes it attractive for use in industry, describing a case where SEM was

applied to a complex solution with quick solution by GPU computations. The authors claim

that SEM’s adoption in industry is hindered by lack of proper mesh generation. For 3D,

SEM was initially developed for hexahedral elements (quadrilaterals in 2D), but meshing

requirements of industrial problems with more complex geometry require a mixture of both

hexahedral and tetrahedral elements (triangular elements in 2D). This is known as a mixed

element formulation, which is what the authors implement for SEM in this article. The

authors detail that implementing elasticity theory to SEM is much like that of FEM, "such

as discretization of equilibrium equations in the integral form; selection of quadrature for

calculation of integrals; building of local matrices of stiffness, mass, and damping for each

element; assembling global matrices of stiffness, mass, and damping." They go on to state that

most mesh generation tools, however, are only capable for generating first or second order

meshes, which requires post processing to increase the order for SEM. One advancement that

they make is the implementation of a fast mesh connectivity algorithm for SEM, which uses

the initial low order connectivity graph to generate the high order version more efficiently.

Their results show that mesh convergence is much faster when compared to FEM, and
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application to an elasticity problem shows only an error of 1% with SEM compared to 10%

with first order FEM and 2% for second order FEM [18].

Vos, Sherwin, and Kirby describe methods of determining the optimal order of high

order SEM to apply for greatest efficiency in terms of computational cost. The authors

describe several different communities of thought in the FEM community. The traditional

h-FEM community, who may consider up to 4th polynomial order as high order. The

spectral/hp community, who regularly use orders as high as 15, and global spectral method

community who may consider 16th order to be low. Besides the definition of high versus

low order, these communities have different approaches to the efficient solution of problems;

the h-community favoring sparse matrix techniques and the spectral community favoring

elemental operators versus global. And the global spectral community "often make use of the

tensor-product approximations where products of one-dimensional rules for integration and

differentiation can be applied." The authors note that these techniques often perform poorly

when used outside their typical environments, strengthening the perceived incompatibility

between the techniques. The authors look into each of these techniques to explore which are

the most versatile to move up and down orders of p and which are most optimal for order

p discretization regarding CPU times. After analyzing the different methods, the authors

conclude that moving between orders of p from 1 to 15, it is most optimal to switch between

three efficiency strategies. For low orders, use of global matrices is most efficient. For high

orders, use of sum factorization. For the middle ground between low and high order, local

matrix evaluation is most efficient. The exact boundary between these points, however, is

dependent on element shape and computers used. Evaluating the most optimal run times,

the authors concluded that a p = 6 solution on smooth problem provided the minimum

CPU time with a 10% error. For non-smooth, the authors determined that "p = 5 was

optimal, thereby promoting the use of high-order expansions for problems with corner-type

singularities, at least when using a radical mesh distribution” [38].
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CHAPTER 2

MATH FORMULATION

In this chapter, we will discuss the formulation and proof of the Fekete spectral

element method and the application of this method to the solution of elasticity problems.

The following theory on the Fekete spectral element methods and derivation was written by

Dr. Arash Ghasemi and is included here for the theory to be self contained [14, 13].

Derivation of d-dimensional spectral basis functions over an arbitrary convex/concave hull

The space of d-variate polynomials obtained by product of one-dimensional monomi-

als is represented by

fQ =
d∏
i=1

xi
di , di = 0, . . . , (ni − 1), (2.1)

which has the dimension N = ∏d
i=1 ni defined in Ω = ∏d

i=1 Ri ⊂ Rd where dimRi = ni. The

constrained subspace of Eq. (2.1) for ni = n is the space of polynomials with the maximum

degree (n-1) denoted by

fP =
d∏
i=1

xi
di ,

d∑
k=1

dk ≤ (n− 1), (2.2)

where N = dim(fP ) = 1/d!∏d
k=1(n + k − 1). For sufficiently large number of interpolation

points in Ω

X = {x̂i} ⊂ Ω, 1 ≤ i ≤M, M � N, (2.3)

the transpose of the rectangular Vandermonde matrix can be constructed columnwise by

using f defined in either in Eq. (2.1) or Eq. (2.2) as follows

VT = [[f(x̂1)], [f(x̂2)], . . . , [f(x̂M)]] ∈ RN×M . (2.4)
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Definition 1. The large set of points X = {x̂i=1...M} in Eq. (2.3) are the candidate points.

The approximate Fekete points XF = {x̂i=1...N} are selected amongst these points such that

they mimic the Gauss-Lobatto quadrature points inside Ω. For more details on construction

of these points, refer to § 5.

We are interested to find X such that the Lagrange polynomials constructed by

(x̂i) = δij, 1 ≤ i, j ≤ N, x̂i ∈ X, (2.5)

have small Lebesgue constant defined by the operator norm of the d-dimensional interpola-

tion

ΛN(T ) = max
N∑
i=1
|ψi(x)|

)
, x ∈ Ω, (2.6)

which determines an upperbound for the interpolation error

‖u− I(u)‖ ≤ (1 + ΛN(T )) ‖u− p∗‖ (2.7)

where ‖u−I(u)‖ is the norm of the difference between the exact value of u and an interpolated

value I(u) given as

I(u)(x) =
N∑
i=1

i(x)ui, (2.8)

at any point x ∈ Ω and p∗ is the optimum interpolant, yielding the best approximation

of u at x. The existence of a polynomial interpolant for u is guaranteed by Weierstrass

approximation theorem∗ and it can be shown that the optimal interpolant also exists and

is unique†. For one-dimensional equally distributed points, which forms popular FEM
∗One of many proofs to this theorem can be obtained considering u as the initial condition u0 for

multidimensional diffusion ∂tu = ∇2u. Since the time dependent solution is obtained by Gaussian
convolution integral of initial function and is analytic, then as t→ 0, the initial function can be represented
to arbitrary term (polynomial) in the Taylor series of the convolution integral. Please see Chapter 6 of [37]
for more details and references. Also please see Theo. (2.7) for a new proof using orthonormal hull basis
functions.

†Please see Theorem 10.1 of [37] for proof.
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Lagrange basis, it is possible to show that the Lebesgue constant grows exponentially as

ΛN(T ) ∼ 2N+1/ (eN logN) [32]. Therefore, according to Eq. (2.7), for very high-order

approximations, these points result in significant deviation from the optimal result. It is

possible and practical to decrease Lebesgue constant by choosing Chebyshev points (with

ΛN(T ) < 2
π

log(N+1)+1). However, in higher dimensions, Chebyshev points are determined

by Kronecker product of 1D distribution and hence Ω must be limited to quadrilateral and

hexagonal shapes. A quad/hex tessellation of the domain significantly violates optimum

partitioning of a complex shape domain and hence extra elements and hence extra DOF will

be induced which is not desirable.

Yet there is still another elegant approach to decrease the Lebesgue constant by

selecting a set of quadrature points as the interpolation points in Eq. (2.3) [34]. In this

method, which is applicable to arbitrarily-shaped domains, the best linear approximation

for the jth moment

mj =
∫

Ω
fj(x)dµ, (2.9)

can be obtained by solving the following underdetermined system

∑
j

wjfi (x̂j) = VTw = mi, 1 ≤ i ≤ N, 1 ≤ j ≤M. (2.10)

or simply

VTw = m. (2.11)

The moments in Eq. (2.9) can be obtained analytically for simple geometries or

they can be computed using various methods including sub-triangulation and composite

integration, the polygonal Gauss-like method [33] or an efficient method introduced below.

Introducing

Fk = 1
d

d∏
i=1

xi
(di+δik)

di + δik
, (2.12)
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satisfies ∇.F = ∂Fk/∂xk = f where variants f are given in (2.1) and (2.2). Therefore

for the volume Ω enclosed by boundary ∂Ω we have

m =
∫

Ω
fdΩ =

∫
∂Ω
Fkn̂kd∂Ω ≈

∑
∆Ωl

Jl
∑
m

∑
k

Fk (x̃lm) n̂klWlm, (2.13)

where it reduces the computational complexity of moment calculations to one

dimension smaller and can be easily computed in a computer program.

Iterative Process Reduced Using Singular Value Decomposition

An iterative procedure similar to the QR-based method by Sommariva, et al [34], can

be written using Singular Value Decomposition of the Vandermonde matrix as follows.

Data: Vk=0 is the Vandermode matrix defined in Eq.(2.4)
Result: Matrix Ps and well-conditioned Vandermonde matrix Vs+1

1 for k = 0 . . . s do
2 Vk = UkSkV

T
k , Note : Economy size SVD ;

3 Pk = VkS
−1
k ;

4 Vk+1 = VkPk Note : Vk+1 = Uk so is well-conditioned since Uk is unitary ;
5 end
Algorithm 1: The process of reducing the condition number of the Vandermonde
matrix using only one iteration s = 0 which results in an explicit relation for the
approximation of Fekete points in Eq. (2.16)

where the initially ill-conditioned V is forced to mimic the orthonormal matrix Uk

by multiplication with Pk = inv(SkV T
k ). Note that the inverse is as costly as a matrix

multiplication, since Sk is diagonal and Vk is orthonormal as well, hence Pk is readily known.

In fact, this algorithm can be considered efficient if only one iteration is needed to reduce

the condition number of V . For a moment, let us consider the case s = 0

V1 = V0P0 = VV S−1 (2.14)

19



where V0 is the unaltered Vandermonde matrix in Eq.(2.11) and V and S are the

right unitary matrix and the diagonal singular value matrix of the SVD of the unaltered

Vandermonde matrix. The experience shows that the above system is well-conditioned and

in contrast to QR-based algorithm where at least two iterations are necessary, Eq. (2.14)

generates an explicit relation [14].

Left multiplying Eq. (2.11) with P T yields

P TVTw = P Tm = µ (2.15)

But from Eq. (2.14), P TVT = VT1 which is very well-conditioned since V1 = U1

according to line 4 in Alg. (1) and hence its singular values are all close to unity. ‡ Therefore,

Eq. (2.15) yields

VT1 w = µ (2.16)

which is a very tall underdetermined N×M,M � N system of equations. Equations

(2.16) should be solved using a greedy algorithm that senses non-zero weights w of the

quadrature points. The final result is VT1 (w 6= 0) = µ or

UT
0 w = µ, if w 6= 0, (2.17)

where U0 is the left unitary matrix of the SVD of the original Vandermonde matrix V0.

