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Abstract: We construct a simple Keynesian business cycles model in which animal 

spirits is incorporated into the model. We assume that each firm possesses the 

Keynesian investment function depending on demand. Like the well-known Kaldor 

model, we connect the animal spirits with the degree of response of investment to 

demand. However, for each firm we assume that even if the level of demand is the same, 

the strength of it is different between upswing and downswing of income. That is, we 

assume that the animal spirits of each firm is strong (resp. weak) in the case where 

demand increases (resp. decreases). This assumption implies that the Keynesian 

investment function of each firm is asymmetry. Unlike many Keynesian business cycles 

models, we introduce a certain kind of homogeneity among such a type of investment 

function. Moreover, we construct a statistical model that builds a bridge between micro-

investment and macro-investment and derive a nonlinear macro-investment function.  

By using the investment function, we construct a simple business cycles model. We 

demonstrate that the nonlinearity yields a limit cycle in our model and detect the 

occurrence of a generalized Hopf bifurcation.  

 

Keywords: Business Cycles; Animal Spirits; Density and Distribution functions; 

Asymmetric Investment Function; Poincaré-Bendixson Theorem; Generalized Hopf 

Bifurcation.  
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1. Introduction 
 

The notion of animal spirits was introduced by John Maynard Keynes in his 

famous book: General Theory of Employment, Interest. In the book, Keynes states: 

 

Even apart from the instability due to speculation, there is the instability 

due to the characteristic of human nature that a large proportion of our 

positive activities depend on spontaneous optimism rather than 

mathematical expectations, whether moral or hedonistic or economic. 

Most, probably, of our decisions to do something positive, the full 

consequences of which will be drawn out over many days to come, can 

only be taken as the result of animal spirits-a spontaneous urge to action 

rather than inaction, and not as the outcome of a weighted average of 

quantitative benefits multiplied by quantitative probabilities.1           

 

Akerlof and Shiller (2010) also states that the powerful forces of human psychology that 

are afoot in the world economy today. From various angles, Akerlof and Shiller (2010) 

discusses about the animal spirits. In the preset paper, we are interest in the relation 

between the animal spirits and business cycles. At this early stage, one remark should be 

made. The main purpose of this paper is not to explain the long-run mechanism of 

determining animal spirits but to make clear the short-run mechanism that business 

cycles are produced by animal spirits. Especially, in the present paper, we stress on the 

importance of the word “a spontaneous urge to action rather than inaction”.     

    We construct a simple Keynesian business cycles model with the investment 

function that takes account of the animal spirits. Unlike Keynesian models, we 

distinguish between investment at a micro-level (i.e. investment of a firm) and that at a 

macro-level. We simply call the investment at a micro-level a micro-investment. On the 

other hand, we call the investment at a macro-level a macro-investment. We assume that 

each firm possesses micro-investment function depending on demand. The well-known 

examples of such an investment function are given by Kalecki (1935) and Kaldor 

(1940), although they consider a macro-investment function. Since Kalecki (1935) and 

Kaldor (1940) assume that each firm is homogeneous, the form of a macro-investment 
                            
1 For this passage, see Keynes (1936, pp.161-162).  
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function is the same as that of a micro-investment function. Noting this point, following 

Kaldor (1940)2, we here briefly explain Kaldor’s idea of connecting the animal spirits 

with micro-investment function. Kaldor considers that the animal spirits is closely 

related to the degree (i.e. the slope of micro-investment function) of response of micro-

investment to expected demand (income). The slope is called the marginal propensity to 

invest (abbreviated to MPI). For example, the animal spirits is strong (resp. weak) if 

MPI is large (resp. small). Kaldor assumed that MPI is large (resp. small) at a normal 

level (resp. lower and higher levels) of demand (therefore income).3 Thus, Kaldor 

considered that the strength of animal spirits depends on the absolute level of demand. 

However, we consider as follows. As Keynes states, a large proportion of our positive 

activities depends on spontaneous optimism rather than mathematical expectations. 

Animal spirits operates in the case where demand increases and both large-scale and 

small-scale micro-investments are executed. Consequently, MPI is large in the case. 

Conversely, animal spirits does not operate in the case where demand decreases. Then, 

since demand decreases, firms are pessimistic about the future economy and small-scale 

micro-investments are executed but large-scale micro-investments are stopped. 

Consequently, MPI is small in the case. Thus, the MPI in the case where demand 

increases is larger than that in the case where demand decreases and therefore, animal 

spirits introduces asymmetry (i.e. nonlinearity) into the MPI. We will show that such an 

asymmetry is a source of business cycles. 

    We first try to exclude the assumption that each firm is homogeneous. Then, we 

need a model that builds a bridge between micro-investments and a macro-investment. 

In the present paper, we first construct such a statistical model. By using the statistical 

model, a non-linear macro-investment function is derived from micro-level investments.  

Moreover, using the macro-investment function, we construct a simple two-dimensional 

discrete-time dynamic macro-model. To investigate the global dynamics of the discrete-

time model, we construct a proxy continuous-time model. We prove that the above-

mentioned nonlinearity yields stable business cycles. Since the macro-investment 

function is derived from the statistical argument, it becomes possible to statistically 

explain our results derived from the above dynamic model. This point will be an 

important contribution of the present paper. Needless to say, we also show that the 

                            
2 The mathematical formulation of Kaldor model is given by Chang and Smyth (1971).  
3 It has been well-known that this assumption introduces a sigmoid nonlinearity into the 
investment function and, as a result, yields business cycles. For example, see Asada (1987), 
Gabisch and Lorenz (1989), Owase (1991), and Lorenz (1993). 
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continuous-time model is sufficiently suitable as the proxy of the discrete-time model.    

Our model is a simple two-dimensional continuous-time model and it allows a 

mathematically clear global analysis. We construct a square domain on whose boundary 

the vector field of our model points inward. If the equilibrium point is unstable, by 

using the Poincaré-Bendixson theorem4 we prove the occurrence of a limit cycle. The 

important feature of our model is that the existence domain of limit cycles is determined 

by a simple formula that is made up of model parameters (the marginal propensity to 

consume and the least upper and greatest lower bounds of MPI).  

Moreover, we numerically show that there occurs a phenomenon that under very 

slight change of parameters, a limit cycle abruptly or discontinuously disappears at a 

parameter value. By using the above continuous-time model, we explain the mechanism 

of producing such a phenomenon. We also give an economic explanation of the 

phenomenon.  

This paper is organized as follows. In Section 2, we construct a statistical model 

the builds a bridge between micro-investments and a macro-investment. In Section 3, 

we construct a two-dimensional discrete-time business cycle model of Keynesian type. 

In section 4, as a proxy of the discrete-time model, we construct a two-dimensional 

continuous-time model and provide a global dynamic analysis of the proxy model. In 

Section 5, we demonstrate the occurrence of the phenomenon that a limit cycle 

discontinuously disappears under a very slightly change of parameters. Moreover, we 

explain the mechanism of such a phenomenon. In Section 6, we demonstrate that the 

two-dimensional continuous-time model can be a true proxy of the original discrete-

time model. Section 7 concludes, and Appendix contains the proofs of several results. 

