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Abstract—Flow monitoring has become an essential source of
information for intrusion detection systems and various forms of
network data analytics. However, the attention of researchers
is focused primarily on the utilisation of the flow data, and
the process of flow data creation is often neglected. This lack
of consideration negatively affects the results of data analytics.
Either the results are suboptimal due to the low quality of the flow
data, or a description of the configuration of the flow monitoring
system is missing, which leads to irreproducible results. The goal
of this paper is to demonstrate how the configuration of the
flow monitoring system affects the resulting data. The most basic
flow monitoring configuration variables are the flow expiration
timeouts. We analyse their effect on the number of created flow
records to show their importance. Moreover, we demonstrate
that the choice of the flow expiration timeouts can have a severe
impact on the network data analytics. The use-case of Slowloris
attack detection is used as an example to illustrate this fact.

Index Terms—network, flow, expiration, timeout

I. INTRODUCTION

Machine learning has become a popular and widely used
tool for network traffic classification and attack detection. To
utilise this technique, appropriate features must be extracted
from the network traffic, either directly from each captured
packet or from aggregated flow records [1]. The usage of flow
features is dominant, especially when a large volume of traffic
needs to be processed since the flow monitoring is designed for
large and high-speed networks. However, the generated flow
features are affected by the settings and implementation of the
flow monitoring system, which in turn affects the output of
the machine learning algorithms. Therefore, it is necessary to
study and address the impact of flow monitoring configuration
on the resulting flow records.

The most important parameters of a configuration of a flow
monitoring system that affects the creation of flow records are
the flow expiration conditions [2]. These conditions directly
influence how a flow is described by flow records. For exam-
ple, for a ten-minute connection, one-minute active timeout
splits the flow into ten different flow records. Setting the
active timeout to five minutes results in only two flow records.
Therefore, features extracted from these flow records, such as a
number of packets, bytes or duration, will differ significantly.
However, researchers often omit the description of the flow
monitoring configuration from their research, which hinders
the reproducibility of presented experiments.

The goal of this paper is to show that the configuration of
the flow monitoring system significantly affects the measure-
ment results and should always be included whenever flow
records are used in research. To achieve this goal, we execute
flow monitoring with different configurations on two publicly
available datasets and analyse the resulting flow records. We
show how the number of generated flow records differs based
on the flow expiration conditions. Furthermore, on the example
of a Slowloris attack, we show that the machine learning
attack detection is heavily influenced by the flow monitoring
configuration.

The contribution of this paper is three-fold:
• An study of the impact of flow expiration timeouts

performed on two public data sets. This study focuses
on the difference in the number of created flow records.

• An analysis of the impact of flow expiration timeouts on
subsequent data analysis. We argue that anomaly and at-
tack detection methods are likely to be seriously affected
by a change in flow monitoring configuration. This fact
is demonstrated on a dataset capturing a Slowloris attack.

• We propose guidelines for inferring flow expiration time-
outs based on the expected traffic characteristic and
network operation criteria.

The rest of the paper is organised as follows. Section II
outlines the researched problem and provides necessary back-
ground information. Section III discusses related work. Sec-
tion IV describes the used datasets, our approach to data
analysis, and briefly mentions the implementation of the tool
used for the data analysis. Section V examines and interprets
the results of the performed data analysis. Section VI discusses
the impact of the results on the flow monitoring system
configuration. Moreover, it provides guidelines for determining
appropriate flow expiration timeouts. Section VII concludes
the paper.

II. PROBLEM STATEMENT

Using the correct configuration for the flow monitoring
system is essential since different configurations result in
different flow records for the same traffic. Using different
configuration or withholding the configuration altogether has
several undesirable impacts on the further processing of the
data. Firstly, without the knowledge of the proper configu-
ration, experiments using flow monitoring infrastructure are
not reproducible. Secondly, shorter flow records (i.e. created
using lower timeouts) carry more information than the shorter978-1-7281-4973-8/20/$31.00 © 2020 IEEE
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ones. In the extreme cases, creating a flow record per each
packet maintains the highest informational value and cre-
ating a single flow record for each connection carries the
least information. Therefore, analysis of the flow records,
especially using statistical and machine learning techniques,
can be severely affected by the choice of flow monitoring
configuration. Lastly, processing of generated flow records,
especially using sophisticated data analysis algorithms, can be
computationally expensive. Therefore, creating unnecessarily
many flow records can overwhelm the flow analysis engine.
This section describes the flow creation process with a focus
on flow expiration conditions, as they are easily configured
and affect the flow creation process the most.