Solving Eq. (2.17) yields a set of weights that are mostly positive and all nonzero. Such a

solution algorithm can be obtained by performing a QR factorization of V1 and performing

appropriate sorting to find the first N strong columns among M initial columns. The
‡We later use this property in Eq. (2.45) to show that the Lebesgue constant remains very small in this

case and very accurate interpolation can be achieved. We will also show that such interpolation if used in the
framework of DG spectral elements, leads to the superior accuracy compared to conventional FEM Lagrange
basis functions of the same order of accuracy since the Lebesgue constant (and hence interpolation error) is
smaller.
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Figure 2.1 The generation of the candidate points using the fill pattern method

quadrature points x̂ corresponding to these columns are then selected as the interpolation

points. Since these are good estimate of Fekete points they are called Approximate

Fekete points [34]. Another method used in this work to solve Eq. (2.16) is the method

of Orthogonal Matching Pursuit (OMP) [19, 6], which has the advantage that no QR

factorization is needed.

Generating candidate points and procedures to find approximate Fekete points

In order to find approximate Fekete points using Eq. (2.17), in the first step, the

given arbitrary hull needs to be filled with a sufficiently dense set of candidate points. There

are two methods in order to achieve this goal as described below.

1. Fill pattern method is a fast way to fill an arbitrary polyhedral subset of Rd with a large

set of equally distance points inside the bounding box of the polyhedral. Then, each

point is explicitly checked using polygonal point inclusion test [9] to see if it is inside

the polyhedral and points that are outside are eliminated form the set. The result of

this algorithm is very close to a uniform distribution except near the boundaries of the

polyhedral where a gap is generated (See Figure 2.1).
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(a) itr = 1 (b) itr = 2 (c) itr = 8 (d) itr = 32

Figure 2.2 The generation of the candidate points using a pseudo time iterative gravitational
method

2. The bounding box of the polyhedral is first filled with a random set of points. Then a

gravitational equilibrium approach with an artificial time dependency algorithm similar

to [26] is used to smoothen the distribution of these points. This algorithm is called

the iterative gravitational method and can resolve the issues of the fill pattern method

in generating uniform distribution near the boundaries. An example of this iterative

procedure is illustrated in Figure 2.2.

Once the candidate points are generated, we are ready to perform SVD Alg. (1) and

solve for Eq. (2.17) to find the approximate Fekete points. The result of this process is shown

in Figure 2.3. As seen, in the first step, candidate points are generated using the fill pattern

method in Figure 2.3-a. Subsequently, the approximate Fekete points are selected from this

point set by solving Eq. (2.17). The selected points demonstrate stretching near boundaries

which is a typical sign of Fekete-like points distribution. It should be noted that the selected

points are not uniformly symmetric and the pattern has small deviations. However, these

points generate very accurate interpolations as will be discussed in the following sections

(see Figure 2.11).
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(a) Candidate Points (b) Approximate Fekete Points

Figure 2.3 The procedure of generating candidate points (a) and selecting approximate
Fekete points (b) on a concave hull

Numerical comparison between SVD and QR approaches

The QR algorithm of Sommariva, et al [34], needs at least two iterations to yield

well-conditioned approximation of Fekete points. This is mentioned as the rule of “twice

is enough”, see Ref. [15]. However SVD based Alg. (1) only needs one iteration. In other

words, the SVD algorithm results in a closed form relation Eq.(2.16) for approximation of

the Fekete points. In order to validate this, two-dimensional function u = cos(3πx) cos(3πy)

is reconstructed on Ω = [−1, 1] × [−1, 1] by evaluating the vandermonde matrix on two

different set of points obtained by SVD and QR algorithms. In both cases, the function is

reconstructed using nodal basis obtained by using Eq. (2.32). The number of iterations is

fixed to s = 1 for both methods.
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Figure 2.4 The comparison between SVD and QR approaches to find approximate Fekete
points using only one iteration. Left) The interpolation error versus polynomial
degree, Right) Various measures

As shown in Figure 2.4, with increasing the polynomial order, the Lebesgue constant

of the QR-based algorithm increases rapidly and the reconstructed function exhibits

unacceptable error. Interestingly, in contrast with QR-based method, the sum of the

absolute values of the weights of the quadratures, i.e. wi, obtained using SVD algorithm is

monotonically decreasing. For both methods, ∑iwi ≈ 4, which shows that the QR-based

algorithm generates negative weights with increased polynomial degree.

Nodal Spectral Hull Basis Functions

A polynomial of degree at most N in d-dimensional space can be represented by

j (x1, x2, . . . , xd) =
[
1, x1, x

2
1, . . . , x2, x

2
2, . . . , xd, x

2
d, . . .

]
(1,N)︸ ︷︷ ︸

either fP orfQ

[a]j(N,1)
= faj. (2.18)

When evaluated at selected interpolation points x̂i obtained using either the QR algo-

rithm [34] or the SVD Alg. (1), for N-possible variation of constant vector a it yields
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[ψ1, ψ2, . . . , ψN ](1,N) =
[
[f(x̂i)](1,N)[a1](N,1), [f(x̂i)](1,N)[a2](N,1), . . . , [f(x̂i)](1,N)[aN ](N,1)

]
= [f(x̂i)](1,N)

[
[a1](N,1), [a2](N,1), . . . , [aN ](N,1)

]
= [f(x̂i)](1,N)[a](N,N).(2.19)

Evaluating Eq. (2.19) at all XF = x̂i, i = 1 . . . N yields the basis functions

Ψ = [[ψ1], [ψ2], . . . , [ψN ]](N,N) =



[f(x̂1)](1,N)

[f(x̂2)](1,N)
...

[f(x̂N)](1,N)


(N,N)

[a](N,N). (2.20)

By using the definition of the Vandermonde matrix, Eq. (2.20) can be represented in

the following compact form.

Ψ = Va, (2.21)

where V is a N ×N subsection of the tall M ×N Vandermonde matrix defined in Eq.(2.4)

such that V (x̂i∀wi=1...N 6= 0) according to the solution of Eq.(2.16). In Eq. (2.21), the

numerical value of the jth basis function evaluated at point x̂i is located at entry Ψ(i, j).

Applying Eq. (2.5) to Eq. (2.21) yields

Va = I, (2.22)

and hence, the coefficients of the nodal basis functions can be determined by inverting the

Vandermonde matrix. Here we introduce a new nodal/modal basis function by replacing the

Vandermonde matrix in Eq. (2.22) with a complete singular value decomposition
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USV Ta = I, (2.23)

which yields the unknown coefficients of the nodal Approximate Fekete Basis (AFB) as

a = V S−1 UT . (2.24)

The coefficient matrix a can be calculated once and tabulated for arbitrary order of

approximation and variety of hull shapes. Then, any point x ∈ Ω, the value of the jth basis

function can be efficiently calculated with O(N) operations by evaluating fP or fQ at that

point and performing the vector product in Eq.(2.18). In order to obtain the modal form of

AFB, let us substitute Eq. (2.24) into Eq. (2.19) to obtain

ψj = [ψ1, ψ2, . . . , ψN ](1,N) = [f(x)](1,N)V S−1 UT (2.25)

where x ∈ Ω is not necessarily an interpolation point. An alternative evaluation of the nodal

basis functions is to start with Eq. (2.22) and then define â such that

P0â = a (2.26)

where P0 is defined in the Alg. (1) for P = Pk=0. Substituting Eq.(2.26) in Eq. (2.22) yields

VP0â = V0P0â = I, (2.27)

Using Eq.(2.14), Eq. (2.27) can be written as

V1â = I, (2.28)
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which is already calculated and has better condition number compared to V (x̂i∀wi=1...N 6= 0)

because it is forced to mimic the unitary matrix U according to line (4) in Alg. (1). Now,

replacing V1 with its SVD yields

U1S1V
T

1 â = I, (2.29)

or

â = V1S
−1
1 UT

1 . (2.30)

Substituting Eq. (2.30) in Eq. (2.26) yields the coefficients of the nodal basis functions as

follows.

a = P0V1S
−1
1 UT

1 (2.31)

and hence the nodal basis functions can also be represented by inserting the

coefficients a from Eq. (2.31) into Eq.(2.18). The final result is given below

[ψ1(x), ψ2(x), . . . , ψN(x)] = [f(x)](1,N) P0V1S
−1
1 UT

1 (2.32)

Modal Spectral Hull Basis Functions

Right multiplying Eq. (2.25) with the unitary matrix U yields

ψ̄j = ψjU = [f(x)](1,N)V S−1, (2.33)

where according to Theo. (2.3), ψ̄j is the jth modal basis function since ψ̄j are orthogonal.

Since the singular values are naturally ordered from large values to small values in the
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standard SVD, the ψ̄j modes also start from lowest frequency mode for j = 1 to the

highest frequency mode for j = N . The important point is that a given function u can

be approximated as the sum of ψ̄ with the converging property in a sense that the higher

modes included, the more accuracy is obtained. To show this, let us project u into a subset

of the modal space

u =
km∑
k=1

ψ̄kwk, 1 ≤ (km = kmax) ≤ N. (2.34)

Substituting ψ̄j from Eq. (2.33) in Eq. (2.34) yields

u = [f(x)](1,N)V(N,km) S
−1
(km,km)w(km,1) (2.35)

Definition 2. Inspired by the terminology “Fourier Coefficient” given in (Ref. [10]- Page

27) for the polynomial approximation of one-dimensional functions, we consistently extend

it to the Generalized Fourier Coefficient/Amplitude (GFC) of Rd approximation u u ψ̄kwk

where wk is the GFC.

Now we have the following theorem:

Theorem 2.1. Let u(x) be defined for x ∈ Ω ⊂ Rd. Then the GFC wk in the series expansion

u = ∑km
k=1 ψ̄kwk, 1 ≤ (km = kmax) ≤ N decays.§

In practice, the values of GFCs can be computed in a surprisingly efficient manner

by utilizing the unitary matrix U . This is discussed in the following theorem.

