
Novel Evolutionary and Neural Computation for
Classification

by

Xiaoxiao Qian

A dissertation

submitted to the Faculty of Engineering

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Engineering

University of Toyama

Gofuku 3190, Toyama-shi, Toyama 930-8555 Japan

2020

(Submitted March 7, 2020)

ii

Abstract

With the development of society, people have encountered more and more complex prob-

lems in different fields of technology, commerce and finance. These problems have con-

tributed to the rapid rise of computer applications. As one of the fastest growing science

and technology in the world, computer technology has gradually evolved from the original

mainframe to the current mega, miniaturization, intelligence and networking. The contin-

uous development of computer technology is the result of the joint efforts of researchers

from all over the world. The development of technology is ultimately to provide more

convenience for people’s life, study and work. The problems in practical applications have

become more and more complicated, and the traditional calculation methods have been

unable to meet the requirements, and at the same time face problems such as computa-

tional complexity and computational cost. In order to balance calculation accuracy and

cost, more and more heuristic computational intelligence algorithms have been proposed.

These algorithms are constructed by mimicking the evolutionary process of the organism,

the way of thinking, the language, or the memory process. It is hoped that the wisdom of

nature can be used to find a feasible solution in an acceptable time. The natural heuristic

algorithm is just an imitation, and does not pursue complete agreement with the imitated

person, or even guarantee reasonableness. Successful algorithms in such applications in-

clude ant colony algorithms, neural networks, and the like. In fact, computer intelligence

has many branches, the main purpose is to meet the needs of different application areas.

This paper introduces several computational intelligence methods and gives a brief

overview of their characteristics. At the same time, the differences and commonalities

of various computational intelligence algorithms are discussed. In addition, the applica-

tion of the computational intelligence method to the classification problem is given. The

iii

feasibility and practicability of the research are discussed. The results of the simulation

experiment are provided and compared with other popular algorithms.

Firstly, the research process, analysis and results of ant colony optimization algorithm

for high accuracy and low computational cost requirements are given. By constructing a

list of IF-THEN rules, the traditional ant colony optimization (ACO) has been successfully

applied on data classification with not only a promising accuracy but also a user compre-

hensibility. However, as the collected data to be classified usually contain large volumes

and redundant features, it is challenging to further improve the classification accuracy and

meanwhile reduce the computational time for ACO. This paper proposes a novel hybrid

mutual information based ant colony algorithm (mr2AM+) for classification. First, a max-

imum relevance minimum redundancy feature selection method is used to select the most

informative and discriminative attributes in a dataset. Then, we use the enhanced ACO clas-

sifier (i.e., AM+) to perform the classification. Experimental results show that the proposed

mr2AM+ outperforms other seven state-of-art related classification algorithms in terms of

accuracy and the size of model.

Secondly, the research process, analysis and results of the dendritic neuron model with

plastic mechanism are given. By employing a neuron plasticity mechanism, the original

dendritic neuron model (DNM) has been succeeded in the classification tasks with not

only an encouraging accuracy but also a simple learning rule. However, the data collected

in real-world contain a lot of redundancy, which causes the process of analyzing data by

DNM becomes complicated and time-consuming. This paper proposes a reliable hybrid

model which combines a maximum relevance minimum redundancy (Mr2) feature selec-

tion technique with DNM (namely, Mr2DNM) for classifying the practical classification

problems. The mutual information-based Mr2 is applied to evaluate and rank the most in-

formative and discriminative features for the given dataset. The obtained optimal feature

subset is used to train and test the DNM for classifying five different problems arisen from

medical, physical and social scenarios. Experimental results suggest that the proposed

Mr2DNM outperforms DNM and other six classification algorithms in terms of accuracy

and computational efficiency.

Both research results are optimized for practical application problems. First, the input

iv

data is analyzed and processed, and the most streamlined and important data is transmitted

to the algorithm or model, so that it can exert potential computing power. These studies

have led us to believe that computing intelligence has many unexplored potentials, waiting

for researchers to discover.

v

Contents

Abstract ii

1 Introduction 1

1.1 An Outline of Computational Intelligence 1

1.2 The Definition of Computational Intelligence 2

2 Computational Intelligence Algorithms 7

2.1 Artificial Neural Network . 9

2.1.1 Progress in artificial neural network research 9

2.1.2 Artificial neural network structure 10

2.1.3 The main learning algorithm of artificial neural network 14

2.2 Evolutionary Computation . 16

2.2.1 Evolutionary algorithms . 17

2.2.1.1 Genetic algorithm . 18

2.2.1.2 Evolutionary programming 22

2.2.1.3 Evolutionary strategy 25

2.2.1.4 Genetic programming 27

2.2.2 Swarm Intelligence . 29

2.2.2.1 Ant colony optimization algorithms 31

2.2.2.2 Particle swarm optimization algorithm 36

2.2.3 Artificial Immune Systems . 40

2.2.4 Fuzzy Systems . 42

vi

3 Novel Evolutionary Computation Proposal 44

3.1 Introduction . 44

3.2 The Proposed mr2AM+ Method . 45

3.3 Experimental Results . 48

3.4 Conclusions . 50

4 Novel Neural Computation Proposal 58

4.1 Introduction . 58

4.2 Proposed Model: Mr2DNM . 60

4.2.1 Mr2 . 60

4.2.2 DNM . 63

4.2.2.1 Synaptic layer . 65

4.2.2.2 Dendritic layer . 68

4.2.2.3 Membrane layer . 68

4.2.2.4 Soma layer . 68

4.2.2.5 Neuronal pruning function 69

4.3 Learning Algorithm . 70

4.4 Experiment and Analysis . 71

4.4.1 Experimental setup . 71

4.4.2 Performance evaluation . 72

4.4.3 Simplified morphology analysis 77

4.4.3.1 Neuron morphology . 77

4.4.3.2 Logic circuits morphology 78

4.5 Conclusion . 81

5 Conclusion 85

Bibliography 86

Acknowledgements 100

vii

List of Figures

1.1 The interaction diagram of ABC. 3

2.1 Computational intelligent algorithm. 8

2.2 Neuron model. 11

2.3 Some transform (excitation) functions in neurons. 12

2.4 Recursive (feedback) networks. 13

2.5 Feedforward (multilayer) network. 14

2.6 Basic operation of genetic algorithm. 20

2.7 The role of cross-operation in genetic algorithms. 21

2.8 Simple genetic algorithm block diagram. 23

2.9 Basic process of evolutionary programming. 25

2.10 Genetic programming algorithm flow chart. 28

2.11 Flow chart of ant colony optimization algorithm. 35

2.12 Flow chart of particle swarm optimization algorithm. 37

2.13 Flow chart of artificial immune algorithm based on Euclidean distance. . . . 42

3.1 Effects of the number of used attributes on classification accuracy and com-

putational time for the dataset BCL, respectively. 48

3.2 An example between the number of features and accuracy. 49

3.3 Effects of the number of used attributes on classification accuracy and com-

putational time for the dataset IO, respectively. 50

4.1 The wrapper approach to the proposed Mr2DNM. 61

4.2 The structure of the DNM. 64

4.3 Four connection types in the synaptic layer. 65

viii

4.4 Six function cases of the synaptic layer. 66

4.5 Accuracy, time and feature size for five datasets. 73

4.6 ROCs of Mr2DNM that used the optimal feature subsets for five datasets. . . 75

4.7 MSE of each feature size for five datasets. 76

4.8 MSE of the used optimal feature sizes for five datasets. 77

4.9 The dendritic morphology of BUPA dataset. 78

4.10 (a) Logic circuit of the simplified morphology of WBCD dataset. 79

ix

List of Tables

1.1 The difference between Artificial Intelligence and Computational Intelligence. 4

1.2 The Definition of ABC and its related fields. 6

2.1 The difference between evolutionary strategy and genetic algorithm. 26

2.2 Correspondence between biological immunity and immune algorithm con-

cepts. 41

3.1 Overview of AntMiner versions. 51

3.2 The fact used attribute and accuracy (average±standard error) in the experi-

ments. 52

3.3 The full name of the eight data sets and the corresponding abbreviations. . . 52

3.4 Average classification accuracy (in%) obtained by using tenfold cross-validation

and each validation is implemented by 10 independent runs for all compared

algorithms. 53

3.5 Average size of the model obtained by using tenfold cross-validation and

each validation is implemented by 10 independent runs for all compared

algorithms. 54

3.6 The results of binary and multi-class classification cases. 55

3.7 The average performances dealt with all 8 techniques. 56

3.8 Datasets used in the experiment. 56

3.9 Performance of the proposed mr2AM+ for tested eight datasets. 57

4.1 Datasets used in the experiment. 72

4.2 Parameter setting for five datasets. 72

4.3 Performance of the proposed Mr2DNM for five datasets. 83

x

4.4 Average classification accuracy (%) obtained by 30 runs for all compared

classifiers. 84

1

Chapter 1

Introduction

1.1 An Outline of Computational Intelligence

In a wide range of different technologies, businesses, and finances, complex issues have

spurred a need for computer applications that can exhibit ‘intelligent behavior”. These

applications are expected to provide decision making, control processes, and identify and

interpret patterns, or manipulate machines or robots in an unknown environment. Novel

methods, tools, and programming environments have been developed to accomplish these

tasks. The mechanisms and processes involved in these intelligent behaviors are already

in the field of artificial intelligence research. Like other computer sciences, computational

intelligence includes both theory and application.

As technology advances, the problems encountered in engineering practice become

more and more complex. Using traditional calculation methods to solve these problems

faces problems such as high computational complexity and long calculation time, espe-

cially for some non-deterministic polynomial hard (NP-hard) problems. Traditional algo-

rithms cannot be solved within the tolerable time range. For example, like the classic Travel

Saleman Problem (TSP) problem [1, 2], the branch and bound method can only solve up

to 20 nodes. For a given problem, the strategy commonly employed in computational in-

telligence is to apply approximation techniques and methods to find rough, incomplete, or

partially effective solutions. Therefore, in order to strike a balance between solution time

and solution accuracy, computer scientists have proposed many heuristic computational

intelligence algorithms, that is, simple sub-functions lead to complex, self-organizing be-

2

havior through interaction. These algorithms either mimic the evolutionary processes of

the biological world, or mimic the physiological structures and bodily functions of living

things, or imitate the behavior of animals, or mimic the characteristics of human thought,

language, and memory processes, or mimic the physical phenomena of nature. It is hoped

that the optimal solution of the problem can be realized by simulating the wisdom of na-

ture and human beings, and an acceptable solution can be solved in an acceptable time.

Naturally inspired methods are usually just imitations, not necessarily exacting, or even

biologically justified. These successful applications include neural networks [3] and evolu-

tionary algorithms, ant colony algorithms. In addition, the overall problem of uncertainty,

fuzzy and uncertain knowledge problem solving strategies, this part of the guiding think-

ing is very valuable for human imperfect knowledge. Therefore, it is desirable to have a

computer work with this knowledge without degrading accuracy and knowledge. Partially

successful methods capable of dealing with fuzzy and uncertain knowledge are fuzzy sys-

tems and Bayesian networks. These algorithms together form a computational intelligence

optimization algorithm.

1.2 The Definition of Computational Intelligence

The intersection, mutual penetration and mutual promotion of information science and life

science is a distinctive feature of the development of modern science and technology. Com-

putational intelligence involves areas such as neural networks [3], fuzzy logic [4], evolu-

tionary computation [5], and artificial life. Its research and development reflect the im-

portant development trend of multidisciplinary integration and integration of contemporary

science and technology. It may not be appropriate to classify a neural network as artificial

intelligence, and classifying it into computational intelligence is more telling the essence

of the problem. Some of the topics of evolutionary computation [5], artificial life, and

fuzzy logic systems [4] are also classified in computational intelligence. The definition of

computational intelligence was proposed by Bezdek in 1992 [6]. He believes that compu-

tational intelligence depends on the numerical data provided by the manufacturer and does

not depend on knowledge. On the other hand, artificial intelligence applies knowledge

3

tidbits. Although the boundaries between computational intelligence and artificial intelli-

gence are not very obvious, it is useful to discuss their differences and relationships. Marks

mentioned the difference between computational intelligence and artificial intelligence in

1993 [7], while Bezdek is concerned the relationship between pattern recognition (PR) and

biological neural networks (BNN) or artificial neural networks (ANN), or computational

neural networks (CNN), and the relationship between pattern recognition and other intel-

ligence [8, 9]. Neglecting the difference between ANN and CNN may lead to confusion,

misunderstanding, misrepresentation and misuse of the neural network model in pattern

recognition.

Bezdek gave certain symbols and brief descriptions or definitions of these related terms

(e.g. ABC) in order to describe computational intelligence and artificial intelligence:

• A-Artificial, which means artificial (non-biological), that is, artificial.

• B-Biological, representing physical + chemical + (??) = biological.

• C-Computational, representing math + computer.

C
o

m
p

le
x

ity

Input Complexity Hierarchy

Human

knowledge

(+)

Sensing input

Knowledge

(+)

Sensor data

Calculation

(+)

Sensor

BNN BPR BI

ANN APR AI

CNN CPR CI

B - Biological

A - Symbolic

C - Numerical

Figure 1.1: The interaction diagram of ABC.

Fig. 1.1 and Table 1.2 represent ABC and its relationship with neural networks (NN),

pattern recognition (PR) and intelligence (I).

4

Table 1.1: The difference between Artificial Intelligence and Computational Intelligence.

Classical Artificial Intelligence Computational Intelligence
Object Knowledge Data
Method Rigorous Probability

• Horizontal: NN->PR->I (Neural Network-> Pattern Recognition->Intelligence)

• Portrait: C->A->B (value->symbol->biological)

Computational intelligence is a low-level cognition of intellectual means, which the

difference between it and artificial intelligence is that the cognitive level falls from the

middle to the lower level. The middle system contains knowledge (tidbits) and the low

level system does not. Table 1.1 repsents the difference between Artificial Intelligence and

Computational Intelligence.

When a system involves only numerical (lower) data, it contains a pattern recognition

part, does not apply knowledge in the sense of artificial intelligence, and can present:

• Computational adaptability

• Computational fault tolerance

• Speed close to people

• Error rate is close to people

Then the system is a computing intelligence system.

When an intelligent computing system adds knowledge (tidbits) values in a non-numerical

manner, it becomes an artificial intelligence system.

Since the advent of computers, artificial intelligence has been one of the goals pursued

by computer scientists. As an important field of artificial intelligence, computational in-

telligence has good adaptability and strong global search ability because of its intelligence

(Including the adaptive and self-organizing of the algorithm, the algorithm does not de-

pend on the characteristics of the problem itself, and has universality.), parallelism (The

algorithm basically solves the problem in a group collaboration way, which is very suitable

5

for large-scale parallel processing.) and robustness (The algorithm has good fault tolerance

and is not sensitive to initial conditions. It can find the optimal solution under different

conditions.). It has good adaptability and strong global search capabilities and received ex-

tensive attention from many researchers. At present, many breakthroughs have been made

in algorithm theory and algorithm performance, and it has been widely used in various

fields, playing an important role in scientific research and production practice.

• Computational intelligence is motivated by the idea of bionics, which simulates nat-

ural intelligence based on the structure, evolution and cognition of the biological

nervous system.

• Computational intelligence is a natural intelligent simulation method based on mod-

els (calculation models, mathematical models) and characterized by distributed and

parallel computing.

• Although there is a coincidence between artificial intelligence and computational

intelligence, computational intelligence is a new subject area. Whether it is bio-

intelligence or machine intelligence, computational intelligence is its core part, while

artificial intelligence is the outer layer.

From the perspective of computing intelligent systems, if a system only processes low-

level numerical data, contains pattern recognition components, does not use knowledge in

the sense of artificial intelligence, and has four characteristics: computational adaptability,

computational tolerance, near-human calculation speed, and human error rate, then it is

computational intelligence. From the perspective of subject, computational intelligence is

a unified subject concept based on the relatively mature development of neural networks

(NN), Evolutionary Computation (EC) and Fuzzy System (FS) [10].

6

Ta
bl

e
1.

2:
T

he
D

efi
ni

tio
n

of
A

B
C

an
d

its
re

la
te

d
fie

ld
s.

B
N

N
H

um
an

In
te

lli
ge

nc
e

H
ar

dw
ar

e:
B

ra
in

H
um

an
se

ns
or

in
pu

tp
ro

ce
ss

in
g

A
N

N
M

id
dl

e
m

od
el

:C
N

N
+

kn
ow

le
dg

e
tid

bi
ts

M
id

dl
e-

le
ve

lt
re

at
m

en
ti

n
th

e
br

ai
n

C
N

N
L

ow
-l

ev
el

,b
io

-i
nc

en
tiv

e
m

od
el

B
ra

in
-b

as
ed

se
ns

or
da

ta
pr

oc
es

si
ng

B
PR

Se
ar

ch
fo

rh
um

an
se

ns
or

da
ta

st
ru

ct
ur

es
Id

en
tifi

ca
tio

n
of

st
ru

ct
ur

es
in

a
hu

m
an

pe
rc

ep
tio

n
en

vi
ro

nm
en

t
A

PR
M

id
dl

e
m

od
el

:C
PR

+
kn

ow
le

dg
e

tid
bi

ts
In

te
rm

ed
ia

te
va

lu
e

an
d

sy
nt

ax
pr

oc
es

si
ng

C
PR

Se
ar

ch
fo

rs
en

so
rd

at
a

st
ru

ct
ur

es
A

ll
C

N
N

+
fu

zz
y,

st
at

is
tic

al
an

d
de

te
rm

in
is

tic
m

od
el

s
B

I
H

um
an

In
te

lli
ge

nc
e

So
ft

w
ar

e:
In

te
lli

ge
nc

e
H

um
an

co
gn

iti
on

,m
em

or
y

an
d

fu
nc

tio
n

A
I

M
id

dl
e

m
od

el
:C

I+
kn

ow
le

dg
e

tid
bi

ts
M

id
dl

e-
le

ve
lc

og
ni

tio
n

C
I

L
ow

-l
ev

el
al

go
ri

th
m

fo
rc

om
pu

ta
tio

na
lr

ea
so

ni
ng

L
ow

-l
ev

el
co

gn
iti

on

7

Chapter 2

Computational Intelligence Algorithms

Computational Intelligence is based on the revelation of the laws of nature (biological

world), according to its laws, to design an algorithm to solve the problem. The phenomena

and laws of the disciplines of physics, chemistry, mathematics, biology, psychology, phys-

iology, neuroscience and computer science may become the basis and source of ideas for

computational intelligence algorithms.

Computational intelligence algorithms mainly include three parts: neural computing,

fuzzy computing and evolutionary computing. As shown in Fig. 2.1, typical computational

intelligence algorithms include artificial neural network algorithms in neural computing,

fuzzy logic [4] in fuzzy computing, genetic algorithm in evolutionary computation, ant

colony optimization algorithm [11–14] , particle swarm optimization algorithm [15, 16],

immune algorithm, distribution estimation algorithm, Memetic algorithm, and single-point

search technology such as simulated annealing algorithm, Tabu search algorithm, etc.

All of the above computational intelligence algorithms have a common feature of simu-

lating human intelligence by mimicking one (some) aspect of human intelligence, realizing

the computer programming of biological intelligence and natural laws, and designing the

optimization algorithm. However, these different research fields of computational intelli-

gence have their own characteristics. Although they have the commonality of imitating

human and other biological intelligence, there are some differences in specific methods.

