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ABSTRACT
Intrinsically disordered proteins (IDPs) 
are subject to post-translational modifi-
cations. This allows the same polypeptide 
to undertake different interaction 
networks with different consequences, 
ranging from regulatory signalling 
networks to formation of membrane-
less organelles. We report a robust 
method for co-expression of modifi-
cation enzyme and SUMO-tagged IDP 
with subsequent purification procedure 
allowing production of modified IDP. The 
robustness of our protocol is demon-
strated on a challenging system, RNA 
polymerase II C-terminal domain (CTD), 
that is a low-complexity repetitive region 
with multiple phosphorylation sites. In 
vitro phosphorylation approaches fail 
to yield multiple-site phosphorylated 
CTD, whereas our in vivo protocol allows 
to rapidly produce near homogeneous 
phosphorylated CTD at a low cost. These 
samples can be used in functional and 
structural studies.

METHOD SUMMARY
Production of phosphorylated intrinsi-
cally disordered proteins (IDPs) remains 
a challenge. We report a robust method 
for co-expression of kinase and SUMO-
tagged IDP with subsequent purifi-
cation procedure allowing production of 
modified IDP. Our in vivo protocol allows 
to rapidly produce highly phosphorylated 
IDPs at a low cost which can be used in 
functional and structural studies.

GRAPHICAL ABSTRACT
Both effector kinase and SUMO-fused IDP target are recombinantly co-expressed. The 
phosphorylated peptide is subsequently purified using the affinity and ion-exchange chroma-
tography that yields peptides with homogeneous phosphorylations.
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Intrinsically disordered proteins (IDPs) 
and intrinsically disordered regions (IDRs) 
are in the center of attention, as they 
not only occupy a significant portion of 
proteomes [1], but also violate ‘one protein-
one structure-one function’ paradigm [2]. 
Thus, they do not adopt a well ordered 
structure [2], but rather an ensemble of 
dynamic structures interconverting on 
a number of timescales and some may 
undergo disorder to order transitions 
in the presence of natural ligands. IDPs 
and IDRs are subject to post-translational 
modifications (PTM), which allows the 
same polypeptide to undertake different 
interaction networks with different conse-
quences, ranging from regulatory signalling 
networks to formation of membrane-less 
organelles through phase separation 
(e.g., liquid droplets). IDPs are involved in 
transcription, translation, splicing, cellular 
signalling and cell cycle processes [3–6]. 
Beside that IDPs are associated with 
numerous human diseases including 

cancer, cardiovascular diseases, amyloi-
doses, neurodegenerative diseases, and 
diabetes [7]. Therefore, unravelling struc-
tural and functional information about 
these proteins is of biomedical importance 
as they represent a novel class of drug 
targets that aims to modulate protein–
protein interactions.

A number of strategies have been 
developed to aid the production of IDPs [8], 
whereas the production of modified 
(e.g., phosphorylated IDPs) still remains 
a challenge. Current protocols involve 
several ways how to produce post-trans-
lationally modified protein or peptide. The 
first option is to subject a pre-purified 
protein to enzymatic assay, which will 
introduce the desired modification. 
For example, Portz and colleagues  [9] 
phosphorylated the purified CTD by 
the P-TEFb. The final product must be 
re-purified after in vitro phosphorylation 
and the reactions require a great deal of 
condition optimization and even then 
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the enzymatic reaction is rarely driven 
to completion [10,11]. Alternatively, a solid-
phase synthesized fragment with PTM can 
be fused to a purified protein. For example, 
a lipidated solid-phase synthesized peptide 
was conjugated via chemically selective 
ligation to Ras protein expressed in standard 
E. coli host [12]. This method is limited to 
conjugation with terminal residues [13–15].

Serine phosphorylation can be studied 
via engineering a residue mimicking 
the phosphomark (e.g.  glutamate). The 
phosphoserine–glutamate substitution 
is imperfect due to a different atomic size 
(P is bigger than C),  number of oxygen 
atoms, and overall charge at neutral pH. 
Nevertheless, several studies show a good 
approximation between modified and 
phosphorylated wild-type protein behaviour 
in biochemical assays [16–18]. The site-
specific phosphorylation can also be intro-
duced using nonsense codon suppression 
technique. The termination signal of 
amber codon is suppressed during trans-
lation and site-specific unnatural amino 
acid is placed in the growing polypeptide 
in ‘suppression-friendly’ Escherichia coli 
strains [19]. Production of modified protein 
both in vivo and in vitro suffer from a low yield 
and efficiency of suppression [20–22].