Theorem 2.2. For any bounded u defined on Ω ⊂ Rd, the GFCs of orthogonal hull expansion

Eq. (2.34) are given by¶

w = UTu (2.36)
§Proof of Theorem 2.1 is described in detail in Theorem 4.1 in [13].
¶Proof of Theorem 2.2 is described in detail in Theorem 4.2 in [13].
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Remark 1. The reader may have noticed that Eq. (2.36) constitutes a Generalized Discrete

Transform similar to Discrete Fourier Transform by multiplying the given function u with

the unitary matrix U . While the basic mechanism of w = UTu is similar to DFT, Eq. (2.36)

generalizes DFT to any arbitrarily shaped and non-periodic hulls (domains). This important

result reveals that the unitary matrix U is in fact can be regarded as a very generalized

convolution operator (matrix).

Remark 2. The truncated GFCs using w1...km = UT
(N,1...km)u yields a generalized a posteriori

error estimator. In the classical Fourier analysis, the tail of the Fourier series (higher

frequencies) can be eliminated to smoothen the solution. This filtering strategy can be done

here on arbitrary shaped hull by just using the first modes in the series expansion u = ψ̄kwk

with the coefficients w1...km = UT
(N,1...km)u. Strictly speaking, the norm of the eliminated tail,

i.e. ‖UT
(N,km+1...N)u‖2

is an error estimator of the sum of the eliminated energy according to

Parseval theorem (2.4).

Calculating the Lebesgue constant

The general linear interpolation I(u) = LNu can be written using the modal expansion

Eq. (2.34) as follows

I(u) = LNu =
km∑
k=1

ψ̄kwk. (2.37)

It is our interest to study the error generated by such interpolation. In particular,

the conventional concept used in the Approximation Theory community is to show that

E (I(u)) = ‖u− LNu‖ , (2.38)

is small enough. Equation (2.38) can be written as
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‖u− LNu‖ = ‖u− u∗ + u∗ − LNu‖ (2.39)

where u∗ = LNu∗ is the optimal interpolant at point x ∈ Ω. In fact, LN is Lagrange

basis constructed at the approximate Fekete points x̂ = x ∈ Ω and then used as basis at any

point x ∈ Ω in particular x = x̂ where LN = 1 and hence u∗ = LNu∗. In the next step, by

using the triangle inequality

E (I(u)) =

∥∥∥∥∥∥u− u∗ + u∗︸︷︷︸
LNu∗

−LNu

∥∥∥∥∥∥ ≤ ‖u− u∗‖+ ‖LNu∗ − LNu‖ ≤ ‖u− u∗‖+ ‖LN‖‖u− u∗‖

≤ (1 + ‖LN‖) ‖u− u∗‖ (2.40)

Therefore the interpolation error is bounded above by the norm of the interpolation

operator and hence the Lebesgue constant can be defined as

ΛN(T ) = ‖LN‖ (2.41)

Therefore, we are interested in the interpolation points that result in the minimal

Lebesgue constant to maximize the accuracy of the interpolation according to Eq. (2.40).

The approximate Fekete points presented before have such an impressive property. Exact

calculation of the Lebesgue constant has always been a hard task and mostly done using

empirical relations. The closed-form formulae are only available for the case of 1D and

simple interpolants like Chebyshev polynomials as mentioned before. We derive an explicit

relation for the Lebesgue constant of an arbitrary shaped hull in Rd. The key is hidden in

the minimum singular value of the orthogonal basis functions ψ̄i as it is shown below.

Using Eq. (2.33), Eq. (2.41) leads to
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ΛN(T ) = ‖LN‖ =
∥∥∥[f(x)](1,N)V S−1

∥∥∥ , (2.42)

or

‖LN‖ =
√∫

Ω

(
[f(x)](1,N)V S−1

)T
[f(x)](1,N)V S−1dΩ. (2.43)

or

‖LN‖ =
√∫

Ω
S−1V T (fTf)V S−1dΩ =

√∫
Ω

(fTf) dΩ S−1V TV S−1 =
√∫

Ω
(fTf) dΩ S−1.

(2.44)

Therefore

‖LN‖max =

√∫
Ω (fTf) dΩ
σmin

(2.45)

Remark 3. It is crucially important to note that the norm of the moments, i.e.
∫

Ω

(
fTf

)
dΩ

in the numerator of Eq. (2.45) can be significantly large (especially for the higher order

polynomials) on a domain that is not centered around the origin. This will lead to significantly

inaccurate interpolation results because the Lebesgue constant increases rapidly according to

Eq. (2.40).

Therefore it is important to use hulls centered around the origin (and additionally

mapping them inside the unity box- see Figure 2.5), where it can be shown that the result of∫
Ω

(
fTf

)
dΩ is always smaller than unity and monotonically converges to unity for an infinite

order polynomial (See Theo. (2.5)). In this case, the upperbound in Eq. (2.45) is very small

and for the spectral hull basis evaluated on approximate Fekete points, since σmin is close

to unity, the interpolation remains very accurate for significantly higher degree polynomials.

In practice, in the implementation of discontinuous finite element solution of compressible

Euler equations, the authors have implemented hulls directly in the physical space without

mapping. The results showed a gradual leaking in the x-momentum and eventually the
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Figure 2.5 The transformation of Ω to a bounded area near the origin

code blew up. There was absolutely no way for the authors to find the bug except Eq.

(2.45) miraculously shed light on the source of the bug. After the authors mapped each

hull to the center, the bug was completely resolved and very stable and accurate results

were obtained. This side story demonstrates the significance of the presented analysis in the

practical implementations.

The approximation theory of the spectral hull expansion

This section summarizes the important theorems which are necessary to prove the

convergence of the spectral hull expansion. First, we start by proving the orthogonality

and Parseval theorems and then the Weierstrass theorem is proven for a particular form of

spectral hull expansion which utilizes orthonormal hull basis.

Theorem 2.3. ψ̄j forms an orthogonal set of basis functions for i = 1 . . . N .‖

Remark 4. As a result, the basis

ψ̃k = f

‖f‖2
V(k), (2.46)

‖Proof of Theorem 2.3 is described in detail in Theorem 4.3 in [13].
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is orthonormal. However, this is only used for the proof of theorems and is not used in the

spectral element formulation in this paper since it requires the extra work for computation of

the norm of the moment vector over the hull. Although the latter can be precomputed and

tabulated.

Theorem 2.4. Parseval theorem for the orthogonal hull expansion given in Eq. (2.34)∗∗

∫
Ω

(
m∑
k=1

ψ̄kwk

)2

dΩ = ‖f‖2
2

m∑
k=1

(
wk
σk

)2
. (2.47)

Theorem 2.5. For a Ω selected as an arbitrary subset of x1 × x2 × . . . xi × . . . × xd = Rd

inside the d-dimensional cube |xi| ≤ a = tanh(1
2) = 0.4621 . . .†† (See Figure 2.5),

∫
Ω ‖f‖

2
2dΩ

is monotonically increasing but convergent and

∫
Ω
‖f‖2

2dΩ ≤
∫

Ω

1∏d
l=1 (1− ξ2

k)
dξ1dξ2 . . . dξd ≤ 1, lim

N→∞

∫
Ω
‖fQ‖2

2dΩ = 1. (2.48)

Note that the lth GFC in the expansion u = ∑m
k=1 ψ̄kwk can be obtained by multiplying

both sides with ψ̄l and integrating over Ω. The result is presented below

∫
Ω
uψ̄ldΩ =

m∑
k=1

wk

(∫
Ω
ψ̄lψ̄k

)
. (2.49)

Applying the orthogonality Theo. (2.3) to Eq. (2.49) yields

∫
Ω
uψ̄ldΩ =

m∑
k=1

wk
‖f‖2

2δlk
σlσk

= ‖f‖2
2
wl
σ2
l

. (2.50)

Hence
∗∗Proof of Theorem 2.4 is described in detail in Theorem 4.4 in [13].
††Proof of Theorem 2.5 is described in detail in Theorem 4.5 in [13].
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wl = σ2
l

‖f‖2
2

∫
Ω
uψ̄ldΩ, (2.51)

which yields
wk
σk

= σk

‖f‖2
2

∫
Ω
uψ̄kdΩ. (2.52)

Equation (2.52) gives us a new upper bound for wk

σk
as follows

|wk|
σk

= σk

‖f‖2
2

∥∥∥∥∫
Ω
uψ̄kdΩ

∥∥∥∥ ≤ σk

‖f‖2
2

√∫
Ω
u2dΩ

√∫
Ω
ψ̄2
kdΩ. (2.53)

Since u is square integrable, ‖u‖2 =
√∫

Ω u
2dΩ is finite. Substituting the definition

ψ̄k = fV(k)/σk in Eq. (2.53) yields

|wk|
σk
≤ σk

‖f‖2
2
‖u‖2

√
‖f
V(k)

σk
‖ ≤ σk

‖f‖2
2
‖u‖2‖f‖2

1
σk
, (2.54)

or

|wk|
σk
≤ ‖u‖2
‖f‖2

. (2.55)

It can be concluded that the kth GFC is always bounded by

|wk| ≤ σk max
(
‖u‖2
‖f‖2

, ‖ŭ‖
)

(2.56)

This means that the magnitude of wk is not necessarily monotonically decreasing,

although its bound, i.e. |wk|max = σk ×max
(
‖u‖2
‖f‖2

, ‖ŭ‖
)
is always monotonically decreasing.

This situation is graphically illustrated in Figure 2.6.

Theorem 2.6. Parseval theorem for the orthonormal expansion given in Eq. (2.46)∗

∗Proof of Theorem 2.6 is described in detail in Theorem 4.6 in [13].
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∫
Ω

(
m∑
k=1

ψ̃kw̃k

)2

dΩ =
m∑
k=1

w̃2
k. (2.57)

Theorem 2.7 (Weierstrass Approximation Theorem for Ω arbitrary subset of Rd). Assume

that u is a bounded real-valued function on Ω ⊂ Rd then for every ε > 0, there exists a

polynomial p such that for all x ∈ Ω, ‖u − p‖ < ε. Particularly, we also give an explicit

relation for the polynomial p below.†

p =
(∫

Ω
ψ̃k̃udΩ

)
ψ̃k̃, k̃ = permutation

(
sort↓

[∫
Ω
f1udΩ,

∫
Ω
f2udΩ, . . . ,

∫
Ω
fNudΩ

] [
V(1), V(2), . . . , V(N)

])
(2.58)

The monotonic decay of w̃k̃ is compared to the decay of the coefficients of the

orthogonal hull basis ψ̄k which decay in an envelope (bound). Please see Figure 2.6 for

such comparison.