 

2.  A Simple Statistical Model Connecting  
Micro and Macro 

 

The model we consider in this paper is a Keynesian-type business cycle model. In 

order to accomplish one of our main purpose (the detection of limit cycles by using the 

Poincaré-Bendixson theorem), we need to construct as simply as possible. We define 

nY income in period n, nI investment in period n, and nC consumption in period 

n. We employ the following consumption function: AYC nn    )0,01(  A . 

                            
4 For the Poincaré-Bendixson theorem, see Wiggins (1990, Section 1.1) and Medio and Lines 
(2001, Section 4.4.1). 
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On the other hand, like Kaldor (1940), we consider the macro-investment function: 

nnn jKiYI  )0,0(  ji , where nK consumption in period n. In Sections 2 and 3, 

assuming 0j , we construct a simple model without capital stock. In Section 4, we 

extend the simple model to the model with capital stock. Kaldor (1940) assumes that 

MPI is small at high and low levels of income and is large at a normal level of income. 

That is, MPI depends on income as described in Figure 1. The assumption makes the 

macro-investment function nonlinear. Kaldor (1940) and Chang and Smyth (1971) show 

that the nonlinearity yields limit cycles. For the nonlinear macro-investment function, 

the assumption that MPI is large in a normal range (in a neighborhood of the market 

equilibrium) represents that the animal spirits of firms intensifies in the range. Thus, in 

the above macro-investment function the animal spirits depends on income. 

 

Figure 1 about here. 
 

We will consider a macro-investment function that depends on the change of 

income. To make clear the relation between animal spirits and business cycles, we 

construct as a simple model as possible. So, we simply assume that the macro-

investment linearly depends on income: nnn YiI  . As stated in Introduction, like 

Kaldor (1940) we consider that the animal spirits possesses an influence on MPI )( ni  

at period n. Kaldor (1940) assumed that the degree of influence depends on income. 

However, we assume that the degree of influence depends on the change of income. We 

consider the following MPI that depends on the change of income: 

 

(2.1)      ),( nn ui    1 nnn YYu . 

 

Equation (2.1) is the MPI of the macro-investment function. We call Eq. (2.1) the 

macro-MPI. Unlike Kaldor (1940), we try to introduce some kind of heterogeneity 

among firms. To do so, starting with the micro-investment function, we construct a 

statistical macro-investment function and give a theoretical explanation of (2.1). 

Moreover, we determine a typical form of the  function. 

Like the Kaldor model, we consider that for any firm, the production in period n 

equals the expected demand in period n. For simplicity, we assume that the set of firms 

is the continuum of [0,1]. Moreover, we assume that for a given nu , the micro-

investment function of the s-th firm ( ]1,0[s ) in period n, is given by 
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n
s
n

s
n YiI  ,  

 

where s
nY  ( ]1,0[s ) is the production of (=the expected demand for) the s-th firm in 

period n.   

 

Assumption 1: s
nY  are Lebesgue measurable functions for ]1,0[s . 

 

Then, we have  

 

,)(
]1,0[ sdmYY s
nn  

 

where m  is the Lebesgue measure. We can regard s
ni  ( ]1,0[s ) as the MPI of the s-

th firm. We call it the micro-MPI. We here define  
 

s
n

s
n

s
n YYu 1 . 

 

For simplification, we assume that each firm possesses two types of investment plan in 

the sense that the micro-MPI of each firm is given by 
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for some 1Rs  , where  

 

(2.3)       .021  ss    

 

It should be noted here that s  may be negative. In Inequality (2.3) implies that the 

micro-MPI in the case of ss
nu   becomes larger than that in the case of ss

nu  . That 

is, Inequality (2.3) expresses that the investment of the s-th firm is active in the case of 
ss

nu   and inactive in the case of ss
nu  . As stated in Introduction, this kind of 

asymmetry (i.e. nonlinearity) results from animal spirits. In the case of 0s , the 

schematic dynamic behavior is described by Figure 2. 
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Figure 2 about here. 
 

In the short run, it is natural that in the short run, the share of each firm is 

constant in the sense that there is an )1,0(s  such that 
 

n
ss

n YY   and therefore, n
ss

n uu  . 

 

Then, we have 

 

Lemma 1:
 

.)(1
]1,0[ sdms ■ 

 

Proof: From the definition, we have 
 

 
]1,0[]1,0[]1,0[

)()(.)( sdmYsdmYsdmYY s
nn

ss
nn   

 
The proof follows directly from this result.■ 

 

Throughout the remainder of Section 2, for simplicity we omit ‘n’. For example, we 

denote s
nY  by sY . We assume that 

 

Assumption 2: s
j  ( }2,1{j ) and s  are Lebesgue measurable functions for 

]1,0[s . 

 

We define the following: 

 

(2.4)       )}..(:]1,0[{)( 1
sssss uueiisu   . 

 

From the definition, we have the following result. 

 

Lemma 2: The MPI of the s-th firm is given by  
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Proof: Directly from the definition.■ 

 

Assumption 3: )(u  is a Lebesgue-measurable set for any 1Ru .  

 

It is natural to assume the following.  

 

Assumption 4: If wu  , then )()( uw    and 0))()((  uwm  , where m  is 

the Lebesgue measure,    

Assumption 5: φ )(lim uu   and ]1,0[)(lim  uu  ,  

 

where BA  denotes the difference set between two sets A and B.  Assumption 4 

yields the following result:  

 

Lemma 3: sss
n uu   ~~  for some uu ~ , then sss uu    for any 

macroeconomic changing rate uu ~ .■ 

 

Proof: Directly from Assumption 4.■ 

 

Lemma 1 implies that  
 

if ssi 1  is employed (animal spirits is intensive) for some uu ~ , then 
ssi 1  (animal spirits remains intensive) is employed for any uu ~ .  

 
From the definition (2.2) and Lemma 2, the macro-investment is given by  

 

(2.5)       


)(]1,0[
2

)(
1 )()(

u
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u
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We here define: 
 

.)()()(
)(]1,0[
2

)(
1  


u

ss

u

ss sdmsdmu


    

 
Thus, we have 
 

)(u
Y

I
i  . 

 
Animal spirits is incorporated into the  function. Our main purpose is that through 

the  function, we consider the relation between animal spirits and business cycle. 

Therefore, it is convenient to introduce the following notion: 

 

Definition 1: We call the value of )(u  social animal spirits (abbreviated to SAS) and 

the  function a SAS function.■ 

 

We here assume the following. 

 

Assumption 6: The SAS function is a 2C  function. 

 

As shown in the following, the SAS function makes it possible to carry out a statistical 

analysis that bridge between macro and micro. Through the statistical analysis, we 

present a new viewpoint concerning economic dynamics.  