Last option is to co-express two distinct 
proteins in the same cell. This strategy 
relies on two independent plasmids using 
distinct antibiotic resistances and origins 
of replication. If the same antibiotic 
resistance is used, only one of the two 
constructs is maintained [23]. The propa-
gation of both plasmids is ensured by 
using compatible replicons, where there is 
no competition between them [24]. Several 
studies employed this method to produce 
heterodimer complex [25], chaperon and its 
target [26] and kinase with its ligand [27]. The 
downside of this co-expression approach is 
requirement for optimization of vectors and 
their design, expression and purification for 
a particular set of proteins [28]. Additionally, 
maintenance of multiple plasmids each with 
its own resistance and protein puts E. coli 
cells under huge metabolic stress [29–31].

Here, we describe an alternative 
approach in which the modification enzyme 
and target are expressed via a single plasmid 
with the use of solubility enhancement tag. 
We utilised pETDuet-1 vector to co-express 
phosphotyrosine kinase c-Abl [32,33] with its 

target fused to SUMO and FLAG tags. The 
use of tags is important as they prevent 
proteolysis and aggregation of IDPs [34]. 
SUMO tag enhances the overall target 
solubility and expression and can be cleaved 
to remove the SUMO moiety using SUMO-
specific proteases such as Ulp1 [35–39]. 
FLAG tag prevents proteolysis and offers 
additional detection and purification 
tool [34]. Thanks to these tags, we are able 
to produce short as well as long peptides 
that are fully phosphorylated. As a target 
for c-Abl, we chose very challenging model 
of IDP, the C-terminal domain (CTD) of the 
largest RNA polymerase II subunit, Rpb1. The 
CTD protrudes from RNA polymerase II core 
and plays an essential role in transcription 
initiation, elongation, termination, mRNA 
co-transcriptional processing, chromatin 
modification and DNA repair [40–42]. The 
CTD domain is highly repetitive and features 
characteristics of IDRs with a consensus 
repetitive motif of YSPTSPS  [43–45]. 
Dynamic post-translational modifications of 
each non-proline residue enables CTD to act 
as a landing pad for recruitment, exchange 
or displacement of various transcription and 
processing factors [46–49].

MATERIAL & METHODS
Preparation of the constructs
The synthetic Abl kinase and target CTD 
genes were produced by GeneArt (Thermo 
Fisher Scientific). The (CTD)2 and (CTD)13 
genes were N-terminally fused with 6xHis tag 
followed by SUMO solubility tag. The 
construct with 13 repetitions of CTD was also 
C-terminally FLAG tagged to promote its 
stability [18]. The kinase and target genes 
were inserted in pETDuet-1 vector using NcoI 
and XhoI. Therefore, the kinase is placed in 
the MCS1 (multiple cloning site), whereas the 
target gene in the MCS2. The (CTD)13 construct 
was cloned using BamHI and XhoI restriction 
sites. All plasmids used along with gene 
sequences can be found in Table S1.

Protein expression
All constructs were transformed into 
BL21-CodonPlus (DE3)-RIL bacterial strain. 
The transformants were grown in LB or 
minimal M9 media ([U-13C] D-glucose and 
15NH4Cl for isotopically labelled samples) 
for (CTD)2 and (CTD)13, respectively and 
induced with 0.1  mM IPTG. Protein 
expression was carried out at 16°C. Cells 

