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Abstract

The problem of predicting the three-dimensional structure of a protein from its one-

dimensional sequence has been called the “holy grail of molecular biology”, and it

has become an important part of structural genomics projects. Despite half-century’s

unremitting efforts, the prediction of protein structure from its amino acid sequence

remains a grand challenge in computational biology and bioinformatics. Two key

factors are crucial to solving the protein structure prediction (PSP) problem: an

effective energy function and an efficient conformation search strategy.

In my research of defending PhD, I focus on modeling the PSP problem as a

multi-objective optimization problem, and use an evolutionary strategy to solve the

problem. A method MO3 and its improved version AIMOES, were proposed during

my research of defending PhD. They are illustrated as follows:

(1) Firstly, in MO3, we propose a multi-objective evolutionary algorithm. We

decompose the protein energy function Chemistry at HARvard Macromolecular Me-

chanics force fields into bond and non-bond energies as the first and second objectives.

Considering the effect of solvent, we innovatively adopt a solvent-accessible surface

area as the third objective. We use 66 benchmark proteins to verify the proposed

method and obtain better or competitive results in comparison with the existing

methods. The results suggest the necessity to incorporate the effect of solvent into

a multi-objective evolutionary algorithm to improve protein structure prediction in

terms of accuracy and efficiency.

(2) Secondly, in AIMOES, we model the PSP as a multi-objective optimiza-

tion problem. A three-objective evolution algorithm called AIMOES is proposed.

AIMOES adopts three physical energy terms: bond energy, non-bond energy, and



iv

solvent accessible surface area. In AIMOES, an evolution scheme which flexibly reuse

past search experiences is incorporated to enhance the efficiency of conformation

search. A decision maker based on the hierarchical clustering is carried out to select

representative solutions. A set of benchmark proteins with 30 ∼ 91 residues is tested

to verify the performance of the proposed method. Experimental results show the

effectiveness of AIMOES in terms of the root mean square deviation (RMSD) metric,

the distribution diversity of the obtained Pareto front and the success rate of mu-

tation operators. The superiority of AIMOES is demonstrated by the performance

comparison with other five state-of-the-art PSP methods.

This thesis is organized as follows: Chapter 1 gives a brief introduction about the

PSP problem and multi-objective optimization. Chapter 2 presents some important

concepts. Chapter 3 presents the energy function used in these two methods. In

Chapter 4, we shows the multi-objective evolutionary strategy where solvent effect

are incorporated into, i.e. MO3, for solving the PSP problem. The experimental

results of MO3 are also shown in this chapter. Then, in Chapter 5, the archive

information assisted multi-objective evolutionary strategy, i.e. AIMOES, for solving

the PSP problem is described. Finally, we draw the conclusions of this thesis in

Chapter 6.
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Chapter 1

Introduction

Proteins are large biomolecules and the building blocks of life. They are fundamen-

tal elements of cells and perform many biological functions, such as transporting

biomolecules, providing structural support and aiding the biochemical reaction. The

basic structure of a protein is a linear chain of 20 difference types of amino acids, held

together by amide bond. Different amino acid sequences make up different proteins

uniquely and determine the three-dimensional structure of the protein uniquely. As

the three-dimensional structure of a protein controls its basic activity and function,

determining the structure of a protein is important in the biological research [1].

Two common ways to obtain the three-dimensional structure of proteins are X-

rays and NMR spectroscopy. However they are all time-consuming and expensive.

Alternatively, a promising way is to use computational approach to predict the three-

dimensional structure of a protein from its sequence [2, 3, 4]. In the early 1970s, Nobel

Prize winner Anfinsen suggested that it is sufficient to predict the three-dimensional

structure of a protein staring from its amino acid sequence [5]. This problem is thus

called protein structure prediction (PSP) problem. Two main motivations drive the

researches of PSP:

(1) The digitization gap between sequence entries and structure entries is huge.

Till November 2016, the UniProtKB protein sequence database contains over 60 mil-

lion sequence entries [6]. However, there are only about 0.2% structure entries released

in the Protein Data Bank (PDB) [7].

(2) Knowledge of the three-dimensional structure of the protein can help in un-
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derstanding its function and role in life. It is thus extremely important to reveal the

atomic-level structural information of all found protein sequence entries. Moreover,

the disposal of the PSP problem can also enable us to understand the principles of

proteins folding in nature, thus improving other biotechnologies [8].

Protein structure prediction methods can be divided roughly into two categories:

template-based modeling (TBM) and free modeling (FM) [9]. If a similar protein

of target protein is identified from the PDB, the TBM is likely to be used, where

the three-dimensional structure of the target protein is reconstructed according to

its similar protein (the “template”). For example, SWISS-MODEL is a widely-used

and accurate homology modeling method to generate reliable protein structures [10].

I-TASSER is an on-line platform for protein structure and function prediction based

threading [11]. On the other hand, if no template protein is available, the FM should

be used [12]. Among FMs, fragment assembly based methods are the most success-

ful, such as Rosetta [13] and QUARK [14]. They optimize a protein conformation

by assembling small fragments extracted from native protein structures into some

selected insertion windows of it. Nevertheless, fragment assembly based methods are

sometimes deemed to use information from existing PDB structures a bit too much.

Although FM are generally more imprecise than TBM, it is considered to help us

reveal the principles of proteins folding more directly, and thus has greater values in

theory [15, 16, 17, 18].

A typical FM (also called ab initio prediction) is made up of a conformation space

search strategy and a designed energy guiding search process. It follows the ther-

modynamic hypothesis: a native protein structure stays stably in the state of the

minimum free energy in a suitable environment [5]. However, the performance of

existing FMs are limited due to the inaccuracy of the (physical or statistic) energy

function and the huge size of the conformation search space [1]. In addition, the

landscape of the designed energy function is very rugged and complex due to its mul-

timodal nature with many local minimum. FM must struggle with these difficulties

for high prediction accuracy. As David and Andrej pointed out in [19], the key fac-

tors of high performing FM are the design of an accurate energy function and the
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implementation of an efficient conformation search algorithm.

Convenient FMs treat PSP as a single-objective optimization problem (SOOP)

[20]. They usually incorporate different energy terms as a linear combination with

different weights. However, the values of those weight parameters in the energy

function is very difficult to be optimized, thus limiting the efficiency of these methods.

An alternative way is modeling PSP as a multi-objective optimization problem. It is

empirically viewed that the transformation of PSP into a multi-objective optimization

problem (MOOP) may increase the problem’s difficulty. Actually, by incorporating

efficient search mechanisms and selections of non-dominated solutions, the treatment

of PSP as a MOOP can generate more fruitful results. In recent years, many effective

multi-objective evolution algorithms (MOEA) [21, 22, 23, 24] have been proposed

to perform PSP. Cutello et al. proposed a two-objective evolutionary algorithm to

perform PSP by optimizing two physical energy functions which are in conflict with

each other [25]. Brasil et al. proposed a MOEA, called MEAMT, to solve PSP by

dealing with four objective functions through the combination thereof [26]. These

works have showed the advantages of modeling PSP as a MOOP.

Evolutionary algorithm (EA) is inspired by biological evolution with a stochas-

tic search for a given problem. It is designed as a computer-based algorithm which

aims to solve global optimization. In recent years, a great number of EAs have been

proposed in the literature, such as particle swarm optimization [27, 28], differential

evolution [29], gravitational search algorithms [30, 31, 32], artificial bee colony al-

gorithm [33], cuckoo search [34], and brain storm optimization [35]. Due to their

powerful computation performance, these EAs have achieve great success in many

practical problems, including protein structure prediction [28, 36, 37, 38], training

dendritic neuron models [39, 40, 41], gene selection [42], drug design [43, 44], and so

on. These works have showed that EAs are a very powerful and effective technique

for solving many complex problems.

Our proposed approach MO3 follows a free modeling approach [1]. We decompose

PSP into two main subproblems. The first one is to find a free energy function that

can accurately distinguish the native state from similar conformations. The second
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one is to design an algorithm that explores the conformation space to find the global

minimum of this energy. For these two subproblems, we take the following measures to

improve the performance of the proposed method, i.e., taking the factor of solvent into

consideration to amend the energy function and using a multi-objective evolutionary

approach to improve the search capability.

The contribution of MO3 is fourfold: 1) incorporating solvent effect for solving

PSP; 2) modeling PSP as a three-objective optimization problem and designing a

multi-objective evolutionary algorithm to solve it; 3) testing a set of benchmark

proteins to evaluate the proposed approach; 4) inspecting and revealing the conflict

between solvent effect and protein energy functions.

To achieve a high-resolution PSP algorithm, it is crucial to execute efficient con-

formation search since the search landscape of energy functions is so rugged that all

algorithms will face the problem of being trapped in local minimum during search

process. To alleviate this problem, several methods by combining the convenient

optimization (e.g., Monte Carlo simulation) with evolutionary algorithms have been

proposed [45, 46, 14]. Despite achieving some successes, these methods involve an

iterative reproduction process with a large number of evolutions which makes the

procedure highly complicated, computational time-consuming and difficult to be well-

tuned [2, 47].

