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Abstract

More and more optimization algorithms have been proposed to solve complex op-

timization problems in recent years. Most of them have complex dynamic systems

including many variable parameters and some features such as rotation characteristics,

high dimension, dynamical and hard to measure, and even difficult to make a mathe-

matical model. It is a challenging work for researchers to pay attention to figure out

more effective and efficient optimization algorithm. Nature-inspired meta-heuristic

(NMH) algorithms are well-known for promising results in combinatorial optimiza-

tion. Evolutionary algorithms (EAs) as population-based computational intelligence

are widely applied to various optimization problems, which show tremendous po-

tential and make great effort in the field of optimization. However, optimization

problems are becoming more and more complex, thus a traditional algorithm which

has single search mechanism generally suffers from weak search ability or slow con-

vergence speed, which leads to unsatisfying results. In these scenarios, hybridization

of algorithms is a powerful method. Every algorithm has its inherent pros and cons.

Researchers have been trying to improve their search patterns and search styles in

order to figure out their weaknesses or limitations and then combine them with other

effective methods. However, the search mode has not been researched deeply. In this

paper, we find that search style and individual selection mechanism for interaction are

the core problems for a meta-heuristic algorithm. In particular, we focus on search

style and have studied the principle of basic search style. Spherical evolution (SE) a

spherical search style. Experiments have demonstrated that it is a powerful optimiza-
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tion tool for function optimization and real-world problems. However, there are some

limitations in SE. SE is sensitive to some initial parameters and the angle of spherical

search style influences its search behavior. Thus, although it is a promising algorithm,

its performance is limited by its single spherical search. Hypercube search (HS) style

has been widely used in various NMH algorithms. By the first order difference, in-

dividuals gradually search towards global optimum. In addition, chaos is a common

natural phenomenon. Chaotic local search (CLS) makes use of its randomicity and

ergodicity. By combining CLS, many traditional NMH algorithms get significant im-

provement in their performances, such as chaotic BSO, DE combined with CLS, and

chaotic GSA. They demonstrate that CLS can greatly enhance their search ability and

avoid trapping into premature. Backtracking search optimization algorithm (BSA)

,BSA is similar to evolutionary algorithm, including selection, crossover, mutation and

operations. The core idea of BSA is to get guidance from the previous population and

search solutions with better fitness. While BSA only evaluates the individuals based

on the fitness, which could make the individuals with better exploration prospects

be discarded when updating population. The Negatively Correlated Search (NCS) is

an improved stochastic optimization inspired by human cooperation. NCS applies a

parallel search pattern of multi-agent for modeling based on probability distribution

to promote the diversity of search behaviors in an information sharing and coopera-

tion way, which establishes a novel approach for cooperation among individuals. NCS

is constituted of multiple search processes that develops into a new individual with

the influence of the search results from itself and others. Generally, the relationship

among search processes is negatively correlated, which means that the framework of

the algorithm tends to form a situation where each search process is distributed in

different regions and avoid duplication to prevention of local optimum. Therefore,

base on these, I propose several improved search style and verified on thirty CEC2017
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benchmark functions and real-world optimization problems . These algorithms are

introduced as follows. (1) TDSD: A New Evolutionary Algorithm Based on Triple

Distinct Search Dynamics, for the first time we propose a novel algorithm which

contains triple distinct search dynamics (TDSD), i.e., SE, HS and CLS. We take ad-

vantage of them to implement more sufficient and effective search. Control strategies

among three kinds of search styles are conducted to provide a good balance between

exploration and exploitation phases. Thus, the performance of TDSD is satisfying.

Thirty CEC2017 benchmark functions and three real-world optimization problems are

used to evaluate TDSD. Experimental results demonstrate that TDSD has the opti-

mization potential.. (2) NC-GSA: an improved gravitational search algorithm based

on negative correlation is proposed with the hypothesis that hybridization of algo-

rithms improves optimization performances and efficiency. For the ease of consistent

description, the novel GSA based on negative correlation learning is abbreviated to

NC-GSA. As population-based search methods, GSA and NCS exchange information

among individuals through fitness and search area, respectively. While GSA conducts

exploitation in the search space, NCS fulfills exploration by encouraging discrepant

search behaviors to increase the optimization accuracy. By doing so, NC-GSA is ex-

pected to well balance the exploitation and exploration, thus possessing a significant

better or competitive performance in comparison with its component algorithms. Ex-

perimental results based on thirty benchmark optimization functions demonstrate the

robustness of NC-GSA, and also indicate that NC-GSA performs better than GSA

and NCS in terms of solution quality and convergence speed. Additionally, a contrast

experiment is also conducted to verify the influence of the implementation sequence of

component algorithms on the performance, and the results suggest that NCS should

be implemented prior to GSA, and the reason seems to be that NCS diversifies the

distribution of solutions, upon which GSA utilizes the gravitational search to obtain a
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fast convergence. (3) BSANCS: backtracking search optimization algorithm (BSA)is

new evolutionary algorithm (EA) that to solve global optimization problems. BSA

is similar to evolutionary algorithm, including selection, crossover, mutation and op-

erations. The core idea of BSA is to get guidance from the previous population and

search solutions with better fitness. While BSA only evaluates the individuals based

on the fitness, which could make the individuals with better exploration prospects be

discarded when updating population. Thus, in this paper, we proposed a novel way

to improve exploration abilities that utilize negative correlation learning enhanced

search behavior in BSA to further improve its search ability. We used benchmark

function suit CEC2017 to verify the proposed new algorithm and the experiment re-

sult indicates the feasibility of this hybridization. The thesis is organized as follows:

Chapter 1 gives a brief introduction about the Search Dynamics. Chapter 2 briefly

introduces the Search Pattern and Search Style. Chapter 3 introduces Triple Distinct

Search Dynamics (TDSD). In Chapter 4, an improved gravitational search algorithm

based on negative correlation (NC-GSA) is introduced. The in Chapter 5, negative

correlation learning enhanced search behavior in BSA is introduced (BSANCS). Fi-

nally, Chapter 6 general conclusions of this thesis and some possible research trends

also been pointed out.
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Chapter 1

Introduction

1.1 Evolutionary Computation

In the field of computational intelligence, evolutionary computing is a family of global

optimization algorithms inspired by biological evolution. It is also a subfield of artifi-

cial intelligence and soft computing that studies these algorithms. Technically, they

are a series of population-based trial and error solvers, which with meta-heuristic or

random optimization characteristics..

In evolutionary computation, the general process is that an initial set of candidate

solutions will be generated and updated iteratively. Then a new generation of prod-

ucts was created by randomly deleting less desired ideal solutions and introducing

small random changes. In biological terms, a group of populations undergoes natural

selection (or artificial selection) and mutation. As a result, the population will grad-

ually evolve to increase the fitness. In this case, the fitness function of the algorithm

is selected.

Evolutionary computation technology can produce highly optimized solutions to

various problems, making them very popular in computer science. Because of there

are many variations and extensions, they are suitable for more specific questions

and data structure series. Evolutionary computing is sometimes used as a computer

simulation experiment program for evolutionary biology to study common aspects of
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general evolutionary processes.

1.2 Evolutionary Algorithms

Evolutionary algorithms constitute a subset of evolutionary computing because they

usually only involve technologies that implement mechanisms inspired by biological

evolution, such as replication, mutation, reorganization, natural selection, and sur-

vival of the fittest. Candidate solutions to optimization problems play an individual

role in the population, and the cost function determines the environment in which

the solution will ”survive” (see also fitness function). Then, after repeatedly applying

the above operators, the population will evolve.

In this process, there are two main forces that form the basis of the evolution-

ary system: recombination mutations and crossovers create the necessary diversity,

thereby promoting novelty, and choice becomes a major means of improving quality.

Many aspects of this evolutionary process are random. On the one hand, the

information changed by reorganization and mutation is randomly selected. On the

other hand, the selection operator can be deterministic or random. In the latter case,

individuals with higher fitness have a higher chance of being selected than individuals

with lower fitness, but usually even individuals with low fitness have the opportunity

to become parents or survive.

A good balance between exploration and exploitation is the key to a evolution-

ary algorithms. However,the search mode has not been researched deeply. In this

paper,we deeply study the search dynamics, and find that search style and individ-

ual selection mechanism for interaction are the core problems for a meta-heuristic

algorithm.



3

1.3 Search Dynamics

In these years, Nature-inspired meta-heuristic (NMH) algorithms are more and more

well-known for promising results in combinatorial optimization. Evolutionary algo-

rithms (EAs) as population-based computational intelligence are widely applied to

various optimization problems, which show tremendous potential and make great ef-

fort in the field of optimization.However, optimization problems are becoming more

and more complex, thus a traditional algorithm which has single search mechanism

generally suffers from weak search ability or slow convergence speed, which leads to

unsatisfying results. So it is necessary to study search dynamics to find what is the

key aspect to improve the search ability in evolutionary algorithms. Optimization

usually aims to find the best point in the search space, that is, finding the global

minimum of objective function. However, the objective function may be non-linear,

complex or non-differentiable. When the objective function is non-linear, complex

or non-differentiable, evolutionary algorithm (EA) [1, 2] is usually used to solve the

global optimal problem. EA is a mature global optimization method with high ro-

bustness and wide applicability. EAs can solve different types of problems. Therefore,

EAs have be used by various industries to solve the global optimum problem [3, 4].

In the family of EAs, many algorithms exhibit great search abilities. For example,

the particle swarm optimization algorithm (PSO) [5] simulates the social behavior of

creatures, such as bird flock or fish schooling. The ant colony optimization algorithm

(ACO) [6] is stochastic search algorithm that simulates the process of natural ants

seeking source of food. The artificial bee colony algorithm (ABC) [7–9] is an opti-

mization algorithm that simulates the foraging behavior of honey bees. The genetic

algorithm (GA) [10] is a meta-heuristic algorithm inspired by the process of natural

selection strategy. The differential evolution algorithm (DE) [11–14] is a method to

optimize problems by alliteratively trying to improve a candidate solution with regard
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to a given measure of quality. Among these kind of EAs,which can categorized by

their different search pattern and search style,which will discuss later.
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Chapter 2

Search Pattern and Search Style

The computational model of evolutionary computation is used as a key element in

solving problems. Many evolutionary computing models have been proposed. We

call them evolutionary algorithms. They share a common conceptual basis which

can simulate the evolution of natural animals through nature selection and regenera-

tion processes. The first evolutionary algorithms proposed can be went back to 1950s

years (e.g., Fraser, 1957; Box, 1957). To More simplicity, we won’t focus on the earlier

work. However,we normally will talk about more detail the following three method-

ologies which have been proposed in the past years: ”evolutionary programming” (et

al Fogel. (1966), ”evolutionary strategy” (Rechenberg, 1973) and ”genetic algorithm”

(Holland, 1975).Although each of these variants is implemented in a different way.

