
A Dendritic Neuron Model with Adaptive

Synapses Trained by Differential Evolution

Algorithm

by

Zhe Wang

A dissertation

submitted to the Graduate School of Science and Engineering for Education

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Engineering

University of Toyama

Gofuku 3190, Toyama-shi, Toyama 930-8555 Japan

2020

(Submitted June 18, 2020)

ii

Abstract

According to the research of biology, the computational unit of human brain is

neuron. It can respond to changes in the environment, and then send information to

other neurons. In the human brain, there are about 86 billion neurons, interconnected

to form an extremely complex nervous system. Biologically, neurons are usually

composed of cell bodies, nuclei, dendrites, and axons. Dendrites are used to receive

signals from other neurons, and a neuron has many dendrites.

In recent years, several dendritic computing models considering the functions of

dendrites in a neuron have been proposed in the literature. Differential evolution

(DE) has been employed to train dendritic neuron model with adaptive synapses

(DMAS) in our research. Differential evolution algorithm is an efficient global op-

timization algorithm. It is also a population-based heuristic search algorithm, and

each individual in the population corresponds to a solution vector. The evolution

process of differential evolution algorithm is very similar to that of genetic algorithm,

including mutation, crossover and selection operations, but the specific definition of

these operations is different from that of genetic algorithm.

iii

According to the signal transmission order, a DNM can be divided into four parts:

the synaptic layer, dendritic layer, membrane layer, and somatic cell layer. It can be

converted to a logic circuit that is easily implemented on hardware by removing use-

less synapses and dendrites after training. This logic circuit can be designed to solve

complex nonlinear problems using only four basic logical devices: comparators, AND

(conjunction), OR (disjunction), and NOT (negation). To obtain a faster and better

solution, we adopt the most popular DE for DMAS training. We have chosen five

classification datasets from the UCI Machine Learning Repository for an experiment.

We analyze and discuss the experimental results in terms of the correct rate, conver-

gence rate, ROC curve, and the cross-validation and then compare the results with

a dendritic neuron model trained by the backpropagation algorithm (BP-DNM) and

a neural network trained by the backpropagation algorithm (BPNN). The analysis

results show that the DE-DMAS shows better performance in all aspects.

The remainder is organized as follows: In Chapter 1, we give a brief description

of neuron model and differential evolution algorithm. Chapter 2 introduces the back-

grounds of this reaserch. The back propagation algorithm is explained in chapter

3. Chapter 4 introduces the structurtrode of our model (DMAS). The learning al-

gorithm (DE) is explained in chapter 5. The experimental method is designed in

chapter 6. Chapter 7 presents the analysis and discussion of the experimental results.

iv

The conclusions are drawn in chapter 8.

v

Contents

Abstract ii

1 Introduction 1

2 Backgrounds 6

2.1 Artificial Neural Network . 6

2.1.1 Background . 7

2.1.2 History . 8

2.1.3 Hebb Learning . 9

2.1.4 Progress After 2006 . 10

2.1.5 Categorization . 11

2.1.6 Neurons . 13

2.1.7 Single Layer Neural Network 14

2.1.8 Multilayer Neural Network . 15

2.1.9 Learning Process . 18

2.1.10 Category . 18

vi

2.1.11 Theoretical Nature . 19

2.2 Algorithm . 20

2.2.1 Feature . 21

2.2.2 Common Design Pattern . 22

2.2.3 Common Implementation Methods 23

2.2.4 Formal Algorithm . 23

2.2.5 Complexity . 24

2.2.6 Space Complexity . 25

2.2.7 Implementation . 25

3 Back propagation algorithm 26

3.1 Generalize . 26

3.2 Algorithm . 27

3.3 Derivation . 28

3.4 Learning Mode . 31

3.5 Limit . 32

4 Dendritic Neuron Model with Adaptive Synapses 33

4.1 Adaptive Synaptic Layer . 33

4.2 Dendritic Layer . 36

4.3 Membrane Layer . 37

vii

4.4 Somatic Cell Layer . 37

4.5 Simplified Model . 38

5 Learning Algorithm 40

6 Experimental Design 45

6.1 Dataset . 45

6.2 Optimal Parameter Settings . 48

6.3 Proof Adaptability of Synapses . 50

6.4 Comparison with BPNN . 51

6.5 Comparison with BP-DNM . 53

7 Experimental Result Analysis 56

7.1 Convergenc Comparison . 56

7.2 Accuracy Comparison . 58

7.3 Cross-validation . 61

7.4 Simplified Model . 64

8 Conclusion 73

Bibliography 76

viii

List of Figures

2.1 Neuron schematic diagram showsl. 13

2.2 Single layer neural network. 15

4.1 The four connecting states. 35

4.2 The synapse function figures for the four state. 36

4.3 Simplified model. 39

7.1 Convergence graphs for the five datasets0. 58

7.2 Box-plots for the fianl MSE . 59

7.3 ROC analysis for the five datasets . 62

7.4 Structure simplification process for the iris dataset. 68

7.5 Structure simplification process for the liver dataset. 69

7.6 Structure simplification process for the cancer dataset. 69

7.7 Structure simplification process for the glass dataset. 70

7.8 Structure simplification process for the ACA dataset. 71

7.9 Logic circuit of iris. 72

ix

List of Tables

6.1 Dataset introduction. 46

6.2 Parameter ranges in DE-DMAS. 48

6.3 Orthogonal array for parameters of the iris dataset. 49

6.4 Orthogonal array for parameters of the liver dataset. 50

6.5 Orthogonal array for parameters of the glass dataset. 51

6.6 Orthogonal array for parameters of the cancer dataset. 52

6.7 Orthogonal array for parameters of the ACA dataset. 53

6.8 Parameters for DE-DMAS . 53

6.9 Demonstrate on the adaptability of synapse in term of test accuracy . 54

6.10 Demonstrate on the adaptability of synapse by Friedman test 54

6.11 Structures of DE-DMAS and BPNN for the five dataset 55

7.1 Description of terms. 61

7.2 Rate results for the five datasets . 63

7.3 No.of Model . 64

x

7.4 Cross-validation for iris . 64

7.5 Cross-validation for liver . 65

7.6 Cross-validation for cancer . 65

7.7 Cross-validation for glass . 66

7.8 Cross-validation for ACA . 66

1

Chapter 1

Introduction

The human brain consists of billions of neurons, and a single neuron cell is

constituted by a cell body, an axon, a cell membrane and a dendrite. Dendrites

occupy more than 90 percent of the nerve cell organization and have a pivotal role

in a human’s learning process. The first artificial neuron was originally proposed by

MuCulloch and Pitts in 1943 [1]. This model is an abstract and simplified model

that was constructed according to the structure and working principle of a biological

neuron membrane based on mathematics and algorithms called threshold logic.

The perceptron is a method for pattern recognition, which was first created by

Rosenblatt in 1958 [2, 3]. It was the first artificial neural network model, laying the

foundation for the neural network model. However, in Minsky Papert’s analysis of

Rosenbatt’s single-layer perceptron from a mathematical perspective [4], the artificial

neural network was criticized with an example of the XOR operation. The problem

of how an intelligent system independently learns from an environment is not well

2

solved, and the development of artificial neural networks (ANNs) has deteriorated.

In the mid-1980s, scholars began to explore the inner logic of knowledge discovery in

depth and discovered that inductive logic, especially incomplete induction logic, is a

reasonable way to discover knowledge. Rumelhart et al. surprisingly discovered that

the back-propagation error (BP) [5], which was invented by Werbos more than 10

years ago, can effectively solve the learning problems of hidden nodes in multi-layer

networks. It is not correct to accept MillsIcy’s assertion that there may be no effective

learning methods for multi-layer networks. Since then, people’s enthusiasm for ANN

research has been rekindled.

However, researchers have argued that the use of McCulloch and Pitts’s neuron

is inadvisable because it disregards the dendritic structure in a real biology neuron.

Koch et al. [6, 7] proposed that the interaction between synapses and the action at

the turning point of a branch can be approximated as logic operation. In recent

years, several dendritic computing models considering the functions of dendrites in

a neuron have been proposed in the literature. A dendritic morphological neural

network (DMNN) which is based on the traditional morphological neural networks

[8, 9] is proposed for solving classification problems [10] and 3D object recognition

tasks [11]. A nonlinear dendritic neuron model equipped with binary synapses [11]

is demonstrated to be capable of learning temporal features of spike input patterns.

3

Most recently, a dendritic neuron model (DNM) with nonlinear synapses has been

proposed [12–14]. Different from DMNN, DNM only considers a single neuron rather

than the network of a couple of neurons, and has shown great information processing

capacity [15–19]. The DNM uses a pruning technique derived from an interesting

biological phenomenon: in the early stages of neuron triggering, the selective removal

of unnecessary synapses and dendrites does not cause neuron cell death [20,21]. The

DNM subtly solves nonlinear problems that cannot be well handled by the Koch

model [22,23]. The DNM has four layers in its structure. The input signal is triggered

in the synaptic layer and then sequentially received by the dendritic layer. The

membrane layer collects the output from each branch of the dendritic layer and sends

the results to the somatic cell layer. By the pruning function of the DNM, the precise

dendritic structure and morphology are simplified. After training, all mature neurons

are approximately replaced by a logic circuit that consists of comparators, AND gates,

OR gates and NOT gates.

In this study, we use a dendritic neuron model with adaptive synapses (DMAS).

Recent advances in neurobiology have highlighted the importance of dendritic cal-

culation. In 2019, Beaulieu-Laroche and his team [24] discovered that dendrites are

always active when the cell body of a neuron is active, which implies that the den-

dritic synapse has a role in the neural computing process. Based on this biophysical

4

hypothesis, we develop a synaptic adaptable neuron network without parameters that

need to be artificially adjusted. All synaptic layer parameters will be trained by the

learning algorithm. The effectiveness of adaptive synapses will be proved in section

4.3. Thus, we have to consider additional aspects in the choice of learning algorithms.

With the emergence of various new optimization algorithms, how to train an

ANN has been discussed [25]. BP is very effective as an ANN training algorithm

and can solve some nonlinear problems [5]. However, BP has certain limitations, for

example, falling into a local minimum is easy, the convergence speed is slow, and it

is prone to overfitting [26]. Differential evolution (DE) has been employed to train

DMAS in our research. DE was first proposed by Storn and Price in 1997 [27]. It

is a biological-inspired, population-based global optimization algorithm. Due to its

simple concept, easy implementation, fast convergence and excellent robustness, it

has been more extensively utilized than other mainstream evolutionary algorithms,

such as the genetic algorithm (GA) [28, 29], the evolutionary strategy (ES) [30, 31],

and particle swarm optimization (PSO) [32] in recent years. DE is similar to the

GA and ES but differs from them because a unique differential evolution operator is

referenced in DE. DE has proven to be superior to many algorithms [33–35]. Because

of these characteristics and the advantages of DE, it has been recognized by scholars

in the field of ANNs [36, 37]. Also DE has been applied in dendrite morphological

5

neural networks [38].

Five realistic classifications problems are considered in our research to validate our

model (DE-DMAS): Iris, BUPA liver disorders, breast cancer, glass, and Australian

credit approval (ACA). All the datasets is preprocessed as binary-classification prob-

lem. These five dataset have undergone preprocessing, including outlier repair to fill

in missing values. We compare the experimental results of DE-DMAS, BP-DNM and

BPNN for these five datasets. Experimental results show that DMAS outperforms its

peers in terms of test accuracy, sensitivity, specificity, receiver operating characteristic

(ROC) and cross-validation.

6

Chapter 2

Backgrounds

The backgrounds consist of two parts. To be specific, the first part introduces

the artificial neural network (ANN), and the other part introduces the algorithm.

2.1 Artificial Neural Network

Artificial neural network is defined as a mathematical calculation model that sim-

ulates the structure and function of the central nervous system of animals, particularly

the brain in machine learning and cognitive science. Many artificial neurons consti-

tute a neural network to estimate or approximate functions. The internal structure

of the artificial neural network can be modified according to the external information,

thereby establishing an adaptive system and exhibiting the ability of learning. For

the allocation of mathematical statistics, the learning method based on mathematical

statistics types should optimize the neural network. Considerable available functions

can express the local structure space with standard mathematical statistics method.

