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1. Introduction

The most influential contributions in modern theories of economic growth have
been those of Solow (1956) and Swan (1956). The Solow-Swan model is of an
exogenous type. To go further, one has to construct endogenous growth models, that is,
to construct a model that determines the long-run growth rate within the model. A base
line delivering endogenous growth is the AK type of growth models. See Romer (1986)),
Jones and Manuelli (1990), Rebelo (1991), and Barro and Sala-i-Martin (1992). The AK
models of infinite horizon optimization have its origin in the Ramsey model (Ramsey
(1928)). The AK models have been referred very often as the simplest model that makes
clear how the absence of diminishing returns can lead to endogenous growth.

In this paper, modifying the AK model of decentralized infinite horizon
optimization by Barro and Sala-i-Martin (1992), we try to construct an endogenous
growth model that explains the transition of the relative scales of heterogeneous
industries with different production functions. Some of our results are similar to those in
the AK model. Like the AK model, the growth rate of each industry in our model
depends on parameters concerning production and utility functions. On the other hand,
there exist some important features distinguished from the AK model. Industries in our
model endogenously grow through a persistent change of relative prices.! Therefore, a
persistent change of industrial structure is yielded through it.

What are the factors that yield a change of industrial structure? This problem has
been investigated in many papers. For the view point of demand side, see Kongsamut,
et al. (2001) and Herrendorf, et al. (2013). On the other hand, for the view point of
supply side, see Acemoglu and Guerrieri (2008) and Herrendorf, et al. (2015). In a
different context, this paper investigates the problem from both sides. These papers
show that a change of industrial structure depends on production and utility functions
and technical progress. However, there are divisions of opinion among these papers on
the problem above. Our model shows that growth rates of economic variables are

determined by all parameters of technical progress and production and utility functions.

' Ngai and Pissarides (2007) analyzed the effect of a change of relative prices on a change of
industrial structure. In our model, both changes in our model are endogenously determined by
the fundamental parameters of utility and production functions and technical progress.



More precisely, the growth rates are determined by the rate of technological progress
and the elasticities of marginal productivity and utility.> Our model derives analytical
results not only on the growth rates of outputs but also on relative prices, some of which
have not been known yet. Especially, we derive an interesting equation that relates the

growth rate of relative price to the growth rates of capital stock and output.

It has been well known that the relative price of investment-goods in poor
countries is higher than that of rich countries. See Hsieh and Klenow (2007). They
conclude that the high relative price of investment-goods in poor countries is due to the
low price of consumption-goods in those countries. However, in our model, there exists
a possible source of the well-known empirical fact. By arguing such possible source, we
see that our endogenous growth model ties with the empirical evidence concerning the
relative price of investment.

Moreover, by incorporating population growth, we extend our endogenous growth
model. We derive not only the growth rates of outputs and relative price but also the
growth rate of wage. We derive an interesting equation that relates the growth rate of

wage to the growth rates of relative price and output.

2. Background of the Model

We consider a decentralized and closed economy with two sectors; consumption-
goods and investment-goods sectors. The models consist of a representative household
and a representative investment-goods industry, and more-than-one consumption-goods
industries. Let n be the number of consumption-goods industries. For simplicity, we
assume that the household owns the initial endowment of capital stock which can be
used by any industry. The household distributes the endowment to all industries. Capital
goods owned by the household are lent to the investment-goods sector. Without loss of
generality, we assume that the depreciation rate of capital stock is zero. The

consumption-goods industries rent capital goods from the investment-goods industry.

? For the production function f(K), the elasticity of marginal productivity is defined as
f"(K)K/ f'(K). On the other hand, for the utility function U(C), the elasticity of
marginal utility is also defined in the sama way.



The household has a claim on the consumption-goods sector's net cash flow. There is a
competitive credit market in which the household can borrow and lend. To rule out
Ponzi-game finance, we assume the credit market imposes a constraint on the amount of
borrowing. The two forms of assets, capital and loans are assumed to be perfect
substitutes as stores of value. Then, they must pay the same real rate of return, and the
interest rate on debt must be equal to the rental rate on capital.

The symbols used in this paper are as follows:

K =Initial endowment of capital stock (given),

Cj= Consumption of the goods produced by industry ;,
s = Rate of time preference (constant),

Q)= Quantity produced by industry j =C Iz

K; = Capital stock of industry ;,

I1; = Profit of industry j,

K1 = Capital stock of the investment-goods industry,

r = Interest rate =rental rate on capital (constant),

P; = Price of the goods produced by industry

Py =Rental price of capital stock,

where je{l,---,n}=N. We denote by e; the value of e at time 7. For example,

we denote by K j; the value of capital stock of industry j (je N) attime ¢

3. The Model

Throughout this paper, we assume that any function is continuously differentiable.
As stated above, we extend the AK model of Barro and Sala-i-Martin (1992). In
Sections 3 and 4 we assume that population is constant. We assume the following

additive utility function of the representative household:

UCureCu)= D Cu® la,



where 0<a; <1, jeN. For this type of utility function, see Section 6.