For example: artificial neural network imitates the physiological structure of human brain

and the process of information processing, simulating human wisdom; fuzzy logic (fuzzy

system) [4] imitates the concept of ambiguity in human language and thinking, simulating

8

Computational Intelligence

Neural

Network

Evolutionary

Computation

Fuzzy

System

Darwin Principle

G
e
n

e
tic

A
lg

o
rith

m

E
v
o

lu
tio

n
ary

S
tra

te
g
y

E
v
o

lu
tio

n
ary

P
ro

g
ra

m
m

in
g

G
e
n

e
tic

P
ro

g
ra

m
m

in
g

Collective Behavior

of Society

P
a
rtic

le

S
w

arm

A
n

t C
o

lo
n
y

O
p
tim

a
z
tio

n
Others

A
rtific

ial

S
y
ste

m

Figure 2.1: Computational intelligent algorithm.

human wisdom; evolutionary computation mimics the process of biological evolution and

the process of swarm intelligence, simulating the wisdom of nature [17–19].

However, at this stage, the development of computational intelligence is also facing

severe challenges. One of the important reasons is that computing intelligence still lacks

a solid mathematical foundation. It is not possible to use mathematical tools to solve their

computational problems as freely as physics, chemistry, astronomy, etc. Although neural

networks have a relatively complete theoretical foundation, important computational intel-

ligence techniques such as evolutionary computation have no perfect mathematical founda-

tion. The analysis and proof of the stability and convergence of computational intelligent

algorithms are still in the research stage. It is an important method to study the computa-

tional intelligence algorithm by numerical experiments and specific application methods to

verify the effectiveness and efficiency of computational intelligent algorithms.

9

2.1 Artificial Neural Network

2.1.1 Progress in artificial neural network research

The artificial neural network system is a complex network system formed by a large num-

ber of simple processing units, that is, neurons are widely connected. In artificial neural

networks, computation is done by the flow of data in the network. During the flow of data,

each neuron receives an input data stream from its connected neurons, processes it, and

transmits the result as an output data stream to other neurons connected to it. The topology

of the network and the connection weight Wi between the neurons are determined by the

corresponding learning algorithm. The algorithm continually adjusts the structure of the

network and the connection weights between neurons until the neural network produces

the required output. Through this learning process, artificial neural networks can continu-

ously acquire knowledge from the environment and store this knowledge in the network in

the form of network structure and connection weights.

Artificial neural networks have good self-learning, self-adaptation and self-organization

capabilities, as well as human-scale parallel, distributed information storage and process-

ing. This makes it ideal for dealing with incomplete, inaccurate information processing

problems that require multiple factors to be considered simultaneously. At present, artifi-

cial neural networks have been highly valued by the academic community and have been

widely used in many fields. However, it should be noted that in the design process of the

neural network, the setting of various parameters and the determination of the network

structure are highly empirical, and there is no complete theory to follow. Its scale is far

from the scale of the billions of neurons that the human brain has. Moreover, the artifi-

cial neural network is based on the brain model, and its research is limited by the results

of brain science research. It is difficult to truly simulate the human brain without a clear

understanding of the thinking and cognitive processes of the human brain.

In 1960, Widlow and Hoff took the lead in using neural networks for automatic control

research. From the late 1960s to the mid-1980s, neural network control was at the same low

level as the entire neural network study. Since the late 1980s, with the recovery and devel-

opment of artificial neural network research, the research on neural network control is also

10

very active. The research progress in this area is mainly in neural network adaptive control

and fuzzy neural network control and its application in robot control. Characteristics of

artificial neural networks:

• Parallel distributed processing: The neural network has a high degree of parallel

structure and parallel implementation capability, so it can have better fault tolerance

and faster overall processing capability.

• Nonlinear mapping: Neural networks have inherent nonlinear characteristics due to

their ability to approximate arbitrary nonlinear mapping (transformation).

• Learning through training: The neural network is trained through past data records

of the system under study. A properly trained neural network has the ability to sum-

marize all data.

• Adaptation and integration: The neural network is able to adapt to online operations

and can perform both quantitative and qualitative operations. The strong adaptation

and information fusion capabilities of the neural network enable the network pro-

cess to simultaneously input a large number of different control signals, solve the

problem of complementarity and redundancy between input information, and realize

information integration and fusion processing.

• Hardware implementation: The neural network can implement parallel processing

not only by software but also by software. In recent years, some VLSI implementa-

tion hardware has been introduced and is commercially available.

2.1.2 Artificial neural network structure

The structure of the neural network is determined by the basic processing unit and its

interconnection method. The neuron unit shown in Fig. 2.2 consists of multiple inputs

xi, i = 1, 2, . . . , n and an output y. The intermediate state is represented by the weight sum

11

-1

wj1

wj2

wjn

θ

x1

x2

xn

∑
yj

.

.

.

f(_)

Figure 2.2: Neuron model.

of the input signal, and the output is:

y j(t) = f (
n∑

i=1

w jixi − θ j), (2.1)

where θ j is the bias of the neuron unit (threshold), w ji is the connection weight coefficient

(for the excited state, w ji takes a positive value), n is the number of input signals, y j is

for neuron output, t is time, f () is an output transformation function, sometimes called an

excitation function, often using 0 and 1 binary or sigmoid functions, as shown in Fig. 2.3,

these three functions are continuous and non-linear. A binary function can be represented

by the following formula:

f (x) =


1, x ≥ x0

0, x < x0

, (2.2)

12

f(x)

1

0
x0 x

(a)

f(x)

1

0 Ɵ x

(b)

f(x)

1

0 Ɵ x

(c)

-1

Figure 2.3: Some transform (excitation) functions in neurons.

as shown in Fig. 2.3. A conventional sigmoid function is shown in Fig. 2.3(b), which can

be expressed by:

f (x) =
1

1 + e−θx , 0 < f (x) < 1. (2.3)

Since the hyperbolic tangent function has a wider range of output values relative to the

sigmoid function, the former output value can be positive or negative, so a hyperbolic

tangent function is usually used instead of the sigmoid function. Fig. 2.3(c) is a hyperbolic

tangent function. The commonly used hyperbolic tangent function formula is given below.

f (x) =
1 − e−θx

1 + e−θx , −1 < f (x) < 1. (2.4)

The artificial neural network is composed of a neuron model; this information process-

ing network composed of many neurons has a parallel distribution structure. Each neuron

has a single output and can be connected to other neurons; there are many (multiple) output

connection methods, one for each connection method. Strictly speaking, an artificial neural

network is a directed graph with the following characteristics:

• For each node i,there is a state variable xi;

• From node j to node i, there is a connection right system number w(ji);

• For each node i, there is a threshold θi;

13

• For each node i, define a transformation function fi(xi,w ji, θi), i , j; for the most

general case, this function takes the form fi(
∑

j w jix j − θi).

The structure of artificial neural networks is basically divided into two categories: re-

cursive (feedback) networks and feedforward networks.

(1) Recursive network

In a recursive network, multiple neurons are interconnected to organize an intercon-

nected neural network, as shown in Fig. 2.4. The output of some neurons is fed back to

the same or anterior neurons. Therefore, the signal can flow from the forward and reverse

directions. The Hopfield network, the Elmman network and the Jordan network are rep-

resentative examples of recursive networks. A recursive network is also called a feedback

network. In Fig. 2.1, Vi represents the state of the node, xi is the input (initial) value of the

x1

x2

xn

V1

V2

Vn

x1 '

x2'

xn'

input output

Figure 2.4: Recursive (feedback) networks.

node, and x‘
i is the output value after convergence, i = 1, 2, . . . , n.

14

(2) Feedforward network The feedforward network has the characteristics of discon-

nected neurons in the same layer, and its signal is unidirectional from the input layer to the

output layer. As shown in Fig. 2.5, it is a hierarchical hierarchical structure. We use solid

lines to indicate the flow of signals and dashed lines for back propagation.

x1

x2

xn

w11

w1m

input layer output layer

y1

yn

hidden layer

back propagation

Figure 2.5: Feedforward (multilayer) network.

2.1.3 The main learning algorithm of artificial neural network

The neural network mainly uses a guided (with teacher) learning algorithm and a non-

directed (no teacher) learning algorithm. In addition, there is a third learning algorithm,

namely the reinforcement learning algorithm; it can be regarded as a special case of teacher

learning.

(1) Teacher Learning (supervised algorithm)

A teacher learning algorithm can adjust the strength or weight of connections between

neurons based on the difference between the desired and actual network output (corre-

sponding to a given input). Therefore, a teacher needs to have a teacher or tutor to provide

15

a desired or target output signal. Examples of learned algorithms include Delta rules, gen-

eralized Delta rules or backpropagation algorithms, and LVQ algorithms.

(2) No-teacher Learning (unsupervised learning)

The no-learning algorithm does not need to know the expected output. During the

training process, as long as the input mode is provided to the neural network, the neural

network can automatically adapt to the connection rights to group the input patterns into

groups according to similar features. Examples of non-teacher learning algorithms include

the Kohonen algorithm and the Carpenter-Grossberg Adaptive Resonance Theory (ART).

(3) Reinforcement Learning

As mentioned earlier, reinforcement (enhancement) learning is a special case of teacher

learning. It does not require the teacher to give the target output. The reinforcement learn-

ing algorithm uses a “commenter” to evaluate the goodness (quality factor) of the neural

network output corresponding to a given input. An example of a reinforcement learning

algorithm is the genetic algorithm (GA).

The representation method of knowledge based on neural network system is completely

different from the method used in traditional artificial intelligence system (such as produc-

tion, framework, semantic network, etc.), the method used in traditional artificial intelli-

gence systems is the explicit representation of knowledge, while the knowledge represen-

tation in neural networks is an implicit representation. Here, knowledge is not represented

as each rule independently as in a production system, but rather a number of knowledge of

a problem is represented in the same network.

Neural network based reasoning is achieved through network computing. The initial

evidence provided by the user is used as an input to the network, and the output is finally

obtained through network calculation.

In general, network inference has forward network inference, and the steps are as fol-

lows:

• Enter known data into each node of the network input layer.

• The output function is used to calculate the output of each layer in the network. In

the calculation, the output of the previous layer is used as the input of the relevant

16

node in the next layer, and is calculated layer by layer until the output value of the

output layer is calculated.

• The output of the output layer is determined by a threshold function to obtain an

output result.

2.2 Evolutionary Computation

In the evolution of billions of years, organisms in nature have developed an intrinsic mecha-

nism to optimize their structures, which can continually learn from the environment to adapt

to changing environments. The survival process of biological groups generally follows

Darwin’s natural selection and evolutionary rules for the survival of the fittest; organisms

adapt to the natural environment through individual choice, crossover, and variation [20].

The biological chromosome is represented by a mathematical or computer method as a

series of numbers, still called chromosomes, sometimes called individuals; the ability to

adapt is measured by the value of a corresponding chromosome; the choice or elimination

of chromosomes is based on the maximum or minimum problem. For most organisms, this

process is done through natural selection and sexual reproduction. Natural selection deter-

mines which individuals in the population can survive and reproduce: Sexual reproduction

ensures the mixing and recombination of offspring genes [21–23]. Inspired by this evolu-

tionary process of nature, evolutionary computation starts with the evolution of biological

processes in the natural world, and explores the laws of the development and evolution of

certain intelligent behaviors from the level of genes to solve the problem of how intelligent

systems learn from the environment [5].

The theoretical basis of evolutionary computation is Darwin’s theory of evolution,

which is a new computational method formed by the combination of computer science and

biological genetics [20]. Evolutionary computation uses simple coding techniques to rep-

resent complex structures and guides learning and determining search directions through

simple genetic manipulation of a set of coded representations and natural selection strate-

gies for survival of the fittest. Academic research is carried out through genetic manip-

17

ulations such as replication, hybridization and mutation of the population. Evolutionary

algorithms can search multiple points in different regions of the solution space. It can find

global optimal solutions with great probability and is not easy to fall into local optimal con-

ditions. Especially in the fields of system identification, fault diagnosis, machine learning

and neural network design, evolutionary computing has shown its charm. However, as a

new, interdisciplinary research topic, the theoretical research of evolutionary computation

needs to be further improved, including basic theory, coding mechanism, selection strategy

of control parameters, convergence analysis and so on.

2.2.1 Evolutionary algorithms

Since the 1960s, how to imitate organisms to build powerful algorithms and apply them to

complex optimization problems has become a research hotspot. Evolutionary algorithms

are born in this context. Evolutionary algorithms include genetic algorithms (GA), evolu-

tion strategies, evolutionary programming, and genetic programming.

Evolutionary algorithms are not a specific algorithm, but an “algorithm cluster”. The

inspiration of evolutionary algorithms draws on the evolutionary operations of organisms

in nature. It generally includes basic operations such as gene coding, population initial-

ization, cross mutation operators, and operational retention mechanisms. Compared with

traditional optimization algorithms such as calculus-based methods and exhaustive meth-

ods, evolutionary computation is a mature global optimization method with high robustness

and wide applicability. With self-organizing, self-adaptive, self-learning features, it can ef-

fectively deal with complex problems that traditional optimization algorithms are difficult

to solve (such as NP-hard optimization problems) without being limited by the nature of

the problem. The basic structure of the evolutionary algorithm is as follows:

{Randomly generate an initial population, calculate the fitness value of each individ-

ual in the population;

while Does not meet the termination criteria do

{Apply genetic manipulation (replication, hybridization, mutation, etc.) to generate

18

next-generation populations: Calculate the fitness values of each individual in the

population}}.

The evolutionary algorithm knows nothing about the problem itself, but as long as the

presentation scheme, adaptation function, genetic operator, control parameters, termination

criteria, etc. are given. The algorithm can effectively search the unknown space in a way

that does not depend on the problem itself, and finally find the solution to the problem.

In addition to the above advantages, evolutionary algorithms are often used in the opti-

mization of multi-objective problems. We generally call such evolutionary algorithms evo-

lutionary multi-objective optimization algorithms (MOEAs). At present, related algorithms

for evolutionary computation have been widely used in parameter optimization, industrial

scheduling, resource allocation, and complex network analysis.

2.2.1.1 Genetic algorithm

Genetic Algorithm (GA) is one of the most basic evolutionary algorithms. It is an optimiza-

tion model for simulating Darwin’s biological evolution theory [20]. It was first proposed

by Professor J. Holland in 1975 [24]. In the genetic algorithm, each individual of the pop-

ulation is a feasible solution in the solution space. By simulating the evolution process of

the organism, the optimal solution is searched in the solution space.

The structure of many application problems is complex, but can be turned into a simple

bit string form coding representation. The process of transforming the problem structure

into a bit string form code representation is called encoding; conversely, the process of

transforming a bit string formatted representation into the original problem structure is

called decoding or decoding. The bit string form code is called a chromosome, sometimes

called an individual. The algorithmic process of GA is briefly described below. First, take

a group of points in the solution space as the first generation of genetics. Each point (gene)

is represented by a string of binary digits, the degree of which is measured by the fitness

function.

The most common coding method for genetic algorithms is binary coding. One of the

biggest drawbacks of binary encoding is the large length, which may be more advantageous

19

for many problems with other primary encoding methods. Other coding methods mainly

include: floating point number coding method, Gray code, symbol coding method, multi-

parameter coding method, etc.

In order to reflect the adaptability of chromosomes, a function that can measure each

chromosome in the problem is introduced, called the fitness function. The goal of TSP is

to minimize the total length of the path [25, 26]. Naturally, the total length of the path can

be used as a fitness function for the TSP problem. The fitness function should effectively

reflect the gap between each chromosome and the optimal solution chromosome of the

problem. The value of the fitness function has a great relationship with the meaning of

solving the problem object.

There are three main genetic operations of simple genetic algorithms: selection, crossover,

mutation. Improved genetic algorithms have greatly expanded genetic manipulation to

achieve higher efficiency. (1) The selection operation, also called the reproduction opera-

tion, determines whether it is eliminated or inherited in the next generation according to the

degree of the individual’s fitness function. (2) The simple way of the crossover operation

is to exchange the two partial individuals P1 and P2 as parent individuals and exchange

the partial code values of the two. (3) The simple way of mutation operation is to change

the number at a certain position of the digital string. The simple mutation operation repre-

sented by the binary code is to interchange 0 and 1: the 0 variation is 1, and the 1 variation

is 0. The basic operation of the genetic algorithm can be described by Fig. 2.6.

After the individual coding mode is determined, the specific description of the operation

of Fig. 2.6 is as follows:

Step1 Population initialization: design appropriate initialization operations according to

the characteristics of the problem (initialization should be as simple as possible, time

complexity is not too high) to initialize the N individuals in the population;

Step2 Individual evaluation: calculating the fitness value of the individual in the population

according to the optimized objective function;

Step3 Iterative setting: set the maximum number of iterations of the population gmax, and

make the current iteration number g = 1;

20

=?

2. Fitness Test

1. Initial Population

3.Select Best Parents 4.Children

BREED!

MUTATE!

Chromosome

Ideal Case

One

Generation

Figure 2.6: Basic operation of genetic algorithm.

Step4 Individual selection: Design a suitable selection operator to select the population

P(g)individuals, and the selected individuals will enter the mating pool to form the

parent population FP(g) for cross transformation to generate new individuals. The

selection strategy is based on individual fitness values. If the problem to be optimized

is to minimize the problem, the probability that individuals with smaller fitness values

are selected should be correspondingly larger. Common selection strategies include

roulette selection, tournament selection, and more.

Step5 Crossover operator: Determine whether the parent individual needs to perform crossover

operation according to the crossover probability pm (pre-specified, generally 0.9).

The crossover operator is designed according to the characteristics of the problem

being optimized. It is the core of the whole genetic algorithm. The quality of the

design will directly determine the performance of the whole algorithm.

Step6 Mutation operator: According to the mutation probability pc (pre-specified, gener-

ally 0.1) to determine whether the parent individual needs to perform the mutation

21

operation. The main role of the mutation operator is to maintain the diversity of

the population and prevent the population from falling into local optimum, so it is

generally designed as a random transformation.

After the cross mutation operation, the parent population FP(g) generates a new child

population P(g + 1), and the population iteration number g = g + 1, and the next iteration

operation (jump to Step 4) until the number of iterations reaches the maximum number of

iterations.

In order to better illustrate the role of cross-operation, we use Fig. 2.7 as an example to

understand the role of cross-operation:

Figure 2.7: The role of cross-operation in genetic algorithms.

Through the crossover operation, the original two individual combinations generate two

new individual combinations, which is equivalent to searching in the solution space, and

each individual is a feasible solution to the solution space.

Genetic algorithm is a space-based search algorithm that simulates the natural evolution

process to find the solution to the problem through natural selection, genetics, mutation

and other operations and Darwin’s theory of survival of the fittest [10, 20]. The genetic

22

algorithm has the following characteristics: (1) The genetic algorithm is the encoding of

the parameter set rather than the parameter itself; (2) The genetic algorithm starts with the

code group of the problem solution and does not start with a single solution; (3) Genetic

algorithms use the information of the fitness of the objective function instead of using

derivatives or other ancillary information to guide the search; (4) Genetic algorithms use

operators such as selection, intersection, mutation, etc. instead of using deterministic rules

for random operations. A block diagram of a simple genetic algorithm is shown in Fig.

2.8. The simplest stopping conditions of the algorithm are as follows: (1) The completion

of the predetermined evolutionary algebra is stopped; (2) The optimal individuals in the

population do not improve over successive generations or the average fitness ceases when

there are substantially no improvements in successive generations.