Using SAS function, we construct a distribution function. We start with the 

following lemma. 

 

Lemma 4: We have 

 

(2.6.1)    if ,wu   then ,0)()(  vw   
 

(2.6.2)     1
]1,0[

1 )()(lim  sdmu ssu the supremum of the SAS function, 

(2.6.3)     2
]1,0[

2 )()(lim  sdmu ssu the infimum of the SAS function.■ 
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Proof: See Appendix.■ 

 

Lemma 5: 
21

2)(
)(








u

u  is a distribution function.■  

 

Proof: Directly from Lemma 4.■ 

 

Lemma 5 also shows that )(' u  is a density function. The slope of the SAS function 

(i.e. the density function) is expected to be large in a small neighborhood of 0u . In 

the following, we briefly explain the reason. It will be natural to consider as follows. In 

a small neighborhood of the point that u  changes from 0u  to 0u , the economic 

situations of many firms change a turn for the better from 0)( uu s  to 0)( uus . 

From the definition, this implies that as u  changes from 0u  to 0u , the set 

)(u  becomes rapidly large and therefore, from the definition, the SAS function 

becomes rapidly large in the small neighborhood of 0u . In other words, in the small 

neighborhood, the value of )(' u  (therefore, )(' u ) is large. Especially, we later see 

that the height of )0('  (therefore, )0(' ) is closely related to instability of 

equilibrium.  

Directly from Lemma 4, Lemma 4 determines the typical form of )(u .   

 
Example 1: In this example, we give a simple explanation of above argument by using 

a normal distribution. We consider the distribution function of a normal distribution: 
 

 
],(

2
)

18
exp(

23

1
)(

u

ds
s

u


 . 

 
Moreover, Part (1) of Figure 3 describes the graph of the  function. From the 
definition, we have the SAS function:  
 

          .)
18

exp(
23

)(
)()()( 2

],(

221
221 


 


  u

ds
s

uu   

 
Part (2) of Figure 3 describes the graph of the SAS function with 2.01   and 

1.02  .■ 
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Figure 3 about here. 

 

For simplicity, we work under the following assumption. 

 

Assumption 7: )(' u  has a unique maximal point. 

   

Clearly, we have 

 

Lemma 6: )(' u  has a unique maximal point.■  

 

Proof: Directly from )(")()(" 21 uu    and Assumption 7.■ 

 

We here introduce the following definition that plays an important role in giving 

statistical explanations of the main results. 

 

Definition 2: We call  0u  a macroeconomic turning point. We next define  

 

}0)(":{ 1  uRuuicp   

 

and call icpu  the most intensively changing point of animal spirits (abbreviated to 

MICPAS).■ 

 

Since the maximal point of )(' u  is the same as that of )(' u , we obtain the 

following observation. 

 

Observation 1: The MICPAS icpu  maximizes the changing rate of social animal 

spirits, )(' u .■   

 

We here give an intuitive explanation of the words “MICPAS and macroeconomic 

turning point”. We start with the explanation of macroeconomic turning point. Since u   
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denotes the change of Y , the macroeconomic turning point implies the turning point at 

which income changes from downswing to upswing. We next explain the MICPAS. 

From the definition, the MICPAS is the point at which the changing rate of SAS is 

maximal. That is, the MICPAS is the economic situation in which the degree of animal 

spirits in the whole economy rapidly increases. Therefore, at the MICPAS animal spirits 

spreads rapidly and widely. 

As observed from Observation 1, it is expected that from a dynamic viewpoint, 

the location of the MICPAS has a great influence on the economic activity. In the 

following sections, using the SAS function that was derived through the above-

mentioned statistical argument, we construct a business-cycle model and demonstrate 

this fact. 

 

3.  The Dynamic Model  
 

Now, we start to construct a business-cycle model. Like the usual Keynesian 

business cycle models, we assume that 

 

Assumption 85: ).0(1    

 
Assumption 8 is assumed to guarantee the existence of a unique equilibrium. The same 

assumption has been employed in nonlinear Keynesian business-cycle models such as 

the Kaldor model. See for example Chang and Smyth (1971) and Lorenz (1993, Chapter 

2). In the next section, we will prove that the degree of SAS becomes a source of 

business cycles by using a very simple dynamic model. From now on, we say a macro-

investment function simply an investment function. 

Lemma 5 demonstrates that the SAS function is asymmetric. In Example 1, we 

considered a SAS function that is derived by using a normal distribution. In analyzing 

the dynamic behavior, we however use merely the properties of SAS function, which is 

stated in Lemma 5. Therefore, in numerical examples, we use a simpler and more 

tractable SAS function than that defined by a normal distribution function. A typical 

example of such a SAS function is given in the following examples.  

                            
5 Assumption 7 implies that the marginal propensity to savings is larger than SAS at 0u . 
The usual Keynesian business cycle model employs the same assumption. See also Lorenz 
(1993) 
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Example 3: From now on, in considering numerical examples, we use the SAS function, 

which is tractable: 

 

(2.7)     ,)(Arctan)( dcbuau   

 

where we assume 

 

(2.8)      ,2/ad    .2/1 ad          

 
Defining 2/1 πad   and 2/2 πad  , we see that (2.7) possesses the 

properties of Lemma 5. The blue curve in Figure 4 describes the graph of the SAS 

function of (2.7) with ,/03.0 a  ,100/1b  1c , and .12.0d  Clearly, these 

parameters satisfy (2.8). The greatest lower bound 2/2 πad   and the least upper 

bound 2/1 πad   of the SAS function are given by 0.12+0.015=0.135 and 0.12-

0.015=0.105, respectively. The horizontal red lines in Figure 4 describe these bounds. It 

should be noted here that the asymmetry of the SAS function in this numerical example 

is very small. In the next section, we show that even this small asymmetry can be a 

source of business cycles.■ 

 

Figure 4 about here. 

 

Like many dynamic Keynesian models, the income is assumed to change as 

 

           ],}1)([{)( 11 AYYYYCIYY nnnnnnnn     

 
where 0  is an adjustment coefficient. For examples of the dynamic Keynesian 

models, see Kaldor (1940) and Goodwin (1951). See also Lorenz (1995). For simplicity, 

we assume that .1  Defining ,1 nn YZ  we have 

 

        










.

,})({
:

1

1

nn

nnnn

YZ

AYZYY 
  

 

We start with the following Lemma. 
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Lemma 7: Suppose that Assumption 8 is satisfied. Then, System   possesses a 

unique equilibrium point given by 

 

          ).
)0(1

,
)0(1

(),( **
 


AA

ZY ■ 

 

Proof: Assumption 8 yields .01)0(1 1    From this, we can directly 

prove Lemma 7 from a simple calculation.■ 

 

From Lemma 5, we see that the SAS function we consider is nonlinear. Before arguing 

the effects of such nonlinearity on dynamic behavior, we consider the case where the 

SAS function is constant. 