Numerical results of spectral hull basis functions

Before assessing the accuracy of interpolation via approximate Fekete points on

general hulls, one needs to validate the modal basis proposed in Eq. (2.33) on a set

of Chebyshev points. Therefore, in the fist test case, a set of 20x20 Chebyshev points

are generated by the Kronecker product of one-dimensional distribution. Then, the

Vandermonde matrix is evaluated on these points and the modal basis Eq. (2.33) are

obtained. The results are plotted in Figure 2.7. As seen, the first and the second modes

have low frequency contents, while the last mode has the highest frequency. Also, symmetry

is well preserved on Chebyshev points.

It is important to see the effect of eliminating the higher modes. Figure 2.8 discusses

this in more details. As seen, the rank of orthogonal hull basis is 400 corresponding to a full
†Proof of Theorem 2.7 is described in detail in Theorem 4.7 in [13].
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Figure 2.6 The decay of Generalized Fourier Coefficients (GFCs); dashed-bars correspond
to orthogonal basis Ψ̄. solid-bars correspond to orthonormal basis Ψ̃ which are
monotonically decreasing according to Theo. (2.7)

Figure 2.7 The orthogonal spectral hull basis Eq. (2.33) evaluated on Chebyshev points. a)
ψ̄1, b) ψ̄2, c) ψ̄60, d) last mode, i.e. ψ̄400

36



Figure 2.8 The spectral filtering of u = cos
(
4π
√
x2 + y2

)
in Q space by eliminating higher

frequency orthogonal hull basis Eq. (2.34). a) km = 400, i. e. full rank, b)
km = 200, i. e. half rank, c) km = 360, i. e. ninety percent rank, d) Exact

SVD decomposition of the Vandermonde matrix evaluated at Chebyshev points as mentioned

before. When all basis are included, i.e. km = 400, the reconstructed function has excellent

agreement with the exact solution. Additionally, a ninety-percent reconstruction yields

ideal reconstruction. It can be seen in Figure 2.8-b that the reconstruction of the function

without considering higher frequncies yields an unacceptable result. These observations are

in agreement with the proposed convergence theory.

After validating the orthogonal modal hull basis functions, one need to assess Alg.

(1). A plot of nodal basis functions (See Eq. (2.25)) for a 16th-order P space on a T-hull is

presented in Figure 2.9-Top where the first basis ψ1 is plotted in top-left and the 200th basis

is plotted in the top-right. Note that ψ1 is one at the top corner of the T shaped hull and

zero at other Fekete points. Modal basis functions (see Eq. (2.33)) for a 16th-order P space
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on a T-shaped hull is presented in Figure 2.9-Bottom where the first mode ψ̄1 is plotted in

bott-left and the 200th mode is plotted in the bott-right.

The orthogonal spectral hull basis functions in addition to being well-conditioned, are

very accurate compared to the Radial Basis Functions (RBF) for the same degrees of freedom.

Figure 2.10 compares the reconstruction of two wavelengths of sinusoidal functions using a

RBF basis (left column) and orthogonal spectral hull basis functions Ψ̄ (right column). As

clearly shown, the RBF is either very inaccurate (Top-Left) or requires many DOF to yield

accurate results (Bottom-Left). However, Ψ̄ yields spectral resolution of minimum points

per wavelength (see the middle of smiley-face hull). This resolution is comparable to the

Fourier decomposition of smooth functions on simple rectangular geometry. These results,

which demonstrate the superior accuracy/efficiency of the spectral hull basis functions, can

contribute to the field of meshfree methods where RBF are extensively used.
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Figure 2.9 The first and the 200th shape functions of nodal (top) and modal (bottom)
Approx. Fekete basis. Top Left) ψ1, Top Right) ψ200, Bott. Left) ψ̄1, Bott.
Right) ψ̄200
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Figure 2.10 Comparison of spectral hull basis functions and RBF in the reconstruction the
solution on a hull. Top row) with same DOF, Bottom row) with same L2 error,
Left column is RBF, right col. corresponds to orthogonal spectral hull basis
functions Ψ̄

To further assess the resolution of spectral hull basis functions, the polynomial order

on the smiley hull is increased. The result which is presented in Figure 2.11 demonstrates
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that six wavelengths can be reconstructed on this highly concave hull while spectral accuracy

is preserved.

Figure 2.11 Sub-elemental resolution of six wavelengths of u = sin(2πx) sin(2πy) on a highly
concave hull. As shown in the middle, the spectral accuracy corresponding to
the optimum resolution is demonstrated
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Figure 2.12 Superlinear convergence of spectral hull basis on the concave T-hull. Left)
Reconstructed function using 16th-order spectral hull basis constructed
on approximate Fekete points. Right) L2 error compared to analytical
reconstruction

To demonstrate the super linear convergence of spectral hull basis, the concave T-

shaped hull is used to reconstruct the sinusoidal function. The result is presented in Figure

2.12 where the super linear (spectral) convergence is shown.

Using the concept of GFC (see Definition (2)), it can be shown that the spectral

content increases as the number of sides and/or the non-convexity of the hull increases. This

can be a drawback of the generality of selecting arbitrarily shaped hulls. This is shown in

Figure 2.13 where the GFCs of the modal expansion is plotted against the corresponding

modes for different hull shapes, in which in all cases, the same function is reconstructed. As

shown, the more complicated the hull gets, the more modes are required to reconstruct the

function [13].

42



0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Approx. Fekete Modes From 1 to 49

G
e

n
e

ra
li

z
e

d
 F

o
u

ri
e

r 
A

m
p

li
tu

d
e

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Approx. Fekete Modes from 1 to 121

G
e

n
e

ra
li

z
e

d
 F

o
u

ri
e

r 
A

m
p

li
tu

d
e

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

Approx. Fekete Modes From 1 to 256

G
e
n

e
ra

li
z
e
d

 F
o

u
ri

e
r 

A
m

p
li
tu

d
e

Figure 2.13 The spectra of u = sin(πx) sin(πy) on different convex/concave elements; Left)
using 7th order orthogonal spectral hull basis Ψ̄ on a quadrilateral element.
Right) using 11th Ψ̄ on a hexagonal element. Bottom) using 16th Ψ̄ on a T-
shape element

Application of Fekete Spectral Element methods to two-dimensional elasticity

The equations of elasticity can be obtained by considering Newton’s second law of

motion in the equilibrium case, which means that the summation of total linear and angular

momentums in the system should be zero. For a control volume containing a solid, the

momentum equation reads
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Figure 2.14 The selected part of the domain and appropriate boundary conditions

∫
S
σij.dSj +

∫
V
fi dV = 0. (2.59)

where fi is body force (like magnetic force or inertial forces like centrifugal forces etc.) and

σij is the shear stress tensor. Using Divergence theorem, we obtain

∫
V
∂jσij dV +

∫
V
fi dV = 0. (2.60)

which is true at each point inside an infinitesimal volume, i.e.

∂jσij + fi = 0, (2.61)

This is simply the balance between the stress forces and body forces for a differential

element. The objective of the current work is to solve eq.(2.61) using Galerkin method.

Multiplying eq.(2.61) by test function w and integrating over the an spatial element yields

∫
Ω
−w ∂jσijdΩ =

∫
Ω
w fidΩ (2.62)
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Using integration by parts, we obtain

−
∫
∂Ω
w σij n̂j +

∫
Ω
∂jw σijdΩ =

∫
Ω
w fidΩ (2.63)

or ∫
Ω
∂jw σijdΩ =

∫
∂Ω
w qni

+
∫

Ω
w fidΩ (2.64)

where qni
= σij n̂j is definitely a secondary variable which is used to impose natural boundary

conditions as shown in Figure 2.14.

Weak Formulation

We use constitutive equations to relate the stress to strain and displacement.

Assuming that the displacement field is relatively small and that the material remains in

the elasticity region, it is good to use the following linearization as our constitutive(ad-hoc)

relations

σi = Cijεj, εj = Tjkuk (2.65)

where σi = [σx, σy, σxy]T is the rearranged stress vector for two dimensional case and

Cij =


C11 C12 0

C21 C22 0

0 0 C66

 (2.66)

and

Tjk =


∂x 0

0 ∂y

∂y ∂x

 . (2.67)
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Table 2.1 Contracted versus Directional Notation for Stresses and Strains

Stresses Strains
Condensed Notation Directional Notation Condensed Notation Directional Notation

σ1 σx ε1 εx = ∂u

∂x

σ2 σy ε2 εy = ∂v

∂y

σ3 σz ε3 εz = ∂w

∂z

σ4 σyz ε4 εyz = ∂v

∂z
+ ∂w

∂y

σ5 σzx ε5 εzx = ∂w

∂x
+ ∂u

∂z

σ6 σxy ε6 εxy = ∂u

∂y
+ ∂v

∂x

The definitions for the stiffness matrix constants Cij can be derived from the

generalized Hooke’s law relating stresses to strains. Expanding eq.(2.65) considering

i, j = 1, ..., 6 with x, y, z coordinates and displacements u, v, w as defined by Table 2.1,

we get the generic form of the stiffness matrix



σx

σy

σz

σyz

σzx

σxy



=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





εx

εy

εz

εyz

εzx

εxy



(2.68)

The 36 constant stiffness matrix is applicable for cases of anisotropic materials. In our

analysis for this thesis, we consider only isotropic materials, though certainly, by properly

defining this stiffness matrix amongst other parts of the computation (factoring in local

material direction), we can consider other material types.

Isotropic materials do not see the coupling effects (extension-extension coupling,

shear-extension coupling, or shear-shear coupling) seen in other material types do to infinite

planes of material property symmetry, so the stiffness matrix can be modeled as follows:
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σx

σy

σz

σyz

σzx

σxy



=



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





εx

εy

εz

εyz

εzx

εxy



(2.69)

In the problem that we are going to solve, the ratio of the thickness of the plate to

the its width is negligible, thus the stress field is mostly two-dimensional and the variation

in the third dimension is thus negligible, plus the fact that the tensile stress is uniform and

we don’t have variation of tensile stress in the “z”-direction. Thus, the assumption of plane

stress is valid in this case, given the following conditions

σz = 0, σyz = 0, σzx = 0 (2.70)

such that

εz = 0, εyz = 0, εzx = 0 (2.71)

so the stiffness matrix in eq.(2.69) reduces to the form seen in eq.(2.66) [17].

