
Improved Brain Storm Optimization Algorithms

for Optimization Problems

by

Yang Yu

A dissertation

submitted to the Graduate School of Innovative Life Science

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Engineering

University of Toyama

Gofuku 3190, Toyama-shi, Toyama 930-8555 Japan

2019

(Submitted December 16, 2019)

ii

Acknowledgements

I would like to show gratitude to the people following for their selfless help during my

research and study period. I could not gain so many fulfillments and accomplish my

thesis without their help and concern.

To Professor Zheng Tang, who brought me into a brilliant and gorgeous world of

artificial intelligence, by contacting this advanced subject, I expanded my vision and

enriched my knowledge.

To Associate Professor Shangce Gao, who guides me into particular researches

and teach me without reservation during my whole master period.

To all my research mates of the Intelligent Information System Research Lab in

University of Toyama, they gave me help and concern that making me very comfort-

able.

In particular, I would like to thank my parents, I appreciate all they have done

for me in my research period.

I would like to thank all the members of my family, for their unconditional love,

support, and encouragement through this process, through all my study process.

iii

Abstract

Brain storm optimization (BSO) is a swarm intelligence optimization algorithm which

is proven to have practical values in various fields. During these years, many modi-

fications have been facilitated to effectively improve BSO’s search performance. So

far, these modifications focus on improving the solution quality by applying different

clustering methods and learning strategies, in which the population diversity is often

neglected. However, in recent studies, BSO still suffers from sticking into stagnation

during exploitation phase, and lacks of flexibility and variety which makes a poor

search efficiency and robustness of BSO. Besides, the population diversity of BSO of-

ten falls into lower levels and deteriorates the solutions’ quality. Population diversity

plays a more significant role in designing optimization algorithm. A population that

maintains its diversity in a high level can easily obtain better solutions than the one

with low level of diversity. Therefore, in this thesis, I propose several improved brain

storm optimization algorithms and testify them on optimization problems. These

algorithms are introduced as follows.

(1) A novel method which incorporates BSO with chaotic local search (CLS)

has the purpose of alleviating this situation. Chaos has properties of randomicity

and ergodicity. These properties ensure CLS can explore every state of the search

space if the search time duration is long enough. The incorporation of CLS can

make BSO break the stagnation and keep the population’s diversity simultaneously,

thus realizing a better balance between exploration and exploitation. Twelve chaotic

maps are randomly selected for increasing the diversity of the search mechanism.

Experimental and statistical results based on 25 benchmark functions demonstrate

the superiority of the proposed method.

iv

(2) To alleviate the problem that BSO lacks of flexibility and variety, an adaptive

step length structure together with a success memory selection strategy are proposed

to be incorporated into BSO. This proposed method, adaptive step length based

on memory selection BSO, namely ASBSO, applies multiple step lengths to modify

the generation process of new solutions, thus supplying a flexible search according

to corresponding problems and convergent periods. The novel memory mechanism

which is capable of evaluating and storing the degree of improvements of solutions

is used to determine the selection possibility of step lengths. A set of 57 benchmark

functions are used to test ASBSO’s search ability, and four real-world problems are

adopted to show its application value. All these test results indicate the remarkable

improvement in solution quality, scalability and robustness of ASBSO.

(3) This paper proposes a control method that evaluates the population diversity

of BSO to improve its performance. Two diversity measures, which are known as

distance-based diversity and fitness-based diversity, are implemented to realize the

adaptation of algorithm parameters. The new algorithm is called multiple diversity-

driven BSO (MDBSO). Its performance is verified by CEC2017 benchmark function

suit and a neuron model training task. The results demonstrate the effectiveness and

efficiency of MDBSO.

The thesis is organized as follows: Chapter 1 gives a brief introduction about

the Swarm Intelligence (SI) algorithms. Chapter 2 briefly introduces the brain storm

optimization algorithm (BSO). Chapter 3 gives one of the modifications of BSO called

CBSO, which uses chaotic local search method to enhance the exploitation ability

of BSO. Then, in Chapter 4, an improved brain storm optimization with flexible

search length and memory-based selection (ASBSO) is introduced. In Chapter 5, I

propose a multiple diversity-driven brain storm optimization algorithm with adaptive

parameters (MDBSO). Finally, Chapter 6 gives some general conclusions of this thesis

and also points some valuable research trends.

v

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 A Brief History of Swarm Intelligence 1

2 Brain Storm Optimization (BSO) 4

2.1 Description of BSO . 4

3 CBSO: A Memetic Brain Storm Optimization with Chaotic Local

Search 6

3.1 Introduction . 6

3.2 Chaotic Maps . 8

3.3 Chaotic Local Search and CBSO . 11

3.4 Experiments and Statistical Test . 14

3.4.1 Performance between BSO and CBSO 16

3.4.2 CBSO Compared with Other Algorithms 18

3.4.3 Comparison on Real-World Problems 22

3.5 Discussion . 24

3.5.1 Population Diversity . 24

3.5.2 Computational Time Complexity 25

4 ASBSO: An Improved Brain Storm Optimization with Flexible Search

Length and Memory-based Selection 27

vi

4.1 Introduction . 27

4.2 ASBSO . 30

4.2.1 Motivation . 30

4.2.2 Multiple Step Lengths . 32

4.2.3 New Memory Mechanism . 33

4.3 Experimental Results . 39

4.3.1 Parameter Analysis . 42

4.3.2 Internal Comparison . 43

4.3.3 External Comparison . 44

4.3.4 Real World Optimization Problems 47

4.3.5 ASBSO vs. previous BSO variants 49

4.4 Discussion . 52

4.4.1 Comparison with 1/5 Success Rule 52

4.4.2 IMS vs. SFMS . 54

4.4.3 Computational Complexity . 54

5 A Multiple Diversity-driven Brain Storm Optimization Algorithm

with Adaptive Parameters 56

5.1 Introduction . 56

5.2 Multiple Diversity-driven BSO (MDBSO) 61

5.2.1 Diversity-driven Strategy . 61

5.2.2 Mutation Strategies . 63

5.2.2.1 BLX-α . 63

5.2.2.2 Gaussian Mutation 64

5.2.3 MDBSO . 65

5.3 Experimental Results . 67

5.3.1 Benchmark Function Test Suit 67

5.3.1.1 MDBSO vs. BSO Variants 67

5.3.1.2 MDBSO vs. GSA Variants 71

5.3.1.3 MDBSO vs. ABC Variants 74

vii

5.3.2 Artificial Neuron Network (ANN) Training Data Set 77

5.4 Discussion . 79

5.4.1 Analysis of Preset Parameters 79

5.4.1.1 Analysis of the Number of Clusters 80

5.4.1.2 Analysis of µ . 80

5.4.2 Analysis of Population Diversity 81

5.4.3 MDBSO with Fitness-based Grouping 82

5.4.4 Comparison with MIIBSO . 82

5.4.5 Computational Complexity . 83

6 Conclusion 86

viii

List of Figures

3.1 Histogram Distribution Graph of 12 Chaotic Maps with 105 Iterations. 12

3.2 Diagram of Eq. (3.13) in a 2-D space. 14

3.3 Convergence Graph of F9, F16 & F17. 18

3.4 Box and Whisker Diagram of F9, F16 & F17. 19

3.5 Population diversity of BSO and CBSO over D∗5000 FES on six bench-

mark functions. 23

4.1 Diagrams of F8 and F11 in CEC’13. 32

4.2 Box-and-Whisker diagrams of F4, F14, F22, F39, F43 and F48. 46

4.3 Convergence graphs of optimal solutions obtained by eight algorithms

on F4, F14, F22, F39, F43 and F48. 46

5.1 The functions of distance diversity and fitness diversity in MDBSO. . . 66

5.2 The box-and-whisker diagrams of optimal solutions obtained by seven

kinds of BSOs on F5, F12, F13, F23, F24, F26. 69

5.3 The convergence graphs of average best-so-far solutions obtained by

seven kinds of BSOs on F5, F12, F13, F23, F24, F26. 70

5.4 Population diversity on F12, F13, F23, and F24. 72

5.5 LC of Heart dataset trained by MDBSO. 77

5.6 The curves of distance diversity and fitness diversity of BSO on F12,

F13, F23 and F24. 80

5.7 The curves of distance diversity and fitness diversity of MDBSO on F12,

F13, F23 and F24. 80

ix

List of Tables

3.1 Experimental results of CEC’05 benchmark functions (F1-F25) using

BSO and CBSO. 17

3.2 Results obtained by the Wilcoxon test for algorithm CBSO. 18

3.3 Experimental results of CEC’05 (F1-F25) using CBSO, DE, CGSA-P

and WOA. 21

3.4 Adjusted p-values (FRIEDMAN). 21

3.5 Experimental results on real-world problems 24

4.1 Illustration of the flexible multiple search length strategy. 33

4.2 Traditional Success Memory . 34

4.3 Traditional Failure Memory . 34

4.4 New Success Memory (IMS) . 35

4.5 Friedman test result for H = 10, 20 and 30. 36

4.6 Experimental results of CEC’13 benchmark functions (F1-F28) using

BSO and ASBSO at D = 10 and D = 30. 37

4.7 Experimental results of CEC’13 benchmark functions (F1-F28) using

BSO and ASBSO at D = 50 and D = 100. 37

4.8 Results obtained by the Wilcoxon signed-rank test for ASBSO vs. BSO

on CEC’13. 38

4.9 Experimental results of CEC’17 benchmark functions (F29-F57) using

BSO and ASBSO at D = 10 and D = 30. 38

4.10 Experimental results of CEC’17 benchmark functions (F29-F57) using

BSO and ASBSO at D = 50 and D = 100. 39

x

4.11 Results obtained by the Wilcoxon signed-rank test for ASBSO vs. BSO

on CEC’17. 39

4.12 Experimental results of CEC’13 (F1-F28) using ASBSO, CGSA-M, MABC,

ABC, DE, WOA and SCA. 40

4.13 Experimental results of CEC’17 (F29-F57) using ASBSO, CGSA-M,

MABC, ABC, DE, WOA and SCA. 41

4.14 Adjusted p-values (FRIEDMAN). 45

4.15 Results obtained by the Wilcoxon signed-rank test for ASBSO vs. some

other typical algorithms. 45

4.16 Experimental results on real-world problems. 45

4.17 Experimental results of using ASBSO and BSO with 1/5 Success Rule

on CEC’13 and CEC’17 benchmark functions (F1-F57). 48

4.18 Results obtained by the Wilcoxon signed-rank test for ASBSO vs. BSO

with 1/5 Rule. 48

4.19 Experimental results of using ASBSO and SFMS on CEC’13 and CEC’17

benchmark functions (F1-F57). 49

4.20 Results obtained by the Wilcoxon signed-rank test for IMS vs. SFMS. 49

4.21 Experimental results of using ASBSO, BSOOS and GBSO on CEC’13

benchmark functions (F1-F28). 50

4.22 Experimental results of using ASBSO, BSOOS and GBSO on CEC’17

benchmark functions (F29-F57). 51

4.23 Results obtained by the Wilcoxon test for algorithm ASBSO vs. BSOOS

and GBSO. 52

5.1 The main parameters in BSO and MDBSO. 59

5.2 Experimental results of MDBSO versus BSO variants on CEC’17 bench-

mark functions (1). 69

5.3 Experimental results of MDBSO versus BSO variants on CEC’17 bench-

mark functions (2). 70

xi

5.4 Experimental results of MDBSO versus GSA variants on CEC’17 bench-

mark functions (1). 72

5.5 Experimental results of MDBSO versus GSA variants on CEC’17 bench-

mark functions (2). 73

5.6 Experimental results of MDBSO versus ABC variants on CEC’17 bench-

mark functions (1). 74

5.7 Experimental results of MDBSO versus ABC variants on CEC’17 bench-

mark functions (2). 75

5.8 Details of the classification data sets. 75

5.9 Details of the function approximation data sets. 75

5.10 Details of the prediction data sets. 75

5.11 Reasonable combination of three parameters for nine tested problems,

respectively. 76

5.12 Experimental results of DNM training by MDBSO and BSO, respectively. 76

5.13 Wilcoxon rank-sum test results of different numbers of clusters in MDBSO. 79

5.14 Wilcoxon rank-sum test results of different numbers of µ in MDBSO. . 79

5.15 Wilcoxon rank-sum test result of MDBSO vs. MDBSO-FG. 82

5.16 Experimental results of MDBSO versus MIIBSO on CEC’17 benchmark

functions. 84

1

Chapter 1

Introduction

1.1 A Brief History of Swarm Intelligence

In recent years, various swarm intelligence (SI) algorithms have been proposed for

solving diverse optimization problems. The main property of this kind of algorithms is

that they mimic the social behaviors of nature creatures. As far as we know, it is full of

wisdom and intelligence when animals are hunting, foraging and navigating in nature.

Survival instincts drive them to improve search ability for creating more suitable living

environment. Their behaviors gradually arouse great interests among researchers in

the field of artificial intelligence [1]. Particle swarm optimization (PSO) which is one

of the most popular SI algorithms is modeled based on the social behaviors of flocks

of birds and schools of fish [2]. It supposes that a swarm of particles fly randomly

in a multidimensional search space. Each of them represents a candidate solution

for the optimization task. Their trajectories change according to the best position

of the individual and the global best position of the whole population. Particles

can effectively search for better solutions by taking advantage of this mechanism

[3, 4, 5, 6, 7, 8, 9, 10, 11].

In addition to PSO, more and more SI optimization algorithms progressively spring

into our view. Ant colony optimization (ACO) [12], fireworks algorithm (FA) [13],

gravitational search algorithm (GSA) [14], artificial bee colony algorithm (ABC) [15]

and brain storm optimization (BSO) [16] are some powerful optimization algorithms.

These SI algorithms can be roughly divided into three categories according to the

2

types of behaviors they take inspiration from [17, 18, 19].

The first category is called bio-inspired. Classical algorithms in this category such

as ACO and ABC emulate the foraging behaviors of ant colony and bee colony, re-

spectively. In ACO, individuals utilize a special chemical substance called pheromone

to mark their search trajectory. The trajectory with more pheromone is considered as

a preferred path to the global optimum, and further attracts other individuals [11].

ABC simulates the organizational structure of bees to categorize individuals into

three groups: employed artificial bees, onlookers and scouts. The employed artificial

bees represent candidate solutions and the onlookers are responsible for sharing the

information of employed bees. After these steps, scouts are sent to diverse search area

for discovering new solutions. This sophisticated idea of giving different functions to

individuals makes the search procedure of ABC efficient and effective [15].

The second category can be named as physics-inspired. The algorithms belong to

this category such as FA and GSA straightly take inspiration from physical phenom-

ena or laws. For examples, the explosion processes of fireworks are utilized to design

the search mechanism of FA, in which the distribution of individuals is analogized by

the sparks in firework explosion. In GSA, the law of gravity is used to depict the rela-

tionship among individuals in search space. They are attracted by each other and the

gravitational force is directly proportional to their fitness and inversely proportional

to the square of the distance between them. The performance of GSA in different

kinds of problems implies its powerful search ability [20, 21, 22].

The last category is called sociology-inspired. The major property of the algo-

rithms in this category is that they are inspired by human social behaviors. BSO is

very notable among SI algorithms and has already achieved great success in various

applications [23]. Its operations of generating new individuals adopt the brainstorm-

ing process in human social behaviors. In reality, a group of people should be called

together to figure out a solution when we encounter problems that can not be solved

alone. This brainstorming process needs repetitive discussions and debates. BSO is

enlightened by this feature and obtains an elaborated search process. At the rudimen-

tary stage of optimization, individuals are divided into multiple clusters, then each

3

cluster selects the best individual as the center. BSO has four independent individual

generation methods and the selections of corresponding method are depending on

three preset parameters p1, p2 and p3. p1 decides the usage of one or two clusters. In

the condition of using one cluster, p2 is adopted to choose the center or one random

individual in the selected cluster. Otherwise, when two clusters are selected, p3 deter-

mines the adoption of two centers or two random individuals. Being beneficial from

this sophisticated selection mechanism, BSO can avoid sticking into local optima and

outperform other optimization algorithms when dealing with multimodal problems

[23]. However, the inherent feature of BSO that can not maintain good diversity re-

duces its robustness and deteriorates the performance of solving different problems. In

the meanwhile, the parameter adjustment is very important in designing algorithms

but it generally costs much time to find an acceptable parameter set. Therefore, more

and more researchers prefer making parameters adaptive or self-adaptive to enhance

the robustness and performance of algorithms [24, 25, 26, 27, 28].

4

Chapter 2

Brain Storm Optimization (BSO)

2.1 Description of BSO

BSO is an SI algorithm which mimics the human brainstorming in social behaviors.

Algorithm 3 gives its optimization procedure. The main difference between BSO

and other SI algorithms is that BSO divides the population into n clusters and the

individual with the best fitness in each cluster is selected as the center. Then, Xselected

is selected to generate new individuals according to the process controlled by p1, p2

and p3. If a random number is smaller than p1 (= 0.8 [16]), one cluster will be

selected. Otherwise, two clusters are applied to generate new individuals. In the

condition of using one cluster, p2 (= 0.4 [16]) decides the usage of the center or

one random individual in the selected cluster. In addition, p3 makes the centers

and random individuals in two selected clusters have equal chance to participate in

generating new individuals. Besides, BSO has another parameter p0 to control the

operation that replaces one cluster center by a randomly generated individual to avoid

premature convergence. Finally, the population is updated based on the elite survival

rule, i.e., the old individual will be replaced by the generated individual when the old

one’s fitness is worse. The mutation operator of BSO is shown as:

Xgenerated = Xselected + ξ ·N(0, 1) (2.1)

5

Algorithm 1: Flowchart of BSO.

Randomly generate a population with N individuals;
Calculate the fitness of each individual;
while maximum number of function evaluations is not reached do

Use k-means to divide N individuals into n clusters;
Choose the best individual in each cluster as the center;
if random(0, 1) < p0 = 0.2 then

replace one cluster center by a randomly generated individual
end
if random(0, 1) < p1 = 0.8 then

select one cluster;
if random(0, 1) < p2 = 0.4 then

choose the cluster center as Xselected

else
randomly choose an individual in the cluster as Xselected

end

else
randomly select two clusters;
if random(0, 1) < p3 = 0.5 then

choose the combination of two centers as Xselected

else
choose the combination of two randomly selected individuals in
two clusters as Xselected

end

end
Generate new individual by adding step length generated by Eqs. (2.1)
and (2.2) to Xselected;

if the new individual is better than the old one then
replace the old individual

end

end

where Xselected and Xgenerated are the selected and newly generated individuals, re-

spectively. N(0, 1) is the Gaussian distribution with mean 0 and variance 1. ξ is a

search step length which is calculated by Eq. (2.2).

ξ = logsig((0.5 ∗ iterationmax − t)/k) · rand (2.2)

where logsig() means a logarithmic sigmoid transfer function, and its interval is (0, 1).

iterationmax and t are the maximum iteration and current iteration count, respec-

tively. k (= 20 [16]) is a scale factor to control the slope of logsig() function.

6

Chapter 3

CBSO: A Memetic Brain Storm
Optimization with Chaotic Local
Search

3.1 Introduction

Compared to deterministic algorithms, meta-heuristic algorithms have much faster

development speed in the last few decades. Deterministic algorithms usually start

with a similar initial point and get same answers during iterations. This behavior

easily results in local optimal entrapment. In contrast meta-heuristic algorithms apply

stochastic operators to get start with a random initialization which can avoid local

solutions [29]. Besides the stochasticity, meta-heuristic algorithms also have other

properties such as they are approximate, usually non-deterministic and not problem-

specific. These properties ensure that meta-heuristic algorithms can freely develop

and have various classifications. According to the properties, they can be classified

as follows.

(1) Local search vs. Global search

(2) Single-solution vs. Population-based

(3) Hybridization and memetic algorithms

(4) Parallel meta-heuristics

7

(5) Nature-inspired meta-heuristics

Global search and local search in the first classification usually play a role in

controlling the balance between exploration and exploitation [30]. The research of

adjusting the balance is very important for the modification of meta-heuristic algo-

rithms. In recent years, many attempts have been done and the effect is remarkable,

among which the memetic algorithm (MA) has achieved great successes[27]. MA is a

combination of evolutionary algorithms with local search. The core concept of MAs

is that implementing local search with global optimization algorithm to improve the

quality of individuals. Memes refers to the local search strategies such as constructive

methods and local refinement. Chaotic local search is an effective strategy that can

accelerate convergence speed and improve solution quality in the exploitation phase

[31, 32, 33]. Chaos has some properties such as ergodicity and randomicity [34].

Its unpredictable dynamic mechanism endows the meta-heuristic algorithms with the

ability of avoiding trapping into local optimal solutions. It is the motivation that BSO

equipped with chaotic local search to enhance its search ability and break stagnation

in the exploitation phase.

There are many methods to implement chaos into meta-heuristic algorithms. Be-

sides the chaotic search mechanism, replacing the random variables is one main cat-

egory. In [31], it uses sequences generated by chaotic maps (SGCMs) to replace the

ones generated by random number generators (RNGs) in evolutionary algorithms.

The experiments demonstrated that using chaotic maps instead of RNGs could get

much better performance. Using chaotic sequences in population initialization, selec-

tion procedure, crossover and mutation [35, 36] operations can influence the whole

optimization procedure and make complex effects. On the other hand, CLS is usually

applied to the current global best agent and generates a new one. If the new agent

is better than the current best, then replaces it to enter the next iteration. Gao [21]

used both SGCMs and CLS into gravitational search algorithm (GSA) and the results

showed that CLS was better than SGCMs.

The implementations of CLS have been greatly developed in recent years. In

8

[37], the mechanism of CLS is static which is exhibited in the generation of chaotic

sequence and adjustment of search radius. In [38], the initialization of chaotic se-

quences has been randomized. Some variations are introduced in search radius and

partial selection of the current global best agent.

In this paper, we propose a new incorporation method to combine BSO with CLS,

namely CBSO in order to balance the exploration and exploitation of the search.

Twenty-five benchmark functions are used to testify the performance of CBSO. Four

algorithms are compared and non-parametric statistical analyses suggest that CBSO

performs better than the compared algorithms. Additionally, population diversity and

time complexity are also discussed to further give some insights into the efficiency of

CBSO. The proposed method can make the new agent generated by CLS spread away

from the best agent in each cluster once the whole population stick into stagnation

during optimization procedure.

The paper is organized as follows. Section 3.2 gives a brief description of tradi-

tional BSO. Section 5.2 introduces 12 different chaotic maps and their distinct prop-

erties. The combination of chaotic local search and BSO will be explained in Section

5.3. Section 5.4 gives the experimental result and the implementation of statistical

analysis. A discussion regarding the computational time complexity and population

diversity is put forward in Section 3.5.

3.2 Chaotic Maps

Chaotic maps are used for generating chaotic sequences which are implemented into

CLS. We adopt twelve well-known one-dimensional chaotic maps.

(1) Logistic map: logistic map is known as a classic chaotic map that appears in

nonlinear dynamics of biological population, and it is expressed as follows:

zk+1 = µzk(1− zk) (3.1)

where zk is the kth chaotic number. zk ∈ (0, 1) under the conditions that the initial

9

z0 ∈ (0, 1) and z0 /∈ {0, 0.25, 0.5, 0.75, 1.0}. In our experiment, we set µ=4 and the

initial value z0=0.152.

(2) PWLCM map: PWLCM map with ergodic property is given by the following

equation:

zk+1 =

 zk/p, zk ∈ (0, p)

(1− zk)(1− p), zk ∈ [p, 1)
(3.2)

p is set to 0.7 and z0=0.002.

(3) Singer map: this chaotic function is formulated as:

zk+1 = µ(7.86zk − 23.31z2k + 28.75z3k − 13.302875z4k) (3.3)

Singer map exhibits chaotic behaviors when the parameter µ is set between 0.9 and

1.08. We set µ=1.073 and z0=0.152.

(4) Sine map: the sine map is a unimodal map and can be formulated as:

zk+1 =
a

4
sin(πzk) (3.4)

where a ∈ (0, 4], and z ∈ (0, 1). We set a = 4 and z0 = 0.152 in this experiment.

(5) Gaussian map: the following equation define Gaussian map:

zk+1 =

 0, zk = 0

(µ/zk)mod(1), zk 6= 0
(3.5)

where µ = 1 and z0 = 0.152.

(6) Tent map: tent map, which is similar to logistic map, displays some specific

chaotic effects. It can be defined by the following equation:

zk+1 =

 zk/β, 0 < zk ≤ β

(1− zk)/(1− β), β < zk ≤ 1
(3.6)

we set β = 0.4 and z0 = 0.152.

10

(7) Bernoulli map: this chaotic function is formulated as below:

zk+1 =

 zk/(1− λ), 0 < zk ≤ 1− λ

(zk − 1 + λ)/λ, 1− λ < zk < 1
(3.7)

we set λ = 0.4 and z0 = 0.152.

(8) Chebyshev map: the family of Chebyshev map is defined as follows:

zk+1 = cos(φ cos−1 zk) (3.8)

where the parameter φ is set to be 5 and the initial value z0=0.152.

(9) Circle map: the circle map is represented by the following equation:

zk+1 = zk + a− b

2π
sin(2πzk)mod(1) (3.9)

When a = 0.5 and b = 2.2, it can generate chaotic sequence in (0,1). We also set

z0 = 0.152 in the experiment.

(10) Cubic map: it is one of the most commonly used maps in generating chaotic

sequence in various applications. It can be formally defined by:

zk+1 = ρzk(1− z2k) (3.10)

we set ρ = 2.59 and z0 = 0.242.

(11) Sinusoidal map: this iterator is given below:

zk+1 = az2k sin(πzk) (3.11)

where a = 2.3 and we set initial value z0 = 0.74.

(12) ICMIC map: this map has infinite fixed points, and can be defined using:

zk+1 = sin(a/zk) (3.12)

11

where a ∈ (0,∞) is an adjustable parameter, and we set a = 70 in our experiment.

It should be pointed out that ICMIC generates sequence in (−1, 0) ∪ (0, 1) and if

the value locates in negative interval, we take its absolute value. Fig. 3.1 exhibits

the histogram distribution graph of 12 chaotic maps with 105 iterations. From these

figures, it is obvious that different chaotic maps give different distributions. For

example, Fig. 3.1 (c), the singer map has much higher possibility to generate values

in interval [7.7, 7.9]. While the sine map favors both ends between 0 to 1. It should

be emphasized that all these chaotic maps locate in the interval (0, 1) except the

sinusoidal map, it can only value from 0.48 to 0.92. This distinctive feature makes

sinusoidal map provide a different search range from others in chaotic local search.

According to these distinct dynamic properties, we adopt a simple random se-

lection strategy to perform the chaotic local search. It means all chaotic maps will

have equal probability to be selected into chaotic local search during the whole op-

timization procedure. By doing so, the algorithm complexity will decrease while the

diversity of chaotic local search dynamic will increase.

3.3 Chaotic Local Search and CBSO

Local search is a search strategy that aims to improve solution quality of individuals.

Most applications execute local search in a narrow range in which a better solution

can be promised. CLS method uses chaotic sequences that locate in the interval (0, 1)

as a variable to adjust the search range. Based on this, the equation of CLS is denoted

in Eq. (3.13).

Xj
newc

= Xj + (z(c, k)− a) · steplength (3.13)

where

� Xj is the selected individual in Eq. (2.1),

� Xj
newc

is a new individual generated by CLS,

12

(a) Logistic map (b) PWLCM map (c) Singer map

(d) Sine map (e) Gaussian map (f) Tent map

(g) Bernoulli map (h) Cshevheby map (i) Circle map

(j) Cubic map (k) Sinusoidal map (l) ICMIC map

Figure 3.1: Histogram Distribution Graph of 12 Chaotic Maps with 105 Iterations.

13

� z(c, k) is the chaotic variable randomly selected from chaotic sequences. c ∈

[1, 12] denotes the chaotic map we used among all twelve adopted maps, and k

is iteration number,

� a = 0.3 is an adjusted parameter,

� steplength is a vector whose length is the distance between Xj and the center

of mth cluster which the individual to be updated belongs to. The direction is

from the center pointing to Xj as defined in Eq. (3.14).

steplength = Xj − center(m) (3.14)

Fig. 4.1 is a diagram regarding the Eq. (3.14). It is worth noting that the value

of a is particularly set to 0.3 which makes (z(c, k) − a) ∈ (−0.3, 0.7). After the

calculation of Eq. (3.13), Xj may have a higher possibility to run away from the

center and we call this a diffusion, while a lower possibility to approach the center

which is called contraction. In other related researches such as [21], a often equals

to 0.5 and (z(c, k) − a) belongs to a balanced range in (−0.5, 0.5). It is a common

set and the algorithm will search in an equilibrium area by doing this. However in

CBSO, we aim to break the stagnation and improve population diversity, thus an

unbalanced search area is expected to accomplish our assumption.

By combining BSO with CLS, chaotic BSO (CBSO) is proposed. It should be

noted that CLS is implemented only when BSO optimization procedure comes into

a stagnation. The criteria is the best fitness of population stays the same for 50

iterations and then Eq. (3.13) will replace Eq. (2.1) to generate new individuals.

Stagnation means the individuals are too concentrated around the centers, resulting

in poor population diversity and make individuals lose search motivations. Therefore,

14

steplength

+ (z(c,k)-a)*steplength

centerX
j

X
j

diffusion contraction

X
j

0.7*steplength -0.3*steplength

Figure 3.2: Diagram of Eq. (3.13) in a 2-D space.

it is necessary to let individuals spread out and break current position’s balance.

Algorithm 4 exhibits the execution of CBSO.

3.4 Experiments and Statistical Test

CEC’05 [39] is introduced to compare the performance between BSO and CBSO on

optimization problems. There are 25 shifted or rotated benchmark problems which

include unimodal functions and multimodal functions with plentiful local minima.

These functions can test out the search capability of each algorithms objectively. We

conduct two experiments in this study. The first experiment exhibits the comparison

between BSO and CBSO. The second one compares CBSO with the differential evo-

lution (DE) [40], multiple chaos embedded gravitational search algorithm (CGSA-P)

[22] and whale optimization algorithm (WOA) [41]. Two non-parametric statistical

test methods, i.e., Wilcoxon test and Friedman test [42], are implemented to detect

the existence of significant difference among algorithms in two experiments respec-

tively. In these experiment contrasts, population number N is 100 and dimension of

problems D is 30. Each problem will be run for 30 times and maximum number of

function evaluation (FES) is set to D ∗ 5000. All the experiments are implemented

on a PC with 3.10GHz Intel(R) Core(TM) i5-4440 CPU and 8GB of RAM using

MATLAB R2013b.

15

Algorithm 2: Pseudo code of CBSO.

Randomly generate a population with N individuals;
Calculate the fitness of each individual;
while termination not reached do

Cluster N individuals into M clusters using k −means method;
Choose the best individual in each cluster as the center;
if random(0, 1) < p = 0.2 then

replace one cluster center by a randomly generated one
end
if random(0, 1) < p = 0.8 then

select one cluster with a probability;
if random(0, 1) < 0.4 then

choose the cluster center as Xj

else
choose a random selected individual in the cluster as Xj

end

else
randomly select two clusters;
if random(0, 1) < 0.5 then

choose the combination of two centers as Xj

else
choose the combination of two random selected individuals in two
clusters as Xj

end

end
if the criterion (the best fitness of population stays the same for 50
iterations) satisfied then

Generate new individual by adding random value to the selected Xj

by using Eq. (3.13) and calculate the new individual
else

Generate new individual by adding random value to the selected Xj

by using Eq. (2.1) and calculate the new individual
end
if new individual is better than old one then

replace the old individual
end

end

16

3.4.1 Performance between BSO and CBSO

First, we compare the performance between BSO and CBSO on CEC’05 benchmark

functions. From Table 3.1, an intuitive assessment can be drawn that CBSO gets bet-

ter solutions than BSO on most problems in terms of mean values. On a few problems,

BSO gets a draw with CBSO while only on F10 it is worse than CBSO. These exper-

imental results show the stability of the search ability of CBSO. A non-parametric

statistical test named Wilcoxon rank-sum test for multiproblem is conduced to iden-

tify the differences between BSO and CBSO and testify this stability for precision and

clarity. The procedure of Wilcoxon rank-sum test for detecting significant differences

between mean values of two samples can be shown as follows:

1. Calculate the differences Di between two algorithms on each problem.

2. These differences Di will be ranked by absolute values.

3. R+ is the sum rank for the problems in which the CBSO performs better than

BSO and R− is for the opposite. If Di = 0, the rank of it will be divided evenly

among the sums.