Evolutionary algorithms have been applied in many applications. The examples in-

clude data mining, pattern recognition, and complex functions. In this case, many

functions have been added to EA, which can improve the quality of the solution,as a

result the EAs look very different from one to another,however they can be divided

into different search mode. As for the computational search mode,which is majorly

about its search pattern and search style. Search pattern indicates individuals’ search

mechanism. It guides how individuals search. Search style denotes individuals’ search

operator, implying individuals’ evolutionary method. To be specific, search pattern

defines which search style is used. Also, it can contain various search styles.In addi-
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tion, search pattern it gives the canonical form of individuals’ search.The following is

three major search mode we have studied.

2.1 TDSD Search

TDSD is a self-adaptive search algorithm. It can adaptively adjust search strategies

according to current search situation. SE has a large search range, hence it can ex-

tensively search the space and avoid trapping into local optima. HS is a directional

search. Based on new found solutions, it can guide individuals towards more promis-

ing area. Thus, it improves the exploration ability. CLS implements local search to

enhance the exploitation ability. TDSD adaptively switches these three search strate-

gies to reinforce its overall search ability. In six NMH algorithms, individuals only

have one kind of search strategy. In other words, they have the same search behav-

iors in each algorithm. However, in TDSD, each individual executes different search

strategies according to own search situation. Their search diversity is remarkably

improved. Consequently, they can find better solutions than six NMH algorithms on

numerous functions.

2.2 Negatively Correlated Search

the negatively correlated search (NCS) [15] is an improved stochastic optimization

inspired by human cooperation. NCS applies a parallel search pattern of multi-agent

for modeling based on probability distribution to promote the diversity of search

behaviors in an information sharing and cooperation way, which establishes a novel

approach for cooperation among individuals. NCS is constituted of multiple search

processes that develops into a new individual with the influence of the search results

from itself and others. Generally, the relationship among search processes is negatively

correlated, which means that the framework of the algorithm tends to form a situation
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where each search process is distributed in different regions and avoid duplication to

prevention of local optimum.

NCS is highlighted by the consideration of both the fitness of individuals as quality

measurement and individual differences. In a steep solution space, the global optimal

solution where an individual with poor fitness comprising a piece of excellent gene,

in all probability, might be missed or eliminated in the early stage. As a solution

for preserving misinterpreted solution, NCS selects candidate solutions according to

search behavior (probability distribution of new individuals) rather than distance

between individuals. Based on the information of population distribution and trans-

formation of population distribution, NCS leads to sub population division to simplify

the solution space of the original problem through information transmission among

individuals. Compared with the traditional evolutionary algorithm, NCS has the ad-

vantages of high efficiency and the characteristics of robustness. The scaling factor

A is positive control group evolutionary rate selection. Although there is no upper

limit on the A, the RMS value is less than ”1”, and is a random number between 0

and 1.

2.3 Backtracking Search

Backtracking search optimization algorithm (BSA) [16] is a new EA that to solve

global optimization problems. BSA is based on basic genetic rules. Therefore,it

includes five processes: initialization, selection-I, mutation, crossover and selection-

II. In initialization process, the population (pop) is randomly generated in the search

space. In selection-I stage, BSA possesses a memory to store historical population

(pophistorical) that to be used for calculating the search direction. In mutation process,
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BSA generates a mutant population (popmutation) using Eq. (5.1):

popmutation = pop+ F · (pophistorical − pop), (2.1)

where F is a parameter that controls the amplitude of the search direction matrix

(pophistorical). The F is a standard normal distribution, which is formulated as F =

3 · randn.

Then, in crossover stage, trial population (offsprings) is generated by crossover

process using Eq. (5.2):

offsprings = pop+ (map · F ) · (pophistorical − pop), (2.2)

where map is binary integer value matrix of size Popsize · Dim (Popsize is size of

population. Dim is population dimension) that guides crossover operation. Finally,

in selection-II process, population (pop) is updated by trial population (offsprings)

with the better fitness value. If the fitness value of the best population (Pbest) is

better than the currently global minimum value, the global minimum population is

updated to be Pbest, the global minimum value is updated to the fitness value of Pbest.

Due to BSA only evaluates the individuals based on the fitness, individuals with

promising exploration prospects may be discarded when updating population. There-

fore, we should take these individuals into account when executing selection operation.

Now, many ways of optimizing algorithms are made by hybridizing two or more algo-

rithms � [17–20]. Inspired by this, we combine BSA with negatively correlated search

(NCS) [15] to enhance search behavior backtracking search mechanism. We call this

hybridized algorithm BSANCS. The NCS models the search behavior of individual

search process as a probability distribution, and calculates the correlation among dif-

ferent individual via a variable called Bhattacharyya distance. The NCS maintains

search behaviors by encouraging differences among the probability distributions. The
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main property of NCS is that it selects individual with better fitness value and larger

probability distributions into the next generation. NCS can population and promote

negatively correlated search by sharing information to improve exploration abilities

of BSA.
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Chapter 3

Triple Distinct Search Dynamics
(TDSD)

3.1 Introduction

More and more optimization algorithms have been proposed to solve complex op-

timization problems in recent years [21–23]. Most of them have complex dynamic

systems including many variable parameters and some features such as rotation char-

acteristics, high dimension, dynamical and hard to measure, and even difficult to

make a mathematical model. It is a challenging work for researchers to pay attention

to figure out more effective and efficient optimization algorithm.

Nature-inspired meta-heuristic (NMH) algorithms are well-known for promising

results in combinatorial optimization. Evolutionary algorithms (EAs) as population-

based computational intelligence are widely applied to various optimization problems,

which show tremendous potential and make great effort in the field of optimization

[24,25]. However, optimization problems are becoming more and more complex, thus

a traditional algorithm which has single search mechanism generally suffers from weak

search ability or slow convergence speed, which leads to unsatisfying results. In these

scenarios, hybridization of algorithms is a powerful method. Every algorithm has

its inherent pros and cons. Researchers have been trying to improve their search

patterns and search styles in order to figure out their weaknesses or limitations and
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then combine them with other effective methods [26–28].

Differential evolution (DE) [29] is a heuristic random search algorithm. Wang et al.

have embedded DE with multi-objective sorting-based mutation operators [30]. Its

fitness and diversity information are simultaneously considered for selecting parents.

As a result, a good balance between exploration and exploitation can be achieved to

greatly enhance the performance of DE. Gravitational search algorithm (GSA) [31]

is an adaptive search technology based on Newtonian gravity. In GSA, candidate

solutions of a population are modeled as swarm objects. These objects tend to move

towards the heaviest object. Yin et al. introduce a hybridization of K-harmonic mean

method into GSA to solve clustering problems [32]. Particle swarm optimization

(PSO) [5] is well-known for simulating social behaviors of wild animals such as birds’

flocking and fishes’ schooling. Tian et al. have successfully combined PSO with

DE to arrange rescue vehicles to extinguish forest fire problem [33]. Brain storm

optimization (BSO) [34] is inspired by the human brainstorming process. CBSO [35]

and ASBSO [36] are two kinds of hybridization of BSO with chaotic local search and

memory-based selection. At present, there are plenty of researches demonstrating that

hybrid methods gain the great success in resolving complex optimization problems.

Some of them are listed in Table 3.1.

Table 3.1 has shown diversity, flexibility and effectiveness of meta-heuristic hy-

bridization in their applications. However, to take insight into the mechanism of

hybridization, there is no quintessential difference among them. The only differ-

ence is search operators. Two main factors can be considered: search pattern and

search style. Researchers study advantages and disadvantages of certain algorithm

to reinforce its search ability in order to get an excellent hybrid algorithm. From

state-of-the-art hybrid algorithms, a spiral structure can help to realize an effective

strategy in some scenarios, such as sine cosine algorithm (SCA) [48], artificial algae



12

Table 3.1: Brief summary of meta-heuristic hybridization and their applications.
NMH hybridization Applications
GA+SA [37] Functions
GSA+K-harmonic means [32] Clustering problems
PSO+DE [33] Scheduling problems
GA+ACO [38] Traveling salesman problems
GA+PSO [39] Traveling salesman problems
SA+TS [40] Traveling salesman problems
GRASP+PSO [41] Traveling salesman problems
IA+ACO [42] Traveling salesman problems
ABC+ACO [43] Traveling salesman problems
PSO+ACO [44] Traveling salesman problems
GA+ACO+PSO [45] Traveling salesman problems
PSO+ACO+3-opt [46] Traveling salesman problems
GA+SA+ACO+PSO [47] Traveling salesman problems
BSO+flexible search [36] Functions and real-world problems
DE+sorting-based mutation [30] Functions and real-world problems

algorithm (AAA) [49], and so on [50].

Recently, a novel NMH algorithm named spherical evolution (SE) [51] has been

proposed for solving continuous optimization problems. It has a spherical search style.

Experiments have demonstrated that it is a powerful optimization tool for function

optimization and real-world problems. However, there are some limitations in SE. SE

is sensitive to some initial parameters and the angle of spherical search style influences

its search behavior. Thus, although it is a promising algorithm, its performance is

limited by its single spherical search.

Hypercube search (HS) style has been widely used in various NMH algorithms

[5, 29, 34]. By the first order difference, individuals gradually search towards global

optimum. In addition, chaos is a common natural phenomenon. Chaotic local search

(CLS) makes use of its randomicity and ergodicity. By combining CLS, many tra-

ditional NMH algorithms get significant improvement in their performances, such

as chaotic BSO [35], DE combined with CLS [52, 53], and chaotic GSA [54]. They

demonstrate that CLS can greatly enhance their search ability and avoid trapping

into premature.

In this paper, for the first time we propose a novel algorithm which contains triple
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distinct search dynamics (TDSD), i.e., SE, HS and CLS. We take advantage of them to

implement more sufficient and effective search. Control strategies among three kinds

of search styles are conducted to provide a good balance between exploration and

exploitation phases. Thus, the performance of TDSD is satisfying. Thirty CEC2017

benchmark functions and three real-world optimization problems are used to evaluate

TDSD. Experimental results demonstrate that TDSD has the optimization potential.