The application of artificial intelligence in artificial identification can be achieved with

7

statistical methods, i.e., mathematical statistics application program. The artificial

neural network exhibits simple judgment and decision-making power, which is consis-

tent with human beings. The merit of this method is significantly more than that of

formal logic. Besides, the neural network is also adopted to solve different issues (e.g.,

machine vision and speech recognition), similar to other machine learning methods.

The conventional rule-based programming cannot solve such issues.

2.1.1 Background

The idea of the artificial neural network is inspired from the observation of the

human central nervous system. The artificial neural network is a network structure

similar to a biological neural network composed of simple artificial nodes connected.

The mentioned artificial nodes are called neurons. Thus far, there is no unified defini-

tion of artificial neural networks. However, it is termed as neurotic for the statistical

models with the features as below. First, there is a group of adjustable weights of

numerical parameters adjusted by the learning algorithm. Second, it is adopted to

estimate the nonlinear function relationship of input data. The strength between neu-

rons is determined by the mentioned adjustable weights. Artificial neural networks

are consistent with biological neural networks as they can calculate each part of the

function while describing the specific task of each unit. The neural network can be

considered a model employed in statistics, cognitive psychology artificial intelligence,

8

and other fields, while the orifical neuron science and computational neuros cicero-

nian neural networks that control the central nervous system. In the Mgtr software

implementation of a neural network, the bio heuristic method has been replaced with

a more practical method based on statistics and signal processing in the modern soft-

ware application of the neural network. Some large-scale software systems consist

of a part of the neural network (e.g., artificial neurons). In these systems, adaptive

and nonadaptive elements are included. Though the method applied in this system is

more suitable for solving practical problems, it is not associated with the traditional

connectionist AI. However, they have some similarities in distributed, nonlinear local

computing, as well as parallel and adaptability. In the late 1980s, the application sign

of neural network model had shifted from highly symbolic artificial intelligence to low

symbolic machine learning (from the expert system expressed by condition rules to

the power system parameters).

2.1.2 History

A computational model of neural networks based on Mathematics and an algo-

rithm termed as threshold logie was built by Warren Meculloch and Walter Pitts(1943)

[1]. They are two different methods in the research of neural networks, i.e., the bio-

logical process in the brain and the neuron.

9

2.1.3 Hebb Learning

Hebb learning, a hypothesis of learning theory based on the mechanism of neu-

roplasticity, was proposed by psychologist Donald Hebb in the late 1940s. Herb

learning is considered a typical unsupervised learning rule, and its late variant refers

to the early model of long-term reinforcement. The wring machine was adopted to

study this computational model from 1948. MIT Herb Network was simulated by

Farley and Wesley A.Clark(1954) [39]]in computers, then termed as calculators. The

behavior of abstract neural networks was simulated on an IBM 704 computer by

Nathaniel Rocester (1956) [2] et al. The perception machine was created by Frank

Rosenblatt [3]. This algorithm can exploit a simple addition and subtraction method

to achieve the pattern recognition of the two-layer computer learning network. The

circuits not available in the basic perceptron (e.g., XOR circuits) are expressed by

Rosenblatt with mathematical symbols. Such loop was not processed by the neural

network until Paul Webers (1975) developed a backpropagation algorithm. Two vital

problems of neural networks were identified in Marvin Minsky and SIMORE Piper

(1969). After the study on machine learning was published, neural network research

was suspended. The two problems indicate that the basic perceptron cannot deal

with mutual exclusion or circuit, and the computer is not sufficient to deal with the

long time computation required by a large-scale neural network. The study on neural

10

network develops slowly when the computer has insufficient computing power. Frank

Rosenblatt created the perception machine, i.e., a pattern recognition algorithm,

exploiting simple addition and subtraction to realize two-tier computer learning net-

work. Rosenblatt also adopted mathematical symbols to express circuits that are not

available in the basic perceptron (e.g., XOR circuits). Such loops cannot be processed

by neural networks until Paul Webers (1975) created an back-propagation algorithm.

After Marvin Minsky and Simore Piper (1969) published a study on machine learn-

ing, the study on neural networks was stagnated. They identified two key problems

in neural networks. First, the basic perceptron cannot handle exclusive or circuits.

Second, computers have insufficient capacity to handle the long computational time

required by large neural networks. Until computers have more computing power, the

research progress of neural networks is hindered.

2.1.4 Progress After 2006

Since 2006, CMOS has been adopted as a computing device for biophysical sim-

ulation and neuron morphological computation. In the latest research , it is reported

that nanodevices employed in large-scale principal component analysis and convolu-

tion neural networks show promising application prospects. If the research is suc-

cessful, a novel neural computing device based on learning rather than programming

will be developed, and it is basically not digital, though in first example may be

11

digital CMOS devices. Jurgen schmidubers research team developed the recurrent

neural network and deep feed forward neural network at Swiss AI Lab IDSIA from

2009 d 2012 and awarded eight international competitions on pattern recognition

and machine learning. For instance, the two-way and multi-dimensional LSTM of

Alex graves and others won the championship in three ICDAR hyphenate recognition

competitions in 2009, whereas they did not know the three languages to learn be-

fore. Numerous pattern recognition competitions have been won by Dan Ciresan of

IDSIA and his colleagues (e.g., IJCNN 2011 Trac Sign Recognition Competition and

others). Moreover, IJCNN 2012 trac sign recognition and NYUS Yann Lecun hand-

written numeral Problem are the first artificial pattern recognizer to reach or exceed

the human level vital benchmark tests. In 1980, Kunihiko Fukushimal invented deep

highly nonlinear neural structures like Neocognitron and visual standard structure

(inspired by simple and complex cells that were identified in the primary visual cor-

tex by David H, Hubel and Torsten Wiesel), which can be trained with unsupervised

learning methods in Je Sinton Laboratory of the University of Toronto.

2.1.5 Categorization

Typical artificial neural networks have three parts:

1. Architecture Structure:

It elucidates the variables in the network and their topological relationships. For

12

instance, variables in a neural network can be weights of neuron connections and

activities of the neurons.

2. Architecture Rule:

Most neural network models comply with a short time scale dynamic rule to

define how neurons change their excitation values in accordance with the activities

of other neurons. The general excitation function is determined by the weight of the

network (i.e., the parameters of the network).

3. Learning Rule:

Learning rules specify how the weights in the network adjust over time. This

is generally considered a long-time-scale dynamic rule. On the whole, learning rules

depend on the excitation value of neurons. Moreover, it is likely to be determined by

the target value provided by the supervisor and the value of the current weight. For

instance, a neural network for handwriting recognition has a set of input neurons.

The input neuron is activated by the data of the input image. After the excitation

values are weighted and passed through a function (determined by the designer of the

network), the excitation values of the mentioned neurons are transmitted to other

neurons. The mentioned process is repeated till the output neurons are activated.

Lastly, the excitation value of the output neuron determines the recognized letter.

13

Figure 2.1: Neuron schematic diagram showsl.

2.1.6 Neurons

Neuron schematic diagram is illustrated in Fig.2.1

· a1 − an is the component of the input vector.

· w1 − wn is the weight of each synapse in neurons.

· b is biased.

· f denotes a transfer function, usually a non-linear function. On the whole, there

are trained (), Tansig (), hardlim (). The following default is hardlim ().

·t denotes the output of neurons.

Mathematical expression: T = f(
−→
W ′−→A + b)

·
−→
W is the weight vector,

−→
W ′ is transposed by

−→
W

14

· A is input vectors

· b is biased.

· f is the transfer function.

It can be suggested that the function of a neuron is to obtain the inner product of

the input vector and the weight vector, and then obtain a scalar result is obtained a

non-linear transfer function.

The function of a single neuron: divide an n-dimensional vector space is divided into

two parts with a hyperplane (called judging boundary). Given an input vector, the

neuron is capable of determining which side of the hyperplane the vector is located

on.

The equation of the hyperplane:
−→
W ′−→p + b = 0

·
−→
W is the weight vector.

blackdsquare b is biased.

·
−→
W denotes the vectors on hyperplanes

2.1.7 Single Layer Neural Network

It is the critical form of neuron network, consisting of a limited number of neu-

rons. The input vectors of all neurons refer to the identical vectors. Since each neuron

generates a scalar result, the output of a single neuron is a vector whose dimension

is equated with the number of neurons. As Fig.2.2 shown

15

Figure 2.2: Single layer neural network.

2.1.8 Multilayer Neural Network

The practical of artificial neural network

Artificial neural network refers to a system capable of can learning and summa-

rizing, it can learn and summarize by experimentally applying known data. Artificial

neural network is able to infer and generate an automatic recognition system by

comparing the local conditions (determined by the automatic learning in different

scenarios and the complexity of the actual problem to be solved). Different learning

methods based on symbol system also exhibit reasoning function, whereas they are

16

built based on logical algorithm, the reason why they can reason is that they require

a set of reasoning algorithms.

Artificial Neural Network Model

Overall, an artificial neural network consists of a multilayer neuron structure;

each layer of neurons has input (with its input as the output of the previous layer

of neurons) and output; each layer (recorded with symbols) (i) is composed of Ni

(Ni represents N on the i layer) network neurons, each Ninetwork neuron outputs

the corresponding Ni neurons. For its input, the biological names the connection

between neurons and their corresponding neuronss are adopted, termed as synapse.

In the mathematical model, respective synapse has a weighted value, which we call

weight. Subsequently it should be calculated that the potential energy of a neuron

in layer i is equaled with each weight multiplied by the output of the corresponding

neuron in layer i− 1. The potential energy obtained by a neuron in layer i is overall

summated. Subsequently, the value of the potential energy can be regulated by the

activation function (with sigmoid function used commonly) on the neuron, since it

can be differentiated and continuous, which is convenient for the Delta rule to seek

the output of the neuron. It is noteworthy that the output is a non-linear value.

In other words, the value calculated by the excitation function determines whether

to activate the neuron according to the limit value.

17

Furthermore, we are not interested in whether the output of a neural network is linear.

Basic Structure

A common multilayer feedforward network consists of three parts:

Input Layer: In the input layer, numerous neurons receive considerable non-linear

input messages. The input message is termed as the input vector.

Ouput Layer:In the output layer, messages are transmitted, analyzed and weighed

in the neural link to generate output results. Output messages are termed as output

vectors.

Hidden Layer: Hidden layer covers of considerable neurons and links between input

and output layers. A hidden layer can have one or more layers. The number of nodes

(neurons) in the hidden layer is unclear, whereas the more the number, the more

significant the nonlinearity of the neural network will be. Thus, the robustness of the

neural network (the control system maintains some performance characteristics under

certain structure, size and other parameter perturbations) is of higher significance.

It is customary to select a node 1.2 to 1.5 times the input node. Overall, this type

of network is termed as perceptron (for single hidden layer) or multi-layer perceptron

(for multi hidden layer). There exist a wide variety of neural network, and this

hierarchical structure does not apply to all neural networks.

18

2.1.9 Learning Process

The process of creating a model by correcting the training samples and learning the

weights of respective layer is termed as the automatic learning process. The specific

learning methods are different for the different network structure and model. The

back-propagation algorithm (back propagation / reverse transfer / reverse propaga-

tion, with output by complying with the first differential delta rule to modify the

weight) is commonly adopted to verify.

2.1.10 Category

Artificial neural networks fall into the two types below

1. According to the learning strategy, the classification mainly includes:

(1)Mainly supervised learning network.

(2)Unsupervised learning network.

(3)Hybrid learning network.

(4)Associate learning network.

(5)Optimization application network.

2. According to Connectionism, the main categories are:

(1)Feed forward network

19

(2)Recurrent Network

(3)Reinforcement Network

2.1.11 Theoretical Nature

Computing power

Multilayer Perceptron (MLP) refers to a general function approximator, as proved

by Cybenko theorem. However, the proof is not determined by a specific number or

weight of neurons. As demonstrated by the work of Hava Siegelmann and Eduardo D.

Sontag, a special recursive structure with rational weight (corresponding to the full

precision real weight value) is equivalent to a universal Turing machine, consisting of a

limited number of neurons and a standard linear relationship. They further suggested

that using the weight value of irrational numbers can produce a hyper machine.

