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Abstract: Developing the AK model, we construct an endogenous growth model with 

many industries. Unlike the original AK model, our model generates endogenous 

growth accompanied by the change of relative price. The growth rate of each industry is 

determined by such fundamental parameters as the rate of technological progress of the 

industry, the elasticity of marginal productivity of the industry and the elasticity of 

marginal utility of the goods produced by the industry. These fundamental parameters 

are different among the industries. Therefore, our model gives a theoretical explanation 

of the persistent transition of industrial structure accompanied by a change of relative 

prices. Moreover, we derive an equation that relates the growth rate of relative price of 

an industry to the growth rates of capital stock and output of the industry. By using our 

model, we unifiedly explain several empirical facts that have been known so far. We 

also give a new theoretical viewpoint about the empirical fact that the relative price of 

investment is higher in poor countries relative to rich countries. Moreover, we 

incorporate population growth. In the modified model, we derive an equation which 

relates the growth rate of relative wage to the growth rates of output and relative price.  

 

Keywords: Structural transformation; Heterogeneous growth; Change of relative prices; 

Change of relative wage. 
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1. Introduction 
 

    The most influential contributions in modern theories of economic growth have 

been those of Solow (1956) and Swan (1956). The Solow-Swan model is of an 

exogenous type. To go further, one has to construct endogenous growth models, that is, 

to construct a model that determines the long-run growth rate within the model. A base 

line delivering endogenous growth is the AK type of growth models. See Romer (1986)), 

Jones and Manuelli (1990), Rebelo (1991), and Barro and Sala-i-Martin (1992). The AK 

models of infinite horizon optimization have its origin in the Ramsey model (Ramsey 

(1928)). The AK models have been referred very often as the simplest model that makes 

clear how the absence of diminishing returns can lead to endogenous growth.  

In this paper, modifying the AK model of decentralized infinite horizon 

optimization by Barro and Sala-i-Martin (1992), we try to construct an endogenous 

growth model that explains the transition of the relative scales of heterogeneous 

industries with different production functions. Some of our results are similar to those in 

the AK model. Like the AK model, the growth rate of each industry in our model 

depends on parameters concerning production and utility functions. On the other hand, 

there exist some important features distinguished from the AK model. Industries in our 

model endogenously grow through a persistent change of relative prices.1 Therefore, a 

persistent change of industrial structure is yielded through it. 

What are the factors that yield a change of industrial structure? This problem has 

been investigated in many papers. For the view point of demand side, see Kongsamut, 

et al. (2001) and Herrendorf, et al. (2013). On the other hand, for the view point of 

supply side, see Acemoglu and Guerrieri (2008) and Herrendorf, et al. (2015). In a 

different context, this paper investigates the problem from both sides. These papers 

show that a change of industrial structure depends on production and utility functions 

and technical progress. However, there are divisions of opinion among these papers on 

the problem above. Our model shows that growth rates of economic variables are 

determined by all parameters of technical progress and production and utility functions. 

                            
1 Ngai and Pissarides (2007) analyzed the effect of a change of relative prices on a change of 
industrial structure. In our model, both changes in our model are endogenously determined by 
the fundamental parameters of utility and production functions and technical progress. 
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More precisely, the growth rates are determined by the rate of technological progress 

and the elasticities of marginal productivity and utility.2 Our model derives analytical 

results not only on the growth rates of outputs but also on relative prices, some of which 

have not been known yet. Especially, we derive an interesting equation that relates the 

growth rate of relative price to the growth rates of capital stock and output.  

It has been well known that the relative price of investment-goods in poor 

countries is higher than that of rich countries. See Hsieh and Klenow (2007). They 

conclude that the high relative price of investment-goods in poor countries is due to the 

low price of consumption-goods in those countries. However, in our model, there existｓ 

a possible source of the well-known empirical fact. By arguing such possible source, we 

see that our endogenous growth model ties with the empirical evidence concerning the 

relative price of investment.  

Moreover, by incorporating population growth, we extend our endogenous growth 

model. We derive not only the growth rates of outputs and relative price but also the 

growth rate of wage. We derive an interesting equation that relates the growth rate of 

wage to the growth rates of relative price and output. 

 

2. Background of the Model 
 

We consider a decentralized and closed economy with two sectors; consumption-

goods and investment-goods sectors. The models consist of a representative household 

and a representative investment-goods industry, and more-than-one consumption-goods 

industries. Let n  be the number of consumption-goods industries. For simplicity, we 

assume that the household owns the initial endowment of capital stock which can be 

used by any industry. The household distributes the endowment to all industries. Capital 

goods owned by the household are lent to the investment-goods sector. Without loss of 

generality, we assume that the depreciation rate of capital stock is zero. The 

consumption-goods industries rent capital goods from the investment-goods industry. 