In AIMOES, we propose an archive information assisted MOEA (namely AIMOES)

for ab initio PSP. The three-objective energy function suggested in [48] is used to guide

the search process. The physical energy function, i.e., Chemistry at Harvard Macro-

molecular Mechanics (version22) [49], is decomposed into bond and non-bond energy

as the first and secondary objective. To reflect the effect of solvent, SASA is used

as the third objective. Furthermore, an archive information assisted non-dominated

solutions generation scheme is proposed to flexibly reuse past search experiences and

thus to enhance the efficiency of conformation search. Regarding the information

reuse technology, it is generally realized from two aspects: (1) Reusing the model

based information which is generated during solving past problems. For example,

Hauschild et al. proposed a model building way in the hierarchical Bayesian op-
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timization algorithm, by reusing probabilistic models obtained from solving other

similar problems [50]. Iqbal et al. proposed a learning classifier system reusing use-

ful building blocks extracted from small-scale problems [51]. Then, the accumulated

information enables the method to be applied to solve complex large-scale problems

effectively. (2) Reusing the past optimized solutions or knowledge extracted from

them. For example, Louis and McDonnell presented a genetic algorithm which reuses

the optimized solutions of past problems by injecting them into the population pe-

riodically [52]. In [53], Feng et al. proposed an evolutionary search paradigm for

heterogeneous problems, which can learn structured knowledge from search experi-

ence by means of a single layer autoencoder. In this study, we innovatively design

a new scheme to reuse the information stored in the archive which is constituted by

non-dominated solutions obtained by the algorithm. Then the information (especially

the backbone torsion angles) is injected into the current solution by means of a muta-

tion operator to generate a new solution. It can be expected that the new generated

solution is more promising. Finally, a near-optimal and well-distributed Pareto front

is acquired after implementing the evolutionary search with sufficient iterations and

the representative solutions are selected from the Pareto front by a decision maker

algorithm. To verify the performance of AIMOES, a set of benchmark proteins taken

from PDB is used as the test suit. The experimental results in terms of the root mean

square deviation (RMSD) between the predicated protein structure and the native

one, the success rate of the proposed information reuse mutation operator and the

distribution properties of the obtained Pareto front are analyzed. It is demonstrated

that AIMOES can produce better or very competitive results in comparison with

other five state-of-the-art evolutionary algorithms.
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Chapter 2

Materials

2.1 Multi-objective optimization problem (MOOP)

A multi-objective optimization problem (MOOP) involves optimizing more than one

objective simultaneously [54]. It can be described as follows:

Minimize f(x) = [f1(x), f2(x), ..., fk(x)]T ,

subject to x ∈ X,
(2.1)

where integer k (≥ 2) is the number of objective functions. X is the decision variable

space (a feasible set of decision vectors), and an element x ∈ X represents a feasible

solution. f(x) is a vector of objective function values, and fi(x) is the i-th objective

function, i ∈ {1, 2, ..., k}.

In contrast to a single-objective optimization problem, the situation of comparing

two solutions is more complex in MOOP. First, we should introduce the concept of

Pareto dominance. In mathematical terms, a feasible solution x1 is said to dominate

another x2, denoted by x1 < x2, if

1) ∀i ∈ {1, 2, ..., k}, fi(x1) ≤ fi(x2); and

2) ∃j ∈ {1, 2, ..., k}, fj(x1) < fj(x2).
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A solution x∗ ∈ X is called Pareto optimal if

¬∃x′ ∈ X, x′ < x∗. (2.2)

The Pareto optimal set P can be defined as the set of all Pareto optimal solutions:

P = {x∗ ∈ X |¬∃ x′ ∈ X,x′ < x∗}. (2.3)

For a given MOOP, the image of the Pareto optimal set P is often called the

Pareto front Γ. In mathematical terms, it can be defined as

Γ = {f(x) = [f1(x), f2(x), ..., fk(x)]T | x ∈ P}. (2.4)

However, in a practical problem, it is generally impossible to obtain a true Pareto

optimal set via a multi-objective optimization method. Instead, we may obtain its

approximation. We are interested in how to generate its best approximation set. The

goal of multi-objective optimization is clear: to generate a good approximation set of

solutions that is convergent to P and diverse [55].

A considerable number of successful applications of multi-objective optimization

have been reported [56, 57, 58]. It has been extensively studied in the well-known

problems such as a traveling salesman problem [59], bin packing problem [60] and

vehicle routing problem [61]. Also, it has been proposed to deal with bioinformatic

problems, such as gene regulatory networks [62] and feature selection problem [63].

Such prior work shows that using multi-objective optimization rather than single-

objective optimization to solve complex problems has been a current and promising

research direction.

As a final note, the goal of this work is to obtain a good set of protein structure

solutions using a multi-objective evolutionary algorithm. More knowledge about the

set will help decision makers in selecting the best competitive solution that is closest

to the native protein conformation.
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2.2 Protein representation

Proteins consist of at least one chain of 20 different amino acids, and are very complex

to be described at the molecular scale. They are represented as atomic coordinates

for all (or heavy) atoms in PDB format file [7]. In contrast, the representation of

torsion angles is widely used to solve the PSP problem [64, 14, 25], due to the fact

that it can strongly reduce the degree of freedom of protein conformation, by means

of setting the bond lengths and bond angles to ideal values.

We use the all-atom model [49] including all hydrogens to represent the protein

structure. Different from a reduced model [65], the all-atom model doesn’t exclude

some insignificant atom or simplifies side-chain as a center of mass. The energy

function used in the work is based on physical terms and the contributions of every

atom are all considered, making the representation more accurate. In addition, the

all-atom representation can avoid steric clash effectively, because these steric clash

can lead to unreasonable values (usually very large) of some physical energy terms of

a conformation, making it less competitive.

Protein consists of amino acid sequence, and the conformation of every amino

acid can be uniquely determined by torsion angles. The torsion angles considered

in the all-atom representation model consist of backbone angles (φ, ψ, ω) and side-

chain angles (χi, i ∈ {1, 2, 3, 4}). Fig. 2.1 shows the representation of torsion angles

for isoleucine amino acid. In this way, a protein structure can be represented as a

one-dimensional vector of these torsion angles.

From the view of a search algorithm, the search space of torsion angles is very

large. It is necessary and wise to put restrictions on these torsion angles, which can

help the search algorithm converging more quickly than the ones with no restrictions

[66]. We use the secondary structure information obtained from the PSIPRED pro-

tein structure prediction server [67]. PSIPRED can classify a residue in the protein

sequence into three class of secondary structure element: helix (H), sheet (E), coil

(C). For backbone torsion angles φ and ψ, the constraints are shown in Table 2.1.

As described in [68], torsion angle ω is mainly observed to be close to 180◦ in
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Figure 2.1: Representation of torsion angles for isoleucine amino acid.

protein structures, rather than 0◦, thus, all ω are set to 180◦ in this study. Besides,

for side-chain torsion angles χi, the restrictions obtained from rotamer library [69]

is used. It should be noted that, many restrictions on a dihedral angle space also

mean that a significant part of the solution space cannot be sampled, and that the

native structure may be unattainable. The torsion angle space sampled by prediction

method is largely restricted in one way or another, and this is a limitation of all these

methods [25, 70, 71].
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Table 2.1: Constraints of secondary structure.

φ ψ
helix (H) [−67◦,−47◦] [−57◦,−37◦]
sheet (E) [−130◦,−110◦] [110◦, 130◦]
coil (C) [−180◦, 180◦] [−180◦, 180◦]

2.3 Metrics

In this section, we introduce the metrics for evaluating the solution quality and present

the results obtained by using the proposed method. We employ two frequently used

metrics, root mean square deviation (RMSD) and global distance test-total score, to

evaluate the similarity between the predicted conformation and the native structure.

RMSD is calculated as:

RMSD(a,b) =

√∑n
i=1 d

2
i

n
, (2.5)

where structures a and b have been optimally superimposed by using the Kabsch

rotation matrix [72]. di is the distance between atom i of structure a and the matched

one of b. n is the number of matched atoms. Thus, a smaller RMSD value corresponds

to a better structure.

The global distance test (G) score is a measure of similarity between two protein

structures and has become a standard evaluation measure in the field of protein

prediction. It is computed as follows:

G =
100(C1 + C2 + C3 + C4)

4M
, (2.6)

where C1, C2, C3 and C4 are the numbers of aligned residues under distance cutoffs of

ϑ/4, ϑ/2, ϑ, and 2×ϑ, respectively. The metrics G4 is a computed value by setting ϑ

to 4Å in G. M is the number of amino acids in the compared proteins. The G score

has a value of 0∼100, and a larger G4 value corresponds to a better structure [73, 74].

Now GDT analysis has been the primary method of evaluation in the Critical As-

sessment of Structure Prediction (CASP) experiment (http://www.predictioncenter.
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org/index.cgi). It is a cumulative plot of atom Cα accuracy, calculating the percent

of aligned residues under distance cutoffs of 0.5Å, 1.0Å, 1.5Å, ... , 10.0Å.

2.4 General procedures of FM

PSP is very difficult to solve because the size of the conformational space to be

searched is vast [75] and because the accurate calculation of the free energies of

protein conformations in solvent is difficult [76]. Moreover, the search problem in

PSP has been demonstrated to be NP-complete [77, 78], i.e., no polynomial time

solution algorithm is possible. To make the paper self-explanatory, we first introduce

some basic concept. The problem can be solved with four main procedures:

1. Representing the three-dimensional conformation of a protein;

2. Selecting a fitness function to evaluate the conformation; and

3. Designing a search strategy to obtain a desired solution, guided by the fitness

function.

4. Performing a decision-making scheme to select solutions from the obtained

Pareto optimal set.
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Chapter 3

Multi-objective energy function

The conventional FMs treat the PSP as a SOOP, which usually uses a single-objective

energy function to filter better structure during search procedure [64, 14]. These

energy functions can be divided into two types: physics-based energy functions (based

on physical measurements) and knowledge-based energy functions (based on statistic

information from PDB library) [79]. Unfortunately, energy functions are not accurate

enough to distinguish the native structure ideally. Thus, unremitting efforts have

been put into designing more accurate energy functions. The physical ones (e.g.,

CHARMM [80], OPLS [81]) and statistical ones (e.g., DFIRE [82], RW [83]) are all

considered to be state-of-the-art. In the early twenty-first century, Baker et al. [19]

has pointed out that designing an effective energy function is one of the important

keys to solve the PSP problem .

As argued in [47], a well-designed energy function usually leads to more difficulties

because of more rugged landscape. The landscape is very complex with many local

minimums. A search process is easily trapped in these local minimum states. A

way to reduce local optima is transforming a SOOP into a MOOP [84]. Many works

have shown that multi-objective optimization methods are more powerful than single-

optimization methods to solve complex problems in the field of computational biology

and bioinformatics [85, 86, 87, 62].

Two ways are usually used to transform a SOOP into a MOOP: (1) decomposing

the original objective function into several items and (2) adding new objective func-

tions correlated with the original objective function. In normal cases, those objective
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functions in MOOP should be in conflict with each other [88] and it is a precondition

of applying MOEAs. In this work, we use the decomposition and addition of the cur-

rent energy function to design a new one with three objectives. Firstly, the concept

of MOOP and three-objective energy function are described.

3.1 Decomposing CHARMM22 energy function

As is well known, existing methods for predicting protein structures are based on

Anfinsen’s dogma, also known as the thermodynamic hypothesis [5]. They assume

that the native state of a protein is the state of the lowest free energy in a given

environment. For free modeling, it is necessary and important to select proper energy

functions to evaluate the predicted conformation of a protein.