Capacity

ANN models have an attribute termed as capacitance, approximately equivalent

to their ability to remember (rather than classify) input data correctly. It is related

to the parameters and structure of the network. Google used tagging in research to

test whether the model can remember all the output. Though the performance of the

model on the test set is almost random guess, the model can remember all the input

data of the training set, i.e., the label after they are disturbed. With limited sample

20

information in mind, a lower limit is imposed on the number of parameters (weights)

required for the model.

Convergence

The model does not always converge to the only solution since it is determined

by some factors. First, considerable local minima may exist in the function, relying

on the cost function and the model. Second, when the majorization method is far

away from the local minimum, the convergence may not be ensured. Third, for a

large number of data or parameters, some methods become unrealistic. Generally,

we find that convergence ensured by theory cannot be a reliable guide for practical

application.

2.2 Algorithm

Algorithms, in mathematics (computer science) and computer science, are the

specific computational steps for any series of well-defined [40], commonly employed in

computation, data processing, and automatic reasoning. As an effective method, the

algorithm is adopted to calculate the function [41], covering a series of well-defined

instructions, which can be clearly expressed in a limited time and space.

The instructions in the algorithm present a calculation that, when running, can

start from an initial state and initial input (possibly empty), via a series of finite and

clearly defined states which ultimately generate an output. Besides, they stop at a

21

final state. The transition from one state to another is not necessarily deterministic.

Some algorithms (e.g., randomization algorithms) contain some random inputs.

The concept of formalized algorithms partially stems from the attempts to solve

the decision problem proposed by Hilbert and then attempts to define effective com-

putability or effective method. The mentioned attempts consist of the recursive func-

tions proposed by Kurt G¨odel, Jacques Elbron, and Stephen Cole Klein in 1930,

1934, and 1935, respectively, as proposed by Alonzo Church in 1936. λ calculus, 1936

Emile Leon Post’s Formulation 1 and Alan Turing’s Turing machine proposed in 1937.

Even currently, there are common cases where intuitive ideas are difficult to define

as formal algorithms. [42]

2.2.1 Feature

1.Input: An algorithm should have zero or more inputs.

2.Output: An algorithm should generate one or more outputs, and the output refers

to the result of the algorithm calculation.

3.Clarity: The description of the algorithm should be unambiguous to ensure that

the actual execution of the algorithm is precisely by complying with the requirements

or expectations, and the practical operational results are usually determined.

4.Finiteness:According to Turing’s definition, an algorithm refers to a series of op-

erations that can be simulated with any Turing complete system, while the Turing

22

machine has only a limited number of states, a finite number of input symbols, as

well as a finite number of transfer functions (instructions). Several definitions indicate

that the algorithm should complete the task in a limited number of steps.

5.Effectiveness: Also known as feasibility. It can be suggested that the operations

described in the algorithm can be implemented with a limited number of executions

of the basic operations that have been implemented.

2.2.2 Common Design Pattern

Full traversal method and incomplete traversal method: When the solution to the

problem refers to a finite discrete solution space, and the correctness and optimality

can be verified, the simplest algorithm is to completely traverse all the elements of

the solution space and to verify whether the elements are in order. The ideal solu-

tion is the most straightforward algorithm. Besides, the implementation is commonly

the easiest. However, when the solution space is particularly large, this algorithm

can cause an unacceptable amount of computation in engineering. Then, incom-

plete traversal methods (e.g., various search methods and planning methods) can be

adopted to reduce the amount of computation.

1. Divide and conquer: a problem is divided into ideas that are solved separately

from each other. One of the benefits of this solution refers to the ease of parallel

computing.

23

2. Dynamic programming method:A method used commonly if the overall optimal

solution of a problem covers local optimal solutions.

3. Greedy algorithm: a common approximation solution. A method available when

the overall optimal solution of the problem (or cannot be proved to be) covers no

local optimal solution, and no requirement is raised for the optimality of the solution.

4. Degenerate method: A method with a problem simplified as a relatively simple or

similar, relatively simple model by logical or mathematical reasoning.

2.2.3 Common Implementation Methods

1. Recursive method and iterative method

2. Sequential, Parallel, and Distributed Computing: Sequential computing refers to

the sequential execution of a formalized algorithm under a single-threaded serializa-

tion of a programming language.

3. Deterministic and non-deterministic algorithms.

4. Exact solution and approximate solution.

2.2.4 Formal Algorithm

An algorithm refers to the essence of a computer’s processing of information, since a

computer program is essentially an algorithm that introduces the computer the exact

steps to perform a specified task (e.g., calculating the employee’s salary or printing a

student’s transcript). Overall, when the algorithm is processing information, it reads

24

data from the input device or the storage address of the data, as well as writing the

result to the output device or a storage address for subsequent recall.

2.2.5 Complexity

1. Time complexity:

The time complexity of the algorithm refers to the time resource that the algorithm

should consume. Overall, computer algorithms are problematic n. Under the function

f(n), the time complexity of the algorithm is also recorded as:

T (n) = O(f(n))

Algorithm execution time growth rate are positively correlated and f (n), termed as

asymptotic time complexity, referred to as time complexity.

Common time complexity is:

(1). constant order: O(1).

(2). Logarithmic order O(log(n)).

(3). Linear order O(n).

(4). Linear logarithmic order On(log(n)).

(5). Square orderO(n2).

(6). k secondary order O(nk).

(7). Index step O(2n).

As the scale of the problem n as the number of times increases, the -mentioned time

25

complexity increases, and the execution efficiency of the algorithm is lower. The -

mentioned time complexity isrising, and the execution efficiency of the algorithm is

lower.

2.2.6 Space Complexity

The spatial complexity of the algorithm refers to the space resources that the al-

gorithm should consume. Its calculation and representation methods are consistent

with time complexity and overall represented by the asymptotic complexity. Com-

pared with the complexity, the analysis of spatial complexity is significantly simpler.

2.2.7 Implementation

Algorithms can be implemented not only in computer programs, but also in artificial

neural networks, circuits, or mechanical devices. The following three algorithms are

listed, including global optimization algorithms: genetic algorithm, particle swarm

optimization and local optimization algorithms, error back propagation algorithms.

26

Chapter 3

Back propagation algorithm

3.1 Generalize

Back propagation algorithm (BP algorithm) consists of two stages, incentive propa-

gation and weight updating.

Stage 1: incentive communication

The propagation phase in each iteration consists of two steps: (forward prop-

agation stage) the training input is sent to the network to generate the incentive

response;

In the stage of back propagation, the target output corresponding to the training

input is calculated to obtain the response error of the output layer and the hidden

layer.

Stage 2: weight update

For the weights on each synapse, update as follows:

The gradient of the weight is determined by multiplying the input excitation and

27

the response error.

Multiply the gradient by a proportion and reverse it to the weight.

This proportion (percentage) will affect the speed and effect of the training pro-

cess, so it becomes a “training factor”. The direction of gradient refers to that of

error expansion, so it needs to be reversed when updating the weight, to reduce the

error caused by the weight.

The first and second stages can be iterated repeatedly till the response of the

network to the input reaches a satisfactory predetermined target range.

3.2 Algorithm

Algorithm 1: There layer network algorithm (only one hidden layer)

Initialize network weights (usually small random values)
do

For each training sample ex
Prediction = natural net output (network, ex)
Actual = teacher output ex
Calculate the error of the output unit (prediction - actual)
Calculate ∆wh for all hidden layer to output layer weights
Calculate ∆wi for all input layer to hidden layer weights
Update network weight

Until all samples are correctly classified or meet other stop criteria
Return the network

The wrong algorithm name refers to the propagation process from the output

node to the input node. To be exact, when the network weight can be modified, the

algorithm of the network error gradient is the back-propagation algorithm. Generally,

the word “back propagation” is employed in a more general sense to refer to the whole

28

process of calculating gradient and using it in random gradient descent method. In

the network suitable for back propagation algorithm, it can converge to a satisfactory

minimum value efficiently.

BP networks are multi-layer perceptrons (commonly an input layer, a hidden layer,

and an output layer). For all useful functions to be applicable to the hidden layer,

a multilayer network is activated with a nonlinear activation function: a multilayer

network with only a linear activation function is equivalent to a single-layer linear

network.

3.3 Derivation

Since the gradient descent method is employed in back propagation, the derivative of

the square error function to the network weight should be calculated. Assume that

for an output neuron, the square error function satisfies the following equation:

E =
1

2
(t− y)2, (3.1)

where E denotes the square error, t is the target output of the training sample. y is

the actual output of the output neuron. Besides,is to coefficient 1
2

is to counteract

the differential exponent. Subsequently, the expression will be multiplied with an

arbitrary learning rate, so it is not required to multiply a constant coefficient here.

29

For respective neuron j, its output oj is defined as the following equation:

oj = ϕ (netj) = ϕ

(
n∑
i=1

wjioi

)
, (3.2)

netj is input to a neuron,it is the weighted sum of the output oi of the previous

neurons. If the neuron is in the first layer behind the input layer, the output oi of

the input layer is expressed as the input xi of the network. The number of inputs for

this neuron refers to n. Variable wji denotes the neuron i and j weight between.

Activation function ϕ denotes a nonlinear differentiable function generally. Logical

functions are commonly act as activation functions:

ϕ (z) =
1

1 + e−z
. (3.3)

Its derivative exhibits a good form:

∂ϕ

∂z
= ϕ (1− ϕ) . (3.4)

The partial derivative of calculation error to weight wji is obtained with the chain

method twice:

∂E

∂wij
=
∂E

∂oj

∂oj
∂netj

∂netj
∂wji

. (3.5)

In the last item on the right, only the weighted sum netji is determined by wji, so

∂E

∂wij
=
∂E

∂oj

∂oj
∂netj

∂netj
∂wji

. (3.6)

30

The derivative of the output of j neuron to its input refer to the partial derivative of

the activation function (assuming the use of a logical function here):

∂oj
∂netj

=
∂

∂netj
ϕ (netj) = ϕ (netj) (1− ϕ (netj)) . (3.7)

Thus the reason why the activation function required for back propagation is

differentiable is explained. If the neuron is in the output layer,since, oj = y, and

∂E

∂oj
=
∂E

∂y
=

∂

∂y
frac12 (t− y)2 = y − t. (3.8)

Accordingly the first term can be calculated directly. However if J is any inner

layer of the network the derivative of e with respect OJ is hard to find. It is considered

as a function of all inputs from neurons j

∂E (oj)

∂oj
=
∂E (netu, netv, · · ·, netw)

∂oj
. (3.9)

Besides by taking the total differential oJ , a recursive expression of the derivativecan

be yielded:

∂E

∂oj
=
∑
l∈L

(
∂E

∂netl

∂netl
∂oj

)
=
∑
l∈L

(
∂E

∂ol

∂ol
∂netl

∂netl
∂oj

)
=
∑
l∈L

(
∂E

∂ol

∂ol
∂netl

wij

)
. (3.10)

For this reason, if all the derivatives of the output oi about the next layer (the

layer closer to the output neuron) are known, the derivatives of oj can be caclulated

31

and incorporated as:

∂E

∂wji
= oiδj, (3.11)

Among it:

δj =
∂E

∂oj

∂oj
∂netj

=

(oj − tj)ϕ (netj) (1− ϕ (netj))(∑
l∈L δlwlj

)
ϕ (netj) (1− ϕ (netj)) ,

(3.12)

To update wji with gradient descent method, a learning rate α should be selected.

The change of weight to be added to the original weight is equeted with the product

of learning rate and gradient, multiplied by−1 :

∆wji = −α ∂E

∂wji
. (3.13)

The reason for being multiplied by −1 is to update the direction of the minimum

value of the error function, rather than the maximum value. For single layer networks,

this expression act as delta rule.

3.4 Learning Mode

Three learning modes a re available: online, batch and random. In online and

random learning, a weight update is made immediately after respective propagation.

In batch learning mode, considerable propagation takes place before weight updating.

