
Machine Learning for Software
Dependability

by

Thibaud Lutellier

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

© Thibaud Lutellier 2020

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Martin Monperrus
Professor, Division of Theoretical Computer Science,
KTH Royal Institute of Technology

Supervisor: Lin Tan
Professor, Electrical & Computer Engineering,
University of Waterloo

Internal Member: Vijay Ganesh
Professor, Electrical & Computer Engineering,
University of Waterloo

Derek Rayside
Professor, Electrical & Computer Engineering,
University of Waterloo

Internal-External Member: Michael Godfrey
Professor, Dept. of Computer Science,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of
Contributions included in the thesis. This is a true copy of the thesis, including any required
final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

As lead author of all the contributions of this thesis, I was responsible for contributing
to conceptualizing study design, developing, implementing, and evaluating prototypes
and evaluating them, carrying out data collection and analysis, drafting and submitting
manuscripts, and presenting the work to conferences. My coauthors provided feedback
during each step of the research and on draft manuscripts.

Research presented in Chapter 2: Lawrence Pang helped implementing the context-
aware model, Hung Viet Pham and Yitong Li helped with evaluating previous automatic
program repair tools for C and C++. Moshi Wei helped in gathering training data. Dr.
Lin Tan provided feedback and supervision in all parts of the research.

Research presented in Chapter 3: Dr. Tomasz Kuchta helped to design and collect
the regular expressions for the clustering. Dr. Edmund Wong and Dr. Tomasz Kuchta
helped manually checking PDF files for inconsistencies. Dr. Christian Cadar and Dr. Lin
Tan provided feedback and supervision in all parts of the research.

Research presented in Chapter 4: Devin Chollak helped gathering the dependencies
and ground truth of Java projects. Dr. Joshua Garcia provided access and support with
the Arcade framework that implements most architecture recovery techniques. Dr. Robert
Kroeger helped validating the ground truth of Chromium. Dr. Lin Tan, Dr. Nenad
Medvidovic, and Dr. Derek Rayside provided feedback and supervision in all parts of the
research.

Citations:

• Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan, CoCoNuT: Combining Context-Aware Neural Translation Models Using
Ensemble for Program Repair, Proceeding of The ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020 [157].

• Tomasz Kuchta*, Thibaud Lutellier*, Edmund Wong, Lin Tan, and Cristian Cadar,
On the Correctness of Electronic Documents: Studying, Finding, and Localizing
Inconsistency Bugs in PDF Readers and Files, (* The first two authors contributed
equally to this paper), Empirical Software Engineering, 2018 [118].

• Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek Rayside, Nenad
Medvidovic, and Robert Kroeger, Measuring the Impact of Code Dependencies on Soft-
ware Architecture Recovery Techniques, IEEE Transactions on Software Engineering,
2017 [156].

iv

• Thibaud Lutellier, Devin Chollack, Joshua Garcia, Lin Tan, Derek Rayside, Ne-
nad Medvidovic and Robert Kroeger, Comparing Software Architecture Recovery
Techniques Using Accurate Dependencies, Proceeding of ACM/IEEE International
Conference on Software Engineering, SEIP track, 2015 [154].

v

Abstract

Dependability is an important quality of modern software but is challenging to achieve.
Many software dependability techniques have been proposed to help developers improve
software reliability and dependability such as defect prediction [83,96,249], bug detection [6,
17, 146], program repair [51, 127, 150, 209, 261, 263], test case prioritization [152, 250], or
software architecture recovery [13,42,67,111,164,240].

In this thesis we consider how machine learning (ML) and deep-learning (DL) can be
used to enhanced software dependability through three examples in three different domains:
automatic program repair, bug detection in electronic document readers, and software
architecture recovery.

In the first work we propose a new G&V technique—CoCoNuT, which uses ensemble
learning on the combination of convolutional neural networks (CNNs) and a new context-
aware neural machine translation (NMT) architecture to automatically fix bugs in multiple
programming languages. To better represent the context of a bug, we introduce a new
context-aware NMT architecture that represents the buggy source code and its surrounding
context separately. CoCoNuT uses CNNs instead of recurrent neural networks (RNNs),
since CNN layers can be stacked to extract hierarchical features and better model source
code at different granularity levels (e.g., statements and functions). In addition, CoCoNuT
takes advantage of the randomness in hyperparameter tuning to build multiple models that
fix different bugs and combines these models using ensemble learning to fix more bugs.
CoCoNuT fixes 493 bugs, including 307 bugs that are fixed by none of the 27 techniques
with which we compare.

In the second work, we present a study on the correctness of PDF documents and
readers and propose an approach to detect and localize the source of such inconsistencies
automatically. We evaluate our automatic approach on a large corpus of over 230K
documents using 11 popular readers and our experiments have detected 30 unique bugs in
these readers and files.

In the third work we compare software architecture recovery techniques to understand
their effectiveness and applicability. Specifically, we study the impact of leveraging accurate
symbol dependencies on the accuracy of architecture recovery techniques. In addition, we
evaluate other factors of the input dependencies such as the level of granularity and the
dynamic-bindings graph construction. The results of our evaluation of nine architecture
recovery techniques and their variants suggest that (1) using accurate symbol dependencies
has a major influence on recovery quality, and (2) more accurate recovery techniques are
needed. Our results show that some of the studied architecture recovery techniques scale to
very large systems, whereas others do not.

vi

Acknowledgements

I would like to particularly thank my supervisor, Dr. Lin Tan: thank you for taking me as
a student, helping and supporting me during all these years. I learned and grew so much
under her supervision and mentorship, I could not have wished for a better supervisor!

I would like to thank my examination committee members—Dr. Martin Monperrus,
Dr. Thomas Zimmermann, Dr. Sebastian Fischmeister, and Dr. Vijay Ganesh, Dr. Derek
Rayside, and Dr. Michael Godfrey for their support, valuable feedback, and insightful
discussion on my research.

Thanks to all the students in our research team at the University of Waterloo who made
going to the lab every day a pleasure: Dr. Jaechang Nam, Dr. Jinqiu Yang, Dr. Edmund
Wong, Dr. Song Wang, Dr. Nasir Ali, Lei Zhang, Quinn Hanam, Sandeep Chaudhary, Devin
Chollak, Ming Tan, Michael Chong, Taiyue Liu, Yuefei Liu, Alexey Zhikhartsev, Yuan
Xi, Moshi Wei, Hung Pham, and Yitong Li—thank you very much for all the friendship,
support, and joy.

I also want to thank the team at Purdue University, while the opportunities to meet in
person were rare, we had great online conversations and I learned a lot from them: Nan
Jiang, Shangshu Qian, Jonathan Rosenthal, Jiannan Wang, Danning Xie, and Dr. Mijung
Kim.

I want to thank all my other collaborators during my Ph.D. study: Dr. Joshua Garcia,
Dr. Nenad Medvidovic, Dr. Robert Kroeger, Dr. Tomasz Kuchta, Dr. Cristian Cadar,
Lawrence Pang, Dr. Yaoliang Yu, Dr. Nachiappan Nagappan, Weizhen Qi, Dr. Hossain
Shahriar, Dr. Komminist Weldemariam, and Dr. Mohammad Zulkernine. I really enjoyed
working with them, and have learned a lot from them.

vii

Dedication

This is dedicated to Sarah. You supported me through all these years, this work is also
here thanks to you.

viii

Table of Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Project 1 – Combining Context-Aware Neural Translation Models using
Ensemble for Automated Program Repair: 2

1.2 Project 2 – On the Correctness of Electronic Documents: Studying, Finding,
and Localizing Inconsistency Bugs in PDF Readers and Files: 2

1.3 Project 3 – Measuring the Impact of Dependencies on Software Architecture
Recovery Techniques: . 3

1.4 Publications . 4

2 Related Work 6

2.1 Neural Machine Translation Models for APR 6

2.1.1 Deep Learning for Automatic Program Repair: 6

2.1.2 G&V Program Repair: . 7

2.1.3 Grammatical Error Correction (GEC): 7

2.1.4 Deep Learning in Software Engineering: 7

2.2 Finding, and Localizing Inconsistency Bugs in PDF Readers and Files . . . 7

2.2.1 Cross PDF Reader Inconsistency: 7

2.2.2 Cross Browser Inconsistency: . 8

ix

2.2.3 Vulnerabilities in PDF files: . 9
2.2.4 Differential Testing: . 10
2.2.5 Document Recovery: . 10

2.3 Software Architecture Recovery Techniques 11
2.3.1 Comparison of Software Architecture Recovery Techniques: 11
2.3.2 Recovery of Ground-Truth Architectures: 12