The main contributions of this paper can be summarized as follows: (1) We make

first attempt to well organize SE, HS and CLS. Triple distinct search dynamics greatly

improve the search ability of algorithm. (2) We implement good control strategies for

balancing these three search mechanisms. (3) Sufficient experiments are conducted

to verify the performance of TDSD.

The remainder of this paper is organized as follows. Section 3.2 gives brief intro-

duction of SE. Section 3.3 proposes TDSD in details. Section 3.4 presents simulations

and analyses of results. Section 3.5 summarizes the research and gives future work.

3.2 Spherical evolution

Search operators play important roles in NMH algorithms. Researches have pointed

out that these NMH algorithms are very different [51]. However, their mechanisms

can be summarized as two main characteristics. One is search pattern and the other

is search style. Search pattern indicates individuals’ search mechanism. It guides

how individuals search. Search style denotes individuals’ search operator, implying

individuals’ evolutionary method. To be specific, search pattern defines which search

style is used. Also, it can contain various search styles. Thus, search pattern can be

represented as Eq. (3.1).

Xnew
i,d = Xγ,d +

n∑
k=1

S(Xk
α,d, X

k
β,d), (3.1)
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where Xnew
i,d indicates the new ith solution in the dth dimension. Xα, Xβ and Xγ are

three definite solutions selected by a certain strategy. S() represents updating units

in the search operator and n is the number of updating units.

Hypercube search is popularly used in many well-known NMH algorithms owing

to its simple description and multi-dimension extension, described as Eq. (3.2).

S(Xk
α,d, X

k
β,d) = SF1() · (SF2() ·Xk

α,d − SF3() ·Xk
β,d), (3.2)

where SF1(), SF2() and SF3() denote three scaling factor functions which tune the

scale of difference between Xk
α,d and Xk

β,d.

SE is one of recently proposed NMH algorithms [51]. The essential difference of

search operators between SE and other algorithms is that SE adopts a spherical search

style whereas others use a hypercube search style. When algorithms are limited to two

dimensions, SE presents a circular search style whereas others conduct a rectangular

one. Fig. 3.1 shows their search styles.

As shown in Fig. 3.1, in two dimensions, a hypercube search trajectory is a rect-

angle whereas a spherical search explores one circle with center O and radius OF .

Dotted lines with black arrow S⃗D, S⃗C, S⃗E and S⃗G denote two solution vectors for

hypercube search and spherical search, respectively. In hypercube search, its search

area is determined by DA and DB. In spherical search, its angle changes from 0

to 2π. When its radius OF equals to rectangular diagonal DC, it is obvious that

the spherical search has larger search space than hypercube search, which means it

has better exploration ability. This advantage can help spherical search get more

possibility to avoid trapping into local optima. When dimension is increased, spheri-

cal search works according to Euclidean distance. Its principle in one, two and high
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Figure 3.1: Illustration of hypercube and spherical search styles in two-dimension space.
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dimensions is described as Eqs. (3.3)-(3.8).

S1(Xα,d, Xβ,d) = SF () · |Xα,d −Xβ,d| · cosθ, (3.3)

S2(Xα,d, Xβ,d) = SF () · ∥Xα,∗ −Xβ,∗∥2 · sinθ, (3.4)

S2(Xα,d, Xβ,d) = SF () · ∥Xα,∗ −Xβ,∗∥2 · cosθ, (3.5)

S3(Xα,d, Xβ,d) = SF () · ∥Xα,∗ −Xβ,∗∥2 · Π
dim−1
d=1 sinθd, (3.6)

S3(Xα,d, Xβ,d) =SF () · ∥Xα,∗ −Xβ,∗∥2 · cosθd−1

· Πdim−1
d=2 sinθd, (3.7)

S3(Xα,d, Xβ,d) = SF () · ∥Xα,∗ −Xβ,∗∥2 · cosθdim−1, (3.8)

where |Xα,d −Xβ,d| represents the absolute value of distance between Xα,d and Xβ,d

in one dimension. ∥Xα,∗ −Xβ,∗∥2 indicates the Euclidean distance between Xα,∗ and

Xβ,∗ in high dimensions. θ is a random number in [0, 2π] and denotes the angle

between Xα,∗ and Xβ,∗.

According to Eqs. (3.3)-(3.8), seven search operators are proposed as follows:

Xnew
i,d = Xi,d + Sm(Xi,d, Xg,d) + Sm(Xr1,d, Xr2,d), (3.9)

Xnew
i,d = Xg,d + Sm(Xr1,d, Xr2,d), (3.10)

Xnew
i,d = Xg,d + Sm(Xr1,d, Xr2,d) + Sm(Xr3,d, Xr4,d), (3.11)

Xnew
i,d = Xr1,d + Sm(Xr2,d, Xr3,d), (3.12)

Xnew
i,d = Xr1,d + Sm(Xr2,d, Xr3,d) + Sm(Xr4,d, Xr5,d), (3.13)

Xnew
i,d = Xi,d + Sm(Xr2,d, Xr3,d), (3.14)
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Xnew
i,d = Xi,d + Sm(Xr2,d, Xr3,d) + Sm(Xr4,d, Xr5,d), (3.15)

where m ∈ {1, 2, 3} and Xg indicates global best individual. Xri, i ∈ {1, ..., 5} denote

one randomly selected individual. According to Tang’s research [51], among these

search operators, Eq. (3.12) has the best search behavior.

Since SE has a simple mechanism and large search range, it is an efficient heuris-

tic approach. Its search angle is distributed in [0, 2π], thus its search trajectory is

directionless, which can provide more diverse evolutionary path. However, it may

generate opposite directions to result in slow convergence.

3.3 New algorithm TDSD

3.3.1 Brief introduction of CLS

CLS plays an important role and has achieved great success in memetic algorithms

which combine evolutionary algorithms with local search [55]. Its search behavior

can improve the quality of individuals and accelerate convergence speed due to its

ergodicity and randomicity. Dynamic property of chaos ensures that algorithms can

avoid sticking into stagnation in the exploitation phase. At present, CLS has been

greatly developed to improve various algorithms, such as PSO [56], DE [57], krill herd

algorithm [58] and so on [59, 60].

For CLS, chaotic maps are used to generate chaotic sequences. Gao et al. apply

CLS to GSA [54]. Mirjalili et al. embed ten chaotic maps to tune the gravitational

constant [61]. Yang et al. employ twelve chaotic maps to greatly increase the diversity

of search mechanism in BSO [35]. In this paper, we adopt one popular and traditional

chaotic map, namely Logistic map, described as follows:

Zk+1 = µZk(1− Zk), (3.16)
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where Zk is the kth chaotic number. µ = 4 and Z0 = 0.152.

According to chaotic sequences of Logistic map, CLS searches all dimensions of

each individual Xi to form new one Xnew
i as follows:

Xnew
i = Xi + r(Ub − Lb)(Zk − 0.5), (3.17)

r = ρr, (3.18)

where r ∈ (0, 1) is chaotic search radius. Ub and Lb indicate upper and lower bounds

of Xi. ρ = 0.988 is a shrinking parameter.

3.3.2 Principle of TDSD

SE is a simple and efficient global optimization algorithm with large search space

and undirected search trajectory, however, its convergence speed is unsatisfying. HS

is popularly adopted because of its high search efficiency. CLS is utilized to help

individuals escape from local optima. These three kinds of search styles have own

characteristics and advantages, thus we combine them to propose new algorithm

TDSD, which makes individuals achieve better performances.

In TDSD, we adopt Eq. (3.14) as SE. Although SE with Eq. (3.12) has the best

performance in [51], we aim to precisely control each individual’s search. Thus, we

select Eq. (3.14) similar to Eq. (3.12) to avoid individuals’ randomness. HS is used

to generate new individuals as follows:

Xnew
i = Xi + Fi · EPi, (3.19)

where Fi is a scale factor and EPi stands for an effective path which makes Xi better

than its parent. CLS adopts Eq. (3.17) to enhance individuals’ exploitation abilities.

Since there are three kinds of search styles in TDSD, good control strategies among
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them are devised to help individuals continuously and effectively search. For them,

control strategies are described as follows:

(1) Control strategy of SE: If the offspring of SE is worse than its parent, SE

should search other directions by itself. Otherwise, current direction needs to be

further explored. Thus, HS should be used in next iteration.

(2) Control strategy of HS: If the offspring of HS is better than its parent, HS

should continue to search current direction. Otherwise, the offspring should be further

exploited. Thus, CLS is used in next iteration.

(3) Control strategy of CLS: When HS cannot find a better offspring, CLS carries

out 50 times to search local areas of the offspring. If CLS finds a better offspring

within 50 times, HS is used to explore the direction of this better offspring in next

iteration. Otherwise, SE is applied to expand the search direction of the offspring of

HS in next iteration.

The main procedures of TDSD are given as follows: 1) TDSD randomly generates

a population and starts from SE. 2) When the offspring of SE is worse than its parent,

SE continues to search other directions. 3) When the offspring of SE is better than

its parent, HS is used. 4) When the offspring of HS is better than its parent, the same

direction continues to be searched by HS. 5) When the offspring of HS is worse than

its parent, CLS is executed. 6) Within 50 times, if the offspring of CLS is better,

switch to HS. Otherwise, switch to SE. 7) Repeat 2)-6) until TDSD is terminated.

The whole procedures can be depicted by Fig. 3.2.

Pseudocode of TDSD is shown in Algorithm 1. U(0, 0.1) indicates a uniform

distribution and σ is the variance of Gaussian distribution. We use a variable σ to

adjust the Gaussian distribution in order to tune scale factor. In TDSD, SE, HS and

CLS are executed in lines 8, 10 and 27, respectively. In each iteration, one kind of

search style is selected and used to improve the search performance according to the



20

Initialization

Execute SE

Is offspring 
better? Is SE executed?

Execute SE

Execute CLS

Find better 
solution?Execute HS

Is termination 
condition satisfied?

