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1. Introduction 
 

    Dohtani (2019) constructs an endogenous growth model. In the growth model, the 

growth rate of each industry is determined by such fundamental parameters as the rate of 

technological progress of the industry, the elasticity of marginal productivity of the industry 

and the elasticity of marginal utility of the goods produced by the industry. These fundamental 

parameters are different among the industries. Therefore, our model gives a theoretical 

explanation of the persistent transition of industrial structure accompanied by a change of 

relative prices. Through the growth model, Dohtani (2019) derives a fundamental equation 

that gives an analytical relation among the growth rates of relative price, consumption and 

capital stock of each industry. However, Dohtani (2019) assumes that the household possesses 

an additive utility function: 
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In this paper, we generalize the model to the growth model with the CES utility function and 

try to derive the same results as those derived by Dohtani (2019). However, the trouble is that 

the generalized growth model does not possess the growth rates in the usual sense. Therefore, 

we introduce a new notion of growth rate that gives a generalization of the usual growth rate. 

By using such a notion, we derive almost the same results (especially, the same fundamental 

equation) as those obtained by Dohtani (2019).  

 

2. The Model and the Derivation of Main Results 
 

The background of our model is the same as those of Dohtani (2019). We omit the 

explanation of the background. For the explanation, see Dohtani (2019). We now explain 

the extended version of the growth model constructed by Dohtani (2019). We consider the 

utility function that gives a generalization of the above-mentioned additive utility function: 
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We consider the following Hamiltonian of the intertemporal optimization problem of 

the representative household with the above CES utility function:  
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Since we provided the optimal paths in the case where 1g , we consider the case where 

1g . Since the Hamiltonian is a concave function of the state and the control variables, 

the sufficient condition for optimization is given by     
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where .Nj  The equation (1.2) yields ,0
rt

t e  where the initial value 0  is 

determined later. Then, from (1.1) we have the following dynamic inverse demand 

equation: 
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We have  
 

(3)      jj m
jt

td
jtjt KeQC   ).( Nj  

 

Throughout this paper, we assume  

 

Assumption 1: },max{1 jjjj mgama . 

 

We first consider the case of .1g  Substituting (3) into the dynamic inverse demand 

equation (2), we have 
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for any .Nj  By assuming the price path jtP  )( Nj  is given, the consumption-goods 
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industry .Nj  solves the following optimization problem1: 
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From now on, we will see that the equilibrium growth path is of the form: 

 

,eK
tG

jtjt
j   0)( tj  for any 0t  and any ,Nj  

 

where 
 

jj

jj
j ma

dasr
G






1
. 

 
In the following, we determine )(tj  in the case where .1g  From (5), we have 
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1 In Sections 3 and 4, we assume the firm that solves the static problem above. However, in Section 5, 
we will consider the firm that solves a dynamic optimization problem. 
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From the definition, we have 
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where 
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In Eq. (6), 1)(  g  does not depends on j . Therefore, the following equation must be 
satisfied: 
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We have the following: 
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Therefore, we obtain  
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Therefore, we have 
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From the assumption, we see  
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Therefore, we have 
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Therefore, Equation (9) can be solved for   and we define t   Then, jt  is 

determined by t   and Equation (7). Equation (8) shows 
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We can prove the following: 

 

Lemma 1: There are real numbers 0  and 0  and Nk *  such that  
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These contradictions complete the proof.■  

 
We here introduce the following definition: 
 

Definition 1: If there are 0A  and 0B  such that B
e

X
A
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is called the growth rate of trend (GRT) of tX .■ 

 

The following lemma shows that Definition 1 is well-defined.  
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We here define the following. 
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We now obtain the following result. 
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We here define 
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This completes the proof.■ 
 

With Lemma 4, we obtain the following. 
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Since #k  and we assume Ck * , the definition of   yields 

 
         .0// ##** 

kkkk
   

 

Therefore, we have  
 

         .0lim
)}#/#()*/*{(

#* 



t

kkkk
tktkt e


   

 
This contradicts (16). This contradiction proves .* k This completes the proof of the first 

half. The proof of the latter half proof follows directly from the definition of . ■ 

 

We now obtain the following first main result: 
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for any .Nj  From the definition of GRT, this completes the proof.■ 

 
We now arrive at the GRT of relative prices:   

 

Lemma 8: )()()( jtttjt CgrtKgrtPgrt   for any .Nj ■ 

 

Proof: The proof follows directly from Lemma 7.■ 

 

Before deriving the equilibrium growth path of IK .We here prove the following lemma. 