                            
2 For the production function )(Kf , the elasticity of marginal productivity is defined as 

).('/)(" KfKKf  On the other hand, for the utility function )(CU , the elasticity of 
marginal utility is also defined in the sama way. 
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The household has a claim on the consumption-goods sector's net cash flow. There is a 

competitive credit market in which the household can borrow and lend. To rule out 

Ponzi-game finance, we assume the credit market imposes a constraint on the amount of 

borrowing. The two forms of assets, capital and loans are assumed to be perfect 

substitutes as stores of value. Then, they must pay the same real rate of return, and the 

interest rate on debt must be equal to the rental rate on capital.  

The symbols used in this paper are as follows: 

 

     0K Initial endowment of capital stock (given),  

jC Consumption of the goods produced by industry ,j  

     s Rate of time preference (constant), 

     jQ Quantity produced by industry j jC , 

     jK Capital stock of industry ,j  

      j Profit of industry ,j  

     IK Capital stock of the investment-goods industry, 

     r Interest rate rental rate on capital (constant), 

     jP Price of the goods produced by industry ,j  

     IP Rental price of capital stock, 

 

where .},,1{ Nnj    We denote by t  the value of   at time .t  For example, 

we denote by jtK  the value of capital stock of industry )( Njj   at time .t  

 

3. The Model 
 

Throughout this paper, we assume that any function is continuously differentiable. 

As stated above, we extend the AK model of Barro and Sala-i-Martin (1992). In 

Sections 3 and 4 we assume that population is constant. We assume the following 

additive utility function of the representative household: 

 

,/),,( 1  


Nk
k

a
ktntt aCCCU k  
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where .,10 Nja j   For this type of utility function, see Section 6. 

     We next consider the investment-goods industry. We assume that the production 

function of the representative firm in the industry is of the AK type. The firm solves the 

optimization problem: 

 
max )( ItItI rKAKP  , 

 

where A  is a positive constant. The optimization problem of the investment-goods 

industry is essentially the same as that of the firm in Barro and Sala-i-Martin (1982). 

The condition for profit maximization requires that the marginal product of capital 

equals .r  That is, ./ ArPI   Without loss of generality we here assume 

.1/  ArPI   

The global absence of diminishing returns to capital in the production function 

may seem unrealistic. It is, however, plausible if capital, ,ItK  broadly includes human 

capital, knowledge, and public infrastructure in addition to physical capital. For this 

point, see for example Barro and Sala-i-Martin (1995, Ch. 4).  

We next consider the representative household who solves the following 

optimization problem:  

 

  

1R

max dtaeC
Nk

k
sta

kt
k 
 /   

subject to , 




Nk
ktktIt

Nk
ktIt CPrKK  

 

where 1
R  is the set of non-negative real numbers. We here assume that in maximizing 

overall utility the representative household considers that the path of the profits is given 

exogenously. 

We here consider the demand for the goods produced by the investment-goods 

industry. In this paper, we assume that the profit of the consumption-goods industry  

)( Nk   are given by .jtjtjtjtIjtjtjt KQPKPQP  3

 
Therefore, it follows  

                            
3 The maximization of this profit is discussed a little later. 
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from the budget constraint that 
 

 




Nk
ktkt

Nk
ItktIt QPrKK  . 


Nk

Itkt rKK  

 

It should be noted here that 

 

. 




Nk
ktItItIt KKrKAK  

 
This equation implies that the goods produced by the investment-goods industry are 

demanded for the accumulation of capital goods by households and the investment of 

the consumption-goods. 

Now we have the following Hamiltonian of the intertemporal optimization 

problem of the representative household:  

 

     ./ 





   


Nk

ktktIt
Nk

ktt
Nk

ksta
kt CPrKaeCH k   

 

Since the Hamiltonian is a concave function of the state and the control variables, the 

sufficient condition for optimization is given by  

 

(1.1)     ,0/ 1  
tjt

sta
jtjt PeCCH j   

(1.2)     ,/ tItt rKH  


 

(1.3)     , 




Nk
ktktIt

Nk
ktIt CPrKK  

 
(1.4)     tlim .0tItK   

 

The equation (1.2) yields rt
t e 0 , where the initial value 0  is determined in the 

proof of Theorem 1 in Appendix. Then, from (1.1) we have 

 

(2)      ,
1

0

)(

ja
jt

tsr

jt
C

e
P







 .Nj  
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The equation (2) represents the optimal plan taking into account the growth and the 

persistent change of relative prices. The equation (2) gives a dynamic version of static 

inverse demand equation. 