The main steps of the general genetic algorithm are as follows: (1) An initial population

consisting of a characteristic string of a determined length is randomly generated. (2)

Perform the following steps (a) and (b) on the string population iteration until the stop

criteria are met: (a) Calculating the fitness value of each individual string in the population;

(b) Calculating the fitness value of each individual string in the population; (3) The best

individual string that appears in the offspring is specified as the result of the execution of

the genetic algorithm, and this result can represent a solution to the problem.

2.2.1.2 Evolutionary programming

Evolutionary programming is a finite state machine evolution model proposed by L. J. Fo-

gel in artificial intelligence research in the 1960s, in which the state of the machine is

compiled based on the law of distribution [27]. D. B. Fogel expanded EP thinking in the

1990s to handle real-space optimization problems and introduced normal-distribution mu-

tation operators in mutation operations, so that EP became an optimized search tool, and

it has been applied in many practical problems [28]. EP simulates the evolution of biolog-

ical population levels, so in the process of evolution, it mainly emphasizes the behavioral

relationship of biological populations, that is, emphasizes the evolution of behavior at the

population level to establish a behavioral chain between parents and children. This means

that good offspring are eligible to survive, regardless of their parents, suitable for selecting

23

Initial population

Calculate fitness values

Select operation

Optimal fitness

popoulation

Cross operation

Start

Termination

condition

Mutation operation

End

Figure 2.8: Simple genetic algorithm block diagram.

offspring. Algorithm 1 is the pseudo code of EP, the entire process can be explained as

follows:

(1) Individual phenotype X : X = (x1, x2, . . . , xn, σ1, σ2, . . . , σn), where x1, . . . , xn is

the component of individual performance, σ1, . . . , σn is a variation parameter of the

individual’s performance component;

(2) Group size N: is the number of individuals included in the algorithm;

(3) Randomly generate initial populations: in the individual phenotype X, the individual

24

Algorithm 1: The pseudo code of EP.
Initialization (individual phenotype X, population size N, number of iterations G,
etc)

Randomly generate initial population and calculate fitness values (containing N
individuals)

while (not done) do
for (i = 1; i < N; i + +) do

Mutating Xi to get X‘
i

Feasibility check on Xi

Calculate the fitness value of Xi

Select N individuals from 2N individuals (use q−competition algorithm)

Output

xi is initialized to a random value within the range of the component, σi is generated

according to N(0, 1) and calculates the fitness value of the individual;

(4) Variation of Xi to obtain X‘
i : can be mutated according to the following formula;

(5) Conduct a feasibility check on X‘
i and calculate the fitness value: judging each com-

ponent in X‘
i within the range of values. (If it does not meet the value range, the

processing method can be seen in the next section. If it is met, calculate the fitness

value of the individual.);

(6) Select N individuals from 2N individuals: the method uses a random q−competition

method.

The process of evolutionary programming can be understood as searching for individ-

ual computer programs with high fitness from the space formed by all possible computer

programs. In evolutionary programming, there may be hundreds or thousands of computer

programs involved in genetic evolution. Evolutionary programming was originally started

by a randomly generated group of computer programs. These computer programs consist

of functions that are appropriate for the problem space domain. Such functions can be stan-

dard arithmetic operations, standard programming operations, logic functions, or functions

specified by the realm. Each computer program individual in the population is evaluated by

fitness, which is related to a particular problem domain. The basic process of evolutionary

programming is shown in Fig. 2.9.

25

Initialize the

observation sequence

Variation and creation

of offspring

Evaluate existing FSM

Choose a parent

NO

YES

Predict and add

symbols with the

best state machine

Initialization

Whether to

predict

Figure 2.9: Basic process of evolutionary programming.

2.2.1.3 Evolutionary strategy

Evolutionary strategy and genetic algorithm Evolutionary strategy (ES) is another op-

timization model that uses evolutionary theory. In addition to research and application

areas, evolutionary strategies and genetic algorithms have the following differences: (1)

Evolutionary strategies and genetic algorithms represent individuals in different ways. Evo-

lutionary strategies run on floating-point vectors, while genetic algorithms typically run on

binary vectors. (2) The selection process of evolutionary strategy and genetic algorithm is

different. (3) Unlike the replication parameters of genetic strategies and genetic algorithms,

the replication parameters of genetic algorithms (the possibility of crossover and mutation)

remain constant during evolution, while evolutionary strategies change them from time to

time. With the development of technology, the differences between evolutionary strategies

and genetic algorithms are becoming less and less obvious.

26

Table 2.1: The difference between evolutionary strategy and genetic algorithm.

Evolutionary Strategy Genetic Algorithm

Reproduction
Breed first, then choose good
children

Choose good parents, then breed

DNA
Usually DNA is a real number,
such as 1.221

Usually use binary coded DNA

Variation
Variation of DNA by normal
distribution

Perform mutation DNA by
randomly changing 1 to 0

(1+1)-ES (1+1)-ES is a form of ES evolution strategy, and it is also a convenient and

effective method in many forms. If you use a sentence to summarize (1+1)-ES: a war

between a father and a child, which is, Have a father → According to Dad, a baby is

mutated→ Choosing the best one among Dad and baby becomes the next generation dad.

In kill bad, we choose more suitable, whether it is dad or child, as long as it is suitable

to leave, not suitable to kill. But there is also a point to note that in this step we have to

make some changes to the intensity of the mutation. The method of change follows the 15

successful rule. The meaning of this principle is: When we are not converging, we increase

the intensity of the mutation. If it is almost converging, we will reduce the intensity of

variation. If one-fifth of the variation is better than the original parent, it will converge

quickly.

Natural evolution strategy The natural evolution strategy (NES) is to calculate a gradient-

induced method using fitness. The NES approach is actually very close to the policy gra-

dient approach in reinforcement learning. Simply summarize their differences: In the be-

havioral strategy, the policy gradient is disturbing the action. The different action bring the

different reward. The gradient is calculated by the reward size corresponding to the action,

and the gradient is passed backwards. But ES is disturbing the parameters in the neural

network. The different parameter bring the different reward. The original parameters are

updated proportionally by the reward size corresponding to the parameters.

27

Algorithm 2: Canonical search gradient algorithm.
input: f , θinit

repeat
for k = 1 . . . λ do

draw sample zk ∼ π(· | θ)
evaluate the fitness f (zk)
calculate log-derivatives 5θ log π(zk | θ)

5θJ ← 1
λ

∑λ
k=1 5θ log π(zk | θ) · f (zk)

θ ← θ + η · 5θJ
until stopping criterion is met

2.2.1.4 Genetic programming

Genetic programming itself is an optimization algorithm based on Darwin’s theory of evo-

lution, adopting the strategy of survival of the fittest and survival of the fittest [20]. Dif-

ferent from the optimal solution of genetic algorithm, genetic programming is generally

used to solve the optimal solution structure, and the structure of the solution generally uses

graph or tree structure. Unlike each individual in the genetic algorithm, which is a piece of

chromosome coding, its individual is a computer program. The genetic plan was formally

presented in a doctoral thesis published by Professor John R. Koza in 1990 [29]. The ear-

liest application of genetic programming was symbolic regression. For example, in order

to fit z = f (x, y), it generates an initial function g(x, y), and then uses the correlation coeffi-

cient of g(x, y) and z as the fitness to select cross mutation, finally, get the best function g′

and do another linear regression. The goal of the planning is to get the best computer pro-

gram, the degree of freedom is the highest in machine learning algorithms, and can handle

almost any problem. Of course, being able to deal with the problem does not mean that it

can be solved, and solving the problem still requires precision to meet certain requirements.

The mathematical expression of genetic programming: Definition {(xi, yi); xi ∈ X, yi ∈

Y, i ∈ I} is a given set of input and output, where X and Y are subsets in a finite dimensional

space, I is the indicator set; C(X) is the total of all continuous functions on X, F is a

subset on C(X), and ρ is the distance on the product space Π(i ∈ I). Then the genetic

programming is to solve f ‘ ∈ F, so that any f ∈ F satisfies the formula ρ({ f ‘(xi)}, { f ‘(yi)}) ≤

ρ({ f (xi)}, { f (yi)}). The algorithm flow chart is shown in Fig. 2.10. The specific algorithm

28

steps are as follows:

Randomly initialized

population

Calculate the fitness of

all individuals

i = 0

NO

YES

Select genetic

manipulation based

on random factors

YES
Output result

End

Initialization

NO

i <= M

Gen = Gen+1

Exchange

operation

Whether the

termination condition

is met

M indicates the number of

individuals in the population;

Gen said that the current is

the Gen-th generation;

i is the count variable.

Mutation

operation

i = i + 1

Figure 2.10: Genetic programming algorithm flow chart.

(1) Initialization: Randomly generate multiple individuals to initialize the population.

(2) Evaluation: Determine the appropriate fitness function and evaluate all individuals.

(3) Selection: Selecting the next generation of individuals in the population by fitness

function and random factor.

(4) Crossover: Randomly select the subtrees of two individuals for exchange.

29

(5) Mutation: Randomly select one node of the individual, and replace the subtree rooted

at the node with a randomly generated mutation tree.

(6) Terminal Criterion: Repeat steps 2 ∼ 5 until the termination condition is met. Termi-

nation condition, the occurrence is the individual whose fitness meets the demand or

the number of cycles.

Application in the Renascence architecture The Renascence architecture uses genetic

programming algorithms to dynamically determine the formula of the ADF. But with the

GP algorithm described above, there is a big difference: (1) In the Renascence architec-

ture, each function has its own input and output type, and the output type of the child node

must match the input type of the parent node. (2) The implementation of the computer

program generated by Renascence depends on the underlying function library, not a com-

plete computer program. Because of these differences, both the generation and mutation

algorithms need to first find all possible solutions using the backtracking algorithm, and

then randomly select them, which is much more complicated than the traditional genetic

programming algorithm.

The tree implementation is the easiest to implement, and the tree representation is cur-

rently used in the Renascence architecture. Because the crossover operator is cumbersome

to implement and easy to cause expansion, the crossover operator is discarded, and the

algorithm of Evolution Strategy is used for optimization. The structural optimization algo-

rithms used in the current architecture actually have a lot of room for optimization.

2.2.2 Swarm Intelligence

Swarm Intelligence (SI) refers to the decentralized, decentralized self-organizing behavior

that is expressed at the collective level [17]. For example, the complex social system con-

sisting of ant colonies and bee colonies, the migration of birds, fish populations to adapt

to air or seawater, and the collective intelligence of microorganisms and plants in adapt-

ing to the living environment. Cluster intelligence refers to cluster intelligence, which is

cluster intelligence, if there are many unintelligent individuals in a certain group, and they

30

exhibit intelligent behavior through simple cooperation with each other [18, 19]. The term

SI was first proposed by Gerardo and Jing Wang in 1989, when it was proposed for the

self-organization of cell robots on computer screens [30]. The most well-known cell robot

system has Langton’s ants [31] and Conway’s life game [32]. Depending on the simple

motion rules of each cell, the movement of the cell collection can exhibit extraordinary

intelligent behavior. Swarm Intelligence is not a simple collection of multiple bodies, but

a higher-level performance that transcends individual behavior. The evolution from indi-

vidual behavior to swarm behavior is often extremely complex and unpredictable. Mil-

lonas [33] proposed in 1993 that swarm intelligence should follow five basic principles,

namely:

(1) Proximity Principle:the swarm is able to perform simple space and time calculations;

(2) Quality Principle: the swarm is able to respond to quality factors in the environment;

(3) Principle of Diversity Response: the scope of action of the swarm should not be too

narrow;

(4) Stability Principle: the swarm should not change its behavior every time the environ-

ment changes;

(5) Adaptability Principle: at a time when the cost is not too high, the group can change

its behavior at the appropriate time.

These principles suggest that intelligent agents that implement swarm intelligence must

be able to demonstrate intelligent characteristics such as autonomy, responsiveness, learn-

ing, and adaptability in the environment. However, this does not mean that every individual

in the group is quite complicated, and the fact is exactly the opposite. Just as a single ant

is not intelligent, each individual that makes up a group has only simple intelligence, and

they exhibit complex intelligent behavior through cooperation with each other. It can be

said that the core of group intelligence is that a group of simple individuals can achieve a

certain function and accomplish a certain task through simple cooperation with each other.

Among them, “simple individuals” means that a single individual has only simple abilities

31

or intelligence. “Simple cooperation” refers to the simple direct communication between

an individual and an individual adjacent to it or indirectly communicating with other in-

dividuals through changing the environment, so that they can interact and coordinate with

each other.

Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are the two

most widely known “cluster intelligence” algorithms. At a basic level, these algorithms use

multiple agents. Each agent performs very basic actions, which together are more complex

and more immediate actions that can be used to solve problems. Ant colony optimization

is different from particle swarm optimization. The purpose of both is to perform immedi-

ate actions, but in two different ways. Similar to real ant colonies, ACO uses information

hormones to guide individual agents to the shortest path. Initially, random information

hormones are initialized in the problem space. A single agent begins to traverse the search

space and sprinkles information hormones while walking. The information hormone de-

cays at a certain rate in each time step. A single agent determines the path to traverse the

search space based on the strength of the information hormone in front. The greater the

intensity of the information hormone in one direction, the more likely the agent is to move

in this direction. The global optimal solution is the path with the strongest information

hormone.

PSO is more concerned with the overall direction. Multiple agents are initialized and

proceed in a random direction. In each time step, each agent needs to make a decision on

whether to change direction. The decision is based on the direction of the global optimal

solution, the direction of the local optimal solution, and the current direction. The new

direction is usually the optimal ”trade-off” result for the above three values.

2.2.2.1 Ant colony optimization algorithms

It is not an accident that the ant colony can build a body pontoon across the gap. An ant

colony may have built more than 50 ant bridges at the same time, each ranging from 1

ant to 50 ants. Ants can not only build bridges, but also effectively assess the balance

between cost and efficiency of bridges. For example, on a V-shaped road, the ant colony

will automatically adjust to the appropriate position to build the bridge, neither near the

32

V vertex part nor the largest part of the V opening. The surface of the algorithm used

by biologists to study ant colony bridges. Each ant does not know the overall shape of

the bridge. They are only following two basic principles: (1) If there are other ants on my

body, then I will stay still; (2) If the frequency of ants passing through me is below a certain

threshold, I join the march and not serve as a bridge.

Dozens of ants can form a raft together to cross the water. When ant colonies migrate,

the entire raft may contain tens of thousands or more ants. Every ant does not know the

overall shape of the raft, nor the direction in which the raft will drift. But the ants are very

cleverly connected to each other to form a three-dimensional structure that is breathable

and impervious, even if the ants at the bottom of the water are completely submerged. This

structure also allows the entire raft to contain more than 75% of the air volume, so it can

float smoothly on the water surface.

Ant colonies often form very complex routes for food and food handling on the ground.

It seems that the whole group is always able to find the best food and the shortest route, but

each ant does not know how this intelligence is formed. Each ant follows only two basic

rules: (1) Ants looking for food leave a stronger bio-pheromone on a higher quality route;

(2) Ants tend to join a stronger pheromone route and feedback with other ants during con-

stant round-trips, allowing shorter routes to be reinforced. However, the use of mothballs

on the route that ants pass through can cause ants to get lost because the strong smell of

camphor severely interferes with the identification of ant bio pheromones. Scientists have

inspired the ant colony dependent information to obtain the optimal path, and created the

ant colony optimization algorithm (ACO). The ant colony optimization algorithm was first

proposed by M.Dorigo. in 1991 and was inspired by the social behavior of ant colonies in

nature [13, 34]. It simulates the process of actual ant colony searching for food. In nature,

ant colonies are always able to find a shortest path from the nest to the food source. This is

because ants can leave a substance called ‘pheromone” on the path they travel during exer-

cise. The substance can be perceived by later ants and will gradually evaporate over time.

Each ant directs its direction of movement based on the strength of the pheromone on the

path and tends to move in the direction of the strength of the substance. Therefore, if there

are more ants walking on a certain path, the more pheromones accumulated, the greater the

33

intensity, and the greater the probability that the path will be selected by other ants in the

next time. Since the shorter the path is accessed by more ants in a certain period of time,

as the above process proceeds, the entire ant colony will eventually find the shortest path

from the ant colony to the food [14].

The ant colony optimization algorithm uses this feature of the biological ant colony to

solve the problem. Since the process of ant feeding is very similar to the solution of Travel-

ing Salesman Problem (TSP), the earliest application of ant colony optimization algorithm

is the solution of TSP problem. At present, the ant colony optimization algorithm has been

applied in the combination optimization problem solving, the scheduling and distribution

of various resources such as vehicles, shops, personnel, as well as power, communication,

chemical, transportation, robotics, metallurgy and other fields. Here is the basic idea of the

ACO algorithm:

• Set up multiple ants according to specific problems and search in parallel.

• After each ant completes a trip, the pheromone is released on the way, and the amount

of pheromone is proportional to the quality of the solution.

• The choice of the ant path is based on the pheromone intensity (the initial pheromone

is set equal), taking into account the distance between the two points, using a random

local search strategy. This makes the distance of the shorter side, the amount of

pheromone on it is larger, and the probability that the later ant chooses the side is

also larger.

• Each ant can only take the legal route (passing once per city and only once), and set

a taboo table to control this.

• All ants search once and iterate once. Once every iteration, they do a pheromone

update for all the edges. The original ants die and the new ants perform a new round

of searching.

• Updating pheromones includes the evaporation of the original pheromone and the

increase in pheromones on the path that passes.

34

• When the predetermined number of iteration steps is reached, or stagnation occurs

(all ants choose the same path, the solution no longer changes), the algorithm ends,

and the current optimal solution is taken as the optimal solution of the problem.

The transition probability Pk
i j(t) and the heuristic factor η in ACO are defined as follows:

Pk
i j(t) =


[τi j(t)]α · [ηi j(t)]β∑

s∈Jk(i)
[τis(t)]α · [ηis(t)]β

, if j ∈ Jk(i)

0, otherwise

, (2.5)

where α indicates the relative importance of pheromone; βisrelativeimportanceo f heuristic f actors;

Jk(i) represent the city collection of ants k next allowed to choose.

ηi j =
1

di j
, (2.6)

when all ants complete a trip, the pheromone on each path is:

τi j(t + n) = (1 − ρ) · τi j(t) + ∆τi j, (2.7)

∆τi j =

m∑
k=1

∆τk
i j, (2.8)

∆τk
i j =


Q
Lk
, If ant k passes through this side of the tour (i, j)

0, otherwise
, (2.9)

where Q is a positive constant, Lk is the length of the path taken by ant k in this tour. At

the beginning, let τi j(0) = C. Fig. 2.11 provides an ant colony optimization algorithm flow

chart An explanation of the flow chart steps for the ant colony optimization algorithm is

given below:

(1) Initialization parameters: The amount of pheromone on each side is equal at the

beginning. τi j(0) = C,∆τi j(0) = 0.

(2) Place each ant on each vertex, and the taboo table is the corresponding vertex.

35

Whether evolution is over?

Initialize population

and parameters

Calculate the transition

probability and traverse

all points

Update pheromone

The population all died,

re-randomly generating

populations

Output optimal path
Yes

Start

Figure 2.11: Flow chart of ant colony optimization algorithm.

(3) Take one ant, calculate the transition probability Pk
i j(t), select the next vertex accord-

ing to the way of roulette, and update the taboo table. Then calculate the probability,

select the vertex, and then update the taboo table until you traverse all the vertices

once.