3 CoCoNuT: Combining Context-Aware Neural Translation Models using
Ensemble for Program Repair 14

3.1 Motivation . 14
3.2 Background and terminology . 18
3.3 Approach . 18

3.3.1 Challenges . 19
3.3.2 Data Extraction . 20
3.3.3 Input Representation and Tokenization 21
3.3.4 Context-Aware NMT Architecture 22
3.3.5 Ensemble Learning . 25
3.3.6 Patch Validation . 25
3.3.7 Generalization to Other Languages 26

3.4 Experimental Setup . 26
3.5 Evaluation and Results . 28

3.5.1 RQ1: How does CoCoNuT perform against state-of-the-art APR
techniques? . 29

3.5.2 RQ2: Which bugs only CoCoNuT can fix? 33
3.5.3 RQ3: What are the contributions of the different components of Co-

CoNuT and how does it compare to other NMT-based APR techniques? 35
3.5.4 RQ4: Can we explain why CoCoNuT can (or fail to) generate specific

fixes? . 36
3.5.5 Execution Time . 39

3.6 Threats to Validity . 40
3.7 Summary . 40

x

4 On the Correctness of Electronic Documents: Studying, Finding, and
Localizing Inconsistency Bugs in PDF Readers and Files 41

4.1 Motivation . 41

4.2 Approach . 44

4.2.1 Phase 1: Document filtering . 46

4.2.2 Phase 2: Inconsistency detection 47

4.2.3 Phase 3: Inconsistency localization 49

4.3 Experimental setup . 51

4.3.1 Data set . 51

4.3.2 Portfolio of readers . 54

4.3.3 Infrastructure . 55

4.3.4 Research questions. 56

4.4 A Study of Cross-reader Inconsistencies . 57

4.4.1 Methods . 57

4.4.2 Inconsistencies are common . 58

4.4.3 Types of inconsistencies . 59

4.5 Automatic results . 63

4.5.1 Results for the random sample . 63

4.5.2 Results for the entire set . 65

4.6 Inconsistency Localization Evaluation . 69

4.7 Cross-OS Inconsistencies . 70

4.7.1 PDF Readers on Windows . 71

4.7.2 Experiment Details . 71

4.7.3 Results . 71

4.8 Discussion and Threats to Validity . 73

4.8.1 Conclusion Validity . 73

4.8.2 Internal Validity . 73

4.8.3 Construct Validity . 74

xi

4.8.4 External Validity . 74

4.8.5 Practical Applicability . 74

4.9 Summary . 75

5 Measuring the Impact of Code Dependencies on Software Architecture
Recovery Techniques 76

5.1 Motivation . 76

5.2 Approach . 79

5.2.1 Obtaining Dependencies . 80

5.2.2 Obtaining Ground-Truth Architectures 83

5.3 Selected Recovery Techniques . 86

5.4 Experimental Setup . 88

5.4.1 Projects and Experimental Environment 89

5.4.2 Extracted Dependencies . 89

5.4.3 Ground-truth architectures . 90

5.4.4 Architecture Recovery Software and Parameters 91

5.4.5 Accuracy Measures . 91

5.5 Evaluation and Results . 94

5.5.1 RQ1: Can accurate dependencies improve the accuracy of recovery
techniques? . 105

5.5.2 RQ2: What is the impact of different input factors, such as the
granularity level, the use of transitive dependencies, the use of differ-
ent symbol dependencies and dynamic-bindings graph construction
algorithms, on existing architecture recovery techniques? 109

5.5.3 RQ3: Can existing architecture recovery techniques scale to large
projects comprising 10MSLOC or more? 114

5.5.4 Comparison with Baseline Algorithms 115

5.5.5 Summary of Results . 117

5.5.6 Comparison with the Prior Work 117

xii

5.6 Threats to Validity . 117

5.6.1 Metrics Limitations . 117

5.6.2 Selecting Metrics and Recovery Techniques 119

5.6.3 Non-uniqueness of Ground-Truth Architectures 119

5.6.4 Number of Projects Studied . 120

5.7 Summary . 120

6 Future Work 122

6.1 Automatic Program Repair: Better Abstraction for Scalable NMT-based
program repair . 122

6.2 Detecting Bugs in PDF Documents and Readers 124

6.3 Software Architecture Recovery . 125

6.4 Explainable Defect Prediction: . 126

7 Conclusion 127

References 128

xiii

List of Figures

3.1 Two bugs in Defects4J fixed by CoCoNuT that other tools did not fix. . . 17

3.2 CoCoNuT’s overview . 19

3.3 The new NMT architecture used in CoCoNuT. 23

3.4 CoCoNuT’s Java Patch for Lang 29 in Defects4J that have not been fixed
by other techniques. 33

3.5 Example of patches fixed only by CoCoNuT and related changes in the
training set. 34

3.6 BREADTH_FIRST_SEARCH bugs fixed by CoCoNuT in both Python
and Java QuixBugs benchmarks. 34

3.7 Number of bugs fixed as the number of models considered in ensemble
learning increases. 37

3.8 CoCoNuT’s Java patch for Lang 26 in Defects4J. 37

3.9 Attention map for the correct patch of Lang 26 from the Defects4J bench-
mark generated by CoCoNuT. 38

4.1 An example of a bug in Firefox. Chromium rendering on the left, Firefox
rendering on the right. 42

4.2 Overview of our approach, which consists of three main phases: the filtering
phase (Section 4.2.1), the inconsistency detection phase (Section 4.2.2), and
the inconsistency localization phase (Section 4.2.3). 45

4.3 An example of a missing image bug in MuPDF. MuPDF on the right, other readers
on the left. 60

4.4 Example of colour discrepancy between Acrobat Reader (left) and other
readers (right) . 61

xiv

4.5 An example of “other" types of inconsistencies. Chromium rendering on the
left, distorted Evince rendering on the right. 62

4.6 Chromium (left) can render the incorrectly embedded characters, while other
readers (right) cannot. 62

4.7 ROC curves for different image similarity algorithms. 65

4.8 Inconsistency between Adobe Reader (left) and Okular (right) before (a) and
after reduction (b). 70

5.1 Overview of our approach . 80

5.2 Example Project Layout . 84

5.3 Example Project Submodules . 84

6.1 Bug, abstraction, and mapping for the HANOI bug in QuixBugs that Co-
CoNuT cannot fix without using abstracted template. 123

xv

List of Tables

3.1 Training set information. 27

3.2 Comparison with state-of-the-art G&V approaches. The number of bugs that
only CoCoNuT fixes is in parentheses (307). The results are displayed as
x/y, with x the number of bugs correctly fixed. and y the number of bugs
with plausible patches. * indicates tools whose manual fix patterns are used
by TBAR. Numbers are extracted from either the original papers or from
previous work [142] which reran some approaches with perfect localization. †
indicates the number of patches that are identical to developer patches—the
minimal number of correct patches. - indicates tools that have not been
evaluated on a specific benchmark. The highest number of correct patches
for each benchmark is in bold. 30

4.1 Basic statistics, extracted using pdfinfo, for the GovDoc1 data set; pdfinfo
failed for 15 documents. 51

4.2 Numbers of documents in our data set for various versions of the PDF standard. 53

4.3 Portfolio of PDF readers used in each phase. 55

4.4 Number of consistent and inconsistent files. For the latter, we report how
many readers behave similarly (“agree”). 58

4.5 Issues detected in the random sample, sorted by type and reader. Acrobat
denotes Acrobat Reader. 59

4.6 Number of crashes detected. The number of unique errors is shown in
parentheses. 66

4.7 Inconsistencies for cluster candidates. The third column shows the number
of inconsistent cluster candidates. The number of unique bugs is shown in
parentheses. 66

xvi

4.8 Comparison between the distribution of files across PDF versions in the
entire random sample and in the inconsistent files from the random sample. 68

4.9 Comparison between bugs on Linux and Windows version of PDF readers.
Linux column shows the number of bugs reported on Linux. # Windows
represents the number and percentage of the reported bugs that also occur
in the Windows version of the reader . 72

4.10 Number of reported inconsistent files on Linux that also reveal bugs in
Windows readers. 72

5.1 Evaluated projects and architectures. †Cluster denotes the number of clusters
in the ground-truth architectures. N/A means the value is not available. . 87

5.2 MoJoFM results for Bash. 95

5.3 MoJoFM results for Chromium. † Scores denote results for intermediate
architectures obtained after the technique timed out. 95

5.4 MoJoFM results for ITK. 96

5.5 MoJoFM results for ArchStudio. 96

5.6 MoJoFM results for Hadoop. 97

5.7 a2a results for Bash. 97

5.8 a2a results for ITK. 98

5.9 a2a results for Chromium. † Scores denote results for intermediate architec-
tures obtained after the technique timed out. 98

5.10 a2a results for ArchStudio. 99

5.11 a2a results for Hadoop. 99

5.12 Normalized TurboMQ results for Bash. 100

5.13 Normalized TurboMQ results for Chromium. † Scores denote results for
intermediate architectures obtained after the technique timed out. 100