 

Lemma 9: Consider the differential equation: 
 

(17)      .)()()()( Btetvtztftz 


 
 

where 
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(18.1)    0)( tv  for any 0t , 

(18.2)    ,}0:)(sup{ ttv  

(18.3)    )(tf  is convergent as t  and .)(lim Btft   

 

Define 
 

       ].0[

)()(

t

uvtU due u
dwwfB 

],0[
)}({

 

 

Then, )(tU  is convergent as t . As a solution of equation (17) , we have 
 

(19)     .)}({)( ],0[
)(

0


 t
dwwf

etUztz  

 

where ).(lim0 tUz t   Then, we have 0)0( zz   and for any 0t .■ 

 

Proof: In the following, we prove that )(tU  is convergent as t . From condition (18.3), 

we see that there exists a 0T  such that 

 

(20)      .0}:)(sup{  TttfBR  
 

Now, define  
 

 
 ],0[

)}({
T

dwwfB

eH  and .)()(

].[

)( 
tT

TuR dueuvt  

 

Then, it follows from (20) that for any Tt   

 

(21)       


].[

)}({
],0[)()(

tT

dwwfB

dueuvt u   


].[

)}({)}({
],0[],[)(

tT

dwwfBdwwfB

dueeuv TuT  

).()(

].[

)( tHdueuvH

tT

TuR     

 

We first prove that )(t  is convergent as t  Condition (18.1) shows that )(t  is 

monotonously increasing. From condition (18.2), we have for any Tt   
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V

e
Tttvdueuvt

tTR

tT

TuR
)(

].[

)( 1
}:)(sup{)()(


 

  . 

 

This implies that )(t  is bounded from above. Since )(t  is monotonously increasing, 

)(t  is convergent as t . On the other hand, Condition (18.1) shows that )(t  is 

monotonously increasing. Therefore, from (20) and convergence of )(t  we see that )(t  

converges as t , so that as t  

 

dueuvdueuvtU

T

dwwfB

tT

dwwfB
uuT   


],0[

)}({

].[

)}({
],0[],[ )()()(  

                                        .)()(lim

],0[

)}({
],0[ dueuvt

T

dwwfB

t
u  

    

 

Therefore, we see that )(tU  is bounded from above convergent as t . On the other 

hand, it follows from condition (18.1) that )(tU  is monotonously increasing. Therefore we 

see that )(tU  is convergent as t . We next prove that 0)( tz  for any 0t . 

Condition (18.1) shows that )(tU  is a strictly monotone function. Therefore, from the 

definition of 0z , we see that )(0 tUz   for any 0t . This shows that 0)( tz  for any 

0t . Since ,0)0( U  it follows directly from equation (19) that .)0( 0zz   Finally, we 

prove that Equation (19) is a solution of Equation (17). We have 

 

         





],0[],0[
)()(

0 )(')()}({)( tt
duufduuf

etUeuftUztz  

 
 ],0[],0[],0[

)()}({)(

0 )()()}({ ttt
duufduufBduuf

eetveuftUz  

     Btetvtztf )()()(  . 

 

This implies that Equation (19) is a solution of Equation (17). Thus we complete the proof.■ 

 
Using Lemma 9, we start to derive the equilibrium growth path of IG . In the following, we 

assume the following: 

 

Assumption 2: We assume .}:max{max rNjj    
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For Assumption 2, it should be noted that Lemma 4 yields jj G  for any .j  We 

here define 
 

      
t

jt
jt

je

K
  ,   .Nj  

 

Since we have jtjtjtjtjtjtjt KCPKQP   it follows from (1.3) that 

 

(22)     





Nk

ktktIt

Nk

ktIt CPrKK 




Nk

ktIt KrK  






Nk

tk
ktIt erK  t

Nk

tk
ktIt eerK max)max( 













 


 . 

