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1. Introduction

Dohtani (2019) constructs an endogenous growth model. In the growth model, the
growth rate of each industry is determined by such fundamental parameters as the rate of
technological progress of the industry, the elasticity of marginal productivity of the industry
and the elasticity of marginal utility of the goods produced by the industry. These fundamental
parameters are different among the industries. Therefore, our model gives a theoretical
explanation of the persistent transition of industrial structure accompanied by a change of
relative prices. Through the growth model, Dohtani (2019) derives a fundamental equation
that gives an analytical relation among the growth rates of relative price, consumption and
capital stock of each industry. However, Dohtani (2019) assumes that the household possesses

an additive utility function:

Uau (Cier -+ Crp) = chtak /8.
keN
In this paper, we generalize the model to the growth model with the CES utility function and
try to derive the same results as those derived by Dohtani (2019). However, the trouble is that
the generalized growth model does not possess the growth rates in the usual sense. Therefore,
we introduce a new notion of growth rate that gives a generalization of the usual growth rate.
By using such a notion, we derive almost the same results (especially, the same fundamental
equation) as those obtained by Dohtani (2019).

2. The Model and the Derivation of Main Results

The background of our model is the same as those of Dohtani (2019). We omit the
explanation of the background. For the explanation, see Dohtani (2019). We now explain
the extended version of the growth model constructed by Dohtani (2019). We consider the

utility function that gives a generalization of the above-mentioned additive utility function:

9

U(CueCo)=| D _BCE

keN

We consider the following Hamiltonian of the intertemporal optimization problem of

the representative household with the above CES utility function:

H=U(C,Cyple st +n Zﬂkt+rKlt_ZPktth .

keN keN



Since we provided the optimal paths in the case where g =1, we consider the case where
g #1. Since the Hamiltonian is a concave function of the state and the control variables,

the sufficient condition for optimization is given by

g-1

(1)  dH/oCj = Zbkcl‘("‘tk -ajbjgc?tj_le_St—ntPjt =0,
keN

(1.2) ne =—0oH /oKy =—-rn,

(1.3) K|t:znkt+rKlt_ZPktth’

keN keN
(14) limt_)oo Kltnt = 0,

where jeN. The equation (1.2) yields 7 =70e™™, where the initial value 7g is

determined later. Then, from (1.1) we have the following dynamic inverse demand

equation:
H o (r-s)t
C- 1~ - -
@ Pr=— = Y hCH | eapeCy eE—, jeN.
Th N o
We have
d;t . .
(3) Cit=Qjr=e K™ (jeN).

Throughout this paper, we assume
Assumption 1: 1>max{a;mj,gajmj}.

We first consider the case of g #1. Substituting (3) into the dynamic inverse demand

equation (2), we have

g-1
(r-sx
ay o am ai—-1 _(aj-1)m; €
) Pjt = ZkaktkKktk | oAby Ky T
keN

forany je N. By assuming the price path Pj; (j € N) is given, the consumption-goods



industry j e N. solves the following optimization problem':

d;t ; :
max /7 j; = max(P;iQ j; — K jt) = max(Pje ! Kjtml -Kijt), JeN.

The first condition of profit maximization entails

L
I=m;PjDjtK

. Zbk Dﬁk Klf(itkmk

keN

. Zbk DI?tk Klfltkmk

keN

()

keN

(r—s)t
. E aydytye axmg hoajdjt, ajm;-1e

g-1
aj—1 (a-—l)m-e(r_s)t m;—1
*ajb;jgDy’ Kj' e *DjiKi’
o (r-s)
r—s
OajbjD?th?tjmj_le
o

g-1

o

From now on, we will see that the equilibrium growth path is of the form:

KjtzfjteGit, ¢j()>0 forany t>0 andany jeN,

where

_r—s+ajd;

Gj—
l—ajmj

In the following, we determine &j(t) in the case where g # 1. From (5), we have

g-1

1= E bkeakdktfktakmk eakmkat

keN

. . 4 a(r—s)t
171 It 0

g-1

ak Mk ,(akdk +akmk Gyt
- Zbkégktk k o(@kdk +ak Mk Gk )

keN

' In Sections 3 and 4, we assume the firm that solves the static problem above. However, in Section 5,
we will consider the firm that solves a dynamic optimization problem.
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ajbjm; éjt(ajmj—l)e{r—5+ajdj+(ajmj—I)Gj}t‘
o

From the definition, we have

g-1

LA ibim;
keN o

where
Vi zajdj+ajijj.