End

N Y

N

N

Y

Y

Y

N

Figure 3.2: The flowchart of TDSD.
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Algorithm 1: TDSD
Input: Parameters F0, σ0, µ, Z0, r, ρ
Output: Optimal solution

1 Initialization: Randomly initialize N individuals and evaluate f(xi);
2 while Termination criterion is not satisfied do
3 Scale factor (SF) tuning with N(0, σ);
4 Dimension selection factor (DSF) tuning;
5 for i = 1 to N do
6 Randomly select two individuals xr1 and xr2, i ̸= r1 ̸= r2;
7 if flagi == 0 then
8 xnew

i,d = xi,d + Sm(xr1,d, xr2,d);
9 else

10 xnew
i = xi + Fi · EPi;

11 Evaluate f(xnew
i );

12 if f(xnew
i ) < f(xi) then

13 if flagi == 1 then
14 Fi = Fi + U(0, 0.1);
15 else
16 flagi = 1;
17 Fi = Fi − U(0, 0.1);
18 σi = σ0;
19 EPi = xnew

i − xi;
20 xi = xnew

i ;
21 else
22 if flagi == 1 then
23 Fi = F0;
24 flagsuc = 0;
25 for k = 1 to 50 do
26 Zk+1 = µZk(1− Zk);
27 xnew

i = xi + r(Ub − Lb)(Zk+1 − 0.5);
28 Evaluate f(xnew

i );
29 if f(xnew

i ) < f(xi) then
30 flagsuc = 1;
31 EPi = xnew

i − xi;
32 xi = xnew

i ;
33 break;

34 if flagsuc == 1 then
35 flagi = 1;
36 else
37 flagi = 0;
38 σi = σi − U(0, 0.1);
39 else
40 σi = σi + U(0, 0.1);
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difference between offspring and its parent. Based on this principle, TDSD effectively

integrates triple distinct search dynamics.

To illustrate the efficiency of TDSD, its time complexity is calculated where N is

population size, as follows: (1) Initialization process is O(N). (2) SF and DSF tuning

are O(N). (3) SE takes O(N2) in the worst case. (4) HS needs O(N) in the worst

case. (5) CLS costs O(N2) in the worst case. Thus, time complexity of TDSD can

be regarded as O(N2).

3.4 Experiments

3.4.1 Experimental setup

We adopt thirty CEC2017 benchmark functions to test the performance of TDSD.

F1-F3 are unimodal functions. F4-F10 are multimodal functions. F11-F20 are hybrid

functions. F21-F30 are composition functions. Six state-of-the-art NMH algorithms

including SE [51], HGSA [62], CLPSO [63], NCS [15], BSO [34] and DE [64] are used

to compare with TDSD. The population size N is 100 and the dimension of function is

30. The running time is 30 in order to reduce random errors. The maximum number

of iteration is 3000. The testing environment is PC with 3.10GHz Intel(R) Core(TM)

i5-4440 CPU and 8GB run time memory by using Matlab R2013b. Parameters are

used following the information provided by related literatures, shown in Table 3.2.

Mean and standard deviation (Std Dev) of optimization error between obtained

solution and global optimal solution of seven algorithms are listed in Tables 3.3 and

3.4. The best result on each function is highlighted by boldface. Wilxocon rank-sum

test at a significant level of α = 0.05 is conducted to make statistical analyses where

signs +, ≈ and − indicate that TDSD is better, equal and worse than comparative

algorithms on each function.
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Table 3.2: Parameter settings of TDSD and other algorithms.
Algorithm Parameters
TDSD F0 = 2.5, σ0 = 0.5, µ = 4, Z0 = 0.152, ρ = 0.988,

r = 0.05
SE σ0 = 0.1, using Eq. (3.12)
HGSA G0 = 100, L = 100, w1(t) = 1− t6/T 6,

w2(t) = t6/T 6

CLPSO ω0 = 0.9, ω1 = 0.4, c = 1.49445, m = 7,
pc = 0.05 ∼ 0.5

NCS r = 0.99, epoch = 10
BSO m = 5, p5a = 0.2, p6b = 0.8, p6biii = 0.4, p6c = 0.5
DE F = 0.5, CR = 0.9

3.4.2 Experimental results

From Tables 3.3 and 3.4, we can see that TDSD obtains more better results than

its peers. To be specific, TDSD is superior to SE, HGSA, CLPSO, NCS, BSO and

DE on 20, 17, 18, 28, 23, 26 functions, respectively. These results demonstrate

good search performance of TDSD. In six NMH algorithms, SE uses spherical search

and the others adopt HS according to their principles. Comparison between TDSD

and SE illustrates that three kinds of search styles are better than single spherical

search. HS and CLS further improve SE. Likewise, comparison between TDSD and

the others indicate that triple distinct search dynamics implement better performance

than single HS.

TDSD is a self-adaptive search algorithm. It can adaptively adjust search strate-

gies according to current search situation. SE has a large search range, hence it can

extensively search the space and avoid trapping into local optima. HS is a directional

search. Based on new found solutions, it can guide individuals towards more promis-

ing area. Thus, it improves the exploration ability. CLS implements local search to

enhance the exploitation ability. TDSD adaptively switches these three search strate-

gies to reinforce its overall search ability. In six NMH algorithms, individuals only

have one kind of search strategy. In other words, they have the same search behav-

iors in each algorithm. However, in TDSD, each individual executes different search
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Figure 3.3: The box-and-whisker diagrams of optimal solutions obtained by seven algorithms on F1,
F4, F17 and F26.
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Figure 3.4: The convergence graphs of average best-so-far solutions obtained by seven algorithms
on F1, F4, F17 and F26.
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strategies according to own search situation. Their search diversity is remarkably

improved. Consequently, they can find better solutions than six NMH algorithms on

numerous functions.

We plot box-and-whisker diagrams and convergence graphs on F1, F4, F17 and

F26 to show characteristics of seven algorithms. In Fig. 3.3, box-and-whisker dia-

grams of optimal solutions obtained by seven algorithms are shown. From it, we can

observe that TDSD has smaller distribution of optimal solutions than others’. On

these four functions, optimal solutions of six NMH algorithms change great whereas

optimal solutions of TDSD maintain relatively steady. It indicates the effectiveness

and stability of TDSD. Fig. 3.4 displays convergence graphs of average best-so-far

solutions of seven algorithms. The horizontal axis indicates the number of iteration

and the vertical axis denotes log value of average best-so-far solution. According

to Fig. 3.4, we can see that TDSD shows gradual convergence on these four func-

tions. Six NMH algorithms either trap into premature convergence or do not find

superior solutions. Compared with them, TDSD shows more effective convergence

characteristics. It can maintain good convergence speed. In Fig. 3.4, TDSD does

not converge quickly in the early search process, hence premature convergence does

not occur. In the late search process, TDSD still finds better solutions, which shows

its good exploitation ability. In other words, exploration and exploitation abilities of

TDSD are balanced such that its convergence is effective and continuous. To show

the convergence of individuals, we plot their search graphs on F10 with 2 dimensions

in Fig. 3.5. The population size is 100 and the number of iteration is 3000. F10 is a

multi-modal function which has many local optima. Fig. 3.5(a) shows one hundred

individuals are randomly distributed with the first iteration. Fig. 3.5(b) displays

that individuals converge towards some areas with the 200th iteration. Fig. 3.5(c)

exhibits that individuals further reduce convergence areas. Fig. 3.5(d) reveals final
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Figure 3.5: The search graphs of TDSD on F10 with 2 dimensions where indicates the best-so-far
solution.

convergence of individuals with the 3000th iteration. From Fig. 3.5, we can see that

individuals gradually converge into different areas, suggesting high search diversity.

This is because each individual only depends on own search situation and strategy.

All individuals do not completely converge into one point. Thus, TDSD maintains

the population diversity to improve its search performance.

3.4.3 Analysis of Parameters

TDSD uses CLS to further exploit local areas of solutions found by HS. In TDSD, the

number of times of CLS (nCLS) may influence the exploitation ability. To analyze

it, we set nCLS to 25, 50, 75 and 100. Experimental results are listed in Table 3.5.

According to Table 3.5, we can find that nCLS = 50 is slightly better than other

values. Compared with nCLS = 25, CLS executes 50 times to obtain better solutions

on four functions. It indicates that 50 times for CLS is more sufficient. However,

experimental results of nCLS = 75 and nCLS = 100 do not show that more number
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of times of CLS is more effective, and they are worse than nCLS = 50 on one function.

Thus, we conclude that 50 times is suitable for CLS.

In addition to CLS, SE and HS have two parameters F0 and σ0. Although these

two parameters adaptively change during the execution of TDSD, their initial values

may also influence the search performance. To determine them, we set F0 to 1, 2.5 and

5, and σ0 to 0.1, 0.5 and 0.9. Thus, nine groups of parameter settings are conducted.

Their experimental and statistical results are shown in Tables 3.6 and 3.7.

From Tables 3.6 and 3.7, we can observe that the group of F0 = 2.5 and σ0 = 0.5

is relatively superior to other groups. To be specific, when F0 = 2.5, σ0 = 0.5 is

slightly better than σ0 = 0.1, but equivalent to σ0 = 0.9 according to statistical

results. It indicates that a great σ0 value is slightly good. Compared with the groups

of F0 = 1, the group of F0 = 2.5 and σ0 = 0.5 is better. It may be because a small

F0 value decreases the exploration ranges of individuals. Also, the groups of F0 = 5

are inferior because they may excessively increase the search areas of individuals such

that overstepping the boundary is prone to occur. Thus, based on these results, we

regard F0 = 2.5 and σ0 = 0.5 as a group of suitable parameter setting.

3.4.4 Three real-world optimization problems

To evaluate the practicality of TDSD, we test it on three real-world optimization prob-

lems from CEC2011. They are parameter estimation for frequency-modulated sound

waves problem (FMSWP), spread spectrum radar polly phase code design (SSRP-

PCD), and optimal control of a non-linear stirred tank reactor problem (NLSTRP).

Their specific details can be referred in [65]. Seven comparative algorithms including

WOA [66], DE [64], CGSA-P [67], BSO [34], EPSDE [68], SaDE [69] and jDE [70]

are used. Their parameter settings are adopted according to corresponding litera-

tures. The maximum number of iteration for three problems is 600, 2000 and 100,

respectively. Experimental results are listed in Tables 3.8, 3.9 and 3.10 where Mean,
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Std, Best and Worst indicate mean, standard deviation, best and worst solutions,

respectively.

From Tables 3.8, 3.9 and 3.10, we can find that TDSD obtains the least means

on these three problems. In addition, TDSD has the best solutions on FMSWP and

NLSTRP. Thus, experimental results demonstrate that TDSD has the practicality for

real-world optimization problems. Compared with various NMH algorithms, TDSD

uses triple distinct search dynamics to optimize problems and find better solutions.