Therefore, the shear stress tensor σij in the momentum equation (2.61) can be

computed using only the planar stress σx, σy and σxy. This is the reason we use the

rearranged form eq.(2.65). Substituting eq.(2.66) and eq.(2.67) into eq.(2.65), the rearranged
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stress vector can be written in the terms of displacement as follows.

σi =


σx

σy

σxy

 =


C11 C12 0

C21 C22 0

0 0 C66

×

∂x 0

0 ∂y

∂y ∂x

×
 u

v


︸ ︷︷ ︸

uk

(2.72)

hence 
σx

σy

σxy

 =


C11∂xu+ C12∂yv

C21∂xu+ C22∂yv

C66 (∂yu+ ∂xv)

 (2.73)

In the stiffness matrix, Cij = Cji and for isotropic materials there are no directional

moduli or Poisson’s ratio, so we can define the constants as follows:

C11 = C22 = E

1− ν2 (2.74)

C12 = C21 = νE

1− ν2 (2.75)

C66 = G = E

2(1 + ν) (2.76)

Now we need to substitute (2.73) back into eq.(2.64). But before that let us expand

eq.(2.64) to get the following equations:

∫
Ω

(∂xw σx + ∂yw σxy) dΩ =
∫
∂Ω
w qn1 +

∫
Ω
w f1dΩ∫

Ω
(∂xw σxy + ∂yw σy) dΩ =

∫
∂Ω
w qn2 +

∫
Ω
w f2dΩ. (2.77)
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where as described before qn1 = σ(i=1)j n̂j = σx n̂1 + σxy n̂2 and qn2 = σxy n̂1 + σy n̂2 are

secondary variables. Now substitute σx, σy and σxy from eq.(2.73) into (2.77) to obtain

∫
Ω

(∂xw (C11∂xu+ C12∂yv) + ∂ywC66 (∂yu+ ∂xv)) dΩ =
∫
∂Ω
w qn1 +

∫
Ω
w f1dΩ∫

Ω
(∂xwC66 (∂yu+ ∂xv) + ∂yw (C21∂xu+ C22∂yv)) dΩ =

∫
∂Ω
w qn2 +

∫
Ω
w f2dΩ.(2.78)

Now the primary variables can be expanded using basis functions u = j uj and

v = ψj vj and the test function can be selected exactly as the basis function w = i

according to the Galerkin approach, with basis functions j as defined previously in eq.(2.32).

Substituting in eq.(2.78) yields

∫
Ω

(∂xψi (C11∂xψj uj + C12∂yψj vj) + ∂yψiC66 (∂yψj uj + ∂xψjvj)) dΩ =
∫
∂Ω

i qn1 +
∫

Ω
i f1dΩ∫

Ω
(∂xψiC66 (∂yψj uj + ∂xψj vj) + ∂yψi (C21∂xψj uj + C22∂yψj vj)) dΩ =

∫
∂Ω

i qn2 +
∫

Ω
i f2dΩ.

(2.79)

Separating the coefficients of uj and vj we have

K11 =
∫

Ω
(C11∂xψi ∂xψj + C66 ∂yψi ∂yψj) dΩ (2.80)

K12 =
∫

Ω
(C12∂xψi ∂yψj + C66 ∂yψi ∂xψj) dΩ (2.81)

K21 =
∫

Ω
(C12∂yψi ∂xψj + C66 ∂xψi ∂yψj) dΩ (2.82)

K22 =
∫

Ω
(C22∂yψi ∂yψj + C66 ∂xψi ∂xψj) dΩ (2.83)
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Note that K12ij = KT
21ij. Therefore the elemental equations are

 K11 K12

K21 K22


 uj

vj

 =


∫
∂Ω ψi (qn1 + f1) dΩ∫
∂Ω ψi (qn2 + f2) dΩ

 (2.84)
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CHAPTER 3

IMPLEMENTATION

Development of this code has been done in Fortran90 and all code testing has been

run on a mid-2012 Apple MacBook Pro with Intel(R) Core(TM) i7-3615QM CPU @ 2.30GHz

and 3.8GB RAM running Ubuntu 19.04.

The technique we use begins with the establishment of the boundary which is

read through a segment file format. This segment file was generated by defining the two

dimensional geometric shape and then meshing with Gmsh. [12] The boundary elements

were then extracted from the .msh file generated by Gmsh and written to the segment file

format with a simple python script. For our base mesh shown in Figure 2.14, the segment

file is shown in the following code snippet.

1 9

2 2.0000000000000000 E+00 0.0000000000000000 E+00 0.0000000000000000 E+00

3 3.7272370428296950 E+00 0.0000000000000000 E+00 0.0000000000000000 E+00

4 6.1339629235271911 E+00 0.0000000000000000 E+00 0.0000000000000000 E+00

5 9.4874863223968866 E+00 0.0000000000000000 E+00 0.0000000000000000 E+00

6 1.4160273052153840 E+01 0.0000000000000000 E+00 0.0000000000000000 E+00

7 2.0671317893899960 E+01 0.0000000000000000 E+00 0.0000000000000000 E+00

8 2.9743783130882210 E+01 0.0000000000000000 E+00 0.0000000000000000 E+00

9 4.2385322944434051 E+01 0.0000000000000000 E+00 0.0000000000000000 E+00

10 6.0000000000000000 E+01 0.0000000000000000 E+00 0.0000000000000000 E+00

11 3

12 6.0000000000000000 E+01 0.0000000000000000 E+00 0.0000000000000000 E+00

13 6.0000000000000000 E+01 1.1294557270628010 E+01 0.0000000000000000 E+00

14 6.0000000000000000 E+01 2.0000000000000000 E+01 0.0000000000000000 E+00
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15 7

16 6.0000000000000000 E+01 2.0000000000000000 E+01 0.0000000000000000 E+00

17 5.0000000000000000 E+01 2.0000000000000000 E+01 0.0000000000000000 E+00

18 4.0000000000000000 E+01 2.0000000000000000 E+01 0.0000000000000000 E+00

19 3.0000000000000000 E+01 2.0000000000000000 E+01 0.0000000000000000 E+00

20 2.0000000000000000 E+01 2.0000000000000000 E+01 0.0000000000000000 E+00

21 1.0000000000000000 E+01 2.0000000000000000 E+01 0.0000000000000000 E+00

22 0.0000000000000000 E+00 2.0000000000000000 E+01 0.0000000000000000 E+00

23 6

24 0.0000000000000000 E+00 2.0000000000000000 E+01 0.0000000000000000 E+00

25 0.0000000000000000 E+00 1.3773710213962760 E+01 0.0000000000000000 E+00

26 0.0000000000000000 E+00 9.2788037877479717 E+00 0.0000000000000000 E+00

27 0.0000000000000000 E+00 6.0338247573893931 E+00 0.0000000000000000 E+00

28 0.0000000000000000 E+00 3.6911978286910490 E+00 0.0000000000000000 E+00

29 0.0000000000000000 E+00 2.0000000000000000 E+00 0.0000000000000000 E+00

30 4

31 0.0000000000000000 E+00 2.0000000000000000 E+00 0.0000000000000000 E+00

32 1.0000000000000000 E+00 1.7320508075688770 E+00 0.0000000000000000 E+00

33 1.7320508075688781 E+00 9.9999999999999933E -01 0.0000000000000000 E+00

34 2.0000000000000000 E+00 0.0000000000000000 E+00 0.0000000000000000 E+00

After reading and initializing the input boundary geometry and specifying any interior

hole locations, the interior is meshed with using Triangle. [31] This gives us a basic p = 1

mesh, akin to the meshes obtained using commercial FEM solvers. At this point, we can

specify and inject our high order points, by setting the parameters pin, to set p-order,

eltypein, which selects either Lagrange or Fekete basis functions, tolerance, which specifies

the duplicate node tolerance, and then calling function add_more_points to then generate the

high order points via an a posteriori high order meshing process. The code is quite flexible

allowing the selection of somewhat arbitrary p-order (Fekete is restricted to a p-order in
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multiples of 3 and has been tested up to p = 9, Lagrange is tested up to p = 8), restricted

mostly by computer memory capacity.

1 allocate (pin(grd%ntri), eltypein (grd%ntri))

2 pin = 3

3 eltypein = 1 !1 for fekete at higher order

4 tolerance = 1.0d -13

5 call add_more_points (grd , pin , eltypein , tolerance , galtype = ’PG’)

The function add_more_points distributes additional points on the interior and

boundary of each element in dependent on the basis selected. If Fekete bases are selected,

this routine implements eq.(2.17) to generate the approximate Fekete points in each element.

To achieve the curved boundaries, the boundary nodes in the mesh initialization process, are

used to generate NURBS (Non-Uniform Rational B-Spline) representation of the geometry

present to which the additional points can be generated upon utilizing the basis functions

described previously in this text.

Next, the material properties are initialized in the function init_material_props by

calculating the constants C11, C12, C21, C22, and C66 as seen in eqs.(2.74 - 2.76). Then,

for each element, all elements are initialized in function init_elem and then the elemental

stiffness matrices are computed in function comp_elem_KQf.

1 call init_material_props (nu = .33d0 , E = 10600000.0 d0)

2 allocate ( elems (grd% ncellsg ))

3 do e = 1, grd% ncellsg

4 call init_elem (elems (e), e, grd , neqs)

5 call comp_elem_KQf (elems (e), e, grd)

6 ngausstotal = ngausstotal + elems(e)% ngauss

7 end do
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In function init_elem, each element is set up for computation by computing the

element properties necessary for use in later steps. This includes the computation of the

r and s coordinates, the weight function W , the basis function ψ, and its derivatives, and

the Jacobian of transformation, its inverse and its value at each Gauss point. The function

also sets up the elemental stiffness matrix K, for computation in the next step as well as the

neighbor and edge tag data of the element. Further detail on the init_elem function can be

seen in Appendix A.