were harvested, resuspended in lysis buffer 
(50  mM HEPES, 500  mM NaCl, 20 mM 
imidazole,  20  mM BME, pH 7.3) and 
sonicated. We note that the expression 
temperature and time may initially be 
optimized to yield the largest amount of 
phosphorylated peptide. The biomass was 
sonicated on ice with 1s pulse, 4 s off with 
40% amplitude for total sonication time 
6.5 min using Q700 sonicator (Qsonica, LLC). 
The cell lysate was cleared by centrifugation 
and loaded on 5 ml HisTrap FF Crude column 
(GE Healthcare) connected to AKTA purifier 
10 with UV-900 flow cell. The column was 
washed with 4 CV (column volumes) of lysis 
buffer and then buffer was exchanged to 
the cleavage buffer (100 mM NH4HCO3, pH 
8). An on-column cleavage using Ulp1 
protease (construct donated by Christopher 
D Lima) was performed [35,36]. The cleaved 
peptides were eluted with the cleavage 
buffer in 5 CV. Fractions containing the mix 
of peptides were pooled and 10x diluted with 
low-salt buffer (10 mM NH4HCO3, pH 8) and 
loaded onto 5 ml HiTrap Q HP (GE Healthcare) 
column. The column was washed with 4 CV 
of low-salt buffer. The gradient elution with 
high-salt buffer (1 M NH4HCO3, pH 8) was 
performed for 10 and 20 CV, at 2 ml/min with 
gradient of 12.5 and 100 min for the (CTD)2 
or (CTD)13 constructs, respectively. The 
collected fractions were analysed by mass 
spectrometry. The peptides were then 
thoroughly lyophilized. The protocol yielded 
phosphorylated peptides with a 99% purity 
and the final yield of ∼1 mg.l-1 of media.

Nuclear magnetic resonance 
experiments
The ∼1.5  mM uniformly 15N, 13C-labelled 
(pY1-CTD)2 peptide was measured in 20 mM 
Na2HPO4, pH 6 (90% H2O/10% D2O) at a 
temperature of 10°C. Phosphorus-detected 
experiments were performed on a 600 MHz 
Bruker AVANCE III HD spectrometer equipped 
with a QCI Cryoprobe. The 1D 31P spectra 
were recorded with a standard Bruker pulse 
program, using a 30° excitation pulse, a 1.5 s 
recycle delay and a WALTZ-16 power-gated 
composite-pulse proton decoupling. Set of 
standard 2D experiments (1H-15N HSQC, 
aliphatic and aromatic 1H-13C HSQC) were 
recorded on a Bruker AVANCE 700 MHz 
spectrometer equipped with 5  mm TXI 
probe. The spectra were processed with 
Topspin 3.2 (Bruker BioSpin).
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Mass spectrometric peptide 
characterization
The purified peptides were subjected to 
MALDI-TOF mass spectrometric analysis 
using an Ultraflextreme instrument (Bruker 
Daltonics, Bremen, Germany) equipped with 
a stainless-steel sample target. The CTD 
peptides were analysed in the reflectron 
negative ion detection mode using 
alpha-cyano-4-hydroxycinnamic acid 
(Bruker) as a MALDI matrix, while the 
(pY1-CTD)13 was analysed in linear positive 
ion detection mode with ferulic acid (Sigma 
Aldrich) as a MALDI matrix. Calf Intestinal 
Alkaline Phosphatase kit (Invitrogen) was 
used for (pY1-CTD)13 dephosphorylation 
according to guidelines of the manufacturer. 
The localization of phosphorylation sites and 
relative quantification of the peptide forms 
was done by LC-MS/MS using RSLCnano 
system (SRD-3400, NCS-3500RS CAP, 
WPS-3000 TPL RS) connected to Orbitrap 
Elite hybrid spectrometer (Thermo Fisher 
Scientific). Prior to LC separation, peptides 
were online concentrated and desalted using 
trapping column (100 μm × 30 mm) filled with 
3.5-μm X-Bridge BEH 130 C18 sorbent 
(Waters). After washing of trapping column 
with 0.1% fluoroacetic acid, the peptides 
were eluted (flow 300  nl/min) from the 
trapping column onto an analytical column 
(Acclaim Pepmap100 C18, 3 μm particles, 
75 μm × 500 mm; Thermo Fisher Scientific) 
by 50  min nonlinear gradient program 
(1–56% of mobile phase B; mobile phase A: 
0.1% fluoroacetic acid in water; mobile phase 
B: 0.1% fluoroacetic acid in 80% acetonitrile). 
Equilibration of the trapping column and the 
column was done prior to sample injection 
to sample loop. The analytical column outlet 
was directly connected to the Digital 
PicoView 550 (New Objective) ion source 
with sheath gas option and SilicaTip emitter 
(New Objective; FS360-20-15-N-20-C12) utili-
zation. ABIRD (Active Background Ion 
Reduction Device, ESI Source Solutions) was 
installed. MS data were acquired in targeted 
mode with 10 scan events measured in 
Orbitrap analyzer in total, covering survey 
scan and three MS/MS scans at different 
relative fragmentation energies (10, 25 and 
35 %) for 3 peptide forms (0x phosphorylated 
– m/z 940.9968, 1x phosphorylated – m/z 
980.4800, 2x phosphorylated – m/z 
1020.9631; nine MS/MS scans in total). The 
scan range was 350–2000 or 100–2000 m/z, 