The flow creation process can be divided into three basic
parts: packet metadata extraction, flow aggregation, and flow
export. This paper focuses on flow aggregation and especially
the influence of flow expiration conditions on flow aggre-
gation. When a packet is captured by the flow monitoring
system, the metadata extraction process retrieves information
that is used to create new or update an existing flow record.
This process is called flow aggregation. If a matching flow
record does not exist, it is created using the packet metadata.
Otherwise, an existing flow record is checked for expiration,
and if it is still valid, it is updated. Moreover, the existing flow
records need to be periodically checked for inactivity so that
they can be exported in a timely manner.

The RFC 5470 [2] defines three flow expiration conditions:
inactive timeout, active timeout, and resource constraints. In
practice, there are at least two other reasons for flow expi-
ration, end of flow and exported shutdown. All of these flow
expiration conditions are accounted for in RFC 5102 [3] and
can be indicated by the flowEndReason Information element.
This paper focuses on the impact of active and inactive
timeouts on the generated flow records.

Inactive timeout is a primary expiration mechanism which
ensures that the flow records leave the flow cache at all. Too
large inactive timeout causes the flow records to be kept in the
cache longer, which causes higher resource consumption and
delays processing of these flow records. Short inactive timeout
splits the flows with large interpacket gaps unnecessarily.

Active timeout causes expiration of long-running flows on
a regular basis. The active timeout ensures that the connec-
tion is observed after this timeout at the latest. Otherwise,
keeping a connection open for a long time would prevent its
corresponding flow record being observed and processed in a
timely manner, which could impact accounting and security.

III. RELATED WORK

One of the first works to analyse the impact of timeouts
on the creation of flows is [4] by Claffy et al. The authors
use a different definition of flows than this paper and consider
only a single timeout. They study the packet volumes, byte
volumes, and flow duration for timeouts ranging from 2 to
2048 by powers of two. The results show that lower timeouts
require keeping fewer flow records in the cache, but a higher
number of new flows must be created per time unit since more

flows are prematurely evicted from the cache. The authors also
analyse the impact of keeping and creating the records has on
the performance of routers and suggest optimising the timeouts
to minimise these costs.

The authors of [5] analyse artefacts of routers exporting
J-Flow. They use synthetic packet samples with different
packet interarrival times and measure the number of flows
generated by the devices depending on inactive flow expiration
timeout. The results show that one implementation of the
flow monitoring systems ignore the inactive timeout altogether
while the precision of the other one varies based on the size
of the inactive timeout. In this paper, we assume that the flow
monitoring system behaves exactly as specified and does not
skew the results in any way.

The work of Hofstede et al. [6] focuses on flow mea-
surement artefacts as well. One of the analysed artefacts is
imprecise flow record expiration. The authors used synthetic
traces as well to test the precision of active and inactive
timeout of six flow exporters under different configurations.
Most of these exporters behaved inconsistently and split the
flows differently than expected. This resulted in a different
number of generated flows, which can affect the results of
further processing, as explained in the previous section.

Rodríguez et al. consider different traffic classes for estab-
lishing optimal flow timeout in [7]. Data traces from ISP and
mobile operator are classified using DPI tool PACE. Each
traffic category is analysed separately to determine packet
interarrival times and derive appropriate timeouts. The authors
do not focus on flow monitoring and are interested only in
the inactive timeout. The results show that by optimising the
timeout, significant reduction of the number of flows and
consequently used memory during the data processing can be
achieved.

IV. METHODOLOGY

The goal of this paper is to study the impact of flow expi-
ration timeouts on the created flows. We have used existing,
publicly available datasets for our analysis. To use existing
flow exporters on these datasets would require rigorously
testing the correctness of these exporters. Moreover, we only
need a small subset of features provided by flow exporters, i.e.
to identify packets belonging to different connections and then
split those connections into flow records based on the active
and inactive timeouts. Therefore, we created our own tool for
this specific task and released it for public use.