In Eq. (6), ()97 does not depends on j. Therefore, the following equation must be
satisfied:

an Jé—’ (@jmj-1 _ albml KRR (@mj-1) _
o o

® forany I, ]jeN.

We have the following:

1

- : _[ajbjmj jl—ajmj
. 1700 ‘

Therefore, we obtain

ay My 9-1
my |1-agm
= Zb (akbk kj Mgt g
keN 770@
-1
ax my L_ a my g
_ Zb akbkmkjl My @g -1 l-amg ey/kt
keN 1o
Therefore, we have
akMk 1 akmg
(8) 1 = Zbk[MJl‘akmk @91 1-akm gkt
keN o
We here define



1 My

) ozzgkag‘l am it _ 12 F(@,1),
keN
where
agmy
a;bim; \1- )
.szbj[—JJ ‘j e,
1m0

From the assumption, we see

(10) rj =

aim; 1 -gajm; >0 if > 1, .
! ] 94;m; { vl forany jeN.

g-1 l-am; (g-D(l-a;mj)|<0 if g<l,

Therefore, we have

>0 if g>1, .
(11.1) Al CRY) =ka_(2k@rk_le'//kt{ vl forany jeN,

00 L <0 if g<l,
S
(11.2) FOY _ 0.6 et 5 .
ot Vks<k
keN

Therefore, Equation (9) can be solved for @ and we define @=6; Then, & jt is
determined by @ = @; and Equation (7). Equation (8) shows

(12) 1=ng@tfke‘/’kt.

keN

We can prove the following:

Lemma 1: There are real numbers >0 and £>0 and k" e N such that
a<o e <pm
Proof: The following statement contradicts (12).
. I l//jt . _ .
inf{®& e :t>0}=0  forany jeN.
The following statement also contradicts (12).

sup{@tFTeth :t>0} =400 forsome ] eN.
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These contradictions complete the proof.m

We here introduce the following definition:

X
Definition 1: If there are A>0 and B >0 such that A<Ti< B for any t>0, then h
€

is called the growth rate of trend (GRT) of Xt .m
The following lemma shows that Definition 1 is well-defined.

Lemma2:If h and h are the GRT of Xt, then h=h.m

Proof: From the assumption, we obtain that A>0, B>0, A>0, and B >0 such that
A< Xt/eht <B and A< Xt/eﬁt <B forany t>0.Then, we have

~ X¢/eht o ~
0<A/B<—t——=eth-Mt <B/A forany t>0.
X /eht

This implies h =h . Thus, we complete the proof.m
We here define the following.
Definition 2: We denote the GRT of X; by grt(X;).m

We now obtain the following result.

Yy

Lemma3: grt(Ky)=——"——
] Fk*(l—ajmj)

+Gj=@j forany jeN.m

Proof: Without loss of generality, we assume Fk* > 0. From Lemma 1, we have
_ AN - — AN
(13) o le(‘”k w) > 6 Ny 1e(wk )

forany je N. Moreover, (7) yields
1 1 m

aibim;: l1—am aibimi Yi—aim; _1-ajmj g
Ko = £t = 0 J} ,,eGjtz{JJ i |17aimi g it
oG Mo



We here define

o

Then, we have

I *(1-ajmj)
alAje{ k 7

l—ajmj

ajbjm;

)

+Gj }t
> Aj@t e

-1

I-ajmj g

for any je N. This shows that

(14) a A

eq)J

K't |
> > pIA

] :Kﬁ>ﬂ1Ap{

L'FGJ- t
Fk*(l—ajmj )

forany je N. From the definition of GRT, this completes the proof.m

We here prove grt(K ;) =@j > 0. Before proving it we prepare the following lemma.