resolution 60000 or 15000 (at 400 m/z), 
target value of 1  ×  106 or 5  ×  104, and 
maximum injection time of 200 or 500 ms 
for the survey or MS/MS scan, respectively. 
The isolation window for MS/MS 
fragmentation was set to 2 m/z.

RESULTS & DISCUSSION
Divide-and-conquer strategy utilizing short 
truncated phospho-peptides prepared by 
solid-phase synthesis comprise a standard 
strategy to study interactions of modified 
IDP with their receptor proteins. In the case 
of the CTD, a number of studies used short 
truncated peptides (cca 14–16 residues in 
length) derived from the CTD repetitive 
heptad elements (YSPTSPS) [50–60]. These 
peptides were phosphorylated in different 
registers and scrutinized for binding affinity 

and mechanisms of binding towards their 
effector molecules. The results were then 
extrapolated for the entire CTD lengths. In 
some cases, the CTD fragments were 
truncated to suboptimal sizes and did not 
fully occupy the binding site of the effector 
proteins [52,61,62]. Often, the CTD binding 
proteins are large entities or even multi-
merize and form together with the CTD large 
molecular complexes, called CTDsomes [18]. 
Therefore, the CTD interactome studies 
require the use of the full-length or large 
fragment of the modified CTDs. 
Unfortunately, these long CTD peptides are 
beyond the limits of current state-of-the-art 
solid-phase synthetic approaches. We set 
out to employ in vivo system to overcome 
this issue, and it offers production of 
modified peptides with native N- and 
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Figure 1. Peptide production work-flow. (A) Overview of Rpb1 and the used (CTD)2 and (CTD)13 
constructs. Produced peptides herein referred as (pY1-CTD)2 and (pY1-CTD)13. (B) Scheme of the 
phosphorylated peptide production. Briefly, both effector and target substrate are cloned into 
pETDuet-1 vector, followed by plasmid transformation. After expression, the substrate is purified 
and the product is desalted upon lyophilization. (C) The purification procedure is simple, yet robust 
and involves the following steps: lysed cells are loaded on immobilized metal affinity chroma-
tography (IMAC) column, where a mixture of phosphorylated and non-phosphorylated peptides 
are eluted after SUMO cleavage in a single peak. This mixture is loaded on IEX, where the peptide 
isoforms are separated. The first peak represents the a single-phosphorylated isoform, while the 
downstream peak represents the fully phosphorylated form (pY1-CTD)2. Peptides are shown as 
dashed lines, the phosphate marks are indicated as green stars.
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C-termini with possibility of isotopic 
enrichment and residue-specifi c modifi -
cation (depending on the specificity of 
modification enzyme) at a low cost. 
Additionally, this system can be applied to 
any peptide sequence including repetitive 
ones and any size of the peptide. The purifi ed 
peptides are free of salts and organic 
solvents, in contrast to the solid-phase 
synthetized ones. 

 Our experiments with co-expression 
systems showed the best results for 
the system with two separated mono-
cistronic transcripts each under its own 
promoter, as implemented in pETDuet-1. 
Having two separate promoters increases 
the expression compared to a bi-cistronic 
operon with single T7 promoter  [63] . We also 
found that placing the c-Abl kinase in MCS1 
resulted in a higher overall yield compared to 
situation where it was cloned in MCS2. This 
is likely the result of non-equal expression 
of both genes. The expression of the fi rst 
one is slightly impaired as the MCS1 region 
lacking the T7 terminator is susceptible 
to the transcriptional read-through  [64] . 
Thus, by cloning the c-Abl kinase in MCS1 
we lowered its expression level in favor of 
its CTD substrate. Production of both the 
kinase and the CTD substrate  in vivo  elimi-
nates cumbersome screening of reaction 
conditions. The CTD is diffi  cult to produce 
as IDPs are prone to proteolysis and aggre-
gation  [34,  65–67] . Several studies showed 
the improvement of solubility and stability 
by fusing the IDPs to a fusion partner 
e.g. SUMO  [68,  69] , GST  [70]  or MBP  [9] . We 
used SUMO tag, which facilitates expression, 
solubility and subsequent purification 
with highly active and site-specifi c Ulp1 
protease  [37–39] . 