(4) Calculate the amount of pheromone ∆τk
i j left by each ant on each side, and the ant is

no longer executed.

(5) Repeat step(3) step(4) until m ants are gone around.

(6) Calculate the pheromone increment ∆τi j and the pheromone amount τi j(t+n) on each

side.

36

(7) Record the path of this iteration, update the current optimal path, and clear the taboo

table.

(8) Determine if the predetermined number of iteration steps is reached, or if there is a

stagnation. If yes, the algorithm ends and the current optimal path is output; other-

wise, go to step(2) and proceed to the next iteration.

Although the individual behavior of ants is extremely simple, the ant colony composed

of individuals constitutes a highly structured social organization. The members of the ant

society have division of labor and mutual communication and information transmission.

During the foraging process, the ant colony always finds the shortest path from the nest

to the food source without any prompts; when obstacles appear on the passing route, the

new optimal path can be quickly found. Ants release pheromones on their path as they

seek food. Ants have basically no vision, but they can detect the trajectory of the same

pheromone in a small range, thereby determining where to go and tend to move in the direc-

tion of high pheromone intensity. The more ants that pass on a path, the more pheromones

remain (evaporating a portion over time), and the higher the probability that the ant chooses

the path.

2.2.2.2 Particle swarm optimization algorithm

Particle Swarm Optimization (PSO) was first proposed by Eberhart and Kennedy in 1995

[15]. Its basic concept stems from the study of the foraging behavior of birds. Imagine

a scene where a group of birds are searching for food randomly, there is only one piece

of food in this area, and all birds don’t know where the food is, but they know how far

the current location is from the food. The simplest and most effective strategy is to search

for individuals who are closest to the food in the flock. PSO algorithm is inspired by this

biological population behavior and used to solve optimization problems [35].

A particle is used to simulate the above-mentioned individual birds. Each particle can

be regarded as a search individual in the N-dimensional search space. The current po-

sition of the particle is a candidate solution to the optimization problem, and the flight

process of the particle is the individual’s search process. The flight speed of particles can

37

be dynamically adjusted according to the optimal position of the particle history and the

optimal position of the population history. Particles have only two properties: speed and

position, speed represents the speed of movement, and position represents the direction of

movement [36]. The optimal solution for each particle to search separately is called the in-

dividual extremum, and the optimal individual extremum in the particle swarm is taken as

the current global optimal solution. Constant iteration, update speed and location. Finally,

an optimal solution that satisfies the termination condition is obtained. The standard PSO

algorithm flow chart is shown in Fig. 2.12:

The maximum number of

iterations or the global optimal position is

met to meet the minimum limit?

Randomly initialize

particle swarm

Calculate the fitness

value of each particle

Updated Pi, Pg according to

fitness values, update example

position speed and position

Yes

Start

End

No

Figure 2.12: Flow chart of particle swarm optimization algorithm.

First, we set the maximum number of iterations, the number of arguments of the objec-

tive function, the maximum speed of the particle, and the location information for the entire

search space. We randomly initialize the velocity and position in the velocity interval and

38

the search space, set the particle swarm size to M, and each particle randomly initializes

a flying speed. Define the fitness function, the individual extremum is the optimal solu-

tion found by each particle, and find a global value from these optimal solutions, called

the global optimal solution. Update with the historical global optimal. The termination

conditions are: (1) the set number of iterations is reached; (2) the difference between the

algebras satisfies the minimum bound. The formula for updating the speed and position is

as follows:

Vid = ωVid + C1random(0, 1)(Pid − Xid) + C2random(0, 1)(Pgd − Xid), (2.10)

Xid = Xid + Vid, (2.11)

whereω is called the inertia factor and its value is non-negative. When it is large, the overall

optimization ability is strong, and the local optimization ability is strong; when it is small,

the global optimization ability and the local optimization ability are weak. By adjusting

the size of ω, the global optimization performance and local optimization performance can

be adjusted. C1 and C2 are individual learning factors and social learning factors for each

particle, respectively, which are called acceleration constants. Generally, C1 = C2 ∈ [0, 4],

usually takes a value of 2. random(0, 1) represents the random number in the interval

[0, 1], Pid represents the dth dimension of the individual extremum of the i-th variable, Pgd

represents the dth dimension of the global optimal solution.

Like other cluster intelligent algorithms, there is always a contradiction between the

diversity of the population and the convergence speed of the algorithm in the optimization

process of the PSO algorithm. Improvements to the standard PSO algorithm, whether

it is the selection of parameters, the adoption of niche technology or the integration of

other technologies with PSO. The purpose is to maintain the diversity of the population

while maintaining the local search ability of the algorithm, and to prevent the premature

convergence of the algorithm while fast convergence.

PSO each particle in a particle swarm represents a possible solution to a problem.

Through the simple behavior of the individual particles, the information interaction within

the group realizes the intelligence of the problem solving. Due to its simple operation and

39

fast convergence, PSO has been widely used in many fields such as function optimization,

image processing, and geodetic survey. With the expansion of the application scope, the

PSO algorithm has problems such as premature convergence, dimensionality disaster, and

easy to fall into local extremes. The main development directions are as follows.

• Adjust the parameters of the PSO to balance the global detection and local mining

capabilities of the algorithm. For example, Shi and Eberhart [35] introduce inertia

weights for the velocity term of the PSO algorithm, and linearly (or non-linearly)

dynamically adjust the inertia weights according to the iterative process and particle

flight conditions to balance the globality and convergence speed of the search. In

2009, based on the stability analysis of the positional expectation and variance of the

standard particle swarm optimization algorithm, Zhang [37] studied the influence of

the acceleration factor on the position expectation and variance, and obtained a set of

better acceleration factor values.

• Designing different types of topologies and changing particle learning patterns to in-

crease population diversity, Kennedy [16] studied the effects of different topologies

on SPSO performance. In view of the shortcomings of SPSO, such as easy prema-

ture convergence and low precision, a more explicit particle swarm algorithm was

proposed in 2003: the bare bones particle swarm algorithm (BBPSO) [38].

• Combine PSO with other optimization algorithms (or strategies) to form a hybrid

PSO algorithm. For example, Zeng Yi [39] embedded the pattern search algorithm

into the PSO algorithm, which realized that the local search ability of the pattern

search algorithm is complementary to the global search ability of the PSO algorithm.

• Adopt niche technology. Niche is a bionic technique that simulates ecological bal-

ance and is suitable for optimization of multimodal functions and multi-objective

functions. For example, in the PSO algorithm, by constructing a niche topology,

the population is divided into several sub-populations, and a relatively independent

search space is dynamically formed to realize synchronous search for multiple ex-

treme regions. Therefore, it can avoid the premature convergence phenomenon when

40

the algorithm solves the multi-peak function optimization problem. Parsopoulos pro-

posed a multi-group PSO algorithm based on the idea of ‘divide and conquer” [40].

The core idea is to decompose the high-dimensional objective function into multi-

ple low-dimensional functions, and then each low-dimensional sub-function is op-

timized by a sub-particle swarm. This algorithm provides a better idea for solving

high-dimensional problems.

Different development directions represent different application fields, some need to

continuously perform global detection, some need to improve the precision of optimization,

some need the balance between global search and local search, and some need to solve

high-dimensional problems. There is no such thing as good or bad in these directions,

only the difference between the most appropriate method for solving different problems in

different fields.

2.2.3 Artificial Immune Systems

The biological immune system is an adaptive, self-organizing, distributed system that is

a complex defense system that can withstand foreign pathogens [10]. The artificial im-

mune system is an emerging algorithm inspired by the biological immune system to solve

problems in the computer field [41–43]. The immune system is a defense system against

mammals against foreign viruses. Animals may encounter various injuries during their life,

and the immune system plays an important role in their normal activities. A major feature

of the immune system is the effective response to a large number of virus intrusions with

a limited variety of resources. Inspired by this feature, a new algorithm for multi-peak

search and global optimization of multi-peak functions has been designed [44–46]. This

algorithm is called the Immune Algorithm (IA). The immune algorithm is based on the

humoral immune process of the organism. The mechanism of biological humor immunity:

the immune system can recognize antigens and generate different plasma cells according

to the characteristics of different antigens to produce antibodies [47, 48]. If the affinity of

the produced antibody with the antigen is high, it will remain, otherwise it will be screened

off. B cells differentiate into plasma cells and memory cells, and the memory cells pre-

41

serve antibody information with high affinity [49]. Plasma cells that produce high affinity

antibodies are promoted, and vice versa. The next generation of antibodies is produced by

cross mutation. The immune algorithm has the following features: cloning and mutation

of the antibody helps to generate new antibodies; the convergence speed is fast, that is, the

time required to produce the optimal solution satisfying the requirement is short [50–52].

Table 2.2: Correspondence between biological immunity and immune algorithm concepts.

Biological disposable system Immune algorithm
Antigen Optimization

Antibody A feasible solution to the optimization problem
Affinity Quality of feasible solution

Cell activation Immune selection
Cell Differentiation Individual clone

Affinity mature Variation
Clonal inhibition Excellent individual choice

Dynamic steady state maintenance Population refresh

The objective function and various constraints are input to the immune algorithm as

antigens of the immune algorithm, and the affinity function is selected. The antibody is

produced in a random manner in the solution space. The affinity between the antigen and

the antibody was calculated and ordered separately. An antibody having high affinity for

an antigen is added to a memory unit, and an immunological operation is performed. Anti-

bodies entering the next generation are produced by crossover and mutation and population

refresh. The generation and selection of memory cells is terminated when the specified

threshold is reached. When applying the immune algorithm to solve the actual problem,

the affinity between the antigen and the antibody is often corresponding to the objective

function of the optimization problem, the optimization solution, and the matching degree

between the solution and the objective function [53]. A flow chart of an artificial immune

algorithm based on Euclidean distance is given in Fig. 2.13.

42

Problem identification

Meet the termination

conditions?

No

Generating an initial

population of antibodies and

encoding

Calculate the fitness of each

chromosome and calculate

the antibody concentration

by Euclidean distance

Output result

Antibody selection is based

on fitness and concentration.

(suppression, promotion)

Antibody evolution

(crossover, mutation)

manipulation

Generating new antibodies

Yes

Figure 2.13: Flow chart of artificial immune algorithm based on Euclidean distance.

2.2.4 Fuzzy Systems

In order to represent and deal with many inaccuracies and uncertainties in the real world,

Zadeh proposed fuzzy set theory in 1965 [4]. In the fuzzy set, the boundary of the set is

not clear, and the qualification of the set member is not affirmative or negative. It uses the

membership function to describe the intermediate transition of the phenomenon difference,

43

thus breaking through the absolute relationship in the classical set that belongs to or does

not belong. In a fuzzy set, each individual is assigned a value to indicate the extent to which

it belongs to the set. This value reflects the degree to which the individual approximates

the concept represented by the fuzzy set: the greater the membership, the greater the de-

gree of belonging to the set, and vice versa [54, 55]. The fuzzy system is based on fuzzy

set theory and fuzzy logic reasoning. It attempts to simulate the human brain’s ability to

represent and solve inexact knowledge from a higher level. In the fuzzy system, knowledge

is stored in the form of rules. It uses a set of fuzzy IF THEN rules to describe the charac-

teristics of the object, and solves the uncertainty problem through fuzzy logic reasoning.

The fuzzy system is good at describing the knowledge in the subject area and has strong

reasoning ability. In the past 10 years, fuzzy systems have been widely used in expert sys-

tems, intelligent control, fault diagnosis and other fields, and have achieved some exciting

results. However, it needs further research on the automatic extraction of fuzzy rules and

the automatic generation of membership functions [10].

44

Chapter 3

Novel Evolutionary Computation
Proposal

3.1 Introduction

Classification tasks are almost ubiquitous from human decision making to real-life prob-

lem solving. Classification means to allocate an unknown class target to a predefined class

based on collected features (or attributes) of the target. For some professional fields with

specificity (e.g., medical treatment or credit risk evaluation), it is crucial for a classifica-

tion algorithm to possess both accuracy and understandability. Although neural networks

(NNs) [56–60] and support vector machines (SVMs) [61] have achieved high classifica-

tion accuracy, they are rather incomprehensible and opaque to humans since the resultant

classifiers are described by complex mathematical functions rather than simple rules [62].

To address the pellucidity problem in NNs and SVMs, Parpinelli [63] for the first time

proposed an ant colony optimization [64–66] based data miner (Ant-Miner), possessing

both deducibility and understandability. By discovering a list of IF-THEN rules in the form

of “IF < term1 > AND < term2 > AND ... < termn > THEN < class >”, the classification

results obtained by Ant-Miner can be represented via natural languages and therefore have

satisfying comprehensibility for human decision making. Ant-Miner was further developed

in [62, 67–69]. Martens [62] modified Ant-Miner by using a better performing and well

defined Max-Min ant system, together with an automatic parameter controlling technique.

Their proposed classifier called AM+ showed superior accuracy than its previous Ant-

45

Miner versions. By combining Ant-Miner with a decision tree induction algorithm, an

Ant-Tree-Miner (ATM) [67] was proposed where decision trees (instead of IF-THEN rules)

are generated to further enhance the practicability of the classification results. Otero [68]

proposed the cAMpb by introducing a new sequential covering strategy in ACO [11–14] to

alleviate the rule interaction problem during the rules construction process. Most recently,

two new versions (AMmbc and AM2mbc) [69] were proposed by adopting multiple rule sets

to implement the rule discovery task in ACO. Their experimental results also exhibited a

very promising performance.

Although several improvements have been achieved to further develop Ant-Miner, these

works were devoted to modifying the inherent mechanisms in Ant-Miner and few works

focus the interaction between the classification model and data. As in a data classification

task, the data are originally collected for reasons (e.g. data archives are numbered for

management) rather than mining the data itself, and thus redundant or irrelevant features

usually exist in a dataset. Those redundant and irrelevant features might cause significant

estimation errors due to finite sample size effects [70], over-fitting problem [71, 72], heavy

computational burden [73, 74], etc [75–78]. Therefore, it is essential and challenging to

consider a feature selection process to be incorporated into the classification model.

Based on this motivation, we propose a novel mutual information based ant colony

classifier, called mr2AM+, in this paper. First, we use a maximum relevance minimum

redundancy feature selection method to select the most informative and discriminative at-

tributes in datasets. Then, based on the reduced number of attributes, AM+ is implemented

to perform the classification. The performance of the proposed mr2AM+ is investigated

on eight widely used datasets. Experimental results suggest that mr2AM+ outperforms

other seven state-of-art related classification algorithms in terms of accuracy and the size

of model.

3.2 The Proposed mr2AM+Method

The proposed mr2AM+ is a hybrid two-step method based on the mutual information and

ant colony classifier. By utilizing the mutual information (i.e. the statistical characteristics)

46

of databases, the strongly (or weakly) relevant features are always (or possible) included in

the learning process of a classifier, while irrelevant features are removed from the learning.

By doing so, the reduced features can speed up the learning process, alleviate the over-

fitting of training data, and improve the generalization capacity of the classification model

[79]. To realize this, the maximal relevance minimal redundancy (mr2) mutual information

criterion [80] is used in this study. The mr2 criterion can be expressed as:

max Φ(D,R), Φ = D − R, (3.1)

where D is used to calculate the maximal relevance of a feature subset S and it is defined

as the average value of all mutual information values between single features xi ∈ S and

the target class c, shown as:

D =
1
|S |

∑
xi∈S

I(xi; c). (3.2)

It is widely accepted that removing one of the two highly dependent features will not

change the class-discriminative power [79]. Thus, a redundancy measure R is added into

Eq. (3.1) to find a feature subset S that have the largest dependency on the target class c

and simultaneously have the minimal redundancy in this selected subset. R is defined as:

R =
1
|S |2

∑
xi,x j∈S

I(xi, x j). (3.3)

In Eqs. (3.2) and (3.3), I(x, y) is the mutual information. The probabilistic density functions

for continuous and discrete cases are defined as follow, respectively.

I(x; y) =

∫ ∫
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy, (3.4)

I(x; y) =
∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
. (3.5)

Then a fast incremental search algorithm [80] whose computational complexity is O(|S |·

M) is utilized to rank the importance of all M features in the dataset by optimizing the

47

mr2 criterion Φ. Thereafter, the features are ranked as V1(i1),V2(i2), ...,VM(iM), where the

first attribute V1 in the dataset is ranked i1-th importance, and e.g, i1 = M means that

this feature is the most informative and discriminative attribute, while i1 = 1 suggests

that this feature is the most redundant attribute and should be removed from the learning

of the classifier firstly. Based on the ranked features, AM+ is implemented for the best

compromise solution that maximizes the classification accuracy and minimizes the number

of features simultaneously.

The high-level pseudo-code of proposed mr2AM+ method is illustrated in Algorithm

1 [62, 69].

begin
Input: training samples;
Apply the incremental search algorithm to obtain the importance list of all
features;

for i = 1, 2...,M do
Remove the i-th most redundant feature V(i) from the attribute set;
Rule set = φ;
while |Samples| > maximum uncovered do

Initialize pheromone(), heuristic information, ruleglobal best;
t = 0;
while t < maximum iterations do

for n = 1, 2, ...,ant size do
rulen = Create Rule(Samples);
Prune(rulen);
Evaluate(rulen);
ruleiteration best = rulen;

Update Pheromone(ruleiteration best);
Evaluate(ruleiteration best);
ruleglobal best = ruleiteration best;
t = t + 1;

Samples = Samples - Covered(ruleglobal best, samples);
Rule set= Rule set + ruleglobal best;

Output: optimal feature subset, discovered list of IF-THEN rules (ruleglobal best),
and classification accuracy;

To verify the performance of the proposed mr2AM+, eight widely used benchmark

datasets are tested. They are from UCI machine learning repository. The full name of the

48

9 8 7 6 5 4 3 2 1
0.6

0.65

0.7

0.75

0.8
BCL

Number of Used Attributes

A
cc

u
ra

cy

0

5

10

15

20

T
im

e
 (

S
)

All
-V4 -V3

-V1
-V9 -V2

-V7
-V8

-V5

Figure 3.1: Effects of the number of used attributes on classification accuracy and compu-
tational time for the dataset BCL, respectively.

eight data sets and the corresponding abbreviations are shown in Table 3.3. Table 3.8 lists

the characteristics of these datasets.

The experimental results of the proposed mr2AM+ are summarized in Table 3.9, where

the optimal number (#) of the feature sets, the corresponding used attributes, the average

accuracy based on tenfold cross-validation of 10 independent runs, the average number

of IF-THEN rules, the average number of terms in the rules, and the computational times

for each classification are listed. From this table, it is clear that the optimal classification

accuracy is achieved by a reduced set of features.

3.3 Experimental Results

To give some further evidences of the effects of mr2 on the AM+ classifier, Figs. 3.1 and

3.3 illustrate the influence of the number of used attributes on classification accuracy and

computational time for the dataset BCL and IO, respectively. Generally, along with the re-

duction of features, the computational time also becomes smaller. The redundant features

49

Figure 3.2: An example between the number of features and accuracy.

are sequentially removed from the feature subset, making the classification accuracy varies.

However, compared with that all features are used, a reduced feature clearly attributes to

a higher accuracy and meanwhile a lower computational burden. On the other hand, ex-

cessively small feature vector significantly worsens the classification accuracy. As a result,

the best compromise solution that maximizes the classification accuracy and minimizes the

number of features simultaneously is output as the result of mr2AM+.