 
We now obtain  

 

Lemma 10: We define 

 

 ],0[

)(

t

tF due

Nk

urk
ku



 )( . 

 
Then, )(tF  monotonously increases and converges as t  and  

 

  rt
tIt etFtFK )()(lim     

 
is a solution of Equation (22).■ 

 

Proof: To use Lemma 9, we define 
 

          .)( )( max




Nk

tkt ket    

 
Since 0)(  jjtKgrt  , the jt function is bounded and therefore, the  function is 

bounded. Therefore, under Assumption 2, it can be easily checked that Conditions (18) are all 

satisfied. We have 

 

 ],0[

)(

t

tF duee ur

Nk

uku k )()( maxmax 





















  .)(

],0[

)(
],0[ max  

t

dwr
dueu u

  
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We here define  
 

         ,)( rtf   ,maxB  ).()( ttv   ).()( tFtU   
 

(22) yields  

 

BtItIt etvKtfK )()( 


.  

 

Thus, applying Lemma 9 to this equation, we can prove all the statements of Lemma 7. The 

proof follows directly from Lemma 9.■ 

 

In the following, we consider   rt
tIt etFtFK )()(lim    as a path of Equation 19. It 

follows directly from (1.3) that 
 

           .0)()}({limlim 0    tFtFK ttItt  

 

This implies that rt
tIt etFtFK )]()}([{lim    satisfies (1.4) and, therefore, is the 

equilibrium growth path of capital stock of the investment-goods industry. We now derive the 

GRT of ItK :  

 

Lemma 11: .)( maxItKgrt ■ 

 

Proof: It follows directly from the definition that 0)0( F . Therefore, Assumption 2 yields  

)(lim0 tFK tI  . Thus, we have 

 

tr
Itr

It
It

e

tFK
etFK

e

K
)(

0)(
0

max

max

max

)(
)}({ 

 
 


 . 

 
Moreover, Assumption 2 yields 0max  rrj   for any ,Nj  Therefore, we see 

from the l’Hopital’s rule that  
 

(23)     
tr

Nk

trk
kt

trt
It

er

e

er

tF

e

K
)max(

max

)(

)max(
max

max )()(

)(





















 




 









Nk

tkkt e
r

)max(

max





. 

 

We have 
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      ,max j  ,jjtj     

 
for any .Nj  Therefore, we see from (23) that 

 

(24)      












Nk

tkk
t

It

Nk

tkk e
re

K
e

r
)max(

maxmax

)max(

max











. 

 

We here define  

 
}.:{ max kNjM    

 

We have 

 

,
max

)max(

max


















Mk

k

Nk

tkk

r
e

r
 

.
max

)max(

max









Nk

k

Nk

tkk

r
e

r 



   

 

Therefore, we obtain from (24) that 

 

(25)      .
maxmaxmax








Nk

k
t

It

Mk

k

re

K

r 








 

 

Since the light and left hands of (25) is constant, (25) implies that .)( maxItKgrt  This 

completes the proof.■ 

 

We are now in the position to define 0 .  
 

,
1 1

1

0

1
1

00
0

jjjj mamajjj
j W

mba
K

























  

 

where .Nj  From the definition, we have 
 

(26)      .
1 1

1

0
000 
















Nk

ma
I

Nk

kI
kkWKKKK


 

 
Before defining 0 , we prove the following result. 
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Lemma 12:  










],0[

)(1

1

t

urjjmja

u

jjj
jt due

mba
H




 converges for any .Nj ■ 

 

Proof: It follows directly from the definition that 0)0( F . Therefore, Assumption 2 yields  

)(lim0 tFK tI  . Moreover, we obtain from the definition that 

 

(27)    ],0[

)(

t

tF duee ur

Nk

uk
ku

)max()max( 

















   

 ],0[ t

due

Nk

urkG
ku



 )(  

  ],0[ t

due
mba urkG

Nk

kmka

u

kkk )(1
1

0





 