5.14 Normalized TurboMQ results for ITK. 101

5.15 Normalized TurboMQ results for ArchStudio. 101

5.16 Normalized TurboMQ results for Hadoop. 102

5.17 c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
Bash. 102

xvii

5.18 c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
ITK. 103

5.19 c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
Chromium. † Scores denote results for intermediate architectures obtained
after the technique timed out. 103

5.20 c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
ArchStudio. 104

5.21 c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
Hadoop. 104

5.22 Wilcoxon Signed Rank when comparing different types of dependencies. . . 108

5.23 Cliff’s δ Effect Size Tests. A negative value indicates that the effect size
favor of the first dependency type listed. 108

5.24 Wilcoxon Signed Rank for each algorithm when compared to K-means . . . 116

5.25 Cliff’s δ Effect Size Tests. A negative value indicates that the effect size is
in favor of K-means. 116

xviii

Chapter 1

Introduction

Dependability is an important quality of modern software but is challenging to achieve. Many
software dependability techniques have been proposed to help developers improve software
reliability and dependability such as defect prediction [83,96,249], bug detection [6,17,146],
program repair [51, 127, 150, 209, 261, 263], test case prioritization [152, 250], or software
architecture recovery [13,42,67,111,164,240].

Machine learning and deep learning have been used with great success to automate
many tasks in many different domains such as autonomous driving cars [31] or diabetic
blood glucose prediction [177].

In this thesis we consider how machine learning and deep-learning can be used to
enhanced software dependability through three examples of different software dependability
tasks: automatic program repair, bug detection in electronic document reader, and software
architecture recovery.

In the first work, we show how one can use deep learning to learn from buggy and correct
code snippets to automatically generate patches and repair software bugs (Chapter 3).
In the second work, we use ML to cluster warning and error messages in order to select
bug-revealing documents and detect more bugs in electronic document readers (Chapter 4).
Finally, in the third work, we evaluate the effectiveness of different clustering approaches
on software architecture recovery using different types of dependencies (Chapter 5).

The new techniques leveraging machine learning algorithms helped find 33 new bugs in
PDF readers and automatically repair 493 bugs in popular benchmarks, 307 of which that
had not been repaired automatically before.

1

1.1 Project 1 – Combining Context-Aware Neural
Translation Models using Ensemble for Automated
Program Repair:

Automated generate-and-validate (G&V) program repair techniques (APR) typically rely
on hard-coded rules, thus only fixing bugs following specific fix patterns. These rules require
a significant amount of manual effort to discover and it is hard to adapt these rules to
different programming languages.

To address these challenges, we propose a new G&V technique—CoCoNuT, which uses
ensemble learning on the combination of convolutional neural networks (CNNs) and a new
context-aware neural machine translation (NMT) architecture to automatically fix bugs in
multiple programming languages. To better represent the context of a bug, we introduce
a new context-aware NMT architecture that represents the buggy source code and its
surrounding context separately. CoCoNuT uses CNNs instead of recurrent neural networks
(RNNs), since CNN layers can be stacked to extract hierarchical features and better model
source code at different granularity levels (e.g., statements and functions). In addition,
CoCoNuT takes advantage of the randomness in hyperparameter tuning to build multiple
models that fix different bugs and combines these models using ensemble learning to fix
more bugs.

Our evaluation on six popular benchmarks for four programming languages (Java, C,
Python, and JavaScript) shows that CoCoNuT correctly fixes (i.e., the first generated patch
is semantically equivalent to the developer’s patch) 493 bugs, including 307 bugs that are
fixed by none of the 27 techniques with which we compare.

Summary: This project supports the thesis by proposing a new neural machine
translation architecture for automatic program repair. This technique fixes
493 bugs in 6 different benchmarks for four programming languages.

1.2 Project 2 – On the Correctness of Electronic Docu-
ments: Studying, Finding, and Localizing Inconsis-
tency Bugs in PDF Readers and Files:

Electronic documents are widely used to store and share information such as bank statements,
contracts, articles, maps and tax information. Many different applications exist for displaying

2

a given electronic document, and users rightfully assume that documents will be rendered
similarly independently of the application used. However, this is not always the case,
and these inconsistencies, regardless of their causes—bugs in the application or the file
itself—can become critical sources of miscommunication.

We present a study on the correctness of PDF documents and readers. We start by
manually investigating a large number of real-world PDF documents to understand the fre-
quency and characteristics of cross-reader inconsistencies, and find that such inconsistencies
are common—13.5% PDF files are inconsistently rendered by at least one popular reader.
We then propose an approach to detect and localize the source of such inconsistencies
automatically.

We evaluate our automatic approach on a large corpus of over 230K documents using
11 popular readers and our experiments have detected 30 unique bugs in these readers and
files. We also reported 33 bugs, some of which have already been confirmed or fixed by
developers.

Summary: This project supports the thesis by using k-means clustering to select
input PDF files to test and ensure input diversity. K-means clustering increases
the percentage of bug revealing PDF files tested from 13.5% to 38.8%. This project
helps to detect 30 unique bugs in popular readers and files.

1.3 Project 3 – Measuring the Impact of Dependencies
on Software Architecture Recovery Techniques:

Many techniques have been proposed to automatically recover software architectures from
software implementations. A thorough comparison among the recovery techniques is needed
to understand their effectiveness and applicability.

This study improves on previous studies in two ways. First, we study the impact of lever-
aging accurate symbol dependencies on the accuracy of architecture recovery techniques. In
addition, we evaluate other factors of the input dependencies such as the level of granularity
and the dynamic-bindings graph construction. Second, we recovered an architecture of
a large system, Chromium, that was not available previously. Obtaining a ground-truth
architecture of Chromium involved two years of collaboration with its developers. As part of
this work, we developed a new submodule-based technique to recover preliminary versions
of ground-truth architectures.

The results of our evaluation of nine architecture recovery techniques and their variants
suggest that (1) using accurate symbol dependencies has a major influence on recovery

3

quality, and (2) more accurate recovery techniques are needed. Our results show that some
of the studied architecture recovery techniques scale to very large systems, whereas others
do not.

Summary: This project supports the thesis by evaluating machine learning-based
clustering techniques for automatic software architecture recovery. This
project shows that the quality of the input dependencies fed to these techniques is
paramount for high-quality recovery.

1.4 Publications

Earlier versions of the work presented in this thesis have been published in the following
papers (listed in reversed chronological order). In these studies, my role included proposing
novel ideas, collecting data, conducting experiments, analysing the results, and writing.

• Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan, CoCoNuT: Combining Context-Aware Neural Translation Models Using
Ensemble for Program Repair, Proceeding of The ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020 [157].

• Tomasz Kuchta*, Thibaud Lutellier*, Edmund Wong, Lin Tan, and Cristian Cadar,
On the Correctness of Electronic Documents: Studying, Finding, and Localizing
Inconsistency Bugs in PDF Readers and Files, (* The first two authors contributed
equally to this paper), Empirical Software Engineering, 2018 [118].

• Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek Rayside, Nenad
Medvidovic, and Robert Kroeger, Measuring the Impact of Code Dependencies on Soft-
ware Architecture Recovery Techniques, IEEE Transactions on Software Engineering,
2017 [156].

• Thibaud Lutellier, Devin Chollack, Joshua Garcia, Lin Tan, Derek Rayside, Ne-
nad Medvidovic and Robert Kroeger, Comparing Software Architecture Recovery
Techniques Using Accurate Dependencies, Proceeding of ACM/IEEE International
Conference on Software Engineering, SEIP track, 2015 [154].

The following papers were published in parallel to the above mentioned publications.
These studies are not directly related to this thesis, but explore other usages of machine
learning or applications of software dependability approaches for machine learning.

4

• Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan, Problems and Op-
portunities in Training Deep-Learning Software Systems: An Analysis of Variance.
Proceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering, 2020. (ACM SIGSOFT Distinguished Paper Award) [198].

• Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan, CRADLE: Cross-
Backend Validation to Detect and Localize Bugs in Deep Learning Libraries. Pro-
ceeding of ACM/IEEE International Conference on Software Engineering, 2019 [197].

• Hossain Shahriar, Komminist Weldemariam, Mohammad Zulkernine, Thibaud Lutel-
lier, Effective detection of vulnerable and malicious browser extensions. Computers
& Security, 2014 [219].

• Hossain Shahriar, Komminist Weldemariam, Thibaud Lutellier, Mohammad Zulk-
ernine, A Model-Based Detection of Vulnerable and Malicious Browser Extensions.
Proceedings of the 7th International Conference on Software Security and Reliability,
2013 [218].

Availability: Artifacts were made available on https://zenodo.org/record/
4147418#.X5mI1HVKhhE.