Furthermore, the performance of mr2AM+ is compared with other seven state-of-art

related classification algorithms, including cAMpb [68], ATM [67], C4.5 [81], JRip [82],

AMmbc [69], AM2mbc [69], and AM+ [62]. Tables 3.4 and 3.5 show the comparative results

of the classification accuracy and the size of the constructed classification model, respec-

tively. It is observed that there is no single algorithm that can outperform the others on all

tested datasets. However, the average ranks (A.Rank) suggest that the proposed mr2AM+

averagely outperforms the others in terms of classification accuracy and the size of model.

50

35 30 25 20 15 10 5 0
0.2

0.4

0.6

0.8

1
IO

Number of Used Attributes

A
cc

u
ra

cy

0

100

200

300

400

T
im

e
 (
S
)

All

-V15

-V22

-V12

-V17

-V20

-V21

-V28

-V19

-V14

-V18

-V24

-V25

-V8

-V30

-V23

-V6

-V33

-V10

-V29

-V32

-V5

-V26

-V9

-V16

-V7

-V11

-V31

-V1

-V34

-V13

-V3

-V27
-V2

Figure 3.3: Effects of the number of used attributes on classification accuracy and compu-
tational time for the dataset IO, respectively.

3.4 Conclusions

The contributions of this study come from the following aspects: (1) an efficient mutual in-

formation based ant colony classifier (mr2AM+) was proposed; (2) we empirically demon-

strated that a feature reduction processing should be incorporated into an ACO classifier;

(3) the use of feature selection technique to be combined with ACO-based classifiers, to the

best of our knowledge, is a research area still unexplored. It thus enables this research to

give more potential insights into the related community; and (4) this work also encourages

people to combine mr2 with other versions of ACO classifiers, e.g. ATM, to achieve higher

classification accuracies.

51

Ta
bl

e
3.

1:
O

ve
rv

ie
w

of
A

nt
M

in
er

ve
rs

io
ns

.

A
nt

M
in

er
A

nt
M

in
er

2
A

nt
M

in
er

3
A

nt
M

in
er
+

η
ij

lo
g 2

(k
)−

In
fo

(T
ij

)
∑ n i=

1
x i

∑ p i j=
1(l

og
2(

k)
−

In
fo

(T
ij

))

|T
ij

&
C

LA
S

S
=

m
a

j.c
la

ss
(T

ij
)|

|T
ij
|

|T
ij

&
C

LA
S

S
=

m
a

j.c
la

ss
(T

ij
)|

|T
ij
|

|T
ij

&
C

LA
S

S
=

cl
as

sa
nt
|

|T
ij
|

τ i
j(t

=
0)

1 ∑ n i=
1

p i

1 ∑ n i=
1

p i

1 ∑ n i=
1

p i
τ m

ax

τ
up

da
te

ru
le

τ i
j(

t)
+
τ i

j(
t)
·
Q

∑ ∀ij
∈

ru
le
τ i

j

τ i
j(

t)
+
τ i

j(
t)
·
Q

∑ ∀ij
∈

ru
le
τ i

j

(1
−
ρ

‘)
·
τ i

j(
t)

+
(1
−

1
1

+
Q

)·
τ i

j(
t)

ρ
·
τ (

v i
,j

v i
+

1,
k)

(t
)+

Q
+ be

st
10

P
ij

(t
)

τ i
j(

t)
·
η

ij
∑ n k=

1
x k

∑ p k l=
1(τ

kl
(t

)·
η

kl
)

τ i
j(

t)
·
η

ij
∑ n k=

1
x k

∑ p k l=
1(τ

kl
(t

)·
η

kl
)

τ i
j(

t)
·
η

ij
∑ n k=

1
x k

∑ p k l=
1(τ

kl
(t

)·
η

kl
)

if
q 1
≤

0.
4,

w
ith

q 1
,2

ra
nd

om
∈

[0
,1

]
lo

op if
q 2
≤

∑ j∈
J i

P
ij

th
en

ch
oo

se
te

rm
ij

en
d

lo
op

el
se

ch
oo

se
te

rm
w

ith
m

ax
P

ij

[τ
(v

i−
1,

k,
v i
,j

)(
t)

]α
·
[η

v i
,j

(t
)]
β

∑ p i l=
1[τ

(v
i−

1,
k,

v i
,l

)(
t)

]α
·
[η

v i
,l

(t
)]
β

Pr
un

in
g

Y
es

(b
as

ed
on

Q
)

Y
es

(b
as

ed
on

Q
)

Y
es

(b
as

ed
on

Q
)

Y
es

(b
as

ed
on

co
n

fi
de

nc
e)

52

Table 3.2: The fact used attribute and accuracy (average±standard error) in the experiments.

Data set Used attributes Dimensionality reduction percentage Accuracy

BCL 3 0.6667 74.30±0.47

BCW 21 0.3000 94.99±0.20

CMC 8 0.1111 48.74±0.84

AUS 11 0.2143 85.87±0.31

GL 1 0.9000 97.80±0.17

IRIS 2 0.5000 95.07±0.25

IO 31 0.0882 91.71±0.34

TAE 3 0.4000 37.28±0.73

Table 3.3: The full name of the eight data sets and the corresponding abbreviations.
Full name of dataset Abbreviation

Breast Cancer Data-ljubljana BCL
Wisconsin Diagnostic Breast Cancer BCW

Contraceptive Method Choice CMC
Australian Credit Approval AUS

Glass GL
Iris Pants Database IRIS

Ionosphere IO
Teaching Assistant Evaluation TAE

53

Ta
bl

e
3.

4:
A

ve
ra

ge
cl

as
si

fic
at

io
n

ac
cu

ra
cy

(i
n%

)
ob

ta
in

ed
by

us
in

g
te

nf
ol

d
cr

os
s-

va
lid

at
io

n
an

d
ea

ch
va

lid
at

io
n

is
im

pl
em

en
te

d
by

10
in

de
pe

nd
en

tr
un

s
fo

ra
ll

co
m

pa
re

d
al

go
ri

th
m

s.
D

at
a

se
t

m
r2 A

M
+

cA
M

pb
[6

8]
A

T
M

[6
7]

C
4.

5
[8

1]
JR

ip
[8

2]
A

M
m

bc
[6

9]
A

M
2 m

bc
[6

9]
A

M
+

[6
2]

B
C

-L
A

cc
ur

ac
y

74
.3

0±
0.

47
72

.3
2±

0.
31

73
.5

2±
0.

18
72

.9
3±

2.
31

69
.2

6±
2.

04
74

.0
2±

0.
26

73
.6

4±
0.

44
72

.6
7±

0.
48

R
an

k
1

7
4

5
8

2
3

6
B

C
-W

A
cc

ur
ac

y
94

.9
9±

0.
20

94
.2

9±
0.

16
94

.0
0±

0.
31

94
.1

5±
0.

75
93

.6
6±

1.
42

94
.7

3±
0.

13
94

.6
0±

0.
11

94
.1

1±
0.

17
R

an
k

1
4

7
5

8
2

3
6

C
M

C
A

cc
ur

ac
y

48
.7

4±
0.

84
51

.7
3±

1.
02

51
.0

5±
0.

73
46

.6
2±

1.
56

52
.4

1±
1.

02
47

.0
7±

1.
63

46
.6

6±
1.

40
47

.9
8±

0.
98

R
an

k
4

2
3

8
1

6
7

5
A

U
S

A
cc

ur
ac

y
85

.8
7±

0.
31

85
.6

8±
0.

15
85

.9
0±

0.
10

85
.8

0±
1.

08
85

.8
0±

1.
10

86
.3

7±
0.

83
86

.0
1±

0.
55

85
.4

3±
0.

19
R

an
k

4
7

3
5.

5
5.

5
1

2
8

G
L

A
cc

ur
ac

y
97

.8
0±

0.
17

95
.3

8±
1.

57
97

.1
6±

0.
42

96
.7

3±
0.

74
95

.3
3±

1.
42

96
.3

6±
0.

87
96

.3
1±

0.
74

96
.8

7±
0.

18
R

an
k

1
7

2
4

8
5

6
3

IR
IS

A
cc

ur
ac

y
95

.0
7±

0.
25

93
.3

3±
1.

72
96

.2
3±

0.
18

93
.9

1±
1.

60
96

.0
0±

1.
09

88
.8

7±
1.

95
87

.5
3±

1.
29

94
.6

7±
0.

28
R

an
k

3
6

1
5

2
7

8
4

IO
A

cc
ur

ac
y

91
.7

1±
0.

34
90

.5
9±

1.
66

90
.8

1±
0.

29
90

.6
4±

1.
19

89
.7

4±
2.

68
92

.4
2±

0.
39

91
.3

7±
0.

61
91

.2
5±

0.
44

R
an

k
2

7
5

6
8

1
3

4
TA

E
A

cc
ur

ac
y

37
.2

8±
0.

73
44

.4
2±

5.
99

46
.3

8±
0.

97
52

.9
8±

2.
34

39
.0

7±
2.

68
32

.1
2±

2.
92

38
.4

8±
2.

76
36

.5
6±

1.
05

R
an

k
6

3
2

1
4

8
5

7
A

.R
an

k
2.

75
5.

38
3.

38
4.

94
5.

56
4.

00
4.

63
5.

38

54

Ta
bl

e
3.

5:
A

ve
ra

ge
si

ze
of

th
e

m
od

el
ob

ta
in

ed
by

us
in

g
te

nf
ol

d
cr

os
s-

va
lid

at
io

n
an

d
ea

ch
va

lid
at

io
n

is
im

pl
em

en
te

d
by

10
in

de
pe

nd
en

t
ru

ns
fo

ra
ll

co
m

pa
re

d
al

go
ri

th
m

s.
D

at
a

se
t

m
r2 A

M
+

cA
M

pb
[6

8]
A

T
M

[6
7]

C
4.

5
[8

1]
JR

ip
[8

2]
A

M
m

bc
[6

9]
A

M
2 m

bc
[6

9]
A

M
+

[6
2]

B
C

-L
Si

ze
1.

70
±

0.
19

10
.3

6±
0.

11
10

.0
4±

0.
23

44
.5

1±
0.

33
3.

27
±

0.
11

3.
07
±

0.
10

2.
86
±

0.
10

2.
73
±

0.
24

R
an

k
1

7
6

8
5

4
3

2
B

C
-W

Si
ze

5.
36
±

0.
07

8.
33
±

0.
10

9.
02
±

0.
11

11
.5

4±
0.

10
5.

67
±

0.
17

4.
68
±

0.
11

4.
14
±

0.
14

5.
37
±

0.
07

R
an

k
3

6
7

8
5

2
1

4
C

M
C

Si
ze

2.
94
±

0.
28

18
.6

0±
1.

07
85

.8
0±

1.
85

98
.6

7±
3.

52
5.

01
±

0.
11

3.
23
±

0.
04

3.
32
±

0.
09

2.
69
±

0.
11

R
an

k
2

6
7

8
5

3
4

1
A

U
S

Si
ze

3.
29
±

0.
24

12
.3

1±
0.

10
29

.6
4±

0.
22

34
.9

2±
0.

71
4.

14
±

0.
21

4.
79
±

0.
24

4.
31
±

0.
21

3.
51
±

0.
17

R
an

k
1

6
7

8
3

5
4

2
G

L
Si

ze
5.

00
±

0.
00

6.
00
±

0.
08

20
.1

8±
0.

12
26

.1
6±

0.
48

8.
68
±

0.
48

6.
01
±

0.
37

4.
98
±

0.
25

5.
01
±

0.
01

R
an

k
2

4
2

7
8

5
1

3
IR

IS
Si

ze
3.

04
±

0.
04

4.
53
±

0.
22

4.
22
±

0.
06

5.
05
±

0.
08

3.
14
±

0.
13

2.
96
±

0.
14

2.
90
±

0.
19

3.
25
±

0.
05

R
an

k
3

7
6

5
8

2
1

5
IO

Si
ze

11
.5

5±
0.

15
8.

00
±

0.
29

12
.4

8±
0.

15
14

.3
5±

0.
17

3.
57
±

0.
20

5.
65
±

0.
28

6.
45
±

0.
34

11
.4

6±
0.

11
R

an
k

6
4

7
8

1
2

3
5

TA
E

Si
ze

1.
03
±

0.
02

10
.2

0±
0.

25
34

.7
7±

0.
22

60
.3

4±
2.

68
3.

06
±

0.
11

10
.9

7±
1.

01
10

.1
7±

1.
44

1.
03
±

0.
02

R
an

k
1.

5
5

7
8

3
6

4
1.

5
A

.R
an

k
2.

44
5.

63
6.

13
7.

50
4.

75
3.

63
2.

63
2.

94

55

Ta
bl

e
3.

6:
T

he
re

su
lts

of
bi

na
ry

an
d

m
ul

ti-
cl

as
s

cl
as

si
fic

at
io

n
ca

se
s.

B
C

L
C

M
C

A
U

S
IR

IS
TA

E

in
st

at
tr

in
st

at
tr

in
st

at
tr

in
st

at
tr

in
st

at
tr

27
7

9
14

73
9

69
0

15
15

0
4

15
1

5

Te
ch

ni
qu

e
A

cc
σ

A
cc

#R
#T

/R
A

cc
σ

A
cc

#R
#T

/R
A

cc
σ

A
cc

#R
#T

/R
A

cc
σ

A
cc

#R
#T

/R
A

cc
σ

A
cc

#R
#T

/R

m
r2 A

nt
M

in
er

+
74

.3
0

1.
49

1.
7

1.
9

48
.7

4
2.

64
2.

9
3.

1
85

.8
7

0.
97

3.
3

2.
1

95
.0

7
0.

78
3.

0
1.

4
37

.2
8

2.
32

1.
0

0.
1

A
nt

M
in

er
+

72
.6

7
1.

51
2.

7
2.

8
47

.9
8

3.
10

2.
7

3.
3

85
.4

3
0.

62
3.

5
2.

4
94

.6
7

0.
89

3.
3

1.
6

36
.5

6
3.

33
1.

0
0.

1

A
nt

M
in

er
76

.4
5

4.
63

6.
7

1.
6

42
.3

2
2.

63
14

.3
1.

8
84

.0
9

1.
65

6.
5

2.
3

76
.6

0
3.

89
5.

6
1.

0
40

.3
9

7.
17

8.
9

1.
2

A
nt

M
in

er
2

75
.9

1
5.

72
7.

0
1.

6
41

.4
9

2.
95

15
.5

1.
7

84
.3

0
0.

78
6.

1
1.

8
81

.8
0

3.
22

5.
4

1.
0

43
.7

3
5.

55
8.

3
1.

3

A
nt

M
in

er
3

78
.3

9
3.

64
7.

0
1.

6
40

.8
5

2.
47

15
.3

1.
7

83
.6

1
2.

86
7.

1
2.

4
77

.0
0

3.
80

5.
5

1.
0

40
.3

9
6.

68
8.

3
1.

2

R
IP

PE
R

75
.2

2
3.

72
2.

3
2.

0
48

.9
4

2.
83

4.
8

3.
2

84
.5

2
1.

47
5.

3
2.

3
93

.0
0

1.
94

3.
2

1.
2

35
.2

0
6.

41
5.

1
1.

3

C
4.

5
74

.5
6

2.
36

7.
3

46
.6

0
2.

15
79

.4
84

.8
2

0.
83

15
.8

93
.8

0
2.

20
3.

3
47

.2
0

5.
67

64
.8

IN
N

72
.1

8
2.

47
42

.1
6

1.
28

80
.8

3
2.

17
91

.0
0

2.
16

50
.2

0
7.

86

lo
gi

t
76

.5
6

3.
95

47
.5

2
1.

80
84

.8
3

2.
51

93
.8

0
2.

90
51

.9
6

6.
74

SV
M

75
.2

7
3.

12
48

.5
5

1.
63

85
.2

2
2.

12
94

.4
0

2.
63

48
.4

3
4.

81

56

Table 3.7: The average performances dealt with all 8 techniques.

Technique Accuracy Ranking #R #T/R

mr2AntMiner+ 68.25 4.0 2.4 1.7

AntMiner+ 67.46 5.2 2.6 2.0

AntMiner 63.97 6.9 8.4 1.6

AntMiner2 65.45 6.6 8.5 1.5
AntMiner3 64.05 7.1 8.6 1.6

RIPPER 67.38 5.8 4.1 2.0

C4.5 69.40 5.3 34.1

INN 67.27 7.4

logit 70.93 3.3
SVM 70.39 3.4

Table 3.8: Datasets used in the experiment.

Datasets
Attributes Classes Samples

Nominal Continuous
BCL 9 0 2 286
BCW 0 30 2 569
CMC 7 2 3 1473
AUS 8 6 2 690
GL 0 10 7 214

IRIS 0 4 3 150
IO 0 34 2 351

TAE 4 1 3 151

57

Table 3.9: Performance of the proposed mr2AM+ for tested eight datasets.
Used attributes AccuracyRules Terms Time

BCL 3 V5, V6, V8 0.74 1.70 1.91 1.5

BCW 21

V2, V4, V5, V9, V10,
V11, V12, V13, V14, V15,
V16, V17, V18, V19, V20,
V22, V24, V25, V27, V29,
V30

0.95 5.36 3.31 82.7

CMC 8
V1, V2, V4, V5, V6, V7,
V8, V9

0.49 2.94 3.13 11.0

AUS 11
V1, V3, V4, V5, V6, V7,
V8, V9, V10, V13, V14

0.86 3.29 2.14 14.4

GL 1 V1 0.98 5.00 1.41 11.7
IRIS 2 V2, V3 0.95 3.04 1.37 6.1

IO 31

V1, V2, V3, V4, V5, V6,
V7, V8, V9, V10, V11,
V13, V14, V16, V17, V18,
V19, V20, V21, V23, V24,
V25, V26, V27, V28, V29,
V30, V31, V32, V33, V34

0.92 11.55 1.81 316.7

TAE 3 V1, V3, V4 0.37 1.03 0.02 0.1

58

Chapter 4

Novel Neural Computation Proposal

4.1 Introduction

As a machine learning technique, a supervised learning algorithm is usually evaluated with

a dataset which includes training samples and testing samples. Each sample is depicted by

a certain number of features (or attributes) and a class label, e.g. for the medical diagnosis,

the features might consist of the age, sex, and smoking habit of a patient, and the class label

is the corresponding diagnosis result that the patient is whether or not suffering from liver

disorders [83]. After learning, the classifier can obtain learning rules that can be applied

to classify future samples in the same domain. However, most domains are explored with

less than 40 features before 1997 [84]. It should not be tolerated that the dimension issue

of the dataset leads the study to only explore on a limited scale. To explore the domains

with more features, the optimization of the dataset is urgent and challenging. Regarding

the feature of a dataset, the concept of “relevance” is firstly proposed by John, Kohavi and

Pfleger [85] in the context of machine learning. That motivates Langley [86] to develop

a relevant features selection method for assisting the learning of the classifier. However,

selecting the most relevant feature through finding or ranking all the relevant features of

the dataset is generally suboptimal for training a classifier, especially if the features include

duplicate information, which is called redundant feature. Therefore, a maximum relevance

minimum redundancy (Mr2) feature selection framework that can eliminate most irrele-

vant and redundant features to reduce training samples is proposed for gene expression

array analysis [87]. Generally, in a gene expression dataset which contains 6,000 ∼ 60,000

59

samples, there are only less than 100 samples which are suitable for training and testing.