R+ =
∑

Di>0 rank(Di) + 0.5
∑

Di=0 rank(Di)

R− =
∑

Di<0 rank(Di) + 0.5
∑

Di=0 rank(Di)

4. T = min(R+, R−), according the value of T to calculate p-value and judge to

reject the null hypothesis of quality of mean values.

In Table 3.2, R+ of CBSO versus BSO is 258.0 and R− is only 42.0, and p-value

is calculated according to T = 42.0. It is obvious that the null hypothesis can be

rejected under whether significance level α = 0.05 or α = 0.1, indicating that CBSO

outperforms BSO statistically. This result adequately proved the efficiency of CBSO

and realize the aim of using CLS to improve solution quality .

17

Table 3.1: Experimental results of CEC’05 benchmark functions (F1-F25) using BSO
and CBSO.

Fun. Algorithm Mean Std Best Worst
F1 BSO -4.50E+02 3.50E-14 -4.50E+02 -4.50E+02

CBSO -4.50E+02 3.17E-14 -4.50E+02 -4.50E+02
F2 BSO -4.48E+02 9.36E-01 -4.49E+02 -4.46E+02

CBSO -4.48E+02 9.91E-01 -4.50E+02 -4.46E+02
F3 BSO 2.04E+06 7.23E+05 9.67E+05 4.99E+06

CBSO 1.78E+06 6.82E+05 5.53E+05 3.22E+06
F4 BSO 2.78E+04 8.05E+03 1.32E+04 4.71E+04

CBSO 2.05E+04 6.24E+03 8.35E+03 3.03E+04
F5 BSO 4.70E+03 1.22E+03 2.95E+03 7.98E+03

CBSO 4.15E+03 7.56E+02 2.91E+03 6.07E+03
F6 BSO 1.26E+03 9.48E+02 5.12E+02 4.29E+03

CBSO 9.48E+02 3.73E+02 4.19E+02 1.56E+03
F7 BSO 6.25E+03 3.25E+02 5.59E+03 6.92E+03

CBSO 6.05E+03 3.28E+02 5.10E+03 6.65E+03
F8 BSO -1.20E+02 9.90E-02 -1.20E+02 -1.19E+02

CBSO -1.20E+02 6.22E-02 -1.20E+02 -1.20E+02
F9 BSO -2.86E+02 1.27E+01 -3.09E+02 -2.64E+02

CBSO -2.86E+02 9.58E+00 -3.03E+02 -2.68E+02
F10 BSO -2.93E+02 8.79E+00 -3.07E+02 -2.72E+02

CBSO -2.91E+02 1.05E+01 -3.06E+02 -2.58E+02
F11 BSO 1.10E+02 2.51E+00 1.04E+02 1.13E+02

CBSO 1.09E+02 2.70E+00 1.04E+02 1.14E+02
F12 BSO 2.84E+04 1.99E+04 3.05E+03 1.04E+05

CBSO 2.43E+04 1.68E+04 2.51E+03 6.65E+04
F13 BSO -1.26E+02 1.05E+00 -1.28E+02 -1.24E+02

CBSO -1.26E+02 9.25E-01 -1.28E+02 -1.24E+02
F14 BSO -2.87E+02 3.78E-01 -2.88E+02 -2.86E+02

CBSO -2.87E+02 3.61E-01 -2.88E+02 -2.86E+02
F15 BSO 5.43E+02 7.94E+01 3.38E+02 6.24E+02

CBSO 5.15E+02 6.63E+01 3.67E+02 6.22E+02
F16 BSO 2.87E+02 1.34E+02 1.69E+02 6.20E+02

CBSO 2.63E+02 1.42E+02 1.60E+02 6.20E+02
F17 BSO 3.10E+02 1.57E+02 1.72E+02 6.75E+02

CBSO 2.87E+02 1.30E+02 1.69E+02 5.66E+02
F18 BSO 9.17E+02 1.36E+00 9.14E+02 9.19E+02

CBSO 9.16E+02 1.20E+00 9.14E+02 9.19E+02
F19 BSO 9.16E+02 1.07E+00 9.14E+02 9.19E+02

CBSO 9.16E+02 1.28E+00 9.14E+02 9.19E+02
F20 BSO 9.16E+02 1.36E+00 9.14E+02 9.19E+02

CBSO 9.16E+02 1.17E+00 9.14E+02 9.18E+02
F21 BSO 9.27E+02 1.37E+02 8.60E+02 1.26E+03

CBSO 8.87E+02 1.01E+02 8.60E+02 1.26E+03
F22 BSO 1.21E+03 1.99E+01 1.17E+03 1.25E+03

CBSO 1.22E+03 1.76E+01 1.18E+03 1.25E+03
F23 BSO 9.48E+02 1.38E+02 8.94E+02 1.30E+03

CBSO 8.95E+02 1.40E+00 8.94E+02 9.00E+02
F24 BSO 4.67E+02 6.23E+00 4.60E+02 4.75E+02

CBSO 4.60E+02 1.67E-12 4.60E+02 4.60E+02
F25 BSO 1.88E+03 4.44E+00 1.87E+03 1.89E+03

CBSO 1.88E+03 3.39E+00 1.87E+03 1.89E+03

18

Table 3.2: Results obtained by the Wilcoxon test for algorithm CBSO.
R+ R− p-value α = 0.05 α = 0.1

CBSO
258.0 42.0 0.001864 YES YES

vs. BSO

200

300

400

500

600

700

800

900

1000

1100

1200

200

300

400

500

600

700

800

900

1000

1100

1200

A
v
e
ra

g
e
 b

e
st

-s
o
-f

a
r

A
v
e
ra

g
e
 b

e
st

-s
o
-f

a
r

(c) Convergence Graph: F17

NFEs

NFEs

(a) Convergence Graph: F9

A
v
e
ra

g
e
 b

e
st

-s
o
-f

a
r

(b) Convergence Graph: F16

-300

-250

-200

-150

-100

-50

0

50

100

150

0 2.5 5 7.5 12.5 15

x 10
4

10

0 2.5 5 7.5 12.5 15

x 10
4

10

NFEs

0 2.5 5 7.5 12.5 15

x 10
4

10

BSO

CBSO

DE

CGSA-P

WOA

BSO

CBSO

DE

CGSA-P

WOA

BSO

CBSO

DE

CGSA-P

WOA

Figure 3.3: Convergence Graph of F9, F16 & F17.

3.4.2 CBSO Compared with Other Algorithms

In second experiment, CBSO is compared with some effective optimization algorithms

proposed in the last few years to further discuss the competitiveness of CBSO. DE is a

19

200

300

400

500

600

700

BSO CBSO DECGSA-P WOA

F
it

n
e
s
s

Solution Distribution

100

200

300

400

500

600

700

800

900

BSO CBSO DE WOA

Solution Distribution

F17

F
it

n
e
s
s

−300

−250

−200

−150

−100

−50
F9

F16

Solution Distribution

F
it

n
e
s
s

BSO CBSO DE WOACGSA-P

100

CGSA-P

Figure 3.4: Box and Whisker Diagram of F9, F16 & F17.

very effective and powerful evolution-based optimization algorithm which has shown

its splendid search ability in many scientific and engineering applications [40]. CGSA-

P is a newly proposed algorithm which combines gravitational search algorithm [22]

with chaotic local search. Three strategies of implementing chaos into local search

20

have been proposed and the parallelly embedding strategy is the most effective one.

WOA proposed in 2016 mimics the behavior of humpback whales, and it is also an

effective optimization algorithm [41]. In DE, we use the most efficient parameter set

F = 0.9, CR = 0.9 suggested in [43]. In these experiment contrasts, population

number N is 100 and dimension of problems D is 30. Each problem will be run for

30 times and maximum number of function evaluation (FES) is set to D ∗ 5000.

Table 3.3 shows the experiment results and another non-parametric statistical

test; Friedman test, is employed to detect the significance difference over a multiple

comparison. In Friedman test, the null hypothesis assumes that mean values are

the same among these algorithms and the alternative hypothesis negates the null

hypothesis. Friedman test ranks the algorithms in each problem and then calculates

the average rank that each algorithm obtained to estimate its performance. The

lower the rank is, the better the algorithm performs. Table 3.4 shows the rank of

each algorithm and we can see that CBSO gets the lowest value 1.4, which is the best

rank in this multiple comparison. We can also observe the adjusted p-value obtained

through the application of post hoc procedures in Table 3.4.

It should be emphasized that the multiple comparison test could cause probabil-

ity error which may lead to a Type I error [44]. For example, a multiple comparison

including n algorithms and level of significance α is 0.05. Then each single compar-

ison will have a probability of (1 − α) not to make Type I error, and for the whole

comparison, the probability is (1 − α)(n−1). On the other hand, when n = 10, the

reliability for a multiple comparison is only about 60% and it is apparent unaccept-

able [45]. Post hoc procedures are used to adjust p-values for avoiding Type I error.

The Bonferroni-Dunn procedure, the Holm procedure and the Hochberg procedure

are commonly used methods for adjusting p-values and the description of these pro-

cedures can be found in [45]. It also should be noticed that post hoc methods are

conservative and adjusted values are usually higher than real ones. In Table 3.4,

regardless the unadjusted p-value or the adjusted p-value proves the significant dif-

ference of CBSO comparing with DE, CGSA-P and WOA at the significance level of

0.05. Combining the comparison with BSO in Table 3.2, we can draw a conclusion

21

that CBSO performs better than all these algorithms.

Table 3.3: Experimental results of CEC’05 (F1-F25) using CBSO, DE, CGSA-P and
WOA.

Algorithm F1 F2 F3 F4 F5
CBSO -4.50E+02 ± 3.17E-14 -4.48E+02 ± 9.91E-01 1.78E+06 ± 6.82E+05 2.05E+04 ± 6.24E+03 4.15E+03 ± 7.56E+02
DE -4.42E+02 ± 3.37E+00 4.34E+03 ± 1.25E+03 3.98E+07 ± 9.47E+06 8.96E+03 ± 2.16E+03 3.25E+03 ± 5.88E+02
CGSA-P -4.50E+02 ± 1.66E-01 1.64E+04 ±9.92E+02 1.62E+07 ±1.16E+07 5.34E+04 ±1.07E+04 1.87E+04 ±8.68E+02
WOA -4.44E+02±9.86E+00 6.01E+04 ± 9.74E+03 3.67E+07 ± 1.30E+07 1.43E+05 ± 4.58E+04 1.78E+04 ± 3.54E+03

F6 F7 F8 F9 F10
CBSO 9.48E+02 ± 3.73E+02 6.05E+03 ± 3.28E+02 -1.20E+02 ± 6.22E-02 -2.86E+02 ± 9.58E+00 -2.91E+02 ± 1.05E+01
DE 2.13E+04 ± 1.06E+04 4.52E+03 ± 6.63E-02 -1.19E+02 ± 7.23E-02 -1.33E+02 ± 1.50E+01 -1.05E+02 ± 1.29E+01
CGSA-P 2.23E+06 ±1.88E+06 6.31E+03 ±3.08E+02 -1.20E+02 ±6.73E-02 -2.85E+02 ±6.20E+00 -2.99E+02 ±4.69E+00
WOA 6.24E+04 ± 1.07E+05 4.57E+03 ± 5.41E+01 -1.19E+02 ± 9.80E-02 -1.19E+02 ± 4.58E+01 8.27E+01 ± 8.79E+01

F11 F12 F13 F14 F15
CBSO 1.09E+02 ± 2.70E+00 2.43E+04 ± 1.68E+04 -1.26E+02 ± 9.25E-01 -2.87E+02 ± 3.61E-01 5.15E+02 ± 6.63E+01
DE 1.30E+02 ± 1.04E+00 3.52E+05 ± 7.71E+04 -1.09E+02 ± 1.19E+00 -2.86E+02 ± 1.66E-01 5.37E+02 ± 3.62E+01
CGSA-P 9.01E+01 ±3.14E-01 1.59E+04 ±1.24E+04 -1.21E+02 ±1.08E+00 -2.86E+02 ±1.73E-01 4.20E+02 ±4.37E-05
WOA 1.26E+02 ±2.13E+00 1.48E+05±9.46E+04 -1.09E+02 ± 5.17E+00 -2.87E+02±2.52E-01 7.81E+02 ± 2.07E+02

F16 F17 F18 F19 F20
CBSO 2.63E+02 ± 1.42E+02 2.87E+02 ± 1.30E+02 9.16E+02 ± 1.20E+00 9.16E+02 ± 1.28E+00 9.16E+02 ± 1.17E+00
DE 3.72E+02 ± 1.76E+01 4.00E+02 ± 1.78E+01 9.17E+02 ± 2.49E-01 9.17E+02 ± 2.77E-01 9.17E+02 ± 2.43E-01
CGSA-P 3.02E+02 ±1.95E+02 4.35E+02 ±2.54E+02 9.26E+02 ±7.18E+01 9.48E+02 ±5.64E+01 9.55E+02 ±5.91E+01
WOA 5.70E+02 ± 8.48E+01 6.63E+02± 8.51E+01 1.05E+03 ± 9.62E+01 1.05E+03±9.21E+01 1.04E+03 ± 7.12E+01

F21 F22 F23 F24 F25
CBSO 8.87E+02 ± 1.01E+02 1.22E+03 ± 1.76E+01 8.95E+02 ± 1.40E+00 4.60E+02 ± 1.67E-12 1.88E+03 ± 3.39E+00
DE 8.61E+02 ± 4.68E-01 1.28E+03 ± 1.25E+01 8.95E+02 ± 2.15E+00 4.63E+02 ± 7.84E-01 1.91E+03 ± 4.74E+00
CGSA-P 1.03E+03 ±2.91E+02 1.26E+03 ±1.15E+01 9.58E+02 ±1.78E+02 4.60E+02 ±1.27E-12 1.92E+03 ±7.87E+00
WOA 1.58E+03 ± 1.46E+02 1.57E+03 ± 8.93E+01 1.61E+03 ± 1.21E+02 1.58E+03 ± 1.24E+02 1.89E+03 ± 5.09E+00

Table 3.4: Adjusted p-values (FRIEDMAN).

Algorithm Ranking unadjusted p pBonf pHolm pHochberg α = 0.05
CBSO vs. 1.4

WOA 3.48 0 0 0 0 YES
DE 2.58 0.001231 0.003693 0.002462 0.001796 YES

CGSA-P 2.54 0.001796 0.005388 0.002462 0.001796 YES

Fig. 3.3 and Fig. 3.4 can directly illuminate the experimental results obtained so

far and give a distinct impression of the performance of CBSO. Fig. 3.3 (a) shows the

convergence trend of each algorithm along with the number of function evaluation in

F9. The vertical axis denotes the fitness of final best-so-far solutions. According to it,

DE and WOA have slow convergence speed and poor solution quality from the begin-

ning to the end. CGSA-P converges faster while CBSO finally gets the best solution.

In Fig. 3.3 (c), CGSA-P loses its convergence speed and in the last is even worse

than DE. CBSO has better solutions than BSO in the whole optimization procedure.

22

The CLS ensures CBSO can change its search mechanism once it falls into a stag-

nation. A stagnation means the individual generation method of conventional BSO

couldn’t find a better solution. In consideration of conventional mechanism preferring

to explore the space near the cluster centers, our method intentionally generates new

individual in the space away from the cluster centers in which better solutions are

highly promised. The convergent performance comparison between BSO and CBSO

clearly exhibits the effect of CLS which makes CBSO have a faster convergence speed

than BSO.

Fig. 3.4 is the box and whisker diagram which can directly shows the properties

of the algorithms. CBSO has the lowest medians and maximums in F9, F16 and F17.

It also has a shorter interquartile range (IQR) which is the distance between the first

quartile and the third quartile. A short IQR means a stable performance of search

ability when repeating 30 times on the same benchmark problem. In particular,

CGSA-P has acceptable solutions with shortest IQR and similar median to CBSO for

F9. But CGSA-P performs well for only one problem and gets very unstable solutions

for F16 and F17. The lower medians and shorter IQRs in all these functions suggest

that CBSO has a stronger and more stable search ability in comparison with others.

All these results verify the extraordinary performance of CBSO and the success of

implementing CLS into BSO.

Although our method has some advantages such as the simplicity, better solution

quality and can maintain the population diversity at a high level compared with the

traditional BSO, it still needs to improve its convergence speed especially contrasting

with CGSA-P in early convergent period. It will be a research emphasis for us to

further enhance the search ability of CBSO to make it can obtain stable and fast

convergence speed through the whole convergent period.

3.4.3 Comparison on Real-World Problems

Our proposed CBSO has great performance on benchmark problems, however, the

motivation of improving algorithm is to make these algorithms can efficiently solve

23

0 5 10 15

x 10
4

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

F3

NFEs

 P
o

p
u

la
ti

o
n

 d
iv

e
rs

it
y

BSO

CBSO

0 5 10 15

x 10
4

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

F4

NFEs

 P
o

p
u

la
ti

o
n

 d
iv

e
rs

it
y

BSO

CBSO

0 5 10 15

x 10
4

0.045

0.05

0.055

0.06

0.065

0.07

0.075

F5

NFEs

 P
o

p
u

la
ti

o
n

 d
iv

e
rs

it
y

BSO

CBSO

0 5 10 15

x 10
4

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

F6

NFEs

 P
o

p
u

la
ti

o
n

 d
iv

e
rs

it
y

BSO

CBSO

0 5 10 15

x 10
4

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

F7

NFEs

 P
o

p
u

la
ti

o
n

 d
iv

e
rs

it
y

BSO

CBSO

0 5 10 15

x 10
4

0

0.05

0.1

0.15

0.2

0.25

F12

NFEs

BSO

CBSO

 P
o

p
u

la
ti

o
n

 d
iv

e
rs

it
y

Figure 3.5: Population diversity of BSO and CBSO over D ∗ 5000 FES on six bench-
mark functions.

real-world problems. It is far from enough for us that CBSO obtains good results only

on benchmark problems. For further testing the performance of CBSO on real-world

problems, the CEC2011 real world optimization problems [46] have been implemented.

24

Four representative problems are selected and the results of CBSO comparing with

BSO, CGSA-P, DE and WOA are listed in Table 4.16 and the best results are high-

lighted. Each problem has been tested over 30 independent runs.

� RF1: Parameter Estimation for Frequency-Modulated (FM) Sound Waves

� RF2: Lennard-Jones Potential Problem

� RF4: Optimal Control of a Non-Linear Stirred Tank Reactor

� RF7: Transmission Network Expansion Planning (TNEP) problem

It is obvious that CBSO obtains the best results on all real-world problems. These

results indicate the practical value of CBSO and realize our motivation that design-

ing effective algorithm to solve real-world problems. In our future researches, more

real-world problems will be applied to improve the practical ability of our proposed

algorithms.

Table 3.5: Experimental results on real-world problems
BSO CBSO CGSA-P DE WOA

RF1 1.40E+01±5.88E+00 1.27E+01± 4.58E+00 2.44E+01±1.51E+00 3.15E+01±2.01E+01 2.19E+01±5.00E+00
RF2 -2.04E+01± 2.32E+00 -2.07E+01±2.62E+00 -1.56E+01±3.65E+00 -4.24E+00±4.02E-01 -1.84E+01±4.89E+00
RF4 1.65E+01±2.32E+00 1.46E+01 ±1.81E-01 1.59E+01±2.02E+00 4.99E+01± 2.46E+01 1.47E+01 ±1.26E+00
RF7 8.81E-01±1.03E-01 8.69E-01±9.51E-02 8.80E-01±1.37E-01 3.31E+00±4.06E-01 1.92E+00±2.30E-01

3.5 Discussion

3.5.1 Population Diversity

Population diversity is an important reference standard in modifying optimization

algorithms. A poor diversity means the population is too dense and it may cause a

premature stagnation [47]. The aim of implementing CLS is to prevent poor diversity.

We calculate the diversity to verify the effect of CLS. The definition can be found as

follows:

d(X) =
1

N

N∑
i=1

||Xi − X̄||/max1≤i,j≤N ||Xi −Xj||, (3.15)

25

where X̄ is defined as

X̄ =
1

N

N∑
i=1

Xi. (3.16)

All functions have been measured and the variation trend of population diversity

of six typical ones can be observed in Fig. 3.5. We can see that CBSO can obtain

a higher diversity level than BSO, not only in early search stage but also to the

end of the whole optimization process. The implementation of CLS provides each

individual a motivation of diffusion to spread out and search in a wider space. This

operation provides more chances for individuals to keep distance between each other

and explore better solutions through the whole search phase, which ensures a high

population diversity level. In exploitation phase, CLS also has a probability of near

30% to provide an inward contraction to improve solution quality. By this mechanism,

CLS enables BSO to keep a good population diversity well, thus improves its search

ability and avoids a premature stagnation.

3.5.2 Computational Time Complexity

As the statistical results have shown the efficiency of CBSO, we should concern that

whether CBSO increases the time complexity of the algorithm. In this section, we

compare the time complexity of BSO and CBSO. The number of function evaluation

is set to N*5000 and the time complexity in each procedure of BSO is described as

follows:

(1) The time complexity of initialization is O(N).

(2) Time complexity of evaluating the fitness of the population is O(N).

(3) The K-means divides the population into k clusters, so the time complexity of

this execution is O(kN2).

(4) Select one cluster center to be replaced by a randomly generated center. This

step needs O(N2).

(5) The individual selection procedure costs O(N2).

(6) Time complexity of the generation of steplength is O(N2).

(7) New individual generation and fitness calculation costs O(N2) respectively.

26

The overall time complexity of BSO is

O(N)+O(N)+O(kN2)+O(N2)+2O(N2)+2O(N2) = 2O(N)+5O(N2)+O(kN2)

(3.17)

where N is the dimension. Thus the time complexity of BSO is O(N2).

The procedure of CBSO is shown as follows:

(1) The overall time complexity of initialization and the generation of chaotic

sequences is O(N) +O(1).

(2) Evaluating the fitness of the population needs O(N).

(3) The time complexity of dividing the population into k clusters is O(kN2).

(4) Selecting one cluster center to be replaced by a randomly generated center

needs O(N2).

(5) The individual selection procedure costsO(N2) and the generation of steplength

also needs O(N2).

(6) New individual generation needs O(N2).

(7) If the criterion of implementing chaotic local search is satisfied, the calculation

cost is O(N2). Otherwise the time complexity of generating new individual by adding

random value needs O(N2).

The overall time complexity of CBSO is

O(N) +O(1) +O(N) +O(kN2) +O(N2) + 2O(N2) + 2O(N2)

= 2O(N) + 5O(N2) +O(kN2) +O(1) (3.18)

Therefore the time complexity of CBSO is O(N2). From this result, we can see that

CBSO equals the BSO in time complexity which indicates the CBSO can perform

better than BSO without needing more computational time.

27

Chapter 4

ASBSO: An Improved Brain Storm
Optimization with Flexible Search
Length and Memory-based
Selection

4.1 Introduction

Nowadays, many swarm intelligence algorithms have been proposed to solve complex

real-world problems [11, 48].Brain storm optimization algorithm (BSO) which is one

of the swarm intelligence algorithm, is promising in solving complex problems [16].

It is inspired by the human brain storming behaviors. Each idea generated by the

human brain represents an individual in search space. In a brain storming process,

humans firstly generate some rough ideas, then exchange and discuss these ideas with

each other. The inferior ideas are sifted out while the superior ones are left. This

operation circles over and over, which makes ideas become more and more mature.

In the meanwhile, new ideas are kept being generated and joined in the circle. With

the process ends, a feasible and effective idea spurts out.

Since the announcement of BSO in 2011, it gets lots of attention from the re-

searchers in swarm intelligence community due to its novelty and efficiency. It has

been successfully applied in different scenarios, such as function optimization, en-

gineering problems and financial prediction [49, 50, 51, 52, 53]. Moreover, some

modifications for BSO have been made to enhance its performance from several per-

28

spectives. For example, a new multi-objective BSO (MBSO) is proposed in [54] for

solving multi-objective optimization problems. The clustering strategy is applied in

the objective search space to handle multi-objective optimization problems, while it is

originally performed in the solution search space for solving single objective problems.

With different characteristics of diverging operation, MBSO becomes a promising al-

gorithm with an outstanding ability to solve multi-objective optimization problems.

In [55], BSO in objective space (BSOOS) is proposed to cut down the computation

time of the convergent operation. A clustering operation is replaced by taking p per-

centage individuals as elitists. An updating operation is modified to suit for an elitists

mechanism in one-dimensional objective space instead of solution space. By doing so,

BSOOS achieves a better convergent speed and solution quality in comparison with

the traditional BSO.

Improving the population diversity is an alternative modification besides the usage

of objective space. As the balance between convergence and divergence is very impor-

tant to swarm intelligence optimization algorithms, a premature convergence leads to

a low population diversity and bad solution quality, while the opposite brings very

slow search speed. The issue of how to find the balance between convergence and

divergence of solutions is still very challenging and it reflects the algorithm’s explo-

ration and exploitation ability. In [56, 57], chaotic sequences are used as variables

to initialize population and generate new individuals. As a universal phenomenon of

nonlinear dynamic systems, chaos has an unpredictable random behavior [21]. Thus,

its randomicity and ergodicity can help BSO improve its population diversity and so-

lution quality effectively. In [58], Cheng et al. propose a new BSO which uses different

kinds of partial reinitialization strategies to increase its population diversity. Duan

et al. [59] propose a novel predator-prey model to improve the population diversity

of BSO for a DC brush-less motor. This model can enable the algorithm structure

to explore the search space more evenly. By using the predator-prey strategy, the

population can share better global information with each other to improve search

efficiency in exploitation phase. In [60], quantum-behaved BSO (QBSO) which aims

to improve population diversity and generate new individuals by using global infor-

29

mation is proposed. Moreover, QBSO for the first time combines BSO with quantum

theories. It analyzes the quantum behavior and quantum state of each individual

by depicting a wave function to solve the drawback of BSO that easily sticks into

local optima on multimodal functions. In addition, Wang et al. [61] discover a power

law distribution in BSO which opens a new way of thinking to boost the population

interaction and improve population diversity via adjusting the population structure.

Although above mentioned modifications have improved the performance of BSO,

they are limited and the performance of BSO is still fatigued and week [23]. Most

efforts attempt to modify BSO for solving specific problems while these modifications

are not suitable for other applications. It is still a great demand to enhance its search

ability and robustness.

To achieve this goal, we propose an adaptive step length mechanism based on

memory selection to combine with BSO (namely, ASBSO) which exhibits a notable

performance. This method can modify BSO by providing strategies with various step

lengths which are adaptively applied to generate new individuals. As it can supply

a specific step length according to corresponding problems and convergent periods,

it is more possible that ASBSO can avoid or jump out of the local optima. In other

words, the search efficiency and robustness of BSO can be greatly improved.

Besides the adaptive step length mechanism, a modified selection method is also

proposed based on memory. Different from the conventional storage mode in [22]

which applies a success memory and a failure memory with 0 and 1 as the infor-

mation stored in these memories, the modified method only employs the success

memory and considers the difference between two compared fitness values instead of

simple numbers (i.e., 0 and 1). This is a modification which directly demonstrates

the improvement of each selected strategy and extrudes a strategy with a better

performance. A detailed description is presented in Section 5.2.

The contributions of this paper can be summarized as: (1) An adaptive step length

mechanism based on memory selection method is proposed to enhance the robustness

of BSO evidently, therefore makes it more suitable for various applications. (2) It’s for

the first time that we use the difference between two compared fitness values instead

30

of simple numbers such as 0 and 1 to be stored in memory. This modification can

increase the efficiency of the selection method, and thereby improve solution quality

observably. An experimental comparison between the new storage mode and the old

one brings an intuitional conclusion that the proposed method is significantly better.

(3) Sufficient experimental data and statistical analyses of performance comparisons

between traditional BSO and our proposed ASBSO at different dimensions show that

ASBSO outperforms BSO entirely. The contrast between ASBSO and other well-

known algorithms also indicates the superiority of ASBSO. (4) ASBSO is verified to

be a competent and robust algorithm for different optimization problems.

The organization of this paper can be presented as follows. A brief introduction

of BSO is given in Section 3.2. Section 5.2 introduces the proposed ASBSO in details.

The experimental results are shown in Section 5.3. Some discussions are assigned in

Section 5.4. We conclude this paper in Section 3.5.

4.2 ASBSO

4.2.1 Motivation

In the new individual generating operation of BSO introduced in Section 3.2, the

search step length only varies with the current iteration number and lacks of flexi-

bility, thus it makes a poor search efficiency and robustness. BSO only applies an

invariable scale parameter K = 20 to render the search range to shrink during it-

erations, therefore the shrink is limited and inflexible. In ASBSO, an adaptive step

length mechanism is motivated to alleviate this issue. Various optional scale param-

eters make BSO have adjustable search ranges instead of the traditional step length

which only varies according to the current iteration number. As ASBSO applies mul-

tiple step lengths in the search process, the probability of getting into the gorge or

jumping out of the valley in the search landscape can be increased a lot.

As we described in Section 3.2 that BSO lacks of a powerful search ability and

robustness, it is a motivation for us to alleviate these drawbacks. An example is shown

31

below to make us further understand the utilization of search ability and robustness.

A popular approach to comprehensively observe the search ability and robust-

ness of optimization algorithms in evolutionary community is to optimize benchmark

functions. Some famous benchmark function suits such as 23 standard benchmark

functions [62], CEC’05 [39], CEC’13 [63] and CEC’17 benchmark functions [64] have

been widely used. These functions become more and more complicated and difficult

in order to emulate the real world problems whose complexities increase in a geo-

metric ratio. Therefore, the performances of optimization algorithms on benchmark

functions have become an important standard to judge whether they can be imple-

mented into practical applications or not. For instance, Fig. 4.1 illustrates the 3D

and contour graphs of F8 and F11 in CEC’13 function suit. F8 is a rotated Ackley’s

function which has the same properties of multi-modal, non-separable and asymmet-

rical as F11 does. In addition, the local optima’s number of F11 is very huge. The

global optimum of F8 seems to be in a gorge surrounded by many steep precipices.

The entrance of this gorge is so narrow and secluded that it could easily be missed by

a search step length which is beyond the distance between X(t) and X ′(t). Once the

entrance has been missed, individual could only find a mass of similar local optimum.

It will take a lot of computational time to obtain another chance for exploiting the

gorge where global optima hides. On the contrary, in F11, a step length smaller than

the distance between X(t) and X ′(t) means that the individual couldn’t jump out

of the valley of local optima and is hard to know the global optima lays just beside

it. These are two representative cases which could happen not only in benchmark

functions but also in real world. Therefore, it has become an urgent task to alleviate

and solve them via proposing more suitable optimization algorithms .

To address the above issues, two main modifications including multiple step lengths

and new memory mechanism are proposed in ASBSO. They are interpreted in the

following subsections in detail.

32

−50

0

50

−50

0

50
−700

−695

−690

−685

−680

−675

−50 0 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

−60

−40

−20

0

−20

0

20

40
−400

−380

−360

−340

−320

X(t) X’(t)

F11

F8

X(t) X’(t)

−40 −35 −30 −25 −20 −15 −10 −5 0
−10

−5

0

5

10

15

20

25

30

Figure 4.1: Diagrams of F8 and F11 in CEC’13.

4.2.2 Multiple Step Lengths

The parameter K in Eq. (2.2) is used to change the scale of logsig(). In the strategy

of multiple step lengths, different K values listed in Table 4.1 is applied to provide

different scales to adjust the search step length. The strategies which have relatively

small K values indicate that they can provide a diffusion to search radius. It makes

BSO be effective to explore the objective space and accelerate convergence. In the

early search phase, optimization algorithm is required to have efficient exploration

competence when facing the unknown search space. If we pay much attention to

exploit local information before the whole space has been explored, the search cost will

become very expensive and influence the solution quality [65]. Thus, it’s necessary

to provide large search step length to effectively detect the region with promising

solutions. While in exploitation phase, a local search which applies short step length

is needed urgently to excavate solutions with a high accuracy. Therefore, strategies

with relatively large K values can improve solution quality in exploitation phase as

large K values generally lead to a localized search.

As we discussed that changeless K value makes BSO only can shrink its search

33

Table 4.1: Illustration of the flexible multiple search length strategy.
Strategy 1 Strategy 2 Strategy 3 ... Strategy M

K k k +H k + 2H ... k + (M − 1)H

range according to the current iteration number while couldn’t flexibly adjust step

length to fit various search periods and problems, assigning multiple values to K

naturally equips BSO with flexible search ability to reply different situations.