Online learning is adopted to create a dynamic environment for continuous flow of

32

novel patterns. Both random and batch learning employ a training set of static pat-

terns. Such set of static patterns is used by random learning and batch learning.In

order to avoid the situation of situation minimum, random learning adopt the method

of random order to pass the data set, which can not only make the weight updated im-

mediately after each propagation, but also make it faster than batch learning.However,

because batch learning is given to all types of updates, the local minimum of batch

learning is reduced to a more stable level.

3.5 Limit

1. The result is likely to converge to the extreme value. If there is only a minimum,

the ”Climbing” strategy of gradient descent will certainly operate. However, error

surfaces commonly have numerous local minimum and maximum values. If the start-

ing point of gradient descent is exactly between the local maximum value and the

local minimum value, the local minimum will be reached following gradient descent

maximum.

2. The convergence from back-propagation learning is significantly slow.

3. The convergence of learning in back-propagation cannot be ensured.

4. Adaptive termination conditions can be adopted to ensure a global minimum.

5. Back-propagation learning requires no normalization of input vectors;where as,

standardization can enhance performance

33

Chapter 4

Dendritic Neuron Model with
Adaptive Synapses

DMAS is applied in our research. The neuron model includes four layers: the

adaptive synaptic layer, dendritic layer, membrane layer, and somatic cell layer. In

this section, we detail the structure and principle of these four layers.

4.1 Adaptive Synaptic Layer

The synaptic layer receives and computes the input signal and sends the calcu-

lated results to the dendritic layer.Once the input signal breakthrough the threshold,

synapese will be fired. To simulate this procress, we design synaptic layer with a

sigmoid faction in as the following equation:

Yi,m =
1

1 + e−k(wimxi−qim)
, (4.1)

34

where xi is the input, and Yi,m is the output of the m-th (m = 1, 2, , 3, ...,M) branch

of dendrites. The i in i = 1, 2, 3...., I represents the number of inputs that have been

normalized into [0,1] from the dataset. I also represents the number of synapses

on each dendrite. k is a tunable parameter which denotes the connection strength

between presynaptic and postsynaptic neurons. To reduce the parameters that need

to be adjusted in our study, k will be used as the training object. Due to the nature

of the sigmoid function, this step has a minimal effect on the function. wim and

qim are objects that also need to be trained by the learning algorithm; their values

will be set initially within [-2, 2]. Because the synaptic layer works with these three

training objects and inputs and no artificial adjustment parameters are needed, this

synapse has an adaptive function [43]. The threshold θim is an important indicator

for synapses and is calculated by the following equation.

θim =
qim
wim

. (4.2)

After the synapse has been activated by the sigmoid function, it can adopt one of 4

different states according to different ranges of wim and qim These states are described

as the direct-connecting state (l), opposite-connecting state (z), constant-1 state

(1○), and constant-0 state (0○), as shown in Fig. 4.1. According to the change of the

values of wim and qim, the four states are divided into the following six cases:

35

Figure 4.1: The four connecting states.

Case (a): Direct-connecting state, when wim > qim > 0. In this state, if the value

of the input xim is greater than θim, the value of the output approximately equals 1;

otherwise, it equals 0. For example when wim = 1.0 and qim = 0.5, the function can

be show in Fig. 4.2 (a), where the X-axis represents the value of the input x, and

the Y -axis represents the value of the output. Since the range of input is [0, 1], we

only need to pay attention to the area between the two dashed lines.

Case (b): Opposite-connecting state, e.g., when 0 > qim > wim. In this state, if the

value of the input xim is less than θim, the value of the output approximately equals

1; otherwise, it equals 0. A synapse in this state works as a logic NOT operation. For

example when wim = −1.0 and qim = −0.5, the function diagrams as Fig. 4.2 (b).

Case (c1): Constant-1 state when wim > 0 > qim. For example when wim = 1.0

and qim = −0.5, the function diagrams as Fig. 4.2 (c1).

36

 a b

 c1 c2

 d1 d2

-2 -1 0 1 2
x

Direct connecting state

0

0.5

1

y

-2 -1 0 1 2
x

Opposite connecting state

0

0.5

1

y

-2 -1 0 1 2
x

Constant 1 state

0

0.5

1

y
-2 -1 0 1 2

x
Constant 1 state

0

0.5

1

y

-2 -1 0 1 2
x

Constant 0 state

0

0.5

1

y

-2 -1 0 1 2
x

Constant 0 state

0

0.5

1

y

Figure 4.2: The synapse function figures for the four state.

Case (c2): Constant-1 state when 0 > wim > qim. For example when wim = −1.0

and qim = −1.5, the function diagrams as Fig. 4.2 (c2). In case (c1) and (c2)

regardless of the value of the input xi,m, the output remains 1.

Case (d1): Constant-0 state when 0 > qim > wim. For example when wim = 1.0

and qim = 1.5, the function diagrams as Fig. 4.2 (d1).

Case (d2): Constant-0 when state qim > 0 > wim. For example when wim = −1.0

and qim = 0.5, the function diagrams as Fig. 4.2 (d2). In case (d1) and (d2),

regardless of the value of the input xim, the output remains 0.

4.2 Dendritic Layer

The outputs of the synaptic layer are calculated by the dendritic layer using mul-

tiplication. Because the sigmoid function is employed, the outputs are approximately

37

equal to either 1 or 0. The outputs of the dendritic layer are also approximately

equal to either 1 or 0. The dendrites work the same as a logic AND operation. The

equation is

Zm =
I∏
i=1

Yim. (4.3)

4.3 Membrane Layer

The membrane accepts the output of the dendritic layer as the input and linearly

sums the values. The summation can be approximately simulated with logic OR

operation [13]s. The equation is

V =
M∑
m=1

Zm. (4.4)

4.4 Somatic Cell Layer

The somatic cell layer will receive the signal from the membrane. The signal is

calculated using the sigmoid function as follows:

O =
1

1 + e−ksoma(V−θsoma))
, (4.5)

ksoma and θsoma are set to 10 and 0.5, which were suggested to be the most promising

setting in our previous papers [44] [45].

38

4.5 Simplified Model

We pruned the synapses and dendrites to obtain our simplified model. The

synapse receiving the input signal is activated and converted into the constant-1,

constant-0, direct-connecting or opposite-connecting state. The activated signal is

transmitted to the dendrites. These signals are multiplied in the dendrites, enter

the membrane, and are received by the soma. When a synapse is converted into the

constant-1 state, we will remove this synapse since 1 multiplied by any number is equal

to the number itself. When a synapse on a dendrite is converted to the constant-0

state, we will remove this dendrite since 0 multiplied by any number equals 0. An

example is shown in Fig. 4.3. In the upper left diagram, dendrite (2) has a constant-

0 state synapse (c) and an opposite-connecting state synapse (d). Because synapse

(c) is in the constant-0 state, dendrite (2) is removed, including the other synapses,

as shown in the lower left diagram. We refer to this step as dendrite pruning. In

the lower left diagram, a constant-1 state synapse (a) and a direct-connecting state

synapse (b) exist on dendrite (1). Since synapse (a) is in the constant-1 state, this

synapse is removed. We refer to this step as synapse pruning. The diagram on the

right shows the simplified model after pruning, and only dendrite (1) and synapse (b)

remain.

39

Figure 4.3: Simplified model.

40

Chapter 5

Learning Algorithm

As previously mentioned, we use the three parameters of the synaptic layer as

training objects. This space is a vast search space. We use the DE algorithm as the

learning algorithm of DMAS. Since DE is excellent in global optimization [46], it can

find the optimal solution faster in the immense search space.

DE demonstrates a fixed number of vectors that are randomly initialized in the

search space. The new vectors evolve over time to explore the minimum of the ob-

jective function. In the process of evolution, arithmetical operators are combined

with the operators of mutation, hybridization and selection. A randomly gener-

ated starting population will be evolved to an optimal solution. DE has numerous

strategies [47], and we used DE/rand/1/bin in this study. Other strategies include

DE/best/1/exp and DE/rand/2/exp, and the preliminary experimental results had

suggested that they were slightly inferior than DE/rand/1/bin, because it has the

simplest structure [48, 49]. Next, we will explain how DE works.

41

Step 1: Parameter Setup

Select the population size P and restrict the boundary. Confirm the cross-probability

CR, the impact factor F [50] [51], and the termination criterion of the maximum

number of generations (G).

Step 2: Initialization of the Population

Set the generation g = 0. Initialize a population containing P individuals. The

attributes of each individual include weights w, thresholds q and a k, described as D.

The number of weights w and thresholds q equals the number of hidden layers (M)

multiplied by the number of inputs (I) provided by the dataset. Thus, the population

is considered to be a vector matrix of P rows and D (D = 2×M × I + 1) columns.

Each value of the weights w and thresholds q is initialized as a random real number

in the range [-2, 2]. The value of the k is randomly initialized in the range [1, 10].The

following equation shows the content of the population.

xp → (x1, x2, x3, ..., xP)

xp =
{
w(1×1)p, q(1×1)p, ..., w(1×M)p, q(1×M)p, ..., w(I×M)p, q(I×M)p, kp

}
.

(5.1)

Step 3: Evaluation of the Population

DE can be employed as a training algorithm for DE-DMAS. DE-DMAS can also

be regarded as the evaluation function of DE. Therefore, the evaluation becomes

a calculation of the mean square error (MSE), which will be formally defined in

42

Eq.(7.1). In the experiment, the MSE of DMAS as the fitness at each step. Each

up-to-date generation will be evaluated after the next mutation, cross and selection

operations. In our research, the maximum number of generations is set to 1000. thus,

the evaluation function will be run 1001 times.

Step 4: Mutation Operation

The mutation operation produces a mutation operator (vi,g). The process of pro-

duction is shown in the following equation:

vi,g = xr1,g + F (xr2,g − xr3,g), (5.2)

where xr1,g, xr2,g, and xr3,g are randomly chosen from the population of this genera-

tion. If all individuals are regarded as points in the search space, then the mutation

operation can be interpreted as follows: vi,g is a new point after xr1,g moves in the

direction of xr3,g to xr2,g by F times the Euclidean distance between xr2,g and xr3,g.

Step 5: Hybridization Operation

The hybridization operation combines the mutation operator with the target in-

dividual, resulting in a new individual. DE involves two methods of hybridization:

binomial hybridization and exponential hybridization. Zaharie analyzed the perfor-

mance of binomial hybridization and exponential hybridization [52] and suggested

that exponential hybridization is more affected by population size than binomial hy-

43

bridization. Binomial hybridization is applied in our research. The following equation

shows the hybridization function.

uj,i,g =

vj,i,g, if randj 6 CR or j = jrand

xj,i,g, otherwise.

(5.3)

Generate the random number randj ∈ [0, 1] for each dimension of each individual.

If randj is less than CR in one dimension, then the target individual xi,g is replaced

by the mutation operator vi,g in this dimension; otherwise, it remains the same as the

target individual xi,g. Before this step, to ensure that the target individual hybridizes

in at least one dimension, a random integer jrand ∈ {1, 2, 3, ..., D} is generated. When

j = jrand, the target individual must hybridize in the j-th dimension.

Step 6: Selection Operation

DE employs the mutation operator and the hybrid operator to generate a son-

population and applies a one-to-one selection to compare the son-individuals with

the corresponding parent-individuals. The better individuals are saved to the next-

generation population. In DE-DMAS, the one-to-one selection operation can be de-

scribed as follows:

xi,g+1 =

ui,g, if MSEui 6 MSExi

xi,g, otherwise.

(5.4)

Since DE employs a one-to-one selection method, the algorithm can ensure that the

44

elitism will not be lost during the evolution process. In addition, one-to-one selection

operation has a better ability to maintain population diversity than sequencing or

competitive bidding selection [53]. The following Algorithm 2 summarizes the above

steps, where two functions rnd int and rnd real return random integer and real

numbers in the specified range, respectively.

Algorithm 2: Differential Evolution Algorithm for DMAS.