 We probed the ability of this expression 
approach by preparation of two constructs, 
(CTD) 2  and (CTD) 13 . Two repeats of the 
CTD consensus heptad, (pY1-CTD) 2 , was 
widely used in previous studies as it repre-
sents a minimal binding motif in some 
cases  [50–60] . The large fragment of 13 
CTD heptads, (pY1-CTD) 13 , corresponds to 
the half of length of yeast’s CTD, and it was 
used in structural studies only recently  [18]  
 (Figure 1 A). Viability tests in yeast showed 
strong phenotypes for the CTD that was 
truncated to less than 13 repeats  [71] . In both 
cases, we followed the scheme outlined in 
 Figure 1 B which takes about one week of 
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Figure 2.       Production of (pY1-CTD) 2 .   (A) Upper  Expression and solubility tests of the SUMO-(CTD) 2  
construct. Expression and solubility tests analysed by SDS page and western blot with antibody 
against CTD phosphotyrosine (clone 3D12, MABE350 (Merck)). SUMO-(CTD) 2  is indicated by 
red asterisk.  Lower , Total ion chromatogram from LC-MS analysis showing relative abundance 
of (pY1-CTD) 2  in the purifi ed sample. Peaks corresponding to unphosphorylated (CTD) 2 , singly 
phosphorylated and doubly phosphorylated variant (pY1-CTD) 2  are highlighted by blue, green, and 
red arrows, respectively.  (B)  MALDI-TOF mass spectra indicating presence of doubly phosphory-
lated peptide ([M-H] −  theoretical = 2038,892).  (C)  Overlay of 1D  31 P spectra of phosphorylated (red) 
and non-phosphorylated (blue) peptide variant. Phosphorylations are depicted in green. The large 
peak around 0.8 ppm corresponds to residual phosphate buffer.  (D)  Overlay of 2D aromatic  1 H- 13 C 
HSQC spectra of phosphorylated (red) and non-phosphorylated (blue) peptide variant. The  e - and 
δ-carbons of tyrosine side-chains are perturbed due to the proximity of the phosphate group. 
Phosphorylations are depicted in green.  (E)  Overlay of the 2D  1 H- 15 N HSQC spectra of phosphory-
lated (red) and non-phosphorylated (blue) peptide variants. Phosphorylations are depicted in green.  
I: Induced cells; M: marker; N: Non-induced cells; P: Pellet; S: Supernatant.
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experimental work. The procedure starts 
with cloning of the kinase and substrate 
into the pETDuet-1 vector using MCS1 (NcoI/
HindIII) and MCS2 (NdeI/XhoI) sites, respec-
tively. The resulting plasmid was verified by 
sequencing. Expression and solubility for 
both substrates were assessed from the 
SDS-PAGE gels (Figure 2A & 3A). We note that 
expression conditions might be varied for a 
different kinase-substrate pair, e.g., time, 
temperature or inductor concentration. 
The biomass is then purified on affinity and 
ion-exchange (IEX) column using standard 
FPLC machine (Figure 1C). The elution from 
the affinity column contains a pool of peptide 
isoforms, which are subsequently separated 
on IEX. Our protocol enables to separate a 
mixture of phospho-peptides with a single 
phosphate resolution for shorter fragment 
and low-intermediate-high phosphorylated 
species for the (CTD)13 peptides (Figure 3B). 
Peaks representing fully phosphorylated 
forms of (pY1-CTD)2 and (pY1-CTD)13 were 
analysed for purity on LC-MS. The purity of 
(pY1-CTD)2 has been 99% (Figure 2A), which 
is comparable to purities offered by peptide 
synthesizing companies.