Function comp_elem_KQf is effectively the implementation of calculating eqs.(2.80),

(2.81), (2.82), and (2.83). It uses the initialized elements calculated in function init_elem to

complete this calculation.

1 do i = 1, npe

2 do j = 1, npe

3 do k = 1, elem% ngauss

4 ! get grad of basis functions

5 der1 (1) = elem% d_psi_d_xi (i,k); der1 (2) = elem% d_psi_d_eta (i,k)

6 der2 (1) = elem% d_psi_d_xi (j,k); der2 (2) = elem% d_psi_d_eta (j,k)

7 ! transform computational grads to physical grads

8 der1 = matmul (elem% Jstar (:,:,k), der1)

9 der2 = matmul (elem% Jstar (:,:,k), der2)

10 psi_i_x = der1 (1)

11 psi_i_y = der1 (2)

12 psi_j_x = der2 (1)

13 psi_j_y = der2 (2)

14

15 ! filling entries of the stiffness matrix explicitly

16 elem%K(1,1,i,j) = elem%K(1,1,i,j) &

17 + (C11 * psi_i_x * psi_j_x + C66 * psi_i_y * psi_j_y ) * coeff *

elem%JJ(k) * elem%W(k)

18 elem%K(1,2,i,j) = elem%K(1,2,i,j) &
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19 + (C12 * psi_i_x * psi_j_y + C66 * psi_i_y * psi_j_x ) * coeff *

elem%JJ(k) * elem%W(k)

20 elem%K(2,1,i,j) = elem%K(2,1,i,j) &

21 + (C12 * psi_i_y * psi_j_x + C66 * psi_i_x * psi_j_y ) * coeff *

elem%JJ(k) * elem%W(k)

22 elem%K(2,2,i,j) = elem%K(2,2,i,j) &

23 + (C22 * psi_i_y * psi_j_y + C66 * psi_i_x * psi_j_x ) * coeff *

elem%JJ(k) * elem%W(k)

24 end do

25 end do

26 end do

Next, after the elemental stiffness matrices have been calculated for all elements.

The stiffness matrices are assembled to the global stiffness matrix, boundary conditions are

applied, then the diagonal of the matrix is averaged in a matrix conditioning improvement

routine, and the matrix is then solved for u and v in as in eq.(2.84) utilizing LAPACK. At

this point, the solution for strain has been solved, however, some further computation is

required to get the solution for stress.

The boundary conditions applied in our solution are Dirichlet and Neumann boundary

conditions. The Dirichlet boundary conditions are fully high order compatible, however in

the current state of our implementation, the Neumann boundary conditions implemented in

a hybrid way, in that they are computed in a low order method and adapted to the high

order mesh. We can still simulate the analytical solution of this domain by increasing the

x-dimension of the domain such that any abnormalities from the Neumann boundary edge

with applied load (as seen in Figure 2.14) are diminished where x = 0. Implementing the

Neumann boundary conditions in a full high order method is an area of future research in this

method. Here, we see the code for our implementation of the Dirichlet boundary condition.
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1 ! loop over 2 start and end nodes on that edge

2 do k = 1, 2

3 pt = grd% ibedge (i,k) ! global number of that node

4 x = grd%x(pt)

5 y = grd%y(pt)

6 KK(ieq ,:,pt ,:) = 0.0 d0 ! freeze that row

7 do j = ieq , ieq

8 KK(j,j,pt ,pt) = 1.0 d0 ! ones on the diagonal

9 end do

10 call f_bc(id)%f(x,y,tmp)

11 rhs(ieq ,pt) = tmp(ieq)

12 end do ! k - loop

13

14 ! start looping over nodes inside that edge

15 if ( allocated (grd% el2edg ( ielem)%edg1) ) then

16 ! associate a universal pointer to points on that edge.

17 select case (iedg)

18 case (1)

19 inter_pts => grd% el2edg ( ielem)%edg1

20 case (2)

21 inter_pts => grd% el2edg ( ielem)%edg2

22 case (3)

23 inter_pts => grd% el2edg ( ielem)%edg3

24 case (4) ! only quad

25 inter_pts => grd% el2edg ( ielem)%edg4

26

27 case default

28 print *, ’something is wring in applying BCs ’ &

29 , ’ on psoints inside a boundary edge! stop ’

30 stop

31 end select
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32 ! if at least one point exists on that edge

33 if ( size( inter_pts ) >= 1 ) then

34 ! loop over all interior pts on that edge

35 do k = 1, size( inter_pts )

36 pt = inter_pts (k) ! global number of that node

37 x = grd%x(pt)

38 y = grd%y(pt)

39 KK(ieq ,:,pt ,:) = 0.0 d0 ! freeze that row

40 do j = ieq , ieq

41 KK(j,j,pt ,pt) = 1.0 d0 ! ones on the diagonal

42 end do

43 call f_bc(id)%f(x,y,tmp)

44 rhs(ieq ,pt) = tmp(ieq)

45 end do ! k - loop

46 end if

47

48 end if ! there exists bn pts on that edge

Next, we see the code for the hybrid implementation of the Neumann boundary

condition

1 pt1 = grd% ibedge (i ,1) ! global number of node1

2 pt2 = grd% ibedge (i ,2) ! global number of node2

3 x1 = grd%x(pt1); x2 = grd%x(pt2)

4 y1 = grd%y(pt1); y2 = grd%y(pt2)

5 ll = sqrt ((x2 - x1)**2.0 d0 + (y2 - y1)**2.0 d0)

6 call f_bc(id)%f(x1 ,y1 ,tmp)

7 rhs(ieq ,pt1) = rhs(ieq ,pt1) + tmp(ieq) * ll / 2.0 d0

8 rhs(ieq ,pt2) = rhs(ieq ,pt2) + tmp(ieq) * ll / 2.0 d0
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To increase the efficiency of the solution and therefore reducing the condition number

of the matrix, a diagonal averaging technique is used. This technique works by computing

the average of the diagonal (tmp in the code snippet below) and then replacing all values on

the matrix diagonal Kii = 1 and multiplying the corresponding values on the right-hand side

of the matrix solution by the average.

1 diag_size = neqs * grd% nnodesg

2 tmp = 0

3 i = 0

4

5 do i = 1, diag_size

6 tmp = tmp + input (i,i)

7 end do

8

9 tmp = tmp / diag_size

10

11 i = 0

12

13 do i = 1, diag_size

14 if (input (i,i) == 1.0 d0) then

15 input (i,i) = tmp

16 rhs(i) = rhs(i) * tmp

17 end if

18 end do

The assembly of the elemental stiffness matrix and right-hand side to the global

stiffness matrix (referred to in our code as KK) and right-hand side is achieved with a simple

function that positions the elements and nodes correctly in the global stiffness matrix utilizing

the connectivity matrix called icon.

1 ! start assembling
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2 do k = 1, grd% ncellsg ! loop over all cells

3 elem => elems(k) ! load this element

4 npe = grd%npe(k)

5 do i = 1, npe

6 pti = icon(k,i)

7 rhs (:, pti) = rhs (:, pti) + elem%Q(:, i) + elem%f(:, i)

8

9 do j = 1, npe

10 ptj = icon(k,j)

11 KK(:,:,pti , ptj) = KK(:,:,pti , ptj) + elem%K(:,:,i,j)

12 end do

13

14 end do

15

16 end do

In eq.(2.65), we see that the stress σi is related to the strain εj and the constant Cij.

This is expanded via tensor math, to eq.(2.73), which is the exact formula we use to calculate

the final stress solution.

Before calculating this solution, we must first (due to our implementation) calculate

the elemental gradients ∂xu, ∂xv, ∂yu and ∂yv for each Gauss point k in the element. This

is done in our code by calling function comp_grad_u_point. These gradients are calculated in

the r, s coordinate system, but our subsequent calculations require them to be in the x, y

coordinate system. We can solve this by mapping the gradients using function rs2xy. This

is all demonstrated in our code snippet following

1 i = 0

2 do e = 1, grd% ncellsg

3 do k = 1, elems(e)% ngauss
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4 call comp_grad_u_point (u,grd , elems (e),e,elems(e)%r(k),elems(e)%s(k),

dudxe , dudye)

5 call rs2xy( elems(e),elems (e)%r(k),elems(e)%s(k), xtemp , ytemp)

6

7 i = i + 1

8 dudxt (:,i) = dudxe (:)

9 dudyt (:,i) = dudye (:)

10 end do

11 end do

With the gradients mapped, we can then calculate the stress solutions σx, σy, and

σxy according to eq.(2.73).

1 do nnode = 1, ngausstotal

2 ustress (1, nnode) = ( dudxt (1, nnode) * C11) + (dudyt (2, nnode ) * C12)

3 ustress (2, nnode) = ( dudxt (1, nnode) * C21) + (dudyt (2, nnode ) * C22)

4 ustress (3, nnode) = ( dudxt (2, nnode) * C66) + (dudyt (1, nnode ) * C66)

5 end do

From this point, all the calculations are completed, we can then output our results.

We chose to use the TECPLOT ASCII format for output due to its simplicity and versatility.