4.2.3 New Memory Mechanism

To adaptively carry out multiple step lengths, we introduce an improved memory

storing mechanism (IMS) which is originated from the success-failure-based memory

structure (SFMS) [22, 66], In SFMS, a success memory shown in Table 4.2 and a

failure memory shown in Table 4.3 is applied to store the number of succeeding or

failing to generate better solutions, respectively. In the beginning, M strategies are

randomly selected by roulette wheel selection method to generate new individuals.

As Eqs. (4.1) and (4.2) shown, if the new individual X ′t−1 outperforms and replaces

the old individual Xt−1, it is indicated as a success and let αj,t equal to 1, where

j (j = 1, 2, ...,M) refers to the used strategy and t is the current iteration. If the

opposite, it becomes a failure trial and βj,t equals to 1. If the iteration count is over

the preset iteration length L (L =50 is empirically set according to [22]), the first row

of Tables 4.2 and 4.3 will be removed to make space for the newest one. The selection

of strategies is described as follows.

αj,t =

 1, f(X ′t−1) < f(Xt−1)

0, otherwise
(4.1)

βj,t =

 0, f(X ′t−1) < f(Xt−1)

1, otherwise
(4.2)

The chosen probability of each strategy is calculated as shown in Eqs. (4.3) and

(4.4) after the memories record the results:

34

Table 4.2: Traditional Success Memory
Index Strategy 1 Strategy 2 Strategy 3 ... Strategy M

1 α1,t−L α2,t−L α3,t−L ... αM,t−L
2 α1,t−L+1 α2,t−L+1 α3,t−L+1 ... αM,t−L+1

...
L α1,t−1 α2,t−1 α3,t−1 ... αM,t−1

Table 4.3: Traditional Failure Memory
Index Strategy 1 Strategy 2 Strategy 3 ... Strategy M

1 β1,t−L β2,t−L β3,t−L ... βM,t−L
2 β1,t−L+1 β2,t−L+1 β3,t−L+1 ... βM,t−L+1

...
L β1,t−1 β2,t−1 β3,t−1 ... βM,t−1

pj,t =
Sj,t∑4
j=1 Sj,t

(4.3)

Sj,t =

∑t−1
t−L αj,t∑t−1

t−L αj,t +
∑t−1

t−L βj,t
+ δ (4.4)

where pj,t denotes the probability to use the j-th strategy in current iteration t when

t > L.
∑t−1

t−L αj,t calculates the total number of the j-th strategy successfully gener-

ating a new individual to replace Xt−1.
∑t−1

t−L βj,t is the total number for the failure

circumstances. Eq. (4.4) calculates the success rate and δ = 0.01 is used for avoiding

a null value. It is obvious that the strategy with higher success rate has a higher

chance to be selected to generate new individuals.

However, the SFMS mechanism has one drawback that no matter how better a

new individual obtained by a strategy, it only records 1 in the success memory. One

case is given to interpret this drawback in detail. Let’s define that D1 represents the

improvement in fitness (if f(X ′t−1) < f(Xt−1), D = |f(X ′t−1) − f(Xt−1)|) obtained

by Strategy 1, D2 is that obtained by Strategy 2, and so on. Supposing D1 = 2D2,

which means Strategy 1 is suitable for the current search period and can find a much

better solution than Strategy 2 does in one generation. However, they score the same

points (both 1) in success memory which leads to same possibilities to be selected.

35

Table 4.4: New Success Memory (IMS)
Index Strategy 1 Strategy 2 Strategy 3 ... Strategy M

1 D1
t−L D2

t−L D3
t−L ... DM

t−L
2 D1

t−L+1 D2
t−L+1 D3

t−L+1 ... DM
t−L+1

...
L D1

t−1 D2
t−1 D3

t−1 ... DM
t−1

This mechanism evidently has relatively low efficiency which causes a slowness in

convergence speed, and further decrease the solution quality. To alleviate this issue,

in IMS, the improvement value in fitness Dj (j indicates the executed strategy) is

recorded into a success memory to replace the numbers of 0 and 1. In the meanwhile,

failure memory is not implemented in the new mechanism, since we focus on the

quality not quantity that each strategy obtains. If failure memory is applied, a poor

search attempt may decrease the quality of solutions and hinder the evolutionary

direction of algorithm. Table 4.4 shows the structure of IMS. Each improvement

value Dj
t in fitness obtained by strategy j is stored in it. The selection possibility of

strategy j at iteration t can be calculated by Eq. (4.5).

pnewj,t =
Dj
t∑M

j=1D
j
t

(4.5)

Algorithm 3 illustrates the main procedures of ASBSO. In each generation of

new individuals, a strategy j is selected according to its selection possibility pnewj,t

to produce a search step length. The new individual is generated by adding the

step length to the selected X by using Eq. (2.1) and its fitness is calculated. If

the new individual is better than the old one, then it will replace the old one. In

the meanwhile, the selected strategy is marked as a success trial. The improvement

in fitness Dj
t is stored in memory and the selection possibility for each strategy is

updated.

36

Algorithm 3: Pseudo code of ASBSO.

Randomly generate a population with N individuals;
Calculate the fitness of each individual;
while termination not satisfied do

Divide N individuals into C clusters by using k −means clustering
method;

Choose the best individual in each cluster as the center;
if random(0, 1) < pc = 0.2 then

replace one cluster center by a randomly generated individual
end
if random(0, 1) < pg = 0.8 then

select one cluster;
if random(0, 1) < pc1 = 0.4 then

choose the cluster center as X
else

choose a randomly selected individual in the cluster as X
end

else
randomly select two clusters;
if random(0, 1) < pc2 = 0.5 then

choose the combination of two centers as X
else

choose the combination of two randomly selected individuals in
two clusters as X

end

end
Choose a strategy to generate a search step length according to Eq. (4.5);
Generate new individual by adding the step length to the selected X by
using Eqs. (2.1) and (2.2);

if new individual is better than old one then
replace the old individual and update the memory

end

end

Table 4.5: Friedman test result for H = 10, 20 and 30.
Algorithm Ranking unadjusted p pBonf pHolm pHochberg
H = 20 vs. 1.4298
H = 30 2.2895 0.000004 0.000009 0.000009 0.000006
H = 10 2.2807 0.000006 0.000011 0.000009 0.000006

37

Table 4.6: Experimental results of CEC’13 benchmark functions (F1-F28) using BSO
and ASBSO at D = 10 and D = 30.

D=10 D=30
BSO ASBSO BSO ASBSO

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)
F1 -1.40E+03 (0.00E+00) -1.40E+03 (0.00E+00) F1 -1.40E+03 (4.22E-14) -1.40E+03 (1.98E-13)
F2 6.79E+04 (5.55E+04) 3.85E+04 (3.29E+04) F2 1.54E+06 (4.79E+05) 1.54E+06 (4.26E+05)
F3 4.01E+07 (7.33E+07) 2.92E+07 (4.94E+07) F3 1.11E+08 (1.74E+08) 8.47E+07 (8.64E+07)
F4 7.58E+03 (4.24E+03) 6.00E+03 (3.58E+03) F4 2.17E+04 (5.65E+03) 5.08E+03 (2.25E+03)
F5 -1.00E+03 (1.35E-04) -1.00E+03 (1.88E-04) F5 -1.00E+03 (1.52E-03) -1.00E+03 (2.98E-03)
F6 -8.97E+02 (2.65E+00) -8.93E+02 (4.23E+00) F6 -8.66E+02 (2.47E+01) -8.64E+02 (2.76E+01)
F7 -7.05E+02 (3.36E+01) -7.24E+02 (3.17E+01) F7 -6.71E+02 (7.57E+01) -7.08E+02 (3.90E+01)
F8 -6.80E+02(9.14E-02) -6.80E+02 (9.48E-02) F8 -6.79E+02 (7.60E-02) -6.79E+02 (6.70E-02)
F9 -5.93E+02 (1.41E+00) -5.94E+02 (1.48E+00) F9 -5.68E+02 (2.90E+00) -5.71E+02 (2.58E+00)
F10 -5.00E+02 (3.15E-02) -5.00E+02 (4.81E-02) F10 -5.00E+02 (1.93E-01) -5.00E+02 (5.35E-02)
F11 -3.42E+02 (1.90E+01) -3.53E+02 (2.38E+01) F11 6.40E+01 (7.12E+01) -1.82E+02 (5.40E+01)
F12 -2.46E+02(1.86E+01) -2.46E+02 (2.17E+01) F12 2.06E+02 (8.43E+01) -7.64E+01 (4.85E+01)
F13 -1.30E+02 (2.14E+01) -1.31E+02 (2.09E+01) F13 3.55E+02 (8.77E+01) 1.30E+02 (6.54E+01)
F14 1.04E+03 (2.33E+02) 8.73E+02 (2.96E+02) F14 3.88E+03 (5.17E+02) 3.68E+03 (4.56E+02
F15 1.17E+03 (2.79E+02) 1.05E+03 (2.78E+02) F15 4.25E+03 (5.57E+02) 3.88E+03 (5.74E+02)
F16 2.00E+02 (2.02E-02) 2.00E+02 (7.00E-02) F16 2.00E+02 (4.14E-02) 2.00E+02 (1.13E-01)
F17 3.55E+02 (1.86E+01) 3.39E+02 (1.13E+01) F17 7.31E+02 (8.13E+01) 5.28E+02 (5.13E+01)
F18 4.49E+02 (2.27E+01) 4.39E+02 (1.28E+01) F18 7.41E+02 (5.30E+01) 5.98E+02 (2.85E+01)
F19 5.02E+02 (5.95E-01) 5.01E+02 (4.27E-01) F19 5.09E+02 (2.04E+00) 5.04E+02 (7.60E-01)
F20 6.04E+02 (6.46E-01) 6.03E+02 (5.66E-01) F20 6.14E+02 (1.77E-01) 6.14E+02 (2.94E-01)
F21 1.10E+03 (4.63E-13) 1.10E+03 (2.16E-11) F21 1.03E+03 (8.91E+01) 1.02E+03 (8.42E+01)
F22 2.24E+03 (3.35E+02) 2.05E+03 (2.72E+02) F22 6.04E+03 (7.04E+02) 5.36E+03 (4.70E+02)
F23 2.19E+03 (3.06E+02) 2.28E+03 (3.23E+02) F23 5.98E+03 (7.32E+02) 6.00E+03 (7.84E+02)
F24 1.22E+03 (1.16E+01) 1.22E+03 (1.37E+01) F24 1.33E+03 (2.25E+01) 1.31E+03 (2.60E+01)
F25 1.32E+03 (4.24E+00) 1.32E+03 (1.99E+01) F25 1.46E+03 (2.50E+01) 1.41E+03 (1.03E+01)
F26 1.39E+03 (3.26E+01) 1.39E+03 (2.64E+01) F26 1.50E+03 (8.60E+01) 1.46E+03 (7.91E+01)
F27 1.81E+03 (1.12E+02) 1.77E+03 (1.18E+02) F27 2.49E+03 (9.32E+01) 2.42E+03 (1.07E+02)
F28 2.26E+03 (7.51E+01) 2.17E+03 (1.78E+02) F28 5.73E+03 (5.38E+02) 2.03E+03 (8.02E+02)

Table 4.7: Experimental results of CEC’13 benchmark functions (F1-F28) using BSO
and ASBSO at D = 50 and D = 100.

D=50 D=100
BSO ASBSO BSO ASBSO

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)
F1 -1.40E+03 (1.25E-06) -1.40E+03 (1.54E-02) F1 -1.40E+03 (5.99E-02) -1.40E+03 (8.62E-01)
F2 2.25E+06 (7.00E+05) 2.33E+06 (7.15E+05) F2 1.03E+07 (2.17E+06) 1.25E+07 (2.24E+06)
F3 2.09E+08 (1.52E+08) 2.68E+08 (1.55E+08) F3 1.45E+09 (5.98E+08) 2.73E+09 (1.39E+09)
F4 1.58E+04 (5.04E+03) 7.93E+03 (2.63E+03) F4 6.38E+03 (1.79E+03) 2.12E+03 (7.60E+02)
F5 -1.00E+03 (4.09E-03) -1.00E+03 (1.31E-02) F5 -1.00E+03 (2.86E-02) -1.00E+03 (5.38E-01)
F6 -8.27E+02 (3.53E+01) -8.17E+02 (3.26E+01) F6 -7.05E+02 (4.96E+01) -6.73E+02 (5.28E+01)
F7 -6.37E+02 (6.43E+01) -6.82E+02 (3.23E+01) F7 -6.71E+02 (2.76E+01) -7.05E+02 (2.05E+01)
F8 -6.79E+02 (5.55E-02) -6.79E+02 (4.13E-02) F8 -6.79E+02 (4.28E-02) -6.79E+02 (4.98E-02)
F9 -5.43E+02 (3.70E+00) -5.49E+02 (4.38E+00) F9 -4.72E+02 (4.81E+00) -4.82E+02 (6.31E+00)
F10 -4.99E+02 (1.71E-01) -4.99E+02 (4.52E-01) F10 -4.95E+02 (6.45E-01) -4.94E+02 (2.06E+00)
F11 3.27E+02 (9.56E+01) 2.22E+02 (6.95E+01) F11 1.54E+03 (1.94E+02) 1.40E+03 (1.72E+02)
F12 4.63E+02 (1.17E+02) 4.66E+02 (1.08E+02) F12 1.89E+03 (2.56E+02) 1.83E+03 (2.34E+02)
F13 6.84E+02 (1.04E+02) 6.98E+02 (1.22E+02) F13 2.29E+03 (2.18E+02) 2.15E+03 (2.15E+02)
F14 7.00E+03 (7.93E+02) 6.70E+03 (7.94E+02) F14 1.52E+04 (1.12E+03) 1.46E+04 (9.60E+02)
F15 7.93E+03 (1.01E+03) 7.41E+03 (5.66E+02) F15 1.53E+04 (1.27E+03) 1.45E+04 (1.11E+03)
F16 2.00E+02 (9.01E-02) 2.00E+02 (1.55E-01) F16 2.01E+02 (1.39E-01) 2.00E+02 (3.84E-01)
F17 1.14E+03 (9.10E+01) 7.69E+02 (6.23E+01) F17 2.36E+03 (1.89E+02) 1.36E+03 (1.58E+02)
F18 1.01E+03 (7.72E+01) 7.38E+02 (5.20E+01) F18 1.94E+03 (1.47E+02) 1.25E+03 (1.62E+02)
F19 5.16E+02 (2.43E+00) 5.11E+02 (2.81E+00) F19 5.45E+02 (4.78E+00) 5.33E+02 (9.08E+00)
F20 6.24E+02 (4.50E-01) 6.24E+02 (4.15E-01) F20 6.50E+02 (2.11E-14) 6.50E+02 (4.71E-12)
F21 1.65E+03 (3.18E+02) 1.44E+03 (4.27E+02) F21 1.14E+03 (6.13E+01) 1.14E+03 (6.00E+01)
F22 1.08E+04 (1.36E+03) 1.04E+04 (1.20E+03) F22 2.34E+04 (1.87E+03) 2.22E+04 (2.42E+03)
F23 1.09E+04 (1.07E+03) 1.04E+04 (1.35E+03) F23 2.21E+04 (1.59E+03) 2.19E+04 (1.57E+03)
F24 1.44E+03 (6.62E+01) 1.38E+03 (2.00E+01) F24 2.44E+03 (5.16E+02) 1.72E+03 (2.97E+02)
F25 1.59E+03 (3.53E+01) 1.58E+03 (3.03E+01) F25 1.96E+03 (1.01E+02) 1.96E+03 (1.12E+02)
F26 1.64E+03 (6.94E+01) 1.60E+03 (9.24E+01) F26 1.85E+03 (1.88E+01) 1.82E+03 (2.40E+01)
F27 3.48E+03 (1.65E+02) 3.26E+03 (1.50E+02) F27 5.57E+03 (2.44E+02) 5.10E+03 (2.59E+02)
F28 9.11E+03 (7.24E+02) 8.92E+03 (5.80E+02) F28 1.97E+04 (1.72E+03) 1.93E+04 (1.48E+03)

38

Table 4.8: Results obtained by the Wilcoxon signed-rank test for ASBSO vs. BSO
on CEC’13.

Dimension R+ R− p-value α=0.05 α=0.01

10 330.5 75.5 2.782E-3 YES YES

30 319.0 59.0 1.132E-3 YES YES

50 319.0 87.0 7.072E-3 YES YES

100 321.0 85.0 6.06E-3 YES YES

Table 4.9: Experimental results of CEC’17 benchmark functions (F29-F57) using
BSO and ASBSO at D = 10 and D = 30.

D=10 D=30
BSO ASBSO BSO ASBSO

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)
F29 8.95E+02 (1.09E+03) 8.60E+02 (1.12E+03) F29 2.47E+03 (1.95E+03) 2.21E+03 (2.00E+03)
F30 3.00E+02 (0.00E+00) 3.00E+02 (1.67E-09) F30 5.34E+02 (2.66E+02) 3.95E+02 (1.10E+02)
F31 4.04E+02 (7.05E+00) 4.03E+02 (1.50E+00) F31 4.67E+02 (2.19E+01) 4.72E+02 (2.92E+01)
F32 5.35E+02 (1.43E+01) 5.34E+02 (1.30E+01) F32 6.87E+02 (4.05E+01) 6.86E+02 (3.45E+01)
F33 6.24E+02 (8.60E+00) 6.24E+02 (7.25E+00) F33 6.52E+02 (7.01E+00) 6.51E+02 (7.77E+00)
F34 7.57E+02 (1.79E+01) 7.54E+02 (2.15E+01) F34 1.15E+03 (9.65E+01) 1.16E+03 (9.94E+01)
F35 8.23E+02 (9.45E+00) 8.22E+02 (9.17E+00) F35 9.47E+02 (2.82E+01) 9.41E+02 (3.19E+01)
F36 1.09E+03 (1.58E+02) 1.09E+03 (1.03E+02) F36 3.98E+03 (6.95E+02) 3.93E+03 (6.39E+02)
F37 2.10E+03 (2.57E+02) 2.08E+03 (3.22E+02) F37 5.30E+03 (5.16E+02) 5.20E+03 (5.67E+02)
F38 1.15E+03 (3.21E+01) 1.16E+03 (3.52E+01) F38 1.23E+03 (4.05E+01) 1.23E+03 (4.75E+01)
F39 1.19E+05 (1.29E+05) 5.90E+04 (5.40E+04) F39 1.77E+06 (1.25E+06) 1.41E+06 (8.00E+05)
F40 8.96E+03 (5.30E+03) 7.80E+03 (5.55E+03) F40 5.36E+04 (2.85E+04) 5.04E+04 (2.64E+04)
F41 1.72E+03 (1.06E+03) 1.71E+03 (3.43E+02) F41 6.40E+03 (4.66E+03) 7.08E+03 (5.23E+03)
F42 4.12E+03 (1.91E+03) 4.10E+03 (3.34E+03) F42 2.95E+04 (1.61E+04) 3.01E+04 (2.25E+04)
F43 1.92E+03 (1.12E+02) 1.87E+03 (1.23E+02) F43 3.20E+03 (4.24E+02) 3.01E+03 (2.25E+02)
F44 1.77E+03 (4.19E+01) 1.77E+03 (4.48E+01) F44 2.48E+03 (2.56E+02) 2.40E+03 (2.44E+02)
F45 1.03E+04 (1.26E+04) 9.78E+03 (1.01E+04) F45 1.21E+05 (1.03E+05) 1.23E+05 (1.21E+05)
F46 3.28E+03 (2.12E+03) 3.15E+03 (1.71E+03) F46 1.52E+05 (6.43E+04) 1.25E+05 (6.31E+04)
F47 2.13E+03 (6.33E+01) 2.13E+03 (6.22E+01) F47 2.67E+03 (1.74E+02) 2.67E+03 (2.17E+02)
F48 2.29E+03 (6.44E+01) 2.27E+03 (5.96E+01) F48 2.50E+03 (4.48E+01) 2.49E+03 (3.14E+01)
F49 2.30E+03 (1.03E+01) 2.30E+03 (1.14E+01) F49 6.03E+03 (1.77E+03) 5.79E+03 (2.04E+03)
F50 2.70E+03 (3.40E+01) 2.69E+03 (2.86E+01) F50 3.29E+03 (1.27E+02) 3.26E+03 (1.24E+02)
F51 2.78E+03 (1.19E+02) 2.73E+03 (1.46E+02) F51 3.50E+03 (1.13E+02) 3.49E+03 (9.56E+01)
F52 2.92E+03 (2.25E+01) 2.93E+03 (2.19E+01) F52 2.89E+03 (1.46E+01) 2.89E+03 (1.25E+01)
F53 3.33E+03 (3.90E+02) 3.34E+03 (3.37E+02) F53 8.16E+03 (1.57E+03) 7.84E+03 (1.80E+03)
F54 3.16E+03 (3.16E+01) 3.17E+03 (3.40E+01) F54 3.82E+03 (2.91E+02) 3.85E+03 (2.17E+02)
F55 3.21E+03 (8.38E+01) 3.23E+03 (1.81E+02) F55 3.21E+03 (2.57E+01) 3.18E+03 (3.60E+01)
F56 3.26E+03 (8.93E+01) 3.26E+03 (6.44E+01) F56 4.38E+03 (2.79E+02) 4.40E+03 (3.39E+02)
F57 5.81E+04 (3.46E+04) 2.95E+05 (6.09E+05) F57 5.74E+05 (3.50E+05) 5.16E+05 (2.90E+05)

39

Table 4.10: Experimental results of CEC’17 benchmark functions (F29-F57) using
BSO and ASBSO at D = 50 and D = 100.

D=50 D=100
BSO ASBSO BSO ASBSO

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)
F29 2.30E+03 (2.15E+03) 1.20E+03 (1.21E+03) F29 5.23E+05 (1.62E+05) 3.34E+05 (9.55E+05)
F30 7.44E+03 (2.73E+03) 6.53E+03 (2.25E+03) F30 8.99E+04 (1.69E+04) 8.88E+04 (1.71E+04)
F31 5.47E+02 (5.86E+01) 5.42E+02 (5.06E+01) F31 6.81E+02 (4.83E+01) 6.80E+02 (4.62E+01)
F32 8.17E+02 (3.72E+01) 8.12E+02 (4.79E+01) F32 1.31E+03 (7.77E+01) 1.30E+03 (8.56E+01)
F33 6.61E+02 (4.98E+00) 6.60E+02 (5.32E+00) F33 6.65E+02 (4.33E+00) 6.64E+02 (3.50E+00)
F34 1.66E+03 (1.22E+02) 1.65E+03 (1.34E+02) F34 3.34E+03 (2.43E+02) 3.32E+03 (2.94E+02)
F35 1.13E+03 (4.31E+01) 1.13E+03 (4.61E+01) F35 1.73E+03 (8.70E+01) 1.69E+03 (7.42E+01)
F36 1.12E+04 (1.32E+03) 1.09E+04 (1.56E+03) F36 2.69E+04 (3.07E+03) 2.43E+04 (3.87E+03)
F37 8.17E+03 (1.01E+03) 8.24E+03 (8.64E+02) F37 1.65E+04 (1.16E+03) 1.62E+04 (1.14E+03)
F38 1.31E+03 (3.87E+01) 1.30E+03 (4.78E+01) F38 2.45E+03 (2.72E+02) 2.39E+03 (1.41E+02)
F39 1.15E+07 (6.98E+06) 1.15E+07 (5.00E+06) F39 7.74E+07 (1.56E+07) 6.92E+07 (1.34E+07)
F40 5.26E+04 (2.34E+04) 5.86E+04 (2.70E+04) F40 3.84E+04 (1.60E+04) 3.83E+04 (1.16E+04)
F41 4.11E+04 (2.81E+04) 3.17E+04 (1.70E+04) F41 3.54E+05 (1.24E+05) 2.81E+05 (1.20E+05)
F42 3.06E+04 (2.08E+04) 2.50E+04 (1.47E+04) F42 3.07E+04 (1.29E+04) 3.11E+04 (1.08E+04)
F43 3.86E+03 (4.72E+02) 3.82E+03 (4.50E+02) F43 6.76E+03 (7.95E+02) 6.73E+03 (7.46E+02)
F44 3.61E+03 (3.70E+02) 3.61E+03 (3.71E+02) F44 5.58E+03 (6.39E+02) 5.49E+03 (5.70E+02)
F45 3.53E+05 (1.31E+05) 2.97E+05 (9.96E+04) F45 5.04E+05 (1.67E+05) 5.03E+05 (2.06E+05)
F46 5.35E+05 (2.17E+05) 4.09E+05 (1.92E+05) F46 2.41E+06 (1.20E+06) 2.24E+06 (1.07E+06)
F47 3.63E+03 (2.15E+02) 3.42E+03 (3.69E+02) F47 5.69E+03 (4.49E+02) 5.76E+03 (5.01E+02)
F48 2.75E+03 (6.79E+01) 2.73E+03 (7.92E+01) F48 3.99E+03 (1.67E+02) 4.02E+03 (1.78E+02)
F49 1.03E+04 (6.94E+02) 9.86E+03 (6.91E+02) F49 1.88E+04 (9.48E+02) 1.91E+04 (1.16E+03)
F50 4.00E+03 (1.52E+02) 4.01E+03 (2.17E+02) F50 5.44E+03 (3.08E+02) 5.50E+03 (2.81E+02)
F51 4.14E+03 (1.37E+02) 4.16E+03 (2.01E+02) F51 6.35E+03 (5.21E+02) 6.22E+03 (4.96E+02)
F52 2.95E+03 (2.86E+01) 3.07E+03 (2.77E+01) F52 3.27E+03 (7.41E+01) 3.32E+03 (4.75E+01)
F53 1.29E+04 (2.04E+03) 1.26E+04 (2.06E+03) F53 3.07E+04 (1.45E+03) 3.08E+04 (1.90E+03)
F54 5.50E+03 (5.93E+02) 5.43E+03 (4.31E+02) F54 7.79E+03 (1.49E+03) 7.46E+03 (1.28E+03)
F55 3.29E+03 (2.16E+01) 3.31E+03 (2.64E+01) F55 3.36E+03 (3.28E+01) 3.38E+03 (2.36E+01)
F56 5.61E+03 (3.71E+02) 5.59E+03 (4.17E+02) F56 9.11E+03 (5.95E+02) 9.01E+03 (6.78E+02)
F57 1.67E+07 (1.54E+06) 1.74E+07 (1.97E+06) F57 1.26E+07 (4.04E+06) 1.03E+07 (3.48E+06)

Table 4.11: Results obtained by the Wilcoxon signed-rank test for ASBSO vs. BSO
on CEC’17.

Dimension R+ R− p-value α=0.05 α=0.01

10 295.0 111.0 3.576E-2 YES NO

30 300.5 105.5 2.555E-2 YES NO

50 302.0 104.0 2.322E-2 YES NO

100 338.0 97.0 8.008E-3 YES YES

4.3 Experimental Results

Two groups of comparisons have been carried out which include internal comparisons

and external comparisons using CEC’13 and CEC’17 test functions. It should be

noticed that F2 in CEC’17 has been excluded because it shows unstable behavior

especially for higher dimensions, and significant performance variations for the same

algorithm implemented in Matlab, or C Language [63, 64]. The internal comparison

aims to demonstrate that ASBSO can achieve better performance than BSO not

only at low dimension, but also at high dimension. Therefore, these comprehensive

40

Table 4.12: Experimental results of CEC’13 (F1-F28) using ASBSO, CGSA-M,
MABC, ABC, DE, WOA and SCA.

Algorithm F1 F2 F3 F4
ASBSO -1.40E+03 ± 1.98E-13 1.54E+06 ± 4.26E+05 8.47E+07 ± 8.64E+07 5.08E+03 ± 2.25E+03
CGSA-M -1.40E+03 ± 0.00E+00 7.31E+06 ± 1.14E+06 5.82E+09 ± 1.89E+09 6.60E+04 ± 4.02E+03
MABC -1.40E+03 ± 0.00E+00 2.06E+08 ± 3.74E+07 6.86E+10 ± 1.90E+10 7.36E+04 ± 8.16E+03
ABC -1.40E+03 ± 1.03E-13 2.19E+08 ± 3.21E+07 6.66E+10 ± 1.59E+10 7.03E+04 ± 9.91E+03
DE -7.26E+02 ± 3.32E+02 1.13E+08 ± 2.05E+07 1.32E+10 ± 2.63E+09 5.72E+04 ± 9.55E+03
WOA -1.40E+03 ± 1.60E-01 3.47E+07 ± 1.64E+07 1.35E+10 ± 7.98E+09 5.69E+04 ± 2.12E+04
SCA 9.08E+03 ± 1.72E+03 1.31E+08 ± 3.26E+07 3.12E+10 ± 8.79E+09 3.17E+04 ± 6.61E+03
Algorithm F5 F6 F7 F8
ASBSO -1.00E+03 ± 2.98E-03 -8.64E+02 ± 2.46E+01 -7.08E+02 ± 3.90E+01 -6.79E+02 ± 6.70E-02
CGSA-M -1.00E+03 ± 8.64E-13 -8.35E+02 ± 1.49E+01 -7.28E+02 ± 3.33E+01 -6.79E+02 ± 5.31E-02
MABC -1.50E+02 ± 1.44E+02 -8.67E+02 ± 1.32E+01 -5.73E+02 ± 2.37E+01 -6.79E+02 ± 7.13E-02
ABC -4.83E+01 ± 1.43E+02 -8.57E+02 ± 1.25E+01 -5.76E+02 ± 2.82E+01 -6.79E+02 ± 4.36E-02
DE -9.32E+02 ± 1.42E+01 -7.37E+02 ± 2.44E+01 -6.88E+02 ± 1.16E+01 -6.79E+02 ± 4.22E-02
WOA -9.20E+02 ± 1.77E+01 -7.99E+02 ± 3.72E+01 -9.41E+01 ± 2.06E+03 -6.79E+02 ± 4.45E-02
SCA 9.15E+02 ± 3.40E+02 -2.06E+02 ± 2.22E+02 -6.27E+02 ± 4.28E+01 -6.79E+02 ± 6.99E-02
Algorithm F9 F10 F11 F12
ASBSO -5.71E+02 ± 3.23E+00 -5.00E+02 ± 5.35E-02 -1.82E+02 ± 5.40E+01 -7.64E+01 ± 4.85E+01
CGSA-M -5.69E+02 ± 3.41E+00 -5.00E+02 ± 7.86E-02 -1.11E+02 ± 2.41E+01 3.68E+01 ± 2.31E+01
MABC -5.61E+02 ± 1.38E+00 -2.82E+02 ± 3.27E+01 -1.94E+02 ± 1.33E+01 -7.01E+01 ± 1.05E+01
ABC -5.61E+02 ± 1.44E+00 -2.37E+02 ± 3.51E+01 -1.84E+02 ± 1.78E+01 -6.84E+01 ± 1.41E+01
DE -5.61E+02 ± 1.10E+00 -4.30E+01 ± 1.05E+02 -1.59E+02 ± 2.11E+01 -9.86E+00 ± 1.22E+01
WOA -5.64E+02 ± 2.78E+00 -4.45E+02 ± 2.21E+01 7.52E+01 ± 9.86E+01 1.46E+02 ± 1.03E+02
SCA -5.61E+02 ± 1.21E+00 1.01E+03 ± 3.28E+02 -4.43E+01 ± 2.90E+01 7.99E+01 ± 3.52E+01
Algorithm F13 F14 F15 F16
ASBSO 1.30E+02 ± 6.54E+01 3.68E+03 ± 4.56E+02 3.88E+03 ± 5.74E+02 2.00E+02 ± 1.13E-01
CGSA-M 2.61E+02 ± 3.66E+01 3.89E+03 ± 4.67E+02 3.78E+03 ± 4.89E+02 2.00E+02 ± 4.63E-03
MABC 1.80E+01 ± 1.40E+01 7.11E+03 ± 2.23E+02 7.45E+03 ± 2.00E+02 2.02E+02 ± 2.54E-01
ABC 2.24E+01 ± 9.10E+00 7.15E+03 ± 2.18E+02 7.46E+03 ± 2.37E+02 2.02E+02 ± 2.93E-01
DE 9.85E+01 ± 8.77E+00 6.61E+03 ± 4.55E+02 7.47E+03 ± 2.43E+02 2.02E+02 ± 3.33E-01
WOA 2.99E+02 ± 8.96E+01 4.88E+03 ± 7.84E+02 5.49E+03 ± 1.02E+03 2.02E+02 ± 4.34E-01
SCA 1.67E+02 ± 3.69E+01 7.00E+03 ± 3.40E+02 7.49E+03 ± 2.06E+02 2.02E+02 ± 2.55E-01
Algorithm F17 F18 F19 F20
ASBSO 5.28E+02 ± 5.13E+01 5.98E+02 ± 2.85E+01 5.04E+02 ± 7.60E-01 6.14E+02 ± 2.94E-01
CGSA-M 3.66E+02 ± 8.04E+00 4.55E+02 ± 5.69E+00 5.11E+02 ± 2.40E+00 6.15E+02 ± 2.23E-01
MABC 5.31E+02 ± 1.23E+01 6.42E+02 ± 1.05E+01 1.50E+03 ± 5.36E+02 6.15E+02 ± 1.25E-01
ABC 5.38E+02 ± 1.08E+01 6.44E+02 ± 8.95E+00 1.74E+03 ± 5.62E+02 6.15E+02 ± 1.37E-01
DE 6.31E+02 ± 3.76E+01 7.47E+02 ± 3.22E+01 5.37E+02 ± 1.24E+01 6.13E+02 ± 1.37E-01
WOA 8.89E+02 ± 1.11E+02 1.01E+03 ± 1.20E+02 5.58E+02 ± 1.90E+01 6.15E+02 ± 3.05E-01
SCA 7.88E+02 ± 4.68E+01 8.88E+02 ± 3.94E+01 2.99E+03 ± 1.30E+03 6.14E+02 ± 3.54E-01
Algorithm F21 F22 F23 F24
ASBSO 1.02E+03 ± 8.42E+01 5.36E+03 ± 4.70E+02 6.00E+03 ± 7.84E+02 1.31E+03 ± 2.60E+01
CGSA-M 1.01E+03 ± 4.38E+01 7.42E+03 ± 5.68E+02 6.81E+03 ± 3.14E+02 1.35E+03 ± 6.98E+01
MABC 9.94E+02 ± 2.19E+01 8.69E+03 ± 2.71E+02 8.84E+03 ± 3.22E+02 1.28E+03 ± 7.18E+00
ABC 1.00E+03 ± 1.33E-02 8.74E+03 ± 2.01E+02 8.82E+03 ± 3.04E+02 1.29E+03 ± 5.63E+00
DE 1.57E+03 ± 1.87E+02 7.76E+03 ± 4.13E+02 8.44E+03 ± 3.02E+02 1.30E+03 ± 2.66E+00
WOA 1.03E+03 ± 6.87E+01 6.76E+03 ± 1.08E+03 7.61E+03 ± 8.55E+02 1.31E+03 ± 1.00E+01
SCA 2.58E+03 ± 1.79E+02 8.35E+03 ± 4.43E+02 8.70E+03 ± 3.72E+02 1.32E+03 ± 5.05E+00
Algorithm F25 F26 F27 F28
ASBSO 1.41E+03 ± 1.03E+01 1.46E+03 ± 7.82E+01 2.42E+03 ± 1.07E+02 2.03E+03 ± 8.02E+02
CGSA-M 1.49E+03 ± 7.05E+00 1.55E+03 ± 3.14E+01 2.23E+03 ± 8.05E+01 5.00E+03 ± 2.48E+02
MABC 1.44E+03 ± 3.82E+00 1.42E+03 ± 5.30E+00 2.66E+03 ± 4.42E+01 1.70E+03 ± 9.31E-05
ABC 1.44E+03 ± 5.31E+00 1.42E+03 ± 6.02E+00 2.67E+03 ± 4.60E+01 1.70E+03 ± 1.47E+00
DE 1.42E+03 ± 3.38E+00 1.41E+03 ± 2.06E+00 2.63E+03 ± 2.62E+01 2.66E+03 ± 1.29E+02
WOA 1.42E+03 ± 9.66E+00 1.53E+03 ± 9.64E+01 2.61E+03 ± 6.95E+01 5.36E+03 ± 7.53E+02
SCA 1.43E+03 ± 4.21E+00 1.41E+03 ± 5.66E+00 2.66E+03 ± 4.51E+01 3.92E+03 ± 1.98E+02

41

Table 4.13: Experimental results of CEC’17 (F29-F57) using ASBSO, CGSA-M,
MABC, ABC, DE, WOA and SCA.