 

Definition 1: We call the equation (2) a dynamic inverse demand equation.■  

 

As we see below, by using the dynamic inverse demand equations, the optimal path of 

relative price of the goods produced by consumption-goods industry )( Nj   is also 

determined.  

     Finally, we consider the consumption-goods industry. The production function of 

consumption-goods industry )( Nj   is assumed to be  

 

(3)       jm
jtjjt KtDQ )( , ).(0,10 tDm jj    

 

where )(tD j  is the total factor productivity of the industry  j. In order to consider the 

effects of technological progresses on the rate of growths, we assume that )(tD j  

grows at the rate 0jd . Then 

 

         .)( 0
td

jj
jeDtD   

 

For simplicity, we assume .10 jD  We have  

 

)( NjKeQC jj m
jt

td
jtjt  , 

 

because we consider the situation where the consumption-goods market is cleared. 

Substituting this equation into the dynamic inverse demand equation (2), we have 
  

(4)       ),(
)1()1(

0

)(
tKH

Ke

e
P jtjma

jt
tda

tsr

jt
jjjj







, .Nj  

 

By assuming the price path jtP  )( Nj  is given, the consumption-goods industry j  
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solves the following optimization problem4: 

 

    )max()max(max jt
m

jt
td

jtjtjtjtjt KKePKQP jj  , .Nj  
 

Since the relative price grows following the dynamic demand equation (2), the output 

and capital stock of the consumption-goods industry j  will also grow. Consequently, 

the heterogeneous growth will occur in our model. In the following, we will give a 

detailed explanation of this point. 

We assumed that the initial values of capital stock of consumption-goods 

industries 0jK  and the initial values of capital stock of investment-goods industry 

0IK  are distributed by the representative household and from his/her initial 

endowment. Thus, the given initial endowment of capital stock satisfies 

 

.000  


Nk
kI KKK   

 
See Section 2. The initial endowment, )(0 NjK j  , is determined in Appendix.  

 

4. Equilibrium Growth Paths 
 

   In this section, we derive the equilibrium growth paths of the model of Section 3. 

Before starting it, we introduce a notion. In this section, we assume 

 
Assumption 1: jjma1  for any ,Nj  

Assumption 2: 0
1





 j

jj

jj
G

ma

dasr
r  for any .Nj  

 

Assumption 2 will be used later to guarantee the transversality conditions. See 

Appendix. We define 

 
)(gr growth rate of  ,    

                            
4 In Sections 3 and 4, we assume the firm that solves the static problem above. However, in 
Section 5, we will consider the firm that solves a dynamic optimization problem. 
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)(lim)(   gragr t  (the asymptotic growth rate of  ). 
 

As is shown in Appendix, the equilibrium growth paths are derived. Consequently, we 

see that the growth rates of equilibrium growth paths differ from each other. This is a 

remarkable feature of the model. The growth rate of each path is given as follows. 

 

Theorem 1: Suppose Assumptions 1 and 2 are satisfied. Then there exist equilibrium 

growth paths which satisfy that for any Nj  

 
 ,)()()(,)()( jjtjjtjtjjtjt dKgrmQgrCgrGIgrKgr   

, )()1()( jjtjjt dKgrmPgr   ),()( jtjt Kgrgr   

} :{max)( max NjGGKagr jIt  .■ 

 

Proof: See Appendix.■ 

 

Thus, we have the following result. 

 

Theorem 2: Suppose Assumptions 1 and 2 are satisfied. Then, we have 

 
          )( jtPgr )( jtKgr )( jtCgr , 

 
for any N.j  We call this equation GRRP (growth rate of relative price) equation.■ 

 

Proof: The proof follows directly from Theorem 1. ■ 

  

The GRRP equation of Theorem 2 is novel and has not been known yet. The GRRP 

equation is interesting in the sense that it relates the growth rate of relative price to the 

growth rates of capital stock and output. Theorem 2 shows that the change of relative 

prices is inevitable in the growth of heterogeneous industries. 

Moreover, we have 

 

Corollary 1: Suppose Assumptions 1 and 2 are satisfied. Then, for the equilibrium 

growth paths we have  
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      the rate of time preference s  

 )(,)(,)(,)( Itjtjtjt KagrKgrPgrCgr , 

      the elasticity of marginal productivity  )1( jm  )(  jm  

  ,)( jtCgr ,)( jtPgr  ,)( jtKgr   or)( ItKagr , 

the rate of technological progress jd   

  ,)( jtCgr ,)( jtPgr  ,)( jtKgr   or)( ItKagr , 

the elasticity of marginal utility  )1( ja  )(  ja  

  ,)(,)(  jtjt PgrCgr ,)( jtKgr   or)( ItKagr , 

 

for any Nj , where   implies “increases” and   implies “be invariant”. 