We next consider the investment-goods industry. We assume that the production
function of the representative firm in the industry is of the AK type. The firm solves the

optimization problem:
max (P[AK]t - I”K]t) ,

where A4 is a positive constant. The optimization problem of the investment-goods
industry is essentially the same as that of the firm in Barro and Sala-i-Martin (1982).
The condition for profit maximization requires that the marginal product of capital
equals ». That is, P;=r/A. Without loss of generality we here assume
Pr=r/A=1.

The global absence of diminishing returns to capital in the production function
may seem unrealistic. It is, however, plausible if capital, Kj;, broadly includes human
capital, knowledge, and public infrastructure in addition to physical capital. For this
point, see for example Barro and Sala-i-Martin (1995, Ch. 4).

We next consider the representative household who solves the following

optimization problem:

max E Ci ™ e | aydt
R! keN
[ ]
subjectto Ky = E [y +vKp — E B Cry,
) It LN kt It beN ket & kt

where R}L is the set of non-negative real numbers. We here assume that in maximizing
overall utility the representative household considers that the path of the profits is given
exogenously.

We here consider the demand for the goods produced by the investment-goods
industry. In this paper, we assume that the profit of the consumption-goods industry

k(e N) are given by 11 =P;Qj—PK =P;Qj —Kjt.3 Therefore, it follows

3 The maximization of this profit is discussed a little later.



from the budget constraint that

K:Z T +1K —Z P :—Z Ki+rK 7.
It keN kt It keN thkt keN kt It

It should be noted here that

AKp =1Kj = K+ Z K.
It It It pen K
This equation implies that the goods produced by the investment-goods industry are
demanded for the accumulation of capital goods by households and the investment of
the consumption-goods.
Now we have the following Hamiltonian of the intertemporal optimization

problem of the representative household:

H:Z C.,%e=st/a, + (Z 1, +rK —Z P.C j
Y kt k T N kt It N kt“ ke

Since the Hamiltonian is a concave function of the state and the control variables, the

sufficient condition for optimization is given by

(1.1) OH /0Cj; =C ;% ™ — Py, =0,

(12) un :—6H/6K]t =—rny,

13 K =Z M, +rK —Z PyChr.
( ) It keN kt It keN Kkt kt
(1.4) lim; o Kpemy =0.

r

The equation (1.2) yields 7, =79e™"", where the initial value 7 is determined in the

proof of Theorem 1 in Appendix. Then, from (1.1) we have

(r—s)t
=% . jeN.

(2) P;
l-a.
10C jz 4

Jt



The equation (2) represents the optimal plan taking into account the growth and the
persistent change of relative prices. The equation (2) gives a dynamic version of static

inverse demand equation.
Definition 1: We call the equation (2) a dynamic inverse demand equation.m

As we see below, by using the dynamic inverse demand equations, the optimal path of
relative price of the goods produced by consumption-goods industry j(e N) is also
determined.

Finally, we consider the consumption-goods industry. The production function of

consumption-goods industry j(e N) is assumed to be
(3) th=D](f)KJth, 0<l’l’l]§1, 0<Dj(t)

where D (D) is the total factor productivity of the industry ;. In order to consider the
effects of technological progresses on the rate of growths, we assume that D (1)

grows at the rate ¢ ;i>0. Then
dt
Dj(f):Djoe 7,
For simplicity, we assume D ;o =1. We have
djt m. .
Cii=0j;=e’ " K;"7 (JEN);

because we consider the situation where the consumption-goods market is cleared.

Substituting this equation into the dynamic inverse demand equation (2), we have

e(r—s)t

4) P;

Jt EHj(Kjtet)a JEN

By assuming the price path Pj; (j € N) is given, the consumption-goods industry j



solves the following optimization problem®:
max /7 j; = max(P;Qj; —K j;) = max(PjtedftKjtm«f ~-Kj), jeN.

Since the relative price grows following the dynamic demand equation (2), the output
and capital stock of the consumption-goods industry ;j will also grow. Consequently,
the heterogeneous growth will occur in our model. In the following, we will give a

detailed explanation of this point.

We assumed that the initial values of capital stock of consumption-goods
industries K ;o and the initial values of capital stock of investment-goods industry
Kjo are distributed by the representative household and from his/her initial

endowment. Thus, the given initial endowment of capital stock satisfies

Ko =K +Z K.
0 10 keN kO

See Section 2. The initial endowment, K ;o (/€ N), is determined in Appendix.

4. Equilibrium Growth Paths

In this section, we derive the equilibrium growth paths of the model of Section 3.