 

Lemma 8: Suppose 0)(  u  (constant) and 01   . Then System   is 

globally asymptotically stable.■ 

 

Proof: See Appendix.■ 

 

In the case where the SAS function is nonlinear, it is not easy that we derive 

mathematically exact results concerning the difference equations system  . Therefore, 

we here numerically demonstrate the occurrence of a invariant circle in System  . In 

the next section, we rewrite System   into a differential equations system and derive 

mathematically exact result.  

See Figure 5. In Figure 5, we consider the same function as that of Example 2 and 

set 8.0  and 9900A . Figure 5 shows that System   possesses a invariant 

circle that is given as the  limit set   of a path of System  . We define 

 

).1,0(,
1

)( 


 



A

Y  

 

Clearly, the Y function is strictly increasing. Furthermore, we define 
 

       .)](),([),( 2 YY  

 

See Figure 5. In Figure 5, we describe the boundary of ),( 12   by the red line. 
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Figure 5 shows that  

 

(2.9)      ).,( 12     

 

In the next section, we suitably rewrite System   into a differential equations 

system and by using it, we exactly prove these facts on the dynamic behavior of the 

differential equations system  . 

 

Figure 5 about here. 

 
4.  Analysis of Local and Global Dynamics in the  
                    Continuous-Time Version 
 

In this section, we prove that the asymmetry of the SAS function yields business 

cycles. We start with the construction of a differential equations system that plays the 

role of a proxy of System  . To do so, we replace nY  with a continuous-time 

variable )(tYY  . Moreover, we replace 1 nn YZ  with a continuous-time variable 

)(tZZ pp   which satisfies   

 

           .pp ZYZ 


 

 

Then, pZ


 becomes a proxy of 1 nn YY . We see later that ),( pZY  is sufficiently 

suitable for a proxy variable of ),( nn ZY . Then, Eq. (2.1) is rewritten as 

 

(3.1)       ),(ui    .pZu


  
 

We consider the same consumption function as that of Section 2. As usual, the discrete-

time version of the dynamic mode concerning income is given by 

 

           ),( YCIY 


  
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where 0  is an adjustment coefficient. Like Section 2, For simplicity we assume  

 
.1  

 
Thus, we obtain a continuous-time model that is a proxy of System   is given by 

 

          














.

,}1))(({
:

pp

p

ZYZ

AYZYY 
  

 

In Section 5, we see in detail that System   is sufficiently suitable for a proxy of 

System  . As demonstrated immediately after, System   makes it possible to 

completely analyze global dynamics of System  . In the following, by using System 

 , we prove the results on dynamic behavior, which are observed in Section 2. We 

first prove the following lemma concerning the existence and uniqueness of equilibrium. 

 

Lemma 9: Suppose that Assumption 8 is satisfied. Then, System   possesses the 

same equilibrium point as that of Lemma 7: 
 

).
)(

,
)(

(),( **





AA

ZY p ■ 

 

Proof: The proof is the same as that of Lemma 7.■    

 

Like Lemma 8 concerning the difference equations model  , we prove the result on 

the global stability concerning the difference equations model  . 

 

Lemma 10: Under the same assumption as that of Lemma 8, System   is globally 

asymptotically stable.■ 

 

Proof: See Appendix.■ 

 

In the case where the SAS function is non-constant, there is a possibility that the 

equilibrium point is unstable and therefore a limit cycle occurs. Before proving this, we 

analyze the dynamic behavior of System   with a non-constant SAS function. The 

simplicity of System   allows us to analyze the global dynamics. In fact, we can 
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construct a square domain on the boundary of which the vector field of System   

points inwards. We prove the following lemma that determines the above square domain. 

Consequently, we prove the same result as (2.9). 

 

Lemma 11: Suppose that Assumption 8 is satisfied. Then, the closed set ),( 12   is 

positively invariant. Moreover, for the solution ))(),(()( tZtYtP p  starting at a point 

in ),,(ext 12   we have  
 

),,( 12     

 

where   is the  limit set of ).(tP ■ 

 

Proof: See Appendix. See Figure 5, Figure 5 describes that the rectangular domain in 

Figure 5 is an attracting set6. In the appendix, we prove the observation.■ 

 

We now examine the occurrence of limit cycles in System  . From Lemma 11, 

the instability of the equilibrium point guarantees the occurrence of a limit cycle. The 

following assumption guarantees the instability of the equilibrium point. 

 
Assumption 9: ).0(')}0(1}{)0(2{  A  

 

If )0(')1)(2(  A  is satisfied, then Assumption 9 is satisfied. Therefore, 

)0('  is large, then there is a high possibility that Assumption 9 is satisfied. We now 

prove that Assumption 9 guarantees the local instability of the equilibrium point. 

 

Theorem 1: Suppose that System   satisfies Assumptions 7 and 8. Then, it follows 

that the equilibrium point of System   is completely unstable in the sense that the 

real parts of the eigenvalues of the Jacobian matrix estimated at the equilibrium point 

are positive.■  

 

Proof: See Appendix.■ 

 

Thus, we obtain the following main theorem on the occurrence of a limit cycle. 
 

                            
6 For the notion of attracting set, see Perko (1996, P.193).   
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Theorem 2: Suppose that Assumptions 7 and 8 are satisfied. Then, it follows that any 

non-trivial7 path of System   converges to a non-trivial limit cycle in ),( 12  .■ 

 

Proof: The proof of Theorem 2 follows directly from the Poincaré-Bendixson theorem, 

Lemma 10, and Theorem 1.■ 

 

From Theorem 2, we find that  

 

        the existence domain of a limit cycle is determined by the supremum 1   

and the infimum 2  of the SAS function. 

 

This result is the most remarkable feature of our model. Thus, we prove that even small 

asymmetry of SAS function, which is caused by the animal spirits, can be a source of 

business cycles.  

By using numerical examples, we will consider a various type of dynamic 

behavior. In considering it, we use the SAS function given by (2.7). So, for System   

with such a SAS function, we prove the following lemma that is useful in determining 

the stability of equilibrium.   

 

Lemma 12: We consider the SAS function of (3.1). The stability of the equilibrium 

point is give as follows. 
 
(3.2.1)  If 2),,,,,( AdcbaH  , Assumption 9 is satisfied and the equilibrium point is 

completely unstable;  

(3.2.2)  If 2),,,,,( AdcbaH  , the equilibrium point is asymptotically stable,  
 
where  

 

.(0)
(0)}1){(

),,,,,(
2




 



dc

abA
AdcbaH  

.)ArcTan(
})ArcTan(1){( 2







 dca
dcadc

abA ■ 

 

Proof: See Appendix.■ 

 

                            
7 The word “non-trivial path” implies the “non-equilibrium point”. 
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We now provide numerical examples in which (3.2.1) is satisfied and System   

possesses a stable limit cycle.  

 

Example 4: We consider the case in which the SAS function is given by (2.7). Except 

for a, b, c and d, we consider the same parameter values as those of Figure 5. We set  

 

           )12.0,1,100/1,/03.0(),,,( dcba . 