Moreover, as ja  (resp. jm ) )( Nj  becomes large, the effect of jd  on the growth 

rates of jtC  and jtK  become large (resp. small). That is  
 

        the rate of technological progress jd   
 

  ,
)(






j

jt

a

Cgr
 ,

)(






j

jt

a

Kgr
 ,

)(






j

jt

m

Cgr
 ,

)(






j

jt

m

Kgr
 

 
for any Nj , As ja  (resp. jm ) )( Nj  becomes large, the effect of jd  on the 

growth rate of jtP  becomes large (resp. small):  
 

        the rate of technological progress jd   
 

           




j

jt

a

Pgr )(
 and ,

)(






j

jt

m

Pgr
 

 
for any Nj .■ 

 

Proof: See Appendix.■ 

 

Kongsamut, et al. (2001) and Herrendorf, et al. (2013) investigated the relation 

between the parameters concerning utility function and the change of industrial 

structure. On the other hand, Acemoglu and Guerrieri (2008) and Herrendorf, et al. 

(2015) investigated the relation between the changes of parameters concerning 

production function and the change of industrial structure. These results give theoretical 
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and endogenous explanations which describes the transition of industrial structure. 

Theorem 1 and the first result of Corollary 1 provide the information concerning the 

effects of fundamental parameters on the rate of change of economic variables. These 

results are almost the same as of those that have already known. On the other hand, the 

second and the third results of Corollary 1 tell us how fundamental parameters affect the 

effect of parameters on the rate of change of economic variables.  

     Hsieh and Klenow (2007) concluded that even if investment prices are no higher 

in poor countries, the relative price of investment is higher in poor countries relative to 

rich countries. In our model, the price of the investment-goods in our model is constant. 

Therefore, Corollary 1 gives a source of the empirical result. In fact, an increase in s  

reduces the growth rates of relative prices of consumption-goods. Since households are 

myopic as the parameter s  is large, we see that the empirical fact result concerning 

poor countries results from the myopia concerning consumption in the poor countries. 

Unfortunately, many consumers in poor countries appear to be run after by a daily life. 

Therefore, it appears to be difficult that they avoid the myopia concerning consumption. 

In this sense, it is natural that the above-mentioned empirical fact is an inevitable result 

of the myopia. 

We here provide a numerical example and describes the transition of industrial 

structure in our model economy. To stress the effect of the elasticity of marginal utility 

on the change of industrial structure, we assume )(0 Njd j  and consider the case 

where ,01.0 sr  ,23.011 ma  ,28.022 ma  and .32.033 ma  If we assume 

5.0321  mmm  for simplicity, then we can observe that the transition of the j th 

industry )( Nj  depends on the parameter ja  of the utility function concerning the 

consumption-goods produced by the j th industry. See Figure 1. The blue, red, and 

green lines of Figure 1 describe three utility functions with ,46.05.0/23.01 a  

,56.05.0/28.02 a  and .64.05.0/32.03 a  Figure 2 describes the relative scale 

of each industry. The blue line describes the transition of tt KK 31 / , the red line 

describes the transition of tt KK 32 / , and the green line describes the transition of 

.1/ 33 tt KK  First, the industry 1 leads the model economy (the blue line). After that, 

the industry 2 leads the model economy (the red line) and finally, the industry 3 leads 

the model economy (the green line). The industries 1, 2, and 3 correspond to the primary, 

secondary, and tertiary industries, respectively.  
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Figures 1 and 2 about here. 

 

The feature of our endogenous growth model is that such a variety of results as 

Corollaries 1 and 2 are obtained through the model. In the next section, we extend the 

model in his section by incorporating labor and will consider whether or not we obtain 

the same as those of the results in this section.  

 

5. Incorporating Population Growth 
 

For simplicity, we have not considered population growth so far. In this section, 

we show that population growth can be incorporated into the model. Especially, our 

main interest in this section is whether the GRRP equation is obtained and whether the 

similar equation concerning the growth rate of wage is obtained. 

Moreover, we see that dynamic optimization of consumption-goods firms can 

also be incorporated. To see it, we modify the background of the model. For simplicity, 

we assume that the number of firms in the consumption-goods sector is one (i.e. )1n . 