Before starting it, we introduce a notion. In this section, we assume

Assumption 1: 1>a;m; forany jeN,

r—s+a;d;

Assumption 2: r > L=G;>0 forany jeN.

l—ajmj

Assumption 2 will be used later to guarantee the transversality conditions. See

Appendix. We define

gr(e) =growth rate of e,

* In Sections 3 and 4, we assume the firm that solves the static problem above. However, in
Section 5, we will consider the firm that solves a dynamic optimization problem.



agr(e) =lim;_,4 gr(e) (the asymptotic growth rate of e).

As is shown in Appendix, the equilibrium growth paths are derived. Consequently, we
see that the growth rates of equilibrium growth paths differ from each other. This is a

remarkable feature of the model. The growth rate of each path is given as follows.

Theorem 1: Suppose Assumptions 1 and 2 are satisfied. Then there exist equilibrium
growth paths which satisfy that for any je N

gr(K;)=gr(l;)=G;, gr(C;)=gr(Q;)=m;gr(K;)+d;,

gr(Py)=(—mj)gr(K;)—d;, gr(ll;)=gr(Kj),
agr(Kj) = Gmax =max{G;:jeN}.m

Proof: See Appendix.m

Thus, we have the following result.
Theorem 2: Suppose Assumptions 1 and 2 are satisfied. Then, we have
gr(Pjr) = gr(Kj)— gr(Cj),
forany je N. We call this equation GRRP (growth rate of relative price) equation.m
Proof: The proof follows directly from Theorem 1. m

The GRRP equation of Theorem 2 is novel and has not been known yet. The GRRP
equation is interesting in the sense that it relates the growth rate of relative price to the
growth rates of capital stock and output. Theorem 2 shows that the change of relative
prices is inevitable in the growth of heterogeneous industries.

Moreover, we have

Corollary 1: Suppose Assumptions 1 and 2 are satisfied. Then, for the equilibrium

growth paths we have



the rate of time preference s T

= gr(Cj) Y. gr(Pit, gr(Kjt. agr(Kim,
the elasticity of marginal productivity (1-m ) I (& m j 1))

= grC) T g, er(K)T, agr(K,)Tor—,
the rate of technological progress d ; )

= gr(C) T g, gr(K)T, agr(K,)Tor—,
the elasticity of marginal utility (1-a ;) I (& a j )

= gr(C)Nar(P)T, er(K;)T, agr(kK,)Tor—,

for any jeN, where T implies “increases” and — implies “be invariant”.
Moreover, as @; (resp.”;) (je€N) becomes large, the effect of d ; on the growth

rates of Cj; and K become large (resp. small). That is

the rate of technological progress d ; )

09 (Cyp) o (K)o 08r(Cp) » Der(Kjn)

forany jeN, As aj (resp. mj) (jeN) becomes large, the effect of d; on the

growth rate of P becomes large (resp. small):

the rate of technological progress d T
ogr ogr
ogr(Pye) p 4 8 (Pj¢) %) |,

oa ; om ;

J J

forany jeN.m

Proof: See Appendix.m

Kongsamut, et al. (2001) and Herrendorf, et al. (2013) investigated the relation
between the parameters concerning utility function and the change of industrial
structure. On the other hand, Acemoglu and Guerrieri (2008) and Herrendorf, et al.
(2015) investigated the relation between the changes of parameters concerning

production function and the change of industrial structure. These results give theoretical



and endogenous explanations which describes the transition of industrial structure.
Theorem 1 and the first result of Corollary 1 provide the information concerning the
effects of fundamental parameters on the rate of change of economic variables. These
results are almost the same as of those that have already known. On the other hand, the
second and the third results of Corollary 1 tell us how fundamental parameters affect the

effect of parameters on the rate of change of economic variables.

Hsieh and Klenow (2007) concluded that even if investment prices are no higher
in poor countries, the relative price of investment is higher in poor countries relative to
rich countries. In our model, the price of the investment-goods in our model is constant.
Therefore, Corollary 1 gives a source of the empirical result. In fact, an increase in s
reduces the growth rates of relative prices of consumption-goods. Since households are
myopic as the parameter s is large, we see that the empirical fact result concerning
poor countries results from the myopia concerning consumption in the poor countries.
Unfortunately, many consumers in poor countries appear to be run after by a daily life.
Therefore, it appears to be difficult that they avoid the myopia concerning consumption.
In this sense, it is natural that the above-mentioned empirical fact is an inevitable result
of the myopia.

We here provide a numerical example and describes the transition of industrial
structure in our model economy. To stress the effect of the elasticity of marginal utility
on the change of industrial structure, we assume d; =0 (e N)and consider the case
where r—s=0.01, aym; =023, apmp=0.28, and qg3m3=0.32. If we assume
my =my =m3 =0.5 for simplicity, then we can observe that the transition of the Jth
industry (j € N) depends on the parameter a; of the utility function concerning the
consumption-goods produced by the Jth industry. See Figure 1. The blue, red, and
green lines of Figure 1 describe three utility functions with 4; =0.23/0.5=0.46,
ar =0.28/0.5=0.56, and a3 =0.32/0.5=0.64. Figure 2 describes the relative scale
of each industry. The blue line describes the transition of Kji;/K3;, the red line
describes the transition of Kj;/K3;, and the green line describes the transition of
K3;/K3; =1. First, the industry 1 leads the model economy (the blue line). After that,
the industry 2 leads the model economy (the red line) and finally, the industry 3 leads
the model economy (the green line). The industries 1, 2, and 3 correspond to the primary,

secondary, and tertiary industries, respectively.