The rest of this section describes the used datasets, per-
formed data analysis, and implementation of the algorithm for
computing flow records.

A. Datasets

Two different datasets are used in this paper. The first is
The CAIDA Anonymized Internet Traces 2015 Dataset [8].
It contains an hour of high-speed backbone traffic captured
on 21 May 2015. Both directions of the traffic are stored
separately and every minute of the capture is stored in a
separate compressed pcap file. We have decompressed the files



TABLE I
DESCRIPTION OF USED DATASETS.

Dataset1 Dataset2 Dataset3

File size 82.5 GB 1.3 GB 20.1 MB
TCP packets 987,143,650 3,564,110 106,933
TCP connections 14,333,540 438,783 12,263
UDP packets 126,733,857 281,691 0
UDP connections 7,111,079 77,445 0
ICMP packets 1,243,588 5,567 0
ICMP connections 325,638 630 0
Capture length 1:02:03 33:31:34 0:41:48

on a direction A of the traffic and merged all the one-minute
pcap files into a single large pcap file. The resulting 82.5 GB
pcap file is used in our analysis and will be called Dataset1
in the rest of this paper.

The second dataset used in this paper is A Realistic Cyber
Defense Dataset (CSE-CIC-IDS2018) [9]. This dataset con-
tains records of multiple different network attacks carried on
in a laboratory environment. There are pcap files and logs
captured during the attacks, and the whole dataset is split into
ten days. For the purpose of this paper, we used two subsets
of the whole sample. The first subset (called Dataset2 from
now on) comprises of the whole first day, 3 February 2018.
The second subset (called Dataset3) comes from 15 February
2018 and contains only the captured Slowloris attack, filtered
by IP address range provided in the description of the CSE-
CIC-IDS2018 dataset. Both subsets were created as a (time-
ordered) merge of multiple pcap files that are present in the
original dataset.

Table I describes the basic properties of each of the used
datasets.

B. Data Analysis

TCP, UDP, and ICMP protocols are the most common
transport protocols found in the network traffic. Since their
purpose and behaviour is different, we have decided to study
them separately for each dataset. Therefore, each dataset was
split into three parts by the transport protocol. After that,
we grouped packets belonging to distinct connections so that
we could easily compute flows with different flow expiration
timeouts for these connections.

We have computed the following features of the datasets
(each feature for all transport protocols):

• Number of connections.
• Distribution of connection lengths.
• Distribution of interpacket gaps (per connection).
• Number of flow records for various expiration timeouts

settings.

The number of connections gives a lower bound on the
number of flow records that are created for the given dataset.
The number of packets is the upper bound, but the timeouts
would have to be close to zero to split the connections into
that many flow records. The distribution of connection lengths

TABLE II
CONNECTION LENGTH DESCRIPTIVE STATISTICS (IN SECONDS).

Data Proto Mean 25% 50% 75% Max

1 TCP 85.47 0.26 1.05 12.83 3722.98
UDP 228.35 0.00 0.00 0.00 3722.98
ICMP 608.09 0.00 0.00 488.69 3722.71

2 TCP 412.01 0.01 0.01 1.37 31910.15
UDP 1753.76 0.00 0.00 0.02 118953.09
ICMP 2965.13 0.00 0.00 7.80 31272.45

3 TCP 194.38 105.76 106.94 107.68 2481.99

helps to show how the active timeout influences the number
of generated flow records.

The inactive timeout is needed to ensure that the flow
records are exported at some point in time when no new
packets of the connection are arriving. Ideally, it would be
applied only after the end of the connection and would not
influence the number of flow records. However, to ensure that
the information is exported with a fixed delay and also to
free the used resources (especially the memory taken by the
record of the connection), it is being set to a value that is
lower than some of the interpacket gaps in the connections.
The distribution of interpacket gaps helps to explain the
relation between inactive timeout and number of generated
flow records.