 

 Then, the SAS function satisfies Assumptions 7 and 8. We have  
 

.24)9900,8.0,12.0,1,100/1,/03.0( H  

 
Therefore, from (3.2.1) it directly follows that the equilibrium point is completely 

unstable. The blue path in Figure 6 describes the maximal limit cycle of System  . 

The limit cycle turns counterclockwise. We have 
 

,105.0
22  d

a   ,135.0
21  d

a   

,
095.0

9900

1
)(

2
2 





 A

Y   ,
065.0

9900

1
)(

1
1 





 A

Y   

.]
065.0

9900
,

095.0

9900
[),( 2

12   

 

The red square in Figure 6 describes ),( 12  , where A  is the boundary of the set 

.A  Figure 6 also describes the results of Theorem 2 on the dynamic behavior in the 

exterior of the maximal limit cycle. That is, any solution starting at a point in 

),(ext 12   enters ),( 12   and stays in it. Figure 6 indicates that ),( 12   

determines the existence domain of limit cycles. The nonlinearity function of System 

  is incorporated into the SAS function, only. As stated in Example 2, since 

,03.021    the nonlinearity of the SAS function in this example is very small. 

Nevertheless, our result and Figure 6 show that even this small nonlinearity can be a 

source of business cycles. 

 

Figure 6 about here. 
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Lemma 11 and Figure 6 suggest that we obtain the information on the amplitude of 

the maximal limit cycle from the size of 21   , and that we obtain the information on 

the location of the maximal limit cycle from the magnitudes of 2  and 1 . For these 

points, see Figure 7. We set )1,100/1(),( cb . Blue and red curves in Part (1) of Figure 

7 describe the asymmetric SAS function with )13.0,/04.0(),( da  and 

),1.0,/03.0(),( da  respectively. We have 

 

25)9900,8.0,13.0,1,100/1,/04.0( H ,  

.23)9900,8.0,1.0,1,100/1,/03.0( H  
 
Therefore, it follows directly from Lemma 12 that in both cases the equilibrium point is 

completely unstable. Thus, Theorem 2 establishes the occurrence of an externally stable 

limit cycle. Blue and red cycles in Part (2) of Figure 7 describe the maximal limit cycles 

in the cases of the blue and red curves of Part (1) of Figure 7, respectively. The red 

squares of Part (2) describe ),( 12   that determines the existence domain of limit 

cycles at )13.0,/04.0(),( da  and ),1.0,/03.0(),( da  respectively. In the same 

calculation as above, the upper and the lower red squares are respectively given by  

 

2
12 ]

05.0

9900
,

09.0

9900
[),(  ,  2

12 ]
085.0

9900
,

115.0

9900
[),(  . 

 

Figure 7 indicates that as 21    is large, the amplitude of the maximal limit cycle is 

large, and as the magnitudes of both 2  and 1  are large, the maximal limit cycle is 

located at the upper left.■ 

 

Figure 7 about here. 

 

5. Abrupt Disappearance or Appearance of  
a Limit Cycle: Generalized Hopf Bifurcation 

 
In this section, we numerically demonstrate the occurrence of the phenomenon that 

a limit cycle abruptly disappears at a parameter value. See Figures 8 and 9. In Figures 8 

and 9, we consider the SAS function defined by (2.6) and set ,82.0  ,/03.0 a  

,100/1b  and .1.0d  We define  
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2.31 c  and .992.22 c  
 

Red and blue curves of Figure 8 describe the SAS functions with 1cc   and 2cc  , 

respectively. It should be noted here that two curves are almost the same. That is, the 

difference between two SAS functions is very small. On the other hand, Parts (1) and 

(2) of Figure 9 describe paths of System   with 1cc   and 2cc  , respectively. 

The starting points of paths of Parts (1) and (2) are the same. The change from 1cc   

to 2cc   (from 2cc   to 1cc  ) produces the abrupt disappearance (resp. the abrupt 

creation) of limit cycle. Figures 8 and 9 suggest the occurrence of the above-mentioned 

phenomenon.  

 

Figures 8 and 9 about here. 

 

Except for the value of c , we set the same parameter values as those given in 

Figure 9. We start with the following lemma concerning the stability of the equilibrium. 

 

Lemma 13: Suppose that System   satisfies Assumptions 7 and 8. For any 

],,[ 21 ccc  the equilibrium of System   is asymptotically stable.■ 

 

Proof: See Appendix.■ 

 

Figure 10 describes the paths of System   with the parameter values given in Part (1) 

of Figure 9. Blue and red curves in Figure 10 describe the paths of System   with  

 
)108820,108670())0(),0(( pZY ,  ),108600,108670())0(),0(( pZY  

 
respectively. The paths turn counterclockwise. Figure 10 shows that the blue path 

converges to a stable limit cycle but the red path converges to the equilibrium point. 

Consequently, Figure 10 indicates that System   yields not only a stable limit cycle 

but also an unstable limit cycle in which corridor stability8 occurs. 

 

Figure 10 about here. 
 
                            
8  For the notion of corridor stability, see Leijonhufvud (1973), and for the mathematical 
interpretation of corridor stability, see Benhabib and Miyao (1981).   
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We now make one important observation. As stated above, a slight change in 

parameter c  from 1c  to 2c  yields a great change in dynamic behavior: All the limit 

cycles disappear abruptly (discontinuously) and the system becomes globally stable. 

Why does such a phenomenon occur? We show that this seemingly strange phenomenon 

is closely related to the occurrence of a generalized Hopf bifurcation and the appearance 

of a transient cycle-like behavior. Figure 10 shows that 

 

(ⅰ) The maximal limit cycle at 1cc   is stable. 

 

Figure 10 also shows the occurrence of corridor stability. That is,  

 

(ⅱ) At 1cc  , a minimal limit cycle exists such that any path in the interior of the  

minimal limit cycle converges to the equilibrium point. 

 

Moreover, Figure 10 shows that 

 

(ⅲ) The limit cycle at 1cc   (immediately before 2cc   when all cycles disappear 

discontinuously) is not small. 

 

This implies that global stability does not result from the contraction and crush of the 

maximal cycle. In Figure 11, we consider the case of [,]566606.3 213 ccc   and 

choose, except for the value of c , the same parameter values as given in Figure 9. In 

this case, Lemma 13 indicates that the equilibrium is asymptotically stable. Therefore, 

from Lemma 10 it directly follows that the equilibrium point is asymptotically stable. 

Parts (1) and (2) of Figure 11 describe a path of System   and its time series, 

respectively. The figure shows that although the path ultimately converges to the 

equilibrium point, it behaves like a limit cycle in the course of convergence, whose form 

is almost the same as the maximal limit cycle at 1cc  . Thus, at 3cc   (immediately 

after the system becomes globally stable), we obtain the following: 

 

(ⅳ) The system possesses a long transient cycle-like behavior. 