10



Figures 1 and 2 about here.

The feature of our endogenous growth model is that such a variety of results as
Corollaries 1 and 2 are obtained through the model. In the next section, we extend the
model in his section by incorporating labor and will consider whether or not we obtain

the same as those of the results in this section.

5. Incorporating Population Growth

For simplicity, we have not considered population growth so far. In this section,
we show that population growth can be incorporated into the model. Especially, our
main interest in this section is whether the GRRP equation is obtained and whether the
similar equation concerning the growth rate of wage is obtained.

Moreover, we see that dynamic optimization of consumption-goods firms can
also be incorporated. To see it, we modify the background of the model. For simplicity,
we assume that the number of firms in the consumption-goods sector is one (i.e. n=1).
Unlike the model in Section 2, the consumption-goods firm produces goods by using
both labor and capital goods and the number of the households is assumed to grow at
the constant rate. Moreover, we suppose that the households supply labor to the
consumption-goods firm and rent capital goods to the consumption-goods firm. We
denote by Koo = Kj0+ Ko the initial endowment owned by the households, where
unlike previous sections we denote by K¢ the initial value of capital stock of the
consumption-goods firm. The other suppositions are the same as before. We denote by

Ly = Loeht the population growing at the rate of 4. Define
ct=Ci/Ly, qp=0/Ly, kp=Kp/L, ky =K /L.

In the model in this section, we see from the supposition that the sum of budget

constraints of the households is given by

11



Ky =rKy + 11 + Wil = B Cy,

where W; is the relative wage rate. Like in Section 3, we assume Py =1. Each budget

constraint of the households is

k.1 _(KItJ_KHLt_KItLt _Kn
;= - -
Ly Ltz Ly

—hkp =(r—h)ky +m +Wy — By,

where 7; =I1;/L;. The intertemporal optimization problem of the households is now

given by:

maxJ‘ (¢, /a)e=(s=mtdt  subjectto kj =(r—h)ky +m; + Wy — By,
RL

where 1>a > 0. Then, the Hamiltonian of the intertemporal optimization problem is
given by

H =(c/" | a)e™ =Mt + i {(r = h)ky, + 7 + Wy = By}

Therefore, the first condition entails:

(5.1) OH /8¢, = ¢,* le=(s=m)t — Py =0,
(5.2) n; =—0H |0k =—(r — h)ny,

(5.3) ki =(r—hkp + 7 + Wy — By,
(5.4) lim; 0k pemy = 0.

Equations (5.1) and (5.2) yield
(6) P, =elr=)ic, " /gy = er=)1(C, | L;)*~1 /g,

where 70 is derived in the proof of Theorem 3 in Appendix. Like Eq. (2), we call Eq.

(6) a dynamic inverse demand equation:

12



Definition 2: We call the equation (6) a dynamic inverse demand equation.m

From the dynamic inverse equation, we have

By G
(7) P;_r s—(1-a) C, h).

We assume that the consumption-goods firm adopts the Cobb-Douglas function of

degree one:
(8) C, =0,=aDOK," L™ & ¢, =oDOK", 0<m<l.

For simplicity, assume o =1. Like D () in Section 3, we assume that D(¢) grows

at the rate 4 > (0. Then
D(1) = Dye® .

For simplicity, we assume Dy =1. Logarithmic differentiation of the production

function (8) yields

Ct/Ct =d+m]t/Kt+(l—m)h.

Substituting this equation into Eq. (7) yields

9) %zr—s—(l—a){d+m11<—tt+(l—m)h—h}.

Now, the consumption-goods firm is assumed to solve the profit maximization problem
under Eq. (9). Like in Section 3, by assuming the price path F, is given, the

consumption-goods industry solves the following optimization problem:

max J. (PD,K,"L)"™™ -W,L, —I,)e”"dt subjectto K, =1I,.
R

We The Hamiltonian is given by

13



H=(BDK L™ - WL —1,)e™" + 21,

The sufficient condition for optimization is given by

10.1 O0H /0L, ={(1-m)P.D,K," L, —W;}e™ " =0;
( ) t it t t

(10.2) OH /3l =—e " + 4, =0;

10.3 = —0H | 0K, = —mP.D,K," 1,/

( ) t t It t

(104) Kt :]l;

(105) lim[_>oo Ktﬂ/t =0.