Lemma 4:
Fj (1

Proof: We have

Vi
r

+r—s+ajdj

i r-s+ga;d;
Vi + =¢ forany jeN. m
—ajmj) 1-gajm;
r—s+ajd;
ajdj+ajmj07
1 l—ajmj
1-gajm;j

— 4G =
j(l—ajmj) . l—ajmj

(9-D(I-ajmj)

r—s+ajdj
(g-D(d-ajmj) ajdj+ajmj071_ —
1 ajmj d
= +r—s+a;d;
.m- .m - 7]
1-ajm; 1-ga;m;
r—s+ajdj

(g—l)(l—ajmj)(ajdj +ajmj °

l—ajmj

J+(1—gajmj)(r—s+ajdj)

(1-ajmj)(1-0a;
(9-D{(-ajmjajd;+ajmj(r—s+a;d;)}+(1-gajm;)(r-s+a;d;)

mJ)

(l—ajmj)(l—gaj
(I-ajmj)gajdj+1-ajmj)r-s) _ r—s+gajdj.

mJ)

(I-ajmj)(1-gajmj)

1-ga;m;



This completes the proof.m

With Lemma 4, we obtain the following.

Lemma5s: @j>0 forany jeN.m

Proof: Since k' €5 , from Assumption land Lemma 4, we have

W > i r-s+ga;id;
oj-— N __g» Vi g TR,
Fk*(l—ajmj) Fj(l—ajmj) l—gajmj

This completes the proof.m
We here define
- _ Vi
E = Argmax{k e N : ==},
g max{ T }

k

Then, we have the following result.

Y _Yi
I T

Lemma6: k*eZ and forany k,je Z.m

Proof: We start with the proof of the first half. We define

) .
Pit = —ror JEN.
e (wj/Ijr

Then, we have

(15) 1= ZQk@ter‘/’kt - ngpkt >pi >0 forany jeN.
keN keN

We assume k' e =C (the complement of ="). We here arbitrarily choose k¥ ez, Then, we
have

—(y, x| I *)t —(w # /1 #t
— k k — k k
6 pk*te pk#te .
] v, xt
Then, Lemma 1 yields o < @tr e k= Pk, < f and we have

 « /T« )—(w 4/ T 4)it
< x = k k k k <
(16) (04 ()k a pk#te <



Since k" € £ and we assume ke 5° , the definition of = yields

wk*/Fk* —l//k#/rk# <0.
Therefore, we have
W L=y s /L )it _ o

li = e

This contradicts (16). This contradiction proves k" e Z. This completes the proof of the first

half. The proof of the latter half proof follows directly from the definition of =.m
We now obtain the following first main result:

Lemma7: grt(Cj)=mj@j+dj and grt(Pj)=(1-mj)®@j—d;j forany jeN.m

Proof: From Egs. (2) and (3), we have

dit mj mi
Cit &' Ky’ (Kj)"
e(mj@j+dj)t e(mj@j+dj)t e@jt ’
. —dj i 1=m; M-l
Pijt _ € Kjt /m _ Kijt /ml/(mj—l)
e{(l—mj )Dj—djit e{(l—mj )Dj—djjt e@jt ’

forany je N. From the definition of GRT, this completes the proof.m

We now arrive at the GRT of relative prices:

Lemma8: grt(Pj;) = grt(Ky)—grt(Cj;) for any jeN.m

Proof: The proof follows directly from Lemma 7.m

Before deriving the equilibrium growth path of K| .We here prove the following lemma.

Lemma 9: Consider the differential equation:

(17) 2(t) = £ (t)z(t)—v(t)eB.

where



(18.1) v(t)>0 forany t>0,
(18.2) sup{Vv(t):t> 0} < +oo,
(18.3) f(t) is convergentas t—oco and lim;_,, f(t)>B.