Many types of energy functions exist and can be divided into two types: statistical

effective energy functions (SEEFs) [66] and physical ones (PEEFs) [89]. The former

are based on the statistical observations of known protein structures. The latter

are an approximation of the true energy functions of proteins, such as Chemistry at

HARvard Macromolecular Mechanics (CHARMM) and AMBER [90]. In contrast to

SEEFs, the latter consist of molecular mechanics energy functions, which are true

physical measurements. PEEFs are supposedly fit for ab initio calculations. We use

a type of PEEF, CHARMM force fields (version 22), to evaluate the conformation of

a protein.

CHARMM is a widely used set of force fields for molecular dynamics, and it was

first described by Brooks et al. in [91]. As a version of CHARMM, CHARMM22 is

commonly used as a protein force field [49]. The general form of the potential energy
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function in CHARMM22 is given as follows:

E =
∑

stretches

kb(b− b0)2 +
∑
angles

kθ(θ − θ0)2 +

∑
dihedrals

kφ[1 + cos(nφ− δ)] +

∑
improper

kω(ω − ω0)2 +
∑

Urey−Bradley

ku(u− u0)2 +

∑
V an−der−Waals

εij

[
(
Rij

rij
)12 − 2(

Rij

rij
)6

]
+

∑
electrostatic

qiqj
erij

.

(3.1)

It consists of seven terms:

1. bond stretches, where kb is the bond force constant, b is the bond length, and

b0 is the equilibrium bond length.

2. bond angles, where kθ is the angle force constant, θ is the valence angle among

3 bonded atoms, and θ0 is the equilibrium angle.

3. dihedrals (also called torsion angles), where kφ is the dihedral force constant,

n is the multiplicity of the function, φ is the torsion angle, and δ is the phase

shift.

4. improper angles, where kω is the force constant, ω is the improper angle, and

ω0 is the equilibrium improper angle.

5. Urey-Bradley component, where ku is the respective force constant, u is the

distance between atoms 1 and 3 (two atoms separated by two covalent bonds),

and u0 is the equilibrium distance.

6. van der Waals potential energy, which is calculated via the Lennard-Jones po-

tential (also referred to as the 12-6 potential). εij is the depth of the potential

well, rij is the distance between a pair of atoms i and j, and Rij is the distance

at which the potential reaches its minimum.
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7. electrostatic energy, where qi and qj are the point charges, e is the dielectric

constant, and rij is the distance between a pair of atoms i and j.

Note that, in the sixth term, the values of εij and Rij are obtained according

to individual atom types. In current CHARMM force fields, εij and Rij for the

interacting atoms are obtained by referring to combination rules, i.e.,

εij =
√
εiiεjj, (3.2)

Rij =
Ri +Rj

2
. (3.3)

The potential energy between two atoms arises from a balance between repulsive

and attractive forces. Specifically, when the distance between two atoms is too small,

the energy is quite large. We will show later in this paper that the van der Walls

energy of a poor protein structure can be very high.

A single-objective optimization problem is transformed into a multi-objective

optimization problem by decomposing the original objective function into multiple

ones or by adding new supplementary objectives [84]. To perform PSP as a multi-

objective optimization problem, we first decompose the original potential energy func-

tion CHARMM22. As suggested by Brooks et. al. [80], the terms in it can be divided

into two types: internal and non-bonded terms. The former (also called bond energy)

include bond stretches, bond angles, dihedrals, improper angles and Urey-Bradley

component. The latter (also called non-bond energy) include van der Waals potential

energy and electrostatic energy. Following this view, we divide CHARMM22 into two

types: bond and non-bond energy. Moreover, we implement them as the first and

second objectives during a multi-objective optimization process. Another reason for

decomposing the energy function is that the non-bond energy charge can hide bond

energy terms because it has a larger change range, to be shown later. This answers

why we should separate the non-bond energy from the bond ones [92, 93, 94, 95].



16

3.2 Using SASA as the third objective function

A solvent-accessible surface area (SASA) is the surface of a biological molecule that

is accessible to a solvent. Lee et al. presented the first algorithm for calculating the

SASA of a molecule in 1971 [96]. A typical method is to use a solvent sphere whose

radius is typically 1.4Å to probe the surface of a molecule. Therefore, SASA can be

viewed as the surface area of a union of balls.

Initially, SASA calculation was applied to study the protein folding problem and

hydrophobicity. Because the surface and shape determine how biological molecules

interact with other molecules, SASA can partially reflect the role of surfaces in physi-

ological processes. Currently, SASA calculation has contributed to molecular biology

studies, including DNA-protein interactions, protein folding, protein secondary struc-

ture prediction [97] and protein tertiary structure prediction [4].

All SFFEs and PFFEs can be considered as approximations to the true (unknown)

protein potential energy. To make some corrections, we should take other factors into

consideration. In [98, 99], the effective energy function refers to the free energy of the

system (protein and solvent). In other words, an effective energy function consists

of the inter-molecular energy of the protein plus the solvent free energy. For this

purpose, there are many extended versions of CHARMM that have been improved

by incorporating the influence of the solvent explicitly or implicitly. As a result, we

have explicit ones, e.g., TIP3P water model [100] and implicit ones, e.g., Gaussian

solvation free energy model [101] and SCPISM continuum model [102].

The earliest and simplest implicit solvent models are SASA models [96]. This type

of models respresent solvent as a continuous medium and assume that the solvent free

energy of each part of a molecule is proportional to its SASA. Wesson and Eisenberg

expressed the solvation free enery term as a sum over individual atomic contributions:

Gsol =
∑

atom i=1

δiAi, (3.4)

where δ is an atomic solvation parameter depending on the atom type. Ai is the
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SASA of the atom [103, 104]. Moreover, in the Generalized Born / Surface Area

(GB/SA) model [105], the solvation free energy Gsol is calculated by summing three

terms: solvent-solvent cavity term Gcav, solute-solvent van der Waals term GvdW , and

a solute-solvent electrostatics polarization term Gpol:

Gsol = Gcav +GvdW +Gpol. (3.5)

For nonpolar molecules, Gpol = 0 and Gsol can be treated as linear approximation of

their SASA:

Gcav +GvdW =
N∑

atom i=1

δiAi, (3.6)

where δi is an empirical atomic solvation parameter, Ai is the SASA for the atom. This

work includes the SASA of a protein conformation as the third objective function,

which reflects the effect of the solvent implicitly. The smaller SASA, the better

conformation.

As suggested in [99, 19, 48], in the molecular system an effective energy function

should also take the contribution of solvent. Incorporating the effect of solvent im-

plicitly or explicitly into protein energy function is necessary. The original version

of CHARMM have not consider the factor of solvent. Therefore, many extensions

of CHARMM incorporating the influence of solvent have been proposed in the lit-

erature, such as SCPISM model [102], EEF1 model [101] and COSMO model [106].

The SASA is the accessible surface to solvent of a biological molecule. It can deter-

mine how a biological molecule interact with other molecules, and the protein folding

process is influenced by it. The work of Hartlmüller indicates that the utilization of

the SASA related information directly is beneficial for FM [107]. We take SASA as

the third objective function, which can reflect the effect of solvent implicitly. This

treatment also follows the idea that solvation free energy of a protein is proportional

to its SASA [96].
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Chapter 4

MO3: Incorporation of solvent
effect into multi-objective
evolutionary strategy

4.1 Method

This section presents a general framework of the proposed approach MO3. Then, the

specific components required in the approach to solve PSP are described.

Algorithm 1: Genetic framework of evolutionary strategies

begin
Set the generation counter t=0.
Generate a population of solutions P.
Evaluate the fitness of P.
while Stopping criterion is not met do

Create offspring population P’ by mutating or recombining solutions in
P.

Evaluate the fitness of P∪P’.
Select new population as P.
t=t+1.

The evolution strategy (ES) algorithm was first proposed by Rechenberg in the

1960s [108] and further explored by Schwefel [109]. A generic framework of an imple-

mentation of an ES is given in Algorithm 1. It uses the following main components:

initiation, mutation, recombination, evaluation and selection. When incorporating

multi-objective functions as the fitness function, the framework can be transformed
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as a framework of a multi-objective evolutionary algorithm. We use the framework to

design the multi-objective evolutionary algorithm and reference the well-known evolu-

tionary algorithm, i.e., the Pareto archived evolution strategy [110, 111], to constitute

the core of the main algorithm.

4.1.1 Main procedure

Algorithm 2: The main procedure of the multi-objective evaluation algorithm

begin
t=0.
Generate initial solution c randomly.
Evaluate the solution c.
Add c to Archive.
while Stopping criterion is not met do

cmutation1 ← mutation1(c).
cmutation2 ← mutation2(c).
Evaluate the solution cmutation1 and cmutation2.
if cmutation1 dominates cmutation2 then

cbuffer ← cmutation1.

else
if cmutation2 dominates cmutation1 then

cbuffer ← cmutation2.

else
cbuffer ← low energy(cmutation1, cmutation2).
Add high energy(cmutation1, cmutation2) to Archive.

if c dominates cbuffer then
throw away cbuffer.

else
if cbuffer dominates c then

Add cbuffer to Archive.
c← cbuffer.

else
Evaluate c and cbuffer according to Archive.
if cbuffer is better then

Add cbuffer to Archive.
c← cbuffer.

t=t+1.
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Figure 4.1: Main loop procedure.

Due to space limitations, we primarily describe the main procedure of the algo-

rithm, and the pseudo-code is presented in Algorithm 2.

Initially, the generation counter t is set to 0. A random conformation c is cre-

ated, and the torsion angles (φ, ψ, χi) are randomly generated. Subsequently, in the

evaluation phase, the bond energy, non-bond energy and SASA of the conformation

are evaluated separately by the software tools TINKER and EDTSurf. Later, the

solution c is added to the archive of non-dominated solutions Archive. From this

point, the algorithm starts its main loop. The main procedure is also shown in Fig.