Algorithm F29 F30 F31 F32
ASBSO 2.21E+03 ± 2.00E+03 3.95E+02 ± 1.10E+02 4.72E+02 ± 2.92E+01 6.86E+02 ± 3.45E+01
CGSA-M 1.82E+03 ± 9.25E+02 8.51E+04 ± 6.02E+03 5.34E+02 ± 1.24E+01 7.33E+02 ± 1.99E+01
MABC 2.01E+03 ± 1.82E+03 9.71E+04 ± 1.28E+04 5.17E+02 ± 2.31E+00 7.19E+02 ± 1.48E+01
ABC 4.72E+04 ± 7.74E+04 1.03E+05 ± 1.09E+04 5.19E+02 ± 2.79E+00 7.18E+02 ± 9.44E+00
DE 1.32E+09 ± 4.55E+08 8.04E+04 ± 1.05E+04 6.25E+02 ± 2.90E+01 7.50E+02 ± 1.31E+01
WOA 2.48E+06 ± 1.73E+06 1.60E+05 ± 8.12E+04 5.45E+02 ± 3.70E+01 7.64E+02 ± 6.16E+01
SCA 1.18E+10 ± 1.77E+09 3.50E+04 ± 6.31E+03 1.40E+03 ± 2.74E+02 7.71E+02 ± 2.17E+01
Algorithm F33 F34 F35 F36
ASBSO 6.51E+02 ± 7.77E+00 1.16E+03 ± 9.94E+01 9.41E+02 ± 3.19E+01 3.93E+03 ± 6.39E+02
CGSA-M 6.50E+02 ± 3.78E+00 7.86E+02 ± 1.11E+01 9.52E+02 ± 1.34E+01 2.96E+03 ± 2.48E+02
MABC 6.00E+02 ± 7.55E-04 9.39E+02 ± 9.74E+00 1.02E+03 ± 1.08E+01 1.41E+03 ± 3.36E+02
ABC 6.00E+02 ± 6.69E-03 9.43E+02 ± 9.71E+00 1.02E+03 ± 1.16E+01 1.90E+03 ± 4.45E+02
DE 6.24E+02 ± 4.43E+00 1.17E+03 ± 9.96E+01 1.06E+03 ± 1.14E+01 4.14E+03 ± 7.85E+02
WOA 6.67E+02 ± 1.12E+01 1.21E+03 ± 9.33E+01 9.99E+02 ± 3.20E+01 6.54E+03 ± 2.35E+03
SCA 6.49E+02 ± 5.34E+00 1.12E+03 ± 2.88E+01 1.05E+03 ± 1.63E+01 5.52E+03 ± 1.10E+03
Algorithm F37 F38 F39 F40
ASBSO 5.20E+03 ± 5.67E+02 1.23E+03 ± 4.75E+01 1.41E+06 ± 8.00E+05 5.04E+04 ± 2.64E+04
CGSA-M 4.83E+03 ± 4.17E+02 1.46E+03 ± 7.26E+01 1.49E+07 ± 2.37E+07 3.02E+04 ± 5.39E+03
MABC 8.15E+03 ± 3.09E+02 4.31E+03 ± 6.19E+02 7.79E+07 ± 2.79E+07 8.46E+07 ± 2.90E+07
ABC 8.10E+03 ± 3.19E+02 4.37E+03 ± 7.31E+02 1.17E+08 ± 2.66E+07 8.02E+07 ± 3.32E+07
DE 8.17E+03 ± 2.51E+02 1.33E+03 ± 2.16E+01 5.43E+07 ± 1.60E+07 4.13E+03 ± 5.37E+02
WOA 6.06E+03 ± 9.74E+02 1.45E+03 ± 1.15E+02 4.47E+07 ± 3.11E+07 1.35E+05 ± 1.44E+05
SCA 8.12E+03 ± 3.34E+02 2.19E+03 ± 3.99E+02 1.21E+09 ± 2.30E+08 4.07E+08 ± 1.98E+08
Algorithm F41 F42 F43 F44
ASBSO 7.08E+03 ± 5.23E+03 3.01E+04 ± 2.25E+04 3.01E+03 ± 2.25E+02 2.40E+03 ± 2.44E+02
CGSA-M 4.79E+05 ± 1.35E+05 1.21E+04 ± 1.59E+03 3.16E+03 ± 2.60E+02 2.81E+03 ± 2.33E+02
MABC 3.62E+05 ± 1.64E+05 1.96E+07 ± 7.41E+06 3.68E+03 ± 1.57E+02 2.50E+03 ± 1.17E+02
ABC 3.04E+05 ± 1.25E+05 2.08E+07 ± 8.65E+06 3.76E+03 ± 1.87E+02 2.49E+03 ± 1.19E+02
DE 1.49E+03 ± 7.57E+00 1.72E+03 ± 3.06E+01 3.19E+03 ± 3.08E+02 2.41E+03 ± 2.16E+02
WOA 7.27E+05 ± 6.79E+05 6.97E+04 ± 4.48E+04 3.47E+03 ± 5.17E+02 2.53E+03 ± 2.16E+02
SCA 1.19E+05 ± 7.05E+04 1.56E+07 ± 1.29E+07 3.64E+03 ± 2.13E+02 2.42E+03 ± 1.64E+02
Algorithm F45 F46 F47 F48
ASBSO 1.23E+05 ± 1.21E+05 1.25E+05 ± 6.31E+04 2.67E+03 ± 2.17E+02 2.49E+03 ± 3.14E+01
CGSA-M 2.99E+05 ± 1.33E+05 1.56E+04 ± 5.55E+03 3.01E+03 ± 2.02E+02 2.56E+03 ± 2.59E+01
MABC 6.77E+06 ± 2.63E+06 2.67E+07 ± 1.04E+07 2.75E+03 ± 1.06E+02 2.51E+03 ± 1.18E+01
ABC 6.34E+06 ± 3.20E+06 2.39E+07 ± 1.03E+07 2.74E+03 ± 8.15E+01 2.52E+03 ± 1.18E+01
DE 6.90E+03 ± 1.84E+03 1.96E+03 ± 4.88E+00 2.31E+03 ± 2.03E+02 2.54E+03 ± 1.26E+01
WOA 3.02E+06 ± 2.58E+06 2.45E+06 ± 2.03E+06 2.78E+03 ± 1.76E+02 2.56E+03 ± 6.24E+01
SCA 2.80E+06 ± 1.21E+06 2.48E+07 ± 1.13E+07 2.61E+03 ± 1.29E+02 2.56E+03 ± 1.92E+01
Algorithm F49 F50 F51 F52
ASBSO 5.79E+03 ± 2.04E+03 3.26E+03 ± 1.24E+02 3.49E+03 ± 9.56E+01 2.89E+03 ± 1.25E+01
CGSA-M 6.20E+03 ± 1.84E+03 3.61E+03 ± 1.59E+02 3.27E+03 ± 5.85E+01 2.93E+03 ± 1.24E+01
MABC 2.52E+03 ± 1.76E+02 2.88E+03 ± 1.65E+01 3.04E+03 ± 1.19E+01 2.89E+03 ± 1.29E-01
ABC 2.64E+03 ± 2.08E+02 2.89E+03 ± 1.60E+01 3.04E+03 ± 1.17E+01 2.89E+03 ± 1.73E-01
DE 2.52E+03 ± 4.78E+01 2.88E+03 ± 1.38E+01 3.04E+03 ± 1.07E+01 3.01E+03 ± 3.38E+01
WOA 6.65E+03 ± 1.87E+03 3.05E+03 ± 8.54E+01 3.16E+03 ± 9.15E+01 2.94E+03 ± 2.73E+01
SCA 8.25E+03 ± 2.37E+03 2.99E+03 ± 2.34E+01 3.16E+03 ± 2.96E+01 3.20E+03 ± 4.91E+01
Algorithm F53 F54 F55 F56
ASBSO 7.84E+03 ± 1.80E+03 3.85E+03 ± 2.17E+02 3.18E+03 ± 3.60E+01 4.40E+03 ± 3.39E+02
CGSA-M 6.75E+03 ± 6.48E+02 4.51E+03 ± 3.18E+02 3.31E+03 ± 5.88E+01 4.71E+03 ± 2.26E+02
MABC 5.71E+03 ± 1.13E+02 3.46E+03 ± 2.89E+01 3.23E+03 ± 1.95E+01 4.86E+03 ± 1.75E+02
ABC 5.74E+03 ± 1.28E+02 3.46E+03 ± 3.87E+01 3.26E+03 ± 2.59E+01 4.93E+03 ± 1.31E+02
DE 3.04E+03 ± 1.07E+01 3.01E+03 ± 3.38E+01 6.15E+03 ± 1.47E+02 3.26E+03 ± 1.20E+01
WOA 7.24E+03 ± 1.00E+03 3.36E+03 ± 8.88E+01 3.31E+03 ± 3.96E+01 5.00E+03 ± 4.58E+02
SCA 6.87E+03 ± 2.56E+02 3.39E+03 ± 4.83E+01 3.78E+03 ± 1.36E+02 4.62E+03 ± 2.62E+02
Algorithm F57
ASBSO 5.16E+05 ± 2.90E+05
CGSA-M 1.48E+05 ± 8.05E+04
MABC 2.38E+07 ± 7.73E+06
ABC 2.67E+07 ± 1.04E+07
DE 1.94E+05 ± 7.07E+04
WOA 1.04E+07 ± 6.42E+06
SCA 7.44E+07 ± 2.59E+07

42

comparisons can show the search ability and robustness of ASBSO for solving the

problems with different difficulty levels.

After proving the superiority of ASBSO, in the external comparison, some meta-

heuristic algorithms have been taken into account to further evaluate the performance

of ASBSO. Artificial bee colony algorithm (ABC) [67] is very popular in literature

and its influence is next only to particle swarm optimization (PSO) [2] in swarm-

based meta-heuristic algorithms [68, 69, 70]. Differential evolution (DE) [40, 71, 72]

is the most famous optimization algorithm with very powerful search ability. MABC

and CGSA-M [22, 73] which are two variations based on ABC and gravitational

search algorithm (GSA) [14, 25, 74] implement memory-based selection strategies.

Thus, they are very suitable to be chosen to compare with ASBSO. Furthermore, two

newly proposed effective swarm intelligence based algorithms, i.e., whale optimization

algorithm (WOA) [41] and sine cosine algorithm (SCA) [75], have been implemented.

The population size of all compared algorithms is 100. All these contrast experiments

are run for 30 times to reduce the random error, and the maximum number of function

evaluation is set to 10000D (D is the dimension number).

4.3.1 Parameter Analysis

The aim of implementing multiple strategies and memory based selection method

is to provide multiple step lengths in order to suit different search phases. Too

few strategies couldn’t satisfy this demand while too many strategies are redundant

and will increase computational cost. Thus, we attempt M = 4 in this paper and

preliminary experiments prove the validity of this parameter setting. A parameter

analysis is executed to find an applicable value for H. Three values are applied

involving 10, 20 and 30. In this comparison, k is set to 10. The contrast experiment is

implement on CEC’13 and CEC’17 to find the most suitable value for four strategies.

Friedman test for multiple comparison is applied to analyze the results [44]. Table

4.5 lists statistical results obtained by Friedman test and H = 20 is the control

algorithm. Ranking evaluates the performance of each algorithm, and a lower ranking

43

indicates a better performance. Unadjusted p-value doesn’t consider the probability

error in a multiple comparison. Thus, two commonly used post-hoc procedures, Holm

and Hochberg procedures [45], are taken into account and their conservative adjusted

p-values are convincing enough to eliminate Type I error [76]. H = 20 which maintains

the best ranking of 1.4298 indicates that it’s the best value for H. Therefore, k = 10

and H = 20 are chosen to be applied into the flexible multiple search length strategy.

4.3.2 Internal Comparison

In the first experiment, the CEC’13 and CEC’17 are used to compare the performance

between traditional BSO and the proposed ASBSO. The experiments are tested at

dimension D = 10, 30, 50 and 100 respectively.

The experimental results of CEC’13 are summarized in Tables 4.6 and 4.7, while

Tables 4.9 and 4.10 show the results of CEC’17. All the better Mean and standard

deviation (Std Dev) values are highlighted for convenience. From these tables, we can

intuitively find out that ASBSO can obtain more number of better results than BSO.

The former obtains better results on F4, F7, F9, F11, F14, F15, F17-F19, F27 and

F28 at all tested dimensions, while BSO only obtains better result on F6 in CEC’13.

In CEC’17, ASBSO outperforms on F29, F32, F43 and F46 while BSO can’t obtain

better performance at all dimensions on any function.

Wilcoxon signed-rank test is conducted to prove that ASBSO can beat BSO as it’s

a pairwise test which is used to analyze significant difference between the performance

of two algorithms. R+ and R− values in Tables 4.8 and 4.11 can indicate the degree

that ASBSO outperforms BSO. As we conduct ASBSO versus BSO, R+ represents the

sum of ranks for the functions on which ASBSO outperforms BSO, and R− means the

opposite.With the null hypothesis H0 for the test assumes two compared algorithms

have no difference, a better performance of our proposed algorithm can be shown

via a higher R+ value and p-value indicates the possibility that the null hypothesis

happens. If p-value is lower than the level of significance α = 0.05, we can accept the

hypothesis that ASBSO is significantly better than BSO. Moreover, we set a more

44

rigorous level α = 0.01 to further exhibit the improvement of ASBSO in solution

quality.

All the comparisons in Table 4.8 can reach the level of α = 0.01, while in Table

4.11, ASBSO can beat BSO on the level of α = 0.05 at all dimensions but only has a

significant difference at D = 100 when α = 0.01. It’s understandable because CEC’17

is a newly proposed benchmark function suit, all test functions have a promotion in

difficulty and complexity compared with CEC’13.

From these results, it can be concluded that ASBSO has obvious advantage in

comparison with BSO in terms of search ability and solution quality.

4.3.3 External Comparison

To investigate the performance of ASBSO when comparing with other swarm intelli-

gence optimization algorithms, some well-known meta-heuristic algorithms, involving

CGSA-M, MABC, ABC, DE, WOA and SCA, are implemented into numerical tests.

Parameter settings can be investigated according to [22, 41, 67, 73, 75]. In DE, we

use the efficient parameter set F = 0.9 and CR = 0.9 as suggested in [43, 77]. All

tests have been executed at D = 30 with maximum number of function evaluation

equals 10000D for 30 runs.

The results are listed in Tables 4.12 and 4.13. The best results are marked in

boldface. It’s visual that ASBSO obtains the largest number of the best results among

all compared algorithms and we can draw a preliminary conclusion that ASBSO

is very competitive in contrast with others. To more precisely analyze the results

of multiple comparisons, Friedman test [44] which is widely used in [78, 79, 80] is

employed. Table 4.14 lists statistical results obtained by Friedman test and ASBSO

is the control algorithm. ASBSO maintains the best ranking of 2.5 while the second

best is only 3.5526 which belongs to CGSA-M. Although adjusted p-values of Holm

and Hochberg procedures are multiplied bigger than unadjusted p-values, they still

reach the significant level of α = 0.05. Furthermore, in terms of MABC, ABC,

WOA and SCA, adjusted p-values satisfy the level of α = 0.01. Wilcoxon test is also

45

conducted to verify the results of Friedman test and obtains similar p-values in Table

4.15. From all these results, it is obvious that ASBSO is significantly better than

other contrast algorithms in benchmark function tests.

Table 4.14: Adjusted p-values (FRIEDMAN).

Algorithm Ranking unadjusted p pHolm pHochberg α = 0.05 α = 0.01
ASBSO vs. 2.5
CGSA-M 3.5526 0.009286 0.011049 0.009286 YES NO
MABC 3.9737 0.000271 0.000812 0.000812 YES YES
ABC 4.3509 0.000005 0.000019 0.000019 YES YES
DE 3.6228 0.005524 0.011049 0.009286 YES NO

WOA 4.7982 0 0 0 YES YES
SCA 5.2018 0 0 0 YES YES

Table 4.15: Results obtained by the Wilcoxon signed-rank test for ASBSO vs. some
other typical algorithms.

Algorithm R+ R− p-value α = 0.05 α = 0.01
ASBSO vs.
CGSA-M 1046.5 549.5 4.1615E-2 YES NO
MABC 1208.5 387.5 7.81E-4 YES YES
ABC 1256.0 340.0 1.73E-4 YES YES
DE 1040.5 555.5 4.195E-2 YES NO

WOA 1473.0 123.0 0.00 YES YES
SCA 1510.0 143.0 0.00 YES YES

Table 4.16: Experimental results on real-world problems.
BSO ASBSO CGSA-M MABC

RF1 1.30E+01±4.98E+00 9.93E+00±4.68E+00 2.19E+01±4.33E+00 1.81E+01±2.13E+00
RF2 -2.11E+01± 2.95E+00 -2.52E+01±2.12E+00 -3.24E+00±1.08E+00 -1.17E+01±9.23E-01
RF4 1.50E+01±9.12E-01 1.47E+01±5.15E-01 1.99E+01±2.09E+00 1.65E+01±2.37E+00
RF7 8.72E-01±1.01E-01 7.91E-01±1.49E-01 2.55E+00±2.39E-01 1.63E+00±9.01E-02

ABC DE WOA SCA
RF1 1.83E+01±1.65E+00 3.15E+01±2.01E+01 2.19E+01±5.00E+00 1.83E+01±3.98E+00
RF2 -1.13E+01±5.04E-01 -4.24E+00±4.02E-01 -1.84E+01±4.89E+00 -9.20E+00±1.16E+00
RF4 1.63E+01±2.04E+00 4.99E+01±2.46E+01 1.47E+01±1.26E+00 1.51E+01±1.19E+00
RF7 1.67E+00±8.83E-02 3.31E+00±4.06E-01 1.92E+00±2.30E-01 2.12E+00±2.02E-01

46

Solution Distribution

0

2

4

6

8

10

x 10
4

BSO

ASBSO

CGSA-M
M

ABC
ABC

DE
W

OA
SCA

(a) F4

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

x 10
3

BSO

ASBSO

CGSA-M
M

ABC
ABC

DE
W

OA
SCA

(b) F14

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

BSO

ASBSO

CGSA-M
M

ABC
ABC

DE
W

OA
SCA

x 10
3

(c) F22

10
6

10
7

10
8

10
9

BSO

ASBSO

CGSA-M
M

ABC
ABC

DE
W

OA
SCA

(d) F39

 2.5

 3

 3.5

 4

 4.5

BSO

ASBSO

CGSA-M
M

ABC
ABC

DE
W

OA
SCA

x 10
3

(e) F43

 2.4

 2.45

 2.5

 2.55

 2.6

 2.65

 2.7

BSO

ASBSO

CGSA-M
M

ABC
ABC

DE
W

OA
SCA

x 10
3

(f) F48

F
it

n
e
s
s

F
it

n
e
s
s

Figure 4.2: Box-and-Whisker diagrams of F4, F14, F22, F39, F43 and F48.

10
3

10
4

10
5

10
6

10
7

Number of Function Evalutions

A
v
er

ag
e

b
es

t−
so

−
fa

r

(a) Convergence Graph: F4

BSO

ASBSO

CGSA−M

MABC

ABC

DE

WOA

SCA

0 5 10 15 20 25 30

x 10
4

10
3.5

10
3.6

10
3.7

10
3.8

10
3.9

Number of Function Evalutions

A
v
er

ag
e

b
es

t−
so

−
fa

r

(e) Convergence Graph: F43

0 5 10 15 20 25 30

x 10
4

10
6

10
7

10
8

10
9

10
10

10
11

Number of Function Evalutions

A
v
er

ag
e

b
es

t−
so

−
fa

r

(d) Convergence Graph: F39

0 5 10 15 20 25 30

x 10
4

3

4

5

6

7

8

9

10

Number of Function Evalutions

A
v
er

ag
e

b
es

t−
so

−
fa

r

(b) Convergence Graph: F14

0 5 10 15 20 25 30

x 10
4

10
3

 5

 6

 7

 8

 9

 10

 11

 12

Number of Function Evalutions

A
v
er

ag
e

b
es

t−
so

−
fa

r

(c) Convergence Graph: F22

0 5 10 15 20 25 30

x 10
4

10
3

 2.45

 2.5

 2.55

 2.6

 2.65

 2.7

 2.75

 2.8

 2.85

 2.9

Number of Function Evalutions

A
v
er

ag
e

b
es

t−
so

−
fa

r

(f) Convergence Graph: F48

0 5 10 15 20 25 30

x 10
4

10
3

Figure 4.3: Convergence graphs of optimal solutions obtained by eight algorithms on
F4, F14, F22, F39, F43 and F48.

To visually demonstrate the comparisons among ASBSO and other contrast al-

gorithms, six functions, F4, F14, F22, F39, F43 and F48 with different properties,

including unimodal, simple multimodal, hybrid and composition, are selected since

they are representative to show the properties of all tested functions. The conver-

47

gent procedures and final solutions obtained by these algorithms in all 30 runs are

exhibited.

Fig. 5.2 is the box-and-whisker diagrams and Fig. 5.3 is the convergence graphs.

Five values including median, maximum, minimum, first quartile and third quartile

are shown in box-and-whisker plots. The range between the first quartile and the third

quartile is called interquartile range (IQR), and if the points locate either 1.5*IQR

above the third quartile (i.e. 1.5*IQR) below the first quartile, they are marked as

outliers. Extreme outliers refer to the points locate either 3*IQR above the third

quartile or 3*IQR below the first quartile. In these six plots, the median values

of ASBSO are the smallest and its IQRs are lower and shorter than most other

algorithms. These indicate that the solution quality and stability obtained by ASBSO

is much better than those of other contrast algorithms.

The convergence graphs can not only demonstrate the precision of solutions but

also compare the convergence speeds. Fig. 5.3 shows that, ASBSO can possess the

fast convergence speed. In details, all algorithms’ convergence behaviors shown in Fig.

5.3 (a) are quite illuminating to further elaborate the search behavior of ASBSO. It is

clear that ASBSO continues converging when other algorithms stop in the latter of the

search iteration. Although ABC starts with a better initial position, it doesn’t have

the ability to jump out of local optima and ultimately be transcended by ASBSO. In

the comparison between ASBSO and BSO, it illustrates that the former always has

a better solution precision and convergence speed than the latter. When comparing

with other algorithms, ASBSO also obtains fabulous performances. Thus, it can be

concluded that the proposed adaptive step length based on memory selection method

enhances the search ability and efficiency for ASBSO.

4.3.4 Real World Optimization Problems

It has been demonstrated that ASBSO can outperform traditional BSO and other

well-known algorithms on benchmark functions. To further testify its application

value, four problems introduced in CEC’11 [46] are used to execute this test: (1)

48

RF1: Parameter Estimation for Frequency-Modulated (FM) Sound Waves, (2) RF2:

Lennard-Jones Potential Problem, (3) RF4: Optimal Control of a Non-Linear Stirred

Tank Reactor, and (4) RF7: Transmission Network Expansion Planning (TNEP)

problem [46]. All these problems are run for 30 independent times and the maximum

function evaluation is set to 10000D. The experimental results are presented in Table

4.16. It’s obvious that ASBSO obtains dominance over all tested problems when

compared with other algorithms, which well exhibiting its application value.

Table 4.17: Experimental results of using ASBSO and BSO with 1/5 Success Rule
on CEC’13 and CEC’17 benchmark functions (F1-F57).

D=30
ASBSO BSO with 1/5 Rule ASBSO BSO with 1/5 Rule

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)
F1 -1.40E+03 (1.98E-13) -1.40E+03 (7.26E-13) F29 2.21E+03 (2.00E+03) 2.93E+03 (3.12E+03)
F2 1.54E+06 (4.26E+05) 3.96E+06 (1.25E+06) F30 3.95E+02 (1.10E+02) 5.39E+02 (2.13E+02)
F3 8.47E+07 (8.64E+07) 4.28E+08 (4.44E+08) F31 4.72E+02 (2.92E+01) 5.00E+02 (1.92E+01)
F4 5.08E+03 (2.25E+03) 1.86E+03 (1.34E+03) F32 6.86E+02 (3.45E+01) 6.79E+02 (2.61E+01)
F5 -1.00E+03 (2.98E-03) -1.00E+03 (3.99E-04) F33 6.51E+02 (7.77E+00) 6.52E+02 (9.75E+00)
F6 -8.64E+02 (2.46E+01) -8.50E+02 (2.90E+01) F34 1.16E+03 (9.94E+01) 1.11E+03 (1.01E+02)
F7 -7.08E+02 (3.90E+01) -6.52E+02 (4.02E+01) F35 9.41E+02 (3.19E+01) 9.35E+02 (2.82E+01)
F8 -6.79E+02 (6.70E-02) -6.79E+02 (9.75E-02) F36 3.93E+03 (6.39E+02) 4.59E+03 (8.43E+02)
F9 -5.71E+02 (3.23E+00) -5.65E+02 (2.53E+00) F37 5.20E+03 (5.67E+02) 5.78E+03 (9.50E+02)
F10 -5.00E+02 (5.35E-02) -4.99E+02 (4.49E-01) F38 1.23E+03 (4.75E+01) 1.26E+03 (5.13E+01)
F11 -1.82E+02 (5.40E+01) -6.33E+01 (7.12E+01) F39 1.41E+06 (8.00E+05) 3.77E+06 (2.16E+06)
F12 -7.64E+01 (4.85E+01) 4.40E+01 (9.33E+01) F40 5.04E+04 (2.64E+04) 7.04E+04 (4.01E+04)
F13 1.30E+02 (6.54E+01) 2.04E+02 (8.10E+01) F41 7.08E+03 (5.23E+03) 1.69E+04 (1.37E+04)
F14 3.68E+03 (4.56E+02) 4.27E+03 (5.94E+02) F42 3.01E+04 (2.25E+04) 3.59E+04 (2.55E+04)
F15 3.88E+03 (5.74E+02) 4.78E+03 (7.29E+02) F43 3.01E+03 (2.25E+02) 3.00E+03 (2.90E+02)
F16 2.00E+02 (1.13E-01) 2.01E+02 (5.29E-01) F44 2.40E+03 (2.44E+02) 2.22E+03 (1.91E+02)
F17 5.28E+02 (5.13E+01) 6.43E+02 (1.03E+02) F45 1.23E+05 (1.21E+05) 2.09E+05 (2.49E+05)
F18 5.98E+02 (2.85E+01) 7.64E+02 (7.58E+01) F46 1.25E+05 (6.31E+04) 2.66E+05 (1.56E+05)
F19 5.04E+02 (7.60E-01) 5.27E+02 (1.13E+01) F47 2.67E+03 (2.17E+02) 2.70E+03 (2.23E+02)
F20 6.14E+02 (2.94E-01) 6.15E+02 (5.43E-01) F48 2.49E+03 (3.14E+01) 2.45E+03 (2.66E+01)
F21 1.02E+03 (8.42E+01) 1.02E+03 (7.70E+01) F49 5.79E+03 (2.04E+03) 5.60E+03 (2.60E+03)
F22 5.36E+03 (4.70E+02) 6.21E+03 (7.47E+02) F50 3.26E+03 (1.24E+02) 2.87E+03 (5.16E+01)
F23 6.00E+03 (7.84E+02) 6.39E+03 (8.77E+02) F51 3.49E+03 (9.56E+01) 3.01E+03 (4.49E+01)
F24 1.31E+03 (2.60E+01) 1.30E+03 (1.30E+01) F52 2.89E+03 (1.25E+01) 2.93E+03 (2.13E+01)
F25 1.41E+03 (1.03E+01) 1.42E+03 (8.86E+00) F53 7.84E+03 (1.80E+03) 6.46E+03 (6.20E+02)
F26 1.46E+03 (7.82E+01) 1.48E+03 (8.69E+01) F54 3.85E+03 (2.17E+02) 3.34E+03 (5.66E+01)
F27 2.42E+03 (1.07E+02) 2.58E+03 (8.02E+01) F55 3.18E+03 (3.60E+01) 3.23E+03 (2.33E+01)
F28 2.03E+03 (8.02E+02) 3.63E+03 (1.45E+03) F56 4.40E+03 (3.39E+02) 4.62E+03 (3.21E+02)

F57 5.16E+05 (2.90E+05) 1.54E+06 (7.63E+05)

Table 4.18: Results obtained by the Wilcoxon signed-rank test for ASBSO vs. BSO
with 1/5 Rule.

vs. R+ R− p-value α=0.05 α=0.01
BSO with 1/5 Rule 1282.0 371.0 2.22E-4 YES YES

49

Table 4.19: Experimental results of using ASBSO and SFMS on CEC’13 and CEC’17
benchmark functions (F1-F57).