Define

{B—f(w)}dw
U(t) = J'v(u) g”10:ul du
[

01]

Then, U(t) is convergentas t— . As a solution of equation (17) , we have

f (w)dw
(19) 2(t) = {2y —U (t)}e*10U

where 7y =lim;_,,,U(t). Then, we have z(0)=27; and forany t>0.m

Proof: In the following, we prove that U (t) is convergent as t — oo. From condition (18.3),

we see that there existsa T >0 such that
(20) —R=sup{B-f(t):t>T}<0.
Now, define
{B—f(w)}dw
H =g”l0T] and At) = [ v(ue RUTqy.
[T.t]

Then, it follows from (20) that for any t>T

(B~ f (W)jdw (- fdw [ (B (wjcw
(21) E(t) = JlV(U)e [0,u] du = Iv(u)e [T,u] oc [0,T] du
[ [

T1] T1]

<H j v(w)e RU"Tgu = HA).
[T.t]

We first prove that A(t) is convergent as t — o Condition (18.1) shows that A(t) is

monotonously increasing. From condition (18.2), we have for any t>T

10



|_eRT-1)

A(t) = IV(U)GR(UT)dU <sup{v(t):t>Tle
[T.t]

This implies that A(t) is bounded from above. Since A(t) is monotonously increasing,
A(t) is convergent as t —oo. On the other hand, Condition (18.1) shows that Z(t) is
monotonously increasing. Therefore, from (20) and convergence of A(t) we see that =(t)

converges as t — oo, sothatas t— o0

{B—f(w)}dw {B—f(w)}dw
U (t) _jv(u)e [T.ul du+J‘v(u)e 0.ul du
[ [

Ti] 0,T]
{B—f (w)}dw
- limy_y Q)+ [ v(u)e ! du.
[0.T]

Therefore, we see that U(t) is bounded from above convergent as t —oo. On the other
hand, it follows from condition (18.1) that U (t) is monotonously increasing. Therefore we
see that U(t) is convergent as t—>o0. We next prove that z(t)>0 for any t>0.
Condition (18.1) shows that U(t) is a strictly monotone function. Therefore, from the
definition of z;, we see that zy>U(t) for any t>0. This shows that z(t)>0 for any
t>0. Since U(0)=0, it follows directly from equation (19) that z(0)=2z,. Finally, we
prove that Equation (19) is a solution of Equation (17). We have

. f (u)du f (u)du
2(t) = {zo —U )} f(u)el®  —U'(t)el®l
f (uydu {B—f(u)}du | f(u)du
={zo-U®} f(we ™ —v(t)e* evl01]

= f(t)z(t)—v(t)eB.

This implies that Equation (19) is a solution of Equation (17). Thus we complete the proof.m

Using Lemma 9, we start to derive the equilibrium growth path of Gj . In the following, we

assume the following:

Assumption 2: We assume @y = max{@j: je N} <r.

11



For Assumption 2, it should be noted that Lemma 4 yields @j=Gj for any jeZ. We
here define

Since we have [7j =PjQjt —Kj = PjtCjt — K¢ it follows from (1.3) that

(22) Kt ZZHkt + 1K _Zpktckt =Kyt —ZKkt

keN keN keN

Dyt Dy —D, t(. @D t
keN keN

We now obtain

Lemma 10: We define
F(t) =j Z P Pk Ny |
[Oat] kEN

Then, F(t) monotonously increases and converges as t — o and

Kig = {limg_,o, F ()~ F(t)}e"
is a solution of Equation (22).m

Proof: To use Lemma 9, we define

H(I) = E (pkte(@k _Qjmax )t .

keN

Since grt(Kij)=@; >0, the @jt —function is bounded and therefore, the 6—function is
bounded. Therefore, under Assumption 2, it can be easily checked that Conditions (18) are all

satisfied. We have

F(t) _j E Pru€(Pk—Pmax ) Le(@max—NUdy =J‘g(u)ef[o’u](@max—r)dwdu.
[0.,t]

keN [0.t]

12



We here define

f(t)=r, B=®@n,, V(I)=6(t). U(t)=F(t).
(22) yields

k it = f(H)Kt —v(t)eBt.