3.4.5 Comparison with champion algorithms

Four champion algorithms including EBOwithCMAR [71], LSHADE-cnEpSin [72],

LSHADE-SPACMA [73] and SHADE [74] are used to compare with TDSD on thirty

CEC2017 benchmark functions with 30 dimensions and three real-world optimization

problems. EBOwithCMAR uses covariance matrix to improve the local search ability

of effective butterfly optimizer. LSHADE-cnEpSin constitutes ensemble sinusoidal

differential covariance matrix adaptation with Euclidean neighborhood. LSHADE-

SPACMA combines a semi-parameter adaptation method with modified CMA-ES.

SHADE is an adaptive DE with history-based parameter adaptation. Their experi-

mental results are listed in Tables 3.11, 3.12, 3.13 and 3.14.

From Table 3.11, we can see that TDSD is better than four champion algorithms on

3 functions, i.e., F4, F25 and F26. Although TDSD does not totally perform better

than four champion algorithms, it is still a promising one. Compared with those

complex methods, TDSD only executes a simple control strategy to adaptively adjust

the search style. Thus, its performance is able to be improved by diverse strategies

in the future. Besides, the fact that TDSD finds better solutions than four champion

algorithms on 3 functions indicates its search is the best on a part of functions.

According to Tables 3.12, 3.13 and 3.14, we can observe that TDSD obtains the

least mean on NLSTRP whereas it does not perform the best on FMSWP and SSRP-
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PCD. Four champion algorithms show different optimization abilities for these three

problems. For FMSWP and SSRPPCD, LSHADE-cnEpSin and EBOwithCMAR

have the least mean, respectively. However, TDSD can obtain the best solution on

FMSWP and its best solution for SSRPPCD is the medium rank, suggesting that it

is capable of optimizing these two problems.

3.5 Conclusion

In this paper we propose a novel algorithm called TDSD for functions and real-

world optimization problems. Three kinds of distinct search styles are integrated to

enhance the search performance. According to their characteristics, we design effective

control strategies to switch the search style of TDSD. Experimental results indicate

TDSD outperforms other state-of-the-art algorithms in terms of its effectiveness and

robustness. In the future, we plan to study more search styles and try to incorporate

them for improvement of algorithms.
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Table 3.8: Experimental results of eight algorithms on FMSWP.
Algorithm Mean Std Best Worst

TDSD 3.93 4.97 0.00 12.03
WOA 30.36 1.67 26.87 35.43
DE 31.47 20.05 21.94 114.43

CGSA-P 24.43 1.51 18.51 26
BSO 13.98 5.88 0.99 21.11

EPSDE 9.86 5.03 0.25 16.92
SaDE 7.41 4.82 0.12 15.69
jDE 5.81 4.65 0.06 14.43

Table 3.9: Experimental results of eight algorithms on SSRPPCD.
Algorithm Mean Std Best Worst

TDSD 1.023629 0.077497 0.870792 1.156039
WOA 1.920357 0.230182 1.440039 2.293614
DE 3.310202 0.405792 2.659947 3.925028

CGSA-P 1.347604 0.145627 1.090817 1.609239
BSO 1.483097 0.107354 1.236537 1.680372

EPSDE 1.150966 0.107714 0.837685 1.282661
SaDE 1.223077 0.106451 0.871849 1.398925
jDE 1.376812 0.093742 1.177771 1.538283

Table 3.10: Experimental results of eight algorithms on NLSTRP.
Algorithm Mean Std Best Worst

TDSD 13.93 0.17 13.77 14.33
WOA 15.23 2.22 13.87 21.00
DE 49.92 24.61 22.01 107.11

CGSA-P 15.95 2.02 13.86 21.01
BSO 16.50 2.32 14.34 21.00

EPSDE 21.31 1.21 15.42 22.96
SaDE 15.53 2.62 13.79 20.96
jDE 16.00 2.70 13.95 20.98
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Table 3.12: Experimental results of five algorithms on FMSWP.
Algorithm Mean Std Best Worst

TDSD 3.93 4.97 0.00 12.03
LSHADE-cnEpSin 1.09 3.29 0.00 11.76

LSHADE-SPACMA 12.66 5.46 0.00 20.17
EBOwithCMAR 2.19 4.49 0.00 11.89

SHADE 1.82 2.60 0.00 8.79

Table 3.13: Experimental results of five algorithms on SSRPPCD.
Algorithm Mean Std Best Worst

TDSD 1.023629 0.077497 0.870792 1.156039
LSHADE-cnEpSin 1.022424 0.057046 0.901506 1.204511

LSHADE-SPACMA 1.115314 0.100054 0.821232 1.278417
EBOwithCMAR 0.632786 0.120243 0.500000 0.872078

SHADE 1.225618 0.097473 1.034590 1.413917

Table 3.14: Experimental results of five algorithms on NLSTRP.
Algorithm Mean Std Best Worst

TDSD 13.93 0.17 13.77 14.33
LSHADE-cnEpSin 18.45 3.25 13.77 21.08

LSHADE-SPACMA 19.23 3.05 13.77 21.54
EBOwithCMAR 20.01 2.24 13.77 21.08

SHADE 14.28 0.20 13.85 14.59
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Chapter 4

An improved gravitational search
algorithm based on negative
correlation(NC-GSA)

4.1 Introduction

The study on intelligence computational algorithms has been thriving since 1980s

[75, 76]. As one of the greatest findings for solving optimization problems, it has ex-

perienced a few transitions inevitably. Especially, the research boom of intelligence

computation transiting from individual-based algorithms to population-based algo-

rithms has the profound influence among the scientific community [77] on the solid

foundation provided by experimental results [4,22,23,78–80], which made population-

based algorithms the most extensively studied intelligence computational algorithms

ever since. Population-based algorithms are typified by genetic algorithms [81], evo-

lution strategies [82], evolutionary programming [83], differential evolution [12, 84],

particle swarm optimization [85], ant colony optimization [86], brain storm optimiza-

tion [20,87,88], etc. There is no coincidence in the superior performance of population-

based algorithms. With the participation of the population, the time complexity of

the searching algorithm is diminished from exponential to polynomial level [89]. On

the other hand, it shows more expedient capacity for parallelization to enhance the

efficiency of calculation effectively [90].



39

Gravitational search algorithm (GSA), developed by Rashedi et al. in 2009 [31]

with the inspiration of the law of gravity and mass interactions, is one of the most

effective heuristic optimization algorithms based on population [91,92]. GSA is based

on the concept that every particle attracting every other particle is ubiquitous in the

universe with Newton’s gravitational force as one of the four fundamental interactions

in nature [31,93]. With moving towards one another according to the dynamic law, the

particles would form to be in a balance state eventually. As shown in Fig. 4.1, GSA

calculates inertial mass of each particle by the fitness, which accounts for the quality

of each particle’s position. With the update of functional fitness, the inertia mass

of the particle is modified correspondingly throughout searching iterations. Particles

with heavier inertia mass hold larger effective attraction radius for other particles,

hence a greater intensity of gravitational force leading towards the optimal position.

Over the last few decades, GSA has been applied as an effective technique for solv-

ing complex and difficulty optimization problems in practice owing to its searching

characteristic [2, 18, 67, 94–97]. Particles commune information through the gravita-

tional force, establishing an accessible space with transparency that allows particles

observe the others. Moreover, without the demand of recording the optimal solu-

tion, GSA operates with low memory cost and low time consumption, while some

argued that the lack of memory property is not necessarily a strong suit for opti-

mization problems [98]. In spite of those upsides GSA possesses, the rapid searching

speed could cause premature convergence [99–102]. The risk of stagnation that the

algorithm is immersed in a local optimum discourages the optimization accuracy.

Likewise, the practical solution to perform a greater compromise between explo-

ration and exploitation is the research emphasis in terms of optimization algorithms

for the sake of achieving a better performance. Empirically, an algorithm enhances

exploration in the initial searching stage so as to avoid the stagnation, and the ex-
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Figure 4.1: The gravitational phenomena used in GSA.

ploitation is expected to be intensified with the lapse of time. The study in [103]

reveals that the performances between optimization algorithms is equivalent as all

functions realize mutual compensation in the No Free Lunch Theorem applied for

the comparison between variant optimization algorithms specifically, which can be

formulated as follows:

∑
∀ϕ

P (y|ϕ,m,A) =
∑
∀ϕ

P (y|ϕ,m,B), (4.1)

where A, B stand for two separate optimization algorithms, and m = 1, 2, ..., N is the

number of iteration for searching process. The hybridization of different search mech-

anisms from two optimization algorithms absorbs advanced solutions respectively to

reach a more effective solution [104].

On the other hand, the negatively correlated search (NCS) [15] is an improved

stochastic optimization inspired by human cooperation. NCS applies a parallel search

pattern of multi-agent for modeling based on probability distribution to promote the

diversity of search behaviors in an information sharing and cooperation way, which

establishes a novel approach for cooperation among individuals. NCS is constituted

of multiple search processes that develops into a new individual with the influence

of the search results from itself and others. Generally, the relationship among search

processes is negatively correlated, which means that the framework of the algorithm



41

tends to form a situation where each search process is distributed in different regions

and avoid duplication to prevention of local optimum.

NCS is highlighted by the consideration of both the fitness of individuals as qual-

ity measurement and individual differences. In a steep solution space, the global

optimal solution where an individual with poor fitness comprising a piece of excel-

lent gene, in all probability, might be missed or eliminated in the early stage. As a

solution for preserving misinterpreted solution, NCS selects candidate solutions ac-

cording to search behavior (probability distribution of new individuals) rather than

distance between individuals. Based on the information of population distribution

and transformation of population distribution, NCS leads to sub population division

to simplify the solution space of the original problem through information transmis-

sion among individuals. Compared with the traditional evolutionary algorithm, NCS

has the advantages of high efficiency and the characteristics of robustness.