Subsequently, eluted fractions were 
assayed for phosphorylation by western 
blot with antibody against the phosphory-
lated CTD on Y1 (anti-phospho-RNAPII [Tyr1] 
Ab, clone 3D12), where both constructs 
(CTD)2 and (CTD)13 were positive for 
phosphotyrosine. Next, we used 1D 31P 
NMR phosphorus spectra to independently 
assess the presence of the phosphorylation. 
The spectra clearly show the frequency of 
two phosphorylations in respect to the free 
phosphate from the buffer, whereas no 
peaks are observed for the non-phosphory-
lated form (Figure 2C). These observations 
are further supported by mass spectrometry 
data for (pY1-CTD)2 (Figure  2B) and 
(pY1-CTD)13 (Figure 3B), and treatment of 
the (pY1-CTD)13 with alkaline phosphatase 
(Figure  3B). The (pY1-CTD)13 product is 
near homogenous in terms of number of 
phosphorylations. Further improvement may 
be achieved by optimizing the expression 
temperature and time, and using an ultra-
high resolution IEX column. Next, we tested 
the identity of phosphorylated residues by 
additional NMR experiments. The aromatic 
2D 1H-13C-HSQC experiment identified the 
tyrosine as the residue that possesses the 
phosphorylation mark. The phosphate group 

alters the chemical environment of the neigh-
bouring atoms in the tyrosine side-chain. 
As a result, the chemical shifts of aromatic 
Cδ and Ce atoms in the tyrosine side-chain 
display significant perturbations (Figure 2D). 
MS/MS fragmentation independently and 
unambiguously pinpointed the tyrosine 
phosphorylations (Supplementary Figure 
1). This finding is supported by the speci-
ficity of c-Abl kinase in literature [32,33,72].

The CTD as an IDP might be subjected 
to proteolytic degradation [65,67]. Indeed, 
our initial trial with peptides lacking N- and 
C-terminal tags suffered from significant 
proteolysis. The level of proteolysis is signifi-
cantly greater for longer than for the short 

peptides. To prevent this, we fused SUMO tag 
to the N-terminus for both constructs and 
added an additional FLAG tag signal peptide 
to the C-terminus in case of (pY1-CTD)13. To 
monitor the peptide stability, we measured 
NMR spectra for the (pY1-CTD)2 (Figure 2E). 
The spectrum shows that the number of 
residues corresponds to the theoretical 
sequence. The (pY1-CTD)13 has a C-terminal 
FLAG tag, which was detected by western 
blot using the anti-flag monoclonal antibody 
(clone M2, Merck) (Figure 3B).

IDPs and IDRs that are subjected 
to posttranslational modifications are 
associated with human diseases, including 
cancer, cardiovascular diseases, amyloi-
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abundant. Additional phosphorylations (>13+) correspond to tyrosines of the flanking sequences of 
the peptide construct. (B) Bottom, analysis of (pY1-CTD)13 after treatment of phosphatase assays. 
Dominant peak corresponds to the non-phosphorylated form, (Y1-CTD)13.
I: Induced cells; M: marker; N: Non-induced cells; P: Pellet; S: Supernatant.
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doses, neurodegenerative diseases, and 
diabetes [7]. Therefore, unravelling struc-
tural and functional information about these 
proteins is of biomedical importance as they 
represent a novel class of drug targets that 
aims to modulate protein-protein interac-
tions. Here, we combined co-expression of 
tyrosine kinase with its substrate, the CTD of 
RNAPII, and demonstrated that the modified 
substrate can be expressed and purified 
to homogeneity via a simple and robust 
protocol. The pair of modification enzyme 
and target can be specifically tailored 
depending on the requested modifications 
of IDP. To phosphorylate serines of the CTD, 
BRD4 can be used as the kinase module in 
the expression system [73], whereas the 
use of cyclin-dependent kinases (Cdks), 
e.g., CDK7 and CDK9 [74–76], is challenging 
and would require additional modification 
of the E.coli expression system, as their 
activity is mainly regulated by association 
with regulatory subunits and their PTMs. We 
believe that future biochemical, biophysical 
and structural studies of modified IDPs will 
benefit from our robust protocol for in vivo 
preparation and purification of modified 
peptides.

FUTURE PERSPECTIVE
We believe that future biochemical, 
biophysical and structural studies of 
modified IDPs will benefit from our robust 
protocol for in vivo preparation and purifi-
cation of modified peptides. Our method 
paves the way for further development to 
obtain high yields of selectively phosphory-
lated tyrosine, serine and threonine residues 
contained in the IDPs and IDRs. The future 
development lies in advancement of 
eukaryotic expression systems that will facil-
itate production of more complex IDPs with 
multiple modifications.
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