 





Nk 































  

],0[

)(1
1

1
1

0 t

urkkmka

u

kkkkmkakkk due
mbamba 


,





Nk

ktHZ  

 
where 

 

.:min
1

1

0 


























Nj

mba
Z jjmajjj


 

 
)(tF  is an increasing function. Since )(tF  converges, we have  

 
.}0:)(sup{)(lim0   ttFtFK tI   

 
Then, we obtain from (27) that  
 

(28)        ./)(/0 




Nk

ktI HZtFZK
  

 
Since 0)( t , it follows directly from that )(tH j  is an increasing function for any Nj , 

Therefore, we see from (28) that )(tH j  converges. This completes the proof.■ 

 
Noting Lemma 12, we define 
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,}0:sup{lim sup
jjtjtt HtHH   

 
where .Nj  Then, we obtain 
 


],0[

0 lim

t

tIK due
mba urkG

Nk

kmka

u

kkk )(1
1

0





 








 

































Nk

ktt
kmkakkk H

mba
}{lim

1

1

0 













Nk

makkk
k

kkmba
H

1

1

0

sup


. 

 

Thus, from (26), we have the following: 
 

(29)        .
1 1

1

0

1

1

0

sup  

























Nk

ma

Nk

makkk
k

kkkk W
mba

HK


 

 

Therefore, we have 0/ 0  K  and (29) is uniquely solved for 0 . Thus, the value of 0  

is determined by (29).  

     Finally, we consider the case of 1g . We prove that the GRT in the case is given as 

the limitation of the case where :1g   

 

Lemma 13: jjtg GKgrt  )(lim 1  for any Nj  and .)(lim max1 GKgrt Itg  ■ 

 

Proof: It should be noted here that *k  and jG  do not depend on the parameter .g  We 

have  
 

        



 

)1)(1(

1
limlim

**

**
* 11

kk

kk
gkg

mag

mga
 . 

 
Since *k  and jG  do not depend on the parameter g , we have 
 

(30)        jj
jjk

k
gjgjtg GG

ma
Kgrt 













 

)1(
limlim)(lim

*

*

111 


  

 
for any Nj  

 
}:max{limlim)(lim 1max11 NjKgrt jggItg     

}:max{lim 1 Njjg    max}:max{ GNjG j  . 



17 
 

 
This completes the proof.■ 

 

Before providing the results on equilibrium growth paths, we here make one remark. From 

(30), we see that Assumptions 1 and 2 are the same as of Assumptions 1 and 2 of Dohtani 

(2019): 

 

Lemma 14: In the case of 1g , Assumption 1 and 2 becomes the followings, respectively.  

 

(31.1)      jjma1 ; 

(31.2)      
jj

jj
j

ma

dasr
Gr





1

 for any .Nj  ■ 

 

Proof of Lemma 14: Inequality (31.1) follows directly from Assumption 1 and 1g . On the 

other hand, Assumption 2 yields }:max{ Njr j    for any Nj . We here consider the 

case of 1g . In this case, from Assumption 1, the definition of ,k  and (10), we have 

0j  and 0j  for any Nj . Moreover, (10) shows that j  is an increasing 

function. Therefore, Assumption 2 and (30) yield 
 

          }:
)1(

max{
*

*
NjG

ma
r j

jjk

k
j 






  

}.:max{}:
)1(

max{lim
*

*
1 NjGNjG

ma
jj

jjk

k
jg 


  


  

 

This completes the proof.■ 

 

From Lemmas 3, 7, 8, 11 and 13, for any ,1Rg  we now arrive at the following result that 

gives the generalizations of Theorems 1 and 2 of Dohtani (2019): 

 

Theorem 1: Suppose Assumptions 1 and 2 are satisfied. Then there exist equilibrium growth 
paths which satisfy that for any Nj  
 

,)()(,)()( jjjjtjtjjtjt dmQgrtCgrtIgrtKgrt    

, )1()( jjjjt dmPgrt    .)( maxItKgrt   
 

Moreover, for the GRT of relative price, we obtain that  
 

)( jtPgrt )( jtKgrt )( jtCgrt  

 
for any Nj .■ 
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Moreover, we obtain the following results. 