In this section, we assume the following conditions:

Assumption 3: 1>am ;

Assumption 4: r—h>G = rostad
1—am

Assumptions 3 and 4 yield G >0. Assumptions 3 and 4 play the same roles as

Assumptions 1 and 2. We now obtain the following result:

Theorem 3: Suppose Assumptions 3 and 4 are satisfied. Then there exist equilibrium
growth paths which satisfy

gr(ky)=grWy)=gr(ky) =G, gr(c;)=gr(q;)=mG+d,
gr(P)=(01-m)G-d, gr(z;)=G .1

Proof: See Appendix.l

Thus, like Theorem 2, we can derive the GRRP equation. Moreover, we can also derive

the equation concerning growth rate of relative wage:

Theorem 4: We have the GRRP equation:

gr(B)=grtk)— gr(ct) (=gr(Ke)— gr(Cy)).

14



Moreover, for growth rate of relative wage we have the following equality on the
equilibrium growth paths:

grWy)=gr(ky)=gr(B) +gr(c).
We call this equation GRRW (growth rate of relative wage) equation. ll
Proof: The proof follows directly from Theorem 3. m

Like the GRRP equation, the GRRW equation is interesting in the sense that it relates
the growth rate of relative wage to the growth rates of relative price and output. The

equation is also novel.

Corollary 2: Concerning the per capita variables and the growth rates of P, and W,

we obtain almost the same results as of Corollary 1:

the rate of time preference s T

= gr(c) l, gr(F) J, gr(Wy) J, agr(k;) J, agr(kp) l,
the elasticity of marginal productivity (1-m)4 (& m7T)

= gl"(Ct) T’ gr(})t) ‘L’ gr(VVt) Ta gr(kt) T, agr(k]t) T ’
the rate of technological progress d T

= gre) T gV, gW) T, grtk) T, agr(ky) T,
the elasticity of marginal utility (1-a)J (& a 1)

= gl"(Ct) Ta gr(})t) T’ gr(VVt) T, gr(kt) Ta agr(KIt) T:

where T implies “increases” and — implies “be invariant”. Moreover, as d (resp.
m) becomes large, the effects of the rates of technological progress 4 on the growth

rates of ¢, and k;, become large (resp. small). That is

the rate of technological progress d T

dgr(c)) 4 Ogr(ky) 4 Ogr(e)) 4 Ogr(k) 4

Oa Ooa om om

As a (resp. m) becomes large, the effects of the rate of technological progress d

15



on the growth rates of £, and W, become large (resp. small). That is

the rate of technological progress d T
ogr(P) » Ogr(W) 4 2gr(R) | 2wrW) s g

Oa Ooa om om

Proof: See Appendix.H

Thus, we see that almost the same result as before can be obtained even if population

growth is incorporated into the endogenous growth model.

6. Conclusions and Final Remark

In this paper, developing the AK model of decentralized infinite horizon
optimization, we constructed an endogenous growth model that explains the transition
of the relative scales of heterogeneous industries with different production functions.
Unlike the AK model, we assumed that households and representative firms of
industries plan the optimal schedules allowing for the persistent change of relative
prices. We showed that not only the growth rate of an industry but also the growth rate
of relative price of the industry depends on the rate of technical progress, the elasticity
of marginal productivity and the elasticity of marginal utility of the goods produced by
the industry. We proved that as the total factor productivity of an industry gets high or
the elasticity of marginal utility gets large, the relative price in the industry decreases
and the growth rate of the industry increases. Consequently, the relative scales of
industries change. This provides a theoretical explanation of the persistent transition of
industrial structure.

Moreover, we derived two important equations. The first one is a simple equation
that relates the growth rate of relative price to the growth rates of capital stock and
output. By incorporating population growth, we also derived a simple second equation
that relates the growth rate of relative wage to the growth rates of relative price and
output. These equations are novel in the sense that they connect among the changes of

relative prices, the changes of capital stock and the changes of consumption

16



Our model explains the empirical fact that the relative price of investment-goods
in poor countries is higher than that of rich countries. As a possible source, we stressed
that the empirical fact result concerning poor countries results from the myopia of
consumers. We demonstrated that the empirical fact result concerning poor countries
results from the myopia concerning consumption in the poor countries. Since many
consumers in many poor countries appear to be run after by a daily life, our result
concerning myopia is natural. Moreover, for the empirical fact concerning poor
countries, Hsieh and Klenow (2007) demonstrated that even if investment prices are no
higher in poor countries, the relative price of investment is higher in poor countries
relative to rich countries. Our results concerning the above-mentioned possible sources

also support it.

7. Appendix

In this Appendix, we prove Theorems 1 and 3 and Corollaries 1 and 2.