Unlike the model in Section 2, the consumption-goods firm produces goods by using 

both labor and capital goods and the number of the households is assumed to grow at 

the constant rate. Moreover, we suppose that the households supply labor to the 

consumption-goods firm and rent capital goods to the consumption-goods firm. We 

denote by 0000 KKK I   the initial endowment owned by the households, where 

unlike previous sections we denote by 0K  the initial value of capital stock of the 

consumption-goods firm. The other suppositions are the same as before. We denote by 
ht

t eLL 0  the population growing at the rate of .h  Define 

 
           ttttItIttttttt LKkLKkLQqLCc /,/,/,/  . 
 

In the model in this section, we see from the supposition that the sum of budget 

constraints of the households is given by  
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,tttttItIt CPLWrKK 


  

 

where tW  is the relative wage rate. Like in Section 3, we assume .1IP  Each budget 

constraint of the households is   
 

           ,)(
2 ttttItIt

t

It

t

tIttIt

t

It
It cPWkhrhk

L

K

L

LKLK

L

K
k 
















  

 

where ./ ttt L  The intertemporal optimization problem of the households is now 

given by: 

 

     




1R

)()/(max dteac tnsa
t   subject to  ,)( ttttItIt cPWkhrk 


  

 
where .01  a  Then, the Hamiltonian of the intertemporal optimization problem is 
given by  
 

}.){()/( )(
ttttItt

tnsa
t cPWkhreacH      

 

Therefore, the first condition entails: 
 

(5.1)       ,0/ )(1  
tt

tnsa
tt PeccH   

(5.2)       ,)(/ tItt hrkH  


 

(5.3)       ,)( ttttItIt cPWkhrk 


  

(5.4)       .0lim  tItt k   

 

Equations (5.1) and (5.2) yield  

 

(6)         ,/)/(/ 0
1)(

0
1)(    a

tt
tsra

t
tsr

t LCeceP   

 

where 0  is derived in the proof of Theorem 3 in Appendix. Like Eq. (2), we call Eq. 

(6) a dynamic inverse demand equation:  
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Definition 2: We call the equation (6) a dynamic inverse demand equation.■  

 

From the dynamic inverse equation, we have  
 

(7)         ).)(1( h
C

C
asr

P

P

t

t

t

t 


 

 

We assume that the consumption-goods firm adopts the Cobb-Douglas function of 

degree one:   
 

(8)         .10,)()( 1   mktDcLKtDQC m
tt

m
t

m
ttt   

 

For simplicity, assume .1  Like )(tD j  in Section 3, we assume that )(tD  grows 

at the rate 0d . Then 
 

          .)( 0
dteDtD   

 
For simplicity, we assume .10 D  Logarithmic differentiation of the production 

function (8) yields  
 

.)1(// hmKmIdCC tttt 


  
 

Substituting this equation into Eq. (7) yields   
 

(9)        }.)1(){1( hhm
K

I
mdasr

P

P

t

t

t

t 


 

 

Now, the consumption-goods firm is assumed to solve the profit maximization problem 

under Eq. (9). Like in Section 3, by assuming the price path tP   is given, the 

consumption-goods industry solves the following optimization problem: 

 




 
1

)(max 1

R

rt
ttt

m
t

m
ttt dteILWLKDP  subject to .tt IK 


  

 

We The Hamiltonian is given by 
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       .)( 1
tt

rt
ttt

m
t

m
ttt IeILWLKDPH    

 

The sufficient condition for optimization is given by 

 

(10.1)      ;0})1{(/   rt
t

m
t

m
tttt eWLKDPmLH  

(10.2)     ;0/  
t

rt
t eIH   

(10.3)     ;/ 11 rtm
t

m
ttttt eLKDmPKH 


  

(10.4)      ;tt IK 


 

(10.5)     .0lim  ttt K   

 

In this section, we assume the following conditions: 

 

Assumption 3: am1 ; 

Assumption 4: .
1 am

adsr
Ghr




  

 

Assumptions 3 and 4 yield .0G  Assumptions 3 and 4 play the same roles as 

Assumptions 1 and 2. We now obtain the following result: 

 

Theorem 3: Suppose Assumptions 3 and 4 are satisfied. Then there exist equilibrium 

growth paths which satisfy 
 
           ,)()(,)()()( dmGqgrcgrGkgrWgrkgr ttIttt   

dGmPgr t  )1()( , Ggr t )( .■ 

 

Proof: See Appendix.■ 

 

Thus, like Theorem 2, we can derive the GRRP equation. Moreover, we can also derive 

the equation concerning growth rate of relative wage: 

 

Theorem 4: We have the GRRP equation: 

 
)( tPgr )( tkgr )( tcgr  (  )( tKgr )( tCgr ). 
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Moreover, for growth rate of relative wage we have the following equality on the 

equilibrium growth paths: 

 
           )( tWgr = )( tkgr = )( tPgr + )( tcgr . 