5

https://zenodo.org/record/4147418#.X5mI1HVKhhE
https://zenodo.org/record/4147418#.X5mI1HVKhhE

Chapter 2

Related Work

2.1 Neural Machine Translation Models for APR

2.1.1 Deep Learning for Automatic Program Repair:

SequenceR [33], DLFix [134], and Tufano et al. [237] are the closest work related to
CoCoNuT. The main differences with CoCoNuT are that these approaches use RNN
(a single LSTM-based NMT model for SequenceR and Tufano et al., and a TreeRNN
architecture for DLFix) and represent both the buggy line and its context as one input.
These approaches have trouble extracting long term relations between tokens and do not
capture the diversity of bug fixes. We show in Section 3.5.3 that CoCoNuT outperforms
both DLFix and SequenceR. Tufano et al. [237] generates templates instead of complete
patches and thus cannot be directly compared. Deep learning has also been used to detect
and repair small syntax [213] and compilation [79, 80, 176] issues (e.g., missing parenthesis),
or build errors [233]. These models show promising results for fixing compilation issues
but only learn the syntax of the programming language. Other work fixes bugs in Karel, a
beginner programming language [78]. Vasic et al. [241] uses deep learning to automatically
localize and repair variable misuses.

Previous work also uses deep learning to represent source code and choose which graph
modification to execute [48]. This work is different from our approach since it does not use
neural machine translation. Ding et al. [50] studied the advantages and disadvantages of
neural machine translation compared to deep learning classification models for APR.

6

2.1.2 G&V Program Repair:

Many APR techniques have been proposed [16, 32, 87, 94, 125, 127, 143, 147, 150, 167, 191,
209,252,259,260,261]. We use a different approach compared to these techniques, and as
shown in Section 3.5, our approach fixes bugs that existing techniques have not fixed. In
addition, these techniques require significant domain knowledge and manually crafted rules
that are language-dependent, while thanks to our context-aware ensemble NMT approach,
CoCoNuT automatically learns such patterns and is generalizable to several programming
languages with minimal effort.

2.1.3 Grammatical Error Correction (GEC):

Recent work uses machine translation to fix grammar errors [34, 35, 69, 70, 100, 103, 145, 189,
211,215,267]. Among them, [35] applied an attention-based convolutional encoder-decoder
model to correct sentence-level grammatical errors. CoCoNuT is a new application of NMT
models on source code and programming languages, addressing unique challenges. Studying
whether our new context-aware NMT architecture improves GEC remains future work.

2.1.4 Deep Learning in Software Engineering:

The software engineering community had applied deep learning to perform various other
tasks such as defects prediction [130, 244, 249], source code representation [9, 11, 196,
245], source code summarization [10, 77] source code modeling [8, 29, 85, 255], code clone
detection [131,254], program synthesis [7, 136,182,186], and fault localization [273,274].

2.2 Finding, and Localizing Inconsistency Bugs in PDF
Readers and Files

2.2.1 Cross PDF Reader Inconsistency:

To address cross-reader inconsistencies, standards such as PDF/A and PDF/X have been
proposed to ensure that PDF files will always be rendered consistently [90,91]. However,
those specifications are highly restrictive and typically only used for archiving data. For
example, when looking at the sample of PDF files we extracted from the Govdocs1 data set,

7

we found that none of these files conformed to the PDF/A or PDF/X standards. Another
possible solution to reduce display differences is flattening the PDF file. However, flattening
a PDF file may add more inconsistencies when merging the different layers of the original file.
In addition, flattening may break the internal structure of the file, making some operations
(e.g., selecting the text) impossible.

Therefore, a new solution is necessary to help users know whether the PDF they share
will be viewed correctly across the readers.

2.2.2 Cross Browser Inconsistency:

The cross-reader inconsistency issue is analogous to the more studied cross-browser incon-
sistency (CBI) problem [36,37,38,52,175,192,206,207]. Different browsers can render the
same webpage differently, and some of those inconsistencies are critical when a browser
does not support a particular HTML element.

Eaton and Memon first introduced the cross-browser inconsistency (CBI) issue in [52].
They propose an approach based on an inductive model to detect bugs in web application
that can lead to CBIs. This first approach to detect CBIs only focus on incorrect web
applications. If a bug in a specific browser creates an inconsistency for a correct web
application, then this approach would not detect it. In addition, this approach is based on
HTML tags and is not transferable to the cross-reader inconsistency problem.

The CBI problem has been addressed incrementally by Choudhary et al. in several
papers [36, 37, 38, 206]. First, Webdiff, described in [38] and [36], combines a structural
analysis of the DOM structure of a web page and a histogram comparison of screenshots of
the web page opened in two different browsers to detect CBIs. CrossCheck [37] is built on
the top of WebDiff, with the addition of a web crawler allowing to detect inconsistencies
on entire web applications instead of single web pages. Finally, X-pert [206] improves
CrossCheck by only considering elements that are leaf nodes of the DOM structure. It
builds a model for each browser by crawling a specific web application. The models include
transitions between pages, as well as the DOM structure and a screenshot of each page.
The models are then checked for equivalence using the chi-square distance between the
histogram of each element of the screenshot.

Concurrently with WebDiff [36,38], Mesbah and Prasad proposed a very similar approach
to detect cross-browser inconsistencies [175]. The main difference with WebDiff is that they
consider the trace-level behavior of the web application.

Different causes for CBI were identified in [192]. The most common reasons for CBI
are HTML tags, CSS, font rendering, DOM, scripts, add-ons and third-party entities. Out

8

of all these reasons, only the font rendering issue is also applicable to the cross-reader
inconsistency issue.

While the importance of studying cross-browser inconsistencies has been widely rec-
ognized, cross-reader inconsistencies have been under-studied. Furthermore, some of
the techniques used to detect cross-browser inconsistency are not directly applicable to
cross-reader inconsistencies (for example, they rely on matching the DOM, the structured
representation of HTML documents, but the structure of a PDF does not change when
opened by different readers). On the other hand, our approach is applicable to a wide
variety of electronic documents, including HTML, because it treats the documents and
readers as black boxes.

The work from the cross-browser testing area that is most closely related to ours is
Browserbite [207]. As in our approach, the technique operates in a black-box manner; it
combines image processing for inconsistency detection with machine learning for improving
accuracy. However, in addition to the different domain, Browserbite is evaluated on only
140 websites, which does not raise the same scalability challenges that we encountered for
our corpus of 230K documents, which requires solutions such as our clustering approach.
We use a white-box binary search to find inconsistent locations, while Browserbite splits
image into regions and performs a linear comparison of all regions; we also use CW-SSIM
for image comparison, while Browserbite uses histograms.

2.2.3 Vulnerabilities in PDF files:

Many techniques have been developed to detect malicious or vulnerable PDF files [41,43,
53, 93, 104, 105, 120, 121, 132, 161, 214, 223, 239]. Indeed, PDF files can contain embedded
JavaScript elements which can be potentially vulnerable or malicious. Common methods
to detect such files consist of analysing the metadata and the structure of the PDF file to
detect malicious JavaScript components.

MDScan [239] is a stand-alone tool that combines static analysis of the document and
dynamic analysis to detect malicious documents. First, a static analysis of the PDF file
is used to detect and extract any embedded JavaScript source code. Then this code is
executed and MDScan attempts to detect malicious shellcode execution.

PJScan [121] is the first approach using static analysis to detect vulnerable PDF files. It
focuses on extracting features from Javascript code embedded in PDF files. Smutz et al. [223]
present another approach based on machine learning that aims to detect vulnerabilities.
The features used to detect malicious PDF files are extracted from the metadata and the
structure of the PDF (e.g., number of pages, objects, producer, javascript elements, etc.).

9

This approach was compared to PJScan and provided much better results. An improvement
of existing static detection [121, 223] was proposed in [120]. The main change was to
consider features in object streams. As object streams are generally encoded, they are
often used to hide malicious code. While machine learning could also be used to detect
potential inconsistent elements, this approach is very different from our work. In this work,
we chose a dynamic approach: both the error clustering and the screenshot comparison
require executing the PDF reader.

Maiorca et al. [161] present a new approach to generate malicious PDF files that cannot
be detected by techniques based on machine learning and propose a new tool, Lux0R [43]
to detect this kind of attack.

While dealing with PDF files, those studies consider a completely different problem
from ours. We focus on benign documents and do not consider malware. Our technique,
through detecting display and behavior inconsistencies across different readers, has the
potential to identify malicious PDF targeting a specific PDF reader. However, we did not
investigate this possibility and assumed that all the files mined from the US government
websites are benign.