Thus, applying Lemma 9 to this equation, we can prove all the statements of Lemma 7. The

proof follows directly from Lemma 9.m

In the following, we consider K = {lim;_,., F(t)—F(t)je™ as a path of Equation 19. It
follows directly from (1.3) that

limg ., Ky = [{limg 0 F (1)} = F (1)} = 0.

This implies that Ky =[{lim{_,,, F(t)}— F(t)le" satisfies (1.4) and, therefore, is the
equilibrium growth path of capital stock of the investment-goods industry. We now derive the
GRT of K It -

Lemma 11: grt(Ky;) = @pax-®

Proof: It follows directly from the definition that F(0)=0. Therefore, Assumption 2 yields
Ko = lim{_,, F(t). Thus, we have

Kio - F(t)

Kit (r=@pmax )t
={Kio-F()jer "m=" = -
e(@max _r)t

@Dmaxt B

e

Moreover, Assumption 2 yields @j—r <@y, —r <0 for any j € N, Therefore, we see

from the I’Hopital’s rule that

Z Ot o(Pk -t

(23) K|t _ F(t) _ kEN

ecpmaxt (r — Dax )e(@max —-nt (r — D, ax )e(cpmax -t

_ Z Pkt o(Pk~Pmax)t
r-o

keN max

We have

13



CDJ < Dpaxs O{Aj < ?it < ,BAjs

for any je N. Therefore, we see from (23) that

(24) Z“—Ake(fﬁk Pma)t < Kit Z ﬂAk o (P~ Prax)t

I — @pax e¢maxt

keN keN rnax

We here define
Mg ={jeN ' Dpax =Dy }.
We have
Zﬂe@k Bt > Z ok
r_@max keM(p r_@max

Ae(@k _@max)t S A

keN r _cpmax

Therefore, we obtain from (24) that

(25) Z OKAk K It ﬁAk

r-o e@maxt r-o
keMg 'max N max

Since the light and left hands of (25) is constant, (25) implies that grt(K;;) =

completes the proof.m

We are now in the position to define 7.

1 -1
Kjo :[ajbjmj )l—ajmj W .(L)l—ajmj ’
106G no

where | € N. From the definition, we have

(26) K = K|O+ZKKO—K|0+WZ( Jl Mk
70

keN keN

Before defining 7, we prove the following result.

14
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1

aibim; |1—aim; L ]
Lemmal2: Hj = J. {%} mi e((ZjJ r)udu converges forany j€ N.m
o4~

Proof: It follows directly from the definition that F(0)=0. Therefore, Assumption 2 yields

Ko =1lim;_,, F(t). Moreover, we obtain from the definition that

(27) F(t) = Z ¢kue(@k —®Pmax)U e(¢max -nu du
YJ[0,t] (keN
[ S oeea
Y[0,t] keN

1
1- _
{akbk@mk} akmke(Gk r)”du
[0.4] keN [ 770Gy

1 1

EZ Aoy my | 1-akmy DM { 1-akmk (@ -y, ZZZHkt
o, ’
[0,1]

keN 0 keN

where
1

aibimi \i—aim; .
7 = min [M}l ami N,
1o

F(t) 1is an increasing function. Since F(t) converges, we have
Ko =1lim¢_,, F(t) =sup{F(t):t >0} < +oo.