 

We call this equation GRRW (growth rate of relative wage) equation.■ 

 

Proof: The proof follows directly from Theorem 3. ■ 

 

Like the GRRP equation, the GRRW equation is interesting in the sense that it relates 

the growth rate of relative wage to the growth rates of relative price and output. The 

equation is also novel. 

 

Corollary 2: Concerning the per capita variables and the growth rates of tP  and tW , 

we obtain almost the same results as of Corollary 1: 
 

        the rate of time preference s  

,)(,)(,)(,)(,)(  Ittttt kagrkagrWgrPgrcgr  

      the elasticity of marginal productivity  )1( m  )(  m  

  ,)( tcgr  ,)( tPgr  ,)( tWgr  ,)( tkgr  )( Itkagr , 

the rate of technological progress d   

  ,)( tcgr  ,)( tPgr  ,)( tWgr  ,)( tkgr  )( Itkagr , 

the elasticity of marginal utility  )1( a  )(  a  

  ,)(,)(,)(  ttt WgrPgrcgr ,)( tkgr  ,)( ItKagr  

 

where   implies “increases” and   implies “be invariant”. Moreover, as a  (resp. 
m ) becomes large, the effects of the rates of technological progress d  on the growth 

rates of tc  and tk  become large (resp. small). That is  
 

        the rate of technological progress d   
 

  ,
)(





a

cgr t  ,
)(





a

kgr t  ,
)(





m

cgr t  .
)(





m

kgr t  

 

As a  (resp. m ) becomes large, the effects of the rate of technological progress d  
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on the growth rates of tP  and tW  become large (resp. small). That is  
 

        the rate of technological progress d   
 

           ,
)(





a

Pgr t  ,
)(





a

Wgr t  ,
)(





m

Pgr t  .
)(





m

Wgr t ■ 

 

Proof: See Appendix.■ 

 

Thus, we see that almost the same result as before can be obtained even if population 

growth is incorporated into the endogenous growth model.  

 

6. Conclusions and Final Remark 
 

   In this paper, developing the AK model of decentralized infinite horizon 

optimization, we constructed an endogenous growth model that explains the transition 

of the relative scales of heterogeneous industries with different production functions. 

Unlike the AK model, we assumed that households and representative firms of 

industries plan the optimal schedules allowing for the persistent change of relative 

prices. We showed that not only the growth rate of an industry but also the growth rate 

of relative price of the industry depends on the rate of technical progress, the elasticity 

of marginal productivity and the elasticity of marginal utility of the goods produced by 

the industry. We proved that as the total factor productivity of an industry gets high or 

the elasticity of marginal utility gets large, the relative price in the industry decreases 

and the growth rate of the industry increases. Consequently, the relative scales of 

industries change. This provides a theoretical explanation of the persistent transition of 

industrial structure.  

   Moreover, we derived two important equations. The first one is a simple equation 

that relates the growth rate of relative price to the growth rates of capital stock and 

output. By incorporating population growth, we also derived a simple second equation 

that relates the growth rate of relative wage to the growth rates of relative price and 

output. These equations are novel in the sense that they connect among the changes of 

relative prices, the changes of capital stock and the changes of consumption  
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     Our model explains the empirical fact that the relative price of investment-goods 

in poor countries is higher than that of rich countries. As a possible source, we stressed 

that the empirical fact result concerning poor countries results from the myopia of 

consumers. We demonstrated that the empirical fact result concerning poor countries 

results from the myopia concerning consumption in the poor countries. Since many 

consumers in many poor countries appear to be run after by a daily life, our result 

concerning myopia is natural. Moreover, for the empirical fact concerning poor 

countries, Hsieh and Klenow (2007) demonstrated that even if investment prices are no 

higher in poor countries, the relative price of investment is higher in poor countries 

relative to rich countries. Our results concerning the above-mentioned possible sources 

also support it.  

 

7. Appendix 
 

In this Appendix, we prove Theorems 1 and 3 and Corollaries 1 and 2.  

 

Proof of Theorem 1: Before determining the initial value of capital stock of each 

industry, we derive the equilibrium growth paths assuming that the initial values of 

capital stock of each industry are given. After deriving them, we will calculate the initial 

values of capital stock. By assuming the relative price path is given, we maximize the 

profit of industry )( Nj  . 
 