In this paper, an improved gravitational search algorithm based on negative cor-

relation is proposed with the hypothesis that hybridization of algorithms improves

optimization performances and efficiency. For the ease of consistent description, the

novel GSA based on negative correlation learning is abbreviated to NC-GSA. As

population-based search methods, GSA and NCS exchange information among indi-

viduals through fitness and search area, respectively. While GSA conducts exploita-

tion in the search space, NCS fulfills exploration by encouraging discrepant search

behaviors to increase the optimization accuracy. By doing so, NC-GSA is expected

to well balance the exploitation and exploration, thus possessing a significant better

or competitive performance in comparison with its component algorithms. Exper-

imental results based on thirty benchmark optimization functions demonstrate the

robustness of NC-GSA, and also indicate that NC-GSA performs better than GSA

and NCS in terms of solution quality and convergence speed. Additionally, a contrast
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Figure 4.2: Generic architectures of hybrid algorithms.

experiment is also conducted to verify the influence of the implementation sequence of

component algorithms on the performance, and the results suggest that NCS should

be implemented prior to GSA, and the reason seems to be that NCS diversifies the

distribution of solutions, upon which GSA utilizes the gravitational search to obtain

a fast convergence.

The remainder of this paper is organized as follows. In Section II, a novel GSA

based on negative correlation learning is introduced in detail. Section III summarises

the experimental results on benchmark function suit. Finally, we give some general

remarks and present follow-up work with our insights and perspectives in Section IV.

4.2 Negative Correlation Gravitational Search Algorithm

The general architectures of hybrid algorithms are illustrated in Fig. 4.2. Two kinds

of implementation sequences can be realized. Fig. 4.2(a) depicts that the algorithm

A which mainly takes role of exploiting is carried out prior to the algorithm B which

is used to refine the solutions generated by the algorithm A and thus performing

the exploration in the search landscape to avoid local minima trapping problem.

Fig. 4.2(b) shows the opposite circumstances. Based on this general implementation



43

framework, in this paper we for the first time propose a hybrid algorithm by combining

GSA and NCS sequentially. It is worth pointing out that the method of combining

different algorithms in a parallel (or distributed) manner [90] is not discussed in this

paper, but would be studied in our future work. The main procedures of the proposed

algorithms are illustrated in Fig. 4.3, where Fig. 4.3(a) depicts NC-GSA and Fig.

4.3(b) shows the main processes of GSA-NC.

In this section, we render the foremost strategies of NC-GSA comprehensively. It

should be noted that GSA-NC is implemented in a reversed sequence of NC-GSA.

As a population-based algorithm, NC-GSA is carried out in a solution space with

D-dimension where N individuals are included. The position of the ith individual is

defined as:

Xi = (x1
i , x

2
i , · · · , xk

i , · · · , xn
i ) for i = 1, 2, · · · , N, (4.2)

where xk
i presents the position of the i-th individual in the kth dimension. The

measurement of each individual’s quality is pursuant to the value of the objective

optimization function, denoted as f(x).

As shown in Fig. 4.1, the gravitational force F d
ij(t) acting on the ith individual

from the jth individual at the tth iteration is represented as Eq. (4.3):

F d
ij(t) = G(t)

Mj(t)Mi(t)

Rij(t) + ε
(xd

j (t)− xd
i (t)), (4.3)

where G(t) denotes the gravitational constant, Mi and Mj are masses of individuals,

ε is a constant to avoid NULL values, and Rij(t) represents the Euclidean distance

between two individuals:

Rij(t) =∥ xi(t), xj(t) ∥2 . (4.4)

It has been systematically studied the effects of the gravitational constant G(t)
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Figure 4.3: Flowchart of (a) NC-GSA and (b) GSA-NC.

[105] and various developed ones are proposed. To independently observe the effects

of the combination of such two algorithms, this work only considers the original

realization of both algorithms. At the beginning of iterations G(t) is initialized to

G(0) and then reduced with time to control the search accuracy:

G(t) = G0e
−αt/Tmax , (4.5)

where α is a shrinking parameter. Under this condition, the total gravitational force

on the ith individual is expressed by:

F d
i (t) =

Kbest∑
j=1,j ̸=i

randjF
d
ij(t), (4.6)

where Kbest is the set of first K individuals with bigger masses, and randj is a

random number in the interval [0,1]. The acceleration adi (t) of the individual i is

shown as:

adi (t) =
F d
i (t)

Mi(t)
, (4.7)
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where Mi(t) is the map of fitness calculated as in the following:

Mi(t) =
mi(t)∑N
j=1mj(t)

, (4.8)

and

mi =
fiti(t)− worst(t)

best(t)− worst(t)
, (4.9)

where best(t) is the best fitness of all individuals, worst(t) is the worst fitness of

all individuals, and fiti(t) denotes the fitness of individual Mi by calculating the

objective functions.

The new velocity of an individual is considered as a fraction of its current velocity

added to its acceleration. Thus the position and the velocity of the ith individual is

expressed as follows:

vdi (t+ 1) = randi × vdi (t) + adi (t), (4.10)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1). (4.11)

After the movement of all individuals, N best current solutions are selected to un-

dergo the negative correlation search. With the contribution of negative correlation

mechanism, the individuals with the tendency towards negative correlational cooper-

ation are distributed in different searching regions which are reflected on the proba-

bility distribution for calculation. Eq. (4.12) and Eq. (5.5) pose the Bhattacharyya

distance [106] for continuous probability distribution and discrete probability distri-

bution, respectively.

DB(pi, pj) = −ln
(∫ √

pi(x)pj(x)dx

)
, (4.12)
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DB(pi, pj) = −ln
(∑

x∈X

√
pi(x)pj(x)

)
, (4.13)

where pi and pj denote the probability density functions.

Assuming the objective function f(x) exceeding the minimum in a D-dimensional

continuous optimization problem, NC-GSA adopts the Gaussian mutation operator

[107] as the search operator for individual variation. Derived from the current existing

solution xi, a new solution x′
i is engendered with the Gaussian mutation operator, as

given in Eq. (4.14):

x′
id = xid +N(0, σi), (4.14)

where xid is the dth element of xi, N(0, σi) is a Gaussian random variable with the

mean value of 0.0 and the standard deviation of σi. The standard deviation σi of all

individuals are initialized to an identical value, yet with further search, they diverge

by applying the 1/5 successful rule [107], which can be formulized as:

σi =


σi

r
, if t

epoch
> 0.2

σi ∗ r, if t
epoch

< 0.2

σi, if t
epoch

= 0.2,

(4.15)

where r is a parameter of the 1/5 successful rule that is set beneath 1.0 by suggestion,

c is the number of replacement by the superposition of epoches. Larger c means that

the better solution can be detected in swiftness. On the contrary, the search is better

off slackened.

Furthermore, the rule of correspondence between each individual and the pertinent

probability distribution establishes procedure of substitution for individuals to deter-

mine the next generation during each iteration. The negative correlation amongst

probability distributions each corresponding to a particular individual is presented
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as:

Corr(pi) = min
j

{DB(pi, pj) | j ̸= i } , (4.16)

where pj denotes other probability distribution from other individuals.The individuals

with larger Corr(pi) are out of the realm of possibility of generating similar solution

with others. Thus, a solution with small f(x) and large Corr(pi) is preferred for

solving minimization problems. However, as the balance between exploration and

exploitation during search, the proportional relation between f(x) and Corr(pi) is

delicate as well. In order to discard individual in fairness, a heuristic rule with a

certain randomicity is adopted, as shown in Eq. (4.17) and Eq. (5.7). discard xi, if
f(x′

i)

Corr(p′i)
< λ

discard x′
i, otherwise,

(4.17)

where xi stands for the current solution of the ith individual, and x′
i is the new

solution originated from the current one.

λt = N(1.0, 0.1− 0.1 ∗ t

Tmax

), (4.18)

where λt ∈ (0,−∞) is a random parameter varied by time dominating the trade-off

between solution quality and probability distributions, which affects the performance

of algorithm in a large extent, Tmax is the total number of iterations for execution

defined by user. In initial stages, NC-GSA explores the solution space with large step

size, whereas small step size while entering the final phase of search as a result of

the tendency towards convergence. Given the consideration above, the value of λt

is employed under Gaussian distribution with the mean value of 1.0 on the random

sampling method during each iteration. The standard deviation of the distribution is

initialized to 0.1, gradually decay to 0.0 in the final stage with the searching process.

After the negative correlation search, the obtained best optimal solutions are
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Table 4.1: The objective evaluations of different methods
NC-GSA GSA-NC GSA NCS

Mean Std Mean Std Mean Std Mean Std
F1 6.27E+10 3.12E+09 1.64E+11 1.28E+10 6.48E+10 5.64E+09 1.07E+11 1.48E+10
F3 8.93E+04 2.90E+03 7.11E+13 7.22E+13 8.93E+04 3.36E+03 2.03E+05 3.64E+04
F4 2.04E+04 1.29E+03 3.12E+04 4.26E+03 1.98E+04 2.64E+03 3.85E+04 1.10E+04
F5 9.39E+02 1.60E+01 1.21E+03 4.87E+01 9.56E+02 1.49E+01 1.09E+03 4.84E+01
F6 7.04E+02 2.45E+00 7.14E+02 8.73E+00 7.02E+02 4.22E+00 7.16E+02 1.03E+01
F7 1.48E+03 1.71E+01 3.49E+03 2.25E+02 1.49E+03 2.28E+01 3.08E+03 3.16E+02
F8 1.17E+03 1.68E+01 1.42E+03 3.39E+01 1.18E+03 1.65E+01 1.32E+03 4.03E+01
F9 1.29E+04 1.09E+03 2.94E+04 3.06E+03 1.21E+04 9.81E+02 2.53E+04 3.04E+03
F10 9.29E+03 3.39E+02 9.61E+03 4.82E+02 9.38E+03 3.36E+02 9.59E+03 4.32E+02
F11 1.30E+04 2.08E+03 5.12E+08 6.89E+08 1.01E+04 1.86E+03 2.49E+04 6.55E+03
F12 1.58E+10 7.92E+08 2.50E+10 3.15E+09 1.68E+10 3.61E+09 2.31E+10 4.87E+09
F13 1.80E+10 3.78E+08 1.26E+10 3.44E+09 1.91E+10 4.06E+09 2.08E+10 7.74E+09
F14 4.98E+06 3.96E+05 1.37E+08 1.17E+08 1.31E+07 9.11E+06 1.34E+07 7.01E+06
F15 1.11E+09 3.11E+08 5.83E+09 2.07E+09 1.13E+09 4.51E+08 4.66E+09 2.43E+09
F16 8.13E+03 1.28E+02 4.55E+04 9.61E+03 7.48E+03 1.02E+03 6.68E+03 1.07E+03
F17 5.74E+03 4.35E+02 3.87E+05 1.95E+05 6.89E+03 3.28E+03 9.15E+03 9.66E+03
F18 1.56E+08 8.38E+07 9.41E+08 7.04E+08 1.77E+08 1.01E+08 2.52E+08 2.34E+08
F19 1.27E+09 3.32E+08 5.34E+09 2.15E+09 1.33E+09 4.88E+08 4.23E+09 2.01E+09
F20 3.41E+03 1.14E+02 3.38E+03 1.75E+02 3.37E+03 1.46E+02 3.38E+03 1.82E+02
F21 2.82E+03 1.77E+01 2.88E+03 3.64E+01 2.83E+03 4.52E+01 2.84E+03 6.21E+01
F22 9.99E+03 3.91E+02 1.14E+04 4.68E+02 1.01E+04 6.69E+02 1.10E+04 5.21E+02
F23 3.63E+03 4.63E-13 4.54E+03 1.20E+02 3.81E+03 1.42E+02 3.72E+03 1.47E+02
F24 3.73E+03 1.01E+00 4.71E+03 1.47E+02 4.16E+03 2.46E+02 4.08E+03 2.02E+02
F25 5.65E+03 3.08E+02 1.22E+04 1.67E+03 5.84E+03 3.61E+02 1.57E+04 2.71E+03
F26 1.21E+04 3.09E+02 2.52E+04 2.37E+03 1.23E+04 7.27E+02 1.48E+04 1.57E+03
F27 4.70E+03 1.31E+01 5.35E+03 3.89E+02 5.24E+03 5.21E+02 5.04E+03 3.57E+02
F28 7.97E+03 3.27E+02 9.91E+03 1.11E+03 8.07E+03 4.34E+02 1.16E+04 1.64E+03
F29 1.02E+04 4.78E+02 4.17E+05 2.94E+05 9.94E+03 2.35E+03 1.72E+04 1.21E+04
F30 4.29E+08 6.49E+05 7.82E+09 1.33E+09 2.39E+09 1.03E+09 2.22E+09 1.06E+09