Proof of Theorem 1: Before determining the initial value of capital stock of each
industry, we derive the equilibrium growth paths assuming that the initial values of
capital stock of each industry are given. After deriving them, we will calculate the initial
values of capital stock. By assuming the relative price path is given, we maximize the

profit of industry j (e N).

d.

t )
(Al) H]t :Pjte J Kjtmj _Kjl

d;t

The first order condition yields m;Pje”” K jtmf_l =1 so that from the dynamic

inverse demand equation (2), we have

=)t dt gem; =1 pr=s)t it gem; =1 r—s)t dt
1:mje e K/ _ mje e K _ mje( )t o4
l-a; (-a)dt - (1-a;)m; —a.dt l-a;m;
nocjt J 7706 J J k]t J J 7706 J RJZ‘ J]

where 77 1is determined later. Thus, we have

1
G, —1yl-a,m,
(AZ) K]t = K]Oe _/[’ K_]O — (m]no ) am; ,

17



for any je N. It follows from (A.2) that we have the following equilibrium growth
pathsof Qj; =Cj;:
m.

J

dt J —1\1-a;m;
(A3) Qji =Cjy =YKl =(mjmg )™

(/G +d )i

where je N. We have
(A.4) r—s=(l—ajmj)Gj—ajdj.

Therefore, from (4) and (A.2), the growth rate of the equilibrium growth path of Pj
(j € N) isgiven by

(A.S.l) g”(sz)=”—S—(1—aj)dj—(l—aj)ijjt

_ (I—ajm;)r—s)—(l—ajm;)1-a;)d;j—(m;—a;m;)r—s+a;d;)

l—ajm;
r—s—ajm;(r—s)—(l—a;m;)d;+(l—a;m;)a;d;
B l—ajm;
—(mj—ajm;)r—s)—(mj—a;ym;)a;d;

l—ajmj
r—s—m;(r—s)+a;dj—mja;d;

J
= -di=(1-m;)G;—-d;.
J J7=T J
l—ajmj

Moreover, the initial value of the equilibrium growth path of Pj; is given by

1 1
(32 fo= noK jo!' =" i no{(a;mymo ") I-m)yA=am;
~(a;m)) l—a;m; 7o Ly
_(=apm; - 1mm;
=(ajm;) UMy T

where je N. Thus, if 7709 is determined, all optimal paths are completely determined.

Now, for a given Kjp, we determine 70 . Since we have
Hjt = Pthjt _Kjt = Pthjt _Kjta it follows from (A.2) that

18



(A.6) K ZZkENHkt+VK1t—ZkENPktth

— K —Z Ky =K —Z KoeOr.
It keN kt It keN kO

To solve the differential equation (A.6), we prepare a sublemma.

Sublemmal: We consider the differential equation x; =ax; + f(t), where a is a
constant real number and f(¢) is a continuous function. The solution of the differential

equation is given by
x; = xpe® + eatj e f(v)dvm
[0,7]

Proof: See Perko (1996, Remark 2 in Section 1.10).m

From Sublemma 1, the solution of (A.6) is given by

_ rt _ r(t—v) Gyv
K =Kjpe j[o | e ZkeNKkOe dv
t

— Ko Z Kko Gyt Z Ko
keNGk—r keN Gy —r

Define

Ko Gyt
A7 Ky = kO Gt
(A7) i ZkeNr—Gk

rt

Equation (4.2) yields 7, =mpe™"" and Assumption 2 yields r—G; >0 for any
j € N. Therefore, we see from (A.7) that

Thus, the transversality condition (1.4) is satisfied. Now, we determine 77¢. Since the

initial endowment of capital stock which the household possesses is given by
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Ko=Kjo+ Z fe NK k0 , we see from the equations (A.2) and (A.7) that

1+r—-Gg ~I\1/(1-a;m;)
A8 Ko=Kjo+ Kin = K M) = @ )
(A-8) 0 =Ko ZkeN k0 ZkeN Gy (axmgno ) (10)
Thus, 79 must satisfy (A.8). We consider the continuous function @:RL —>R£r,
where RL = {ve R':v> 0}. The @ —function is continuously differentiable. Clearly,

we have

(A.9) O'(v)<0, lim,_y,O(V)=0, and lim,_,7O(V)=0.

Figure 3 about here.

(A.9) proves that the @ —function is a strictly monotone decreasing function. See
Figure 1.  Therefore, the inverse of the ®— function  exists:
o :RL —)RL (w—)@_l(w)), For a given Ky, the initial value of 7; is now
given by 7q :@_1(1(0). Thus, we see that the optimal paths are given by (A.2) to
(A.5) with ng = @_I(Ko). Therefore, for any je N, we can see from (A.2) to (A.5)
that the profit of each industry on the equilibrium growth paths is given by

H]t:P][Q][_K]t:P][D]K;’; K
(I-a;ym; l-m; m

J
l—a;m; {(lm)G —d;}t l)lam m;G;t d;t
0

JJeJ]e]

l—a.m.
={(ajmj) "™ p (ajm jmo

1 1

—(a.m )™ 1_ajmjeij
imj /)

ajmj _ 1 1 _ 1

l1—a;m; l—a;m; Gt lam lam Gt
={ajmy) Ty M G (@ ym )y M O

a;m; 1 -1

l-a;m; l—a;m; l-a;m Gt
—{(a]m]) _(a]m]) }770 7

l—am; l-a;m; Gt
=(ajm;) 7 (l=ami)n, e .