4.1. First, two mutated solutions (cmutation1 and cmutation2) are generated from current

solution c with different mutation operators. They will compete for survival. After

evaluation, the better solution is selected as new mutated solution cbuffer, while the

other one is added to the archive of non-dominated solutions Archive if matching the

joined conditions. Next, current solution c and mutated solution cbuffer are compared

for dominance. If one dominates the other, then the dominated one is selected as the

new current solution and the other one is discarded. If neither dominates the other,

then we use the implied information in Archive to evaluate which is better. First,

compare cbuffer with every one in Archive, and discard it if it is dominated by any
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in Archive. Specifically, it is not required to compare c with Archive because c is

always a non-dominated solution during the main loop process. When cbuffer is not

dominated by Archive, we determine which remains in the least crowded region of

the solution space of Archive. Finally, the algorithm terminates when the preset

number of iterations is reached.

4.1.2 Approximation to Pareto Front

As mentioned above, an archive maintaining a set of non-dominated solutions is

created. It serves two purposes in the main procedure: a) store and update all

of non-dominated solutions, and b) offer assistance in determining which is better

between two solutions in the selection phase. The size of Archive is restricted. At

each iteration, a solution c∗ can be added to Archive if

1. Archive is empty.

2. Archive is not full and c∗ is not dominated by any in Archive.

3. c∗ dominates any solution in Archive.

4. Archive is full but c∗ is non-dominated and in a less crowded space than at

least one solution.

In the proposed approach, Pareto dominance selection works to promote con-

vergence by favoring the solutions closer to the Pareto front. The diversity among

the non-dominated solutions of Archive is ensured by favoring the solutions in a less

crowded space. The degree of crowding is calculated by dividing the three-dimensional

objective space rigorously in 2d equal-sized hyper-cubes, where d is defined by the user.

Meanwhile, a grid is designed to keep track of crowdedness. Each cell of the grid is

a counter to maintain the number of non-dominated solutions residing in each grid

location.
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4.1.3 Mutation operators

Two types of mutation operators are used. The first operator dramatically changes the

conformation by changing all the values of the backbone and side-chain torsion angles

of a randomly chosen residue. The second one slightly changes the conformation by

perturbing some torsion angles (φ, ψ, χi) of a randomly chosen residue.

In generic evolutionary strategies, an individual can be represented as a tuple that

consists of the decision vector x and a vector of strategy parameters σ. According to

biological observations, offspring are similar to their parents. It is created by adding

Gaussian noise to every item of the decision vector x [112]. The range of the Gaussian

noise is controlled by the strategy parameter σ. Therefore, we mutate the protein

conformation by changing the angles, which can be described as:

ϕnew = ϕold + λξ, (4.1)

where ϕnew is the torsion angle after mutating and ϕold is the one before mutating.

λ is the strategy parameter, and set to 1 in our procedure. ξ is a number that fits a

Gaussian distribution of mean µ = 0 and standard deviation σ = 1.

As suggested in [113], it is more reasonable and plausible to mutate more angles

in a protein folding process. In contrast to the mutation rate in [92], we set the

probability of the first mutation operator as:

M1 = e−
E

4Tmax , (4.2)

where Tmax is the maximum allowed number of evaluations and E is the number of

evaluations performed. For the second mutation operator, the number of mutations

is processed as:

M2 = 1 + (
L

4
)e−

E
4Tmax , (4.3)

where L is the number of residues. As the number of iterations increases, the prob-

abilities of the first and second mutation operators decrease. Thus, the number of

mutations decreases as the search method proceeds.
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4.1.4 Computational complexity

We analyze the time complexity of the proposed algorithm as follows.

1. The complexity of the initiation procedure is O(1).

2. The dominance comparison of two solutions needs O(k) time, where k is the

number of objective functions.

3. Considering a common iteration in the main loop, L is the length of Archive.

The procedure of generating and evaluating the mutated solutions needs O(1). In the

worst case, after competing, one solution is needed to be added to Archive, and it is

compared with every other solution in Archive. This requires O(kL) comparisons.

4. The later procedure of selecting a better solution from c and cbuffer needs

O(kL) comparisons in the worst case.

Thus, the complexity of the main loop can be calculated as 2O(kL). This algo-

rithm is continued until the stopping criterion is met. If it ends with N loops, then

the overall complexity can be calculated as follows:

O(1) +N(O(1) + 2O(kL)) =

2O(kNL) +O(N) +O(1).
(4.4)

Thus, the approach has time complexity O(kNL). In fact, its largest time expense is

close to the calculation of the CHARMM energy and SASA. Because the conformation

of a protein is very complex, it can take more than 90% of the running time.

4.1.5 Selecting the Representative Structures

As we can see, the outcome of the proposed algorithm is a set of structures. For

a ”real” prediction, a method using hierarchical clustering [114, 115] for selecting

representative structures is developed. It is shown as the following steps.

1. calculate the RMSD between every two structures of the outcome set (Pareto

optimal set) and take the RMSD as the distance metric to measure how close

between two structures.



24

2. use hierarchical clustering to cluster these structures. Repeat combining the

closest structures or nodes to form a new node, until a hierarchical tree of

binary clusters is built. As a note, Complete linkage clustering is used as linkage

criteria.

3. cut the hierarchical tree at a given threshold 4 Å, which define the allowed

maximum RMSD between two nodes or structure for joining. N clusters with

different size are generated after cutting process.

4. select the centroid of each cluster, which has the lowest average RMSD to all

other structure of the cluster.

4.2 Experiment and discussion

4.2.1 Prediction results of four proteins

We have applied our approach to four protein sequences that can be accessed in the

Protein Data Bank (PDB). Their PDB IDs are 1ZDD, 1E0M, 1ROP and 1CRN. We

run the algorithm at the maximum number of iterations 2× 104.

Disulfide-stabilized mini protein a domain (PDB id: 1ZDD) consists of 34 residues

and 2 helices. Fig. 4.2 shows the Pareto front of 1ZDD computed with the proposed

algorithm. As shown in this figure, these solutions are dense and grouped into several

clusters. Note that the gray surface in this figure is not the surface of the Pareto

front. The surface can help us easily view the three-dimensional Pareto front in the

two-dimensional plane.

The Prototype WW domain (PDB ID: 1E0M) consists of 37 residues. It has a

triple-stranded antiparallel β-sheet. For this protein, we use the secondary structure

information, which is predicted by a protein secondary structure prediction server,

PSIPRED We also use the constraints for the secondary structure mentioned above.

Fig. 4.3 shows the Pareto front of 1E0M computed with the proposed algorithm.

The COLE1 ROP protein (PDB ID: 1ROP) is a dimer, and each monomer consists

almost completely of two alpha helices . 1ROP is composed of 56 residues and forms
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Figure 4.2: Pareto front for 1ZDD protein.

an α-turn secondary structure. Fig. 4.4 shows the Pareto front of 1ROP computed

using the proposed algorithm.

Crambin (PDB ID: 1CRN) is a protein with 46 residues. It has two alpha-helices,

a pair of beta-strands and three disulfide bonds. It is more complex than the previous

proteins. Fig. 4.5 shows the Pareto front of 1CRN computed using our algorithm.

These solutions are sparse and mainly clustered in two regions.

Table 4.1 gives the values of thee-objectives (i.e., bond energy, non-bond energy,

and SASA) and the RMSDCα to the target protein for the native, and four non-

dominated solutions in Archive, respectively. These four non-dominated solutions

include the centroid of the cluster with the maximum cluster size, one with the mini-

mum CHARMM22 value, one with the minimum SASA, and one with the minimum

RMSDCα . It is clear that solutions with the minimum CHARMM22 or SASA are

extreme values located at the Pareto front, and the results in Table 2 suggest that

the cluster centroid determined by our decision-making procedure can always perform

better. For example, the RMSDCα of solutions with the minimum CHARMM22 and

SASA for 1ZDD are 6.13 and 6.35, respectively. A better solution with RMSDCα of
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Figure 4.3: Pareto front for 1E0M protein.

3.26 is obtained after our decision-making procedure. Fig. 6 depicts the superposi-

tions of the native and predicted structures for these four proteins.

4.2.2 Verifying whether SASA works

In order to make the energy function more realistic, we have included SASA as the

third objective function. We should verify whether this approach works. We have

conducted a contrast experiment with two objectives, bond energy and non-bond

energy, by employing the same multi-objective evolutionary algorithm. Because the

outcome of the multi-objective optimization algorithm is an approximation of the

Pareto optimal set, we evaluate the quality of these outcomes to compare performance.

In contrast to a single-objective optimization, the situation of comparison in multi-

objective is more complex. The concept of Pareto dominance can be used for compar-

ing two solutions. Moreover, comparing two sets of solutions becomes more complex.

As suggested in [116], the quality of an approximation to the Pareto optimal set

refers to its convergence and diversity. However, in PSP, the true Pareto optimal

front is unknown. Moreover, with different numbers of objectives, the true Pareto
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Figure 4.4: Pareto front for 1ROP protein.

optimal front is different. We cannot compare these approximation sets directly. An

alternative comparison method is necessary.

Considering our original target, predicting the three-dimensional structure of a

protein from its amino acid sequence, we care more about the prediction accuracy.

We calculate the RMSD of each solution in the approximation sets. We call the

algorithm with two and three objective functions as MO2 and MO3, respectively.

The cumulative distribution plot of each set is used to compare the sets. We set the

maximum number of iterations to 4× 104 for MO2. The outcomes of MO2 with the

maximum iteration counts 1 × 104 and 4 × 104 are plotted. Those of MO3 with the

maximum iteration counts 1× 104 and 2× 104 for MO3 are plotted as well. Fig. 4.8

shows the cumulative distribution of RMSD of each set, where t is the number of

iterations.

As shown in Fig. 4.8, for MO2, the approximation set of 4 × 104 iterations is

superior to the approximation set of 1 × 104 iterations. We can state that the ap-

proximation set of 4 × 104 iterations is more accurate (or convergent) than that of
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Figure 4.5: Pareto front for 1CRN protein.

1×104. For MO3, the approximation set of 1×104 iterations is almost as good as the

approximation set of 2× 104 iterations. In other words, MO3 has faster convergence

ability than MO2. We obtain the outcomes of MO2 with 4× 104 iterations and those

of MO3 with 2× 104 iterations as the final results. It is clear that the former is worse

than the latter. Meanwhile, the values of MO2 solutions concentrate in a certain

range in contrast to a line as in the case of MO3 solutions. This result suggests that

the solutions of the approximation set from MO3 is more diverse. Finally, note that

Fig. 4.8 is the cumulative distribution plot, not the absolute quantity plot.