The TECPLOT ASCII format can be read by VisIt [7], our choice for visualization.
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CHAPTER 4

RESULTS

Displacement

Utilizing the code described in Implementation, we compute the solutions for the

domain described in Figure 2.14 for varying orders of p up to p = 8 for the Lagrange case

and p = 9 for the Fekete case. Shown first in this Results chapter are the displacement

contours for the generic domain. Notice the curved elements caused by the increased

elemental resolution on the high order solutions and the higher fidelity and accuracy of

the solutions. Figures 4.1 through 4.6 demonstrate the displacement contours calculated

using Lagrange bases.
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Figure 4.1 u solution on p = 1 grid with Lagrange Basis
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Figure 4.2 v solution on p = 1 grid with Lagrange Basis
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Figure 4.3 u solution on p = 3 grid with Lagrange Basis
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Figure 4.4 v solution on p = 3 grid with Lagrange Basis
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Figure 4.5 u solution on p = 6 grid with Lagrange Basis
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Figure 4.6 v solution on p = 6 grid with Lagrange Basis

We demonstrate in Figures 4.7 through 4.12, the displacement solution using Fekete

bases. Note our ability to solve up to p = 9. With greater computer resources, this could

be pushed much further. Applying the approximate Fekete points derived in eq.(2.17), we

can solve the elasticity problem using the Fekete Spectral Element method Figure 4.8, which

when compared to the result of traditional techniques using Lagrange Basis in Figure (4.2),

show how these techniques can achieve a more accurate result as a high p-resolution low

h-order mesh than with a just a low p-resolution mesh.
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Figure 4.7 u solution on p = 3 grid with Fekete Basis
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Figure 4.8 v solution on p = 3 grid with Fekete Basis
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Figure 4.9 u solution on p = 6 grid with Fekete Basis
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Figure 4.10 v solution on p = 6 grid with Fekete Basis
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Figure 4.11 u solution on p = 9 grid with Fekete Basis
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Figure 4.12 v solution on p = 9 grid with Fekete Basis
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To compare the two techniques and check their accuracy to the analytical solution,

the result was evaluated along both the x = 0 and y = 0 axes and plotted against the

analytical solution. First, in Figures 4.13 and 4.15, we examine p = 1 Lagrange and p = 3

Fekete techniques. Note the ability to achieve a high accuracy result with minimal order or

p.
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Figure 4.13 u solution comparing p = 1 Lagrange and p = 3 Fekete techniques with analytical
solution
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Figure 4.14 u solution comparing p = 1 Lagrange and p = 3 Fekete techniques with analytical
solution (semi-log y plot)
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Figure 4.15 v solution comparing p = 1 Lagrange and p = 3 Fekete techniques with analytical
solution

70



0 2 4 6 8

−10−3

Analytical
p = 1 - Lagrange
p = 3 - Fekete

Figure 4.16 v solution comparing p = 1 Lagrange and p = 3 Fekete techniques with analytical
solution (semi-log y plot)

Comparing equally higher order Fekete and Lagrange techniques in Figures 4.17 and

4.19 using the same methodology shows a similar correlation with the analytical solution,

but also with each other. But when comparing the matrix condition number as in Figure

4.21 and Table 4.1, the efficiency of the Fekete techniques show, with a much more gradual

curve comparatively.
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Figure 4.17 u solution comparing p = 6 Lagrange and p = 6 Fekete techniques with analytical
solution
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Figure 4.18 u solution comparing p = 6 Lagrange and p = 6 Fekete techniques with analytical
solution (semi-log y plot)
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Figure 4.19 v solution comparing p = 6 Lagrange and p = 6 Fekete techniques with analytical
solution
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Figure 4.20 v solution comparing p = 6 Lagrange and p = 6 Fekete techniques with analytical
solution (semi-log y plot)

75



0 2 4 6 8 10
0

500000

1e+06

1.5e+06

2e+06

2.5e+06
Lagrange
Fekete

Figure 4.21 Comparison of Matrix condition number of higher order FEM methods utilizing
Lagrange and Fekete techniques

Table 4.1 Comparison of Matrix condition number of higher order FEM methods utilizing
Lagrange and Fekete techniques

p Lagrange Fekete
1 364.5510
2 2319.899
3 10213.14 10279.03
4 30656.84
5 86674.31
6 245345.7 88985.87
7 779342.1
8 2480589
9 722376.3
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Stress

The visualization of the stress results is still in a primitive stage. At this point,

we have not been able to explicitly visualize these results using our normal methods with

VisIt. To visualize our stress results, we have utilized radial basis function interpolation

with modifications for visualizing Fekete nodal distributions. This loses accuracy compared

to pure spectral methods, but is sufficient to showcase our results.
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Figure 4.22 σx solution comparing p = 1 Lagrange and p = 3 Fekete techniques with
analytical solution where x = 0
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Figure 4.23 σy solution comparing p = 1 Lagrange and p = 3 Fekete techniques with
analytical solution where y = 0

Figures 4.22 and 4.23 again demonstrate that the p = 1 solution does not provide the

accuracy with a course mesh like the Fekete SEM technique does. Comparing p = 6 solutions

in Figures 4.24 and 4.25, we again demonstrate that the Fekete method is comparable

with traditional Lagrange methods, again with the greater efficiency that we demonstrated

previously in Figure 4.21 and Table 4.1.
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Figure 4.24 σx solution comparing p = 6 Lagrange and p = 6 Fekete techniques with
analytical solution where x = 0
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Figure 4.25 σy solution comparing p = 6 Lagrange and p = 6 Fekete techniques with
analytical solution where y = 0

Complex Geometry

Complex geometry solutions can also be obtained using our solver. Adding holes to

our same domain, we show the same displacement solution for the p = 6 Fekete case in

Figures 4.26 and 4.27. Comparing these solutions to Figures 4.28 and 4.29, it can be seen

that the p = 1 techniques at this mesh resolution do not provide adequate solutions.
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Figure 4.26 u solution of Complex Geometry data using p = 6 Fekete technique
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Figure 4.27 v solution of Complex Geometry data using p = 6 Fekete technique
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Figure 4.28 u solution of Complex Geometry data using p = 1 Lagrange technique
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Figure 4.29 v solution of Complex Geometry data using p = 1 Lagrange technique
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Likewise, we compare the p = 6 Fekete and p = 1 Lagrange techniques applied to the

stress solution in Figures 4.30 and 4.31, with similar display of results to the displacement

solution; at this mesh courseness, the solution generated by the p = 1 technique is not

adequate.
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Figure 4.30 σx solution of Complex Geometry data comparing p = 1 Lagrange and p = 6
Fekete techniques where x = 0
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Figure 4.31 σy solution of Complex Geometry data comparing p = 1 Lagrange and p = 6
Fekete techniques where y = 0
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CHAPTER 5

CONCLUSIONS

The results of this thesis give us a method that has greater accuracy than traditional

low order FEM when comparing the same mesh, and higher efficiency compared to traditional

Lagrangian FEM when comparing matrix condition numbers at different p-orders. This

produces a flatter curve when varying p-order, which shows that higher orders than p = 9

as tested here should be easily achievable with this technique and the proper resources. We

demonstrate the application of SEM to solid mechanics, and we also show the flexibility of

our code by proving that it can also solve solutions with complex geometry and holes, which

demonstrates the unlimited potential of this technique with more refinement.

Future research and improvement opportunities

As mentioned previously, the code can be easily improved by implementing proper

high order Neumann boundary conditions, as well as implementing further boundary

condition types and element types such as quads and hexagons. Other improvements would

be to improve the parameter input method such that recompilation of the code is not

necessary to specify different input files, boundary condition changes, or other parameter

changes, such as p-refinement, etc. To expand upon the efficiency, implementation of sparse

matrices and an iterative solver would be the logical next steps. Beyond that, implementing a

non-linear solver and further solid mechanics methods such as contact or fracture mechanics

would fully realize the capability of this solver.
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Impact of research

As was stated in the introduction, traditionally, this method is applied to problems

with smooth solutions, such as those found in fluid dynamics [2, 23, 38]. In this thesis,

we show the applicability of this method to solid mechanics in the solution of elasticity

with complex geometry with good accuracy. The advantage of this method is to allow for

the solution of these problems with fewer elements than traditional methods allow. This

decreases the computational resources needed for the solution of the problem, allowing for

either the same problems to be solved faster or problems with greater complexity to be solved

than traditional FEM considering the same computational resources available and achieving

greater accuracy with doing so.
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APPENDIX A

ADDITIONAL CODE
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Some additional examples of the source code are included here.

Initializing the element

The process for the element initialization subroutine init_elem is described here.

First, the subroutine variables are called.

1 subroutine init_elem (elem , ielem , grd , neqs)

2 implicit none

3 type( element ), intent (inout ) :: elem

4 integer , intent (in) :: ielem ! element number

5 type(grid), intent (inout ) :: grd

6 integer , intent (in) :: neqs

7

8 ! local vars

9 integer :: i, p, rule , order_num , npe , degree

10 real *8 :: x0 , y0

11 real *8, dimension (: ,:) , allocatable :: xy

12 type( fekete ) :: tfekete

13 integer :: ii , jj , pt1 , pt2 , last_pt

14 integer :: int1 , int2

15 integer , dimension (:) , allocatable :: pts

16

17 p = grd%p(ielem)

18 npe = grd%npe( ielem)

19 elem% number = ielem

20 elem%npe = npe

21 elem% elname = grd% elname ( ielem)

22 elem%p = grd%p(ielem )

23 elem% eltype = grd% eltype ( ielem)

24 elem% npedg = elem%p + 1 ! init p=0,1
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25 elem%neqs = neqs

Next, we define the quadrature rule.

27 ! compute the " order_num " or number of Gauss points

28 rule = int (2.0 d0 * p) ! infact it should be "p" for linear

29 ! Laplace equation for constant shape elements

30 ! but since we ’ve got rational function

31 ! for curvilinear elements , then we put

32 ! it 2*p for safety .

Then, the element x, y coordinates are defined in an elemental context and quadrature

is performed. Note the provisioning in the code at this point to accept quadrilateral elements.

34 if( allocated (elem%x) ) deallocate (elem%x)

35 allocate ( elem%x(2, npe) )

36 elem%x(1, :) = grd%x( grd%icon(ielem , 1: grd%npe(ielem)) )

37 elem%x(2, :) = grd%y( grd%icon(ielem , 1: grd%npe(ielem)) )

38

39 select case (grd% elname (ielem))

40

41 case ( GEN_TRIANGLE )

42 ! check to see the order of exactness is available

43 ! in the tables for the given rule

44 call dunavant_degree ( rule , degree )

45

46 ! compute the number of required Gauss points

47 call dunavant_order_num ( rule , order_num )

48 elem% ngauss = order_num

49

50 ! allocate space for that

93



51 allocate ( xy(2, order_num ))

52 allocate (elem%r( order_num ), elem%s( order_num ), elem%W( order_num ))

53

54 ! compute the absicca and weights for that rule

55 call dunavant_rule ( rule , order_num , xy , elem%W )

56 elem%r = xy (1 ,:)

57 elem%s = xy (2 ,:)

58 deallocate (xy)

59

60 elem%coeff = 0.5 d0

61 elem%nedgs = 3

62

63 case ( GEN_QUADRI )

64

65 call grd% tfekete_table % lookup (d = rule , name = ’quadri ’, fekete_out

= tfekete &

66 , spacing = ’equal_space ’, s = 3, echo = .true .)