Then, we obtain from (27) that

08) Kio/Z>F(t)/Z> ZHkt.
keN

Since O(t) >0, it follows directly from that H(t) is an increasing function for any jeN,

Therefore, we see from (28) that H j(t) converges. This completes the proof.m

Noting Lemma 12, we define

15



limg_,o Hjt = sup{Hj :t >0} = H}"P,

where € N. Then, we obtain

1

1-
K|0—hmt_)ooJ‘ Zk X aI;bk@mk} MK (G~ g,
€ 0
1

= -
= Z (M] A Mk o {lim;_,., Hy} ZHsup(akbkkal ak Mg .
o

keN keN

Thus, from (26), we have the following:

(29) K = ZHsup akbkmk 1—akmy WZ 1-agmk. —akmi
keN 770

Therefore, we have 0K /0n; <0 and (29) is uniquely solved for 7. Thus, the value of 7
is determined by (29).
Finally, we consider the case of g =1. We prove that the GRT in the case is given as

the limitation of the case where g #1:
Lemma13: limg_,; grt(Kj)=Gj forany jeN and limg_,; grt(Ky;) =G,y m

Proof: It should be noted here that ¥,* and Gj do not depend on the parameter g. We
have
((1-g)(1-a sm)

*|=lhmg—]

Since ¥y* and Gj do not depend on the parameter g, we have

. . . Vi*
30 lim rt(Kijt) =1lim @i =lim —+Gj |=Gj
(30) g—19rt(Kijt) g1 Pj g_)l[Fk*(l—ajmj) j] i

forany jeN

limg_,; gri(Kyp) =limg_,j @y =limg_,; max{®@; : j e N}
=max{limg_,; @j:jeN} =max{Gj: jeN}=GCp,y.

16



This completes the proof.m

Before providing the results on equilibrium growth paths, we here make one remark. From
(30), we see that Assumptions 1 and 2 are the same as of Assumptions 1 and 2 of Dohtani
(2019):

Lemma 14: In the case of ¢ =1, Assumption 1 and 2 becomes the followings, respectively.

(31.1) 1>ajmj;

r-s+ajdj

(31.2) r>Gj= forany jeN. m

l-ajmj
Proof of Lemma 14: Inequality (31.1) follows directly from Assumption 1 and g =1. On the
other hand, Assumption 2 yields r>max{®@j: je N} forany jeN . We here consider the
case of g >1. In this case, from Assumption 1, the definition of wg, and (10), we have
Ij>0 and wj>0 for any jeN . Moreover, (10) shows that /7j is an increasing
function. Therefore, Assumption 2 and (30) yield
Y
I =(I-ajmj)
Y
I =(I-ajmj)

r>max{®@j = +Gj:jeN}

> limg—] max{®@j = +Gj:jeN}=max{Gj: jeN}.

This completes the proof.m

From Lemmas 3, 7, 8, 11 and 13, for any ¢ € Rl, we now arrive at the following result that

gives the generalizations of Theorems 1 and 2 of Dohtani (2019):

Theorem 1: Suppose Assumptions 1 and 2 are satisfied. Then there exist equilibrium growth
paths which satisfy that for any je N

grt(Kje) = grt(ljt) =@j, grt(Cjt)=grt(Qjt) =m;j@j +dj,
grt(Pi) =(1-mj)@j—dj, grt(Ky)=Ppax.

Moreover, for the GRT of relative price, we obtain that
grt(Pjp) = grt(K ) — art(Cjt)

forany jeN.m

17



Moreover, we obtain the following results.

Theorem 2: Suppose Assumptions 1 and 2 are satisfied. Then, for the GRTs, we have

the rate of technological progress d i )

= grt(C;) T, ogrt(P) ¥, grt(K) T, grt(K,) Tor—
the elasticity of marginal productivity (1-mj) I (& m j )

= grC) T, gr(P) ¥, ar(K;) T, agr(K,)Tor—,
the elasticity of marginal utility (1—-a j Wo(e a j )

= grC) Tar(P) T, gr(Kp T, agr(K,) T or—,
the rate of time preference s 7T

= grt(Cjp) . art(Pj), grt(Kjp) . art(Kip) b,

forany jeN,where T implies “increases” and — implies “be invariant”.m

Proof of Theorem 2: Firstly, excepting for the proof of “grt(K,t)ior—V’, we prove
Theorem 2. We start with the case where k* # j. We have