Specifically, we analyze the relationship between RMSD (reflecting the accuracy)

and SASA. We compare the outcomes of MO2 with 4 × 104 iterations and those

of MO3 with 2 × 104 iterations. Fig. 4.7 shows RMSD versus SASA of these four

proteins, where the vertical line is the value of SASA of the native protein structures.

In MO3, the best solutions concentrate near the value of SASA of the native protein
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Figure 4.6: Superposition of the native and the predicted structure. a)1ZDD,
RMSDCα = 3.26Å, b)1E0M, RMSDCα = 8.00Å, c)1ROP, RMSDCα = 3.22Å, d)1CRN,
RMSDCα = 5.56Å.

structures. These solutions are grouped into several clusters and are more diverse

than those of MO2. It is clear that the smaller SASA, the better conformation of a

protein in individual clusters. However, when SASA is smaller than the native value,

the situation worsens. The smaller SASA, the worse conformation. In MO2, the

solutions all remain on the right side of the vertical line. This result suggests that

the effect of solvent is ignored in the evolutionary process. No obvious trend can be

found. Note that Fig. 4.7 also shows the number of solutions of different outcomes.

It is clear that the number of good solutions of MO3 is far greater than that of MO2.
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Figure 4.7: RMSD versus SASA of Pareto front for four proteins.

4.2.3 Conflict among the three objectives

As mentioned above, a MOOP is an optimization problem that involves more than

one objective to be optimized simultaneously. Coello [88] emphasizes that it is the

normal case the objectives of the MOOP are in conflict with each other. It is the

typical characteristic of a MOOP. However, there is no formal definition of conflicting

objectives in the MOOP field. Generally, a relationship in which the performance of

one objective deteriorates as the performance of another improves is considered as a

conflict. We use a qualitative method, parallel coordinates plot [117], to identify the

conflicting relationship experimentally regarding the set of Pareto optimal solutions.

Fig. 4.9 shows the parallel coordinates plot for the solutions of the protein 1ZDD

with three objectives. Similar results have also been obtained for 1E0M, 1ROP, and
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Figure 4.8: Cumulative distribution of RMSD of each set for four proteins.

1CRN. In Fig. 4.9, objective labels are located along the horizontal axis. Normalized

values of different objective function values (extreme values have been removed) are

indicated on the vertical axis. A solution vector is connected by straight lines. Con-

sidering a two objective instance, the line will cross if a conflict is exhibited. Thus,

the magnitude of a conflict is visualized as the number of crossing lines. In this figure,

It is clear that the three objective functions are in conflict. Moreover, inspecting the

degree of three conflicting relationships, SASA is strongly in conflict with the other

two objectives.

4.2.4 Comparison with prior work

We have compared our algorithm and results with the other work in the literature.

The specific details of the compared methods are given as follows:

1) HC-GA [124] is a hill-climbing genetic algorithm for simulation of protein fold-
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Figure 4.9: Parallel coordinates plot for the solutions of protein 1ZDD (corresponding
to Fig. 4.2).

ing which uses a single-objective function as the fitness measurement.

2) I-PAES [92] is the first attempt to use multi-objective functions in an evolu-

tionary approach to perform PSP, and minimizes only two interaction energies, i.e.,

bond and non-bond energies as objectives.

3) Bhageerat [123] is a PSP software suite for narrowing down the search space

of tertiary structures of small proteins. It uses eight different computational modules

and can return 10 predictions for a given protein query sequence.

4) NOMAD-PSP [121] uses two direct search algorithms (generalized pattern

search and mesh adaptive direct search) to find the optimal solution of PSP that

is formalized as a non-linear single-objective optimization problem.

5) IMMALG-DIRECT [122] is a hybrid method that combines an immune al-
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Table 4.2: performance comparison with other approaches for the 1ZDD, 1E0M,
1ROP and 1CRN proteins.

Method Protein Fra.a Sec.b RMSD bRMSDc

PROPOSED 1ZDD no yes 3.26 2.16
1E0M no yes 8.00 5.69
1ROP no yes 3.22 3.07
1CRN no yes 5.56 5.34

ADEMO/D 1ZDD no yes 2.14 -
(2016) [118] 1ROP no yes 3.83 -

1CRN no yes 6.06 -
GA-WithAPL 1ZDD no yes - 4.6
(2015) [71] 1ROP no yes - 9.8

1CRN no yes - 5.8
PSO-WithAPL 1ZDD no yes - 7.2
(2015) [71] 1ROP no yes - 10.1

1CRN no yes - 8.9
HGA (2011) [119] 1ZDD yes yes 3.92 -
Parallel framework of

1ROP no yes 3.78 3.39
NSGA-II (2010) [94]
MI-PAES 1ZDD no yes - 2.15
(2009) [95] 1ROP no yes - 3.48

1CRN no yes 4.23 -
CReF (2008) [120] 1ZDD yes no 3.4 -

1ROP yes no 7.1 -
NOMAD-PSP

1ZDD no yes 3.87 -
(2007) [121]
IMMALG-DIRECT

1ROP no yes 3.59 -
(2007) [122]
I-PAES 1ZDD no yes 2.27 2.22
(2006, 2008) [92] [25] 1E0M no yes - 7.27

1ROP no yes 3.70 3.50
1CRN no yes 4.43 4.38

Bhageerath
1ROP no yes 4.3 -

(2006) [123] -
HC-GA (2003) [124] 1CRN no yes 5.6 -
a whether use fragment-assembly
b whether use the secondary structure information
c the best RMSD in predicated decoy structures.

gorithm with a quasi-Newton method, aiming to find the lowest CHARMM energy

conformation of a given protein sequence.

6) CReF [120] is a central residue fragment based method that makes no use of
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entire fragments, but only the phi and psi torsion angle information of the central

residue in the template fragments obtained from PDB.

7) MI-PAES [95] develops I-PAES by effectively exploiting some prior knowledge

about the hydrophobic interactions.

8) Parallel framework of NSGA-II [94] utilizes an island model of the two-objective

evolutionary algorithm to solve PSP.

9) HGA [119] improves HC-GA [124] by combining a structured population and

a path-relinking procedure to alleviate the local minima trapping problem in genetic

algorithms.

10) PSO-WithAPL and GA-WithAPL [71] are angle probability knowledge-based

prediction methods based on a genetic algorithm and particle swarm optimization,

respectively.

11) ADEMO/D [118] is an adaptive differential evolution algorithm to solve the

bond and non-bond energies based two-objective PSP.

Table 4.2 reports the comparison results of our method with other approaches for

1ZDD, 1ROP, and 1CRN proteins. For each of these proteins, a structure within 1-4

Å RMSD (i.e., the root mean square deviation) of the native has been obtained by

our method. Inspecting the reported results, our algorithm well outperforms other

approaches in terms of the root mean square deviation and is more powerful to solve

PSP.

Then, a detailed comparison is carried out among GA-APL [71], the proposed

method (i.e., MO3) and its variant MO2 which uses two objective functions on twenty

proteins. Table 4.3 records the PDB IDs of proteins, the number of residues which

is shown in the bracket, and RMSD results of these three methods. In Table 4 We

can observe listed that our proposed method MO3 outperforms MO2, and GA-APL

in terms of RMSD.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: GDT analysis plot for FM targets (a)T0761-D1, (b)T0761-D2, (c)T0763-
D1, (d)T0767-D2, (e)T0775-D1, (f)T0775-D2 in CASP11.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: GDT analysis plot for FM targets (a)T0775-D3, (b)T0775-D4, (c)T0775-
D5, (d)T0775-D6, (e)T0777-D1, (f)T0781-D1 in CASP11.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: GDT analysis plot for FM targets (a)T0785-D1, (b)T0789-D1, (c)T0789-
D2, (d)T0790-D1, (e)T0790-D2, (f)T0791-D1 in CASP11.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: GDT analysis plot for FM targets (a)T0791-D2, (b)T0793-D1, (c)T0793-
D2, (d)T0793-D5, (e)T0794-D2, (f)T0799-D1 in CASP11.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: GDT analysis plot for FM targets (a)T0799-D2, (b)T0802-D1, (c)T0804-
D1, (d)T0804-D2, (e)T0806-D1, (f)T0808-D2 in CASP11.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: GDT analysis plot for FM targets (a)T0810-D1, (b)T0814-D1, (c)T0820-
D1, (d)T0824-D1, (e)T0826-D1, (f)T0827-D2 in CASP11.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: GDT analysis plot for FM targets (a)T0831-D2, (b)T0832-D1, (c)T0834-
D2, (d)T0836-D1, (e)T0837-D1, (f)T0855-D1 in CASP11.
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Table 4.3: Performance Comparison among MO3, MO2 and GA-APL on 20 Proteins.

RMSD
Protein Length MO3 MO2 GA-APL
3P7K 45 2.02 3.43 2.09
2MTW 20 4.49 4.78 2.48
1WQC 26 4.65 4.56 5.24
2P81 44 4.30 11.89 8.53
1L2Y 20 3.44 5.11 5.28
3V1A 48 2.23 4.70 10.70
2P6J 52 5.96 16.93 15.18
2F4K 33 5.91 5.24 6.60
1ENH 54 11.99 14.31 14.99
2MR9 44 6.68 12.11 9.22
1AIL 70 9.97 16.45 19.57
2PMR 76 10.12 11.82 21.54
2JUC 59 10.80 16.08 18.50
1K43 14 2.86 2.73 3.55
1DFN 30 7.45 10.15 10.21
1D5Q 27 6.71 11.09 6.51
1ACW 29 7.45 9.11 10.66
1Q2K 31 7.93 16.57 7.59
1AB1 46 7.52 10.09 10.10
2P5K 63 9.23 9.95 13.97

4.2.5 Comparing with CASP Competitors

To further verify the performance of the proposed method, all available single-domain

FM protein targets up to 345 residues taken from the 11th CASP experiment (CASP11)

are tested. Table 4.4 summarizes the GDT-TS values of the top five solutions ob-

tained by our method and three state-of-the-art methods, i.e., LEE [46], QUARK

[14], and BAKER-ROSETTASERVER [64] for the targets T0761-D1 and T0799-D2.

The GDT-TS values of other tested proteins are in Table 4.5 and Table 4.6. Fig. 4.10

∼ Fig. 4.16 represents the results of GDT analysis for all Test proteins.