2.2.4 Differential Testing:

Differential testing [168] consists of testing whether different software produce the same
results. Much work uses differential testing to find bugs in compilers by comparing the
output of multiple compilers [220, 265, 268], different compiler optimization levels [124, 265],
or differences in deep learning APIs [197]. Inconsistency detection has been used in other
domains such as cross-platform [57,99]. Our work is a new application of differential testing
and inconsistency detection for findings bugs in electronic documents and readers.

2.2.5 Document Recovery:

Prior work on recovering electronic documents [47, 117,149] can leverage our inconsistency
detection and localization techniques. Previous work in this space uses image similarity to
assess the quality of repaired input [149].

10

2.3 Software Architecture Recovery Techniques

2.3.1 Comparison of Software Architecture Recovery Techniques:

This paper builds on work that was previously reported in [155]. Novelty with respect to
this previous work includes a study of the impact of dynamic-bindings resolution algorithms,
function calls, and global variable usage on the accuracy of recovery algorithms. We also
expand the previous work by studying whether using a higher level of granularity and
transitive dependencies improves the accuracy of recovery techniques.

Many architecture recovery techniques have been proposed [13, 42, 67, 111,164,187,240].
The most recent study [64] collected the ground-truth architectures of eight systems and
used them to compare the accuracy of nine variants of six architecture recovery techniques.
Two of those recovery techniques—Architecture Recovery using Concerns (ARC) [67] and
Algorithm for Comprehension-Driven Clustering (ACDC) [240]—routinely outperformed
the others. However, even the accuracy of these techniques showed significant room for
improvement.

Architecture recovery techniques have been evaluated against one another in many other
studies [13, 64,111,128,137,165,225,229,256].

The results of the different studies are not always consistent. scaLable InforMation
BOttleneck (LIMBO) [12], a recovery technique leveraging an information loss measure,
and ACDC performed similarly in one study [13]; however, in a different study, Weighted
Combined Algorithm (WCA) [166], a recovery technique based on hierarchical clustering,
outperformed Complete Linkage (CL) [166]. In yet another study, CL is shown to be generally
better than ACDC [256]. In yet another study [64], ARC and ACDC surpass LIMBO and
WCA. Wu et al. [256] compared several recovery techniques utilizing three criteria: stability,
authoritativeness, and non-extremity. For this study, no recovery technique was consistently
superior to others on multiple measures. A possible explanation for the inconsistent results
of these studies is their use of different assessment measures.

The types of dependencies which serve as input to recovery techniques vary among
studies: some recovery techniques leverage control and data dependencies [59,60,235]; other
techniques use static and dynamic dependency graphs [13].

Previous work [203] examined the effect of different polymorphic call-graph construction
algorithms on automatic clustering. Another work [84] studied the impact of source-code
versus object-code-based dependencies on software architecture recovery. They found that
dependencies obtained directly from source code are more useful than dependencies obtained

11

from object code. While also studying the impact of dependencies on automatic architecture
recovery, we focus on the accuracy and the type of the dependencies (e.g., include and
symbol dependencies) independently from the way dependencies were extracted, i.e., from
object code or source code.

None of the papers mentioned above assess the influence of symbol dependencies on
recovery techniques when compared to include dependencies. This paper is the first to
study (1) the impact of symbol dependencies on the accuracy of recovery techniques and
(2) the scalability of recovery techniques to a large project with nearly 10MSLOC.

2.3.2 Recovery of Ground-Truth Architectures:

Ground-truth architectures enable the understanding of implemented architectures and the
improvement of automated recovery techniques. Several prior studies invested significant
time and effort to recover ground-truth architectures for several systems.

Garcia et al. [65] described a method to recover the ground-truth architectures of four
open-source systems. The method involves extensive manual work, and the mean cost
of recovering the ground-truth architecture of seven systems ranged from 70KSLOC to
280KSLOC was 107 hours. CacOphoNy [55] is another approach that uses metamodels to
aid in manual recovery of software architectures and had been used to reverse engineer a
large software system [56].

In his work [119], Laine manually recovered the architecture of the X-Window System
to illustrate the importance of software architecture for object-oriented development.

Grosskurth et al. [76] studied the architecture and evolution of web browsers and provide
guidance for obtaining a reference architecture for web browsers. Their work does not
address the challenges of recovering an accurate ground-truth architecture in general. In
addition, it is not clear if their approach is accurate for modern web browsers such as
Chromium, which use new design principles such as a modern threading model for tabbed
browsing.

Bowman et al. [23] and Xiao et al. [257] recovered the ground-truth architectures of
the Linux kernel 2.0 and Mozilla 1.3 respectively. The Linux kernel and Mozilla are large
systems, but the evaluated versions are more than a decade old. The version of the Linux
kernel recovered was from 1996 and at that time, it contained only 750KSLOC. Mozilla 1.3
is from 2003 with 4MSLOC.

Several tools have been created to help developers analyze, visualize, and reconstruct
software architectures. [190] Those tools can be used in different stages of manual architecture

12

recovery.

Rigi [226] is a tool that can be used to analyse and visualize software dependencies.
While it is possible to generate an architectural view of a project with the help of Rigi [107],
this requires the intervention of a developer with deep knowledge of the project to manually
group similar elements (classes, files, etc.) together. Indeed, for large projects, initial views
proposed by Rigi are unreadable due to the large number of nodes and dependencies [106]
and manual effort is necessary to recover the architecture of the system. The Portable
Bookshelf [58], SHriMP [184], AOVIS [112], LSEdit [228] are other software visualization
and analysis tools that can help manual architecture recovery.

Several other tools such as Understand [1], Lattix [243] and Structure101 [30] have been
used to ensure the quality of a given architecture and monitor its evolution. However, none
of these tools intend to automatically recover an architecture.

13

Chapter 3

CoCoNuT: Combining Context-Aware
Neural Translation Models using
Ensemble for Program Repair

3.1 Motivation

To improve software reliability and increase engineering productivity, researchers have
developed many approaches to fix software bugs automatically. One of the main approaches
for automatic program repair is the G&V method [51,127,150,209,261,263]. First, candidate
patches are generated using a set of transformations or mutations (e.g., deleting a line or
adding a clause). Second, these candidates are ranked and validated by compiling and
running a given test suite. The G&V tool returns the highest-ranked fix that compiles and
passes fault-revealing test cases.

While G&V techniques successfully fixed bugs in different datasets, a recent study [151]
showed that very few correct patches are in the search spaces of state-of-the-art techniques,
which puts an upper limit on the number of correct patches that a G&V technique
can generate. Also, existing techniques require extensive customization to work across
programming languages since most fix patterns need to be manually re-implemented to
work for a different language.

Therefore, there is a need for a new APR technique that can fix more bugs (i.e., with a
better search space) and is easily transferable to different programming languages.

Neural machine translation is a popular deep-learning (DL) approach that uses neural

14

network architectures to generate likely sequences of tokens given an input sequence. NMT
uses an encoder block (i.e., several layers of neurons) to create an intermediate representation
of the input learned from training data and a decoder block to decode this representation
into the target sequence. NMT has mainly been applied to natural language translation
tasks (e.g., translating French to English).

APR can be seen as a translation from buggy to correct source code. Therefore, there
is a unique opportunity to apply NMT techniques to learn from the readily available bug
fixes in open-source repositories and generate fixes for unseen bugs.

Such NMT-based APR techniques have two key advantages. First, NMT models
automatically learn complex relations between input and output sequences that are difficult
to capture manually. Similarly, NMT models could also capture complex relations between
buggy and clean code that are difficult for manually designed fix patterns to capture.
Second, while G&V methods often use hard-coded fix patterns that are programming-
language-dependent and require domain knowledge, NMT techniques can be retrained for
different programming languages automatically without re-implementing the fix patterns,
thus requiring little manual effort.

Despite the great potential, there are two main challenges of applying NMT to APR:

(1) Representing context: How to fix a bug often depends on the context, e.g.,
statements before and after the buggy lines. However, to represent the context effectively is
a challenge for NMT models in both natural language tasks and bug fixing tasks; thus, the
immediate context of the sentence to be translated is generally ignored. Two techniques that
use NMT to repair bugs [33,237] concatenate context and buggy code as one input instance.
This design choice is problematic. First, concatenating context and buggy code makes the
input sequences very long, and existing NMT architectures are known to struggle with long
input. As a result, such approaches only fix short methods. For example, Tufano et al. [237]
have to focus on short methods that contain fewer than 50 tokens. Second, concatenating
buggy and context lines makes it more difficult for NMT to extract meaningful relations
between tokens. For example, if the input consists of 1 buggy line and 9 lines of context,
the 9 context lines will add noise to the buggy line and prevent the network from learning
useful relations between the buggy line and the fix, which makes the models inefficient and
less effective on fixing the buggy code.