-—L+G-— 0% +r—s+ajdj
J_I“ss(l—a-m-) J_l“aﬁ(l—a-m-) I-aim;
k 1] k 1) 1)
r-s+a, «d, «
a*d + +a +M *OA
k'"k - TkeTke T 1—a) em, Q;
_ 1 Kk q. e i
= tr-s+ajdj |=———,
l—ajmj Fk* l—ajmj

for any j e N . Therefore, we see

G@j aj 0
= > 0.
(311) 8dj l—ajmj
0D ai=;
j =i
(31.2) - = >0,
om; (l_ajmj)2
0®; di(l-aymi)+m;=,;
i_"i i i=i
(31.3) = >0,

oa | (1-ajm;)*

for any j e N . Thus, we have

agrt(Kjt) _ agrt(ljr) _ 09 -0

(32.1) :
od odj  adj
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art(Cyt) om;@; +dj) 0D
(32.2) - T o s,
od | od | od |
ogrt(P;j H{(1-m)@; —d; I-mj)a; l1-a;
(323) g (Jt): {1-mj)@; ]):( i) i i<
8dj adj l—ajmj l—ajmj
agr(K;; ogr(l; o0D;
(32.4) gr(Kj) _agrje) _ i s,
6mj 8mj émj
ogr(C; 0D
(32.5) M:@j+mj—1>0,
8mj amj
ogr(P; 0D -Qj I-m;)a;Q; —-(1-a;)Q;
G2 Jt)z—cz>j+(1—mj) i~ d=mp) ‘szz ( J)Q2‘<o,
om,; omj 1-=ajmj  (d-a;jmp)=  (1-a;mj)
agr(K; ogr(l; 0D
(32.7) gr( jt): gr( jt): i,
aaj 8aj 88.1'
ogr(C; 0D
(32.8) M:mj—1>0,
8aj 8aj
ogr(P; o0D;
(32.9) or¢ Jt):(1—mj)—‘>o,

J ]

for any je N. Moreover, we have

6@j: 1 { —a,:m - 1}
os l-ajmj | [ «(1-a.m )

_ -1 {ak*mk* s l—gak*mk* }
(l—ajmj)Fk* l—ak*mk* (g—l)(l—ak*mk*)

_ —{(g-Dam «+1-ga -m -} _ ~(1-a,m+) <
(l—ajmj)Fk*(g—1)(1—ak*mk*) (l—ajmj)(l—gak*mk*)

(33)

2

for any je N . Therefore, we have

agrt(Kjt) 3 6@1' <0

34.1 s
( ) 05 05

8grt(CJt) 8(mJ@J+dJ) aqu

= =m; <0,

(34.2) 05 aaj 1 5s

ogrt(P; o{(l-m;)®;: —d; 0D ;
(34.3) g (]t)= {( j) ] J)=(1—mj)—J<0,

oS oS 05

for any J € N . Thus, we complete the proof in the case where k* - j - We next consider the
case where | —k™ e 7. In this case, Lemma 4 yields @; =(r—s+gajdj)/(1—gajmj).
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Then, the proof of the case follows from that of Corollary 1 of Dohtani (2019). Excepting for
the proof of “grt(K,){ or =, we complete the proof in the case of k* = j. Finally, since
@D, =max{®; : je N}, the proof of “grt(K) L or =7 follows directly from the proof

above. Thus, we complete the proof of Theorem 2.m

Theorem 3: Suppose Assumptions 1 and 2 are satisfied. Then, as aj (resp. mj) (jeN)
becomes large?, the effect of the rate of technological progress d j onthe GRT of Cj; and
Kjt become large (resp. small). That is