D=30
ASBSO SFMS ASBSO SFMS

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)
F1 -1.40E+03 (1.98E-13) -1.40E+03 (4.72E-13) F29 2.21E+03 (2.00E+03) 3.13E+03 (2.72E+03)
F2 1.54E+06 (4.26E+05) 1.89E+06 (4.58E+05) F30 3.95E+02 (1.10E+02) 4.03E+02 (1.18E+02)
F3 8.47E+07 (8.64E+07) 1.16E+08 (1.19E+08) F31 4.72E+02 (2.92E+01) 4.98E+02 (2.58E+01)
F4 5.08E+03 (2.25E+03) 1.64E+04 (4.84E+03) F32 6.86E+02 (3.45E+01) 6.94E+02 (3.34E+01)
F5 -1.00E+03 (2.98E-03) -1.00E+03 (2.41E-03) F33 6.51E+02 (7.77E+00) 6.54E+02 (7.62E+00)
F6 -8.64E+02 (2.46E+01) -8.61E+02 (2.83E+01) F34 1.16E+03 (9.94E+01) 1.17E+03 (9.13E+01)
F7 -7.08E+02 (3.90E+01) -7.07E+02 (3.46E+01) F35 9.41E+02 (3.19E+01) 9.43E+02 (2.14E+01)
F8 -6.79E+02 (6.70E-02) -6.79E+02 (9.63E-02) F36 3.93E+03 (6.39E+02) 4.05E+03 (7.25E+02)
F9 -5.71E+02 (3.23E+00) -5.71E+02 (3.42E+00) F37 5.20E+03 (5.67E+02) 5.28E+03 (6.97E+02)
F10 -5.00E+02 (5.35E-02) -5.00E+02 (8.43E-02) F38 1.23E+03 (4.75E+01) 1.23E+03 (5.01E+01)
F11 -1.82E+02 (5.40E+01) 2.34E+01 (7.94E+01) F39 1.41E+06 (8.00E+05) 1.35E+06 (7.99E+05)
F12 -7.64E+01 (4.85E+01) 1.73E+02 (8.46E+01) F40 5.04E+04 (2.64E+04) 4.91E+04 (2.42E+04)
F13 1.30E+02 (6.54E+01) 3.44E+02 (7.70E+01) F41 7.08E+03 (5.23E+03) 8.35E+03 (7.67E+03)
F14 3.68E+03 (4.56E+02) 3.88E+03 (5.09E+02) F42 3.01E+04 (2.25E+04) 2.64E+04 (1.34E+04)
F15 3.88E+03 (5.74E+02) 4.26E+03 (5.32E+02) F43 3.01E+03 (2.25E+02) 3.10E+03 (3.99E+02)
F16 2.00E+02 (1.13E-01) 2.00E+02 (1.99E-01) F44 2.40E+03 (2.44E+02) 2.39E+03 (2.77E+02)
F17 5.28E+02 (5.13E+01) 5.54E+02 (3.81E+01) F45 1.23E+05 (1.21E+05) 1.35E+05 (8.48E+04)
F18 5.98E+02 (2.85E+01) 6.02E+02 (3.11E+01) F46 1.25E+05 (6.31E+04) 1.32E+05 (5.56E+04)
F19 5.04E+02 (7.60E-01) 5.06E+02 (1.14E+00) F47 2.67E+03 (2.17E+02) 2.73E+03 (2.13E+02)
F20 6.14E+02 (2.94E-01) 6.14E+02 (1.23E-01) F48 2.49E+03 (3.14E+01) 2.50E+03 (4.34E+01)
F21 1.02E+03 (8.42E+01) 1.02E+03 (7.70E+01) F49 5.79E+03 (2.04E+03) 6.11E+03 (1.70E+03)
F22 5.36E+03 (4.70E+02) 5.56E+03 (7.10E+02) F50 3.26E+03 (1.24E+02) 3.28E+03 (1.01E+02)
F23 6.00E+03 (7.84E+02) 6.00E+03 (6.64E+02) F51 3.49E+03 (9.56E+01) 3.51E+03 (1.25E+02)
F24 1.31E+03 (2.60E+01) 1.31E+03 (2.27E+01) F52 2.89E+03 (1.25E+01) 2.89E+03 (7.17E+00)
F25 1.41E+03 (1.03E+01) 1.45E+03 (1.68E+01) F53 7.84E+03 (1.80E+03) 7.48E+03 (2.17E+03)
F26 1.46E+03 (7.82E+01) 1.44E+03 (7.15E+01) F54 3.85E+03 (2.17E+02) 3.84E+03 (1.96E+02)
F27 2.42E+03 (1.07E+02) 2.44E+03 (1.30E+02) F55 3.18E+03 (3.60E+01) 3.19E+03 (4.05E+01)
F28 2.03E+03 (8.02E+02) 5.66E+03 (5.57E+02) F56 4.40E+03 (3.39E+02) 4.47E+03 (3.37E+02)

F57 5.16E+05 (2.90E+05) 5.31E+05 (2.89E+05)

Table 4.20: Results obtained by the Wilcoxon signed-rank test for IMS vs. SFMS.
vs. R+ R− p-value α=0.05 α=0.01

SFMS 1343.5 309.5 2.0E-5 YES YES

4.3.5 ASBSO vs. previous BSO variants

To further discuss the competitiveness of ASBSO, more comparisons between it and

previous BSO variants should be executed. In this part, two BSO variants: BSO in

objective space (BSOOS) [55] and global-best BSO (GBSO) [81] are tested on CEC’13

and 17 benchmark functions. The results are listed in Tables 4.21 and 4.22.

From the results, ASBSO shows a great advantage comparing with BSOOS, and

can be competitive with GBSO. Although the p-value for ASBSO vs. GBSO is not

less than 0.05, ASBSO still obtains a greater R+ value, which indicates that it has a

better overall performance than GBSO on total 57 test functions. Moreover, GBSO

adopts multiple modifications, i.e., fitness-based grouping, per-variable updates, the

global-best update and the re-initialization step, but ASBSO using fewer modifica-

50

Table 4.21: Experimental results of using ASBSO, BSOOS and GBSO on CEC’13
benchmark functions (F1-F28).

ASBSO BSOOS GBSO
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 -1.40E+03 (1.98E-13) -1.40E+03 (1.64E-13) -1.40E+03 (1.06E-10)
F2 1.54E+06 (4.26E+05) 1.67E+06 (6.03E+05) 2.08E+06 (4.53E+05)
F3 8.47E+07 (8.64E+07) 1.77E+08 (2.89E+08) 5.76E+08 (7.05E+08)
F4 5.08E+03 (2.25E+03) 3.31E+04 (9.12E+03) -1.04E+03 (3.33E+01)
F5 -1.00E+03 (2.98E-03) -1.00E+03 (1.72E-03) -1.00E+03 (8.05E-04)
F6 -8.64E+02 (2.46E+01) -8.62E+02 (2.76E+01) -8.50E+02 (3.16E+01)
F7 -7.08E+02 (3.90E+01) -6.82E+02 (6.08E+01) -6.99E+02 (2.76E+01)
F8 -6.79E+02 (6.70E-02) -6.79E+02 (7.04E-02) -6.79E+02 (7.42E-02)
F9 -5.71E+02 (3.23E+00) -5.69E+02 (3.36E+00) -5.71E+02 (3.40E+00)
F10 -5.00E+02 (5.35E-02) -5.00E+02 (1.39E-01) -5.00E+02 (9.27E-02)
F11 -1.82E+02 (5.40E+01) 3.86E+01 (7.84E+01) -1.48E+02 (5.90E+01)
F12 -7.64E+01 (4.85E+01) 1.42E+02 (7.87E+01) -6.60E+01 (6.99E+01)
F13 1.30E+02 (6.54E+01) 3.74E+02 (1.10E+02) 7.53E+01 (5.32E+01)
F14 3.68E+03 (4.56E+02) 4.19E+03 (5.57E+02) 3.98E+03 (5.46E+02)
F15 3.88E+03 (5.74E+02) 4.23E+03 (5.11E+02) 4.22E+03 (6.66E+02)
F16 2.00E+02 (1.13E-01) 2.00E+02 (3.26E-02) 2.01E+02 (2.31E-01)
F17 5.28E+02 (5.13E+01) 5.78E+02 (4.43E+01) 4.12E+02 (2.11E+01)
F18 5.98E+02 (2.85E+01) 5.99E+02 (3.31E+01) 5.09E+02 (1.96E+01)
F19 5.04E+02 (7.60E-01) 5.05E+02 (7.76E-01) 5.07E+02 (1.72E+00)
F20 6.14E+02 (2.94E-01) 6.15E+02 (3.16E-01) 6.14E+02 (6.14E+02)
F21 1.02E+03 (8.42E+01) 1.05E+03 (8.37E+01) 1.02E+03 (7.70E+01)
F22 5.36E+03 (4.70E+02) 5.84E+03 (9.16E+02) 5.89E+03 (8.82E+02)
F23 6.00E+03 (7.84E+02) 6.30E+03 (6.82E+02) 6.21E+03 (9.41E+02)
F24 1.31E+03 (2.60E+01) 1.35E+03 (3.49E+01) 1.29E+03 (8.55E+00)
F25 1.41E+03 (1.03E+01) 1.45E+03 (2.30E+01) 1.40E+03 (1.40E+03)
F26 1.46E+03 (7.82E+01) 1.54E+03 (7.40E+01) 1.45E+03 (8.19E+01)
F27 2.42E+03 (1.07E+02) 2.53E+03 (1.08E+02) 2.39E+03 (1.07E+02)
F28 2.03E+03 (8.02E+02) 5.83E+03 (5.81E+02) 2.11E+03 (1.00E+03)

51

Table 4.22: Experimental results of using ASBSO, BSOOS and GBSO on CEC’17
benchmark functions (F29-F57).

ASBSO BSOOS GBSO
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F29 2.21E+03 (2.00E+03) 1.96E+03 (1.57E+03) 3.31E+03 (4.07E+03)
F30 3.95E+02 (1.10E+02) 8.78E+03 (3.04E+03) 3.69E+02 (5.23E+02)
F31 4.72E+02 (2.92E+01) 4.66E+02 (2.29E+01) 4.76E+02 (1.19E+01)
F32 6.86E+02 (3.45E+01) 6.82E+02 (2.88E+01) 6.92E+02 (2.95E+01)
F33 6.51E+02 (7.77E+00) 6.50E+02 (5.86E+00) 6.46E+02 (7.49E+00)
F34 1.16E+03 (9.94E+01) 1.12E+03 (6.90E+01) 8.54E+02 (4.02E+01)
F35 9.41E+02 (3.19E+01) 9.37E+02 (2.95E+01) 9.47E+02 (3.06E+01)
F36 3.93E+03 (6.39E+02) 3.74E+03 (4.78E+02) 2.63E+03 (1.02E+03)
F37 5.20E+03 (5.67E+02) 5.20E+03 (8.49E+02) 5.26E+03 (5.85E+02)
F38 1.23E+03 (4.75E+01) 1.23E+03 (4.18E+01) 1.26E+03 (6.49E+01)
F39 1.41E+06 (8.00E+05) 1.88E+06 (1.30E+06) 3.56E+06 (2.70E+06)
F40 5.04E+04 (2.64E+04) 5.84E+04 (3.64E+04) 8.29E+04 (6.33E+04)
F41 7.08E+03 (5.23E+03) 9.92E+03 (8.88E+03) 6.09E+03 (4.28E+03)
F42 3.01E+04 (2.25E+04) 3.23E+04 (1.81E+04) 4.94E+04 (3.19E+04)
F43 3.01E+03 (2.25E+02) 3.10E+03 (2.70E+02) 2.95E+03 (2.73E+02)
F44 2.40E+03 (2.44E+02) 2.42E+03 (2.96E+02) 2.41E+03 (2.18E+02)
F45 1.23E+05 (1.21E+05) 1.51E+05 (1.21E+05) 1.61E+05 (1.20E+05)
F46 1.25E+05 (6.31E+04) 1.15E+05 (4.55E+04) 4.66E+05 (1.66E+05)
F47 2.67E+03 (2.17E+02) 2.72E+03 (2.10E+02) 2.70E+03 (1.20E+02)
F48 2.49E+03 (3.14E+01) 2.51E+03 (3.67E+01) 2.50E+03 (2.14E+01)
F49 5.79E+03 (2.04E+03) 6.42E+03 (1.54E+03) 4.17E+03 (2.19E+03)
F50 3.26E+03 (1.24E+02) 3.31E+03 (9.91E+01) 3.03E+03 (9.78E+01)
F51 3.49E+03 (9.56E+01) 3.47E+03 (2.09E+02) 3.14E+03 (1.04E+02)
F52 2.89E+03 (1.25E+01) 2.88E+03 (8.40E+00) 2.90E+03 (2.81E+01)
F53 7.84E+03 (1.80E+03) 7.65E+03 (1.89E+03) 5.99E+03 (1.60E+03)
F54 3.85E+03 (2.17E+02) 3.86E+03 (2.64E+02) 3.25E+03 (8.17E+01)
F55 3.18E+03 (3.60E+01) 3.21E+03 (1.35E+01) 3.22E+03 (2.58E+01)
F56 4.40E+03 (3.39E+02) 4.37E+03 (2.71E+02) 4.41E+03 (3.32E+02)
F57 5.16E+05 (2.90E+05) 7.73E+05 (4.79E+05) 1.36E+06 (7.50E+05)

52

tions obtains competitive results, which could be regarded as a successful variant of

BSO.

Table 4.23: Results obtained by the Wilcoxon test for algorithm ASBSO vs. BSOOS
and GBSO.

Algorithms R+ R− p-value α=0.05 α=0.01
ASBSO vs.

BSOOS 1292.5 303.5 0.000031 YES YES
GBSO 961.0 635.0 0.163962 NO NO

4.4 Discussion

As shown fully detailed in Section 5.3, our proposed ASBSO outperforms traditional

BSO and other meta-heuristic optimization algorithms. Especially in comparison with

MABC and CGSA-M which also implement memory-based selection mechanism, AS-

BSO obtains much better results in solution accuracy. It is interpreted in Section

5.2 that ASBSO has two main novelties: first, it adapts several step length update

methods to deal with different situations; second, these methods are adaptively se-

lected via a new memory storing mechanism. In this section, we will further discuss

the effectiveness of these two modifications by comparing them with the classical 1/5

success rule used in evolutionary strategy (ES) [82] and SFMS used in [22, 66], re-

spectively. These tests are executed at D = 30 with maximum number of function

evaluation equals 10000D for 30 runs.

4.4.1 Comparison with 1/5 Success Rule

1/5 success rule is a parameter adaptive strategy proposed by Rechenberg [82] which

is used to adjust deviation δ in order to make mutational step size be dynamically

adapted according to the search performance.

The offspring generation equation can be exhibited as follow:

Xoffspring = X +N(0, δ(t)) (4.6)

53

where X is the parent and Xoffspring is the offspring. It is generated by adding a

Gaussian noise N(0, δ(t)) of which mean value equals 0 and deviation δ(t) changes

according to iteration t.

Its variation equation can be shown as:

δ(t+ 1) =


δ(t)
r

if sr > 0.2

δ(t) ∗ r if sr < 0.2

δ(t) if sr = 0.2

(4.7)

where r is a scale factor that is usually set in interval [0.85, 0.99], and sr is a success

rate to represent the rate that mutation procedure successfully generates a better

offspring in a certain period. If the success rate sr is larger than 0.2, deviation δ will

increase; in the opposite, if sr is smaller than 0.2, δ will decrease. As an adaptive

mechanism, it makes algorithm can adjust its search radius to be suitable for specific

problems and different search periods. Not only in ES, but also in some other newly

proposed algorithms, such as negatively correlated search proposed by Tang et al.

[83], 1/5 success rule has exhibited a great performance in search ability. Thus, we

combine BSO with 1/5 success rule to conduct a contrast experiment to assess the

effectiveness of ASBSO.

Table 4.17 lists the experimental results between ASBSO and BSO with 1/5 suc-

cess rule on 57 test functions. It is obvious that although 1/5 success rule can obtain

better solutions on a few problems, ASBSO still dominates most number of the prob-

lems. Table 4.18 shows the Wilcoxon statistical analysis result between ASBSO and

BSO with 1/5 success rule, where ASBSO is the control algorithm. p-value that is

smaller than significant level α = 0.01 demonstrates that the multiple step length

update method proposed in ASBSO can provide more adaptive and suitable search

mechanisms than the 1/5 success rule to be applied to various problems.

54

4.4.2 IMS vs. SFMS

The second modification of the proposed method is that a new memory storing mech-

anism IMS replaces the traditional memory mechanism (SFMS). Both mechanisms

are introduced in Section 5.2 and it is necessary to discuss whether the former can

provide a better search efficiency than the latter. Hence, a comparison between AS-

BSO and the BSO with adaptive step length based on SFMS is conducted and the

results are listed in Table 4.19. Visually, ASBSO maintains most better results es-

pecially on CEC’13. Table 4.20 also can prove that IMS is significantly better than

SFMS.

4.4.3 Computational Complexity

ASBSO has shown a superior ability for a majority of benchmark functions. In this

subsection, we calculate its computational time complexity together with BSO’s.

The time complexity in each procedure of BSO is described as follows:

(1) In BSO, the time complexity for initializing is O(N) where N is the population

size.

(2) Evaluating the fitness of population is O(N).

(3) Using K-means to divide the population into c clusters needs O(cN2).

(4) The process of individual selection and step length generation both cost O(N2).

(5) The generation of new individuals and the fitness calculation need O(N2),

respectively.

Thus, the overall time complexity of BSO is

O(N) +O(N) +O(cN2) +O(N2) +O(N2)

= 2O(N2) +O(cN2) + 2O(N) (4.8)

To be simplified, its overall time complexity is O(N2).

ASBSO is modified based on BSO. Its procedure is shown as:

55

(1) The initialization needs O(N).

(2) Evaluating the fitness of population is O(N).

(3) Using K-means to divide the population into c clusters needs O(cN2).

(4) Generate multiple step lengths needs O(4N2).

(5) The memory selection costs O(N).

(6) The generation of new individuals and the fitness calculation need O(N2),

respectively.

Thus, the overall time complexity of ASBSO is

O(N) +O(N) +O(cN2) +O(4N2) +O(N) +O(N2)

= O(cN2) +O(4N2) +O(N2) + 3O(N) (4.9)

The overall time complexity of ASBSO can be seen asO(N2). The main differences

between ASBSO and BSO are in Steps (4) and (5). As ASBSO applies multiple

step length strategies, it costs O(4N2) which is greater than O(N2) of BSO, and

the memory selection needs O(N). Thus, ASBSO and BSO have the same time

complexity, which indicates that both are competitive in computational efficiency.

56

Chapter 5

A Multiple Diversity-driven Brain
Storm Optimization Algorithm
with Adaptive Parameters

5.1 Introduction

In recent years, various swarm intelligence (SI) algorithms have been proposed for

solving diverse optimization problems. The main property of this kind of algorithms is

that they mimic the social behaviors of nature creatures. As far as we know, it is full of

wisdom and intelligence when animals are hunting, foraging and navigating in nature.

Survival instincts drive them to improve search ability for creating more suitable living

environment. Their behaviors gradually arouse great interests among researchers in

the field of artificial intelligence [1]. Particle swarm optimization (PSO) which is one

of the most popular SI algorithms is modeled based on the social behaviors of flocks

of birds and schools of fish [2]. It supposes that a swarm of particles fly randomly

in a multidimensional search space. Each of them represents a candidate solution

for the optimization task. Their trajectories change according to the best position

of the individual and the global best position of the whole population. Particles can

effectively search for better solutions by taking advantage of this mechanism.

In addition to PSO, more and more SI optimization algorithms progressively spring

into our view. Ant colony optimization (ACO) [12], fireworks algorithm (FA) [13],

gravitational search algorithm (GSA) [14], artificial bee colony algorithm (ABC) [15]

57

and brain storm optimization (BSO) [16] are some powerful optimization algorithms.

These SI algorithms can be roughly divided into three categories according to the

types of behaviors they take inspiration from.

The first category is called bio-inspired. Classical algorithms in this category such

as ACO and ABC emulate the foraging behaviors of ant colony and bee colony, re-

spectively. In ACO, individuals utilize a special chemical substance called pheromone

to mark their search trajectory. The trajectory with more pheromone is considered as

a preferred path to the global optimum, and further attracts other individuals [11].

ABC simulates the organizational structure of bees to categorize individuals into

three groups: employed artificial bees, onlookers and scouts. The employed artificial

bees represent candidate solutions and the onlookers are responsible for sharing the

information of employed bees. After these steps, scouts are sent to diverse search area

for discovering new solutions. This sophisticated idea of giving different functions to

individuals makes the search procedure of ABC efficient and effective [15].

The second category can be named as physics-inspired. The algorithms belong to

this category such as FA and GSA straightly take inspiration from physical phenom-

ena or laws. For examples, the explosion processes of fireworks are utilized to design

the search mechanism of FA, in which the distribution of individuals is analogized by

the sparks in firework explosion. In GSA, the law of gravity is used to depict the rela-

tionship among individuals in search space. They are attracted by each other and the

gravitational force is directly proportional to their fitness and inversely proportional

to the square of the distance between them. The performance of GSA in different

kinds of problems implies its powerful search ability [20, 21, 22].

The last category is called sociology-inspired. The major property of the algo-

rithms in this category is that they are inspired by human social behaviors. BSO is

very notable among SI algorithms and has already achieved great success in various

applications [23]. Its operations of generating new individuals adopt the brainstorm-

ing process in human social behaviors. In reality, a group of people should be called

together to figure out a solution when we encounter problems that can not be solved

alone. This brainstorming process needs repetitive discussions and debates. BSO is

58

enlightened by this feature and obtains an elaborated search process. At the rudimen-

tary stage of optimization, individuals are divided into multiple clusters, then each

cluster selects the best individual as the center. BSO has four independent individual

generation methods and the selections of corresponding method are depending on

three preset parameters p1, p2 and p3. p1 decides the usage of one or two clusters. In

the condition of using one cluster, p2 is adopted to choose the center or one random

individual in the selected cluster. Otherwise, when two clusters are selected, p3 deter-

mines the adoption of two centers or two random individuals. Being beneficial from

this sophisticated selection mechanism, BSO can avoid sticking into local optima and

outperform other optimization algorithms when dealing with multimodal problems

[23]. However, the inherent feature of BSO that can not maintain good diversity re-

duces its robustness and deteriorates the performance of solving different problems. In

the meanwhile, the parameter adjustment is very important in designing algorithms

but it generally costs much time to find an acceptable parameter set. Therefore, more

and more researchers prefer making parameters adaptive or self-adaptive to enhance

the robustness and performance of algorithms [24, 25, 26, 27, 28].

Many modifications have been facilitated to improve the optimization performance

of BSO but little work tries to make parameters be adaptive and keep the diversity

staying in a high stage. BSO in objective space (BSO-OS) [55] aims to accelerate

its convergent speed by replacing k-means clustering method with an elitist selection

mechanism. Its mutation operation focuses on one-dimension objective space instead

of the whole solution space. In [84], a random grouping BSO (RGBSO) is proposed

to balance exploration and exploitation via adopting a new dynamic parameter in

the generation of step-size. Besides, it replaces k-means clustering by a random

grouping strategy so that the time complexity is decreased. Global-best BSO (GBSO)

[81] tries to improve the performance of BSO from multiple aspects, including the

clustering method, individual selection and mutation. Different from the k-means and

mentioned random grouping methods, GBSO ranks the population according to their

fitness and makes good and bad individuals equally distribute in different clusters.

In original BSO, at most two individuals participate in generating new individuals,

59

while in GBSO, more individuals can contribute to enhance the information exchange

in this step. GBSO also adopts the global-best guidance strategy in PSO to modify

its mutation mechanism. In our previous work [57], a chaotic local search method is

combined with BSO (CBSO) to enhance its search ability and improve the solution

quality. Besides the mentioned works, there are many other effective modifications for

BSO, In [50], a self-adaptive multiobjective BSO (SMOBSO) is proposed. It adopts an

adaptive mutation method to give an uneven distribution of solutions, but parameters

still need to be set according to empirical data. Similarly, other works [85, 86] mainly

focus on the adaptations of search step length in the mutation operator.

Table 5.1: The main parameters in BSO and MDBSO.

BSO
Parameters n p0 p1 p2 p3 k µ δ
V alues 5 0.2 0.8 0.4 0.5 20 1 0.5

MDBSO
Parameters n µ
V alues 5 0.5

Overall, most existing works that improve the performance of BSO focus on the

adjustments of search and mutation strategies, but as we emphasized before, one

drawback of BSO is that it has too many user-defined parameters. Presetting these

parameters is a nontrivial task and generally difficult to find the best parameter set

for solving different problems. Table 5.1 lists the main parameters of BSO and their

corresponding values. It’s widely accepted that the variation in parameter values

of an algorithm could cause considerable fluctuation in performance [87]. Taking

differential evolution (DE) as an example [40], the number of control parameters in

DE is very few, including the scaling factor F , crossover rate CR and population size

NP . The effects of these parameters on the performance of DE are well studied and it

is reported that different value set for F and CR could obtain significant performance

variations [88]. The most successful modifications for DE, such as JADE [24] and

SHADE [89], employ parameter adaptation strategy to automatically update the

control parameters. Besides, some researches indicate that diversity plays a significant

role in improving search performance of SI algorithms [47, 90, 91].

In the design of optimization algorithms, the balance between exploration and ex-

60

ploitation is a crucial factor for the search performance. A good balance can make the

algorithms fast converge and avoid local optimal solutions. Contrarily, the solution

quality could be badly deteriorated when the relation is unbalanced. Therefore, the

researches about keeping the balance between exploration and exploitation become

crucial in recent years [92, 93, 94]. The key point of keeping balance is the preser-

vation of population diversity in optimization process [91]. The population diversity

can be explained as the extent of variation in the population based on the distribution

or fitness performance obtained by individuals [95]. There are various methods that

can be used to calculate the population diversity [47, 91]. The diversity is named as

distance-based when it is measured according to the distance between each individ-

ual in decision space. While the fitness-based diversity is obtained by evaluating the

performance of individuals in the objective space.

Both kinds of diversity have been incorporated into other techniques to improve

the performance of corresponding algorithms. In [92, 93], the distance-based diver-

sity is considered as an explicit objective. In other words, diversity and fitness are

combined as a multi-objective problem to be solved. In this way, the balance between

exploration and exploitation can be well maintained by searching for Pareto optimal

solutions. The experimental results [92, 93] also demonstrate controlling diversity can

evidently improve the performance of algorithm. With regard to the fitness-based di-

versity, it is mainly used to obtain good fitness spread among individual solutions.

In [96], a variable relocation technique based on fitness diversity is applied to make

the converged population restart convergence from another promising location. A fast

adaptive memetic algorithm is proposed in [97] and the fitness diversity is investigated

to control the utilization of local search strategies. Other techniques such as fitness

sharing [98] and adaptive grid [99] also apply fitness diversity to improve the perfor-

mance of algorithms [91]. Motivated by these prior studies, it can be expected to make

the parameters adaptive via diversity control. Therefore, a multiple diversity-driven

BSO (MDBSO) with well-balanced diversity and adaptive parameters is proposed.

The main contributions of this study can be summarized as: (1) We make the

first attempt to use both distance-based diversity Dd and fitness-based diversity Df

61

to control the mutation process to the best of our knowledge. (2) Two new mutation

strategies are adopted, including a local search strategy called BLX-α [65, 100] and

a Gaussian mutation strategy. Additionally, Df is utilized to adjust the standard

deviation δ in Gaussian distribution. (3) Both Dd and Df participate in generating

new individuals. (4) Extensive experiments are conducted to verify the performance

of MDBSO based on CEC2017 [64] benchmark function test suit and a neuron model

training task [18, 101]. The results indicate that MDBSO has much better search

ability than its peers.

The organization of this paper is arranged as follows. Section 3.2 briefly introduces

the BSO. The proposed MDBSO is presented in Section 5.2. In Section 5.3, the

experimental results of benchmark function suit and neuron model training data

set are reported to show the performance of MDBSO in comparison with other SI

algorithms. Some discussions are given in Section 5.4. Finally, we conclude this paper

in Section 3.5.

5.2 Multiple Diversity-driven BSO (MDBSO)

5.2.1 Diversity-driven Strategy

Although the distance-based diversity and fitness-based diversity are investigated in

some researches, they are for the first time to be studied simultaneously as control

parameters in this study. Before introducing the specific roles of two kinds of diversity

in MDBSO, their formulas are given as follows.

Dj
d =

1

Nj

√√√√ Nj∑
i=1

(||Xj
i −X

j
center||)2 (5.1)

where j (j = 1, 2, ..., n) refers to the cluster number and Dj
d is the distance-based

diversity of the jth cluster. Nj is the number of individuals in the jth cluster, Xj
i

and Xj
center are the ith individual and the center in the current cluster, respectively.

62

The fitness-based diversity Df is calculated as

Dj
f =

1

Nj

√√√√ Nj∑
i=1

(||F j
i − F

j
center||)2 (5.2)

where F j
i and F j

center are the fitness of the ith individual and the center in the jth

cluster, respectively. It should be noticed that we choose the centers and their fitness

values instead of using the mean values as the subtrahends to calculate corresponding

diversities. The intention is to increase convergence rate during optimization process

as the centers are the best individuals in the population.

In MDBSO, Dd is applied as a control parameter to replace p1, p2 and p3. It is

adaptive via a normalization operation and the formula is shown in Eq. (5.3).

pjd(t) =
Dj
d(t)−min{Dd(t)}

max{Dd(t)} −min{Dd(t)}
(5.3)

where pjd(t) decides which mutation strategy is called to generate new individuals in

the jth cluster at the tth iteration. max(Dd(t)) and min(Dd(t)) refer to the maximum

and minimum values of Dd of n clusters at tth iteration, respectively. It’s obvious

that pjd values in the interval of [0, 1], and it controls a switch between two mutation

strategies: BLX-α and Gaussian mutation. If a random value generated in (0, 1) is

smaller than pjd(t), it indicates the jth cluster may have a good distance diversity.

Therefore, a local search method BLX-α is applied to speed up its convergence.

Conversely, if the random value is greater than pjd(t), the bad distance diversity in

the jth cluster may eventually deteriorate solution quality and cause a premature

convergence. Thus, the function of the Gaussian mutation is used to improve the

distance diversity.

63

5.2.2 Mutation Strategies

5.2.2.1 BLX-α

BLX-α is a local search operator to adjust the population density [102]. Firstly, two

individuals X1 = (x11...x
dim
1) and X2 = (x12...x

dim
2) are selected (dim is the dimension

number). Then, a new individual is generated from the interval of [min{X1, X2} −

Y ×α,max{X1, X2}+Y ×α], where Y = max{X1, X2}−min{X1, X2}. α is a control

parameter used to limit the search space. According to [100], BLX-α can increase

the distribution of individuals when α >
√
3−1
2

, otherwise the distribution will be

decreased. In particular, BLX-0 makes the variance of the distribution decrease and

reduces the distance diversity. Therefore, we use BLX-0 in MDBSO because it is a

local search operator that can improve solutions’ quality when a cluster maintains a

good distance diversity.

Particularly, the individuals X1 and X2 are selected via a novel mechanism, in

which the centers of the top two clusters with the highest fitness diversity Df are

specified as X1 and X2, respectively. The reasons we use the fitness diversity instead

of distance diversity here are as follows: (1) Even if the individuals have a close

distance, their fitness can vary widely as they are in different peaks of a multimodal

problem. Thus, fitness diversity is more suitable for selections of mutation operators.

(2) High fitness diversity means that the cluster manages good fitness spread among

individual solutions. Thus, it can avoid premature convergence to a great extent. (3)

Meanwhile, centers are the best individuals in the population. They are of strong

reliability and promising to enable BLX-α to generate individuals with good fitness.

The formula of generating individuals is shown in Eq. (5.4)

Xgenerated = rand× (max{X1, X2} −min{X1, X2}) (5.4)

where rand is a random value generated in (0, 1).