To compute the number of flows for various expiration time-
outs, we simply run the algorithm which splits the connections
to flow records with various settings. We consider timeouts
from 1 to 600 seconds (with an increment of one second)
to include very short timeouts that save resources and long
timeouts that avoid unnecessarily splitting the connections.
Active and inactive timeouts are computed separately (without
the other one being used) and in all combinations where the
inactive timeout is less than or equal to the active timeout.
The only exception is the Dataset1, where the step for the
combination of timeouts is two seconds due to the complexity
and length of the computation. We have made the tools used
to compute flow records available on Github [10].

V. RESULTS

This section shows the results of the analyses described in
the previous section. First, we present the dataset characteris-
tics that shed light on the possible impacts of the flow timeout
settings. Next, we discuss the impact of both active and
inactive timeout settings individually. After that, we provide
the results of the joint impact of both timeouts on the flow
measurement. Last, we demonstrate how different settings of
the flow expiration timeouts affect the detection methods on
the Slowloris attack use case.

The connection counts for individual protocols (see Table I)
reflect the number of the packet presented in the datasets.
We can observe that the TCP and UDP connections aggregate
more packets than ICMP connections. The reason is that ICMP
is a service protocol and is not designed to transport data.

Table II describes the distribution of the length of the
individual connections present in the datasets. The minimum



TABLE III
INTERPACKET GAPS DESCRIPTIVE STATISTICS (IN SECONDS).

Data Proto Mean 25% 50% 75% Max

1 TCP 0.26 0.00 0.00 0.01 3717.41
UDP 13.58 0.00 0.01 0.02 3720.85
ICMP 215.72 1.02 18.70 306.94 3714.40

2 TCP 57.845 0.00 0.01 0.32 29844.53
UDP 664.98 0.00 0.00 2.02 83134.49
ICMP 378.37 7.20 23.33 50.14 25159.65

3 TCP 25.18 0.42 3.41 31.00 250.19

values for all datasets and protocols were equal to zero and
are omitted from the table. We observe that connection length
distribution is skewed as most of the connections are very
short. However, the mean values indicate that there is a small
number of very long connections as well. ICMP connections
are longer than TCP and UDP connections. The reason is that
they are not differentiated by transport ports, and therefore any
ICMP communication between two hosts is part of the same
connection.

Dataset3 shows different distributions in the connection
lengths than the other two datasets since it contains only traffic
of the Slowloris attack. The reasons for the specific connection
lengths are discussed in Subsection V-D.

The interpacket gap distribution analysis is presented in
Table III. We observe that it is skewed similarly to the
connection length distribution, i.e. there is a small number
of large interpacket gaps. For example, given the fact that
the inactive timeout is usually set to 30 seconds, setting the
inactive timeout to different values will influence the properties
of more than 50% of the connections in the Dataset1.

A. Impact of the Inactive Timeout

We have argued that the impact of inactive timeout de-
pends upon the interpacket gaps of the observed connections.
Figure 1 represents connections of the TCP protocol of the
Dataset1. Only inactive timeout is applied, the active timeout is
not used in this figure. The x-axis represents different inactive
timeouts in relation to the number of flows (the purple line). It
also represents the length of interpacket gaps in their histogram
(blue bar graph). We can clearly see that the number of flows
correlates with the interpacket gaps. For example, since there
is a distinct number of interpacket gaps approximately 45
seconds long, it causes the number of connections to decrease
when the inactive timeout is set to a higher value. The same
dependency can be observed at other values as well.

To verify that our assumption is correct, we computed the
number of interpacket gaps longer than 45 seconds and equal
or shorter 46 seconds. It is exactly the same as the difference
between the number of flows for the 45 and 46-second inactive
timeout.

Looking at the histogram of interpacket gaps can help us
determine which value to use for an inactive timeout. Values
just after large spikes in the graph should be preferred as
they avoid unnecessary splitting of connections into multiple
flow records and therefore save the cost of processing these
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Fig. 1. Impact of interpacket gaps and inactive timeouts on number of flows.
(Dataset1, TCP)

records on the collector and creating new ones during the flow
measurement process.