From Table 4.4, 4.5, 4.6 we can find that our method is generally capable of finding

satisfying solutions for small-size proteins. Promisingly, it can find a better solution

(with a GDT-TS value of 31.37) than three compared state-of-the-art methods for the

target T0799-D2. It is probably owing to the fact that small proteins have smaller

conformational search space, which is easier for the evolutionary search algorithms to
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Table 4.4: GDT-TS Results Between Our Proposed Method and Three State-of-the-
Art Methods for the Targets T0761-D1 and T0799-D2.

Target Group GDT-TS
(Length)

LEE 25.85 25.85 25.85 25.85 21.59
T0761-D1 ROSETTAa 28.12 24.74 23.31 23.30 22.44
(88) QUARK 28.12 27.84 24.15 23.86 22.44

MO3 22.44 22.44 22.15 20.45 19.31
LEE 25.98 24.02 23.53 22.55 22.55

T0799-D2 ROSETTA 27.94 24.51 23.53 23.53 23.04
(51) QUARK 26.96 25.98 25.49 23.53 23.04

MO3 31.37 26.47 25.98 25.98 25.49

identify the correct fold. As can be seen from Fig. 4.10∼ Fig. 4.16, solutions obtained

by our proposed method are generally competitive among all CASP11 competitors.

To be more specific, we normalize all the GDT-TS values according to their mean

and standard deviation to obtain the corresponding Z-score. The cumulative Z-scores

shown in Table 4.7, are calculated based on the collected data from the FM website,

and our result is based on a randomly selected solution from the top five solutions

with largest sizes of the Pareto optimal set. The analysis of Z-scores for GDT-TS

shows that our method ranks 54th among all 140 compared groups, while three state-

of-the-art methods rank 8th, 17th, and 35th respectively. Although our method is

worse than these three state-of-the-art methods, it can be said that our proposed

three-objective evolutionary algorithm is a competitive method and performs above

average as far as all groups are concerned in this blind test.

Finally, we note that the advantages of the above three state-of-the-art methods

are owing to the principle of fragment assembly [46, 14, 64]. In a fragment assem-

bly based method, the query sequence is fragmented into fully overlapping short

stretches of amino acids. Conventional template-based techniques are used to gen-

erate candidate structures for these small fragments. These structural fragments

are then sampled (e.g., using Monte Carlo simulation) and assembled to construct

a low-energy protein conformation. The success of these methods depends on the

sophisticated fragment generation and conformational movements, thus making the
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procedure highly complicated and difficult to be well-tuned. On the contrary, our

method is not based on fragments, but instead based on a simple torsion angles pro-

tein representation and a three-objective evolutionary search algorithm. It is more

straightforward to predict the 3-D structure of a protein from its one-dimensional

sequence of amino acids.
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Table 4.7: Cumulative Z-score of GDT-TS score on FM Targets in CASP11.

Group name SUM Z-score Rank Group name SUM Z-score Rank
Kiharalab 41.61 1 PhyreX -15.28 71
Jones-UCL 37.43 2 Legato -15.37 72
Zhang 33.88 2 BioSerf -15.53 73
ProQ2 31.37 4 eThread -15.62 74
SHORTLE 30.55 5 wfKeasar-PTIGRESS -16.03 75
Seok-refine 29.94 6 FLOUDAS A2 -16.08 76
MULTICOM 28.91 7 HHPredX -16.56 77
LEE 28.71 8 KIAS-GDANSK -18.77 78
ProQ2-refine 28.28 9 Alpha-Gelly-Server -19.31 79
Zhang-Server 27.65 10 LmtdSeder -19.55 80
TASSER 27.50 11 HHPredA -19.97 81
QA-RecombineIt H 27.14 12 wfMix-KFb -20.16 82
Wallner 26.60 13 Seder2 -21.72 83
LEER 25.75 14 2PG -23.19 84
Skwark 25.52 15 wfHHPred-PTIGRESS -23.51 85
BAKER 25.33 16 FLOUDAS A1 -24.69 86
QUARK 24.65 17 wfAll-MD-RFLB -25.77 87
QA-RecombineIt WFH 22.15 18 Bilab -26.62 88
CNIO 21.62 19 BioShell-server -26.77 89
RosEda 21.30 20 IntFOLD3 -26.78 90
PML 21.28 21 MUFOLD-Server -27.11 91
MUFOLD-R 18.20 22 SAM-T08-server -30.77 92
QA-RecombineIt H2 17.42 23 slbio -32.35 93
wfMix-KPa 17.22 24 DELCLAB -33.82 94
Mufold 15.24 25 chuo-fams-server -36.13 95
keasar 13.87 26 Atome2 CBS -37.84 96
McGuffin 12.59 27 wfAll-Cheng -38.01 97
NEFILIM 12.02 28 raghavagps-tsppred -39.30 98
wfMix-KPb 11.93 29 chuo-fams -41.07 99
Boniecki pred 10.97 30 3D-Jigsaw-V5 1 -42.40 100
Seder1 9.78 31 ALAdeGAP -43.69 101
RBO Aleph 9.16 32 WY-C -44.47 102
nns 8.70 33 wfZhng-Ksr -48.44 103
wfMix-KFa 5.77 34 wfZhng-Sk-BW -52.13 104
BAKER-ROSETTASERVER 5.71 35 Victoria -52.30 105
FLOUDAS A4 2.86 36 STAP -53.01 106
TASSER-VMT 1.00 37 dppred -54.35 107
myprotein-me 0.68 38 wfKsrFdit-BW-Sk-BW -56.39 108
MULTICOM-CONSTRUCT 0.53 39 wfKsrFdit-BW-Sk-McG -56.76 109
MULTICOM-CLUSTER 0.33 40 wf-Void Crushers -56.82 110
Gong3701 -0.96 41 wf-AnthropicDreams -57.11 111
MULTICOM-REFINE -1.28 42 WeFold-GoScience -57.96 112
Seok -1.49 43 Sun Tsinghua -58.08 113
MULTICOM-NOVEL -2.64 44 FFAS03 -58.29 114
RaptorX -3.38 45 PSF -58.34 115
Seok-server -4.83 46 MATRIX -61.68 116
FUSION -5.72 47 SSThread -61.84 117
Handl -6.19 48 InnoUNRES -63.84 118
STRINGS -6.73 49 Rosetta at Kingston -64.06 119
RaptorX-FM -7.32 50 WeFold-Contenders -64.52 120
Pcons-net -7.59 51 OPIG -65.55 121
FALCON TOPO -8.21 52 wf-Baker-UNRES -66.56 122
FFAS-3D -8.27 53 CASPITA3D -67.19 123
MO3 (PROPOSED) -8.49 54 Laufer -72.16 124
ZHOU-SPARKS-X -8.72 55 LNCCUnB -72.38 125
Pareto -9.43 56 WeFold-Wiskers -73.96 126
BhageerathH -9.97 57 pkfc -74.05 127
FALCON MANUAL -10.38 58 Void Crushers -74.77 128
FALCON EnvFold -10.38 59 Mongolian Team -74.78 129
FALCON MANUAL X -10.85 60 Contenders -74.94 130
Chicken George -11.11 61 Anthropic Dreams -74.94 131
BioShell -11.68 62 Foldit -74.94 132
Distill -12.68 63 TAU Course -75.26 133
MeilerLab -12.84 64 Wiskers -75.32 134
wfCPUNK -13.47 65 GoScience -75.38 135
FLOUDAS SERVER -13.90 66 MICROGSIMU -75.71 136
FLOUDAS A3 -14.29 67 TAUbioinfounit -77.24 137
rluethy -14.91 68 MEAMT-group -77.56 138
Cornell-Gdansk -14.97 69 Nanoworld Laboratory -78.00 139
Bates BMM -15.11 70 MBBS -78.00 140
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Chapter 5

AIMOES: Archive information
assisted multi-objective
evolutionary strategy

5.1 Method

Evolutionary algorithm (EA) is the population-based optimization method, fitting the

Darwinian principles of natural selection. Since the remarkable work of Schaffer [125],

applying EAs to solve MOOPs have aroused a growing interest of researchers. The

proposed AIMOES follows the common algorithmic framework applied in NSGA-II

[126]: executing selection operators based on Pareto dominance and mutation opera-

tors to produce offspring iteratively, aiming to optimize the multi-objective function.

The (1+2)-ES [127] is used to constitute the core of AIMOES. To enhance the perfor-

mance of the proposed method, a global mutation operator is designed to reuse past

search experience stored in the elitism archive. The archive is created to maintain

the non-dominated solutions, and it is serviced as a knowledge database to provide

information for evolution.

5.1.1 Main procedure

We use the (1+2)-ES because the process of evaluating a conformation of the protein

is time-consuming to reduce the times of evaluation in a single iteration. The main

procedure of AIMOES is shown in Fig. 5.1. In the initialization of solutions phase, a
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random conformation is created for each solution by setting every torsion angle with

a random value satisfying the constraints shown in Table ??. Initially, the archive

A is empty and all the randomly generated solutions are added into A after the

initialization phase.

current solution ccurrent

whether reuse 

experience

local mutation global mutation reusing mutation

compete

compete

new solution

non-dominated 

archive A

add 

solution 

add 

solution  
o

ff
e

r 

in
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ti
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o
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cmutate

c1

c2

ccurrent

Figure 5.1: Main procedure of AIMOES.

Subsequently, the algorithm starts its evolution phase. First, two mutated solu-

tions c1 and c2 are generated from the current solution via global and local mutation



51

operators respectively. Then, they are evaluated by the multi-objective function, and

compete for survival. The worse one is added to the archive A if it matches the

joined condition described in Section 5.1.5, and the better one (now we call it cmutate

) competes with ccurrent for survival.

For cmutate and ccurrent, if one dominates the other, then the dominated one survives

as the new current solution and the other will be discard. If neither dominates the

other, we will refer to the information stored in A to determine which is better. If

cmutate dominates any one in the archive A, cmutate will take place of ccurrent, because

ccurrent is non-dominated with any one in A and cmutate should be considered to be

better. At last, the algorithm terminates when the number of iteration is reached.

5.1.2 mutation operators

Three mutation operators are designed in the mutation phase shown in Fig. 5.1.