64

5.2.2.2 Gaussian Mutation

BLX-α is applied for the situation that the cluster stays in a good diversity. But it

is not capable of improving diversity when the solution quality is poor. Therefore,

we use a mutation strategy to generate new individuals when the distance diversity

is relative low. In this part, the adopted Gaussian mutation is presented in details.

A common formula which uses Gaussian distribution to generate new individuals can

be described as follows.

Xgenerated = Xi +N(µ, δ) · (Xselected1 −Xselected2) (5.5)

where Xi is the ith individual to be updated in the population. In MDBSO, Xselected1

and Xselected2 are two randomly selected individuals in the top two clusters with the

highest distance diversity Dd, respectively. It should be pointed out that, different

from the utilization of Df in BLX-α, we use Dd because we want to increase the

distance diversity here. Moreover, δ is adaptive in MDBSO and it is controlled by

Df . The adaptation mechanism is given as follows.

δ =
1

eω
(5.6)

where e is the base of natural logarithm and ω is calculated according to Eq. (5.7).

ω = |
Dj
f (t)−mean{Df (t)}

max{Df (t)} −min{Df (t)}
| (5.7)

where mean{Df (t)} = 1
n

∑n
j=1D

j
f (t).

It is worth emphasizing that we use mean{Df (t)} as the subtrahend to control ω.

It is clear that ω and δ are negatively correlated, which means that the clusters with

higher (or lower) Df obtain smaller (or bigger) δ. Generally, an individual in the clus-

ter with poor population diversity may need greater δ to provide a larger search step

size in the aim of increase diversity. But too high diversity could cause the algorithm

fail to converge. A contrast experiment is conducted, in which we use min{Df (t)}

instead of mean{Df (t)} as the subtrahend. In this way, the cluster with the lowest

65

fitness diversity would generate new individuals with N(µ, 1) and it’s predictable that

this method could obtain considerable population diversity due to the increase in δ.

However, its optimization result is not as well as it of using mean{Df (t)}. The rea-

son is that too high population diversity undermines the performance of algorithm.

Therefore, a moderate value is more suitable for not only maintaining population

diversity, but also obtaining good results.

5.2.3 MDBSO

The structure of BSO is simplified by replacing its parameters with pjd(t). We can find

the number of parameters are substantially reduced due to the proposal of adaptive

parameters, as shown in Table 5.1. The number of clusters stays the same as 5 in BSO

and µ is set to 0.5. Regarding the values of these two parameters, some discussions

are given in Section 5.4.

The primary procedures of MDBSO is presented in Algorithm 4. In the first

step, MDBSO randomly generates N individuals and calculates their fitness. If the

termination is not satisfied, k-means is applied to divide the population into n clusters.

The best individual in each cluster is selected as the center. Then, MDBSO has its

specific step in which the distance diversity Dd and fitness diversity Df of each cluster

are calculated. The pjd calculated by Dd decides the selection of mutation strategies

for each cluster. The BLX − α strategy would have a high possibility to be applied

to generate individuals in the cluster with good distance diversity. In the opposite,

the Gaussian mutation strategy is utilized by the cluster with bad distance diversity.

The new generated individual with better fitness will replace the old at the end of

each iteration.

Fig. 5.1 illustrates the functions of Dd and Df in the specific steps in MDBSO.

Each of them has very important role in the generation of new solutions and would be

used for more than once. In most literature, population diversity is usually applied as

an optimization objective rather than an approach. They focus on the maintenance

of population diversity but it does not participate in the search process. Innovatively,

66

Algorithm 4: Flowchart of MDBSO.

Randomly generate a population with N individuals;
Calculate the fitness of each individual;
while maximum number of function evaluations is not reached do

Use k-means to divide N individuals into n clusters;
Choose the best individual in each cluster as the center;
Calculate the Dd and Df of each cluster;
for the individual in the jth cluster do

if random(0, 1) < pjd then
use BLX-α strategy to generate new individuals in the jth cluster;

else
use Gaussian mutation strategy to generate new individuals in the
jth cluster;

end

end
if the new individual is better than the old one then

replace the old individual
end

end

Select Muta�on

Strategy

BLX-
Gaussian

Muta�on

Controlled by

Selected

and

Controlled by

Selected

and

Controlled by

Generate

Controlled by

Figure 5.1: The functions of distance diversity and fitness diversity in MDBSO.

in this study, the distance and fitness diversity are simultaneously utilized and have

been proven to be very effective in enhancing the performance of BSO.

Compared with the original BSO presented in Algorithm 3, MDBSO has essential

modifications in two aspects. One is that the diversity in BSO is well maintained

so that the search ability is enhanced. The other is the adaptations of parameters.

Most steps in MDBSO are controlled by adaptive parameters, which enhances its

robustness and makes it can be applied into more diverse application scenarios.

67

5.3 Experimental Results

5.3.1 Benchmark Function Test Suit

In this section, CEC2017 benchmark function suit is implemented to test the per-

formance of MDBSO. It should be noticed that F2 in CEC2017 has been excluded

because it shows unstable behavior especially for higher dimensions, and significant

performance variations for the same algorithm implemented in Matlab and C [64].

This benchmark function suit includes 2 unimodal, 7 simple unimodal, 10 hybrid

and 10 composition functions. Hence, it is very suitable for testing the search ability

and robustness of optimization algorithms. The population size N is 100, and the

dimension for the problems dim is 30. Each problem is run for 30 times to reduce

random errors. The maximum number of function evaluations (MFE) is 10000*dim.

All experiments are implemented on a PC with 3.10GHz Intel(R) Core(TM) i5-4440

CPU and 8GB of RAM using MATLAB R2013b. All parameters for the contrast SI

algorithms are set up according to the values provided in the corresponding literature.

5.3.1.1 MDBSO vs. BSO Variants

In this part, MDBSO is compared with BSO [16] and its variants, including CBSO

[57], BSO-OS [55], RGBSO [84], GBSO [81] and ASBSO [85]. The results including

mean and standard deviation (Std Dev) are listed in Tables 5.2 and 5.3. The values

in boldface represent the best results among compared algorithms.

We can intuitively find that MDBSO obtains much more number of the best results

in comparison with other competitors from these tables. It should be emphasized that

MDBSO outperforms BSO on hybrid and composition functions (F11-F30) except

for F14, suggesting that the drawback of BSO’s poor robustness is mitigated and

the search ability of BSO is greatly improved via diversity controlled parameters.

A non-parametric statistical analysis called Friedman test is employed to give the

ranking that each algorithm obtained in the current comparison [45]. The lower

ranking indicates the better performance. As observed, MDBSO is the algorithm

68

with the best performance among the compared BSO variations. To more precisely

analyze its performance, a non-parametric statistical test called Wilcoxon rank-sum

test is implemented [76]. Each +/ ≈ /− indicates the performance of MDBSO is

significantly better (+), not significantly better and worse (≈) or worse (−) than

its peers. According to the statistical results, the number of times MDBSO wins

to others is 19 (BSO), 21 (CBSO), 20 (BSO-OS), 19 (RGBSO), 17 (GBSO) and 19

(ASBSO) out of 29 tested problems, respectively. Moreover, there are at most six

problems where MDBSO underperforms another algorithm (i.e. GBSO). Considering

the tested algorithms are state-of-the-art BSO variations, MDBSO has verified its

superior and it executes an effective search process by the adaptive parameter system.

In addition, box-and-whisker diagrams and convergence graphs are given in Fig.

5.2 and Fig. 5.3 to directly exhibit the difference in performance between MDBSO

and its peers, respectively. The box-and-whisker diagrams can illustrate the quality

of solutions on 30 runs. There are five values are conventionally used: the extremes,

the upper and lower hinges (quartiles), and the median. The interval between the

upper and lower hinges of the box is called interquartile range (IQR) and it indicates

the degree of dispersion and skewness in the results. Symbol + indicates the outliers.

As observed in Fig. 5.2, MDBSO obtains the best performance on F5, F12, F13, F23,

F24, and F26. Fig. 5.3 depicts the convergent performance during the whole search

procedure. The horizontal axis represents the number of function evaluations, and the

vertical axis denotes the average values of optimization results on 30 runs. It’s obvious

that the convergence speed of MDBSO is much faster than its peers. In addition,

it generally obtains better results. Although RGBSO shows an ability of avoiding

premature on F13, F23, and F26, its slow convergent speed deteriorates the solutions’

quality. The good performance of MDBSO profits from the diversity controlled search

mechanism which keeps the balance between exploration and exploitation.

Moreover, to show the population diversity obtained by each contrast algorithm

graphically, four plots on F12, F13, F23, and F24 are illustrated in Fig. 5.4, respec-

tively. The calculation of population diversity is shown in Eq. (5.8)

69

Table 5.2: Experimental results of MDBSO versus BSO variants on CEC’17 bench-
mark functions (1).

Fun.
MDBSO BSO CBSO BSO-OS

Mean ±Std Dev Mean ±Std Dev Mean ±Std Dev Mean ±Std Dev
F1 3.17E+03 ± 4.68E+03 2.47E+03 ± 1.95E+03 ≈ 3.99E+03 ± 3.07E+03 + 1.96E+03 ± 1.57E+03 ≈
F3 6.13E+02 ± 6.28E+02 5.34E+02 ± 2.66E+02 ≈ 3.03E+02 ± 3.56E+00 − 8.78E+03 ± 3.04E+03 +
F4 4.62E+02 ± 3.28E+01 4.67E+02 ± 2.19E+01 ≈ 4.94E+02 ± 2.04E+01 + 4.66E+02 ± 2.29E+01 ≈
F5 6.02E+02 ± 3.10E+01 6.87E+02 ± 4.05E+01 + 6.98E+02 ± 3.91E+01 + 6.82E+02 ± 2.88E+01 +
F6 6.13E+02 ± 7.18E+00 6.52E+02 ± 7.01E+00 + 6.47E+02 ± 7.67E+00 + 6.50E+02 ± 5.86E+00 +
F7 8.88E+02 ± 6.43E+01 1.15E+03 ± 9.65E+01 + 1.13E+03 ± 8.76E+01 + 1.12E+03 ± 6.90E+01 +
F8 9.13E+02 ± 3.75E+01 9.47E+02 ± 2.82E+01 + 9.41E+02 ± 2.57E+01 + 9.37E+02 ± 2.95E+01 +
F9 1.31E+03 ± 5.38E+02 3.98E+03 ± 6.95E+02 + 3.87E+03 ± 6.65E+02 + 3.74E+03 ± 4.78E+02 +
F10 7.37E+03 ± 1.29E+03 5.30E+03 ± 5.16E+02 − 5.37E+03 ± 5.82E+02 − 5.20E+03 ± 8.49E+02 −
F11 1.21E+03 ± 5.06E+01 1.23E+03 ± 4.05E+01 ≈ 1.23E+03 ± 4.31E+01 ≈ 1.23E+03 ± 4.18E+01 ≈
F12 4.39E+04 ± 2.26E+04 1.77E+06 ± 1.25E+06 + 1.91E+06 ± 1.36E+06 + 1.88E+06 ± 1.30E+06 +
F13 1.46E+04 ± 1.61E+04 5.36E+04 ± 2.85E+04 + 5.82E+04 ± 4.12E+04 + 5.84E+04 ± 3.64E+04 +
F14 7.71E+03 ± 5.29E+03 6.40E+03 ± 4.66E+03 ≈ 3.51E+03 ± 2.20E+03 − 9.92E+03 ± 8.88E+03 ≈
F15 7.51E+03 ± 8.01E+03 2.95E+04 ± 1.61E+04 + 2.97E+04 ± 1.67E+04 + 3.23E+04 ± 1.81E+04 +
F16 2.44E+03 ± 4.43E+02 3.20E+03 ± 4.24E+02 + 2.83E+03 ± 2.73E+02 + 3.10E+03 ± 2.70E+02 +
F17 1.98E+03 ± 1.94E+02 2.48E+03 ± 2.56E+02 + 2.20E+03 ± 2.10E+02 + 2.42E+03 ± 2.96E+02 +
F18 9.28E+04 ± 5.38E+04 1.21E+05 ± 1.03E+05 ≈ 8.35E+04 ± 4.27E+04 ≈ 1.51E+05 ± 1.21E+05 ≈
F19 9.70E+03 ± 9.19E+03 1.52E+05 ± 6.43E+04 + 9.59E+04 ± 5.88E+04 + 1.15E+05 ± 4.55E+04 +
F20 2.20E+03 ± 1.19E+02 2.67E+03 ± 1.74E+02 + 2.50E+03 ± 1.33E+02 + 2.72E+03 ± 2.10E+02 +
F21 2.40E+03 ± 4.16E+01 2.50E+03 ± 4.48E+01 + 2.48E+03 ± 4.08E+01 + 2.51E+03 ± 3.67E+01 +
F22 4.78E+03 ± 3.01E+03 6.03E+03 ± 1.77E+03 ≈ 5.36E+03 ± 2.21E+03 ≈ 6.42E+03 ± 1.54E+03 ≈
F23 2.73E+03 ± 2.30E+01 3.29E+03 ± 1.27E+02 + 3.02E+03 ± 1.27E+02 + 3.31E+03 ± 9.91E+01 +
F24 2.92E+03 ± 5.27E+01 3.50E+03 ± 1.13E+02 + 3.13E+03 ± 1.42E+02 + 3.47E+03 ± 2.09E+02 +
F25 2.89E+03 ± 1.20E+01 2.89E+03 ± 1.46E+01 − 2.89E+03 ± 6.78E+00 − 2.88E+03 ± 8.40E+00 −
F26 4.78E+03 ± 6.31E+02 8.16E+03 ± 1.57E+03 + 6.26E+03 ± 2.12E+03 + 7.65E+03 ± 1.89E+03 +
F27 3.23E+03 ± 2.01E+01 3.82E+03 ± 2.91E+02 + 3.39E+03 ± 1.94E+02 + 3.86E+03 ± 2.64E+02 +
F28 3.19E+03 ± 5.78E+01 3.21E+03 ± 2.57E+01 ≈ 3.19E+03 ± 4.02E+01 ≈ 3.21E+03 ± 1.35E+01 ≈
F29 3.70E+03 ± 1.92E+02 4.38E+03 ± 2.79E+02 + 4.24E+03 ± 2.85E+02 + 4.37E+03 ± 2.71E+02 +
F30 8.49E+03 ± 3.24E+03 5.74E+05 ± 3.50E+05 + 3.91E+05 ± 2.07E+05 + 7.73E+05 ± 4.79E+05 +
Rank 1 6 4 7

+/ ≈ /− - /- /- 19/ 8 /2 21/ 4/4 20/ 7 /2

3000

4000

5000

6000

7000

8000

9000

10000

MDBSO BSO CBSO BSO−OS RGBSO GBSO ASBSO

2600

2800

3000

3200

3400

3600

MDBSO BSO CBSO BSO−OS RGBSO GBSO ASBSO

2700

2800

2900

3000

3100

3200

3300

3400

3500

3600

MDBSO BSO CBSO BSO−OS RGBSO GBSO ASBSO

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

MDBSO BSO CBSO BSO−OS RGBSO GBSO ASBSO

0

1

2

3

4

5

6

x 10
6

MDBSO BSO CBSO BSO−OS RGBSO GBSO ASBSO

550

600

650

700

750

800

MDBSO BSO CBSO BSO−OS RGBSO GBSO ASBSO

Solution Distribution

F
it

n
e
s
s

F
it

n
e
s
s

F5 F12

F23 F24

F13

F26

Figure 5.2: The box-and-whisker diagrams of optimal solutions obtained by seven
kinds of BSOs on F5, F12, F13, F23, F24, F26.

70

Table 5.3: Experimental results of MDBSO versus BSO variants on CEC’17 bench-
mark functions (2).

Fun.
RGBSO GBSO ASBSO

Mean ±Std Dev Mean ±Std Dev Mean ±Std Dev
F1 2.50E+03 ± 2.90E+03 ≈ 3.43E+03 ± 3.60E+03 ≈ 2.21E+03 ± 2.00E+03 ≈
F3 2.39E+04 ± 7.78E+03 + 3.00E+02± 2.11E-04 − 3.95E+02 ± 1.10E+02 ≈
F4 4.75E+02 ± 1.10E+01 + 4.58E+02± 3.13E+01 ≈ 4.72E+02 ± 2.92E+01 ≈
F5 6.37E+02 ± 2.49E+01 + 6.79E+02± 3.44E+01 + 6.86E+02 ± 3.45E+01 +
F6 6.01E+02 ± 8.14E-01 − 6.43E+02± 8.74E+00 + 6.51E+02 ± 7.77E+00 +
F7 9.10E+02 ± 3.11E+01 + 8.36E+02± 2.89E+01 − 1.16E+03 ± 9.94E+01 +
F8 9.08E+02 ± 1.89E+01 ≈ 9.31E+02 ±2.62E+01 + 9.41E+02 ± 3.19E+01 +
F9 2.35E+03 ± 5.33E+02 + 1.08E+03± 2.56E+02 − 3.93E+03 ± 6.39E+02 +
F10 4.22E+03 ± 5.39E+02 − 5.00E+03± 6.55E+02 − 5.20E+03 ± 5.67E+02 −
F11 1.22E+03 ± 4.44E+01 ≈ 1.25E+03 ±4.45E+01 + 1.23E+03 ± 4.75E+01 ≈
F12 1.73E+06 ± 1.06E+06 + 2.52E+06± 1.66E+06 + 1.41E+06 ± 8.00E+05 +
F13 1.76E+04 ± 1.66E+04 ≈ 7.94E+04 ±4.60E+04 + 5.04E+04 ± 2.64E+04 +
F14 1.55E+04 ± 1.65E+04 + 1.92E+03 ±4.01E+02 − 7.08E+03 ± 5.23E+03 ≈
F15 4.57E+03 ± 5.42E+03 − 5.61E+04 ±4.76E+04 + 3.01E+04 ± 2.25E+04 +
F16 2.93E+03 ± 3.46E+02 + 2.87E+03 ±1.95E+02 + 3.01E+03 ± 2.25E+02 +
F17 2.40E+03 ± 2.67E+02 + 2.22E+03± 1.99E+02 + 2.40E+03 ± 2.44E+02 +
F18 1.43E+05 ± 8.64E+04 + 6.82E+04 ±3.51E+04 − 1.23E+05 ± 1.21E+05 ≈
F19 6.17E+03 ± 4.20E+03 ≈ 1.01E+05± 6.16E+04 + 1.25E+05 ± 6.31E+04 +
F20 2.58E+03 ± 2.44E+02 + 2.68E+03± 2.11E+02 + 2.67E+03 ± 2.17E+02 +
F21 2.45E+03 ± 3.67E+01 + 2.48E+03 ±4.44E+01 + 2.49E+03 ± 3.14E+01 +
F22 3.54E+03 ± 1.82E+03 ≈ 3.72E+03± 2.26E+03 ≈ 5.79E+03 ± 2.04E+03 ≈
F23 2.90E+03 ± 8.97E+01 + 3.01E+03± 9.52E+01 + 3.26E+03 ± 1.24E+02 +
F24 3.32E+03 ± 1.27E+02 + 3.17E+03 ±1.14E+02 + 3.49E+03 ± 9.56E+01 +
F25 2.89E+03 ± 1.76E+01 − 2.90E+03± 2.25E+01 ≈ 2.89E+03 ± 1.25E+01 −
F26 5.47E+03 ± 1.89E+03 + 6.10E+03 ±1.61E+03 + 7.84E+03 ± 1.80E+03 +
F27 3.29E+03 ± 3.33E+01 + 3.24E+03 ±6.39E+01 ≈ 3.85E+03 ± 2.17E+02 +
F28 3.23E+03 ± 2.24E+01 + 3.21E+03± 3.68E+01 ≈ 3.18E+03 ± 3.60E+01 ≈
F29 3.90E+03 ± 2.39E+02 + 4.27E+03 ±2.85E+02 + 4.40E+03 ± 3.39E+02 +
F30 5.06E+04 ± 4.62E+04 + 7.66E+05 ±4.05E+05 + 5.16E+05 ± 2.90E+05 +
Rank 2 3 5

+/ ≈ /− 19 /6 /4 17/ 6 /6 19/ 8/2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

A
v

er
ag

e
b

es
t−

so
−

fa
r

so
lu

ti
o

n
s

MDBSO

BSO

CBSO

BSO−OS

RGBSO

GBSO

ASBSO

Number of Function Evalutions

0 5 10 15 20 25 30

x 10
4

2800

3000

3200

3400

3600

3800

4000

4200

4400

A
v
er

ag
e

b
es

t−
so

−
fa

r
so

lu
ti

o
n
s

MDBSO

BSO

CBSO

BSO−OS

RGBSO

GBSO

ASBSO

Number of Function Evalutions

0 5 10 15 20 25 30

x 10
4

2600

2800

3000

3200

3400

3600

3800

4000

A
v
er

ag
e

b
es

t−
so

−
fa

r
so

lu
ti

o
n
s

MDBSO

BSO

CBSO

BSO−OS

RGBSO

GBSO

ASBSO

Number of Function Evalutions

0 5 10 15 20 25 30

x 10
4

0 5 10 15 20 25 30

x 10
4

0 5 10 15 20 25 30

x 10
4

10
4

10
5

10
6

10
7

10
8

10
9

10
10

A
v
er

ag
e

b
es

t−
so

−
fa

r
so

lu
ti

o
n
s

MDBSO

BSO

CBSO

BSO−OS

RGBSO

GBSO

ASBSO

Number of Function Evalutions

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

A
v
er

ag
e

b
es

t−
so

−
fa

r
so

lu
ti

o
n
s

MDBSO

BSO

CBSO

BSO−OS

RGBSO

GBSO

ASBSO

Number of Function Evalutions

550

600

650

700

750

800

850

900

A
v
er

ag
e

b
es

t−
so

−
fa

r
so

lu
ti

o
n
s

MDBSO

BSO

CBSO

BSO−OS

RGBSO

GBSO

ASBSO

Number of Function Evalutions

Convergence Graphs

F5 F12

F23 F24

F13

F26

0 5 10 15 20 25 30

x 10
4

Figure 5.3: The convergence graphs of average best-so-far solutions obtained by seven
kinds of BSOs on F5, F12, F13, F23, F24, F26.

71

Div =
1

N

√√√√ N∑
i=1

(||Xi −Xmean||)2 (5.8)

where Div is the population diversity. N is population size and Xi is the ith in-

dividual. Xmean which is calculated as Xmean = 1
N

∑N
i=1Xi is the average of the

population.

As observed, MDBSO and CBSO are the best two algorithms that maintain pop-

ulation diversity at a good level in the whole process. This is owing to that MDBSO

implements the diversity-driven strategy and CBSO uses a chaotic local search mech-

anism that can disturb the search trajectory of the individual. The diversity of

GBSO keeps stable at the early stage but rapidly deteriorates, which makes it lose

the capability of further improving solutions’ quality. It should be emphasized that

the diversity of RGBSO keeps fluctuating, which means that the dynamic step-size

parameter control strategy has the efficacy of improving population diversity, but

RGBSO lacks a mechanism to maintain it. Based on these analyses, one conclusion

can be drawn that MDBSO can significantly preserve the population diversity in a

good level during the search process.

5.3.1.2 MDBSO vs. GSA Variants

Besides the BSO variants, more SI algorithm are applied to further testify the effec-

tiveness of MDBSO. GSA has been proposed for nearly a decade, and its develop-

ments are more matured than BSO’s. Thus, the comparison between MDBSO and

GSA variants can reflect the position of MDBSO in the whole SI algorithms. GSA

uses gravity to mimic the search mechanism of individuals and it has obtained many

successes in various research aspects. In this part, GSA [14] and its variants (IGSA

[25], GGSA [103], MGSA [104], PSOGSA [105], HGSA [106], DNLGSA [107]) are

implemented and their experimental results are presented in Tables 5.4 and 5.5. The

results including mean and standard deviation (Std Dev) are exhibited and the values

in boldface represent the best results among compared algorithms. The Rank refers

to the rank of each algorithm obtained in the Friedman test. Each +/ ≈ /− indicates

72

5 10 15 20 25 30

Number of Function Evaluations

10-25

10-20

10-15

10-10

10-5

100

105

1010

Po
pu

la
tio

n
D

iv
er

si
ty

MDBSO
BSO
CBSO
BSO-OS
RGBSO
GBSO
ASBSO

104
0

(a) F12

5 10 15 20 25 30

Number of Function Evaluations

10-25

10-20

10-15

10-10

10-5

100

105

1010

Po
pu

la
tio

n
D

iv
er

si
ty

MDBSO
BSO
CBSO
BSO-OS
RGBSO
GBSO
ASBSO

0
104

(b) F13

5 10 15 20 25 30

Number of Function Evaluations

10-25

10-20

10-15

10-10

10-5

100

105

1010

Po
pu

la
tio

n
D

iv
er

si
ty

MDBSO
BSO
CBSO
BSO-OS
RGBSO
GBSO
ASBSO

104
0

(c) F23

5 10 15 20 25 30

Number of Function Evaluations

10-25

10-20

10-15

10-10

10-5

100

105

1010

Po
pu

la
tio

n
D

iv
er

si
ty

MDBSO
BSO
CBSO
BSO-OS
RGBSO
GBSO
ASBSO

0

104

(d) F24

Figure 5.4: Population diversity on F12, F13, F23, and F24.

Table 5.4: Experimental results of MDBSO versus GSA variants on CEC’17 bench-
mark functions (1).

Fun.
MDBSO GSA IGSA GGSA

Mean ±Std Dev Mean ±Std Dev Mean ±Std Dev Mean ±Std Dev
F1 3.17E+03 ± 4.68E+03 2.00E+03 ± 1.03E+03 ≈ 1.88E+03 ± 1.37E+03 ≈ 2.18E+03 ± 1.12E+03 ≈
F3 6.13E+02 ± 6.28E+02 8.30E+04 ± 4.33E+03 + 6.04E+04 ± 7.02E+03 + 6.02E+04 ± 6.73E+03 +
F4 4.62E+02 ± 3.28E+01 5.42E+02 ± 1.59E+01 + 5.22E+02 ± 2.10E+01 + 5.33E+02 ± 2.30E+01 +
F5 6.02E+02 ± 3.10E+01 7.26E+02 ± 2.01E+01 + 5.42E+02 ± 8.18E+00 − 6.11E+02 ± 1.22E+01 +
F6 6.13E+02 ± 7.18E+00 6.50E+02 ± 2.75E+00 + 6.00E+02 ± 1.29E-02 − 6.09E+02 ± 5.29E+00 −
F7 8.88E+02 ± 6.43E+01 7.87E+02 ± 1.19E+01 − 7.43E+02 ± 5.60E+00 − 7.37E+02 ± 1.49E+00 −
F8 9.13E+02 ± 3.75E+01 9.51E+02 ± 1.31E+01 + 8.33E+02 ± 7.72E+00 − 8.88E+02 ± 9.79E+00 −
F9 1.31E+03 ± 5.38E+02 2.93E+03 ± 3.92E+02 + 9.00E+02 ± 2.11E-14 − 9.00E+02 ± 0.00E+00 −
F10 7.37E+03 ± 1.29E+03 4.87E+03 ± 4.34E+02 − 3.58E+03 ± 4.60E+02 − 4.38E+03 ± 3.89E+02 −
F11 1.21E+03 ± 5.06E+01 1.45E+03 ± 8.92E+01 + 1.28E+03 ± 7.44E+01 + 1.25E+03 ± 3.23E+01 +
F12 4.39E+04 ± 2.26E+04 1.03E+07 ± 1.93E+07 + 1.40E+06 ± 7.32E+05 + 4.83E+05 ± 2.11E+05 +
F13 1.46E+04 ± 1.61E+04 3.10E+04 ± 6.45E+03 + 3.06E+04 ± 7.97E+03 + 1.87E+04 ± 4.70E+03 +
F14 7.71E+03 ± 5.29E+03 4.74E+05 ± 1.31E+05 + 1.96E+05 ± 1.37E+05 + 1.96E+05 ± 7.59E+04 +
F15 7.51E+03 ± 8.01E+03 1.17E+04 ± 1.93E+03 + 1.31E+04 ± 3.65E+03 + 4.12E+03 ± 1.57E+03 ≈
F16 2.44E+03 ± 4.43E+02 3.18E+03 ± 2.84E+02 + 2.71E+03 ± 2.16E+02 + 2.88E+03 ± 3.22E+02 +
F17 1.98E+03 ± 1.94E+02 2.90E+03 ± 1.70E+02 + 2.22E+03 ± 2.14E+02 + 2.67E+03 ± 2.06E+02 +
F18 9.28E+04 ± 5.38E+04 3.20E+05 ± 1.76E+05 + 3.81E+05 ± 3.85E+05 + 1.68E+05 ± 7.28E+04 +
F19 9.70E+03 ± 9.19E+03 1.42E+04 ± 5.13E+03 + 1.57E+04 ± 8.10E+03 + 5.93E+03 ± 1.46E+03 ≈
F20 2.20E+03 ± 1.19E+02 3.03E+03 ± 2.36E+02 + 2.41E+03 ± 1.70E+02 + 2.82E+03 ± 1.64E+02 +
F21 2.40E+03 ± 4.16E+01 2.56E+03 ± 1.95E+01 + 2.35E+03 ± 6.54E+00 − 2.41E+03 ± 2.11E+01 +
F22 4.78E+03 ± 3.01E+03 6.39E+03 ± 1.69E+03 + 2.30E+03 ± 0.00E+00 − 2.30E+03 ± 2.05E-10 -
F23 2.73E+03 ± 2.30E+01 3.56E+03 ± 1.23E+02 + 2.74E+03 ± 2.26E+01 ≈ 2.86E+03 ± 3.94E+01 +
F24 2.92E+03 ± 5.27E+01 3.29E+03 ± 5.57E+01 + 2.82E+03 ± 2.24E+01 − 2.91E+03 ± 3.70E+01 ≈
F25 2.89E+03 ± 1.20E+01 2.93E+03 ± 1.22E+01 + 2.92E+03 ± 9.79E+00 + 2.93E+03 ± 1.03E+01 +
F26 4.78E+03 ± 6.31E+02 6.86E+03 ± 8.95E+02 + 2.83E+03 ± 4.66E+01 − 2.94E+03 ± 5.28E+02 −
F27 3.23E+03 ± 2.01E+01 4.67E+03 ± 3.21E+02 + 3.37E+03 ± 6.87E+01 + 3.39E+03 ± 3.57E+01 +
F28 3.19E+03 ± 5.78E+01 3.31E+03 ± 4.94E+01 + 3.26E+03 ± 3.48E+01 + 3.23E+03 ± 3.28E+01 +
F29 3.70E+03 ± 1.92E+02 4.71E+03 ± 2.10E+02 + 4.03E+03 ± 2.22E+02 + 4.25E+03 ± 2.30E+02 +
F30 8.49E+03 ± 3.24E+03 1.70E+05 ± 1.24E+05 + 3.34E+05 ± 3.68E+05 + 4.39E+04 ± 1.91E+04 +
Rank 1 6 3 4

+/ ≈ /− - /- /- 26/ 1 /2 17/ 2/10 18/ 4 /7

73

Table 5.5: Experimental results of MDBSO versus GSA variants on CEC’17 bench-
mark functions (2).