recorded and enter the next iteration of gravitational search until the termination

condition is fulfilled.

4.3 Experimental evaluation

In this section, the experimental results of the proposed algorithms examined on IEEE

Congress on Evolutionary Computation 2017 (CEC2017) benchmark functions as test

functions for optimization are presented. With brief introduction of these benchmark

functions for comprehensive understanding in mathematics, they are classified into

four categories: functions F1-F3 are unimodal functions; functions F4-F10 are sim-
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ple multimodal functions; functions F11-F20 are hybrid functions; functions F21-F30

are composition functions. To be noted, the experiment rules out F2 function on ac-

count of its unstable behavior on high dimensions. On the ground of consistency and

impartiality of study, the population size of individuals is set as popsize = 100 with

limited generations Tmax = 3000 on a search space of 30-dimensions. The indepen-

dent running number is set as 30 to make a statistical analysis. The experiment is

conducted with Matlab on a Personal PC with Intel i5 CPU and 8GB memory.

As the presentation of results, the strategy of the participation of negative corre-

lation is superior than the original algorithms of as listed in Table 4.1. In the 29 test

benchmark functions, apart from function F4, F6, F11, F20, F29 which are leaded

by the traditional GSA and F11 leaded by NCS, NC-GSA prominent its superior-

ity on the performance of the remaining optimization functions. By comparing the

results of NC-GSA and GSA-NC, we confirm the theory of gravitational search algo-

rithm conducting exploitation in the search space at the earlier stage while negative

correlation fulfills exploration by encouraging discrepant search behaviors to increase

the optimization accuracy.

To give more insights into the results, the box-and-whisker plot of F30 is plotted

to show the distribution of the final 30 solutions of each algorithm, as illustrated in

Fig. 4.4. From it, we find that NC-GSA can find better and more stabler solutions

in comparison with its competitors. In addition, Fig. 4.5 depicts the convergence

graph of all compared algorithms for F30. Similar results can also be observed for

the other benchmark functions. It is clear that all algorithms converge very fast,

and NC-GSA possess the fastest convergence speed. The reason is that the negative

search first diverges the search regions, thus making the population diversity be a

high level. Along with the gravitational search, the algorithm quickly converges to

the promising areas, and thereafter finding better solutions.
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Figure 4.4: Box-and-whisker plot of the obtained 30 final solutions by all compared algorithms for
the benchmark function F30.
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Figure 4.5: Convergence graph of all compared algorithms for the benchmark function F30.

Finally, two non-parametric statistical test methods including the Friedman test

and Wilcoxon test are employed to detect the existence of significant difference among

algorithms respectively. The procedures of Wilcoxon rank-sum test for detecting

significant differences between average values of 30 independent runs for two compared

algorithms are implemented as in the following. First, we calculate the differences Di

between the two compared algorithms on each problem. Here, we use NC-GSA as the

control algorithm. Then These differences Di are ranked by absolute values, where

R+ is the sum rank for the problems in which the NC-GSA performs better than its
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Table 4.2: Results obtained by the Friedman and Wilcoxon tests for the control algorithm NC-GSA.
Ranking R+ R− Exact P-value Asymptotic P-value

NC-GSA 1.3966 − − − −
GSA-NC 3.7069 408.0 27.0 4.698E-6 0.000036

GSA 1.9483 315.0 91.0 0.009536 0.009562
NCS 2.9483 421.0 14.0 4.098E-7 0.00001

competitor and R− is for the opposite. If Di = 0, the rank of it will be divided evenly

among the sums, this is,

R+ =
∑
Di>0

rank(Di) + 0.5
∑
Di=0

rank(Di), (4.19)

R− =
∑
Di<0

rank(Di) + 0.5
∑
Di=0

rank(Di), (4.20)

where T = min(R+, R−). According the value of T , p-values are calculated and then

we judge to reject the null hypothesis of quality of average values of p-values is less

than 0.05.

From Table 4.2, we can find that NC-GSA has the smallest ranking value 1.3966

based on the Friedman test which suggests that NC-GSA is statistically better than

its competitor algorithms. Additionally, all p-values obtained by Wilcoxon rank-sum

test are smaller than 0.05, indicating that NC-GSA is significant better than GSA-NC,

GSA, and NCS in terms of average quality of solutions.

4.4 Conclusions

In this paper, an improved gravitational search algorithm is proposed by incorporating

with negative correlation. As an experimental study, traditional gravitational search

algorithm and concrete implementation of negatively correlated search are taken into

consideration. The algorithm developed the global exploration property of negatively

correlated search and the local exploitation property of gravitational search. Sev-
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eral experiments conducted on CEC2017 benchmark function suit indicated that the

performance of the novel algorithm is more effective than both gravitational search al-

gorithm and negatively correlated search algorithm. In the follow-up work, a solution

of determination of the balance between individual fitness and individual distance

will be brought forward. Furthermore, the study and analysis will be more focused

on the meaning of hybridism in the perspective of population diversity and robust-

ness for other practical problems, such as complex networks [108–110] and Internet

of vehicles [111–113].
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Chapter 5

Negative correlation learning
enhanced search behavior in
BSA(BSANCS)

5.1 Introduction

In many areas, optimization is a very important research subject. The purpose of

optimization is to find the best value in complex environments. Optimization usually

aims to find the best point in the search space, that is, finding the global minimum

of objective function. However, the objective function may be non-linear, complex

or non-differentiable. When the objective function is non-linear, complex or non-

differentiable, evolutionary algorithm (EA) [1, 2] is usually used to solve the global

optimal problem. EA is a mature global optimization method with high robustness

and wide applicability. EAs can solve different types of problems. Therefore, EAs

have be used by various industries to solve the global optimum problem [3, 4]. In

the family of EAs, many algorithms exhibit great search abilities. For example, the

particle swarm optimization algorithm (PSO) [5] simulates the social behavior of

creatures, such as bird flock or fish schooling. The ant colony optimization algorithm

(ACO) [6] is stochastic search algorithm that simulates the process of natural ants

seeking source of food. The artificial bee colony algorithm (ABC) [7–9] is an opti-

mization algorithm that simulates the foraging behavior of honey bees. The genetic
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algorithm (GA) [10] is a metaheuristic algorithm inspired by the process of natural

selection strategy. The differential evolution algorithm (DE) [11–14] is a method to

optimize problems by iteratively trying to improve a candidate solution with regard

to a given measure of quality.

Backtracking search optimization algorithm (BSA) [16] is a new EA that to solve

global optimization problems. BSA is based on basic genetic rules. Therefore,it

includes five processes: initialization, selection-I, mutation, crossover and selection-

II. In initialization process, the population (pop) is randomly generated in the search

space. In selection-I stage, BSA possesses a memory to store historical population

(pophistorical) that to be used for calculating the search direction. In mutation process,

BSA generates a mutant population (popmutation) using Eq. (5.1):

popmutation = pop+ F · (pophistorical − pop), (5.1)

where F is a parameter that controls the amplitude of the search direction matrix

(pophistorical). The F is a standard normal distribution, which is formulated as F =

3 · randn.

Then, in crossover stage, trial population (offsprings) is generated by crossover

process using Eq. (5.2):

offsprings = pop+ (map · F ) · (pophistorical − pop), (5.2)

where map is binary integer value matrix of size Popsize · Dim (Popsize is size of

population. Dim is population dimension) that guides crossover operation. Finally,

in selection-II process, population (pop) is updated by trial population (offsprings)

with the better fitness value. If the fitness value of the best population (Pbest) is

better than the currently global minimum value, the global minimum population is

updated to be Pbest, the global minimum value is updated to the fitness value of Pbest.



55

Due to BSA only evaluates the individuals based on the fitness, individuals with

promising exploration prospects may be discarded when updating population. There-

fore, we should take these individuals into account when executing selection operation.

Now, many ways of optimizing algorithms are made by hybridizing two or more algo-

rithms � [17–20]. Inspired by this, we combine BSA with negatively correlated search

(NCS) [15] to enhance search behavior backtracking search mechanism. We call this

hybridized algorithm BSANCS. The NCS models the search behavior of individual

search process as a probability distribution, and calculates the correlation among dif-

ferent individual via a variable called Bhattacharyya distance. The NCS maintains

search behaviors by encouraging differences among the probability distributions. The

main property of NCS is that it selects individual with better fitness value and larger

probability distributions into the next generation. NCS can population and promote

negatively correlated search by sharing information to improve exploration abilities

of BSA.

In this paper, the hybridization of BSA and NCS is introduced in Section II.

Section III exhibits the experiment result of BSANCS on benchmark function suit

CEC’17 [114]. Finally, we conclude this paper in Section IV.