Local mutation The first one is local mutation, which changes the conformation

of a protein slightly by perturbing its torsion angles with some randomly chosen

residues. The number of chosen residues is:

N = 1 + (
L

4
)e−

t
Tmax , (5.1)

where L is the length of the protein, t is the current iteration number, Tmax is the

maximum allowed number of iterations. It is clear that N decreases as t increases.

The torsion angles of the protein are perturbed by:

ϕnew = ϕold + λτ, (5.2)

where ϕnew and ϕold are the torsion angles of the protein before mutating and after

mutating, respectively. λ is a scale factor and set to be 2.0 in the study. τ is a random

number obeying the normal Gaussian distribution.
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Global mutation Two types of global mutation are used in the work. The first

one dramatically changes the current conformation by reseting all torsion angles with

randomly chosen residues. The second one reuses the past search experience main-

tained in the archive A. At one point, only one global mutation operator is carried

out. We set the probability of the first mutation operator to be implemented as:

M1 = e−
t

4Tmax . (5.3)

It is clear that the probability of the first mutation operator decreases from 100% as

the number of iterations t increases. Two reasons drive us to decrease the probability

of the first mutation operator gradually. First, more use of the first mutation opera-

tor can enhances exploration capability of the proposed algorithm at the beginning.

Second, there are small amounts of non-dominated solutions in the archive A at the

beginning, thus little past search experience can be exacted by the second mutation

operator from A.

5.1.3 Reusing search experience

Avoiding being trapped in local minimum search points is an important issue in

conventional conformation search methods for solving PSP problem [128, 129, 130].

In order to overcome this shortcoming, many strategies have been proposed in the

literature such as replica exchange [14], multi-canonical-ensemble [131] and Monte

Carlo plus minimization strategy [64]. The common characteristic of these methods

are that the hidden information among different individuals are effectively utilized.

It is essential that designing an effective search strategy is necessary for improving

the performance of an algorithm and useful information hidden in past search process

should be incorporated into such design. As we can see, the first global mutation pays

strengths to changing only one residue at one time. This simple mutation operator

makes the current solution trapped in local optimum easily. An alternative way is to

change many residues simultaneously and dramatically. But such a way would result

in a low acceptance of the mutation operator. Considering that the topological struc-
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ture of a protein can be determined by several backbone torsion angles in secondary

structure coils coarsely, more attention should be paid to these angles, rather than

all torsion angles of a residue.

Current solution

A solution selected from archive

Loop region clone

R
ep

lace

Figure 5.2: The global mutation operator reusing the past search experience.

In this study, a novel mutation operator which can effectively reuse the past

search experience accumulated in the archive A is proposed. This reusing mutation

operator is illustrated in Fig. 5.2. It takes the current solution and a “suitable”

solution selected from A as input. A randomly selected loop region (the secondary

structure of residues are coils) is selected, and the backbone torsion angles (φ, ψ) in

the “suitable” solution are cloned to the current solution, generating a offspring. It

is similar to the well-known two-point crossover operator [132], but there is only one

offspring created. After mutating, the conformation changes in topology-level.

The method of selecting the “suitable” solution is explained as in the following.

First, 30 solutions are randomly selected form A and the similarity between every
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pair of these solutions are calculated. Then the protein in the least crowded region

is selected, which has the furthest average distance to all other selected solutions.

This selection method is similar to the classic niching method, i.e. crowding [133].

The difference is that, a small set of samples are taken from the current population

randomly in crowding method, but the comparison solutions are selected from the

archive A in this study. In this way, these solutions in A in less crowded region are

favored and some fragments of them are injected into the current solutions for further

searching. As a result, more optimal solutions close to these solutions can be located

and the population diversity of A is preserved.

5.1.4 Similarity between two proteins’ conformations

How to evaluate the similarity between two objects is usually a crucial issue in the

field of computational intelligence. Different metrics have been introduced, such

as Hamming distance, Euclidean distance, squared Euclidean distance and cosine

similarity. These metrics can reflect the different degree of two objects in genotype

or phenotype space. In this study, a modified Euclidean distance is used in genotype

space to calculate the similarity.

The backbone torsion angles of a protein conformation can be uniquely described

as a series of torsion angles (φ and ψ):

V = {x1, x2, x3, x4, ..., x2L},∀x ∈ V,−180◦ ≤ x ≤ −180◦, (5.4)

where L is length of protein. As indicated in [134], decision variables play different

effects in the evolutionary progress, and different types of decision variables should be

treated separately. For protein conformation, to reduce the complexity and describe

simply, we bias the torsion angles of a residue in the secondary structure coil. The

topology structure of a protein is almost determined by these residues. a subset U of

V is created by picking out the backbone torsion angles in secondary structure coil,

as following:

U = {y1, y2, y3, y4, ..., ym}. (5.5)
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Figure 5.3: The backbone torsion angles in different region play different contributions
to determine the topology structure. For example, The angles in region B are more
crucial than the ones in A.

As a note, the elements (torsion angles) in V and U are arranged in order by their

position in sequence. m is the number of φ and ψ in coil.

The similarity of two protein conformation can be coarsely evaluated by calculat-

ing the modified Euclidean distance of U . Considering the residues at both ends and

the ones in middle, they are unbalanced for playing different contributions to deter-

mining the topology structure shown in Fig. 5.3. The one in middle are more crucial,

and should be increased weighting coefficient for calculating. Thus, the modified

distance in decision space is as following:

D =
√∑

ηidi
2, (5.6)

where i the order number of angle in U . di is the distance between angle i of two

matched confrontation. The weighting coefficient ηi is a position-dependent factor,
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0°

90°-90°

-180°/180°

θ1 = -120° θ2 = 120°

120°

Figure 5.4: A example of calculating the distance between two angles. Because of the
circle structure, the distance value between θ1 and θ2 is 120◦, rather than 240◦.

proportional to a normal distribution:

ηi = e
−(i−µ)2

2δ2 , µ =
|U |
2
, δ =

|U |
4
. (5.7)

Every element in U is an angle, in the range [−180◦, 180◦]. Calculating the dif-

ference between two angle is different from the Euclidean distance, because of the

circle structure. In a circle, the inferior arc of two angles is defined as the distance

between two angles, always smaller than 180◦. Fig. 5.4 shows the distance between

θ1 = −120◦ and θ2 = 120◦ is 120◦, rather than 240◦. the instance between two angles

is calculated as:

d(a, b) =

|a− b|, |a− b| ≤ 180◦

360◦ − |a− b|, |a− b| > 180◦,

(5.8)

where a, b are torsion angles and a, b ∈ [−180◦, 180◦].
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5.1.5 Non-dominated solutions in the archive A

It is a common practice to incorporate external elitism populations in classical MOEAs

[110, 135]. The external population retains all non-dominated solutions produced

along evolutionary process. An archive A is created to maintain a set of non-

dominated solutions along evolutionary process in the work. At each iteration, a

solution c∗ can be added to archive if (1) A is not full or c∗ is not dominated by any

one in it, (2) c∗ dominates some solutions in A and these dominated solutions are

removed from A, and (3) A is full and c∗ is non-dominated by any one in A. Then,

30 solutions are randomly selected, and the one with the smallest average distance to

all other selected solutions, thought in most crowded region, is replaced by c∗.

The archive A serves three purposes in the evolution process. Firstly, it stores and

updates all non-dominated solutions along evolution process. Secondly, it can assist

the selection operator to determine which is better between two solutions. Thirdly,

It can retain structured knowledge buried in the non-dominated solutions, which is

transfered from past search experience. The mutation operator can reuse fragments

captured from these non-dominated solutions stored in A. At this moment, it can be

seen as fragment library, similar to fragment assembly strategy used in Rosetta [64].

Different from Rosetta, these fragments are obtained from past optimal solutions,

rather than known proteins.

5.1.6 Decision maker

Similar to typical FMs, the proposed method outputs a large number of solutions

stored in the archive A. The method how to select representative structures from a

set of decoy structures is also worth discussing [136]. In order to maintain integrity,

a method based on hierarchical clustering is proposed. It is carried out as follows:

• calculate the distance of every pair of structures in A. Usually a dissimilarity

matrix is created.

• use complete linkage clustering (furthest distance) and group these structures
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into a hierarchical cluster tree.

• cut the hierarchical tree into clusters at a given cutoff value.

• pick out the centroid of the clusters with largest size.

We try to use two types of distance metrics to generate the dissimilarity matrix.

The former is the distance of two structures described above in genotype space. The

cutoff value is set to 100 empirically. The later is the RMSDCα , described in Section

5.2. It can be seen as the distance of two structures in phenotype space. The cutoff

value is set to 8.

5.2 Experiment and discussion

5.2.1 Target proteins

Table 5.1: Information of target proteins.

PDB ID SS∗ Length PDB ID SS∗ Length PDB ID SS∗ Length
1AB1 α/β 46 1I6C β 39 2JUC α 59
1AIL α 73 1IGD α/β 61 2MR9 α 44
1BDD α 60 1K36 β 46 2P5K α/β 64
1DFN β 30 1MSI β 70 2P6J α 52
1E0G α/β 48 1Q2K α/β 31 2P81 α 44
1E0M β 37 1SXD α 91 2PMR α 87
1ENH α 54 1ZDD α 34 3V1A α 48
1F7M β 46 2GB1 α/β 56
1G26 β 31 2JZQ α 57
* SS: secondary structure classification

Table 5.1 lists the set of 25 tested proteins. Their lengths vary from 30 to 91. The

structural classes of the test proteins contains α, β, and α/β [137].

5.2.2 Experimental environment

We run the program on the Linux 64-bit system with four 3.40GHz Intel Core(TM)

i5 processor and 8GB memory. For each target protein, we set the maximum number

of iterations 40000. Typically, this program takes about 20 hours for a single run.
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Figure 5.5: Pareto fronts for target proteins (1).

5.2.3 Predicted results

We run the proposed algorithm on these proteins to predict their structures. For

every protein, an archive maintained non-dominated solutions is generated at last.
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Figure 5.6: Pareto fronts for target proteins (2).

The Pareto fronts of each protein are shown in Figs. 5.7 ∼ 5.16, which can exhibit

how approximate Pareto fronts are obtained. It is noted that, the gray surfaces in
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Figure 5.7: Pareto fronts for target proteins (3).

these figures are not the real surfaces of Pareto fronts, they assist us easily viewing the

three-dimension Pareto fronts. From these Pareto fronts, we can see that non-bond

energy has a bigger change range than bond energy. Specially, For 1AIL, 1ENH, 1MSI,
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(Å
2
)

(b) 1F7M

Figure 5.8: Pareto fronts for target proteins (4).