(A.1)    jt
m

jt
td

jtjt KKePΠ jj   
 

The first order condition yields 11 jj m
jt

td
jtj KePm  so that from the dynamic 

inverse demand equation (2), we have 
 

        
jjjj

jj

j

jj

ma
jt

tda

m
jt

tdtsr
j

a
jt

m
jt

tdtsr
j

Ke

Keem

C

Keem

)1()1(
0

1)(

1
0

1)(

1









 jjjj

j

ma
jt

tda

tdtsr
j

Ke

eem





1
0

)(


 

 

where 0  is determined later. Thus, we have  
 

(A.2)      ,0
tG

jjt
jeKK    ,)( 1

1

1
00

jjma
jj mK     
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for any .Nj  It follows from (A.2) that we have the following equilibrium growth 

paths of  :jtjt CQ   
 

(A.3)      tdGmma

m

j
m
jt

td
jtjt

jjjjj

j

jj emKeCQ )(11
0 )(    

 
where .Nj  We have  
 
(A.4)      .)1( jjjjj daGmasr   
 
Therefore, from (4) and (A.2), the growth rate of the equilibrium growth path of jtP  

( )Nj  is given by 

 
(A.5.1)  jtjjjjjt GmadasrPgr )1()1()(                            

jj

jjjjjjjjjjj

ma

dasrmamdamasrma






1

))(()1)(1())(1(

        
jj

jjjjjjjjj

ma

damadmasrmasr






1

)1()1()(
 

jj

jjjjjjjj

ma

damamsrmam





1

)())((
 

j
jj

jjjjjj
d

ma

damdasrmsr







1

)(
.)1( jjj dGm   

 
Moreover, the initial value of the equilibrium growth path of jtP  is given by 

 

(A.5.2)     
jjjjjj mama

jj
ma

j
j

maK
P

)1()1/(11
00

)1(
00

0
}){(

11





 

jj

jj

jj

jj

ma

ma

ma

ma

jjma










 1

)1(
1

0
1

)1(

)(    

jj

j

jj

jj

ma

m

ma

ma

jjma










 1

1

0
1

)1(

)(   

 

where .Nj  Thus, if 0  is determined, all optimal paths are completely determined.  

Now, for a given ,0IK  we determine 0 . Since we have 

,jtjtjtjtjtjtjt KCPKQP   it follows from (A.2) that 
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(A.6)       




Nk
ktktIt

Nk
ktIt CPrKK   

.0
tG

Nk
kIt

Nk
ktIt keKrKKrK  

  

 

To solve the differential equation (A.6), we prepare a sublemma. 

 

Sublemma1: We consider the differential equation ),(tfaxx tt 


 where a  is a 

constant real number and )(tf  is a continuous function. The solution of the differential 

equation is given by  
 


],0[

0

t

atat
t eexx dvvfe av )( ■ 

 

Proof: See Perko (1996, Remark 2 in Section 1.10).■   

 

From Sublemma 1, the solution of (A.6) is given by 
 


],0[

0

t

rt
IIt eKK dveKe vG

Nk
k

vtr k 


0
)(  

.00
0   





Nk k

krttG
Nk k

krt
I

rG

K
ee

rG

K
eK k  

 

Define  
 

(A.7)      tG
Nk k

k
It ke

Gr

K
K   

 0 . 

 

Equation (4.2) yields rt
t e 0  and Assumption 2 yields 0 jGr  for any 

.Nj  Therefore, we see from (A.7) that  
 

.0limlim )(00 


 
  tGr

Nk k

k
ttItt ke

Gr

K
K

                    

 

Thus, the transversality condition (1.4) is satisfied. Now, we determine 0 . Since the 

initial endowment of capital stock which the household possesses is given by 
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 


Nk kI KKK 000 , we see from the equations (A.2) and (A.7) that 

 

(A.8)    


Nk
kI KKK 000 ).()(

1
0

)1/(11
0  




 


Nk
ma

kk
k

k kkma
Gr

Gr
 

 

Thus, 0  must satisfy (A.8). We consider the continuous function 11 RR:   , 

where 0}:R{R 11  vv . The  function is continuously differentiable. Clearly, 

we have  

 
(A.9)        ,0)(' v  ,0)(lim  vu   and .)(lim 0  vu    

 

Figure 3 about here. 