Hence, the feature selection provides a good solution for developing the gene domain. The

objective of the feature selection is to avoid the curse of dimensionality of the dataset,

and thereafter to improve the classification performance of the classifiers. It can not only

provide better classification accuracy with lower computation cost, but also give an easier

understanding of the importance of the feature in the dataset. The feature selection methods

have driven the classifier to explore more domains, particularly those consist of numerous

features. It has been widely applied to areas of text processing of internet documents [88],

combinatorial chemistry [84], etc.

To achieve the best performance of classification, in addition to the feature selection,

the classifier is another crucial factor. Among hundreds of classifiers, the artificial neural

networks (ANNs) occupy an important place. ANNs are inspired by biological systems

with lots of interconnected simple processors [89, 90], and are widely applied for solving

problems arisen from many different fields, e.g. business, industry and science [91]. The

well-known mathematical neuron model called McCulloch-Pitts model (MCP) [92] defines

the corresponding weights for the synapses to control the importance of the inputs. In recent

years, many studies [93–95] suggest that the information processing capacity based MCP

of a single neuron has not been fully developed. As the MCP-based single neuron model

is too over-simplified to address nonlinearly separated problems [96, 97], it is considered

that the utilization of the dendritic structure [98, 99] is promising to improve the nonlinear

processing ability for a neuron. Although the Koch-Poggio-Torre model [100] considers

the effects of dendrites in the neuron, it lacks the plasticity mechanism, that is, the synaptic

type and dendritic structure cannot correctly classify some complex tasks [101]. Some

studies [102–105] have pointed out that some pyramidal neurons possess the plasticity

mechanism, which might provide inspirations for improving the Koch-Poggio-Torre model.

In our previous works, we mainly focus on the development of a single dendritic neuron

model (DNM) via the nonlinear information processing ability of synapses [106]. DNM

has been applied to medical diagnosis [107, 108], tourism prediction [109, 110] and finan-

cial time series prediction [56]. Besides its supervised learning ability, an unsupervised

learnable DNM has been used for efficiently learning the two-dimensional multidirectional

60

selectivity problem [111]. In addition, DNM trained by six population-based evolutionary

learning algorithms also shows its prominent effects in classification, approximation, and

prediction [112]. In DNM, the neuron plasticity mechanism is realized by synaptic pruning

and dendritic pruning during learning. Meanwhile, the obtained simplified morphological

of DNM can be implemented with hardware logical circuits [57].

To reduce the influence of redundancy feature on the dataset and save computation

cost, in this paper we propose a hybrid model Mr2DNM by combining Mr2 with DNM.

Mr2DNM applies an optimal subset to train and generate learning rules, where the optimal

subset is obtained by utilizing Mr2 criteria to search and rank the features of the dataset,

and DNM is used to evaluate the subset. Meanwhile, the unused samples of the optimal

subset will be used as testing ones to verify the performance of Mr2DNM. In the experi-

ment, the proposed model is compared with other six classification models by classifying

five real-world benchmark datasets, which includes three well-known medical diagnosis

datasets (i.e. breast cancer, liver disorders, and diabetes), one radar dataset that returns

from the ionosphere and one congressional voting records dataset. Results suggest that

the proposed model outperforms its peers in terms of the classification accuracy, computa-

tional efficiency, convergence rate, and the quality of the area under the receiver operator

characteristic (ROC) curve.

The remaining of this paper is organized as follows. Section 2 presents a brief introduc-

tion of the fundamental structures and functions of Mr2DNM. Section 3 introduces the error

back-propagation learning algorithm that is applied to train Mr2DNM. Section 4 shows the

experimental results of the model and performance analysis on five benchmark datasets.

Finally, the conclusions are drawn in Section 5.

4.2 Proposed Model: Mr2DNM

4.2.1 Mr2

The proposed Mr2DNM is a hybrid approach based on a feature selection technique and a

neural network classifier, which are combined using a wrapper approach as shown in Fig.

61

F
e
a
tu

re
 s

e
t

F
e
a
tu

re
 s

e
le

c
ti

o
n

 s
ea

rc
h

F
e
a
tu

re
 e

v
al

u
a
ti

o
n

F
e
at

u
re

se
t

P
e
rf

o
rm

an
ce

es
ti

m
a
ti

o
n

T
ra

in
in

g
 s

et
D

N
M

F
in

a
l

e
v
a
lu

a
ti

o
n

L
e
ar

n
in

g
 r

u
le

O
p
ti

m
a
l

se
t

A
c
c
u
ra

c
y

T
e
st

in
g
 s

et

Fi
gu

re
4.

1:
T

he
w

ra
pp

er
ap

pr
oa

ch
to

th
e

pr
op

os
ed

M
r2 D

N
M

.

4.2.1. The feature selection is implemented via the criteria of Mr2 based on mutual infor-

mation. By calculating the mutual information of dataset, relevances of 1) feature-feature

62

and 2) feature- target class are visually quantified. Furthermore, information overlap be-

tween features (i.e. feature-feature) is considered and defined as redundancy. The feature

subset which is obtained by Mr2 criteria includes ordered (strongly → weakly) relevance

features. The relevance of the feature decides the frequency of the feature joining into the

learning process of a classifier (i.e. strongly - always → weakly - possibly). Meanwhile,

the irrelevant features are excluded from the optimal feature subset during the learning of

the classifier. Therefore, Mr2 feature selection combining with plasticity neurons of DNM

is supposed to reduce the computational burden (e.g. learning process acceleration), avoid

the over-fitting problem, and enhance the generalization capacity of Mr2DNM [79,80,113].

The Mr2 criterion based on mutual information [80] is expressed as:

max Φ(D,R),Φ = D − R, (4.1)

where D represents the maximal relevance of a feature set S with N features xi. Φ(.)

expresses the optimize operation which combines D and R to find an optimal feature subset.

The equation of D is defined as:

max D =
1
|S |

∑
xi∈S

I(xi; c), i = 1, . . . , n, (4.2)

where I represents the mutual information between individual feature xi ∈ S and the target

class c. In addition, it is considered that there is redundancy in two highly dependent

features. In this case, one of the two features can be removed and it will not influence the

discriminative power [79]. Therefore, R is used to compute the minimal redundancy of a

feature set S , shown as:

min R =
1
|S |2

∑
xi,xr∈S

I(xi; xr), i, r = 1, . . . , n, (4.3)

where I(x; y) is the mutual information, both x and y are random variables. Their proba-

bilistic density (or distribution) functions for continuous (or discrete) case is expressed as

63

follow:

I(x; y) =

"
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy, (4.4)

I(x; y) =
∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
. (4.5)

In the Mr2 criterion, the ranking of all N features X = xi{i = 1, . . . ,N} in the dataset

is done via selecting the features with the maximal Φ(.) in turn. Among them, the near-

optimal features defined by Φ(.) can be found with an incremental search method [80]. The

incremental search method is defined as follows:

max
xr∈{X−S n−1}

I(xr; c) −
1

n − 1

∑
xi∈S n−1

I(xr; xi)

 , (4.6)

where S n−1 is the feature set which there is n − 1 features. The computational complexity

of the incremental search method is O(|S | · N).

Additionally, the features are defined as F1(i1), F2(i2), . . . , FN(iN), where FN represents

the given mark of the feature in the dataset, iN is the ranking of the feature which is obtained

by the Mr2 criterion, and e.g. iN = 1 indicates that the feature FN ranks the first one in the

dataset and should be the most important feature, which has the maximal relevance with

the target class c and the minimal redundancy in comparison with the other features, while

iN = N means the feature FN can be firstly excluded from the learning of the classifier to

speed up the calculation efficiency. The DNM model combines with the ranked features to

achieve the optimal compromised solution between classification accuracy rate and dataset

dimension.

4.2.2 DNM

In DNM, the dendrites and synapses are formed via initial user-defined parameters in the

primary neuron system. The initial structure is allowed to possess superfluous number of

dendrites and synapses. The superfluous parts are screened, meanwhile, the useful parts are

strengthened and fixed to form the ripened structure of the neuron model during learning.

Four basic rules are used to define the DNM, shown as follows:

64

x
1

x
2

x
i

x
N

..
.

..
.

M
e
m

b
ra

n
e

la
ye

r

D
e
n

d
ri

ti
c

la
ye

r

S
y
n

a
p
ti

c

la
ye

r
S

o
m

a

la
ye

r

O
u

tp
u

t

Fi
gu

re
4.

2:
T

he
st

ru
ct

ur
e

of
th

e
D

N
M

.

65

• The model allows initial number of dendrites and synapses which can be arbitrarily

defined.

• The interaction exists among all synapses in the same dendrite layer.

• The ripened dendrites and synapses are decided by learning.

• The synapses can only be defined as one of the four specific connection states.

In Fig. 4.2.2, the transmission process of signals in the model during learning is illustrated.

It can be summarized as follows:

• The input signals for one specific task are transferred to synapses via sigmoid functions

and output to dendritic branches.

• The results from synapses on the same dendritic branch are calculated by applying a

multiplication operation.

• The signals from all dendritic branches are collected in the membrane layer and summed

to the soma layer.

• The signal is determined in the soma layer whether it exceeds the threshold or not.

4.2.2.1 Synaptic layer

1 0

Direct

Connection

Inverse

Connection

Constant-1

Connection

Constant-0

Connection

Initial

Connection

Figure 4.3: Four connection types in the synaptic layer.

A synapse is produced by the contact of two neurons. Its duty is to transmit informa-

tion within two neurons. In the synaptic layer of our model, the synapse can be defined

as the specific one of the four connection types, while as an input to interact with the

66

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

(a) Direct connection (b) Inverse connection

(c1) Constant-1 connection (c2) Constant-1 connection

(d1) Constant-0 connection (d2) Constant-0 connection

Figure 4.4: Six function cases of the synaptic layer.

dendritic branch. The four connection types include the direct connection, inverse con-

nection, constant-0 connection, and constant-1 connection, which can be expressed by

sigmoid functions. The four connection types are illustrated in Fig. 4.3. The changes

in the postsynaptic potential caused by ion can be used to decide whether the input is

an excitation synapse or an inhibition one [114]. The node function that connecting ith

(i = 1, 2, 3, . . . ,N) input to the jth (j = 1, 2, 3, . . . ,M) synaptic layer is expressed as fol-

lows:

Yi, j =
1

1 + e−k(ωi, j xi−qi, j)
, (4.7)

where Yi, j indicates the output of the synaptic layer. xi ∈ [0, 1] denotes the input of the

synapse. k represents a user-defined parameter, whose optimal setting will be given in

the experiment. The weight parameters ωi, j and qi, j in the synapses need to be trained by

learning algorithms. The following equation is used to compute the threshold θi, j of the

67

synaptic layer:

θi, j =
qi, j

ωi, j
. (4.8)

The four connection types for synaptic connections are calculated and determined based on

ωi, j and qi, j. Fig. 4.4 gives specific information on the four types of connections, which are

divided into six cases:

• Type 1: Direct Connection

Case (a): 0 < qi, j < ωi, j, e.g. ωi, j = 1.0 and qi, j = 0.5.

Yi, j =

 1 if xi > θi, j

0 if xi ≤ θi, j

, (4.9)

In this case (Fig. 4.4 (a)), when the input xi value exceeds the threshold θi, j, the output

Yi, j is 1, which means the signals will be passed and output smoothly. Otherwise, the

signals will be blocked.

• Type 2: Inverse Connection

Case (b): ωi, j < qi, j < 0, e.g. ωi, j = −1.0 and qi, j = −0.5.

Yi, j =

 0 if xi > θi, j

1 if xi ≤ θi, j

. (4.10)

where the threshold θi, j is not exceeded by the input xi value, the output Yi, j is 1, which

means the signal is updated as an excitatory signal and allows the information to pass,

shown in Fig. 4.4 (b). The inverse connection type is considered as a logic NOT opera-

tion.

• Type 3: Constant-1 Connection

Case (c1): qi, j < 0 < ωi, j, e.g. ωi, j = 1.0 and qi, j = −0.5;

Case (c2): qi, j < ωi, j < 0, e.g. ωi, j = −1.0 and qi, j = −1.5.

In the constant-1 connection cases (Figs. 4.4 (c1) and (c2)), the outputs are always 1,

regardless of the inputs or the parameters change. The information will be transmitted

completely.

68

• Type 4: Constant-0 Connection

Case (d1): 0 < ωi, j < qi, j, e.g. ωi, j = 1.0 and qi, j = 1.5;

Case (d2): ωi, j < 0 < qi, j, e.g. ωi, j = −1.0 and qi, j = 0.5.

In the two cases (Figs. 4.4 (d1) and (d2)), the signal is blocked and not passed, so all

input values can be ignored directly.

Synaptic types are randomly assigned before the model is trained, and the weight pa-

rameters ωi, j and qi, j are assigned a random value of -1.5 to 1.5. Once the training of the

model is completed, the corresponding learning rules are generated, and the weight param-

eters ωi, j and qi, j will also get the correct values to find the correct synaptic connection

type.

4.2.2.2 Dendritic layer

The dendritic layer receives the signals from the synaptic layers and implements a multi-

plication operation. The multiplication operation approximately corresponds to a logical

AND operation and is described by:

Z j =

N∏
i=1

Yi, j. (4.11)

4.2.2.3 Membrane layer

The membrane layer receives the signal from the dendritic branch and adds it. This opera-

tion is most similar to the logical OR operation, and the corresponding formula is provided

as follows:

V =

M∑
j=1

Z j. (4.12)

4.2.2.4 Soma layer

The soma layer is the last step of a neuronal computation and associated with a threshold.

If the signal from the membrane exceeds the threshold, the transmission channel is turned

69

on. The operation is defined as a sigmoid function and is shown as follows:

O =
1

1 + e−ksoma(V−θsoma) , (4.13)

where ksoma is a user-defined parameter, θsoma means the threshold of the cell body and its

range is [0,1]. When the signal from the membrane layer is greater than the threshold, the

neuron excitation will occur, otherwise keep fired.

4.2.2.5 Neuronal pruning function

The neuronal pruning functions in the synaptic layer and dendritic layer complete the plas-

ticity mechanism of the proposed model. Based on classification problems, the proposed

model can give the specific pruning structure by applying the synaptic pruning and den-

dritic pruning.

Synaptic pruning: The constant-1 synaptic connection in the four connection types is

considered as one of the origin of the plasticity of the neuron, which is called the synaptic

pruning. The constant-1 completes a multiplication operation in the dendritic layer, since

every synapse interacts with the other synapses in each dendritic layer. A value multiplied

by the constant-1 is not changed, and it does not cause the output of the dendritic layer to

change. Therefore, this constant-1 synaptic connection type can be neglected or pruned in

the dendritic layer to simplify the neuron model without having any impact on the learning

process of the proposed model.

Dendritic pruning: The constant-0 synaptic connection interacts with each dendritic

layer, which is called dendritic pruning. Hence, whatever the output of the dendritic layer

is, it multiplied by the constant-0 always equals 0. The outputs of all the dendritic layers

are summed in the membrane layer, and any value adds zero is equal to itself. The corre-

sponding dendrite with constant-0 can be removed without any impact, which can simplify

the morphology and structure of the proposed model.

70

4.3 Learning Algorithm

Based on the structure of the proposed Mr2DNM which is a feed-forward logic neural

network, the error back-propagation (BP) algorithm is employed for training the model.

The construction of the neuron model depends on an effective learning rule. Its learning

rule is obtained by the least squared error between the real output vector O and the target

output vector T , shown as follows:

E =
1
2

(T − O)2, (4.14)

The error is decreased by correcting the synaptic parameters ωi, j and qi, j of the connection

function during learning. The corrections of both parameters utilize the gradient descent

learning algorithm. The equations are expressed as follows:

∆ωi, j(t) = −η
∂E
∂ωi, j

, (4.15)

∆qi, j(t) = −η
∂E
∂qi, j

, (4.16)

where η represents the learning rate, which is a user-defined parameter. However, a small

learning rate might make the convergence speed slow. Thus, we set the corresponding

suitable η for each classification problem as possible in the simulation. Then, the updating

rules of ωi, j and qi, j are computed as follows:

ωi, j(t + 1) = ωi, j(t) + ∆ωi, j, (4.17)

qi, j(t + 1) = qi, j(t) + ∆qi, j, (4.18)

where t is the number of the learning iteration. In addition, the partial differentials of E

with regard to ωi, j and qi, j are defined as follows:

∂E
∂ωi, j

=
∂E
∂O
·
∂O
∂V
·
∂V
∂Z j
·
∂Z j

∂Yi, j
·
∂Yi, j

∂ωi, j
, (4.19)

∂E
∂qi, j

=
∂E
∂O
·
∂O
∂V
·
∂V
∂Z j
·
∂Z j

∂Yi, j
·
∂Yi, j

∂qi, j
, (4.20)

71

∂E
∂O

= O − T, (4.21)

∂O
∂V

=
ksomae−ksoma(V−qsoma)

(1 + e−ksoma(V−qsoma))2 , (4.22)

∂V
∂Z j

= 1, (4.23)

∂Z j

∂Yi, j
=

N∏
L=1&L,i

YL, j, (4.24)

∂Yi, j

∂wi, j
=

kxie−k(xiwi, j−qi, j)

(1 + e−k(xiwi, j−qi, j))2
, (4.25)

∂Yi, j

∂qi, j
=
−ke−k(xiwi, j−qi, j)

(1 + e−k(xiwi, j−qi, j))2
. (4.26)

4.4 Experiment and Analysis

4.4.1 Experimental setup

This experiment is programmed in MATLAB (R2013b) and implemented on a computer

with Interl(R) Core i5 3.4GHz and RAM 16GB. To assess the performance of the proposed

Mr2DNM, five widely used benchmark datasets taken from the University of California

at Irvine Machine Learning Repository (UCI) are tested [115]. These datasets include

Wisconsin breast cancer database (WBCD), BUPA medical research database for liver dis-

orders (BUPA), ionosphere dataset (IONO), Pima Indians diabetes dataset (PIMA), and

congressional voting records dataset (VOTE). These five datasets could be divided into cat-

egorical (WBCD, BUPA) or numerical (IONO, PIMA, VOTE) ones. Table 4.1 lists the

characteristics of these datasets. To make a fair comparison, the samples which include

missing value are deleted, because the used classifiers cannot handle missing value. Ac-

cording to our previous work, the samples of each dataset are randomly divided: 70% for

training and 30% for testing [108]. In addition, the input variables are normalized from 0

to 1.0, by a min-max normalization rule:

Xnormalized =
X − Xmin

Xmax − Xmin
. (4.27)

72

Table 4.1: Datasets used in the experiment.

Dataset
Feature

Sample
Nominal Continuous

WBCD 9 0 683
BUPA 0 6 345
IONO 0 34 351
PIMA 0 8 768
VOTE 16 0 232

Table 4.2 provides the user-defined parameter settings to our experiment for each dataset

independently. Among them, the parameter settings of five datasets are set based on the

suggesting in [107, 108].

Table 4.2: Parameter setting for five datasets.