Initial population;
Calculate the fitness of the first generation;
for g = 1 to G do

randomly uniformly select r1 6= r2 6= r3 6= i;
jrand = rnd int(1, D);
for j = 1 to D do

if rnd realj[0, 1) < CR or j == jrand then
Ui,g(j) = Xr1,g(j) + F × (Xr2,g(j)−Xr3,g(j));

else
Ui,g(j) = Xi,g(j);

for i=1 to P do
Calculate the fitness of the new individual Ui;
if Ui,g performs better than Xi,g then

Xi,g+1 = Ui,g;

45

Chapter 6

Experimental Design

To achieve the best performance of the proposed method, it is first necessary

to confirm the parameters. DE-DMAS has six main parameters. The parameters

can be divided into fixed parameters and adjustable parameters. The best adjustable

parameters are determined using the Taguchi method for each dataset [54], which

is detailed in section 4.2. In section 4.3, we will prove the adaptability of synapses

as mentioned above. Finally, DE-DMAS is compared with BP-DNM and BPNN,

which are introduced in section 4.4 and section 4.5. The five datasets adopted in our

research are introduced in the following subsection.

6.1 Dataset

The five datasets, which are obtained from UCI, are extensively applied in opti-

mization research. The datasets have been standardized by maximum minimization

to [0,1] in our research. Their detailed introduction and summary are provided in

Table 6.1.

46

Table 6.1: Dataset introduction.

Dataset No. of No. of No. of No. of
Name Instances Inputs Attributes Class 1 Instances Class 2 InIstances

iris 150 4 50 100
liver 345 6 164 181

cancer 699 9 458 241
glass 214 9 51 163
ACA 690 14 307 383

The iris data was provided by R. A. Fisher in July 1988 [55–57]. The data have

three classes: Iris Setosa, Iris Versicolour, and Iris Virginica. Each class has 50

instances. We chose one of the instances as the experimental standard; thus, the data

is divided into two categories. The selected 50 instances are divided into one class,

and the other 100 instances are divided into another class. Each instance has four

attributes: sepal length, sepal width, petal length, and petal width. In our research,

we use the class Iris Versicolour as the output, thus, it becomes a binary-classification.

Because of the limitations of the single neuron model, the DE-DMAS can only solve

binary-classification problem. So we apply the iris dataset as a binary-classification

problem.

The liver disorders dataset was provided by Richard S. Forsyth in “None known

other than what is shown in the PC/BEAGLE User’s Guide”. It has been applied

in [44, 58]. The dataset has 345 instances. Each instance has six attributes, which

include five kinds of blood tests and average daily alcohol consumption. The liver

47

dataset has two classifications: 164 healthy disorders and 181 unhealthy disorders.

The breast cancer data were provided by Dr. William and H. Wolberg in July

1992 [59,60]. It has been applied in [45]. The 699 instances of this data consist of 458

benign instances and 241 malignant instances. Breast cancer data can be divided into

two classes. The breast cancer data include 9 attributes, such as clump thickness,

uniformity of cell size and shape, and marginal adhesion.

The glass identification database was provided by B. Herman in September 1987.

It has been applied in [61]. The glass data include 163 window glass instances and 51

non-window glass instances for a total of 214 instances. The attributes of the glass

data include various element contents (Na, Mg, Al, Si, K, Ca, Ba, and Fe) and the

refractive index (RI). The instances can be classified by these 9 attributes.

The ACA data indicates whether the applicants are creditworthy. It has been

applied [62,63]. The credit history of the applicants classify the data into two classes.

These data provide information about 690 applicants. The applicants include 307

people who are creditworthy and 383 people who have no credit. The information

that can be considered as the attributes of the ACA dataset consist of 8 categorical

records and 6 numerical records.

48

Table 6.2: Parameter ranges in DE-DMAS.

Dataset NP CR F M
iris 10, 30, 60 0.3, 0.6, 0.9 0.3, 0.6, 0.9 4, 8, 12

liver 10, 30, 60 0.3, 0.6, 0.9 0.3, 0.6, 0.9 6, 12, 18
cancer 10, 30, 60 0.3, 0.6, 0.9 0.3, 0.6, 0.9 9, 18, 27
glass 10, 30, 60 0.3, 0.6, 0.9 0.3, 0.6, 0.9 9, 18, 27
ACA 10, 30, 60 0.3, 0.6, 0.9 0.3, 0.6, 0.9 16, 32, 48

6.2 Optimal Parameter Settings

Three parameters, F , CR and NP , are mentioned in the DE learning algorithm.

The number of hidden layers is an important parameter in DE-DMAS, namely, M .

For different datasets, M should be suitably determined. The parameter ranges in

DE-DMAS are shown in Table 6.2.

Typically, we need to experiment with all combinations of parameters to obtain

the optimal parameters. However, four parameters exist, and each parameter has

three choices. Thus, we should perform 81 (34) different experiments, which will be

time consuming. To ensure the credibility of the experimental results, we should

repeat each different experiment 30 times. Because this approach is time consuming,

we should reduce the number of different experiments. Taguchi’s method is a kind

of method to efficiently obtain the optimal parameters [64] [65]. This method is

primarily employed using orthogonal arrays. According to the previously mentioned

parameter ranges, four parameter trials containing three datasets are available. Thus,

49

Table 6.3: Orthogonal array for parameters of the iris dataset.

Experimental runs
Parameters (Levels)

Accuracy (%)
branch (3) F (3) CR (3) NP (3)

1 4 0.3 0.3 10 92.51±4.61
2 8 0.3 0.6 30 94.49±5.46
3 12 0.3 0.9 60 94.96±2.47
4 12 0.6 0.3 30 94.20±4.61
5 4 0.6 0.6 10 96.74±2.78
6 8 0.6 0.9 60 93.62±5.32
7 8 0.9 0.3 60 94.20±4.47
8 12 0.9 0.6 10 95.50±4.90
9 4 0.9 0.9 30 94.00±2.74

the L9(3
4) orthogonal array has been applied in the optimal parameter experiments

of the five datasets. The instances of each dataset have been divided into 70% for

training and 30% for random testing. The orthogonal experiments of each dataset

have been repeated 30 times. The epoch of each orthogonal experiment is set to 1000.

The orthogonal experimental result of the iris dataset is shown in Table 6.3. The result

of the liver dataset is shown in Table 6.4. The result of the glass dataset is shown in

Table 6.5. The result of the cancer dataset is shown in Table 6.6. The result of the

ACA dataset is shown in Table 6.7. The last column displays the average correct rate

of 30 test experiments. We obtain the most optimal parameters by a comprehensive

analysis of the mean and variance. The bold font indicates the optimal combination

of parameters The optimal parameters for all datasets are shown in Table 6.8.

50

Table 6.4: Orthogonal array for parameters of the liver dataset.

Experimental runs
Parameters (Levels)

Accuracy (%)
branch (3) F (3) CR (3) NP (3)

1 6 0.3 0.3 10 70.60±4.81
2 12 0.3 0.6 30 73.59±6.66
3 18 0.3 0.9 60 72.17±3.86
4 18 0.6 0.3 30 66.92±6.80
5 6 0.6 0.6 10 71.85±4.75
6 12 0.6 0.9 60 68.33±6.91
7 12 0.9 0.3 60 66.28±7.36
8 18 0.9 0.6 10 68.58±7.74
9 6 0.9 0.9 30 69.61±4.88

6.3 Proof Adaptability of Synapses

In order to demonstrate the adaptability of the synaptic layer in DE-DMAS,

we carried out a confront analysis. We removed the hyperparameter k from the

population of DE and set it to 1, 5, 10, respectively. The five datasets were randomly

divided into two parts, 70% for training and 30% for testing. The parameters except

k were set as the same as these in Table 6.8.Then we did 30 independent experiments

for them. We recorded all test accuracy results and compared the results in terms

of mean and standard deviation, as show in Table 6.9. From it, we found that the

adaptive k which was learned by DE generally performed better than these fixed

values. Additionally, Friedman test [66] gave the statistical analysis results for the

accuracies. In this case the lower value of Friedman test, the better performance.

The result of Friedman test shows in Table 6.10. Based on the above results, it is

51

Table 6.5: Orthogonal array for parameters of the glass dataset.

Experimental runs
Parameters (Levels)

Accuracy (%)
branch (3) F (3) CR (3) NP (3)

1 9 0.3 0.3 10 93.75±2.65
2 18 0.3 0.6 30 94.37±4.13
3 27 0.3 0.9 60 94.42±2.51
4 27 0.6 0.3 30 94.06±4.44
5 9 0.6 0.6 10 93.12±4.29
6 18 0.6 0.9 60 93.02±4.07
7 18 0.9 0.3 60 93.54±3.66
8 27 0.9 0.6 10 92.81±4.03
9 9 0.9 0.9 30 94.01±2.66

evident that the adaptive synapse is beneficial for DNM.

6.4 Comparison with BPNN

In this section, we compared DE-DMAS with the most popular model BPNN.

To make ne comparison relatively fair, the number of adjusted weights and thresholds

(DBPNN and DDE−OMAS shown in Eq.6.1 and Eq.6.2, respectively) in both models

should be arranged nearly the same because these numbers generally determine the

size of the model and the computational complexity although the two models have

different architectures.

DBPNN = (Input×Hidden) + (Hidden×Output)

+Hiddenbias+Outputbias (6.1)

DDE−DMAS = (Input×Hidden) + 1 (6.2)

52

Table 6.6: Orthogonal array for parameters of the cancer dataset.

Experimental runs
Parameters (Levels)

Accuracy (%)
branch (3) F (3) CR (3) NP (3)

1 9 0.3 0.3 10 96.12±1.17
2 18 0.3 0.6 30 96.12±1.65
3 27 0.3 0.9 60 95.80±1.26
4 27 0.6 0.3 30 95.39±1.97
5 9 0.6 0.6 10 96.09±1.64
6 18 0.6 0.9 60 96.19±1.90
7 18 0.9 0.3 60 96.20±2.00
8 27 0.9 0.6 10 95.81±1.55
9 9 0.9 0.9 30 95.84±1.31

However, the larger the number of weights is, the more computing resources

are occupied. In our research, to demonstrate the excellent performance of DE-

DMAS for five datasets, the structure of DE-DMAS should be set smaller than that

of BPNN. Because the input and output of each dataset are fixed, they are given the

same number of weights by adjusting their number of hidden layers. In the previous

section, we have configured this parameter (the number of hidden layers) for DE-

DMAS. We configure the BPNN with the number of hidden layers according to the

above principles. The structures of BPNN and DE-DMAS for the five datasets are

shown in the following Table 6.11. The learning rate set to be 0.1 according to the

experience.

53

Table 6.7: Orthogonal array for parameters of the ACA dataset.

Experimental runs
Parameters (Levels)

Accuracy (%)
branch (3) F (3) CR (3) NP (3)

1 16 0.3 0.3 10 84.41±5.00
2 32 0.3 0.6 30 85.81±2.41
3 48 0.3 0.9 60 85.28±2.28
4 48 0.6 0.3 30 85.18±1.67
5 16 0.6 0.6 10 85.58±2.14
6 32 0.6 0.9 60 85.70±1.64
7 32 0.9 0.3 60 84.89±2.26
8 48 0.9 0.6 10 84.41±5.73
9 16 0.9 0.9 30 86.18±1.98

Table 6.8: Parameters for DE-DMAS

Dataset NP CR F M
iris 0.6 0.6 10 4

liver 0.3 0.6 30 12
cancer 0.3 0.3 10 9
glass 0.3 0.9 60 27
ACA 0.9 0.9 30 16

6.5 Comparison with BP-DNM

In order to compare BP-DNM and DE-DMAS fairly, the three common param-

eters of ksoma, θsoma and No.of hidden layers (M) set to be the same. According to

the experience, the learning rate is set to 0.01, and the value of k is set to 3.BP-DNM

is also a single neuron model with synaptic nonlinearities. It has been proven to

have outstanding performance in the liver [44], cancer [45] and ACA [63]. We will

show the performs of BP-DNM when it has the same structure as DE-DMAS. We

will use multiple objective methods to demonstrate the performances of DE-DMAS

54

Table 6.9: Demonstrate on the adaptability of synapse in term of test accuracy

Datase k=1 k=5 k=10 Apative
iris 80.81±6.66 94.15±2.83 95.11±2.50 96.74±2.78

liver 69.39±3.57 69.81±4.12 69.39±5.56 73.59±6.66
cancer 92.76±3.35 92.97±3.38 93.59±2.11 96.12±1.17
glass 91.04±2.84 93.33±3.23 85.48±2.02 94.42±2.51
ACA 85.44±2.99 85.56±1.70 85.86±2.53 86.18±1.98

Table 6.10: Demonstrate on the adaptability of synapse by Friedman test

Datase k=1 k=5 k=10 Apative
iris 4 2.33 2 1.67

liver 2.77 2.73 2.55 1.95
cancer 3.05 2.95 2.73 1.27
glass 2.55 1.98 3.93 1.53
ACA 2.48 2.73 2.52 2.27

and BP-DNM on the five datasets and make a discusstion.