We propose a new context-aware NMT architecture that has two separate encoders:
one for the buggy lines, the other one for the context. Using separate encoders presents
three advantages. First, the buggy line encoder will only have shorter input sequences.
Thus, it will be able to extract strong relations between tokens in the buggy lines and the
correct fix without wasting its resources on relations between tokens in the context. Second,

15

a separate context encoder helps the model learn useful relations from the context (such as
potential donor code, variables in scope, etc.) without adding noise to the relations learned
from the buggy lines. Third, since the two encoders are independent, the context and buggy
line encoders can have different complexity (e.g., different number of layers), which could
improve the performance of the model. For example, since the context is typically much
longer than the buggy lines, the context encoder may need larger convolution kernels to
capture long-distance relations, while the buggy line encoder may benefit from a higher
number of layers (i.e., a deeper network) to capture more complex relations between buggy
and clean lines. This context-aware NMT architecture is novel and can also be applied to
improve other tasks such as fixing grammar mistakes and natural language translation.

(2) Capturing the diversity of bug fixes: Due to the diversity of bugs and fixes
(i.e., many different types of bugs and fixes), a single NMT model using the “best” hyperpa-
rameters (e.g., number of layers) would struggle to generalize.

Thus, we leverage ensemble learning to combine models of different levels of complexity
that capture different relations between buggy and clean code. This allows our technique
to learn diverse repair strategies to fix different types of bugs.

In this work, we propose a new G&V technique called CoCoNuT that consists of an
ensemble of fully convolutional (FConv) models and new context-aware NMT models of
different levels of complexity. Each context-aware model captures different information
about the repair operations and their context using two separate encoders (one for buggy
lines and one for the context). Combining such models allows CoCoNuT to learn diverse
repair strategies that are used to fix different types of bugs while overcoming the limitations
of existing NMT approaches.

Evaluated against 27 APR techniques on six bug benchmarks in four programming
languages, CoCoNuT fixes 493 bugs, 307 of which have not been fixed by any existing APR
tools. Figure 3.1 shows two of such patches for bugs in Defects4J [101], demonstrating
CoCoNuT’s capability of learning new and complex relations between buggy and clean code
from the 3,241,966 instances in the Java training set. CoCoNuT generates the patch in
Figure 3.1a using a new pattern (i.e., updating the Error type to be caught) that previous
work [32,87,94,115,125,127,138,139,140,141,143,167,200,201,209,210,252,259,260] did not
discover. In the Figure, “-” denotes a line to be deleted that is taken as input by CoCoNuT,
while “+” denotes the line generated by CoCoNuT and is identical to the developer’s patch.
These previous techniques represent a decade of APR research that uses manually-
designed Java fix patterns. This demonstrates that CoCoNuT complements existing APR
approaches by automatically learning new fix patterns that existing techniques did not
have, and automatically fixing bugs that existing techniques did not fix. To fix the bug in

16

- catch (org.mockito.exceptions.verification.junit.
ArgumentsAreDifferent e) {

+ catch (AssertionError e) {
(a) Patch for Mockito 5 in Defects4J for Java.

if (actualTypeArgument instanceof WildcardType) {
contextualActualTypeParameters.put(typeParameter ,

boundsOf ((WildcardType) actualTypeArgument));
- } else {
+ } else if (typeParameter != actualTypeArgument) {

contextualActualTypeParameters.put(typeParameter ,
actualTypeArgument);

}
(b) Patch for Mockito 8 only fixed by a context-aware model.

Figure 3.1: Two bugs in Defects4J fixed by CoCoNuT that other tools did not fix.

Figure 3.1b, CoCoNuT learns from the context lines the correct variables (typeParameter
and actualTypeArgument) to be inserted in the conditional statement.

This work makes the following contributions:

• A new context-aware NMT architecture that represents context and buggy input sepa-
rately. This architecture is independent of our fully automated tool and could be applied
to solve general problems in other domains where long-term context is necessary (e.g.,
grammatical error correction).

• The first application of CNN (i.e., FConv [71] architecture) for APR. We show that the
FConv architecture outperforms LSTM and Transformer architectures when trained on
the same dataset.

• An ensemble approach that combines context-aware and FConv NMT models to better
capture the diversity of bug fixes.

• CoCoNuT is the first APR technique that is easily portable to different programming
languages. With little manual effort, we applied CoCoNuT to four programming languages
(Java, C, Python, and JavaScript), thanks to the use of NMT and new tokenization.

• A thorough evaluation of CoCoNuT on six benchmarks in four programming languages.
CoCoNuT fixes 493 bugs, 307 of which have not been fixed by existing APR tools.

17

• A use of attention maps to explain why certain fixes are generated or not by CoCoNuT.

Artifacts are available1.

3.2 Background and terminology

Terminology: A DL network is a structure (i.e., a graph) that contains nodes or layers
that are stacked to perform a specific task. Each type of layer represents a specific low-level
transformation (e.g., convolution, pooling) of the input data with specific parameters (i.e.,
weights). We call DL architecture an abstraction of a set of DL networks that have the
same types and order of layers but do not specify the number and dimension of layers. A
set of hyperparameters specifies how one consolidates an architecture to a network (e.g.,
it defines the convolutional layer dimensions or the number of convolutions in the layer
group). The hyperparameters also determine which optimizer is used in training along with
the optimization parameters, such as the learning rate and momentum. We call a model (or
trained model), a network that has been trained, which has fixed weights.

Attention: The attention mechanism [19] is a recent DL improvement. It helps a neural
network to focus on the most important features. Traditionally, only the latest hidden states
of the encoder are fed to the decoder. If the input sequence is too long, some information
regarding the early tokens are lost, even when using LSTM nodes [19]. The attention
mechanism overcomes this issue by storing these long-distance dependencies in a separate
attention map and feeding them to the decoder at each time step.

Candidate, Plausible, and Correct Patches: We call patches generated by a tool
candidate patches. Candidate patches that pass the fault triggering test cases are plausible
patches. Plausible patches that are semantically equivalent to the developers’ patches are
correct patches.

3.3 Approach

Our technique contains three stages: training, inference, and validation. Figure 3.2 shows
an overview of CoCoNuT. In the training phase, we extract tuples of buggy, context, and
fixed lines from open-source projects. Then, we preprocess these lines to obtain sequences

1https://github.com/lin-tan/CoCoNut-Artifact

18

https://github.com/lin-tan/CoCoNut-Artifact

 public static int max_sublist_sum(int[] arr) {
 int max_ending_here, max_so_far = 0;
 for (int x : arr) {
- max_ending_here=max_ending_here+x;
 max_so_far = Math.max(max_so_far,max_ending_here);
 }
 return max_so_far;}}

src/jvm/backtype/storm/utils/RotatingMap.java

Training Stage
Training and tuningData extraction

Inference Stage Top-k networks

Buggy line localization

Validation Stage
Compilation Test suite validation

Candidate 2.1

Candidate 5.N

Candidate 1.1

Candidate 3.1

...

Compiled 2.1

Compiled 5.N

Compiled 1.1

...

Plausible Patches

Patch 5.N

Patch 1.1

...

Candidate 4..1
Compiled 4.1

Patch 4.1

Re-ranking

Candidate 2.1

Candidate 5.N

Candidate 1.1

Candidate 3.1

...
Candidate 4.1

QuixBugs: MAX_SUBLIST_SUM.java
1

2 3

4 5

Tokenization

Buggy line

Context lines

Tokenization

Fixed lines

Buggy lines

Context lines- public void rotate() {
+ public Map<K,V> rotate() {
 Map<K, V> dead = _buckets.removeLast();
 _buckets.addFirst(new HashMap<K, V>());

Ensemble

Figure 3.2: CoCoNuT’s overview

of tokens, feed the sequences to an NMT network, and tune the network with different
sets of hyperparameters. We further train the top-k models until convergence to obtain an
ensemble of k models. Since each model has different hyperparameters, each model learns
different information that helps fix different bugs.

In the inference phase, a user inputs a buggy line and its context into CoCoNuT. It
then tokenizes the input and feeds it to the top-k best models, which each outputs a list of
patches. These patches are then ranked and validated by compiling the patched project.
CoCoNuT then runs the test suite on the compilable fixes to filter incorrect patches. The
final output is a list of candidate patches that pass the validation stage.

Section 3.3.1 presents the challenges of using NMT to automatically fix bugs, while the
rest of Section 3.3 describes the different components of CoCoNuT.

3.3.1 Challenges

In addition to the two main challenges discussed in Introduction, i.e., (1) representing
context and (2) capturing the diversity of fix patterns, using NMT for APR has
additional challenges:

(3) Choice of Layers of Neurons: While natural language text is read sequentially
from left to right, source code is generally not executed in the same sequential way (e.g.,
conditional blocks might be skipped in the execution). Thus, relevant information can be

19

located farther away from the buggy location (e.g., a variable definition can be lines away
from its buggy use). As a result, traditional recurrent neural networks (RNN) using LSTM
layers [153] may not perform well for APR.