Fun.
MGSA PSOGSA HGSA DNLGSA

Mean ±Std Dev Mean ±Std Dev Mean ±Std Dev Mean ±Std Dev
F1 4.63E+03 ± 4.30E+03 + 4.12E+03 ± 3.26E+03 + 2.68E+03 ± 2.50E+03 ≈ 1.22E+05 ± 1.81E+05 +
F3 4.23E+04 ± 1.28E+04 + 3.56E+03 ± 7.87E+03 + 4.36E+04 ± 5.49E+03 + 1.49E+04 ± 1.24E+04 +
F4 5.33E+02 ± 5.86E+01 + 1.04E+03 ± 5.05E+02 + 5.19E+02 ± 2.63E+00 + 7.11E+02 ± 1.46E+02 +
F5 6.35E+02 ± 3.01E+01 + 6.46E+02 ± 3.40E+01 + 6.53E+02 ± 1.28E+01 + 6.50E+02 ± 3.67E+01 +
F6 6.27E+02 ± 8.09E+00 + 6.24E+02 ± 8.94E+00 + 6.08E+02 ± 4.54E+00 − 6.41E+02 ± 7.86E+00 +
F7 8.38E+02 ± 2.65E+01 − 9.72E+02 ± 6.32E+01 + 7.41E+02 ± 3.01E+00 − 9.86E+02 ± 6.78E+01 +
F8 9.08E+02 ± 2.29E+01 ≈ 9.36E+02 ± 3.25E+01 + 9.00E+02 ± 9.03E+00 ≈ 9.16E+02 ± 2.85E+01 ≈
F9 3.41E+03 ± 8.50E+02 + 4.54E+03 ± 1.67E+03 + 9.00E+02 ± 9.67E-14 − 3.93E+03 ± 1.10E+03 +
F10 4.92E+03 ± 8.11E+02 − 4.70E+03 ± 6.23E+02 − 4.21E+03 ± 2.93E+02 − 4.96E+03 ± 8.84E+02 −
F11 1.23E+03 ± 4.53E+01 ≈ 1.49E+03 ± 3.14E+02 + 1.20E+03 ± 2.98E+01 ≈ 1.51E+03 ± 2.44E+02 +
F12 5.27E+05 ± 5.78E+05 + 6.00E+07 ± 1.48E+08 + 1.29E+05 ± 8.15E+04 + 1.58E+08 ± 2.63E+08 +
F13 2.81E+05 ± 1.42E+06 + 2.39E+07 ± 7.46E+07 + 1.46E+04 ± 5.32E+03 + 1.62E+06 ± 8.72E+06 +
F14 1.87E+04 ± 3.80E+04 + 9.87E+04 ± 2.69E+05 ≈ 6.72E+03 ± 3.05E+03 ≈ 6.07E+04 ± 1.02E+05 +
F15 6.08E+03 ± 4.72E+03 ≈ 5.31E+05 ± 2.82E+06 + 2.20E+03 ± 7.21E+02 − 1.29E+04 ± 1.02E+04 +
F16 2.83E+03 ± 2.89E+02 + 3.05E+03 ± 4.59E+02 + 2.83E+03 ± 2.32E+02 + 2.74E+03 ± 3.13E+02 +
F17 2.37E+03 ± 2.07E+02 + 2.27E+03 ± 2.29E+02 + 2.77E+03 ± 1.99E+02 + 2.30E+03 ± 2.31E+02 +
F18 1.44E+05 ± 1.28E+05 ≈ 3.07E+05 ± 1.01E+06 ≈ 6.16E+04 ± 1.47E+04 − 1.88E+05 ± 1.86E+05 +
F19 9.28E+03 ± 6.23E+03 ≈ 1.43E+04 ± 1.33E+04 + 5.42E+03 ± 1.25E+03 ≈ 1.72E+04 ± 5.34E+04 ≈
F20 2.67E+03 ± 1.86E+02 + 2.57E+03 ± 2.35E+02 + 2.86E+03 ± 2.24E+02 + 2.72E+03 ± 2.15E+02 +
F21 2.44E+03 ± 3.14E+01 + 2.43E+03 ± 3.53E+01 + 2.41E+03 ± 5.90E+01 + 2.43E+03 ± 3.73E+01 +
F22 4.19E+03 ± 2.22E+03 ≈ 4.68E+03 ± 1.91E+03 ≈ 2.30E+03 ± 3.91E-09 − 4.50E+03 ± 2.32E+03 ≈
F23 3.00E+03 ± 8.12E+01 + 2.93E+03 ± 8.75E+01 + 2.76E+03 ± 1.33E+02 + 3.00E+03 ± 8.74E+01 +
F24 3.27E+03 ± 1.12E+02 + 3.21E+03 ± 1.43E+02 + 2.92E+03 ± 3.58E+01 ≈ 3.18E+03 ± 7.29E+01 +
F25 2.92E+03 ± 1.66E+01 + 3.02E+03 ± 7.53E+01 + 2.89E+03 ± 7.59E+00 − 3.00E+03 ± 4.61E+01 +
F26 5.56E+03 ± 1.63E+03 + 5.70E+03 ± 1.30E+03 + 2.85E+03 ± 5.07E+01 − 5.98E+03 ± 1.26E+03 +
F27 3.52E+03 ± 1.19E+02 + 3.52E+03 ± 1.36E+02 + 3.25E+03 ± 2.08E+01 + 3.43E+03 ± 1.50E+02 +
F28 3.21E+03 ± 7.43E+01 ≈ 3.52E+03 ± 2.00E+02 + 3.11E+03 ± 2.82E+01 − 3.44E+03 ± 9.79E+01 +
F29 4.12E+03 ± 3.03E+02 + 4.24E+03 ± 3.80E+02 + 4.05E+03 ± 1.88E+02 + 4.47E+03 ± 3.17E+02 +
F30 7.95E+04 ± 1.81E+05 + 3.39E+06 ± 1.42E+07 + 1.10E+04 ± 2.60E+03 + 3.60E+06 ± 6.27E+06 +
Rank 5 8 2 7

+/ ≈ /− 20 /7 /2 25/ 3 /1 13/ 6 /10 25/ 3/1

74

Table 5.6: Experimental results of MDBSO versus ABC variants on CEC’17 bench-
mark functions (1).

Fun.
MDBSO ABC GABC MABC

Mean ±Std Dev Mean ±Std Dev Mean ±Std Dev Mean ±Std Dev
F1 3.17E+03 ± 4.68E+03 4.72E+04 ± 7.74E+04 + 5.27E+03 ± 5.71E+03 + 2.01E+03 ± 1.82E+03 ≈
F3 6.13E+02 ± 6.28E+02 1.03E+05 ± 1.09E+04 + 9.20E+04 ± 1.02E+04 + 9.71E+04 ± 1.28E+04 +
F4 4.62E+02 ± 3.28E+01 5.19E+02 ± 2.79E+00 + 4.82E+02 ± 3.32E+01 + 5.17E+02 ± 2.31E+00 +
F5 6.02E+02 ± 3.10E+01 7.18E+02 ± 9.44E+00 + 5.96E+02 ± 2.01E+01 ≈ 7.19E+02 ± 1.48E+01 +
F6 6.13E+02 ± 7.18E+00 6.00E+02 ± 6.69E-03 − 6.00E+02 ± 1.15E-01 − 6.00E+02 ± 7.55E-04 −
F7 8.88E+02 ± 6.43E+01 9.43E+02 ± 9.71E+00 + 8.38E+02 ± 3.40E+01 − 9.39E+02 ± 9.74E+00 +
F8 9.13E+02 ± 3.75E+01 1.02E+03 ± 1.16E+01 + 8.91E+02 ± 2.13E+01 − 1.02E+03 ± 1.08E+01 +
F9 1.31E+03 ± 5.38E+02 1.90E+03 ± 4.45E+02 + 2.08E+03 ± 1.08E+03 + 1.41E+03 ± 3.36E+02 +
F10 7.37E+03 ± 1.29E+03 8.10E+03 ± 3.19E+02 + 8.20E+03 ± 2.16E+02 + 8.15E+03 ± 3.09E+02 +
F11 1.21E+03 ± 5.06E+01 4.37E+03 ± 7.31E+02 + 1.71E+03 ± 7.64E+02 + 4.31E+03 ± 6.19E+02 +
F12 4.39E+04 ± 2.26E+04 1.17E+08 ± 2.66E+07 + 1.30E+06 ± 1.06E+06 + 7.79E+07 ± 2.79E+07 +
F13 1.46E+04 ± 1.61E+04 8.02E+07 ± 3.32E+07 + 8.32E+03 ± 7.15E+03 ≈ 8.46E+07 ± 2.90E+07 +
F14 7.71E+03 ± 5.29E+03 3.04E+05 ± 1.25E+05 + 1.88E+05 ± 9.66E+04 + 3.62E+05 ± 1.64E+05 +
F15 7.51E+03 ± 8.01E+03 2.08E+07 ± 8.65E+06 + 7.32E+03 ± 7.67E+03 ≈ 1.96E+07 ± 7.41E+06 +
F16 2.44E+03 ± 4.43E+02 3.76E+03 ± 1.87E+02 + 2.48E+03 ± 2.19E+02 ≈ 3.68E+03 ± 1.57E+02 +
F17 1.98E+03 ± 1.94E+02 2.49E+03 ± 1.19E+02 + 2.05E+03 ± 1.34E+02 + 2.50E+03 ± 1.17E+02 +
F18 9.28E+04 ± 5.38E+04 6.34E+06 ± 3.20E+06 + 5.10E+06 ± 2.12E+06 + 6.77E+06 ± 2.63E+06 +
F19 9.70E+03 ± 9.19E+03 2.39E+07 ± 1.03E+07 + 6.00E+03 ± 5.19E+03 ≈ 2.67E+07 ± 1.04E+07 +
F20 2.20E+03 ± 1.19E+02 2.74E+03 ± 8.15E+01 + 2.72E+03 ± 8.80E+01 + 2.75E+03 ± 1.06E+02 +
F21 2.40E+03 ± 4.16E+01 2.52E+03 ± 1.18E+01 + 2.40E+03 ± 2.35E+01 ≈ 2.51E+03 ± 1.18E+01 +
F22 4.78E+03 ± 3.01E+03 2.64E+03 ± 2.08E+02 ≈ 2.30E+03 ± 1.56E+00 − 2.52E+03 ± 1.76E+02 ≈
F23 2.73E+03 ± 2.30E+01 2.89E+03 ± 1.60E+01 + 2.78E+03 ± 3.12E+01 + 2.88E+03 ± 1.65E+01 +
F24 2.92E+03 ± 5.27E+01 3.04E+03 ± 1.17E+01 + 2.95E+03 ± 3.66E+01 ≈ 3.04E+03 ± 1.19E+01 +
F25 2.89E+03 ± 1.20E+01 2.89E+03 ± 1.73E-01 − 2.90E+03 ± 1.45E+01 + 2.89E+03 ± 1.29E-01 −
F26 4.78E+03 ± 6.31E+02 5.74E+03 ± 1.28E+02 + 5.08E+03 ± 7.13E+02 + 5.71E+03 ± 1.13E+02 +
F27 3.23E+03 ± 2.01E+01 3.46E+03 ± 3.87E+01 + 3.25E+03 ± 1.52E+01 + 3.46E+03 ± 2.89E+01 +
F28 3.19E+03 ± 5.78E+01 3.26E+03 ± 2.59E+01 + 3.22E+03 ± 2.59E+01 + 3.23E+03 ± 1.95E+01 +
F29 3.70E+03 ± 1.92E+02 4.93E+03 ± 1.31E+02 + 3.73E+03 ± 1.69E+02 ≈ 4.86E+03 ± 1.75E+02 +
F30 8.49E+03 ± 3.24E+03 2.67E+07 ± 1.04E+07 + 1.08E+04 ± 2.81E+03 + 2.38E+07 ± 7.73E+06 +
Rank 1 7 3 6

+/ ≈ /− - /- /- 26/ 1 /2 17/ 8/4 25/ 2 /2

the performance of MDBSO is significantly better (+), not significantly better and

worse (≈) or worse (−) than its peers.

In the statistical results obtained by MDBSO and GSA variants, the number of

times MDBSO wins to others is 26 (GSA), 17 (IGSA), 18 (GGSA), 20 (MGSA), 25

(PSOGSA), 13 (HGSA) and 25 (DNLGSA) out of 29 problems, respectively. MDBSO

can significantly outperform most variations of GSA and is very competitive with

HGSA. This indicates that MDBSO obtains a strong competitiveness in comparison

with GSA and its peers.

5.3.1.3 MDBSO vs. ABC Variants

ABC [15] is another powerful SI algorithm and it has been successfully modified in

these years. It has a very special search mechanism against classical SI algorithms

like PSO and GSA. The population in ABC is divided into three categories: employed

bees, onlooker bees and scout bees. Each of them has different responsibility during

75

Table 5.7: Experimental results of MDBSO versus ABC variants on CEC’17 bench-
mark functions (2).

Fun.
SeABC RABC SFABC

Mean ±Std Dev Mean ±Std Dev Mean ±Std Dev
F1 2.87E+09 ± 6.67E+09 + 4.36E+03 ± 5.73E+03 ≈ 1.40E+03 ± 1.26E+03 ≈
F3 9.90E+04 ± 1.15E+04 + 7.73E+04 ± 1.01E+04 + 9.82E+04 ± 1.38E+04 +
F4 5.06E+02 ± 3.15E+01 + 4.93E+02 ± 1.96E+01 + 5.05E+02 ± 2.44E+01 +
F5 6.58E+02 ± 5.81E+01 + 6.55E+02 ± 1.89E+01 + 6.98E+02 ± 1.51E+01 +
F6 6.29E+02 ± 2.66E+01 + 6.00E+02 ± 7.35E-06 − 6.00E+02 ± 7.36E-06 −
F7 9.46E+02 ± 1.86E+02 + 8.91E+02 ± 1.80E+01 + 9.27E+02 ± 1.12E+01 +
F8 9.50E+02 ± 7.14E+01 + 9.59E+02 ± 2.36E+01 + 9.96E+02 ± 1.48E+01 +
F9 4.19E+03 ± 3.90E+03 + 9.58E+02 ± 1.22E+02 − 9.00E+02 ± 1.18E-07 −
F10 8.07E+03 ± 2.47E+02 + 7.89E+03 ± 3.37E+02 + 8.11E+03 ± 3.22E+02 +
F11 2.90E+03 ± 1.70E+03 + 1.30E+03 ± 4.74E+01 + 1.82E+03 ± 4.48E+02 +
F12 2.59E+08 ± 6.64E+08 + 2.37E+06 ± 2.08E+06 + 1.23E+06 ± 7.26E+05 +
F13 2.34E+08 ± 6.04E+08 ≈ 2.04E+04 ± 2.86E+04 + 1.06E+04 ± 6.52E+03 ≈
F14 2.56E+05 ± 1.95E+05 + 1.44E+05 ± 8.34E+04 + 1.93E+05 ± 1.00E+05 +
F15 3.63E+06 ± 1.58E+07 ≈ 1.11E+04 ± 2.13E+04 ≈ 1.41E+04 ± 3.07E+04 ≈
F16 2.86E+03 ± 6.08E+02 + 3.10E+03 ± 2.13E+02 + 3.45E+03 ± 1.55E+02 +
F17 2.37E+03 ± 2.86E+02 + 2.13E+03 ± 1.53E+02 + 2.33E+03 ± 1.28E+02 +
F18 4.25E+06 ± 3.33E+06 + 3.94E+06 ± 1.64E+06 + 5.93E+06 ± 3.06E+06 +
F19 2.21E+07 ± 7.50E+07 ≈ 7.38E+05 ± 1.83E+06 + 1.37E+04 ± 2.86E+04 ≈
F20 2.74E+03 ± 8.62E+01 + 2.51E+03 ± 8.88E+01 + 2.76E+03 ± 7.80E+01 +
F21 2.48E+03 ± 7.97E+01 + 2.45E+03 ± 2.60E+01 + 2.49E+03 ± 1.15E+01 +
F22 3.02E+03 ± 1.68E+03 ≈ 2.31E+03 ± 4.19E+00 ≈ 2.30E+03 ± 1.53E-08 −
F23 2.84E+03 ± 1.17E+02 + 2.77E+03 ± 2.89E+01 + 2.84E+03 ± 2.05E+01 +
F24 3.12E+03 ± 2.01E+02 + 2.99E+03 ± 2.24E+01 + 3.01E+03 ± 1.15E+01 +
F25 3.04E+03 ± 3.94E+02 ≈ 2.89E+03 ± 7.25E+00 − 2.89E+03 ± 6.79E-01 −
F26 6.07E+03 ± 1.80E+03 + 4.90E+03 ± 3.44E+02 ≈ 5.29E+03 ± 2.74E+02 +
F27 3.33E+03 ± 1.59E+02 + 3.22E+03 ± 8.70E+00 − 3.25E+03 ± 1.80E+01 +
F28 3.42E+03 ± 4.18E+02 + 3.22E+03 ± 1.98E+01 + 3.21E+03 ± 1.08E+01 ≈
F29 4.05E+03 ± 4.12E+02 + 3.92E+03 ± 2.17E+02 + 4.32E+03 ± 2.23E+02 +
F30 1.83E+07 ± 5.10E+07 + 3.63E+05 ± 2.42E+05 + 2.33E+05 ± 3.07E+05 +
Rank 5 2 4

+/ ≈ /− 24 /5 /0 21/ 4 /4 20/ 5/4

Table 5.8: Details of the classification data sets.
Classification # of # of training # of test # of

data sets attributes samples samples classes
3-bits XOR 3 8 8 2

Ballon 4 16 16 2
Iris 4 150 150 2

Heart 10 297 297 2

Table 5.9: Details of the function approximation data sets.
Function approximation datasets # of Training Samples # of Test Samples
Cosine: y = cos(xπ/2)7 31: x ∈ [1.25 : 0.05 : 2.75] 38: x ∈ [1.25 : 0.04 : 2.75]
Sine: y = sin(2x) 126: x ∈ [−2π : 0.1 : 2π] 252: x ∈ [−2π : 0.05 : 2π]

Griewank: z = 1
4000

∑2
i=1 x

2
i −

∏2
i=1 cos(

xi√
i
) + 1, 21× 21: x, y ∈ [−2 : 0.1 : 2] 41× 41: x, y ∈ [−4 : 0.05 : 2]

x = x1 and y = x2

Table 5.10: Details of the prediction data sets.

Classification # of training # of test
data sets samples samples

Mackey Glass 450 550
Box Jenkins 140 156

EEG 1000 1500

76

Table 5.11: Reasonable combination of three parameters for nine tested problems,
respectively.

Problems M k θs
XOR 6 3 0.5
Balloon 7 3 0.5
Iris 7 3 0.5
Heart 14 3 0.5
Cosine 23 3 0.5
Sine 22 3 0.5
Griewank 15 3 0.5
Mackey Glass 12 3 0.5
Box Jenkins 15 3 0.5
EEG 12 3 0.5

Table 5.12: Experimental results of DNM training by MDBSO and BSO, respectively.
MDBSO BSO

Mean Mean
(Std Dev) (Std Dev)

XOR 2.89E-02 1.42E-01 +
(2.08E-02) (3.86E-02)

Balloon 2.00E-02 2.41E-02 +
(8.84E-06) (5.86E-03)

Iris 1.11E-02 1.11E-02 +
(7.83E-09) (3.97E-05)

Heart 5.97E-02 8.89E-02 +
(1.60E-02) (2.30E-02)

Cosine 5.41E-03 2.92E-02 ≈
(5.84E-04) (6.40E-02)

Sine 2.38E-01 2.38E-01 ≈
(7.43E-03) (1.42E-02)

Griewank 8.18E-02 9.97E-02 +
(1.62E-02) (2.10E-02)

Mackey Glass 3.54E-04 3.99E-04 ≈
(1.66E-04) (2.01E-04)

Box Jenkins 4.22E-03 4.39E-03 +
(1.23E-04) (9.38E-05)

EEG 5.59E-03 5.64E-03 +
(1.80E-04) (1.46E-04)

77

X1

= 0.4432

= − 0.5651

= 0.5822

= − 0.1054

= 0.6622

AND

Comparator

X 2

X3

X4

X5

Figure 5.5: LC of Heart dataset trained by MDBSO.

the search process. Therefore, ABC is quite successful in optimizing multivariable

and multimodal problems. As we mentioned that the proposed MDBSO is superior

than BSO in solving such kinds of problems [108]. Using ABC variants as contrasts,

including GABC [109], SeABC [110], MABC [73], RABC [111] and SFABC [112], is

a very suitable conduct to prove the promising search ability of MDBSO.

Tables 5.6 and 5.7 exhibit the results obtained by MDBSO and ABC variants. The

results including mean and standard deviation (Std Dev) are exhibited and the values

in boldface represent the best results among compared algorithms. The Rank refers to

the rank of each algorithm obtained in the Friedman test. Each +/ ≈ /− indicates the

performance of MDBSO is significantly better (+), not significantly better and worse

(≈) or worse (−) than its peers. To be precise, MDBSO significantly outperforms

ABC and its variants on 26 (ABC), 17 (GABC), 25 (MABC), 24 (SeABC), 21 (RABC)

and 20 (SFABC) problems, respectively. The result reveals the fact that MDBSO has

better performance in solving diverse optimization problems than most state-of-the-

art variants of ABC.

5.3.2 Artificial Neuron Network (ANN) Training Data Set

Benchmark functions are widely used to test the preliminary performance of the

proposed algorithms because of its simple practicality. They can directly exhibit the

pros and cons of the tested algorithms. However, it is far from enough to only use

78

benchmark functions as they are surrogate models and can not closely reflect real-

world challenges to cross the big gap between academia and industries. Thus, in this

section, we make an attempt to apply MDBSO for training a dendritic neuron model

(DNM) [101].

DNM is proposed by considering the nonlinearity of synapses and has achieved

great success in classification and prediction problems [113, 114, 115, 116]. It is

composed of four layers, including a synaptic layer, a dendrite layer, a membrane

layer and a soma layer. Gao et al. [18] conclude that DNM with learning algorithms

can outperform the traditional multilayer perceptron (MLP) model with the same

algorithms. Besides, training a neural network is a complex and tough optimization

problem as it requires high computational cost. The goal is to minimize the sum

of errors (between the practical and desired values) by optimizing the weight ω and

threshold θ [117]. Thus, the application of using MDBSO can closely reflect its

practical value in real-world challenges. We use BSO and MDBSO to train DNM for

classification, approximation and prediction problems to systemically investigate the

effectiveness of MDBSO in ANN training.

Four classification, three function approximation, and three prediction problems

are used to testify the effectiveness of MDBSO for training DNM. The classification

problems, i.e., XOR, ballon, iris and heart are acquired from the University of Califor-

nia at Irvine Machine Learning Repository [118]. The number of attributes, training

samples, test samples and classes for these problems are summarized in Table 5.8.

The function approximation problems include 1-D cosine with one peak, 1-D sine with

four peaks, and 2-D Griewank problems. Their formulas, number of training samples

and test samples are listed in Table 5.9. With regard to the prediction problems, their

details are presented in Table 5.10, including Mackey Glass, Box Jenkins and EEG

times series data. Besides, the reasonable combination of three DNM parameters for

these tested problems are given in Table 5.13, respectively.

The experimental results obtained by BSO and MDBSO for training DNM are

shown in Table 5.13 where better results are highlighted. A Wilcoxon rank-sum test

is used to analyze the significant difference between the performance of BSO and

79

Table 5.13: Wilcoxon rank-sum test results of different numbers of clusters in
MDBSO.

n=5 vs. n=3 n=7 n=9
+/ ≈ /− 21 /8 /0 10/ 19 /0 12/ 17/0

Table 5.14: Wilcoxon rank-sum test results of different numbers of µ in MDBSO.
µ = 0.5 vs. µ = −0.5 µ = 0 µ = 1
+/ ≈ /− 5 / 24/0 10 / 19 /0 14/ 14/1

MDBSO. It can be observed that MDBSO obtains better results than BSO on all

test problems, and seven out of ten are significantly better. Thus, the conclusion can

be drawn that MDBSO is more superior than BSO in training DNM, which exhibits

that it is promising to be applied to more fields.

In addition, Fig. 5.5 presents a logic circuit (LC) of DNM trained by MDBSO for

the heart dataset, after implementing the neuronal pruning function [116, 119]. In

LCs, comparator which is an analog-to-digital converter and logical “NOT”, “AND”

and “OR” gates are the major components. Comparator outputs 1 when the input is

greater than the threshold θ, otherwise it outputs 0. More details about the pruning

method can be referred in [116, 119]. In this LC, the number of attributes is decreased

from 10 to 5, which means the structure is greatly simplified and it can be easily

implemented in hardware. By doing so, this model achieves a high computational

speed and exhibits its practical value.

5.4 Discussion

5.4.1 Analysis of Preset Parameters

The number of parameters of MDBSO is reduced to two, including the number of

cluster n and the mean value of Gaussian distribution µ. This indicates the effective-

ness of the proposed concrete structure and adaptive parameters. Moreover, to be

more precise, n and µ need to be analyzed to find the best parameter set for MDBSO.

80

0 500 1000 1500 2000 2500 3000

10
−15

10
−10

10
−5

10
0

10
5

Number of Function Evaluations

A
v

e
ra

g
e

 D
d

(a) F12

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

0 500 1000 1500 2000 2500 3000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Number of Function Evaluations

A
v

e
ra

g
e

 D
d

(b) F13

0 500 1000 1500 2000 2500 3000

10
−15

10
−10

10
−5

10
0

10
5

Number of Function Evaluations

A
v

e
ra

g
e

 D
d

(c) F23

0 500 1000 1500 2000 2500 3000

10
−15

10
−10

10
−5

10
0

10
5

Number of Function Evaluations

A
v

e
ra

g
e

 D
d

(d) F24

0 500 1000 1500 2000 2500 3000

10
−10

10
−5

10
0

10
5

10
10

Number of Function Evaluations

A
v

e
ra

g
e

 D
f

(e) F12

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

10
5

10
10

10
15

Number of Function Evaluations

A
v

e
ra

g
e

 D
f

(f) F13

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

Number of Function Evaluations

A
v

e
ra

g
e

 D
f

(g) F23

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

0 500 1000 1500 2000 2500 3000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Number of Function Evaluations

A
v

e
ra

g
e

 D
f

(h) F24

x10
2

x10
2

x10
2

x10
2

x10
2

x10
2

x10
2

x10
2

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

Figure 5.6: The curves of distance diversity and fitness diversity of BSO on F12, F13,
F23 and F24.

0 500 1000 1500 2000 2500 3000
10

−2

10
−1

10
0

10
1

10
2

10
3

Number of Function Evaluations

A
v

e
ra

g
e

 D
d

(a) F12

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

0 500 1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of Function Evaluations

A
v

e
ra

g
e

 D
d

(b) F13

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

0 500 1000 1500 2000 2500 3000
10

−2

10
−1

10
0

10
1

10
2

10
3

Number of Function Evaluations

A
v

e
ra

g
e

 D
d

(c) F23

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

0 500 1000 1500 2000 2500 3000
10

0

10
1

10
2

10
3

Number of Function Evaluations

A
v

e
ra

g
e

 D
d

(d) F24

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

0 500 1000 1500 2000 2500 3000
10

0

10
2

10
4

10
6

10
8

10
10

10
12

Number of Function Evaluations

A
v

e
ra

g
e

 D
f

(e) F12

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

0 500 1000 1500 2000 2500 3000
10

−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

Number of Function Evaluations

A
v

e
ra

g
e

 D
f

(f) F13

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

0 500 1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of Function Evaluations

A
v

e
ra

g
e

 D
f

(g) F23

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

0 500 1000 1500 2000 2500 3000
10

0

10
1

10
2

10
3

Number of Function Evaluations

A
v

e
ra

g
e

 D
f

(h) F24

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

x10
2

x10
2

x10
2

x10
2

x10
2

x10
2

x10
2x10

2

Figure 5.7: The curves of distance diversity and fitness diversity of MDBSO on F12,
F13, F23 and F24.

5.4.1.1 Analysis of the Number of Clusters

In this part, n is first investigated. Four values, 3, 7, 9 and the original number 5 in

BSO, are tested. The Wilcoxon rank-sum result is given in Table 5.13 and we can

find that 5 is the value with the best performance.

5.4.1.2 Analysis of µ

Besides µ = 0.5, we also investigate the values of −0.5, 0 and 1 to decide the best

parameter for Gaussian distribution. In Table 5.15, µ = 0.5 is significantly better

81

than 0 and 1. Although µ = −0.5 has similar performance with 0.5, µ = 0.5 is still

the best choice for MDBSO.

5.4.2 Analysis of Population Diversity

The experimental results have proven that the MDBSO has superior performance

than BSO and other SI algorithms. It is owing to the multiple diversity-driven strat-

egy which keeps a well balance between exploration and exploitation. In this part,

the graphs of population diversity are illustrated to deeply analyze its effectiveness

in optimization process. Figs. 5.6 and 5.7 are the curves of distance and fitness

diversities of BSO and MDBSO on F12, F13, F23 and F24, respectively. In each

subgraph, the population diversity of each cluster is depicted based on the average

value of 30 runs. The horizontal axis is the number of function evaluations and the

vertical axis is the average population diversity (including distance diversity Dd and

fitness diversity Df).

It should be noticed that in Fig. 5.6 the population diversity of the last cluster in

BSO is always decreasing fast and stays in a very low order of magnitude until the

end of search process. It indicates that only a few individuals remain in this cluster.

As we introduced in Section 3.2, the best individual in each cluster is selected as

the center after k-means clustering. The situation of individuals keeping emigrating

reports that the center in the last cluster obtains the worst quality in comparison with

others. Thus, it is not competitive in attracting other individuals, which reflects the

deficiency of the original individual generation strategy of BSO. If a cluster in BSO

can not generate individuals with better fitness at the early stage of optimization, its

size will continue to decease and never has a chance to rebound. However, in Fig. 5.7,

the curves of MDBSO have more coordination than these of BSO. The population

diversity of the last cluster keeps the same level with other cluster from the beginning

to the end. Even if there is a deterioration in the middle, it will rebound quickly

after several generations. This is due to the proposed mutation strategies in MDBSO

which can efficiently generate new individuals with good fitness and endow the cluster

82

Table 5.15: Wilcoxon rank-sum test result of MDBSO vs. MDBSO-FG.
MDBSO vs. MDBSO-FG

+/ ≈ /− 28 / 1 /0

with considerable attraction.

5.4.3 MDBSO with Fitness-based Grouping

It is introduced above that many attempts are made to improve the efficiency of BSO

in clustering as the k-means is a time-cost clustering method. The modifications

in BSO-OS, RGBSO and GBSO include improvements to clustering methods. For

example, BSO-OS and RGBSO apply random grouping to minimize the clustering

overhead. Although this method divides the population into elitists and normal

individuals, it can not provide any specific measures for clustering. Thus, it is not

suitable for MDBSO since the population diversity of each cluster is not available.

In GBSO, a fitness-based grouping strategy is presented in which the individuals are

ranked according to their fitness. The individuals with good and bad fitness are

equally distributed into different groups. Fitness-based grouping is proven to be a

less time-cost and effective method in [81]. Therefore, in this part, we will discuss

whether the fitness-based grouping method could further improve the performance of

MDBSO by replacing k-means clustering. The combination is named as MDBSO-FG.

Table 5.15 provides the Wilcoxon rank-sum test result and one conclusion can be

drawn that the fitness-based grouping method is not suitable for MDBSO. In current

situation, although k-means clustering is a computational cost method, it still has

good performance in optimization results. Finding a method which can outperform k-

means in both efficiency and effectiveness becomes a challenge in our future research.

5.4.4 Comparison with MIIBSO

BSO with multi-information interactions (MIIBSO) [120] is a newly proposed state-

of-the-art BSO variation. It proposes a multi-information interaction (MII) strat-

egy which contains three patterns to enhance the information interaction capability

83

between individuals. Moreover, it uses a random grouping strategy to replace the

k-means clustering method. The comparison result between MDBSO and MIIBSO is

shown in Table 5.16. The results including mean and standard deviation (Std Dev)

are exhibited and the values in boldface represent the better results. Each +/ ≈ /−

indicates the performance of MDBSO is significantly better (+), not significantly

better and worse (≈) or worse (−) than MIIBSO.

As observed, MDBSO can significantly outperform MIIBSO on 19 out of the

total of 29 functions. Specifically, the search ability of MDBSO is much better than

that of MIIBSO on F1-F10 as they are unimodal and simple multimodal functions.

The good performance of MIIBSO on F14-F20 reveals its effect for solving hybrid

functions. This encourages us to further enhance the search ability of MDBSO on

complex problems.

5.4.5 Computational Complexity

In this part, we compare the computational complexity of MDBSO with BSO to show

its efficiency.

The time complexity of BSO is calculated as follows:

(1) The initialization of population and parameters in BSO needs the time com-

plexity O(N) where N is the population size.

(2) The population evaluation process needs O(N).

(3) Using k-means clustering method to divide the population into 5 clusters needs

O(5N2).

(4) The process of individual selection and generation of step length both cost

O(N2).

(5) The generation of new individuals and the fitness calculation needs the time

complexity O(N2), respectively.

Therefore, the overall time complexity of BSO is

84

Table 5.16: Experimental results of MDBSO versus MIIBSO on CEC’17 benchmark
functions.