55

Table 6.11: Structures of DE-DMAS and BPNN for the five dataset

Dataset Method
No. of No. of No. of No. of
inputs branches outputs adjusted weights

Iris
DE-DMAS 4 4 1 33

BPNN 4 28 1 169

Liver
DE-DMAS 6 12 1 145

BPNN 6 18 1 145

Cancer
DE-DMAS 9 9 1 163

BPNN 9 18 1 199

Glass
DE-DMAS 9 27 1 487

BPNN 27 45 1 496

ACA
DE-DMAS 14 16 1 449

BPNN 14 30 1 481

56

Chapter 7

Experimental Result Analysis

The comparison experiment of DE-DMAS vs BPNN and DE-DMAS vs BP-DNM

is set up as follows: 1) The instances of the five datasets are divided into 30% for

testing and 70% for training randomly. 2) The number of iterations is set to 1000. 3)

All experiments are run using Matlab 2018a.

7.1 Convergenc Comparison

We use the value of the mean square error (MSE) to represent the degree of

convergence. The smaller the value is, the better the convergence. We calculate the

value of MSE after each iteration in the DE-DMAS , BP-DNM and BPNN training

process and record it. We employ the following equation to calculate the value of the

MSE:

MSE =
1

2N

N∑
i=1

(Oi − Ti)2, (7.1)

57

where N represents the number of training instances. Oi and Ti represent the output

and the teacher signal of the i− th training instance.

We perform 30 training sessions for DE-DMAS , BP-DNM and BPNN. We ran-

domly select 70% of the instances as the input for each training. We draw two graphs

to analyze the convergence effect of DE-DMAS and BP-DNM and BPNN for the

five training datasets. In the first figure, the ordinate represents the mean value of

the MSE for 30 training sessions, and the abscissa represents the number of itera-

tions. A total of 1000 MSE values are recorded from the start of initialization for

the DE-DMAS , BP-DNM and BPNN. We can evaluate the speed of convergence by

the degree of the curve drop. In Fig.7.1, we note that curve of DE-DMAS is falling

faster than the comparators. These figure shows that DE-DMAS has an advantage

in convergence speed. We record the value of MSE in the final iteration for 30 times

in the training sessions. We use a box-plot [67] to represent the value of the MSE,

as shown in Fig. 7.2. In this figure, the ordinate represents the value of the MSE.

The horizontal line from the top to the bottom of each box represents the maximum,

3/4 median, median, 1/4 median and minimum. The 1/4 median, median, and 3/4

median represent the value of MSE at 25%, 50%, and 75%, respectively, after sorting.

The + sign represents an outlier, which is a value that exceeds twice the standard

deviation. The lines corresponding to the maximum, 3/4 median line, median, 1/4

58

0 200 400 600 800 1000

Iteration

0

0.2

0.4

M
S

E

Iris

BPNN

BP-DNM

DE-DMAS

0 200 400 600 800 1000

Iteration

0.1

0.2

0.3

0.4

M
S

E

Liver

BPNN

BP-DNM

DE-DMAS

0 200 400 600 800 1000

Iteration

0

0.2

0.4
M

S
E

Cancer

BPNN

BP-DNM

DE-DMAS

0 200 400 600 800 1000

Iteration

0

0.1

0.2

0.3

M
S

E

Glass

BPNN

BP-DNM

DE-DMAS

0 200 400 600 800 1000

Iteration

0

0.2

0.4

M
S

E

ACA

BPNN

BP-DNM

DE-DMAS

Figure 7.1: Convergence graphs for the five datasets0.

median and minimum for DE-DMAS are below those of BP-DNM and BPNN for the

five datasets. Many outliers exist in the boxes of BPNN and BP-DNM. The outliers

above the maximum represent falling into a local minimum during training. On the

conversely, there is no outlier above the maximum in the boxes of DE-DMAS. The

results show that the convergence effect of DE-DMAS is better than that of BP-DNM

and BPNN.

7.2 Accuracy Comparison

We compare DE-DMAS , BP-DNM and BPNN in terms of the test accuracy,

sensitivity, specificity, and receiver operating characteristic (ROC) curve [68], which

is a method for objectively analyzing the performance of classifiers. To draw the

ROC curve, we collected the output (O) of the five datasets tested by DE-DMAS ,

59

BPNN BP-DNM DE-DMAS

0

0.1

0.2

0.3

F
in

a
l

M
S

E

Iris

BPNN BP-DNM DE-DMAS

0.1

0.15

0.2

F
in

a
l

M
S

E

Liver

BPNN BP-DNM DE-DMAS

0

0.1

0.2

0.3

F
in

a
l

M
S

E

Cancer

BPNN BP-DNM DE-DMAS

0.02

0.04

0.06
F

in
a
l

M
S

E

Glass

BPNN BP-DNM DE-DMAS

0.05

0.1

0.15

0.2

F
in

a
l

M
S

E

ACA

Figure 7.2: Box-plots for the fianl MSE .

BP-DNM and BPNN. (T) represents the corresponding teacher signals We convert

the output O from a real number to an integer of 0 or 1. For a two-category problem,

the instances are divided into positive and negative classes. The actual classification

has four situations [69]:

(1) If an instance is in the positive class and is predicted to be in the positive

class, then it is a true classification (true positive (TP)).

(2) If an instance is in the positive class but is predicted to be in the negative

class, then it is a false negative classification (false negative (FN)).

(3) If an instance is in the negative class but is predicted to be in the positive

class, then it is a false positive classification (false positive (FP)).

(4) If an instance is in the negative class and is predicted to be in the negative

class, then it is a true negative classification (true negative (TN)).

60

The true positive rate (TPR), which represents the proportion of actual positive

instances in the positive class predicted by the classifier to all positive instances,

equals the sensitivity. The false positive rate (FPR), which represents the proportion

of actual negative instances in the positive class predicted by the classifier to all

negative instances, equals 1-specificity. The ROC curve is drawn with the FPR (1-

specificity) as the x-axis and the TPR (sensitivity) as the y-axis. The AUC is the

area under the ROC curve. The value of AUC is between 0.0 and 1.0 since the ROC

curve is drawn in an square area. The greater the values of the sensitivity, specificity

and AUC are, the better the performance of the classifier. These terms are defined

in Table 7.1. We calculate the accuracy, sensitivity, specificity, and AUC based on

these terms using the following equation:

Accuracy =
TP + TN

TP + FN + TN + FP
, (7.2)

Sensitivity = TP/(TP + FN), (7.3)

Specificity = TN/(TN + FP), (7.4)

61

Table 7.1: Description of terms.

Teacher Real output
signal Positive (1) Negative (0) Row total

Positive (1) TP FN TP + FN
Negative (0) FP TN FP+ TN
Column total TP + F FN + TN N = TP + TN + FP + FN

AUC(%) =
1

2
(

TP

TP + FN
+

TN

TN + FP
)× 100. (7.5)

We plot the ROC curves of the five datasets to compare DE-DMAS with BP-

DNM and BPNN , as shown in the Fig.7.3. The DE-DMAS curves are above the

BP-DNM and BPNN curves. The sensitivity, specificity, and AUC, which can be

determined from the numerical values, are shown in Table 7.2. The test accuracy

is the average of 30 experiments, which we represent by the mean and variance in

Table 7.2. DE-DMAS exhibits higher values than BP-DNM and BPNN for these four

assessment levels. All test results prove the superiority of DE-DMAS.

7.3 Cross-validation

So as to promote the comparison performance, four different train-to-test ratios

will be applied and the four multi-fold cross-validation (K× CV) methods include

tenfold CV (90–10%, × 10), fivefold CV (80–20%, × 5), fourfold CV (75–25%, ×

4) and twofold CV(50-50%, × 2). The train-to-test ratio means the ratio between

62

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it

iv
e

 R
a

te

Iris ROC

BPNN

BP-DNM

DE-DMA S

0 0.5 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it

iv
e

 R
a

te

Liver ROC

BPNN

BP-DNM

DE-DMAS

0 0.5 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it

iv
e

 R
a

te
Glass ROC

BPNN

BP-DNM

DE-DMAS

0 0.5 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it

iv
e

 R
a

te

ACA ROC

BPNN

BP-DNM

DE-DMAS

0 0.5 1

False Positive Rate

0

0.2

0.4

0.6

0.8

T
ru

e
 P

o
s
it

iv
e

 R
a

te

Cancer ROC

BPNN

BP-DNM

DE-DMAS

Figure 7.3: ROC analysis for the five datasets .

sample size of training and testing. With K× CV (K = 2, 4, 5, 10), the whole dataset

will be divided into K in random and mutually superior subset.The subset roughly

equal sample sizes. In K times CV, this method will be used to train the subset and

measure the test error on the test subset. Duplicate this process for a total of K trials,

each time using a different subset for testing. By performing tests on all trajectories

of the experiment, the performance of the model is evaluated by the average value of

the squared error. Compared with the single-fold validation method, K × CV has

an advantage of minimizing the correlation deviation of random sampling of training

samples, but its disadvantage lies in that it may need too much computation since the

model has to be trained K times. We select four kinds of BPNN with different learning

rate and No.of branch as Table 7.3. BPNN1, BPNN2, BPNN3, BPNN4. BP-DNM

63

Table 7.2: Rate results for the five datasets

Dataset Method Test accuracy Sensitivity Specificity AUC

Iris
DE-DMAS 96.74±2.78 100 96.88 98.44
BP-DNM 91.78 ±5.87 91.16 86.67 95.65

BPNN 85.93 ±10.89 90.00 91.43 90.71

Liver
DE-DMAS 73.59±6.66 66.67 83.87 75.27
BP-DNM 68.62±5.24 52.50 .79.69 66.09

BPNN 59.94±6.33 57.89 72.73 65.31

Cancer
DE-DMAS 96.12±1.17 96.45 98.55 97.50
BP-DNM 96.33±1.43 97.04 94.67 95.85

BPNN 93.76±11.06 95.89 96.88 96.38

Glass
DE-DMAS 94.42±2.51 98.57 92.85 96..67
BP-DNM 91.87±3.88 84.62 96.08 90.35

BPNN 92.50±3.34 97.92 81.25 89.58

ACA
DE-DMAS 86.18±1.98 88.04 86.09 87.07
BP-DNM 83.66±9.26 85.54 81.45 83.50

BPNN 85.57±2.28 87.10 78.07 82.58

and DE-DMAS used the above four types of training-to-test ratios. Five datasets

were applied to each type of training-to-test ratios for each model, 30 independent

experiments were performed. Finally compare the mean and standard deviation of

their test accuracy results. Table 7.4 shows the cross-validation results of iris dataset.

Table 7.5 shows the cross-validation results of liver dataset. Table 7.6 shows the

cross-validation results of cancer dataset. Table 7.7 shows the cross-validation results

of glass dataset. Table 7.8 shows the cross-validation results of ACA dataset. Bold

fonts in these tables indicates the top two according to the standard deviation and

the mean. DE-DMAS only in the CV5 of the cancer dataset is not bold font. So we

can conclude that DE-DMAS is excellent [45].