To address these challenges, we build our new context-aware NMT architecture using
convolutional layers as the main component of the two encoders and the decoder, as they
better capture such different dependencies than RNN layers [45,71]. We stack convolutional
layers with different kernel sizes to represent relations of different levels of granularity.
Layers of larger kernel sizes model long-term relations (e.g., relations within a function),
while layers of smaller kernel sizes model short-term relations (e.g., relations within a
statement). To further track long-term dependencies in both input and context encoders,
we use a multi-step attention mechanism.

(4) Large vocabulary size: Compared to traditional natural language processing (NLP)
tasks such as translation, the vocabulary size of source code is larger and many tokens are
infrequent because developers can practically create arbitrary tokens. In addition, letter
case indicates important meanings in source code (e.g., zone is a variable and ZONE a
constant), which increases the vocabulary size further. For example, previous work [33]
had to handle a code vocabulary size larger than 560,000 tokens. Practitioners need to
cut the vocabulary size significantly to make it scalable for NMT, which leaves a large
number of infrequent out-of-vocabulary tokens. We address this challenge by using a new
tokenization approach that reduces the vocabulary size significantly without increasing the
number of out-of-vocabulary words. For Java, our tokenization reduces the vocabulary size
from 1,136,767 to 139,423 tokens while keeping the percentage of tokens out-of-vocabulary
in our test sets below 2% (Section 3.3.3).

3.3.2 Data Extraction

We train CoCoNuT on tuples of buggy, context, and fixed lines of code extracted from the
commit history of open-source projects. To remove commits that are not related to bug fixes,
we follow previous work [249] and only keep commits that have the keywords “fix,” “bug,” or
“patch” in their commit messages. We also filter commits using six commit messages anti-
patterns: “rename,” “clean up,” “refactor,” “merge,” “misspelling,” and “compiler warning.”
We manually investigate a random sample of 100 commits filtered using this approach
and 93 of them are bug-related commits. This is a reasonable amount of noise (7%) for
ML training on large training data [109, 258]. We split commits into hunks (groups of
consecutive differing lines) and consider each hunk as a unique instance.

We represent the context of the bug using the function surrounding the buggy lines

20

because it gives semantic information about the buggy functionality, is relatively small,
contains most of the relevant variables, and can be extracted for millions of instances. The
block “Data Extraction” in Figure 3.2 shows an example with one buggy line (highlighted
in red), one correct line (highlighted in blue), and some lines of context (with purple on the
left).

The proposed context-aware NMT architecture is independent of the choice of the
context and would still work with different context definitions (e.g., full file or data-flow
context). Our contribution is to represent the buggy line and the context separately as a
second encoder, independently of the chosen context. Exploring other context definitions is
interesting future work.

3.3.3 Input Representation and Tokenization

CoCoNuT has two separate inputs: a buggy line and its context. The block "Buggy line
localization” in Figure 3.2 shows the inputs for the MAX_SUBLIST_SUM bug in QuixBugs [135].
The line highlighted in red is the buggy line and the lines with a purple block on the left
(i.e., the entire function) represent the context. Since typical NMT approaches take a vector
of tokens as input, our first challenge is to choose a correct abstraction to transform a
buggy line and its context into sequences of tokens.

We use a tokenization method analogous to word-level tokenization (i.e., space-separated),
a widely used tokenization in NLP. However, word-level tokenization presents challenges
that are specific to programming languages. First, we separate operators from variables as
they might not be space-separated. Second, the vocabulary size is extremely large and many
words are infrequent or composed of multiple words without separation (e.g., getNumber
and get_Number are two different words). To address this issue, we enhance the word-level
tokenization by also considering underscores, camel letters, and numbers as separators.
Because we need to correctly regenerate source code from the list of tokens generated by the
NMT model, we also need to introduce a new token (<CAMEL>) to mark where the camel
case split occurs. In addition, we abstract string and number literals except for the most
frequent numbers (0 and 1) in our training set.

Thanks to these improvements, we reduce the size of the vocabulary significantly (e.g.,
from 1,136,767 to 139,423 tokens for Java), while limiting the number of out-of-vocabulary
tokens (in our benchmarks, less than 2% of the tokens were out-of-vocabulary).

21

3.3.4 Context-Aware NMT Architecture

CoCoNuT’s architecture presents two main novelties. The first one consists of using two
separate encoders to represent the context and the buggy lines (Figure 3.3). The second is
a new application of fully convolutional layers (FConv) [71] for APR instead of traditional
RNN such as LSTM layers used in previous work [33]. We choose the FConv layers because
FConv’s CNN layers can be stacked to extract hierarchical features for larger contexts [45],
which enables modeling source code at different granularity levels (e.g., variable, statement,
block, and function). This is closer to how developers read code (e.g., looking at the entire
function, a specific block, and then variables). RNN layers model code as a sequence, which
is more similar to reading code from left to right.

We evaluate the impact of FConv and LSTM in Section 3.5.3.

Our architecture consists of several components: an input encoder, a context encoder,
a merger, a decoder, and an attention module. For simplicity, Figure 3.3 only displays a
network with one convolutional layer. In practice, depending on the hyperparameters, a
complete network has 2 to 10 convolutional layers for each encoder and the decoder.

In training mode, the context-aware model has access to the buggy lines, its context,
and the fixed lines. The model is trained to generate the best representation of the
transformation from buggy lines with context to fixed lines. In practice, this is conducted
by finding the best combination of weights that translates the input instances from the
training set to fixed lines. Multiple passes on the training data are necessary to obtain the
best set of weights.

In inference mode, since the model does not have access to the fixed line, the decoder
processes tokens one by one, starting with a generic <START> token. The outputs of
the decoder and the merger are then combined through the multi-step attention module.
Finally, new tokens are generated based on the outputs of the attention, the encoders, and
the decoder. The generated token is then fed back to the decoder until the <END> token is
generated.

Following the example input in Figure 3.3, a user inputs the buggy statement “int
sum=0;” and its context to CoCoNuT. After tokenization, the buggy statement (highlighted
in red) is fed to the Input encoder while the context (highlighted in purple) is fed to the
Context encoder. The outputs of both encoders are then concatenated in the Merger layer.

Since CoCoNuT did not generate any token yet, the token generation starts by feeding
the token <START> to the decoder (iteration 0). The output of the decoder (dout) is then
combined with the merger output using a dot product to form the first column of the
attention map. The colors of the attention map indicate how important each input token is

22

Merger

A
tte

nt
io

n

INPUT:

OUTPUT:

Input encoder

Decoder

Token generation

<END>;double ...

ΣdoutΣeout

...

...... ...

int

0

<START>

double

;

...

...

...

...

...

emb. conv. GLU
hidden
states

...
0

1

n

CONTEXT: Context encoder
public

static

distance

}

...

...... ...

...
...

...

......

...

...

...

...

...

...
...

;

sum

...

...

...

... ...

...

...

Figure 3.3: The new NMT architecture used in CoCoNuT.

for generating the output. For example, to generate the first token (double), the token
int is the most important input token as it appears in red. The token generation combines
the output of the attention, as well as the sum of the merger and decoder outputs (Σ eout
and Σdout) to generate the token double. This new token is added to the list of generated
tokens and the list is given back as a new input to the decoder (iteration 1). The decoder
uses this new input to compute the next dout that is used to build the second column of
the attention map and to generate the next token. The token generation continues until
<END> is generated.

We describe the different modules of the network below.

Encoders and Decoder: The purpose of the encoders is to provide a fixed-length vector-
ized representation of the input sequence while the decoder translates such representation
to the target sequence (i.e., the patched line). Both modules have a similar structure that
consists of three main blocks: an embedding layer, several convolutional layers, and a layer
of gated linear units (GLU).

23

The embedding layers represent input and target tokens as vectors, with tokens occurring
in similar contexts having a similar vector representation. In a sense, these layers represent
the model’s knowledge of the programming language.

The output of the embedding layers is then fed to several convolutional layers. The
size of the convolution kernel represents the number of surrounding tokens that are taken
into consideration. Stacking such convolutional layers with different kernel sizes provides
multiple levels of abstraction for our network to work with. For example, a layer with a
small kernel size will only focus on a few surrounding tokens within a statement, while
larger layers will focus on a block of code or even a full function. These layers are different
in the encoder and the decoder. The encoders use information from both the previous and
the next tokens in the input sequence (since the full input sequence is known at all times),
while the decoder only uses information about the previously generated tokens (since the
next tokens have not been generated yet). Figure 3.3 shows these differences (full triangles
in the encoders and half triangles in the decoder).