Dataset k ksoma θsoma M η
No. of
iteration

No. of samples
Training Testing

WBCD 1 10 0.5 45 0.01 1000 478 205
BUPA 3 10 0.5 10 0.005 2000 242 103
IONO 3 10 0.5 34 0.001 1000 246 105
PIMA 3 10 0.5 25 0.001 1000 538 230
VOTE 3 10 0.5 30 0.001 1000 162 70

4.4.2 Performance evaluation

The optimal classification accuracy results of the proposed Mr2DNM which adopts the re-

duced feature subsets are summarized in Table 4.3, where the number of features (NF)

in the original dataset, the number of features in the optimal subset (#) obtained by Mr2

criteria, the reduction rate of features of the optimal subset to the original one, correspond-

ing feature sequence obtained by Mr2 criteria, average accuracy based on 30 independent

runs, computational time, and average area under the receiver operator characteristic curve

(AUC) for five classification problems are listed. To further prove the effect of Mr2 on the

DNM classifier, Fig. 4.5 illustrates the influence of used feature size on accuracy and cal-

culation time for classifying five datasets, respectively. It is observed that as the number of

features decreases, the accuracy rate changes. Compared with the results that more features

73

1 2 3 4 5 6 7 8 9
30

40

50

60

70

80

90

100

A
cc

ur
ac

y

Number of Used Attributes

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7
x 10

4

T
im

e

Accuracy
Time

(a) WBCD

1 2 3 4 5 6
40

50

60

70

80

A
cc

u
ra

cy

Number of Used Attributes

1 2 3 4 5 6
0

5000

10000

Accuracy

Time

T
im

e

(b) BUPA

4 5 6 7 8 9 10 11
60

70

80

90

100

A
cc

ur
ac

y

Number of Used Attributes

4 5 6 7 8 9 10 11
0

2

4
x 10

4

T
im

e

Accuracy
Time

(c) IONO

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y

Number of Used Attributes

1 2 3 4 5 6 7 8
0

2

4
x 10

4

T
im

e

Accuracy
Time

(d) PIMA

4 5 6 7 8 9 10 11
40

50

60

70

80

90

100

A
cc

ur
ac

y

Number of Used Attributes

4 5 6 7 8 9 10 11
0.5

1

1.5

2
x 10

4

T
im

e

Accuracy
Time

(e) VOTE

Figure 4.5: Accuracy, time and feature size for five datasets.

are used, a specific subset of features can obtain better accuracy with a lower computational

cost. However, too few features will cause the accuracy rate to deteriorate significantly. In

addition, the ROCs that can prove the classification quality of classifiers are shown in Fig.

4.6. AUC is the area under ROC, and its range is [0,1] [116]. It means that the classifier

can perfectly classify the dataset, when the value of AUC is 1. If the AUC is equal to 0.5, it

74

means the model is a random classifier [117]. According to Table 4.3, it can be found that

Mr2DNM obtains high accuracy on WBCD, IONO and VOTE, and relatively low one on

BUPA and PIMA. The low accuracy is caused due to complexity of datasets, and existent

literatures also obtain similar results.

To compare the convergence speed of each feature size, the mean squared error (MSE)

of Mr2DNM at each iteration is calculated and illustrated in Fig. 4.7, which provides the

results of 1000 iterations for five datasets. In Fig. 4.7, the number shown in the legend

denotes the feature size. The curves of only eight consecutive subset sizes are shown for

IONO and VOTE datasets, which contain the optimal subset size. From Fig. 4.7, it is

observed that a better accuracy rate always can be obtained by removing appropriate re-

dundancy features, and resulting in a fast convergence speed and a smooth convergence

curve. Therefore, Mr2 feature selection method is effective for DNM to deal with classifi-

cation tasks.

The convergence situations of the five optimal subsets are shown in Fig. 4.8. It is clear

that five datasets have all completed their own convergence within 500 iterations. Gener-

ally, the reduction of features leads to a lower calculation time. The redundant features are

sequentially excluded from the feature subsets so that the classification accuracy changes.

However, a reduced feature subset clearly can contribute a better accuracy with a lower

calculation cost, faster and smoother convergence situation in comparison with that all fea-

tures are used. It should be noted that overly small feature size conspicuously reduces the

classification accuracy. For the above reasons, Mr2DNM is verified to be an optimal com-

promised method that maximizes the classification accuracy, and synchronously minimizes

the feature size and calculation time.

Furthermore, the performance of Mr2DNM is compared with other six related classifi-

cation algorithms, including standard back-propagation (Orig) [118], RENN [119], FaLKNR

[120], AdaBoost [121], MultiBoost [122] and IEMLP [118]. Table 4.4 shows the compara-

tive results of the classification accuracy on five benchmark datasets, and the correspond-

ing ranks of performance are listed. The proposed Mr2DNM obtains the best accuracy on

three classification problems and the average rank (A.Rank) for five classification prob-

lems, which is first place among all compared methods. In fact, it can be considered that

75

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

(a) WBCD

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

(b) BUPA

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

(c) IONO

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

(d) PIMA

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

(e) VOTE

Figure 4.6: ROCs of Mr2DNM that used the optimal feature subsets for five datasets.

76

200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

Iteration times

M
SE

WBCD1
WBCD2
WBCD3
WBCD4

WBCD5
WBCD6
WBCD7
WBCD8
WBCD9

(a) WBCD

200 400 600 800 1000
0.1

0.15

0.2

0.25

0.3

Iteration times

M
SE

BUPA1
BUPA2
BUPA3

BUPA4
BUPA5
BUPA6

(b) BUPA

200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

Iteration times

M
SE

IONO4
IONO5
IONO6
IONO7

IONO8
IONO9
IONO10
IONO11

(c) IONO

200 400 600 800 1000
0.05

0.1

0.15

0.2

0.25

0.3

Iteration times

M
SE

PIMA1
PIMA2
PIMA3
PIMA4

PIMA5
PIMA6
PIMA7
PIMA8

(d) PIMA

200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

Iteration times

M
SE

VOTE4
VOTE5
VOTE6
VOTE7

VOTE8
VOTE9
VOTE10
VOTE11

(e) VOTE

Figure 4.7: MSE of each feature size for five datasets.

there is no one algorithm that always outperforms the others on all classification tasks.

However, the A.Rank suggests that the performance of the proposed Mr2DNM averagely

outperforms the other classification techniques.

77

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

Iteration times

M
SE

WBCD
BUPA
IONO
PIMA
VOTE

Figure 4.8: MSE of the used optimal feature sizes for five datasets.

4.4.3 Simplified morphology analysis

4.4.3.1 Neuron morphology

As mentioned above, Mr2DNM achieves the internal dimensional reduction via simplifying

the morphology to the neuron model during learning. During learning, 1) each attribute has

an input (synapse) connection on each dendritic branch; 2) an input connection is defined

as one of four connection states whenever a connection action occurs; 3) four connection

states are a direct connection (l), an inverse connection (z), a constant-0 connection (0©),

and a constant-1 connection (1©), respectively; 4) the same feature does not necessarily have

the same connection type on each dendritic branch; and 5) all the dendritic branches are

finally summed in the membrane layer. The internal dimensional reduction is implemented

via ignoring the inputs (synapses) which have the constant-1 connection and removing the

dendritic branches which have the input of the constant-0 connection states. An example

that the neuronal morphology of BUPA is given in Fig. 4.9. Since Mr2 is employed as the

feature selection, the initial number of the feature is set as 5 at the beginning, which means

that DNM reduces the calculation of 10 connection states before training the model. In

addition, before training the model, there are 50 synaptic points and 10 dendritic points to

perform calculation, as shown in Fig. 4.9 (a). After training, the model obtains a simplified

morphology which only has 9 synaptic points and 3 dendritic points through the neuron

pruning, as shown in Fig. 4.9 (b).

78

11
Dendrite-10

Soma

Membranex1 x2 x3 x4 x5

0 10 0
Dendrite-1

1
Dendrite-2

1

0
Dendrite-3

10

0 10 0
Dendrite-4

0

0 0 1
Dendrite-5

1

0 11
Dendrite-6

0

1 0 0 1
Dendrite-7

0 1 1
Dendrite-8

0 0

1 1
Dendrite-9

(a) After learning.

Dendrite-10

Soma

Membranex1 x2 x3 x4 x5

Dendrite-2

Dendrite-9

(b) After pruning.

Figure 4.9: The dendritic morphology of BUPA dataset.

4.4.3.2 Logic circuits morphology

The functions of Mr2DNM approximately correspond to the “comparator”, logical “NOT”,

“AND”, and “OR” operation, respectively [57, 123]. Thence, the simplified neuron mor-

phology can be replaced by the logic circuits. And the corresponding logic circuits for

the five datasets are shown in Fig. 4.10(a)(b)(c)(d)(e). The comparator of the logic circuit

compares the input with the corresponding threshold. If the value of the input exceeds

the threshold θ, the result outputs 1; otherwise is 0. The final output of the model can be

obtained by subsequent logic circuits. The implementation of the simplified model can

be realized by the logic circuit in hardware so that the results are easily reproduced while

decreasing the computational cost.

79

AND

Comparator

x7

x2

x3

x6

θ = 3.04

θ = 4.86

θ = 1.52

θ = 3.18

OR

AND

θ = 2.07

θ = 2.96

θ = 1.43

x1

θ = 4.10

OR

θ = 2.85

θ = 4.31

θ = 4.77

θ = 7.07

x5

θ = 4.62

θ = 5.53

θ = 3.01

x4

θ = 2.44

OR

Figure 4.10: (a) Logic circuit of the simplified morphology of WBCD dataset.

80

AND

OR

Comparator NOT

θ = 5.56

x1

x2

x4

θ = 5.74

θ = 36.21

θ = 7.41

θ = 84.19

x3

x5

θ = 25.08

θ = 79.11

θ = 31.28

θ = 33.60

OR

AND

Figure 4.10: (b) Logic circuit of the simplified morphology of BUPA dataset.

AND

OR

Comparator

x1

x2

x5

x7

θ = 0.32

θ = -0.14

θ = -0.82

θ = 0.20

Figure 4.10: (c)Logic circuit of the simplified morphology of IONO dataset.

81

Comparator

θ = 157.78

θ = 47.06

x1

x4

OR

Figure 4.10: (d)Logic circuit of the simplified morphology of PIMA dataset.

θ = 0.52

x1

Comparator

Figure 4.10: (e)Logic circuit of the simplified morphology of VOTE dataset.

4.5 Conclusion

In this paper, a hybrid model (Mr2DNM) by considering the feature redundancy and non-

linear interactions in a dendrite tree is used for classifying the practical problems with a

low computational cost. The mutual information-based Mr2 criterion can cut out redundant

features to provide an optimal feature subset for the training of DNM. DNM trained by

BP learning algorithm handles major classification work with the plastic mechanism and

sigmoid functions. In addition, the simplified morphology of the proposed model obtained

by training can be achieved via logic circuits to further decrease cost.

The contribution of study is summarized as follow: (1) an efficient hybrid classification

model (Mr2DNM) is proposed; (2) the simulation proves that a feature selection method

combined with a neuron model can obtain beneficial results; (3) to our knowledge, the

hybrid of feature selection method and single neuron model is a research area that still

needs to be explored deeply and provides an inspiring view; and (4) meanwhile, this study

advocates others to employ feature selection method to other neural network models for

82

reaching superior classification performance, and it can be expected that such hybridization

can avoid the negative impact brought by the redundancy features in the datasets and make

the performance of the model fully reflected.

83

Ta
bl

e
4.

3:
Pe

rf
or

m
an

ce
of

th
e

pr
op

os
ed

M
r2 D

N
M

fo
rfi

ve
da

ta
se

ts
.

D
at

as
et

N
F

#
R

ed
uc

tio
n(

%
)

O
pt

im
al

fe
at

ur
e

se
qu

en
ce

A
cc

ur
ac

y
(%

)
Ti

m
e

(×
10

3
s)

A
U

C

W
B

C
D

9
7

22
.2

2
F2

,F
6,

F1
,F

7,
F5

,F
3,

F8
96

.8
0

54
.4

0.
99

42
B

U
PA

6
5

16
.6

7
F5

,F
6,

F1
,F

4,
F3

72
.6

6
7.

1
0.

74
58

IO
N

O
34

8
76

.4
7

F5
,F

1,
F8

,F
4,

F3
,F

28
,F

7,
F1

4
90

.7
3

24
.6

0.
92

27
PI

M
A

8
7

12
.5

F2
,F

5,
F8

,F
6,

F4
,F

1,
F3

76
.8

0
33

.2
0.

81
98

V
O

T
E

16
6

62
.5

F4
,F

5,
F1

2,
F3

,F
14

,F
8

96
.5

7
10

.2
0.

97
79

84

Ta
bl

e
4.

4:
A

ve
ra

ge
cl

as
si

fic
at

io
n

ac
cu

ra
cy

(%
)o

bt
ai

ne
d

by
30

ru
ns

fo
ra

ll
co

m
pa

re
d

cl
as

si
fie

rs
.

D
at

as
et

O
ri

g
R

E
N

N
Fa

L
K

N
R

A
da

B
oo

st
M

ul
tiB

oo
st

IE
M

LP
M

r2 D
N

M
W

B
C

D
A

cc
ur

ac
y

(%
)

95
.2

8
96

.1
4

96
.2

8
94

.9
9

95
.8

5
96

.6
2

96
.8

0
R

an
k

6
4

3
7

5
2

1
B

U
PA

A
cc

ur
ac

y
(%

)
71

.5
9

71
.8

8
71

.0
1

71
.8

8
71

.5
9

71
.5

9
72

.6
6

R
an

k
5

2.
5

7
2.

5
5

5
1

IO
N

O
A

cc
ur

ac
y

(%
)

91
.1

7
86

.6
1

86
.6

1
91

.1
7

91
.7

4
89

.2
3

90
.7

3
R

an
k

2.
5

6.
5

6.
5

2.
5

1
5

4
PI

M
A

A
cc

ur
ac

y
(%

)
75

.3
9

76
.6

9
75

.9
1

75
.2

6
75

.1
3

78
.0

7
76

.8
0

R
an

k
5

3
4

6
7

1
2

V
O

T
E

A
cc

ur
ac

y
(%

)
94

.7
1

94
.7

1
96

.5
5

94
.4

8
94

.4
8

95
.9

5
96

.5
7

R
an

k
4.

5
4.

5
2

6.
5

6.
5

3
1

A
.R

an
k

4.
6

4.
1

4.
5

4.
9

4.
9

3.
2

1.
8

85

Chapter 5

Conclusion

Computational Intelligence (CI) is a new term that encompasses three areas: neural net-

works, fuzzy systems, and evolutionary computational research that have had widespread

and far-reaching implications. But computational intelligence can make the three merge

into an organic whole, so that the advantages can be complemented, so that the integrated

system will be more effective than a single technology, and can achieve greater results.

Emerging computing intelligence expands the traditional computing model and intelligent

theory. It is suitable for complex systems that cannot be accurately described by mathe-

matical models. It has been widely used in the field of mechanical engineering and has

achieved certain effects. However, computational intelligence still has many shortcomings

in theory and practical applications (such as learning problems of neural networks), which

restricts the practicality of computational intelligence, and its improvement has yet to be

further efforts by researchers.

86

Bibliography

[1] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony

of cooperating agents,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, vol. 26, no. 1, pp. 29–41, 1996.

[2] T. Stützle and H. Hoos, “Max-min ant system and local search for the traveling sales-

man problem,” in Evolutionary Computation, 1997., IEEE International Conference

on. IEEE, 1997, pp. 309–314.

[3] K. Mäkisara, O. Simula, J. Kangas, and T. Kohonen, Artificial neural networks.

Elsevier, 2014, vol. 2.

[4] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–353, 1965.

[5] T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary computation: Comments

on the history and current state,” Evolutionary computation, IEEE Transactions on,

vol. 1, no. 1, pp. 3–17, 1997.

[6] J. C. Bezdek, “What is computational intelligence?” USDOE Pittsburgh Energy

Technology Center, PA (United States); Oregon State . . . , Tech. Rep., 1994.

[7] R. I. MARKS, “Intelligence: Computational versus artificial,” IEEE Trans. Neural

Networks, vol. 4, no. 5, pp. 737–739, 1993.

[8] J. C. Bezdek, “Ieee fellows-class of 2015 [society briefs],” Computational Intelli-

gence Magazine, IEEE, vol. 10, no. 2, pp. 7–17, 2015.

87

[9] W. Pedrycz, A. Sillitti, and G. Succi, “Computational intelligence: an introduction,”

in Computational Intelligence and Quantitative Software Engineering. Springer,

2016, pp. 13–31.

[10] A. P. Engelbrecht, Computational intelligence: an introduction. John Wiley &

Sons, 2007.

[11] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,” Theoretical

computer science, vol. 344, no. 2, pp. 243–278, 2005.

[12] C. Blum, “Ant colony optimization: Introduction and recent trends,” Physics of Life

reviews, vol. 2, no. 4, pp. 353–373, 2005.

[13] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimization,” Computational

Intelligence Magazine, IEEE, vol. 1, no. 4, pp. 28–39, 2006.

[14] W. Xiang and H. Lee, “Ant colony intelligence in multi-agent dynamic manufactur-

ing scheduling,” Engineering Applications of Artificial Intelligence, vol. 21, no. 1,

pp. 73–85, 2008.

[15] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in

Proceedings of the sixth international symposium on micro machine and human sci-

ence, vol. 1. New York, NY, 1995, pp. 39–43.

[16] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of Machine Learning.

Springer, 2010, pp. 760–766.

[17] G. Beni, “From swarm intelligence to swarm robotics,” in Swarm robotics.

Springer, 2005, pp. 1–9.

[18] J. Halloy, G. Sempo, G. Caprari, C. Rivault, M. Asadpour, F. Tâche, I. Said,

V. Durier, S. Canonge, J. M. Amé et al., “Social integration of robots into groups

of cockroaches to control self-organized choices,” Science, vol. 318, no. 5853, pp.

1155–1158, 2007.

88

[19] R. S. Parpinelli and H. S. Lopes, “New inspirations in swarm intelligence: a survey,”

International Journal of Bio-Inspired Computation, vol. 3, no. 1, pp. 1–16, 2011.

[20] C. Darwin, The Origins of Species by Means of Natural Selection, Or the Preserva-

tion of Favoured Races in the Struggle for Life. Kartindo. com, 1888.

[21] H.-G. Beyer, The theory of evolution strategies. Springer Science & Business

Media, 2013.

[22] Y. Hu, K. Liu, X. Zhang, L. Su, E. Ngai, and M. Liu, “Application of evolutionary

computation for rule discovery in stock algorithmic trading: A literature review,”

Applied Soft Computing, vol. 36, pp. 534–551, 2015.

[23] W. Gong, Z. Cai, and D. Liang, “Adaptive ranking mutation operator based differ-

ential evolution for constrained optimization,” Cybernetics, IEEE Transactions on,

vol. 45, no. 4, pp. 716–727, 2015.

[24] J. H. Holland, “Genetic algorithms and the optimal allocation of trials,” SIAM Jour-

nal on Computing, vol. 2, no. 2, pp. 88–105, 1973.

[25] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-convergence in dy-

namic environments,” Evolutionary Computation, IEEE Transactions on, vol. 10,

no. 4, pp. 459–472, 2006.

[26] T. Stützle and H. H. Hoos, “Max–min ant system,” Future generation computer

systems, vol. 16, no. 8, pp. 889–914, 2000.

[27] L. J. Fogel, “Artificial intelligence through a simulation of evolution,” in Proc. of the

2nd Cybernetics Science Symp., 1965, 1965.

[28] D. B. Fogel, L. J. Fogel, and J. W. Atmar, “Meta-evolutionary programming,” in

Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems &

Computers. IEEE, 1991, pp. 540–545.

89

[29] J. R. Koza, Genetic programming: A paradigm for genetically breeding populations

of computer programs to solve problems. Stanford University, Department of Com-

puter Science Stanford, CA, 1990, vol. 34.

[30] G. Beni and J. Wang, “Swarm intelligence in cellular robotic systems,” in Robots

and biological systems: towards a new bionics? Springer, 1993, pp. 703–712.