64

Table 7.3: No.of Model

No.of BPNN Learning rate No.of branch
BPNN1 0.1 30
BPNN2 0.08 60
BPNN3 0.08 30
BPNN4 0.06 60

Table 7.4: Cross-validation for iris

Model CV10 CV5 CV4 CV2
DE-DMAS 94.44±5.59 94.56±5.90 95.00±3.61 93.38±5.09
BP-DNM 93.33±10.79 93.22±6.64 91.93±4.98 86.80±9.16
BPNN1 90.67±7.50 91.42±5.62 89.06±9.41 91.29±7.182
BPNN2 93.55±10.72 93.35±7.92 92.80±7.82 91.82±7.97
BPNN3 91.10±9.85 88.77±9.20 90.27±9.89 86.71±13.43
BPNN4 90.44±8.69 89.89±9.07 88.80±9.59 89.07±9.72

7.4 Simplified Model

As previously mentioned, we remove the useless dendrites and synapses by the

pruning function. The entire simplification process for the iris dataset is shown in

Fig.7.4. First, initialize the structure of neurons with four dendrites, as shown in

Fig.7.4 (A). Synapses on these dendrites receive the inputs X1, X2, X3, and X4. The

synapses are activated and converted to the direct-connecting state (l), opposite-

connecting state (z), constant-1 state(1○) or constant-0 state (0○) after learning.

Second, remove all useless dendrites by the dendrite pruning function; that is, if

at least one synapse on a dendrite is in the constant-0 state, remove the dendrites

In Fig.7.4 (B), we denote removed dendrite-1, dendrite-3 and dendrites-4 with the

65

Table 7.5: Cross-validation for liver

Model CV10 CV5 CV4 CV2
DE-DMAS 70.20±7.98 71.93±4.79 71.40±0.40 70.12±3.10
BP-DNM 58.82±7.93 69.42±5.68 68.88±5.57 66.44±4.81
BPNN1 58.76±9.45 59.18±5.72 59.43±7.34 60.44±4.30
BPNN2 63.14±8.20 58.72±6.11 61.47±6.72 58.83±5.05
BPNN3 58.00±8.33 58.55±5.80 61.47±6.72 59.37±8.50
BPNN4 60.19±8.94 61.11±6.09 60.92±8.45 60.71±5.56

Table 7.6: Cross-validation for cancer

Model CV10 CV5 CV4 CV2
DE-DMAS 96.38±2.36 96.05±1.74 96.11±1.12 95.90±0.70
BP-DNM 95.71±2.17 96.02±1.84 95.75±1.64 95.70±1.06
BPNN1 91.48±11.65 92.26±11.80 96.29±1.67 94.29±1.08
BPNN2 96.57±2.51 96.28±1.54 94.33±1.52 93.71±2.44
BPNN3 93.45±12.00 95.52±1.45 95.73±1.35 93.53±11.54
BPNN4 94.05±12.53 96.30±1.34 96.10±1.75 96.07±1.04

symbol 6 . After dendrite pruning, only dendrite-2 remains, as shown in Fig.7.4

(C). Then, remove all unnecessary synapses by the synapse pruning function; that

is, remove the synapses with the constant-1 state. Fig.7.4 (D) shows the simplified

structure for the iris dataset. This structure is simplified from 4 layers of dendrites

and 4 inputs to only dendrite-1 and the 2 inputs X3 and X4.

Liver dataset has 12 layers of dendrites and 6 inputs shows in Fig.7.5(A). In

Fig.7.5 (B), we denote removed (dendrite-1, 3, 4, 5, 6, 7, 8, 9, 10, 12) with the symbol

6 . After dendrite pruning, dendrite-2, 11 remains, as shown in Fig.7.5 (C). After

synapse pruning, the X1, X3, X4, and X6 have been remianed. Fig.7.5 (D) shows the

simplified structure for the liver dataset. This structure is simplified from 12 layers

66

Table 7.7: Cross-validation for glass

Model CV10 CV5 CV4 CV2
DE-DMAS 95.24±3.75 96.05±1.74 96.01±1.36 95.70±0.70
BP-DNM1 92.53 ±4.95 92.40±3.23 91.58±3.16 91.12±2.77

BPNN1 91.59±5.55 90.39±4.44 91.05±3.19 91.53±2.22
BPNN2 91.90±4.36 92.56±4.12 90.99±4.12 90.31±5.24
BPNN3 91.75±4.83 89.61±4.56 91.42±4.28 89.50±3.85
BPNN4 90.00±6.77 92.02±4.08 90.00±5.36 91.78±3.72

Table 7.8: Cross-validation for ACA

Model CV10 CV5 CV4 CV2
DE-DMAS 84.98±3.95 86.79±2.70 85.59±2.81 85.78±1.39
BP-DNM 83.09 ±8.52 82.00±10.62 83.06±10.51 82.07±10.36
BPNN1 85.94±4.34 85.20±2.66 85.04±2.63 85.39±1.61
BPNN2 84.12±3.97 85.11±2.60 83.51±3.41 86.13±1.28
BPNN3 83.51±4.64 85.48±2.79 84.00±3.49 85.35±1.18
BPNN4 84.16±4.48 86.11±2.15 83.51±33.30 85.09±1.55

of dendrites and 6 inputs to only dendrite-2, 11 and the 4 input X1, X3, X4, and X6.

Cancer dataset has 9 layers of dendrites and 9 inputs shows in Fig.7.6(A). In

Fig.7.6 (B), we denote removed (dendrite-1, 2, 3, 4, 6, 7, 9) with the symbol 6 .

After dendrite pruning, dendrite-5, 8 remains, as shown in Fig.7.6 (C). After synapse

pruning, the X1, X3, X4, and X6 have been remianed. Fig.7.6 (D) shows the simplified

structure for the liver dataset. This structure is simplified from 12 layers of dendrites

and 6 inputs to only dendrite-2, 11 and the 4 input X1, X2, X3, X5, and X6.

Glass dataset has 27 layers of dendrites and 9 inputs shows in Fig.7.7(A). In

Fig.7.7 (B), we denote removed (dendrite-1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27) with the symbol 6 . After dendrite pruning,

67

dendrite-6, 24 remains, as shown in Fig.7.7(C). After synapse pruning, the X1, X3,

X4, and X8 have been remianed. Fig.7.7 (D) shows the simplified structure for the

liver dataset. This structure is simplified from 12 layers of dendrites and 6 inputs to

only dendrite-6, 24 and the 4 input X1, X3, X4, and X8.

ACA dataset has 16 layers of dendrites and 14 inputs shows in Fig.7.8(A). In

Fig.7.8 (B), we denote removed (dendrite-1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16) with

the symbol 6 . After dendrite pruning, dendrite-10, 13 remains, as shown in Fig.7.8

(C). After synapse pruning, the X3, X7, X8, X10, X12 and X13 have been remianed.

Fig.7.8 (D) shows the simplified structure for the liver dataset. This structure is

simplified from 16 layers of dendrites and 6 inputs to only dendrite-10, 13 and the 6

inputs X3, X7, X8, X10, X12 and X13.

As shown in these figures, we have obtained the final simplified models of the

five datasets. After simplifying the models, the structures of the models have been

reduced by more than 90%, which indicates that we can use simpler logic to solve

the real problem. The problem used to be solved with more than hundreds of logic

components but can now be solved by only a few dozen simple logic components, such

as comparators, AND gates, OR gates and NOT gates. This change substantially

reduces the labor and time costs. Logic circuits of the five datasets have been drawn

in Fig. 7.9. The value of θ in the comparator in the figure is the value of θ in the

68

Figure 7.4: Structure simplification process for the iris dataset.

corresponding synapse after training. The standardized input calculated by these

logic components to get the expected output as 0 or 1.

69

�

! !

�

Figure 7.5: Structure simplification process for the liver dataset.

Figure 7.6: Structure simplification process for the cancer dataset.

70

Figure 7.7: Structure simplification process for the glass dataset.

71

�

�

�

�

Figure 7.8: Structure simplification process for the ACA dataset.

72

X3

X4

=1.5678

=1.5456

AND

X1

X4

X8

X3

X1

X2

X6

X3

X5

X3

X13

X12

X10

X8

X7

Iris

Iiver Glass

Cancer ACA

X3

X13

X12

X10

X8

X7

Figure 7.9: Logic circuit of iris.

73

Chapter 8

Conclusion

The dendrite has a pivotal role in the computing process, and the computation

ability of a single neuron is undervalued. Although a single neuron has limited abil-

ity and cannot surpass a large-scale neural network, we expect to apply DMAS to

deep neuron networks in the future. In further research, we plan to adjust DMAS

to enable its adaptation to the deep learning structure. We believe that this model

has considerable potential in electronic design areas, such as VLSI and biomedical

science.DMAS has further access to the real biological neuron with a self-pruning

ability. This function can eliminate branches from the dendrite morphology depend-

ing on the continuum values. It hence reduces the computational load by evolving

and simplifying the dendritic structure without affecting the computational result.

Simplified dendritic structure can be implemented in the logic circuit with compara-

tor, OR gate, AND gate, and NOT gate. It makes it possible to solve real problems

with less cost.

74

A self-adaptive synapse is firstly proposed in the paper. Its utility is proved by the

Friedman test in section 4.3. The ability of adaptive synapse not only has stronger

robustness, but also reduces a parameter in DNM and improves the performance of

DNM.

However, there are still many deficiencies in this study:

1. The algorithm is too simple, and some high-performance algorithms will be added

in the future work, such as PSO and other relatively new algorithms

2. There is not enough experimental demonstration and only one comparison object.

Some comparisons with other algorithms will be added in the future work.

3. Single neuron model can not solve the problem of multi classification.

Membrane play an import role in the neuron system. with many kinds of Ion

channel and feature leads to differences in the electrical properties of different mem-

branes. In the process of computing we always assumed that the membranes have a

same ability. However, in real word the membranes are diversity. Our research let the

membranes ability join in the train process and optimize it with DE algorithm. This

work can make our neuron model more real neuron like and improved the computing

accuracy.

DE-DMAS neuron model is a real neural based neuron model. Different from

the previous model, the difference of cell membrane has been first considered and

75

included in this model. Even though DE-DMAS has advantage, this model also has

limited generalizability due to the single model structure in some aspects, such as

due to one model only have two phases, a single model cannot deal with multiple

classification problem. In our future research, we will try to build an DE-DMAS

based neuron network include enormous amount neuron so that we can deal with the

multiple classification. Furthermore, we can expand it in a brain like network based

on this research. and apply this in variable area.

To improve the calculation ability of the dendritic neuron model (DNM), a den-

dritic neuron model with adaptive synapses trained by differential evolution algorithm

(DE-DMAS) is proposed, which shows enhanced performance in the simulation based

on UCI datasets. A comparison with the classic BPNN and BP-DNM is carried out

in terms of the test accuracy, sensitivity, specificity, and ROC and cross-validation.

DE-DMAS shows its superiority in all the results and DE-DMAS as a single neuron

model is found to substantially outperform BPNN and BP-DNM.

76

Bibliography

[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp.

115–133, 1943.

[2] N. Rochester, J. Holland, L. Haibt, and W. Duda, “Tests on a cell assembly the-

ory of the action of the brain, using a large digital computer,” IRE Transactions

on Information Theory, vol. 2, no. 3, pp. 80–93, 1956.

[3] F. Rosenblatt, “The perceptron: a probabilistic model for information storage

and organization in the brain.” Psychological Review, vol. 65, no. 6, p. 386, 1958.

[4] M. Minsky and S. A. Papert, Perceptrons: An introduction to computational

geometry. MIT press, 2017.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal repre-

sentations by error propagation,” California Univ San Diego La Jolla Inst for

Cognitive Science, Tech. Rep., 1985.

77

[6] C. Koch, “Computation and the single neuron,” Nature, vol. 385, no. 6613, p.

207, 1997.

[7] C. Koch and I. Segev, “The role of single neurons in information processing,”

Nature Neuroscience, vol. 3, no. 11s, p. 1171, 2000.

[8] J. L. Davidson and F. Hummer, “Morphology neural networks: An introduction

with applications,” Circuits, Systems and Signal Processing, vol. 12, no. 2, pp.

177–210, 1993.

[9] G. X. Ritter and P. Sussner, “An introduction to morphological neural networks,”

in Proceedings of 13th International Conference on Pattern Recognition, vol. 4.

IEEE, 1996, pp. 709–717.

[10] H. Sossa and E. Guevara, “Efficient training for dendrite morphological neural

networks,” Neurocomputing, vol. 131, pp. 132–142, 2014.

[11] ——, “Modified dendrite morphological neural network applied to 3d object

recognition,” in Mexican Conference on Pattern Recognition. Springer, 2013,

pp. 314–324.