 

(A.9) proves that the  function is a strictly monotone decreasing function. See 

Figure 1. Therefore, the inverse of the  function exists: 

))((RR: 1111 ww 


   , For a given 0K , the initial value of t  is now 

given by )( 0
1

0 K . Thus, we see that the optimal paths are given by (A.2) to 

(A.5) with ).( 0
1

0 K  Therefore, for any ,Nj  we can see from (A.2) to (A.5) 

that the profit of each industry on the equilibrium growth paths is given by  

 

jt
m
jtjjtjtjtjtjt KKDPKQP   

tdtGmma

m

jj
tdGmma

m

ma

ma

jj
jjjjj

j

jjjjj

j

jj

jj

eemaema 









 11
0

})1{(1

1

0
1

)1(

)(){(                

tGmama
jj

jjjjj ema



 1

1

0
1

1

)(   

tGmama
jj

tGmama

ma

jj
jjjjjjjjjj

jj

emaema









 1

1

0
1

1
1

1

0
1 )(){(   

tGmama
jj

ma

ma

jj
jjjjjjj

jj

emama



  1

1

0
1

1

1 })(){(   

.)1()(
1

1

0
1 tGma

jj
ma

ma

jj
jjjjj

jj

emama



    

 

Then, we see 
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(A.10)     ,)( jjt Ggr    

 

for any .Nj  Finally, we prove the results on the asymptotic growth of ItK . We 

define }.:{ maxGGNk k   The growth rate of ItK  is given by 

 














Nk
tG

kk

Nk
tG

kkk

It

It
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eGrK

eGrKG
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)}/({

)}/({

0

0
 

,
)/()}/({

)/()}/({

\
max0

)(
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max0max
)(

0
\

max

max

 


 










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 
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Nk k
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tGG
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k
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tGG
kk

Nk
k

GrKeGrK

GrKGeGrKG
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where BA \  is the difference of A  and B . Therefore, since maxGGk   for any 

,\Nk  we see  
 

./lim)( maxGKKKagr ItIttIt 


   

 

This completes the proof of Theorem 1.■ 

 
Proof of Corollary 1: The growth rates of the optimal growth path are given by 
 

(A.11.1)   ,)()( jjtjt GIgrKgr   

(A.11.2)   ,)()( jjjjtjt dGmQgrCgr    

(A.11.3)   ,)1()( jjjjt dGmPgr   
 

for any .Nj  On the other hand, we have 
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for any .Nj  Thus, we see from (A.12) and Assumption 1 that 
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for any .Nj  On the other hand, since } :{max)( NjGKagr jIt  , the results on 

)( ItKagr  follows directly from the results of (A.12). The equation (A.11) and the 

inequalities in (A.13) complete the proof of the first half of Corollary 1. We next prove 

the latter half.  
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By the same argument as above, the results on )( ItKagr  follow directly from  (A.14.1) 

and (A.14.2). The inequalities of (A.14) now prove the proof of the latter half of 

Corollary 1. Thus, we complete the proof of Corollary 1.■ 

 

Proof of Theorem 3: Eqs. (10.2) and (10.3) yield 
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The dynamic inverse demand equation (6) and the production function (8) yield 
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Substituting Eq. (A.16) into Eq. (A.15) yields 
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so that we have 
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Moreover, from Eq. (A.16), we have 
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Therefore we obtain from Eq. (10.1) that 
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On the other hand, The dynamic equation concerning the equilibrium path of capital 

stock of the investment-goods firm becomes 
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The solution of the differential equation is given by 
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Now, we set 
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Then we have 
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and it follows from Assumption 4 that the transversality condition (10.7) is satisfied. 

Finally, we determine the initial values of capital stocks of consumption-goods and 

investment-goods firms. In the same way as before, by using Eq. (A.18) we calculate 

the initial capital stocks of consumption-goods firm and investment-goods firm. 
 

          0000000000 1
1

Lk
Ghr

LkLkKKK II 





 


 . 

 

Therefore, initial values of capital stocks are given by 
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From Assumption 4, we see 000 KK   and 000 KKI  . Moreover, we obtain the 

following results on the profit:  
 

(A.19)     ttt
m

tttttt LIWkDPL //     

       
t

tGtmGtmGtm
m

L

K
e

m

rkm
eke

m

rk








 0
0

)1(
1

0 )1(
 

t

tGtGt

L

K
e

m

rkm
e

m

rk





 00 )1(

t

tGt

L

K
erk



 0 . 

 

On the other hand, we have  
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Therefore, Eq. (A.18) yields  
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Thus, we have Ggr t )( . Thus we complete the proof of Theorem 3.■ 

 

Proof of Corollary 2: By replacing jG  with G , the proof is the same as that of 

Corollary 1.■ 
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Figure Captions 

 
Figure 1: The effect of the elasticity of marginal utility on the form of the utility 

function. 

 

Figure 2: The effect of the elasticity of marginal utility on the relative scale of industry. 

 

Figure 3: The Θ-function. 
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