B. Impact of the Active Timeout

The active timeout splits long connections to flow records of
maximum length of the value of the active timeout. Therefore,
we can expect a correlation between lengths of connections,
active timeout and the number of flow records. We captured
this relation for TCP protocol connections of Dataset2 in
Figure 2a. However, the correlation is not nearly as strong
as that of interpacket gaps and inactive timeout. The reason
is that the active timeout does not cause the flow records
to be of exactly equal lengths. Instead, it terminates a flow
record after the given time, and the flow record describing
the rest of the connection starts at the next packet. Therefore,
the sum of lengths of flow records split by an active timeout
is less than that of the original connection. This means that
the number of flows record when the active timeout is used
depends not only on connection lengths but on interpacket
gaps as well. Therefore, it is not as straightforward to find the
relation between active timeout and number of flows.

When the connection length is a multiple of the value of
the active timeout, we can expect a change in the graph as
well. This is the most likely reason for the large decrease in
the number of flows for the active timeout of length 10 in
Figure 2a.

If the packet in all connections were equally distributed
in time (i.e. had the same interpacket gaps), the correlation
between connection lengths, active timeout, and the number
of flows would be stronger. The TCP protocol connections in
Dataset2 have smaller interpacket gaps than the ICMP con-
nections (see Table III). Figure 2b shows the same correlation
for the ICMP protocol. Since longer interpacket gaps are more
frequent for ICMP, the correlation is even weaker.

Based on these results, it is not feasible to determine the
best active timeout based on the connection lengths found
the observed network data. The active timeout configuration
should rather be set based on external factors, such as the
required timeliness of the data.
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Fig. 2. Impact of connection lengths and active timeouts on number of flows.

C. Impact of the Active and Inactive Timeout Combination

Active and inactive timeouts are used both at the same
time in flow monitoring systems. We have plotted the rela-
tionship between timeouts and number of created flows using
a heatmap where the colour represents the number of flow
records. Figures 3a and 3b show the relations for the Dataset1
TCP and UDP protocols respectively. The range of inactive
timeout was limited to 16− 120 s, the range of active timeout
to 30 − 300 s to highlight the most interesting parts. The
horizontal lines in Figure 3a correspond to frequent interpacket
gaps in Figure 1. As for the active timeout, we are able
to discern changes at values 60, 90, 120, and 180. These
values are given by common implementations of application
protocols. However, for the active timeout larger than three
minutes, there are are only gradual changes in the number
of flows. Therefore, the active timeout configuration can be
based on the preference of data analytics or capabilities of a
flow collection software, rather than solely on the properties
of the observed traffic.

Figure 3b shows that the behaviour of UDP protocol differs
from the TCP. The heatmap exhibits more gradual transitions,
which indicates a lack of clearly defined timeout values.
Therefore, we expect that finding optimal flow expiration
timeouts will differ for different transport protocols.

D. Impact of Timeouts on Slowloris Detection

The Slowloris attack, represented by the Dataset3 in this
paper, is a DoS attack aimed to overwhelm the target HTTP
server by sending and maintaining requests for the largest
possible amount of time. This is achieved by sending the
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Fig. 3. Heatmap of number of flows based on active and inactive timeout.

request header in small parts but never actually completing the
request. We describe the connections generated by this attack
and show how the detection of the attack is usually performed.
Then, we will show that changing the flow expiration timeouts
will break such a detection.

A successful attack begins by establishing a connection via
the TCP three-way handshake. After that, the attacker sends
the first part of the HTTP GET request header and continues to
send a small part of the HTTP header every 100 seconds. This
continues until the server responds with Bad Request HTTP
error code, which takes more than 2470 seconds in our dataset.

When the server is successfully attacked, it first stops
responding to HTTP requests. The TCP connections are still
created, but the attacker does not get a response for the initial
part of the HTTP GET request and terminates the connection
after approximately 108 seconds. When the server is impaired
by the attack even more heavily, it simply does not respond to
TCP connection establishment attempts, and the attacker stops
trying after sending three SYN packets in 3 seconds.

Most of the traffic in the Dataset3 are connections from
one of the three described categories. Figure 4 shows numbers
of flow records created for different active and inactive time-
outs on the Dataset3. The breakpoint at active timeout 108
corresponds to a large number of failed HTTP connections.
The same reason is for the difference at active timeouts 54,
36, and 27 as they are fractions of 108 (108 divided by
2, 3, and 4). The distinctive inactive timeouts correspond
to application-specific timeouts after which the unresponsive
sessions are closed. The inactive timeout of 100 corresponds
to the interpacket gaps in the successful Slowloris attack.