(ⅴ) The long transient cycle-like behavior resembles the maximal cycle at 1cc  . 
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With (ⅰ) to (ⅴ), we can provide a typical process that yields global stability 

immediately after the abrupt and discontinuous disappearance of limit cycles. First, the 

system possesses at least two limit cycles, the maximal stable limit cycle and the 

minimal unstable limit cycle. As the parameter c  increases, these limit cycles 

approach and coincide to yield a semi-stable cycle. This situation is structurally unstable. 

Therefore, as c  becomes large, the semi-stable cycle abruptly disappears and the 

system becomes globally stable. Thus, the above dynamic phenomena occur through 

this process.  

 

Figure 11 about here. 
 

However, this does not explain the transient cycle-like behavior described in 

Figure 11. To explain this, we first describe the above transition process by using the 

(Poincaré) return map9. We start with the construction of the return maps, which show 

the abrupt disappearance of limit cycles and the occurrence of global stability. By *c , 

we denote the value of c  at which the semi-stable cycle appears. In the 

 neighborhood [,] **   ccW of *c , we construct a return map 1: RV  . 

Using the return map, we substitute the dynamic behavior of our continuous-time model 

with that of the discrete-time system: )(1 nn uu  . A fixed point of the discrete-time 

system corresponds to a periodic solution of our continuous-time model. In particular, if 

the derivative estimated at the fixed point is larger than 1 (smaller than 1), then the 

corresponding periodic solution is stable (unstable). Moreover, if the derivative equals 1 

(i.e., the graph of the return map is tangent to the 45° line) and the second derivative is 

nonzero, then the corresponding periodic solution is semi-stable. 

Part (1) of Figure 12 describes three schematic graphs of the return maps, which 

describe the above phenomena. The black straight lines in Parts (1) and (2) are the 45° 

lines, and the origins in Parts (1) and (2) correspond to the equilibrium point of System 

 . The brown curve in Part (1) of Figure 12 describes the graph of the return map at 

)( *
1 ccc  . In this case, the return map possesses lower, medium, and upper equilibria. 

The lower equilibrium is the origin. The medium and the upper equilibria are unstable 

and stable and correspond to the stable and the unstable limit cycles, respectively. 

Moreover, the blue curve in Part (1) describes the graph of the return map at .*cc   In 

this case, the return map possesses lower and upper equilibria. The upper equilibrium is 

                            
9 For a detailed explanation of the (Poincaré) return map or first-return map, see Pontryagin 
(1962). See also Wiggins (1990), Glendinning (1994) and Medio and Lines (2001,Section 4.4.1).  
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semi-stable and corresponds to the semi-stable cycle. Finally, the red curve in Part (1) 

describes the graph of the return map at )( *
2 ccc  . In this case, the equilibrium 

point of the return map is only one (the origin) and globally stable. Thus, Part (1) 

describes the above-mentioned abrupt and discontinuous disappearance of limit cycles 

after the coincidence of stable and unstable limit cycles. Thus, Part (1) provides a 

schematic return-map description of the above transition process. The bifurcation 

described in Part (1) is called a fold bifurcation (often called a saddle-node 

bifurcation). 10  The continuous-time version of the fold bifurcation is called a 

generalized Hopf bifurcation. From Lemma 13, the equilibrium is asymptotically stable 

throughout the above transition process. Therefore, in the above transition process of 

dynamic behavior, such a generalized Hopf bifurcation is different from the standard 

Hopf bifurcation. 

On the other hand, using the return map, we obtain a clear description of the close 

relationship between the generalized Hopf bifurcation and the long transient cycle-like 

behavior. The red curve in Part (2) of Figure 12 describes the graph of the return map at 

)( *
3 ccc   sufficiently near to .*c  As described in Part (2), such a return map 

possesses a part very close to the 45° line. In such a part, the return map behaves like an 

equilibrium point (see Part (2) of Figure 12). Therefore, the corresponding path of the 

original continuous-time model behaves like a limit cycle for a long time. However, as 

described in Part (2), the path ultimately converges to the origin and, therefore, the 

corresponding path of System   converges to the equilibrium point. In this sense, the 

generalized Hopf bifurcation is closely related to the long transient cycle-like behavior. 

Based on these observation, we can conclude that the abrupt and discontinuous 

disappearance of limit cycles and the long transient cycle-like behavior results from the 

generalized Hopf bifurcation. 

 

Figure 12 about here. 

 

6. Suitability of Proxy Variable 
  

In this section, we see that System   is sufficiently suitable as a proxy of the 

difference equations system  . We start from a similarity between the paths of two 

                            
10 See Glendinning (1994, Section 8.3) and Medio and Lines (2001, Section 4.4.1). 
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systems. In Section 3, we already saw that both systems yield persistent business 

fluctuations which are included in ).,( 12   See Figures 5 and 6. Parts (1) and (2) of 

Figure 13 describes the time series of paths of Systems   and  , respectively. For 

Systems   and   of Figure 13, we set the same parameter values as those of 

Figures 5 and 6, respectively. Therefore, in Figure 13, the parameter values of Part (1) 

are the same as those of Part (2). Especially, the starting point of the path of Part (1) is 

the same as that of Part (2). Figure 13 demonstrates that a path of the original discrete-

time system   is almost the same as a path of the continuous-time proxy system  . 

Thus, Figure 13 shows that System   is a sufficiently suitable proxy of System  . 

On the other hand, in Section 5, we saw that System   causes the abrupt 

disappearance or the abrupt creation of a limit circle. We numerically see that System 

  also causes a similar phenomenon. See Figure 14. In Figure 14, except for the value 

of c, we set the same parameter values as those of Figure 11. Parts (1) and (2) of Figure 

13 describes the time series of paths of System   with 1564891.3c  and 

1564892.3c , respectively. Two paths have the same starting point. Thus, Figure 14 

demonstrates that from the quantitative viewpoint, System   is sufficiently suitable 

as a proxy of System  . 

 

Figures 13 and 14 about here. 

 
7. Conclusions 
 

In this paper, following a Keynes’ suggestion in his famous book, we considered 

we considered the short-run relation between animal spirits and business cycles. Like 

Kaldor (1940), we assumed that animal spirits possesses an effect on MPI. We assumed 

that the degree of influence depends on the change of income. The reason is as follows. 

If the change of income is positive, animal spirits operates (both large-scale and small-

scale investments are executed) and the SAS function is large. Conversely, if the change 

of income negative, animal spirits does not operate (small-scale investments are 

executed but large-scale investments are stopped) and the SAS function is small. We 

demonstrated that this simple investment behavior creates business cycles. Based on the 

observation, we constructed an investment function at a micro-level. Next, we construct 

a statistical model that bridges between a micro-level and a macro-level and through a 
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statistical argument, we provided a macro-level investment function. The investment 

function possesses the SAS function that is closely related to a distribution function.    

We incorporated the investment function with the SAS function into a 

disequilibrium dynamic model with the Keynesian consumption function. We 

demonstrated that the dynamic model of Keynesian type yields business cycles.       