[12] Y. Todo, H. Tamura, K. Yamashita, and Z. Tang, “Unsupervised learnable neu-

ron model with nonlinear interaction on dendrites,” Neural Networks, vol. 60,

pp. 96–103, 2014.

78

[13] J. Ji, S. Gao, J. Cheng, Z. Tang, and Y. Todo, “An approximate logic neuron

model with a dendritic structure,” Neurocomputing, vol. 173, pp. 1775–1783,

2016.

[14] Y. Tang, J. Ji, Y. Zhu, S. Gao, Z. Tang, and Y. Todo, “A differential evolution-

oriented pruning neural network model for bankruptcy prediction,” Complexity,

vol. 2019, Article ID 8682124, 2019.

[15] X. Qian, Y. Wang, S. Cao, Y. Todo, and S. Gao, “Mr2dnm: A novel mu-

tual information-based dendritic neuron model,” Computational Intelligence and

Neuroscience, vol. 2019, Article ID 7362931, 2019.

[16] T. Zhou, S. Gao, J. Wang, C. Chu, Y. Todo, and Z. Tang, “Financial time series

prediction using a dendritic neuron model,” Knowledge-Based Systems, vol. 105,

pp. 214–224, 2016.

[17] W. Chen, J. Sun, S. Gao, J. Cheng, J. Wang, and Y. Todo, “Using a single

dendritic neuron to forecast tourist arrivals to japan,” IEICE Transactions on

Information and Systems, vol. 100, no. 1, pp. 190–202, 2017.

[18] J. Ji, S. Song, Y. Tang, S. Gao, Z. Tang, and Y. Todo, “Approximate logic

neuron model trained by states of matter search algorithm,” Knowledge-Based

Systems, vol. 163, pp. 120–130, 2018.

79

[19] Y. Yu, Y. Wang, S. Gao, and Z. Tang, “Statistical modeling and prediction for

tourism economy using dendritic neural network,” Computational Intelligence

and Neuroscience, vol. 2017, Article ID 7436948, 2017.

[20] L. Luo and D. D. O’Leary, “Axon retraction and degeneration in development

and disease,” Annual Review of Neuroscience, vol. 28, pp. 127–156, 2005.

[21] P. Hagmann, O. Sporns, N. Madan, L. Cammoun, R. Pienaar, V. J. Wedeen,

R. Meuli, J.-P. Thiran, and P. Grant, “White matter maturation reshapes struc-

tural connectivity in the late developing human brain,” Proceedings of the Na-

tional Academy of Sciences, vol. 107, no. 44, pp. 19 067–19 072, 2010.

[22] C. Koch, T. Poggio, and V. Torre, “Retinal ganglion cells: a functional interpre-

tation of dendritic morphology,” Philosophical Transactions of the Royal Society

of London. B, Biological Sciences, vol. 298, no. 1090, pp. 227–263, 1982.

[23] ——, “Nonlinear interactions in a dendritic tree: localization, timing, and role

in information processing,” Proceedings of the National Academy of Sciences,

vol. 80, no. 9, pp. 2799–2802, 1983.

[24] L. Beaulieu-Laroche, E. H. Toloza, N. J. Brown, and M. T. Harnett, “Widespread

and highly correlated somato-dendritic activity in cortical layer 5 neurons,” Neu-

ron, vol. 103, no. 2, pp. 235–241, 2019.

80

[25] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Dendritic neu-

ral model with effective learning algorithms for classification, approximation,

and prediction,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 30, no. 2, pp. 601–614, 2019.

[26] X. Wang, Z. Tang, H. Tamura, M. Ishii, and W. Sun, “An improved backpropa-

gation algorithm to avoid the local minima problem,” Neurocomputing, vol. 56,

pp. 455–460, 2004.

[27] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic

for global optimization over continuous spaces,” Journal of Global Optimization,

vol. 11, no. 4, pp. 341–359, 1997.

[28] K.-S. Tang, K.-F. Man, S. Kwong, and Q. He, “Genetic algorithms and their

applications,” IEEE Signal Processing Magazine, vol. 13, no. 6, pp. 22–37, 1996.

[29] D. J. Montana and L. Davis, “Training feedforward neural networks using ge-

netic algorithms.” in International Joint Conferences on Artificial Intelligence

(IJCAI), vol. 89, 1989, pp. 762–767.

[30] S. Gao, S. Song, J. Cheng, Y. Todo, and M. Zhou, “Incorporation of solvent

effect into multi-objective evolutionary algorithm for improved protein structure

81

prediction,” IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics, vol. 15, no. 4, pp. 1365–1378, 2018.

[31] S. Song, S. Gao, X. Chen, D. Jia, X. Qian, and Y. Todo, “AIMOES: Archive

information assisted multi-objective evolutionary strategy for ab initio protein

structure prediction,” Knowledge-Based Systems, vol. 146, pp. 58–72, 2018.

[32] J. Kennedy, “Particle swarm optimization,” Encyclopedia of Machine Learning,

pp. 760–766, 2010.

[33] J. Vesterstrom and R. Thomsen, “A comparative study of differential evolution,

particle swarm optimization, and evolutionary algorithms on numerical bench-

mark problems,” in Proceedings of the 2004 Congress on Evolutionary Compu-

tation, vol. 2. IEEE, 2004, pp. 1980–1987.

[34] S. Gao, Y. Yu, Y. Wang, J. Wang, J. Cheng, and M. Zhou, “Chaotic

local search-based differential evolution algorithms for optimization,” IEEE

Transactions on Systems, Man and Cybernetics: Systems, 2019, doi:

10.1109/TSMC.2019.2956121.

[35] J. Sun, S. Gao, H. Dai, J. Cheng, M. Zhou, and J. Wang, “Bi-objective elite

differential evolution for multivalued logic networks,” IEEE Transactions on Cy-

bernetics, vol. 50, no. 1, pp. 233–246, 2020.

82

[36] B. Subudhi and D. Jena, “A differential evolution based neural network approach

to nonlinear system identification,” Applied Soft Computing, vol. 11, no. 1, pp.

861–871, 2011.

[37] E. Bas, “The training of multiplicative neuron model based artificial neural net-

works with differential evolution algorithm for forecasting,” Journal of Artificial

Intelligence and Soft Computing Research, vol. 6, no. 1, pp. 5–11, 2016.

[38] F. Arce, E. Zamora, H. Sossa, and R. Barrón, “Differential evolution training

algorithm for dendrite morphological neural networks,” Applied Soft Computing,

vol. 68, pp. 303–313, 2018.

[39] B. Farley and W. Clark, “Simulation of self-organizing systems by digital com-

puter,” Transactions of the IRE Professional Group on Information Theory,

vol. 4, no. 4, pp. 76–84, 1954.

[40] R. L. Rivest and C. Stein, “Thomas h. cormen, charles e. leiserson.”

[41] F. Clautiaux, S. Hanafi, R. Macedo, M.-É. Voge, and C. Alves, “Iterative aggre-

gation and disaggregation algorithm for pseudo-polynomial network flow models

with side constraints,” European Journal of Operational Research, vol. 258, no. 2,

pp. 467–477, 2017.

83

[42] B. Engquist and W. Schmid, Mathematics unlimited-2001 and beyond. Springer,

2017.

[43] M. J. Tyre and E. Von Hippel, “The situated nature of adaptive learning in

organizations,” Organization Science, vol. 8, no. 1, pp. 71–83, 1997.

[44] Z. Sha, L. Hu, Y. Todo, J. Ji, S. Gao, and Z. Tang, “A breast cancer classi-

fier using a neuron model with dendritic nonlinearity,” IEICE Transactions on

Information and Systems, vol. 98, no. 7, pp. 1365–1376, 2015.

[45] T. Jiang, S. Gao, D. Wang, J. Ji, Y. Todo, and Z. Tang, “A neuron model with

synaptic nonlinearities in a dendritic tree for liver disorders,” IEEJ Transactions

on Electrical and Electronic Engineering, vol. 12, no. 1, pp. 105–115, 2017.

[46] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, “A comparative

study of differential evolution variants for global optimization,” in Proceedings of

the 8th Annual Conference on Genetic and Evolutionary Computation. ACM,

2006, pp. 485–492.

[47] J. Ilonen, J.-K. Kamarainen, and J. Lampinen, “Differential evolution training

algorithm for feed-forward neural networks,” Neural Processing Letters, vol. 17,

no. 1, pp. 93–105, 2003.

84

[48] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-of-

the-art,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp.

4–31, 2010.

[49] Y. Yu, S. Gao, Y. Wang, and Y. Todo, “Global optimum-based search differential

evolution,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 2, pp. 379–394,

2019.

[50] R. Gämperle, S. D. Müller, and P. Koumoutsakos, “A parameter study for differ-

ential evolution,” Advances in Intelligent Systems, Fuzzy Systems, Evolutionary

Computation, vol. 10, no. 10, pp. 293–298, 2002.

[51] J. Ronkkonen, S. Kukkonen, and K. V. Price, “Real-parameter optimization with

differential evolution,” in 2005 IEEE Congress on Evolutionary Computation,

vol. 1. IEEE, 2005, pp. 506–513.

[52] D. Zaharie, “Influence of crossover on the behavior of differential evolution algo-

rithms,” Applied Soft Computing, vol. 9, no. 3, pp. 1126–1138, 2009.

[53] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-of-

the-art,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp.

4–31, 2011.

85

[54] R. Jugulum, S. Taguchi et al., Computer-based robust engineering: essentials for

DFSS. ASQ Quality Press, 2004.

[55] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals

of Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[56] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification and scene anal-

ysis. Wiley New York, 1973, vol. 3.

[57] B. V. Dasarathy, “Nosing around the neighborhood: A new system structure

and classification rule for recognition in partially exposed environments,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-2, no. 1,

pp. 67–71, 1980.

[58] J. McDermott and R. S. Forsyth, “Diagnosing a disorder in a classification bench-

mark,” Pattern Recognition Letters, vol. 73, pp. 41–43, 2016.

[59] O. L. Mangasarian and W. H. Wolberg, “Cancer diagnosis via linear program-

ming,” University of Wisconsin-Madison Department of Computer Sciences,

Tech. Rep., 1990.

[60] W. H. Wolberg and O. L. Mangasarian, “Multisurface method of pattern separa-

tion for medical diagnosis applied to breast cytology.” Proceedings of the National

Academy of Sciences, vol. 87, no. 23, pp. 9193–9196, 1990.

86

[61] I. W. Evett and J. S. Ernest, “Rule induction in forensic science. central research

establishment. home office forensic science service. aldermaston,” Reading, Berk-

shire RG7 4PN, 1987.

[62] J. R. Quinlan, “Simplifying decision trees,” International journal of man-

machine studies, vol. 27, no. 3, pp. 221–234, 1987.

[63] Y. Tang, J. Ji, S. Gao, H. Dai, Y. Yu, and Y. Todo, “A pruning neural network

model in credit classification analysis,” Computational intelligence and neuro-

science, vol. 2018, Article ID 9390410, 2018.

[64] J. F. Khaw, B. Lim, and L. E. Lim, “Optimal design of neural networks using

the taguchi method,” Neurocomputing, vol. 7, no. 3, pp. 225–245, 1995.

[65] W. Yang and Y. Tarng, “Design optimization of cutting parameters for turn-

ing operations based on the taguchi method,” Journal of Materials Processing

Technology, vol. 84, no. 1-3, pp. 122–129, 1998.

[66] M. Friedman, “The use of ranks to avoid the assumption of normality implicit in

the analysis of variance,” Journal of the American Statistical Association, vol. 32,

no. 200, pp. 675–701, 1937.

[67] C. H. Yu, “Exploratory data analysis,” Methods, vol. 2, pp. 131–160, 1977.

87

[68] N. R. Cook, “Statistical evaluation of prognostic versus diagnostic models: be-

yond the roc curve,” Clinical Chemistry, vol. 54, no. 1, pp. 17–23, 2008.

[69] S. Ma, H. Qiu, S. Hu, Y. Pei, W. Yang, D. Yang, and M. Cao, “Quantitative

assessment of landslide susceptibility on the loess plateau in china,” Physical

Geography, pp. 1–28, 2019.