2JUC and 2PMR protein, non-bond energy term changes sharply at large scales. It

proofs the necessity of decomposing CHARMM22 into bond energy and non-bond

energy. Because large variation range of non-bond energy can hide the change of
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Figure 5.9: Pareto fronts for target proteins (5).

bond energy. Moreover, the rugged Pareto fronts surface indicated the complexity of

designed protein energy function and the complexity of PSP. Modeling PSP problem

as a multi-objective optimization problem is also hard to solve comparing with single-
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Figure 5.10: Pareto fronts for target proteins (6).

objective optimization.

We use the hierarchical clustering described above to cluster these solutions stored
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Figure 5.11: Pareto fronts for target proteins (7).

in the archive A in the genotype space and phenotype space, respectively. Table 5.2

reports the solutions with best RMSDCα , cluster centroid with maximum size in

genotype space phenotype space. We compare the results clustered in genotype and
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Figure 5.12: Pareto fronts for target proteins (8).

phenotype space respectively. It is interesting that the results clustered in genotype

space are mainly better than in phenotype space. It is probably due to that the
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Figure 5.13: Pareto fronts for target proteins (9).

distance in genotype between two solutions reflects the essential difference of them.

As a sequence, constructing a more pure hierarchical tree. Moreover, Fig. 5.18 shows
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Figure 5.14: Pareto fronts for target proteins (10).

the superposition of native structures and predicted structures (hierarchical clustered

in genotype space). It suggests the power of proposed method to solve PSP since

excellent or acceptable solutions can be obtained at last.
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Figure 5.15: Pareto fronts for target proteins (11).

5.2.4 Comparing success rate of mutation operators

Designing effective conformation search is an critical issue in FMs. Besides, it is also

important to design mutation operator with high acceptance in EA for improving
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Figure 5.16: Pareto fronts for target proteins (12).

efficiency. We compare the performance of three mutation operators. As we can see,

two offspring are generated by local and global mutation and compete for survival.
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Figure 5.17: Pareto fronts for target proteins (13).

One will dominate the other, or neither dominates the other. We count the acceptance

rate of a mutation operator, defined as the rate of one offspring dominates the other.

Fig. 5.19 shows that, local mutation operator is more likely to generate a better

offspring than global mutation at 10%∼25%. Because it changes the current solution

in a smaller magnitude. Comparing two types of global mutation operator, the reused

operator have higher acceptance rate, even though it change more torsion angles in

topology-level at a time. As the reused operator injects fragments of a non-dominated

solutions stored in the archive A into current solution. These fragments existing in

A can be seen as a form of past search experience. Learning from them can increase

acceptance rate of the reused operator.

5.2.5 Comparative test

A comparative test was carried out to investigate how the reused strategy influences

the predict result. We modified the proposed algorithm by removing the reused mu-
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Figure 5.18: Superposition of the native and predicted structures which are the cluster
centroids with maximum size in genotype space.

tation operator, and run it on these proteins again. The variations of RMSDCα value

of decoy structures obtained by two strategy are showed in box-plot Fig. 5.20. As

can be seen from Fig. 5.20, the incorporation of reused strategy allows the proposed

algorithm to achieve more excellent solutions (lowest RMSDCα) than the one without

reused strategy. For example, the proposed algorithm outperforms in 21 proteins

of 25. Moreover, comparing the best quarter of RMSDCα , It is clear that the pro-
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Figure 5.19: Dominated rate of three mutation operators, corresponding to Fig 5.1.

posed algorithm can reach and preserve more native-like structures in most case. The

distributions of RMSDCα also exhibits the diversity of structures in the archive A,
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illustrating reused strategy can maintain diverse solutions with high accuracy. This

is due to including niching method implicitly in selection phase, even though in geno-

type space. In short, the reused strategy can enhance the robustness end effectiveness

of proposed algorithm to solve PSP.

5.2.6 Comparing with other works

We also compared the proposed method with other works in the literature. Specially,

four evolutionary computation methods are compared. (1) I-PAES [25] is a modified

version of PAES [110] to perform PSP. It decomposes CHARMM27 into two objec-

tives and uses the MOEA to search for Pareto-optimal sets of conformations. (2)

MEAMT is a MOEA, working with more than one subpopulation in parallel though

tables. It is called multi-objective evolutionary algorithm with many tables [26]. Spe-

cially, it deals with four objectives through combination thereof, rather than Pareto

dominance. (3) GA-APL [71] is an angle probability knowledge-based methods based

on general genetic algorithms for PSP. Rosetta energy function [139] is used as the

single-objective function to minimize. (4) Venske et al. applied ADEMO/D (an adap-

tive differential evolution for multi-objective optimization based on decomposition) to

performing PSP [138]. CHARMM27 is decomposed into bond energy and non-bond

energy as objective function.

Because there are not a standard test protein set, a strict comparison is impossible

and empirical comparisons are executed. In addition, some methods lose the process of

decision making. They only reported the the predicted structure with lowest RMSD
Cα

in a set of decoy structures. A qualitative comparison is carried out in Fig. 5.21. Best

RMSDCα or RMSDCα after decision making of each method according to protein

length are drawn pot. The test proteins of each method with length smaller than

30 are excluded. The results after decision making are marked with DM. Linear

regression lines between protein length and RMSDCα for each method are also plotted

to view the relationship between RMSD and protein length. Three is no doubt that

a longer protein corresponds to more hard prediction. According to the tendency
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of linear regression, the proposed methods exhibit the ability to produce better or

competitive performance comparing with other methods.

Moreover, to make a quantitative comparison, a normalized root-mean-square

distance RMSD100 [140] is introduced as follows:

RMSD100 =
RMSD

1 + ln
√

N
100

, (5.9)

where N is the length of two compared structures. RMSD100 can be seen as the

degree of similarity of two structures when the length is normalized to 100. It can be

used as the metric to compare RMSD values for proteins with different length.

Performance results are reported in Table 5.3. The number of test proteins are

the reported proteins in each method (length ≥ 30). The length range of test proteins

and the structural classes of the test proteins are reported in column 3 and 4 respec-

tively. The evaluation times and average RMSD100 are reported in column 5 and 6.

From Table 5.3, we can see that the proposed algorithm can produce more excellent

solutions than I-PAES, MEAMT and GA-APL before decision making, even though

with smaller evaluation times. After decision making, our proposed method also can

provide competitive performance with ADEMO/D, considering ADEMO/D is lack of

comprehensive test.
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N
o

 r
e

u
si

n
g

R
e

u
si

n
g

P
ro
te
in
s

F
ig

u
re

5.
20

:
T

h
e

b
ox

p
lo

t
of

R
M

S
D
C
α

of
al

l
d
ec

oy
st

ru
ct

u
re

s
ob

ta
in

ed
b
y

tw
o

st
ra

te
gy

(r
eu

se
or

n
ot

re
u
se

se
ar

ch
ex

p
er

ie
n
ce

)
fo

r
al

l
ta

rg
et

p
ro

te
in

s.



78

30
40

50
60

70
80

90
10

0
11

0
051015

L
en

gt
h

RMSDCα(Å)
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Chapter 6

Conclusion and future work

Since its introduction, the PSP problem has generally been treated as a single-

objective optimization problem. Recently, modeling the PSP problem as a multi-

objective optimization problem has become popular since the set of Pareto optimal

solutions, taken as an ensemble, can provide a better answer to PSP than the optimal

solution from single-objective optimization which is usually a single structure.

First, a multi-objective optimization approach (MO3) with three objective func-

tions is proposed to achieve the best Pareto optimal sets never seen before. Con-

sidering the factor of solvent, we have for the first time incorporated SASA as the

third objective function to compensate bond and non-bond energies. We utilize a

multi-objective evolutionary algorithm to handle the problem. The performance of

the method is verified by folding sixty-six proteins with sequence length of 14 345.

The experimental results suggest that the method with three objectives is superior

to the one with two objectives in terms of the required number of iterations and ac-

curacy, and can generate better or competitive solutions compared with other prior

methods. This result demonstrates that taking the effect of solvent into consideration

is necessary and effective for handling the PSP problem. Such demonstration was not

seen before to our best knowledge.

Second, driven by the motivation of theory and application, great efforts have

been made to solving the PSP problem. However, it remains fascinating and chal-

lenging. Progress in FMs was slow, limited by the inaccuracies of energy function and

the huge conformation search space. In the work of AIMOES, an enhanced multi-
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objective evolutionary algorithm is proposed to make effort for these two aspects.

Recent work have showed that, modeling PSP as MOOP could provide more fruit-

ful solutions and better answer than as single-objective optimization problem. This

work followed the idea and treated PSP as a three-objective optimization problem.

We decomposed the CHARMM22 into bond and non-bond energy as the first and

second objective. Considering the solvent effect, SASA was incorporated as the third

objective. Moreover, a elitism based multi-objective evolutionary algorithm was de-

signed to execute conformation space searching. In order to improve the quality of

search, a evolutionary scheme was incorporated to reusing the search experience by

fetching the information stored in non-dominated solution archive. At last, a decision

maker based on hierarchical clustering was proposed in the genotype and phenotype

space. Twenty-five benchmark proteins were tested to verify the performance of the

proposed method. The experiment results showed the power of the proposed method

to solve PSP. We also compared it with four evolution computation algorithm for

solving PSP, and a relatively fair comparison was carried out. The result suggested

that the proposed method can obtain better or competitive results with them. It

should be noted that, considering the time-consuming evolution times, our method

seems more efficient.

In the future, we intend to apply these methods to more proteins to verify its

performance. Theoretical analysis of selection operators and mutation operators in

the algorithms should be performed because these operators contribute to the overall

improvement of the method. In addition, we plan to include more objectives to

improve the accuracy of the protein structure prediction because the energy landscape

produced by the existing protein potential energy functions does not fit well with the

real energy landscape. We should thus include other objective functions to amend

the energy function. we will continue to pay attention to the energy function and

confrontation search strategy. In these works, the objective functions are all physical.

It is reasonable to incorporate the statistical energy function items, because they are

more powerful for PSP confessedly. Moreover, other recent optimization method with

advanced performance should be explored to enhance the conformation space search.
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