Our original model is a two-dimensional discrete-time model. As a proxy of the 

discrete-time model, we constructed a two-dimensional continuous-time model that 

allows us to determine detailed global dynamics. We also derived a square domain 

determined by parameters of our model, in which any path enters. As a result, in the 

case where the equilibrium point is completely unstable, by using the Poincare-

Bendixson Theorem, we proved the occurrence of business cycles.   

We numerically showed a phenomenon that under a slight change of a parameter, 

limit cycles abruptly disappear and global stability dominates. We numerically 

demonstrated that in the case where the equilibrium point is stable, the phenomenon is 

created by the coincidence of outer stable limit cycle and inner unstable limit cycle. 

Thus, we see that such a phenomenon results from the generalized Hopf bifurcation that 

is different from the Hopf bifurcation. In the neighborhood of such a phenomenon, we 

also observed a long transient cycle-like dynamic behavior. The emergence of such a 

dynamic behavior is also a feature of the generalized Hopf bifurcation.  

Finally, we demonstrated that the proxy continuous-time model is sufficiently 

suitable as a proxy of the original discrete-time model. From a qualitative viewpoint, we 

saw that any path of the original model enters into the same square domain as that of the 

proxy model. Therefore, in the case where the equilibrium point is completely unstable, 

all invariant circles emerges in the square. Moreover, we demonstrated that like the 

proxy model, the original model also has the phenomenon that under a very slight 

change of a parameter, invariant circles the abruptly disappear and global stability 

dominates. We also demonstrated that the dynamics resulting from the shifts of 

MICPAS are very similar in both systems. 

As observed from phase diagrams provided in this paper (see Figures 6 and 7), 

both discrete-time and continuous-time systems possess strong attractions to a 

neighborhood of the equilibrium. This suggests that our results obtained in this paper 

are robust under modifications and extensions, although we must leave the confirmation 

of it as a future research. 
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8. Appendix 
 

In this appendix, we provide the proof of several lemmas and Theorem 1. We start 

with the well-known Olech theorem. 

 

Proof of Lemma 4: We assume uw  . Assumption 4 yields .)()(   uw C  
Therefore,  
 

(9.1) 
CCC uwuw })(]1,0{[})(]1,0{[)}(]1,0{[)}(]1,0{[   

)}(]1,0{[)(]1,0[ uw CC    

}]1,0[)(]1,0{[ CCw    

)}()(]1,0{[ uw C    

)()(]1,0[ uw C   .)()(   uw C  

 

Noting Assumption 2, we define  

 

   0]}1,0[:min{ 1
min
1  ss , 0]}1,0[:max{ 1

max
1  ss  

0]}1,0[:min{ 2
min
2  ss ,  0]}1,0[:min{min  ss , 

and 0]}1,0[:max{max  ss  

 
Therefore, we see from (9.1) and Assumption 4 that 
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This proves Equation (2.6.1). On the other hand,  
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 


)(]1,0[

2
)(

1 )()()(
w

ss

w

ss sdmsdmu


  

 


)(]1,0[

1
)(

1 )()(
w

ss

w

ss sdmsdm


  

maxmax
1

]1,0[
1 )(    sdmss , 

 


)(]1,0[

2
)(

1 )()()(
w

ss

w

ss sdmsdmu


  

 


)(]1,0[

2
)(

2 )()(
w

ss

w

ss sdmsdm


  

minmin
2

]1,0[
2 )(    sdmss  

 
Since (2.6.1) shows that the SAS function is strictly monotonous, these two inequalities 
yield Equations (2.6.2) and (2.6.3). Thus, we complete the proof.■  

 

Proof of Lemma 8: From the assumption, the system becomes 

 











.

,}{
:

1

01

nn

nn

YZ

AYY 
  

 

Since 01   , we see that  

 

.lim)1/(lim *
0 nnnn ZYAY      

 

This complete the proof.■ 

 

Olech Theorem: Suppose that the following system possesses an equilibrium point. 

 














).,(

),,(

zwGz

zwFw
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The equilibrium point is globally asymptotically stable (i.e., the equilibrium point is 

stable and any path converges to the equilibrium point), under the following conditions: 

 

(O.1) 0//  zGwF  for any 2),( Rzw  ; 

(O.2) 0////  wGzFzGwF  for any 2),( Rzw  ; 

(O.3) 0//  zGwF  or 0//  wGzF  for any 2),( Rzw  .■ 

 

Proof: See Olech (1963).■ 

 

Proof of Lemma 10: We have the following Jacobian matrix of System  . 

 

     











11

))(('1))(())(('
),(

YZYZYYZY
ZYJ ppp

p


. 

 

Since )}0(1/{**   AZY p , the Jacobian matrix estimated at the equilibrium 

point is given by  

 

(9.3)       












11

)0('1)0()0('
),( **

YY
ZYJ p


. 

 
Define ).1,0()0(  c  Then, since the SAS function is constant, .0)0('   

Therefore, the Jacobian matrix of System   is given by  

 

.
11

0})0(1{
),( ** 














pZYJ  

 

From the assumption of Lemma 10, we have 0)0(1   . Therefore, Olech 

theorem proves that ),( ** pZY  is globally asymptotically stable.■ 

 

Proof of Lemma 11: We arbitrarily choose  

 

[1,][,0])
~

,
~

( 12    

 

and define the following closed set. 
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].)
~

(,)
~

([)]
~

(),
~

([)
~

,
~

(   YYYY  

 

Before proving Lemma 11, we prove the following four sublemmas. 

 

Sublemma 1: For any 0 , )
~

,
~

(   is positively invariant.■ 

 

Proof of Sublemma 1: First, we consider the direction of the vector field on 

))(()
~

( 2 YYY   and )).(()
~

( 1 YYY   From the assumption of 2  and 

1 , we see that for any 1RZ p   

 

,
~

}:)(inf{)))
~

((( 21   RuuZY p  
.

~
}:)(sup{)))

~
((( 11   RuuZY p  

 
Therefore, from Lemma 5, we see that for any 1RZ p  , 
 

(9.4.1)   if ),
~

(YY   then  

,0)
~

()1
~

()
~

(}1)))
~

((({ 


AYAYZYY p   and 

(9.4.2)   if ),
~

(YY   then  

.0)
~

()1
~

()
~

(}1)))
~

((({ 


AYAYZYY p   
 
Thus, we obtain 
 

(9.5)     if ,)]
~

(),
~

([))0(),0(( 1RYYZY p     

then 1)]
~

(),
~

([))(),(( RYYtZtY p    for any .0t    
 
Next, choosing 0  arbitrarily, we consider the direction of the vector field on 

  )
~

(YZ p  or .)
~

(  YZ p  From the definition, for any )],
~

(),
~

([  YYY   

 

(9.6.1)    if   )
~

(YZ p , then ,0})
~

({ 


 YYZ p  and 

(9.6.2)    if   )
~

(YZ p , then 0})
~

({ 


 YYZ p . 