5.2 Hybrid BSANCS

The structure of BSA is similar to DE, including selection, mutation, crossover pro-

cess. Due to this structure BSA can share the population information and utilize

negatively correlated search to further improve its exploration abilities. Therefore,

the hybridization of BSA and NCS is a good choice. The main mechanism of NCS

is that utilizes Bhattacharyya distance to select solution with high quality and larger

probability distributions. In NCS, the former mean that a better fitness f(x), and
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the latter is defined as shown in Eq. (5.3):

Corr(pi) = min
j

{DB(pi, pj) | i ̸= j } , (5.3)

where pi represents a probability distributions that the i-th individual in the popu-

lation. DB(pi, pj) indicates that Bhattacharyya distance [106] between the i-th indi-

vidual and j-th individual and the larger Corr(p) is required. DB is defined as:

DB(pi, pj) = −ln
(∫ √

pi(x)pj(x)dx

)
, (5.4)

DB(pi, pj) = −ln
(∑

x∈X

√
pi(x)pj(x)

)
. (5.5)

Eq. (5.4) gives the Bhattacharyya distance for continue probability distribution, and

Eq. (5.5) is the Bhattacharyya distance for discrete probability distribution. When

the probability density function is not clear, the Bhattacharyya coefficient is usually

used to estimate the Bhattacharyya distance.

Suppose xi denotes the current solution, x′
i denotes the new solution. In each

iteration, the better solution is selected to generate new solution in the next iteration

and others will be discarded. Because f(xi) and Corr(pi) are maybe in different scales.

f(xi) is negative and Corr(pi) is non-negative, it could be difficult to determine an

appropriate trade-off. Thus, we let the normalizations of f(xi)+f(x′
i) and Corr(pi)+

Corr(p′i) equal to 1. In the normalization stage, f(xi) and Corr(pi) equal to 1−f(x′
i)

and 1 − Corr(p′i), respectively. The samller the f(x′
i), the better the quality of x′

i ,

and the larger Corr(pi), the less likely that the new generated x′
i is similar to other

solution of individuals. Thus, smaller f(x′
i) and larger Corr(p′i) will be selected, and

a heuristic rule as defiened by Eq. (5.6) is adopted.
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f(x′

i)

Corr(p′i)
< λ

discard x′
i, otherwise,

(5.6)

where λ ∈ (0,−∞) is a parameter.

Given xi and x′
i, Eq. (5.6) indicates that λ determines whitch solution will be kept

or discarded. Thus, the value of λ will affect search process and influent search ability.

Setting λ to 1 indicates that f(x′
i) and Corr(x′

i) are equally improtant, usually as

default value. However, the value of λ is variant in accordance with different search

stages. Hence, a time-variant λt is adopted, as defined as Eq. (5.7):

λt = N(1, 0.1− 0.1 ∗ t

Tmax

), (5.7)

where Tmax is the user-defined total number of iterations. The Bhattacharyya distance

can be written as Eq. (5.8):

DB(pi, pj) =
1

8
(xi − xj)

TΣ−1(xi − xj) +
1

2
ln

(
detΣ√

detΣidetΣj

)
, (5.8)

where Σ =
Σi+Σj

2
.

Algorithm 2 shows the pseudo-code of BSANCS. Initialization process, and a pop-

ulation of solutions will be randomly generated and evaluated at lines 1-5. popold is

randomly created and shuffled at lines 8-10. BSANCS generates mutation population

by Eq. (5.1) and generates trial population by Eq. (5.2) at lines 12-29. Then, individ-

uals search space is limited by utilizing boundary control at lines31-37. f(xi) + f(x′
i)

and Corr(pi) + Corr(p′i) euqal to 1 at line 41. According to Eq. (5.6), the best so-

lution is found and Pbest is updated at lines 42-43. Finally, for every epoch iteration,
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Algorithm 2: Pseudo-Code of BSANCS
1 //Initialization;
2 Set t= 0;
3 globalminmum = inf;
4 popi = GeneratePopulation(popsize, dim, low, up);
5 fitnessPi = function(popi);
6 for iteration from 1 to maxcycle do do
7 //Selection-I;
8 if (a < b|a, b ∼ U(0, 1)) then
9 popold = pop;

10 popold = permuting(popold);
11 //Mutation;
12 popmutation = pop+ F · (pophistorical − pop);
13 popmutation = pop+ F · (pophistorical − pop);
14 //Crossover;
15 if (c < d|c, d ∼ U(0, 1)) then
16 for i from 1 to N do do
17 mapi,u(1:rand) = 0;
18 else
19 for i from 1 to N do do
20 mapi,rand = 0;

21 T = mutant;
22 for i from 1 to N do do
23 for j from 1 to D do do
24 if mapi,j = 1 then
25 Ti,j = Pi,j ;

26 //Boundary Control;
27 for i from 1 to N do do
28 for j from 1 to D do do
29 if (Ti,j < lowj)or(Ti.j > upj) then
30 Ti,j = rand · (upj − lowj) + lowj ;

31 //Selcetion-II;
32 Set λt = N(1, 0.1− 0.1 ∗ t

Tmax
);

33 Compute f(x′
i), Corr(pi) and Corr(p′i);

34 Normalization of f(xi) + f(x′
i) and Corr(pi) + Corr(p′i) equal to 1;

35 if f(x′
i)

Corr(p′
i)

< λ then
36 Update xi with x′

i;
37 t = t+ 1;
38 if mod(t, epoch) = 0 then
39 Update F for each individuals according to 1/5 successful rule;
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the search step-size will be update by Eq. (5.9) at lines 46-47.

σi =


σi

r
, if t

epoch
> 0.2

σi ∗ r, if t
epoch

< 0.2

σi, if t
epoch

= 0.2,

(5.9)

where r is a parameter, t is the number of replacements during the past epoch itera-

tions.

5.3 Experimental Results

In this section, the proposed BSANCS algorithm is tested on the CEC2017 bench-

mark function suit. Due to F2 shows unstable behavior on higher dimensions, it is

excluded in the CEC’17. Thus, the BSANCS algorithm is tested on the 29 function.

The population size is set up to 100 and, dimensions is 30 and the number of max iter-

ation is set up 3000. In order to reduce the random error, all the comparisons are run

30 times. In addition to BSA, three meta-heuristic optimization algorithms are se-

lected to compare with BSANCS, including grey wolf optimization (GWO) [115,116],

artificial bee colony algorithm (ABC), and sine cosine algorithm (SCA) [117].

Table 5.1 lists the results of all compared algorithms for all tested optimization

functions and highlights the best using bold values. The mean value of 30 independent

runs indicates the average performance of the algorithm, while the standard deviation

(Std) denotes the robustness of the algorithm when addressing an optimization func-

tion. From Table 5.1, it can be found that BSANCS performs the best for 23 out of

30 optimization functions. Thus, it is obvious that the proposed BSANCS algorithm

obtains the best value on most functions compared with BSA and has competitive

performance on other functions. Then, Wilcoxon matched-pairs signed-rank test is

used to precisely analyze the performance among BSANCS and other tested algo-
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Figure 5.1: Convergence graph of F8.
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Figure 5.2: Convergence graph of F16.

rithms. Wilcoxon’s test is a nonparametric procedure, which is used for hypothesis

testing involving two samples. Table 5.2 exhibits the result of the Wilcoxon’s test, it

shows that the BSANCS algorithm is superior to other algorithms.

Convergence and Box-and-whisker graphs are used to further illustrate the superi-

ority of the proposed algorithm. From Figs. 5.1, 5.2, 5.3 and 5.4, we can find that the

convergence ability and speed of BSANCS are better than most of the comparison

algorithms. From Figs. 5.5, 5.6, 5.7 and 5.8, we can find that algorithm BSANCS

has better search ability and get a better solutions.
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Figure 5.3: Convergence graph of F7.
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Figure 5.4: Convergence graph of F28.

5.4 Conclusion

In this paper, we proposed a hybrid method that combine BSA with NCS to improve

the search ability. Experiment results suggest that the proposed BSANCS is effective

in improving exploration ability and solution efficiency. In the future, we plan to apply

the proposed BSANCS to multiple-objective optimization [82, 118], combinatorial

optimization problems [79, 109], and neural network leaning tasks [119, 120].
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Table 5.2: Results obtained by the Wilcoxon test.
R+ R− Asymptotic P-value

BSA 338.0 97.0 0.007825
ABC 433.5 1.5 0.000003
SCA 435.0 0.0 0.000002
GWO 419.0 16.0 0.000011
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Figure 5.8: Box-and-whisker graph of F28.
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Chapter 6

Conclusions and Remarks

In this thesis, we study search dynamics and evolutionary algorithms, and the ap-

plication to real-world issue fixing. The study have convince us,with the help of

hybridization,evolution algorithm has shown diversity, flexibility and effectiveness of

meta-heuristic hybridization in their applications. We also take insight into the mech-

anism of hybridization, there is no quintessential difference among them. The only

difference is search operators. Two main factors can be considered: search pattern

and search style. We also study the advantages and disadvantages of certain algo-

rithm ,by improve their search ability to reinforce the exploration and exploitation

abilities in order to get an excellent hybrid algorithm.

In the future research, we will focus on study the search ability in different search

pattern and search style.Also control strategies among these kinds of search styles are

conducted to provide a good balance between exploration and exploitation phases,we

plan to study more search styles and try to incorporate them for improvement of

algorithms.The following studies is planned to carried out in the near future:

• Firstly, this research show the inherent connection between search dynamic and

evolutionary algorithms.To achieve a good balance between exploration and ex-

ploitation,search styles incorporation and control strategies is the key�so I will

keep in studying more search styles and design more control strategies.
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• Secondly,by studying the recently raised advanced evolutionary algorithms, such

the Spherical Evolution, have huge search space,however,leak of convergence

speed, can be optimize by the way similar to genetic information transmission to

remove its invalid search range,then the algorithm can be greatly enhanced,when

the search ability of the basic search style is enhanced,after hybridization,the

search quality and robustness will be enhanced correspondingly.

• Last but not least, when coming back to real-world optimization problems,when

an algorithm only need to execute a simple control strategy to adjust adaptability

of the search style,thus, its performance can be greatly improved by using diverse

control strategies in the future.Therefore,it meaningful to study this kind of opti-

mization methods and having more potential for implementation,as a tentative,

my next step is adopt improved TDSD algorithm to AGV product at route plan

stage.
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