Then, we see
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(AIO) gi"(Hjt)IGj,

for any je N. Finally, we prove the results on the asymptotic growth of K. We
define ¥ ={k e N:Gr =Gmax}. The growth rate of Ky is given by

K _ Gt

Ky Doy (GeKio (r=Gple

K _ Gyt

oY Kk (r=Gi)e

D iy O K k0 [ =Gl OO 4 Gy 3 Ko (= Gna)

D v Kk (=G}l G Cmdl s K (= Gina)

where A\ B is the difference of 4 and B. Therefore, since Gy < Gpax for any
ke N\¥, we see

agr(Kp)=lim; o K/ Kjp = Gpax .-
This completes the proof of Theorem 1.m

Proof of Corollary 1: The growth rates of the optimal growth path are given by

(A11.1)  gr(K;)=gr(lj)=Gj,
(A112)  gr(Cj)=gr(Q;)=m;G;+d;,
(A113)  gr(Py)=(1-m;)G;-d;,

forany je N. On the other hand, we have

Ogr(Kj) Ogrly) 0G; (r—symj+d;

(A.12.1) 3 >0,
662] 661] 8a] (]—ajm])
(a122) BRI i) 00 a4 g
om om omj; l—a;jm; ’
(A 12 3) 8gl"(Kjt) _ 8gl”(]jt) _ 8G] _ aj >0
ogr(K ; ogr(l; oG ;
(a124y & _del) o6 1
os os os l—ajm;
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forany je N. Thus, we see from (A.12) and Assumption 1 that

8gr(Cjt)=8gr(th) o(m;G;+d;) m]{(r S)m]+d}

(A.13.1) i ’
aa] aa] aaj (1 a]m])
Ay ECw Qi) _omiGitd) 1 Lo
A3y &G _CerQp) omiGitd) 1,
ad od od ; 1—am;
(A.13.4) ag”(cj;)=6gr(th)=6(ijj+dj):_ mj o
. . as 8S aS l—ajmj s
(A.13.5) Ogr(bjr) _ot=m;)Gj—dji (=mpiGr=sym;+d;}
da da j (1- a]m])z
(A.13.6) Cgr(Fy) _otd-mj)G;—d;} __ . .{1_m}
l—a:
:—G1#<O’
l—a;m;
(A13.7) 5gV(Pjt)=5{(1—mj)Gj—dj}z{(l—mj)aj_l}z_ l-a; <0
adj adj l—ajmj l_ajmj
Alsg FW _oldmm)G-djy  A=m;
as L-ajm;

for any jeN. On the other hand, since agr(Kj)=max{G;:je N}, the results on
agr(Ky) follows directly from the results of (A.12). The equation (A.11) and the
inequalities in (A.13) complete the proof of the first half of Corollary 1. We next prove
the latter half.

02 or(K : .
(aan L&ED_ 0 ( 4 J: ! >0,
8aJ8d] 0 l—ajmj (l_ajmj)
02 or(C - .
(a142 &€ _ 2 [ ! ]: >0,
aajadj 0 l—ajmj (l—ajmj)
2
(A.1423) 0 gr(Pj,): 0 ( ] (I=mj) >0,
dajod; Oaj\ l-ajm;| (1- ajmj)z

O*gr(Kj) o

( J 2>0
om ;od ; 6m] l—a;m; (1- a]m])

(A.14.4)
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0°gr(Cit) @ 1 aj
(A.14.5) mod, ami e T — >0,
jodj J imj) (-ajmj)
62gr(Pjt) 0 l-a; (1-aj)a;
(A.14.6) B o el L
m;jod m; ajm; (1—ajmj)

By the same argument as above, the results on agr(Kj,) follow directly from (A.14.1)
and (A.14.2). The inequalities of (A.14) now prove the proof of the latter half of
Corollary 1. Thus, we complete the proof of Corollary 1.m

Proof of Theorem 3: Egs. (10.2) and (10.3) yield
re" = mPtDthm_lLtl_me_rt.
Therefore, we have
(A.15) r=mBDk™ .
The dynamic inverse demand equation (6) and the production function (8) yield

ALG P elr=s)t e(r—s)t _efr—s—(l-a)d}t
(A.16) (A T (=a), (—aym | (I=a)m
oCt oDy t MoKt

Substituting Eq. (A.16) into Eq. (A.15) yields

_etrms—(-ady L me{r—s—i—ad}tktam_l
r=m k(l—a)m ellp, = R
Mokt o

so that we have

kt — (m /Uor)l/(l—am) th.

Now, define

no = m/rkol_am .