 

Therefore, from (9.5) and (9.6), we see that 
 

     if ],)
~

(,)
~

([)]
~

(),
~

([))0(),0((   YYYYZY p   

then ])
~

(,)
~

([)]
~

(),
~

([))(),((   YYYYtZtY p  for any .0t   
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This completes the proof of Sublemma 2.■ 

 

Sublemma 2: ).
~

,
~

()
~

,
~

()
~

,
~

( 0
0



 
 ■ 

 

Proof of Sublemma 2: From the definition, we have  

 

        00
])

~
(,)

~
([)]

~
(),

~
([)

~
,

~
(





  YYYY  

)]
~

(),
~

([)]
~

(),
~

([  YYYY  ).
~

,
~

()
~

,
~

(0    
 

This completes the proof.■ 

 

Sublemma 3: )
~

,
~

(   is positively invariant.■ 

 

Proof of Sublemma 3: We choose the solution ))(),(( tZtY p  starting from a point in 

)
~

,
~

(   arbitrarily. We have )
~

,
~

()
~

,
~

(    for any .0  From Sublemma 

1, we have  

 
)

~
,

~
())(),(( tZtY p  for any 0t  and any .0   

 

Therefore, we find that for any ,0t   

 

(9.7)      .)
~

,
~

())(),((
0 




 tZtY p  

 

Thus, from (9.7) and Sublemma 2, for any 0t  we have ).
~

,
~

())(),(( tZtY p  

This completes the proof of Sublemma 3.■ 

 

Sublemma 4: ),( 12   is positively invariant.■ 

 

Proof of Sublemma 4: We assume that ),( 12   is not positively invariant, contrary 

to the sublemma. Then, there are a solution ))(),(( tZtY p  and a 0T  such that  

 
),())0(),0(( 12 pZY  and ).,(ext))(),(( 12 TZTY p  
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Therefore, there are  

 

[1,][,0]),( 1211    and [,][,]),( 112122    

 

such that    

 

(9.8.1)     ),(ext),())(),(( 1211  TZTY p  

(9.8.2)     ).,(int),( 1122     

 

From (9.8), we obtain 

 

(9.9)      ).,(ext),( 2211    

 

From this, we have  

 

),(),())0(),0(( 2212  pZY .  

 

Moreover, Sublemma 3 shows that ),( 22   is positively invariant. Therefore, we 

obtain  

 

(9.10)      ).,())(),(( 22 TZTY p    

 

On the other hand, (9.8.1) and (9.9) show  

 

).,(ext),())(),(( 2211  TZTY p   

 

This contradicts (9.10). Thus, we complete the proof of Sublemma 4.■  

 

We now start to prove Lemma 11. Let  

 

(9.11)      ).,(ext))0(),0(( 12 pZY   

 

Then, there is a   
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[1,][,0])
~

,
~

( 12    such that ).
~

,
~

())0(),0(( pZY   

 

Therefore, from Sublemma 3, we see that the set }0:))(),({(  ttZtYP p  is bounded. 

Then, L  is a non-empty, bounded, and connected set11. Let us prove the following. 

 

(9.12)     .),( 12  L  

 

Conversely, if ,),( 12  L  then (9.10) yield ).,(ext 12  L  Since 

),,(int),( 12** pZY  L  does not contain the equilibrium point. Therefore, from 

the Poincaré-Bendixson theorem, L  is a periodic path. On the other hand, (9.12) 

shows that there exists [1,][,0]),( 1211    such that  

 

(9.13)     .),( 11  L   

 

Moreover, (9.4) shows that L  enters ).,(int 11   Then, there is a 

[,][,]),( 112122    such that 

 

(9.14)     ),(int),( 1122    and .),( 22  L   

 

Since according to Sublemma 3, ),( 22   is positively invariant and L  is a 

periodic path, from (9.14) it directly follows that ).,( 22  L  Therefore, from 

(9.14), we obtain  
 

).,(),(ext 1122    LL   

 

This contradicts (9.13). Thus, we prove (9.12). Sublemma 4 shows that ),( 12   is 

positively invariant. Therefore, (9.12) yields  

 
).,( 12  L   

 

This completes the proof of Lemma 11.■ 

 

Proof of Theorem 1: From (9.3) and Assumptions 7 and 8, we obtain 

                            
11 For this point, see Wiggins (1990, Section 1.1) 
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(9.15.1)   ,02)0(
)0(1

)0('
),(tr ** 


 


A

ZYJ p  

(9.15.2)   
)0(1

)0('
1)0(

)0(1

)0('
),(det **






















AA

ZYJ p  

  01)0(   . 

 

Thus, we obtain that the real parts of the eigenvalues of the Jacobian matrix (9.3) are 

positive. This completes the proof of Theorem 1.■ 
 
Proof of Lemma 12: From a simple calculation, we obtain 

 
          dca  )(Arctan)0(  and ).1/()0(' 2  cab  

 
Therefore, from (9.15.1), we obtain 
 

(9.16)     2)(Arctan
))(Arctan1)(1(

),(tr
2

** 


 


dca
dcac

abA
ZYJ p  

 
.2),,,,,(  AdcbaH   

 
Thus, from (9.15.2) we obtain that the equilibrium point is completely unstable (resp. 

asymptotically stable) if and only if 0),(tr ** pZYJ  (resp. 0),(tr ** pZYJ ). On the 

other hand, 0),(tr ** pZYJ  (resp. 0),(tr ** pZYJ ) if and only if  

 

2),,,,,( AdcbaH   (resp. ).2),,,,,( AdcbaH    

 

We see from (9.15.1) that 0),(tr ** pZYJ  is equivalent to Assumption 9. Thus, we 

complete the proof.■ 

 

Proof of Lemma 13: We arbitrarily choose 2.992].3.0054,[],[ 21  ccc  A simple 

calculation yields 
 
(9.17)    )9900,8.0,1.0,,100/1,/03.0( cH π  

92.0ArcTan(c))/03.0(
ArcTan(c)})/03.0(08.0){1(

/9903.0
2





 π

π

π

c
. 

 
We see that  
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(9.18.1)  ,0)992.2(ArcTan009.0ArcTan(c))/03.0( π   , 
(9.18.2)   0,2.992)n(0.009ArcTa0.08ArcTan(c))/03.0(08.0  π   

(9.18.3)   1.24.2.992)ArcTan(1.25   

 

Therefore, (9.17) and (9.18) yield 

 

)9900,82.0,1.0,,100/1,/03.0( cH π  

92.02.992)ArcTan(009.0
2.992)}ArcTan(01.008.0){10053.3(

/97.2
2





π

 

92.02.992)ArcTan(009.0
2.992)}ArcTan(009.008.0{10

9454.0



  

92.01.24009.0
1.25}009.008.0{10

9454.0



 <1.95<2. 

 
Thus, Lemma 12 proves that the equilibrium point is asymptotically stable.■ 
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