82grt(Cjt)>O azgrt(Kjt)_a2grt(ljt)>O o%grt(C )
aajﬁdj ’ 6aj8dj aajadj 8mj6dj

o7 grt(K ) _ o*grt(l jy) 0
ijadj 8mj8dj

>0, and

3

b

for any jeN, As aj (resp. mj) (jeN) becomes large, the effect of the rate of
technological progress dj on the GRT of Pjt becomes large (resp. small):

o%grt(Pj) 0 and o%grt(Pjp) 0
aajadj amjﬁdj

forany jeN.m

Proof of Theorem 3: We first consider the case where k™ # j. (31) yields

o’o; a

(35.1) i_0 ( J j: ! >0,
6ajadj daj|l-ajm;j (1-ajmj)
o’o; a; aj

(35.2) i_ 9 ( J J: Lo,
6mjadj omj | l-ajm; (1-ajmj)

forany je N . Therefore, (31), (32.1), (32.2) and (35) yield

2 2
0 gﬂ(Kﬁ)_ 0 @j

(36.1) = >0,
aajadj aajﬁdj
362 Oort(Ky) 0%
. amjﬁdj 8mj8dj ’
2 . 2p.
(36.1) 0 grt(CJt):m_ 0" D; ’

i >
Gajadj 8aj8dj

: Although the CES utility function is homogeneous of degree one, we consider a more general CES
utility function. It should be noted here that a change of a@;j implies that the degree of homogeneity of

CES utility function increases.
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o°grt(Cjp) _09; . 0’0
amjadj adj J 6mjadj

(36.3) >0

>

forany je N .Moreover, (32.3) and (35.2) yield

o grt(P; 0°D;

(37.2) oontPy) _ 1-m;) L >0,
da;jod | 1 6ajod;

57 O’grt(Py) & (_ 1-aj ]:_ (i-apaj
ijadj 8mj 1-ajm; (]_ajn”)z

for any J € N. Thus, (36) and (37) complete the proof in the case where k* = j . We next

consider the case where k* = j. In this case, as stated in the proof of Theorem 2, we have

@j=(r-s+gajdj)/(1-gajmj). Therefore, we see

0D; aj
(38) i__ %%
odj 1-gajm;

forany j e N.Therefore, we obtain

(39.1) 82grt(Kjt)_82grt(ljt)_ 62¢j 0 ( 0a;j ]_ g -0
aajédj 5aj8dj 6aj5dj 6aj 1—-gajnu (1"gaj”U)2 ’
392) Oort(Ky) d%grt(ly)  o*d; 5 { ga, ]_ g%a;° o
amjédj amjédj 8mjadj anu L—gajmj (I._gajmj)2
o2 grt(C; o*D;
(39.3) gri( ”)zmj >0,
8aj6dj 8ajadj
o2 grt(C; ’D; 0D,
(39.4) ort( Jt):mj I s,
amjﬁdj 8mjadj 8dj
o2 grt(P; 0°D;
(39.5) oortPy) _ 1-mj) I >o,
6aj8dj 8ajadj
forany j €N . Moreover, (37) and (39) yield
o%grt(Py) 0@, 0’d; ga;: g2a?
W T M g T g T
m;od | j mjodj  1-gajm; (1-gajmj)

1-ga;)ga;
:_( 9a;)g 12<0
(1-gajmj)

9

for any j€N . (39) and (40) complete the proof in the case where k™= j. Thus, we

complete all the proof of Theorem 3.m
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3. Conclusions and Final Remark

In this paper, we try to generalize the results on the growth model with the additive
utility function, which were obtained by Dohtani (2019). Firstly, to generalize such a growth
model, we constructed the growth model with the CES utility function. Secondly, we defined
the growth rate of trend that gives a generalization of the growth rate in the usual sense.
Thirdly, by using such a notion, we derived almost the same results as those obtained by
Dohtani (2019). Especially, owing to the notion, we succeeded to derive a fundamental
equation that gives an analytical relation among the growth rates of relative price,
consumption and capital stock of each industry.

We expect that the notion introduced in this paper or a further modified version of the
notion will be effectively utilized to discuss growth rates in more extensive growth models.

However, we must leave it for future researches to construct extensive versions.
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