 

Theorem 2: Suppose Assumptions 1 and 2 are satisfied. Then, for the GRTs, we have  
 

       the rate of technological progress jd   

  ,)( jtCgrt  ,)( jtPgrt  ,)( jtKgrt   or)( ItKgrt  

         the elasticity of marginal productivity  )1( jm  )(  jm  

  ,)( jtCgr ,)( jtPgr  ,)( jtKgr   or)( ItKagr , 

 the elasticity of marginal utility  )1( ja  )(  ja  

  ,)(,)(  jtjt PgrCgr ,)( jtKgr   or)( ItKagr , 

the rate of time preference s  

 )(,)(,)(,)( Itjtjtjt KgrtKgrtPgrtCgrt , 
 
for any Nj , where   implies “increases” and   implies “be invariant”.■ 

 

Proof of Theorem 2: Firstly, excepting for the proof of “  or)( ItKgrt ”, we prove 

Theorem 2. We start with the case where .* jk   We have 
 

j
jjk

k
j G

ma





)1(*

*






jj

jj

jjk

k

ma

dasr

ma 







1)1(*

*
 

,
1

1

1

1

*

**

**
****

jj

j
jj

k

kk

kk
kkkk

jj ma

Q
dasr

ma

dasr
mada

ma 
































 

 
for any Nj . Therefore, we see 

 

(31.1)    .0
1









jj

j

j

j

ma

a

d


 

(31.2)    ,0
)1( 2









jj

jj

j

j

ma

a

m


 

(31.3)    ,0
)1(

)1(
2











jj

jjjjj

j

j

ma

mmad

a


 

 
for any Nj . Thus, we have 

 

(32.1)    ,0
)()(
















j

j

j

jt

j

jt

dd

Igrt

d

Kgrt 
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(32.2)    ,01
)()(
















j

j
j

j

jjj

j

jt

d
m

d
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d

Cgrt 
 

(32.3)    ,0
1

1
1

1
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for any Nj . Thus, we complete the proof in the case where jk * . We next consider the 

case where .*  kj  In this case, Lemma 4 yields ).1/()( jjjjj mgadgasr   
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Then, the proof of the case follows from that of Corollary 1 of Dohtani (2019). Excepting for 
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2 Although the CES utility function is homogeneous of degree one, we consider a more general CES 

utility function. It should be noted here that a change of ja  implies that the degree of homogeneity of 

CES utility function increases.  
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for any Nj . Moreover, (32.3) and (35.2) yield 
 

(37.2)    ,0)1(
)( 22











jj

j
j

jj

jt

da
m

da

Pgrt 
 

(37.1)    ,0
)1(

)1(

1

1)(
2

2






























jj

jj

jj

j

jjj

jt

ma

aa

ma

a

mdm

Pgrt
 

 
for any Nj  . Thus, (36) and (37) complete the proof in the case where jk * . We next 

consider the case where jk * . In this case, as stated in the proof of Theorem 2, we have 
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for any Nj . Moreover, (37) and (39) yield 
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for any Nj . (39) and (40) complete the proof in the case where jk * . Thus, we 

complete all the proof of Theorem 3.■ 
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3. Conclusions and Final Remark 
 

In this paper, we try to generalize the results on the growth model with the additive 

utility function, which were obtained by Dohtani (2019). Firstly, to generalize such a growth 

model, we constructed the growth model with the CES utility function. Secondly, we defined 

the growth rate of trend that gives a generalization of the growth rate in the usual sense. 

Thirdly, by using such a notion, we derived almost the same results as those obtained by 

Dohtani (2019). Especially, owing to the notion, we succeeded to derive a fundamental 

equation that gives an analytical relation among the growth rates of relative price, 

consumption and capital stock of each industry. 

We expect that the notion introduced in this paper or a further modified version of the 

notion will be effectively utilized to discuss growth rates in more extensive growth models. 

However, we must leave it for future researches to construct extensive versions.  
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