Then we have

k; = koth, q;=c¢; = komemGt.
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Moreover, from Eq. (A.16), we have

(A.17.1)  gr(P)=r—-s—(1-a)d -(1—-a)megr(k;)

:r—s—(l—a)d—(l—a)mw
l—am
_(I=am){r-s—(-a)d}—(1-a)ym(r—s+ad)
- 1—am
_(I=am)(r —s)—(m—am)(r—s)
- l—am
—(1—am)(d —ad)—(m—am)au
1—am
_ (I-m)(r—s)+(1—-m)ad —(1—am)d —(-m)G—d.
1—am
1 rk(l)_am ~ rk(l)_m

A.17.2 Py = = =
(A.17.2) 0 Uok(()l_a)m mk(()l—a)m m

Therefore we obtain from Eq. (10.1) that

gr(W)=gr(P)+megr(k;)=(1-m)G+mG =G,

W, :(l—m)P()k(’)" :M

On the other hand, The dynamic equation concerning the equilibrium path of capital

stock of the investment-goods firm becomes
ke = (r=hYkge + 7 + Wy = Fie,= (r= kg ko'
The solution of the differential equation is given by

= ke — J’ NV G g,
[0,]

ko) o-my koe”" _
0 _h-cG r—-h—-G

Now, we set

ko

A.18 kig=———.
(A.18) 0="","c
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Then we have

ko Gt
hy=—t0
=0 26¢

and it follows from Assumption 4 that the transversality condition (10.7) is satisfied.
Finally, we determine the initial values of capital stocks of consumption-goods and
investment-goods firms. In the same way as before, by using Eq. (A.18) we calculate
the initial capital stocks of consumption-goods firm and investment-goods firm.

1
K()O = K[O + KO = k]()LO + kOLO = (W + 1)](()[40 .

Therefore, initial values of capital stocks are given by

r—-h-G
Fomhobo= TGt

koLo 1
Ko =kroLg = - K
10 =RI0%0 = G 1+ r—h—-G

00-

From Assumption 4, we see Koy <Kop and Kjo < Kop. Moreover, we obtain the

following results on the profit:

(Alg) ﬂt:Ht/Lt:})tDtktm_VVt_It/Lt

1_ L
_ 1k " o(1=m)Gt e m mGt _(A=myrko G K,
m m L,

k 1 —m)rk K K
:”_oth_( m)roth——t:rkOth——t.
m m L, L,

On the other hand, we have

° K K, Li,-K;L; K
T
t

L% Ly

Therefore, Eq. (A.18) yields

7, = rkge®t —k,— kb = (r— G — h)koe".
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Thus, we have gr(r,;)=G. Thus we complete the proof of Theorem 3.1

Proof of Corollary 2: By replacing G; with G, the proof is the same as that of
Corollary 1.m

References

Acemoglu D., and Guerrieri, V. (2008): “Capital Deeping and Nonbalanced Economic
Growth,” Journal Political Economy, 116, 467-498

Barro, R. J., and Sala-i-Martin, X. (1992): “Public Finance in Models of Economic
Growth,” Review of Economic Studies, 59, 645-661.

Barro, R. J., and Sala-i-Martin, X. (1995): Economic Growth. New York: McGraw-Hill.

Herrendorf, B., Rogerson, R. and Valentinyi, A. (2013): “Two Perspectives on
Preferences and Structural Transformation,” American Economic Review, 103(7),
2752-2789.

Herrendorf, B., Herrington, C. and Valentinyi, A. (2015): “Sectoral Technology and
Structural Transformation,” American Economic Journal: Macroeconomics, 7,
104-133.

Hsieh, C.T., and Klenow, P. J. (2007): “Relative Prices and Relative Prosperity”
American Economic Review, 97, 562-585.

Kongsamut, P., Rebelo, S. and Xie, D. (2001). “Beyond Balanced Growth,” Review of
Economic Studies, 68, 869-882.

Jones, L. E., and Manuelli, R. (1990): “A Convex Model of Equilibrium Growth:
Theory and Policy Implications,” Journal of Political Economy, 98, 1008-1038.
Ngai, L.R., and Pissarides, C.A. (2007): “Structural Change in a Multisector Model of

Growth,” American Economic Review, 97, 429-443.

Perko, L. (1996): Differential Equations and Dynamical Systems. New York: Springer-
Verlag.

Ramsey, F. (1928): “A Mathematical Theory of Saving,” Economic Journal, 38, 543-
559.

Rebelo, S. (1991): “Long-Run Policy Analysis and Long-Run Growth,” Journal of
Political Economy, 99, 500-521.

26



Romer, P. M. (1986): “Increasing Returns and Long-Run Growth,” Journal of Political
Economy 94: 1002-1037.

Solow, R. M. (1956): “A Contribution to the Theory of Economic Growth,” Quarterly
Journal of Economics 70: 65-94.

Swan, T. W. (1956): “Economic Growth and Capital Accumulation,” Economic Record

32:334-361.

27



Figure Captions

Figure 1. The effect of the elasticity of marginal utility on the form of the utility
function.

Figure 2: The effect of the elasticity of marginal utility on the relative scale of industry.

Figure 3: The @-function.
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