Fun.
MDBSO MIIBSO

Mean ±Std Dev Mean ±Std Dev
F1 3.17E+03 ± 4.68E+03 1.95E+10 ± 5.48E+09 +
F3 6.13E+02 ± 6.28E+02 3.29E+04 ± 1.10E+04 +
F4 4.62E+02 ± 3.28E+01 1.35E+03 ± 5.67E+02 +
F5 6.02E+02 ± 3.10E+01 6.49E+02 ± 2.44E+01 +
F6 6.13E+02 ± 7.18E+00 6.23E+02 ± 4.66E+00 +
F7 8.88E+02 ± 6.43E+01 9.84E+02 ± 5.30E+01 +
F8 9.13E+02 ± 3.75E+01 9.27E+02 ± 2.03E+01 +
F9 1.31E+03 ± 5.38E+02 2.42E+03 ± 7.60E+02 +
F10 7.37E+03 ± 1.29E+03 8.04E+03 ± 5.05E+02 +
F11 1.21E+03 ± 5.06E+01 1.45E+03 ± 1.65E+02 +
F12 4.39E+04 ± 2.26E+04 7.61E+08 ± 7.02E+08 +
F13 1.46E+04 ± 1.61E+04 3.50E+04 ± 2.67E+04 +
F14 7.71E+03 ± 5.29E+03 1.48E+03 ± 3.85E+01 −
F15 7.51E+03 ± 8.01E+03 2.98E+03 ± 9.77E+02 −
F16 2.44E+03 ± 4.43E+02 2.24E+03 ± 2.60E+02 −
F17 1.98E+03 ± 1.94E+02 1.83E+03 ± 4.03E+01 −
F18 9.28E+04 ± 5.38E+04 2.87E+03 ± 1.12E+03 −
F19 9.70E+03 ± 9.19E+03 2.30E+03 ± 7.12E+02 −
F20 2.20E+03 ± 1.19E+02 2.20E+03 ± 9.89E+01 ≈
F21 2.40E+03 ± 4.16E+01 2.43E+03 ± 2.31E+01 +
F22 4.78E+03 ± 3.01E+03 8.65E+03 ± 1.81E+03 +
F23 2.73E+03 ± 2.30E+01 2.86E+03 ± 6.81E+01 +
F24 2.92E+03 ± 5.27E+01 3.04E+03 ± 4.59E+01 +
F25 2.89E+03 ± 1.20E+01 3.20E+03 ± 1.70E+02 +
F26 4.78E+03 ± 6.31E+02 5.86E+03 ± 5.94E+02 +
F27 3.23E+03 ± 2.01E+01 3.20E+03 ± 2.03E-04 −
F28 3.19E+03 ± 5.78E+01 3.30E+03 ± 2.13E-04 +
F29 3.70E+03 ± 1.92E+02 3.41E+03 ± 1.20E+02 −
F30 8.49E+03 ± 3.24E+03 4.67E+03 ± 9.39E+02 −

w /t/ l - /- /- 19/1/9

85

O(N) + O(N) + O(5N2) + O(N2) + O(N2) = 2O(N2) + O(5N2) + 2O(N) (5.9)

To be simplified, its overall time complexity is O(N2).

The time complexity of MDBSO is

(1) The initialization process is O(N).

(2) The fitness evaluation is O(N).

(3) Using k-means clustering method to divide the population into 5 clusters needs

O(5N2).

(4) Calculating the distance diversity (Dd) and fitness diversity (Df) needs O(N2),

respectively.

(5) Selection of mutation strategies costs O(N2).

(6) The generation of new individuals and the fitness calculation needs the time

complexity O(N2), respectively.

Thus, the overall time complexity of MDBSO is

O(N)+O(N)+O(5N2)+2O(N2)+O(N2)+O(N2) = 4O(N2)+O(5N2)+2O(N)

(5.10)

The time complexity of MDBSO can be simplified as O(N2).

Although calculating Dd and Df need more cost than BSO, the same overall time

complexities of O(N2) indicate that MDBSO achieves the same computational effi-

ciency in comparison with BSO. In other words, the multiple diversity-driven strategy

can improve the performance of MDBSO and maintain efficiency. Thus, the utiliza-

tion of Dd and Df is promising to be applied to more SI algorithms.

86

Chapter 6

Conclusion

In this thesis, I propose multiple improvements to alleviate the drawbacks of brain

storm optimization algorithms. These proposed algorithms are presented as follows.

For the drawback of lacking exploitation search ability, I propose a method which

combines the brain storm optimization with chaotic local search (CLS) to enhance

the search ability of BSO. CLS is implemented when the process of BSO sticks into

stagnation. The dynamic mechanism of CLS makes each individual spread out and

break the current position’s balance. The proposed CBSO is tested using CEC’05

benchmark functions and exhibits better performance when comparing with other

optimization algorithms. Wilcoxon and Friedman test results demonstrate the effec-

tiveness of CBSO by statistical analysis. In my future work, I want to study the

combination of chaos and several local search mechanisms using meta Lamarckian

learning strategy to enhance the robustness of CLS for solving unimodal and multi-

modal benchmark functions and engineering problems.

An adaptive step length mechanism based on memory is proposed, namely AS-

BSO, to enhance the flexibility and robustness of BSO. It applies multiple step length

generation strategies and a new memory mechanism in aim to generate better indi-

viduals for different search periods and problems. The strategies with different step

lengths are produced by using four different scale parameters and they are selected

based on a memory structure in each iteration. Different from the conventional mem-

ory mechanism, the proposed memory structure method is created to record the

improvement value in fitness obtained by each strategy. By implementing this, the

87

strategy which can increase solution quality substantially has a higher possibility to be

selected compared with the original one which can similarly success while obtains only

a little improvement. The performance of ASBSO has been tested by using CEC’13

and CEC’17 benchmark function suits (57 functions in total) which include different

characteristics. Some well-known optimization algorithms also have been added into

comparison. Experimental and statistical results show that the proposed ASBSO can

succeed in improving the performance of BSO in terms of global search ability, conver-

gence speed, robustness and solution quality. Moreover, some real-world problems in

CEC’11 are introduced to present the application value of ASBSO. These results can

encourage our future research into self-adaptive search mechanism. Furthermore, this

will broaden our perspective of BSO for dynamic and multiobjective optimization.

As for the deterioration of population diversity during the optimization process, I

propose a novel multiple diversity-driven strategy to solve this problem. Two diversity

measures, including distance diversity and fitness diversity, are collaborated to control

the generation of adaptive parameters in optimization procedure. The diversities of

each cluster in BSO is calculated to control the utilization of mutation strategies.

Moreover, new individuals are generated according to these diversities. In this way,

the number of parameters in original BSO is greatly decreased. Experiments on

CEC2017 benchmark function suit and ANN training task are utilized to investigate

the performance of the proposed MDBSO. The results demonstrate that MDBSO

obtains superior effectiveness, efficiency and robustness. In the comparison with the

latest BSO variations, MDBSO exhibits overwhelming advantages, which indicates

MDBSO is the current best BSO variation. Besides, diversity is a significant part in

optimization search. Several researchers have realized its importance but I creatively

take it into parameter adaptation and obtain desired result. It suggests that the

proposed multiple diversity-driven strategy deserves more attention in SI research

field.

The performance of BSO is promising, and there is still a great space to improve

its search ability. In my future research, we will consistently concentrate on the

improvements of BSO.

88

Bibliography

[1] G. Beni and J. Wang, “Swarm intelligence in cellular robotic systems,” in Robots

and Biological Systems: Towards a New Bionics? Springer, 1993, pp. 703–712.

[2] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of Machine Learn-

ing. Springer, 2011, pp. 760–766.

[3] S. Gao, Y. Yu, Y. Wang, J. Wang, J. Cheng, and M. Zhou, “Chaotic

local search-based differential evolution algorithms for optimization,” IEEE

Transactions on Systems, Man and Cybernetics: Systems, 2019, doi:

10.1109/TSMC.2019.2956121.

[4] J. Cheng, G. Yuan, M. Zhou, S. Gao, C. Liu, H. Duan, and Q. Zeng, “Accessi-

bility analysis and modeling for iov in an urban scene,” IEEE Transactions on

Vehicular Technology, 2020, doi: 10.1109/TVT.2020.2970553 .

[5] J. Wang, B. Cen, S. Gao, Z. Zhang, and Y. Zhou, “Cooperative evolution-

ary framework with focused search for many-objective optimization,” IEEE

Transactions on Emerging Topics in Computational Intelligence, 2018, doi:

10.1109/TETCI.2018.2849380.

[6] J. Cheng, G. Yuan, M. Zhou, S. Gao, C. Liu, and H. Duan, “A fluid mechanics-

based data flow model to estimate vanet capacity,” IEEE Transactions on In-

telligent Transportation Systems, 2019, doi: 10.1109/TITS.2019.2921074.

[7] J. Cheng, M. Chen, M. Zhou, S. Gao, C. Liu, and C. Liu, “Overlapping com-

munity change point detection in an evolving network,” IEEE Transactions on

Big Data, 2018, doi: 10.1109/TBDATA.2018.2880780.

89

[8] ——, “Overlapping community change point detection in an evolving network,”

IEEE Transactions on Big Data, 2018, doi: 10.1109/TBDATA.2018.2880780.

[9] J. Cheng, X. Wu, M. Zhou, S. Gao, Z. Huang, and C. Liu, “A novel method

for detecting new overlapping community in complex evolving networks,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 4, pp.

1832–1844, 2019.

[10] S. Gao, S. Song, J. Cheng, Y. Todo, and M. Zhou, “Incorporation of solvent ef-

fect into multi-objective evolutionary algorithm for improved protein structure

prediction,” IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics, vol. 15, no. 4, pp. 1365–1378, 2018.

[11] S. Gao, Y. Wang, J. Cheng, Y. Inazumi, and Z. Tang, “Ant colony optimiza-

tion with clustering for solving the dynamic location routing problem,” Applied

Mathematics and Computation, vol. 285, pp. 149–173, 2016.

[12] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE

Computational Intelligence Magazine, vol. 1, no. 4, pp. 28–39, 2006.

[13] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” in International

Conference in Swarm Intelligence. Springer, 2010, pp. 355–364.

[14] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “GSA: a gravitational search

algorithm,” Information Sciences, vol. 179, no. 13, pp. 2232–2248, 2009.

[15] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical

function optimization: artificial bee colony (abc) algorithm,” Journal of Global

Optimization, vol. 39, no. 3, pp. 459–471, 2007.

[16] Y. Shi, “Brain storm optimization algorithm,” in International Conference in

Swarm Intelligence. Springer, Berlin, Heidelberg, 2011, pp. 303–309.

[17] J. Sun, S. Gao, H. Dai, J. Cheng, M. Zhou, and J. Wang, “Bi-objective elite

90

differential evolution for multivalued logic networks,” IEEE Transactions on

Cybernetics, vol. 50, no. 1, pp. 233–246, 2020.

[18] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Dendritic neural

model with effective learning algorithms for classification, approximation, and

prediction,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 30, no. 2, pp. 601–614, 2019.

[19] J. Cheng, J. Cheng, M. Zhou, F. Liu, S. Gao, and C. Liu, “Routing in internet

of vehicles: A review.” IEEE Trans. Intelligent Transportation Systems, vol. 16,

no. 5, pp. 2339–2352, 2015.

[20] S. Gao, Y. Todo, T. Gong, G. Yang, and Z. Tang, “Graph planarization prob-

lem optimization based on triple-valued gravitational search algorithm,” IEEJ

Transactions on Electrical and Electronic Engineering, vol. 9, no. 1, pp. 39–48,

2014.

[21] S. Gao, C. Vairappan, Y. Wang, Q. Cao, and Z. Tang, “Gravitational search

algorithm combined with chaos for unconstrained numerical optimization,” Ap-

plied Mathematics and Computation, vol. 231, pp. 48–62, 2014.

[22] Z. Song, S. Gao, Y. Yu, J. Sun, and Y. Todo, “Multiple chaos embedded grav-

itational search algorithm,” IEICE Transactions on Information and Systems,

vol. 100, no. 4, pp. 888–900, 2017.

[23] S. Cheng, Q. Qin, J. Chen, and Y. Shi, “Brain storm optimization algorithm:

a review,” Artificial Intelligence Review, vol. 46, no. 4, pp. 445–458, 2016.

[24] J. Zhang and A. C. Sanderson, “Jade: adaptive differential evolution with

optional external archive,” IEEE Transactions on Evolutionary Computation,

vol. 13, no. 5, pp. 945–958, 2009.

[25] J. Ji, S. Gao, S. Wang, Y. Tang, H. Yu, and Y. Todo, “Self-adaptive gravi-

tational search algorithm with a modified chaotic local search,” IEEE Access,

vol. 5, pp. 17 881–17 895, 2017.

91

[26] C. Vairappan, H. Tamura, S. Gao, and Z. Tang, “Batch type local search-based

adaptive neuro-fuzzy inference system (ANFIS) with self-feedbacks for time-

series prediction,” Neurocomputing, vol. 72, no. 7-9, pp. 1870–1877, 2009.

[27] N. Noman and H. Iba, “Accelerating differential evolution using an adaptive

local search,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 1,

pp. 107–125, 2008.

[28] Y. Ong, M. Lim, N. Zhu, and K. Wong, “Classification of adaptive memetic

algorithms: a comparative study,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 36, no. 1, pp. 141–152, 2006.

[29] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, “A survey on

metaheuristics for stochastic combinatorial optimization,” Natural Computing,

vol. 8, no. 2, pp. 239–287, 2009.

[30] M. Črepinšek, S. Liu, and M. Mernik, “Exploration and exploitation in evo-

lutionary algorithms: A survey,” ACM Computing Surveys (CSUR), vol. 45,

no. 3, p. 35, 2013.

[31] R. Caponetto, L. Fortuna, S. Fazzino, and M. G. Xibilia, “Chaotic sequences

to improve the performance of evolutionary algorithms,” IEEE Transactions on

Evolutionary Computation, vol. 7, no. 3, pp. 289–304, 2003.

[32] G. Wang, S. Deb, A. H. Gandomi, Z. Zhang, and A. H. Alavi, “Chaotic cuckoo

search.” Soft Comput., vol. 20, no. 9, pp. 3349–3362, 2016.

[33] G. Wang, L. Guo, A. H. Gandomi, G. Hao, and H. Wang, “Chaotic krill herd

algorithm,” Information Sciences, vol. 274, pp. 17–34, 2014.

[34] S. H. Kellert, In the wake of chaos: Unpredictable order in dynamical systems.

University of Chicago press, 1994.

[35] A. R. Jordehi, “A chaotic artificial immune system optimisation algorithm for

92

solving global continuous optimisation problems,” Neural Computing and Ap-

plications, vol. 26, no. 4, pp. 827–833, 2015.

[36] Y. Lu, J. Zhou, H. Qin, Y. Wang, and Y. Zhang, “Chaotic differential evolution

methods for dynamic economic dispatch with valve-point effects,” Engineering

Applications of Artificial Intelligence, vol. 24, no. 2, pp. 378–387, 2011.

[37] W. Jiang and B. Li, “Optimizing complex functions by chaos search,” Cyber-

netics & Systems, vol. 29, no. 4, pp. 409–419, 1998.

[38] B. Liu, L. Wang, Y. H. Jin, F. Tang, and D. X. Huang, “Improved particle

swarm optimization combined with chaos,” Chaos, Solitons & Fractals, vol. 25,

no. 5, pp. 1261–1271, 2005.

[39] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, and

S. Tiwari, “Problem definitions and evaluation criteria for the cec 2005 special

session on real-parameter optimization,” KanGAL Report, vol. 2005005, p. 2005,

2005.

[40] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic

for global optimization over continuous spaces,” Journal of Global Optimization,

vol. 11, no. 4, pp. 341–359, 1997.

[41] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in

Engineering Software, vol. 95, pp. 51–67, 2016.

[42] J. Wang, Y. Zhou, Y. Wang, J. Zhang, C. P. Chen, and Z. Zheng, “Multi-

objective vehicle routing problems with simultaneous delivery and pickup and

time windows: formulation, instances, and algorithms,” IEEE Transactions on

Cybernetics, vol. 46, no. 3, pp. 582–594, 2016.

[43] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting

control parameters in differential evolution: A comparative study on numeri-

cal benchmark problems,” IEEE Transactions on Evolutionary Computation,

vol. 10, no. 6, pp. 646–657, 2006.

93

[44] J. Luengo, S. Garćıa, and F. Herrera, “A study on the use of statistical tests for

experimentation with neural networks: Analysis of parametric test conditions

and non-parametric tests,” Expert Systems with Applications, vol. 36, no. 4, pp.

7798–7808, 2009.

[45] S. Garćıa, D. Molina, M. Lozano, and F. Herrera, “A study on the use of non-

parametric tests for analyzing the evolutionary algorithms’ behaviour: a case

study on the CEC’2005 special session on real parameter optimization,” Journal

of Heuristics, vol. 15, no. 6, pp. 617–644, 2009.

[46] S. Das and P. N. Suganthan, “Problem definitions and evaluation criteria for cec

2011 competition on testing evolutionary algorithms on real world optimization

problems,” Jadavpur University, Nanyang Technological University, Kolkata,

2010.

[47] W. Gao, S. Liu, and L. Huang, “Enhancing artificial bee colony algorithm using

more information-based search equations,” Information Sciences, vol. 270, pp.

112–133, 2014.

[48] G. Yang, S. Wu, Q. Jin, and J. Xu, “A hybrid approach based on stochas-

tic competitive hopfield neural network and efficient genetic algorithm for fre-

quency assignment problem,” Applied Soft Computing, vol. 39, pp. 104–116,

2016.

[49] X. Guo, Y. Wu, and L. Xie, “Modified brain storm optimization algorithm for

multimodal optimization,” in International Conference in Swarm Intelligence.

Springer, 2014, pp. 340–351.

[50] X. Guo, Y. Wu, L. Xie, S. Cheng, and J. Xin, “An adaptive brain storm opti-

mization algorithm for multiobjective optimization problems,” in International

conference in swarm intelligence. Springer, 2015, pp. 365–372.

[51] L. Li and K. Tang, “History-based topological speciation for multimodal opti-

94

mization,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 1, pp.

136–150, 2015.

[52] H. Qiu and H. Duan, “Receding horizon control for multiple uav formation

flight based on modified brain storm optimization,” Nonlinear dynamics, vol. 78,

no. 3, pp. 1973–1988, 2014.

[53] Y. Sun, “A hybrid approach by integrating brain storm optimization algorithm

with grey neural network for stock index forecasting,” in Abstract and Applied

Analysis, vol. 2014. Hindawi Publishing Corporation, 2014.

[54] Y. Shi, J. Xue, and Y. Wu, “Multi-objective optimization based on brain storm

optimization algorithm,” International Journal of Swarm Intelligence Research

(IJSIR), vol. 4, no. 3, pp. 1–21, 2013.

[55] Y. Shi, “Brain storm optimization algorithm in objective space,” in Evolution-

ary Computation (CEC), 2015 IEEE Congress on. IEEE, 2015, pp. 1227–1234.

[56] C. Li and H. Duan, “Information granulation-based fuzzy rbfnn for image fusion

based on chaotic brain storm optimization,” Optik-International Journal for

Light and Electron Optics, vol. 126, no. 15, pp. 1400–1406, 2015.

[57] Y. Yu, S. Gao, S. Cheng, Y. Wang, S. Song, and F. Yuan, “CBSO: a memetic

brain storm optimization with chaotic local search,” Memetic Computing,

vol. 10, no. 4, pp. 353–367, 2018.

[58] S. Cheng, Y. Shi, Q. Qin, Q. Zhang, and R. Bai, “Population diversity mainte-

nance in brain storm optimization algorithm,” Journal of Artificial Intelligence

and Soft Computing Research, vol. 4, no. 2, pp. 83–97, 2014.

[59] H. Duan, S. Li, and Y. Shi, “Predator–prey brain storm optimization for dc

brushless motor,” IEEE Transactions on Magnetics, vol. 49, no. 10, pp. 5336–

5340, 2013.

95

[60] H. Duan and C. Li, “Quantum-behaved brain storm optimization approach to

solving loney’s solenoid problem,” IEEE Transactions on Magnetics, vol. 51,

no. 1, pp. 1–7, 2015.

[61] Y. Wang, S. Gao, Y. Yu, and Z. Xu, “The discovery of population interaction

with a power law distribution in brain storm optimization,” Memetic Comput-

ing, pp. In Press, DOI: 10.1007/s12 293–017–0248–z, 2017.

[62] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE

Transactions on Evolutionary computation, vol. 3, no. 2, pp. 82–102, 1999.

[63] J. Liang, B. Qu, P. Suganthan, and A. G. Hernández-Dı́az, “Problem defini-

tions and evaluation criteria for the CEC 2013 special session on real-parameter

optimization,” Computational Intelligence Laboratory, Zhengzhou University,

Zhengzhou, China and Nanyang Technological University, Singapore, Technical

Report, vol. 201212, 2013.

[64] N. Awad, M. Ali, J. Liang, B. Qu, and P. Suganthan, “Problem definitions and

evaluation criteria for the CEC 2017 special session and competition on single

objective real-parameter numerical optimization,” in Technical Report. NTU,

Singapore, 2016.

[65] D. Molina, M. Lozano, C. Garćıa-Mart́ınez, and F. Herrera, “Memetic algo-

rithms for continuous optimisation based on local search chains,” Evolutionary

Computation, vol. 18, no. 1, pp. 27–63, 2010.

[66] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm

with strategy adaptation for global numerical optimization,” IEEE Transac-

tions on Evolutionary Computation, vol. 13, no. 2, pp. 398–417, 2009.

[67] V. Tereshko and A. Loengarov, “Collective decision making in honey-bee forag-

ing dynamics,” Computing and Information Systems, vol. 9, no. 3, p. 1, 2005.

96

[68] Y. Zhang, S. Wang, and G. Ji, “A comprehensive survey on particle swarm

optimization algorithm and its applications,” Mathematical Problems in Engi-

neering, vol. 2015, 2015.

[69] Y. Shi, C.-M. Pun, H. Hu, and H. Gao, “An improved artificial bee colony and

its application,” Knowledge-Based Systems, vol. 107, pp. 14–31, 2016.

[70] R. Zhang, P.-C. Chang, S. Song, and C. Wu, “A multi-objective artificial bee

colony algorithm for parallel batch-processing machine scheduling in fabric dye-

ing processes,” Knowledge-Based Systems, vol. 116, pp. 114–129, 2017.

[71] S. Gao, Y. Wang, J. Wang, and J. Cheng, “Understanding differential evolu-

tion: A poisson law derived from population interaction network,” Journal of

Computational Science, vol. 21, pp. 140–149, 2017.

[72] R. P. Parouha and K. N. Das, “A robust memory based hybrid differential

evolution for continuous optimization problem,” Knowledge-Based Systems, vol.

103, pp. 118–131, 2016.

[73] X. Li and G. Yang, “Artificial bee colony algorithm with memory,” Applied Soft

Computing, vol. 41, pp. 362–372, 2016.

[74] G. Sun, P. Ma, J. Ren, A. Zhang, and X. Jia, “A stability constrained adaptive

alpha for gravitational search algorithm,” Knowledge-Based Systems, vol. 139,

pp. 200–213, 2018.

[75] S. Mirjalili, “SCA: a sine cosine algorithm for solving optimization problems,”

Knowledge-Based Systems, vol. 96, pp. 120–133, 2016.

[76] S. Garćıa, A. Fernández, J. Luengo, and F. Herrera, “Advanced nonparametric

tests for multiple comparisons in the design of experiments in computational

intelligence and data mining: Experimental analysis of power,” Information

Sciences, vol. 180, no. 10, pp. 2044–2064, 2010.

97

[77] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algorithm,”

Soft Computing, vol. 9, no. 6, pp. 448–462, 2005.

[78] Y. Cai and J. Wang, “Differential evolution with neighborhood and direction

information for numerical optimization,” IEEE Transactions on Cybernetics,

vol. 43, no. 6, pp. 2202–2215, 2013.

[79] J. Wang, J. Liao, Y. Zhou, and Y. Cai, “Differential evolution enhanced with

multiobjective sorting-based mutation operators,” IEEE Transactions on Cy-

bernetics, vol. 44, no. 12, pp. 2792–2805, 2014.

[80] J. Wang, W. Zhang, and J. Zhang, “Cooperative differential evolution with

multiple populations for multiobjective optimization,” IEEE Transactions on

Cybernetics, vol. 46, no. 12, pp. 2848–2861, 2016.

[81] M. El-Abd, “Global-best brain storm optimization algorithm,” Swarm and Evo-

lutionary Computation, vol. 37, pp. 27–44, 2017.

[82] I. Rechenberg, “Evolutionsstrategien,” in Simulationsmethoden in der Medizin

und Biologie. Springer, 1978, pp. 83–114.

[83] K. Tang, P. Yang, and X. Yao, “Negatively correlated search,” IEEE Journal

on Selected Areas in Communications, vol. 34, no. 3, pp. 542–550, 2016.

[84] Z. Cao, Y. Shi, X. Rong, B. Liu, Z. Du, and B. Yang, “Random grouping brain

storm optimization algorithm with a new dynamically changing step size,” in

International Conference in Swarm Intelligence. Springer, 2015, pp. 357–364.

[85] Y. Yu, S. Gao, Y. Wang, J. Cheng, and Y. Todo, “ASBSO: An improved brain

storm optimization with flexible search length and memory-based selection,”

IEEE Access, vol. 6, pp. 36 977–36 994, 2018.

[86] M. El-Abd, “Brain storm optimization algorithm with re-initialized ideas and

adaptive step size,” in Evolutionary Computation (CEC), 2016 IEEE Congress

on. IEEE, 2016, pp. 2682–2686.

98

[87] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolu-

tionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 3,

no. 2, pp. 124–141, 1999.

[88] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-of-

the-art,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp.

4–31, 2011.

[89] R. Tanabe and A. Fukunaga, “Success-history based parameter adaptation

for differential evolution,” in Evolutionary Computation (CEC), 2013 IEEE

Congress on. IEEE, 2013, pp. 71–78.

[90] Y. Shi and R. C. Eberhart, “Population diversity of particle swarms,” in Evo-

lutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computa-

tional Intelligence). IEEE Congress on. IEEE, 2008, pp. 1063–1067.

[91] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-facet survey

on memetic computation,” IEEE Transactions on Evolutionary Computation,

vol. 15, no. 5, pp. 591–607, 2011.

[92] C. Segura, C. A. C. Coello, E. Segredo, and A. H. Aguirre, “A novel diversity-

based replacement strategy for evolutionary algorithms,” IEEE Transactions

on Cybernetics, vol. 46, no. 12, pp. 3233–3246, 2016.

[93] C. Segura, A. Hernández-Aguirre, F. Luna, and E. Alba, “Improving diversity in

evolutionary algorithms: New best solutions for frequency assignment,” IEEE

Transactions on Evolutionary Computation, vol. 21, no. 4, pp. 539–553, 2017.

[94] S. Cheng, Y. Shi, Q. Qin, T. O. Ting, and R. Bai, “Maintaining population

diversity in brain storm optimization algorithm,” in 2014 IEEE Congress on

Evolutionary Computation (CEC). IEEE, 2014, pp. 3230–3237.

[95] E. Burke, S. Gustafson, G. Kendall, and N. Krasnogor, “Advanced population

diversity measures in genetic programming,” in International Conference on

Parallel Problem Solving from Nature. Springer, 2002, pp. 341–350.

99

[96] Y. G. Woldesenbet and G. G. Yen, “Dynamic evolutionary algorithm with vari-

able relocation,” IEEE Transactions on Evolutionary Computation, vol. 13,

no. 3, pp. 500–513, 2009.

[97] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, and M. Sumner, “A fast adap-

tive memetic algorithm for online and offline control design of pmsm drives,”

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

vol. 37, no. 1, pp. 28–41, 2007.

[98] C. C. Coello, G. T. Pulido, and E. M. Montes, “Current and future research

trends in evolutionary multiobjective optimization,” in Information Processing

with Evolutionary Algorithms. Springer, 2005, pp. 213–231.

[99] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-

tiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary

Computation, vol. 6, no. 2, pp. 182–197, 2002.

[100] T. Nomura and K. Shimohara, “An analysis of two-parent recombinations for

real-valued chromosomes in an infinite population,” Evolutionary Computation,

vol. 9, no. 3, pp. 283–308, 2001.

[101] Y. Todo, H. Tamura, K. Yamashita, and Z. Tang, “Unsupervised learnable neu-

ron model with nonlinear interaction on dendrites,” Neural Networks, vol. 60,

pp. 96–103, 2014.

[102] F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling real-coded genetic al-

gorithms: Operators and tools for behavioural analysis,” Artificial Intelligence

Review, vol. 12, no. 4, pp. 265–319, 1998.

[103] S. Mirjalili and A. Lewis, “Adaptive gbest-guided gravitational search algo-

rithm,” Neural Computing and Applications, vol. 25, no. 7-8, pp. 1569–1584,

2014.

100

[104] B. Gu and F. Pan, “Modified gravitational search algorithm with particle mem-

ory ability and its application,” International Journal of Innovative Computing,

Information and Control, vol. 9, no. 11, pp. 4531–4544, 2013.

[105] S. Mirjalili and S. Z. M. Hashim, “A new hybrid PSOGSA algorithm for func-

tion optimization,” in Computer and information application (ICCIA), 2010

international conference on. IEEE, 2010, pp. 374–377.

[106] Y. Wang, Y. Yu, S. Gao, H. Pan, and G. Yang, “A hierarchical gravitational

search algorithm with an effective gravitational constant,” Swarm and Evolu-

tionary Computation, vol. Accept, 2019, 2019.

[107] A. Zhang, G. Sun, J. Ren, X. Li, Z. Wang, and X. Jia, “A dynamic neigh-

borhood learning-based gravitational search algorithm,” IEEE Transactions on

Cybernetics, vol. 48, no. 1, pp. 436–447, 2018.

[108] D. Karaboga and B. Akay, “A comparative study of artificial bee colony algo-

rithm,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 108–132,

2009.

[109] G. Zhu and S. Kwong, “Gbest-guided artificial bee colony algorithm for numer-

ical function optimization,” Applied Mathematics and Computation, vol. 217,

no. 7, pp. 3166–3173, 2010.

[110] Y. Xue, J. Jiang, B. Zhao, and T. Ma, “A self-adaptive artificial bee colony

algorithm based on global best for global optimization,” Soft Computing, pp.

1–18, 2017.

[111] G. Li, L. Cui, X. Fu, Z. Wen, N. Lu, and J. Lu, “Artificial bee colony algorithm

with gene recombination for numerical function optimization,” Applied Soft

Computing, vol. 52, pp. 146–159, 2017.

[112] J. Ji, S. Song, C. Tang, S. Gao, Z. Tang, and Y. Todo, “An artificial bee colony

algorithm search guided by scale-free networks,” Information Sciences, vol. 473,

pp. 142–165, 2019.

101

[113] T. Zhou, S. Gao, J. Wang, C. Chu, Y. Todo, and Z. Tang, “Financial time

series prediction using a dendritic neuron model,” Knowledge-Based Systems,

vol. 105, pp. 214–224, 2016.

[114] T. Jiang, S. Gao, D. Wang, J. Ji, Y. Todo, and Z. Tang, “A neuron model with

synaptic nonlinearities in a dendritic tree for liver disorders,” IEEJ Transactions

on Electrical and Electronic Engineering, vol. 12, no. 1, pp. 105–115, 2017.

[115] W. Chen, J. Sun, S. Gao, J. Cheng, J. Wang, and Y. Todo, “Using a single

dendritic neuron to forecast tourist arrivals to japan,” IEICE Transactions on

Information and Systems, vol. 100, no. 1, pp. 190–202, 2017.

[116] Y. Tang, J. Ji, S. Gao, H. Dai, Y. Yu, and Y. Todo, “A pruning neural net-

work model in credit classification analysis,” Computational Intelligence and

Neuroscience, vol. 2018, Article ID 9390410, 2018.

[117] Y.-J. Gong, J. Zhang, and Y. Zhou, “Learning multimodal parameters: A bare-

bones niching differential evolution approach,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 29, no. 7, pp. 2944–2959, 2018.

[118] C. L. Blake, “Uci repository of machine learning databases, irvine, university

of california,” http://www. ics. uci. edu/˜ mlearn/MLRepository. html, 1998.

[119] J. Ji, S. Gao, J. Cheng, Z. Tang, and Y. Todo, “An approximate logic neuron

model with a dendritic structure,” Neurocomputing, vol. 173, pp. 1775–1783,

2016.

[120] C. Li, Z. Song, J. Fan, Q. Cheng, and P. X. Liu, “A brain storm optimization

with multi-information interactions for global optimization problems,” IEEE

Access, vol. 6, pp. 19 304–19 323, 2018.