[31] A. Gajardo, A. Moreira, and E. Goles, “Complexity of langton’s ant,” Discrete Ap-

plied Mathematics, vol. 117, no. 1-3, pp. 41–50, 2002.

[32] L. Schulman and P. Seiden, “Statistical mechanics of a dynamical system based on

conway’s game of life,” Journal of Statistical Physics, vol. 19, no. 3, pp. 293–314,

1978.

[33] M. M. Millonas, “Swarms, phase transitions, and collective intelligence,” arXiv

preprint adap-org/9306002, 1993.

[34] M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-heuristic,” in

Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No.

99TH8406), vol. 2. IEEE, 1999, pp. 1470–1477.

[35] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Evolutionary Com-

putation Proceedings, 1998. IEEE World Congress on Computational Intelligence.,

The 1998 IEEE International Conference on. IEEE, 1998, pp. 69–73.

[36] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning

particle swarm optimizer for global optimization of multimodal functions,” Evolu-

tionary Computation, IEEE Transactions on, vol. 10, no. 3, pp. 281–295, 2006.

[37] W. Zhang, W. Shi, and J. Zhuo, “Bdi-agent-based quantum-behaved pso for ship-

board power system reconfiguration,” International Journal of Computer Applica-

tions in Technology, vol. 55, no. 1, pp. 4–11, 2017.

[38] J. Kennedy, “Bare bones particle swarms,” in Proceedings of the 2003 IEEE Swarm

Intelligence Symposium. SIS’03 (Cat. No. 03EX706). IEEE, 2003, pp. 80–87.

90

[39] Z. Yi, Z. Xusheng, and L. Guoyong, “Hybrid particle swarm optimization based on

neighborhood space [j],” Journal of East China Jiaotong University, vol. 3, 2013.

[40] K. E. Parsopoulos and M. N. Vrahatis, “Particle swarm optimization method in mul-

tiobjective problems,” in Proceedings of the 2002 ACM symposium on Applied com-

puting. ACM, 2002, pp. 603–607.

[41] N. K. Jerne, “Towards a network theory of the immune system,” in Annales

d’immunologie, vol. 125, no. 1-2, 1974, pp. 373–389.

[42] S. Tonegawa, “Somatic generation of antibody diversity,” Nature, vol. 302, no. 5909,

pp. 575–581, 1983.

[43] P. Matzinger, “The danger model: a renewed sense of self,” Science, vol. 296, no.

5566, pp. 301–305, 2002.

[44] D. Dasgupta, Z. Ji, F. A. González et al., “Artificial immune system (ais) research in

the last five years.” in IEEE Congress on Evolutionary Computation (1), 2003, pp.

123–130.

[45] S. A. Hofmeyr and S. Forrest, “Architecture for an artificial immune system,” Evo-

lutionary computation, vol. 8, no. 4, pp. 443–473, 2000.

[46] M. J. Shlomchik, A. Marshak-Rothstein, C. B. Wolfowicz, T. L. Rothstein, and M. G.

Weigert, “The role of clonal selection and somatic mutation in autoimmunity,” Na-

ture, vol. 328, no. 6133, pp. 805–811, 1987.

[47] P. K. Harmer, P. D. Williams, G. H. Gunsch, and G. B. Lamont, “An artificial im-

mune system architecture for computer security applications,” Evolutionary compu-

tation, IEEE transactions on, vol. 6, no. 3, pp. 252–280, 2002.

[48] L. N. De Castro and F. J. Von Zuben, “Learning and optimization using the clonal

selection principle,” Evolutionary Computation, IEEE Transactions on, vol. 6, no. 3,

pp. 239–251, 2002.

91

[49] J. Timmis, M. Neal, and J. Hunt, “An artificial immune system for data analysis,”

Biosystems, vol. 55, no. 1, pp. 143–150, 2000.

[50] S. GAO, H. DAI, G. YANG, and Z. TANG, “A novel clonal selection algorithm

and its application to traveling salesman problem,” IEICE Trans. on fundamentals of

electronics, communications and computer science, vol. 90, no. 10, pp. 2318–2325,

2007.

[51] Y. Yu, L. Cunhua, G. Shangce, and T. Zheng, “Quantum interference crossover-

based clonal selection algorithm and its application to traveling salesman problem,”

IEICE Trans. on Information and Systems, vol. 92, no. 1, pp. 78–85, 2009.

[52] G. Shangce, T. Zheng, and J. ZHANG, “An improved clonal selection algorithm and

its application to traveling salesman problems,” IEICE Transactions on Fundamen-

tals of Electronics, Communications and Computer Sciences, vol. 90, no. 12, pp.

2930–2938, 2007.

[53] J. Timmis and M. Neal, “A resource limited artificial immune system for data anal-

ysis,” Knowledge-Based Systems, vol. 14, no. 3, pp. 121–130, 2001.

[54] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,”

Fuzzy sets and systems, vol. 45, no. 2, pp. 135–156, 1992.

[55] H. Li, S. Yin, Y. Pan, and H.-K. Lam, “Model reduction for interval type-2 takagi–

sugeno fuzzy systems,” Automatica, vol. 61, pp. 308–314, 2015.

[56] T. Zhou, S. Gao, J. Wang, C. Chu, Y. Todo, and Z. Tang, “Financial time series

prediction using a dendritic neuron model,” Knowledge-Based Systems, vol. 105,

pp. 214–224, 2016.

[57] J. Ji, S. Gao, J. Cheng, Z. Tang, and Y. Todo, “An approximate logic neuron model

with a dendritic structure,” Neurocomputing, vol. 173, pp. 1775–1783, 2016.

[58] H. Chen, S. Li, Q. Shi, D. Shen, and S. Gao, “Multi-valued neural network trained

by differential evolution for synthesizing multiple-valued functions,” in Information

92

Science and Control Engineering (ICISCE), 2015 2nd International Conference on.

IEEE, 2015, pp. 332–335.

[59] S. Gao, J. Zhang, X. Wang, and Z. Tang, “Multi-layer neural network learning algo-

rithm based on random pattern search method,” International Journal of Innovative

Computing, Information and Control, vol. 5, no. 2, pp. 489–502, 2009.

[60] C. Vairappan, H. Tamura, S. Gao, and Z. Tang, “Batch type local search-based adap-

tive neuro-fuzzy inference system (anfis) with self-feedbacks for time-series predic-

tion,” Neurocomputing, vol. 72, no. 7, pp. 1870–1877, 2009.

[61] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector

machines,” IEEE Intelligent Systems and Their Applications, vol. 13, no. 4, pp. 18–

28, 1998.

[62] D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, and B. Baesens,

“Classification with ant colony optimization,” IEEE Transactions on Evolutionary

Computation, vol. 11, no. 5, pp. 651–665, 2007.

[63] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an ant colony

optimization algorithm,” IEEE Transactions on Evolutionary Computation, vol. 6,

no. 4, pp. 321–332, 2002.

[64] S. Gao, Y. Wang, J. Cheng, Y. Inazumi, and Z. Tang, “Ant colony optimization with

clustering for solving the dynamic location routing problem,” Applied Mathematics

and Computation, vol. 285, pp. 149–173, 2016.

[65] Y. Wang, Z. Xu, J. Sun, F. Han, Y. Todo, and S. Gao, “Ant colony optimization

with neighborhood search for dynamic tsp,” in International Conference in Swarm

Intelligence. Springer, 2016, pp. 434–442.

[66] S. Gao, W. Wang, H. Dai, F. Li, and Z. Tang, “Improved clonal selection algorithm

combined with ant colony optimization,” IEICE transactions on information and

systems, vol. 91, no. 6, pp. 1813–1823, 2008.

93

[67] F. E. Otero, A. A. Freitas, and C. G. Johnson, “Inducing decision trees with an ant

colony optimization algorithm,” Applied Soft Computing, vol. 12, no. 11, pp. 3615–

3626, 2012.

[68] ——, “A new sequential covering strategy for inducing classification rules with ant

colony algorithms,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 1,

pp. 64–76, 2013.

[69] Z. Liang, J. Sun, Q. Lin, Z. Du, J. Chen, and Z. Ming, “A novel multiple rule sets data

classification algorithm based on ant colony algorithm,” Applied Soft Computing,

vol. 38, pp. 1000–1011, 2016.

[70] K. Fukunaga and R. R. Hayes, “Effects of sample size in classifier design,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 8, pp. 873–

885, 1989.

[71] J. Wang, Y. Zhou, Y. Wang, J. Zhang, C. P. Chen, and Z. Zheng, “Multiobjective

vehicle routing problems with simultaneous delivery and pickup and time windows:

formulation, instances, and algorithms,” IEEE Transactions on Cybernetics, vol. 46,

no. 3, pp. 582–594, 2016.

[72] S. Gao, C. Vairappan, Y. Wang, Q. Cao, and Z. Tang, “Gravitational search algorithm

combined with chaos for unconstrained numerical optimization,” Applied Mathe-

matics and Computation, vol. 231, pp. 48–62, 2014.

[73] J. Wang, J. Liao, Y. Zhou, and Y. Cai, “Differential evolution enhanced with mul-

tiobjective sorting-based mutation operators,” IEEE Transactions on Cybernetics,

vol. 44, no. 12, pp. 2792–2805, 2014.

[74] Y. Cai and J. Wang, “Differential evolution with neighborhood and direction in-

formation for numerical optimization,” IEEE Transactions on Cybernetics, vol. 43,

no. 6, pp. 2202–2215, 2013.

94

[75] G. P. Zhang, “Neural networks for classification: a survey,” IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 30, no. 4,

pp. 451–462, 2000.

[76] J. Cheng, J. Cheng, M. Zhou, F. Liu, S. Gao, and C. Liu, “Routing in internet of ve-

hicles: A review,” IEEE Transactions on Intelligent Transportation Systems, vol. 16,

no. 5, pp. 2339–2352, 2015.

[77] J. Cheng, C. Liu, M. Zhou, Q. Zeng, and A. Ylä-Jääski, “Automatic composition of

semantic web services based on fuzzy predicate petri nets,” IEEE Transactions on

Automation Science and Engineering, vol. 12, no. 2, pp. 680–689, 2015.

[78] S. Gao, S. Song, J. Cheng, Y. Todo, and M. Zhou, “Incorporation of solvent effect

into multi-objective evolutionary algorithm for improved protein structure predic-

tion,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, DOI

10.1109/TCBB.2017.2705094, 2017.

[79] L. Yu and H. Liu, “Efficient feature selection via analysis of relevance and redun-

dancy,” Journal of Machine Learning Research, vol. 5, no. Oct, pp. 1205–1224,

2004.

[80] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information cri-

teria of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[81] J. R. Quinlan, “Improved use of continuous attributes in c4.5,” Journal of Artificial

Intelligence Research, vol. 4, pp. 77–90, 1996.

[82] V. N. Vapnik, “The nature of statistical learning theory, ser. statistics for engineering

and information science,” New York: Springer, vol. 21, pp. 1003–1008, 2000.

[83] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial Intelli-

gence, vol. 97, no. 1-2, pp. 273–324, 1997.

95

[84] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Jour-

nal of Machine Learning Research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[85] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset selection

problem,” in Machine Learning Proceedings 1994. Elsevier, 1994, pp. 121–129.

[86] P. Langley, “Selection of relevant features in machine learning,” in Proceedings of

the AAAI Fall symposium on relevance, vol. 184, 1994, pp. 245–271.

[87] C. Ding and H. Peng, “Minimum redundancy feature selection from microarray

gene expression data,” Journal of Bioinformatics and Computational Biology, vol. 3,

no. 02, pp. 185–205, 2005.

[88] W. Shang, H. Huang, H. Zhu, Y. Lin, Y. Qu, and Z. Wang, “A novel feature selection

algorithm for text categorization,” Expert Systems with Applications, vol. 33, no. 1,

pp. 1–5, 2007.

[89] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR,

1994.

[90] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: A tutorial,”

Computer, vol. 29, no. 3, pp. 31–44, 1996.

[91] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks::

The state of the art,” International Journal of Forecasting, vol. 14, no. 1, pp. 35–62,

1998.

[92] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[93] R. N. Yadav, P. K. Kalra, and J. John, “Time series prediction with single multiplica-

tive neuron model,” Applied Soft Computing, vol. 7, no. 4, pp. 1157–1163, 2007.

[94] R. Legenstein and W. Maass, “Branch-specific plasticity enables self-organization of

nonlinear computation in single neurons,” Journal of Neuroscience, vol. 31, no. 30,

pp. 10 787–10 802, 2011.

96

[95] C. Weber and S. Wermter, “A self-organizing map of sigma–pi units,” Neurocomput-

ing, vol. 70, no. 13, pp. 2552–2560, 2007.

[96] M. Minsky and S. Papert, “Perceptrons-expanded edition: An introduction to com-

putational geometry,” 1987.

[97] R. P. Costa and P. J. Sjöström, “One cell to rule them all, and in the dendrites bind

them,” Frontiers in Synaptic Neuroscience, vol. 3, p. 5, 2011.

[98] C. Koch, T. Poggio, and V. Torre, “Retinal ganglion cells: a functional interpretation

of dendritic morphology,” Phil. Trans. R. Soc. Lond. B, vol. 298, no. 1090, pp. 227–

263, 1982.

[99] ——, “Nonlinear interactions in a dendritic tree: localization, timing, and role in

information processing,” Proceedings of the National Academy of Sciences, vol. 80,

no. 9, pp. 2799–2802, 1983.

[100] C. Koch, “Computation and the single neuron,” Nature, vol. 385, no. 6613, p. 207,

1997.

[101] A. Destexhe and E. Marder, “Plasticity in single neuron and circuit computations,”

Nature, vol. 431, no. 7010, p. 789, 2004.

[102] A. Artola, S. Bröcher, and W. Singer, “Different voltage-dependent thresholds for

inducing long-term depression and long-term potentiation in slices of rat visual cor-

tex,” Nature, vol. 347, no. 6288, p. 69, 1990.

[103] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation of synaptic effi-

cacy by coincidence of postsynaptic aps and epsps,” Science, vol. 275, no. 5297, pp.

213–215, 1997.

[104] G. Bi and M. Poo, “Synaptic modifications in cultured hippocampal neurons: de-

pendence on spike timing, synaptic strength, and postsynaptic cell type,” Journal of

Neuroscience, vol. 18, no. 24, pp. 10 464–10 472, 1998.

97

[105] P. J. Sjöström, G. G. Turrigiano, and S. B. Nelson, “Rate, timing, and cooperativity

jointly determine cortical synaptic plasticity,” Neuron, vol. 32, no. 6, pp. 1149–1164,

2001.

[106] Z. Tang, H. Tamura, M. Kuratu, O. Ishizuka, and K. Tanno, “A model of the neuron

based on dendrite mechanisms,” Electronics and Communications in Japan (Part

III: Fundamental Electronic Science), vol. 84, no. 8, pp. 11–24, 2001.

[107] Z. Sha, L. Hu, Y. Todo, J. Ji, S. Gao, and Z. Tang, “A breast cancer classifier using a

neuron model with dendritic nonlinearity,” IEICE Transactions on Information and

Systems, vol. 98, no. 7, pp. 1365–1376, 2015.

[108] T. Jiang, S. Gao, D. Wang, J. Ji, Y. Todo, and Z. Tang, “A neuron model with synaptic

nonlinearities in a dendritic tree for liver disorders,” IEEJ Transactions on Electrical

and Electronic Engineering, vol. 12, no. 1, pp. 105–115, 2017.

[109] Y. Yu, Y. Wang, S. Gao, and Z. Tang, “Statistical modeling and prediction for tourism

economy using dendritic neural network,” Computational Intelligence and Neuro-

science, vol. 2017, 2017.

[110] W. Chen, J. Sun, S. Gao, J. Cheng, J. Wang, and Y. Todo, “Using a single dendritic

neuron to forecast tourist arrivals to japan,” IEICE Transactions on Information and

Systems, vol. 100, no. 1, pp. 190–202, 2017.

[111] Y. Todo, H. Tamura, K. Yamashita, and Z. Tang, “Unsupervised learnable neuron

model with nonlinear interaction on dendrites,” Neural Networks, vol. 60, pp. 96–

103, 2014.

[112] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Dendritic neuron

model with effective learning algorithms for classification, approximation, and pre-

diction,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30,

no. 2, pp. 601–614, 2019.

98

[113] H. Yu, X. Qian, Y. Yu, J. Cheng, Y. Yu, and S. Gao, “A novel mutual information

based ant colony classifier,” in Progress in Informatics and Computing (PIC), 2017

International Conference on. IEEE, 2017, pp. 61–65.

[114] C. Koch, Biophysics of computation: information processing in single neurons. Ox-

ford university press, 2004.

[115] K. Bache and M. Lichman, “Uci machine learning repository (http://archive. ics.

uci. edu/ml), university of california, school of information and computer science,”

Irvine, CA, 2013.

[116] D. Pham, S. Dimov, and Z. Salem, “Technique for selecting examples in inductive

learning,” in European symposium on intelligent techniques (ESIT 2000). Citeseer,

2000, pp. 119–127.

[117] S. H. S. A. Ubaidillah, R. Sallehuddin, and N. A. Ali, “Cancer detection using ar-

itifical neural network and support vector machine: a comparative study,” Jurnal

Teknologi, vol. 65, no. 1, pp. 73–81, 2013.

[118] M. R. Smith, T. Martinez, and C. Giraud Carrier, “An instance level analysis of data

complexity,” Machine Learning, vol. 95, no. 2, pp. 225–256, 2014.

[119] I. Tomek, “An experiment with the edited nearest-neighbor rule,” IEEE Transactions

on Systems, Man, and Cybernetics, vol. 6, pp. 448–452, 1976.

[120] N. Segata, E. Blanzieri, and P. Cunningham, “A scalable noise reduction technique

for large case-based systems,” in International Conference on Case-Based Reason-

ing. Springer, 2009, pp. 328–342.

[121] Y. Freund, R. E. Schapire et al., “Experiments with a new boosting algorithm,” in

Icml, vol. 96. Citeseer, 1996, pp. 148–156.

[122] G. I. Webb, “Multiboosting: A technique for combining boosting and wagging,”

Machine Learning, vol. 40, no. 2, pp. 159–196, 2000.

99

[123] J. Ji, S. Song, Y. Tang, S. Gao, Z. Tang, and Y. Todo, “Approximate logic neuron

model trained by states of matter search algorithm,” Knowledge-Based Systems, vol.

163, pp. 120–130, 2019.

100

Acknowledgements

This thesis was completed under the careful guidance of supervisor Prof. Tang and Asso-

ciate Prof. Gao at University of Toyama. My supervisor Prof. Tang’s profound theoretical

foundation, rich practical experience, and abiding realistic attitude towards academic study

have benefited me a lot. In addition, supervisor Prof. Tang’s pioneering and innovative

scholarly style, broad mind and sincerity are worthy of my lifelong learning. Associate

Prof. Gao solved many difficult problems for me in the experimental stage. His eloquent

teaching and eclectic ideas have helped me a lot.

Thanks to all the members of the Intelligent Information Systems Research Lab in

University of Toyama for their help and support in my studies, experimental research and

life.

I sincerely thank my parents for their most selfless and greatest love that they have

always given me. Their understanding and support are the driving force behind my constant

efforts and my source of strength.

On the occasion of the completion of this thesis, I would like to express my sincere

gratitude to the mentor and friends who have been caring for me for three years.