67

68 ! call tfekete %init(d = rule , name = ’quadri ’ &

69 ! , spacing = ’equal_space ’, s = 3, echo = .true .)

70 elem% ngauss = size( tfekete %w)

71

72 ! allocate space for that

73 allocate (elem%r(elem% ngauss ), elem%s(elem% ngauss ), elem%W(elem%

ngauss ))

74

75 elem%r = tfekete % fin_coords (1, :)

76 elem%s = tfekete % fin_coords (2, :)

77 elem%W = tfekete %w

78

79 elem%coeff = 1.0 d0
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80 elem% nedgs = 4

81

82 ! ! deallocate stuff in tfekete object

83 ! call tfekete %clean ()

84

85 case default

86 print *, ’unknown elname in obtaining quadrature rules! stop ’

87 stop

88

89 end select

Next, the basis functions and their derivatives are initialized, then evaluated.

91 ! initializing the basis functions and their derivatives

92 call elem% tbasis %init(grd% maselem (ielem)%xi , grd% maselem (ielem)%eta &

93 , grd% elname (ielem))

94

95 allocate (elem%psi(npe ,elem% ngauss ) &

96 , elem% d_psi_d_xi (npe ,elem% ngauss ) &

97 , elem% d_psi_d_eta (npe ,elem% ngauss ) )

98

99 ! evaluating the basis function and their derivatives at

100 ! Gauss - Legendre ( quadrature ) points and then storing

101 do i = 1, elem% ngauss

102 x0 = elem%r(i)

103 y0 = elem%s(i)

104 call elem% tbasis %eval(x0 , y0 , 0, elem%psi (:,i) )

105 call elem% tbasis %eval(x0 , y0 , 1, elem% d_psi_d_xi (:,i) )

106 call elem% tbasis %eval(x0 , y0 , 2, elem% d_psi_d_eta (:,i))

107 end do
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After that, the Jacobian of transformation and its inverse and the value of Jacobian

at each Gauss-Legendre point is initialized, then evaluated. Further detail about comp_Jstar

is shown later in this appendix.

109 ! allocate Jacobian of transformation

110 allocate (elem%jac (2,2, elem% ngauss ), elem% Jstar (2,2, elem% ngauss ) )

111 allocate (elem%JJ(elem% ngauss ) )

112

113 ! compute the Jacobian of transformation matrix , its inverse and

114 ! the value of Jacobian at each Gauss - Legendre point

115 do i = 1, elem% ngauss

116 call comp_Jstar (grd , elem , ielem , i, elem%jac (:,:,i) &

117 , elem% Jstar (:,:,i), elem%JJ(i) )

118 end do

Then, the elemental stiffness matrices and equation right-hand-side is initialized.

120 ! initialize the stiffness matrix

121 allocate (elem%K(elem%neqs ,elem%neqs , npe , npe))

122 allocate (elem%M(elem%neqs ,elem%neqs , npe , npe))

123 elem%K = 0.0 d0

124 elem%M = 0.0 d0

125

126 ! allocating and initializing rhs

127 allocate (elem%Q(elem%neqs ,npe))

128 allocate (elem%f(elem%neqs ,npe))

129 elem%Q = 0.0 d0

130 elem%f = 0.0 d0

Next, we initialize the edges, by determining the start and end point of the segments

and generate neighbor information for the connectivity matrix.
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132 ! allocate and init edges

133 if ( allocated (elem%edgs) ) deallocate (elem%edgs)

134 allocate (elem%edgs(elem%nedgs ))

135

136 ! allocate /init neighbors ( initially one neighbor !)

137 !

138 ! determine the start and the end of the segments shared with

neighbors

139 do ii = 1, elem% nedgs

140 allocate (elem%edgs(ii)% neighs (1))

141 pt1 = ii

142 pt2 = ii + 1

143 if ( ii .eq. elem%nedgs ) pt2 = 1

144 elem%edgs(ii)% neighs (1)%xs = elem%x(:, pt1)

145 elem%edgs(ii)% neighs (1)%xe = elem%x(:, pt2)

146 end do

147

148 ! adding neighbors

149 select case (grd% elname (ielem))

150 case ( GEN_QUADRI )

151

152 elem%edgs (2)% neighs (1)% elnum = grd%e2e(ielem , 1)

153 elem%edgs (3)% neighs (1)% elnum = grd%e2e(ielem , 2)

154 elem%edgs (4)% neighs (1)% elnum = grd%e2e(ielem , 3)

155 elem%edgs (1)% neighs (1)% elnum = grd%e2e(ielem , 4)

156

157 case ( GEN_TRIANGLE )

158

159 elem%edgs (2)% neighs (1)% elnum = grd%e2e(ielem , 1)

160 elem%edgs (3)% neighs (1)% elnum = grd%e2e(ielem , 2)

161 elem%edgs (1)% neighs (1)% elnum = grd%e2e(ielem , 3)
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162

163 end select

164

165 ! adding points per edge

166 if ( elem%p > 0 ) then ! we have points on the edges

167 elem% npedg = size(grd% el2edg (ielem)%edg1) + 2

168 ! end points are included !

169

170 last_pt = elem% nedgs + 1

171 allocate (pts(elem% npedg))

172

173 do ii = 1, size(elem%edgs)

174 pt1 = ii

175 pt2 = ii + 1

176 if ( ii .eq. size(elem%edgs) ) pt2 = 1

177

178 if ( elem%p >= 2 ) then ! higher order elements

179 int1 = last_pt

180 int2 = last_pt + elem%npedg - 3

181 pts = (/ pt1 , (/ (jj , jj = int1 , int2) /) , pt2 /)

182 last_pt = int2 + 1

183 else

184 pts = (/ pt1 , pt2 /)

185 end if

186

187 allocate (elem%edgs(ii)%pts(elem% npedg ))

188 elem%edgs(ii)%pts = pts

189 end do

190

191 deallocate (pts)
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192 end if

Last, the boundary condition tag for each edge is defined.

194 ! specify the tag of the edges

195 do ii = 1, size(elem%edgs)

196 elem%edgs(ii)%tag = grd% local_edg_bc (elem%number , ii)

197 end do

198 end subroutine init_elem

Computing the Jacobian of transformation

The process for the Jacobian of transformation calculation subroutine comp_Jstar is

described here. This subroutine computes the Jacobian of transformation, J or in our code

jac, and the inverse of the Jacobian of transformation, J∗ or in our code Jstar, at the Gauss

points rk, sk within the element elem for element number ielem in the grid called grd. The

determinant of Jacobian of transformation is returned in JJ.

First, the subroutine variables are called and zeroed.

1 subroutine comp_Jstar (grd , elem , ielem , k, jac , Jstar , JJ)

2 implicit none

3 type(grid), intent (in) :: grd

4 type( element ), intent (in) :: elem

5 integer , intent (in) :: ielem , k

6 real *8, dimension (: ,:) , intent (out) :: jac , Jstar

7 real *8, intent (out) :: JJ

8

9 ! local vars

10 integer :: i
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11 real *8 :: xi , yi

12 real *8, dimension (2) :: der

13 real *8 :: dx_dr , dx_ds , dy_dr , dy_ds

14 integer :: npe

15

16 ! hard reset

17 jac = 0.0 d0; Jstar = 0.0 d0; JJ = 0.0 d0

18 xi = 0.0 d0; yi = 0.0 d0; der = 0.0 d0

19 dx_dr = 0.0 d0; dx_ds = 0.0 d0; dy_dr= 0.0 d0; dy_ds = 0.0 d0

20 npe = grd%npe(ielem)

21 ! print *, ’============================================= ’

22 ! print *, ’============================================= ’

23 ! print *, ’computing jacobian for elem #’, ielem

24 ! print *, ’============================================= ’

25 ! print *, ’============================================= ’

Then, components of the computation are calculated. For each point in the element,

the derivatives d_psi_d_xi and d_psi_d_eta are used with the nodal coordinate to compute

dx_dr, dx_ds, dy_dr, and dy_ds.

27 ! compute the components of jac

28 do i = 1, npe ! assuming iso - geometric expansion for x, y

29 ! print *, ’at point #’, grd%icon(ielem ,i)

30 der (1) = elem% d_psi_d_xi (i,k)

31 der (2) = elem% d_psi_d_eta (i,k)

32 ! print *, ’der = [’, der , ’]’

33 xi = grd%x(grd%icon(ielem ,i))

34 yi = grd%y(grd%icon(ielem ,i))

35 ! print *, ’xi = ’, xi , ’yi = ’, yi

36 dx_dr = dx_dr + xi * der (1)

37 dx_ds = dx_ds + xi * der (2)
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38 dy_dr = dy_dr + yi * der (1)

39 dy_ds = dy_ds + yi * der (2)

40 ! print *, ’ total dx_dr = ’, dx_dr

41 ! print *, ’ total dx_ds = ’, dx_ds

42 ! print *, ’ total dy_dr = ’, dy_dr

43 ! print *, ’ total dy_ds = ’, dy_ds

44

45 end do

Last, the Jacobian of transformation, its determinant and the inverse of the Jacobian

J∗ is computed and validated.

47 ! compute jac

48 jac (1 ,1) = dx_dr; jac (1 ,2) = dy_dr

49 jac (2 ,1) = dx_ds; jac (2 ,2) = dy_ds

50

51 ! comp JJ , i.e. det of jac

52 JJ = dx_dr * dy_ds - dx_ds * dy_dr

53

54 ! check it , should be valid grid !!!

55 if (JJ <= 0.0 d0) then

56 print *, ’error : negative or zero Jacobian at element (’,ielem ,’)’

57 ! print *, ’ JJ = ’, JJ

58 stop

59 ! else

60 ! print *, ’OKKKK : positive Jacobian at element (’,ielem ,’)’

61 ! print *, ’ JJ = ’, JJ

62 end if

63

64 ! comp inverse of jac and store it in Jstar

65 Jstar (1 ,1) = 1.0 d0 / JJ * jac (2 ,2)
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66 Jstar (2 ,2) = 1.0 d0 / JJ * jac (1 ,1)

67 Jstar (1 ,2) = -1.0d0 / JJ * jac (1 ,2)

68 Jstar (2 ,1) = -1.0d0 / JJ * jac (2 ,1)

69 end subroutine comp_Jstar
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