The detection of the Slowloris attack can be based on
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flow monitoring data. It usually includes analysis of the
attack behaviour and proposition of metrics that match this
behaviour as close as possible to provide high detection rate
and low false-positive rate. Machine learning algorithms are
often utilised for the feature selection and for finding the
optimal model. The authors of [11] have used exactly this
approach. Some of the presented models use flow duration
as a feature that helps to identify attacks. For example, one
of the models requires that the connection is longer than 907
seconds. However, we have shown that the attacks can have
more than 100-second interpacket gaps. Therefore, using flow
records created with inactive timeout lower than 100 seconds
would create flow records that do not match this model, and
the detection would fail. Aggregating the flow records to create
records closer to the original connections can mitigate this
issue. However, this causes the detection to be postponed until
after the attack is complete, which can take very long in the
case of the Slowloris attack.

Another example of flow record utilisation for slow HTTP
attack detection can be found in [12]. The authors use NetFlow
features such as flow duration, number of packets, packet
per second, and bytes per second. All these features heavily
depend upon the flow expiration conditions. Although the
authors describe the executed attacks in detail, the flow mon-
itoring configuration is omitted. Based on our results, we can
expect the outcome of the presented experiments to change
significantly with any change to the flow monitoring expira-
tion timeouts. Moreover, training the models using different
timeouts than those that are used for subsequent evaluation
could cause a decrease in the performance of the models.

VI. DISCUSSION

The analysis of flow expiration timeouts shows that choos-
ing the optimal timeout values is not a straightforward task.
The timeout configuration is always a trade-off between flow
completeness, timeliness, and resource utilisation. Although
there is no simple guide for determining the flow expiration
timeouts, it is useful to consider the following questions when
choosing the timeouts:
Active timeout: What is the requirement on the timeliness of

the data? Is any action taken in real-time based on the

data? Does the flow collection tool require certain time-
outs? E.g. the popular NfSen flow processing toolset [13]
expects the active timeout to be 300 seconds.

Inactive timeout: How fast should the inactive connections
be reported? Is the performance of the flow monitoring
system (especially the amount of utilised memory) an
issue? If it is, consider lowering the inactive timeout.
Are there any application-specific timeouts that should
be taken into consideration to avoid unnecessary dividing
the flow records?

When determining the flow expiration timeouts, it might
be useful to analyse the observed traffic. We have shown
that different datasets exhibit different behaviour; therefore,
using different timeouts would provide higher data quality.
The presented tool [10] can be used to analyse a sample
dataset and find timeouts for which the number of flows
changes significantly. This knowledge can be used to discover
application-specific behaviour and decide which expiration
timeouts to use.

The analysis of the Slowloris attack and its detection method
showed that the flow expiration timeouts influence the results
of the methods based on time-related flow features. The lack of
consideration for the configuration of the flow monitoring sys-
tems can be found throughout the research literature, e.g. [14],
[15]. Moreover, not only attack detection is concerned. Any
use of machine learning based on time-related flow features,
such as traffic classification or identification is affected.

VII. CONCLUSIONS

In this paper, we have analysed the impact of flow ex-
piration timeouts on the number of resulting flow records
using different publicly available datasets. We have found that
different types of traffic exhibit different behaviour with regard
to expiration timeout settings. This behaviour differs between
datasets as well as between different transport protocols.
Therefore, it is advisable to set the timeouts according to the
desired results based on the monitored traffic.

On an example of Slowloris attack, we have shown how the
flow expiration timeout configuration affects the results of the
attack detection method. This finding can be generalised for
all algorithms using flow monitoring data and depending on
time-based flow features. We have observed that researchers
often neglect to disclose the flow monitoring configuration
parameters of their experiments, which hinders reproducibility
of their results. We believe that the findings presented in this
paper will convince authors of such experiments to include the
details about the flow monitoring configuration in their work.
For this reason, we have proposed a series of questions that
can help with selecting the correct flow expiration timeouts
for a given scenario.
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