After the convolutional layers, a layer of GLU (represented by the sigmoid and multipli-
cation boxes in Figure 3.3) decides which information should be kept by the network. The
Merger then concatenates the outputs of the input and context encoders.

Multi-Step Attention: Compared to traditional attention (see Section 3.2), multi-step
attention uses an attention mechanism to connect the output of each convolutional layer
in the encoders and the decoder. When multiple convolutional layers are used, it results
in multiple attention maps. Multi-step attention is useful because it connects each level
of abstraction (i.e., convolutional layer) to the output. This increases the amount of
information an encoder passes to the decoder when generating the target tokens.

The attention map represents the impact of input tokens on generating a specific output
token and can help explain why a specific output is generated. We analyze attention maps
in RQ4.

Token Generation: The token generation combines the outputs of the attention layers,
merger (Σ eout) and decoder (Σ dout) to generate the next token. Each token in the
vocabulary is ranked by the token generation component based on their likelihood of being
the next token in the output sequence. The token selected by the search algorithm is then
appended to the list of generated tokens, and the list is sent back as the new input of the
decoder. The token generation stops when the <END> token is generated.

Beam Search: We use a common search strategy called beam search to generate and rank
a large number of candidate patches. For each iteration, the beam search algorithm checks
the t most likely tokens (t corresponds to the beam width) and ranks them by the total

24

likelihood score of the next s prediction steps (s correspond to the search depth). In the
end, the beam search algorithm outputs the top t most likely sequences ordered based on
the likelihood of each sequence.

3.3.5 Ensemble Learning

Fixing bugs is a complex task because there are very diverse bugs with very different fixing
patterns that vary in terms of complexity. Some fix patterns are very simple (e.g., changing
the operator < to >) while others require more complex modifications (e.g., adding a null
checker or calling a different function). Training a model to fix all types of bugs is difficult.
Instead, it is more effective to combine multiple specialized models into an ensemble model
that will fix more bugs than one single model.

Therefore, we propose an ensemble approach that combines: (1) models with and
without context, and (2) models with different hyperparameters (different networks) that
perform the best on our validation set.

As described in Section 3.2, hyperparameters consolidate an architecture to a network.
Different hyperparameters have a large impact on the complexity of a network, the speed
of the training process, and the final performance of the trained model. For this tuning
process, we apply random search because previous work showed that it is an inexpensive
method that performs better than other common hyperparameter tuning strategies such
as grid search and manual search [20]. For each hyperparameter, based on our hardware
limitations, we define a range from which we can pick a random value. Since training a
model until convergence is very expensive, we tune with only one epoch (i.e., one pass on
the training data). We train n models with different random sets of parameters to obtain
models with different behavior and keep the top k best models based on the performance of
each model on a separate validation set. This tuning process allows us to discard underfit
or overfit models while keeping the k best models that converge to different local optima
and fix different real-world bugs.

Finally, we sort patches generated by different models based on their ranks. We use the
likelihood of each sequence (i.e., bug fix) generated by each model to sort patches of equal
ranks.

3.3.6 Patch Validation

Statement Reconstruction: A model outputs a list of tokens that forms a fix for the
input buggy line. The statement reconstruction module generates a complete patch from

25

the list of tokens. For the abstracted tokens (i.e., strings and numbers), we extract donor
code from the original file in which the bug occurred. Once the fix is generated, it is inserted
at the buggy location, and we move to the validation step.

Compilation and Test Suite Validation: The model does not have access to the entire
project; therefore, it does not know whether the generated patches are compilable or pass
the test suite. The validation step filters out patches that do not compile or do not pass the
triggering test cases. We use the same two criteria as previous work [263] for the validation
process. First, the test cases that make the buggy version pass should still pass on the
patched version. Second, at least one test case that failed on the buggy version should pass
on the patched version.

3.3.7 Generalization to Other Languages

Since CoCoNuT learns patterns automatically instead of relying on handcrafted patterns,
it can be generalized to other programming languages with minimum effort. The main
required change is to obtain new input data. Fortunately, this is easy to do since our
training set is extracted from open-source projects. Once the data for the new programming
language has been extracted, the top k models can be retrained without re-implementation.
CoCoNuT will learn fix patterns automatically for the new programming language.

3.4 Experimental Setup

Selecting Training Data: Since the earliest bugs in our Java benchmarks are from 2006
and the latest are from 2016, we divide the instances extracted from the training projects
into two training sets. The first one contains all instances committed before 2006 and the
second one contains instances committed before 2010. Instances committed after 2010 are
discarded. The models trained using the first training set can be used to train models to
fix all bugs in the test benchmarks, while the models trained using the second training set
should only be used on the bugs fixed after 2010. This setup is to ensure the validity of
experiments so that no future data is used [230] (Section 3.5).

For Java, we use GHTorrent [74] to collect instances from 59,237 projects that contain
commits before 2010. We also extract data from the oldest 20,000 Gitlab projects (restriction
caused by the limitation of Gitlab search API) because we expect older projects to contain
more bugs fixed before the first bug in our benchmarks, and 10,111 Bitbucket repositories
(ranked by popularity because of limitations of the Bitbucket search API).

26

Table 3.1: Training set information.

Language # projects # instances

Java 2006 45,180 3,241,966
Java 2010 59,237 14,796,149
Python 2010 13,899 480,777
C 2005 12,577 2,735,506
JavaScript 2010 10,163 3,217,093

For other languages, we use GHTorrent to extract data from all GitHub projects before
the first bug in their associated benchmark. Table 3.1 shows the number of projects and
the number of instances in all training sets.

Selecting State-of-the-art Tools for Comparison: We compare CoCoNuT against 27
APR techniques, including all Java tools used in previous comparisons [140], two additional
recent techniques [108,210], five state-of-the-art C tools [4, 148,150,169], and two NMT-
based techniques [33, 134]. We chose DLFix [134] and SequenceR [33] over other NMT
techniques [80,176,237] for comparison, because [237] only generates templates and [80,176]
focus on compilation errors, which is a different problem.

Training, Tuning, and Inference: For tuning, we pick a random sample of 20,000
instances as our validation dataset and use the rest for training.

We use random search to tune hyperparameters. We limit the search space to reasonable
values: embedding size (50-500), convolutional layer dimensions (128*(1-5), (1-10)), number
of convolutional layers (1-10), dropout, gradient clipping level, and learning rate (0-1). For
tuning, we train 100 models for one epoch on the 2006 Java training set with different
hyperparameters and rank the hyperparameters sets based on their perplexity [92], which
is a standard metric in NLP that measures how well a model generates a sequence. We
train the top-k (default k=10) models using ReduceLRonPlateau schedule, with a plateau
of 10−4, and stop at convergence or until we reach 20 epochs. In inference mode, we use
beam search with a beam width of 1,000.

Infrastructure: We use the Pytorch [194] implementations of LSTM, Transformer, and
FConv provided by fairseq-py [2]. We train and evaluate CoCoNuT on three 56-core servers
with NVIDIA TITAN V, Xp, and 2080 Ti GPUs.

27

3.5 Evaluation and Results

Realistic Evaluation Setup: To evaluate CoCoNuT, we use six benchmarks commonly
used for APR that contain realistic bugs.

When dealing with time-ordered data, it is not uncommon to incorrectly set up the
evaluation [230]. If the historical data used to build the APR technique is more recent
than the bugs in the benchmarks, it could contain helpful information (e.g., code clones
and regression bugs) that would realistically be unavailable at the time of the fix. Using
training/validation instances that are newer than the bugs in the benchmark to train
or validate our models would be an incorrect setup and might artificially improve the
performances of the models.

This incorrect setup potentially affects all previous APR techniques that use historical
data. Although the effect may be smaller, even pattern-based techniques could suffer
from this problem since patterns might have been manually learned from bugs that were
fixed after the bugs in the benchmarks. To the best of our knowledge, we are the first
to acknowledge and address this incorrect setup issue in the context of APR. The using-
future-data threat is also one of the reasons that we did not use k-fold cross-validation for
evaluation.

To address the setup issue, we extract the timestamp of the oldest bug in the benchmark
(based on the date of the fixing commits) and only use training and validation instances
before that timestamp. However, adding newer data to the training set would help CoCoNuT
fix more recent bugs (e.g., using data until 2010 would be helpful to fix bugs from 2011).
A straightforward solution would be to retrain CoCoNuT using different training data for
each bug timestamp in the benchmark; however, this is not scalable. Instead, we split our
benchmark into two parts. The first part contains bugs from 2006 to 2010 and is used to
evaluate CoCoNuT trained with data from before 2006. The second part of the benchmark
contains bugs from 2011 to 2016 and is used to evaluate CoCoNuT trained with data from
before 2011 (including data from before 2006). This split allows CoCoNuT to learn from
instances up to 2010 to fix newer bugs while keeping the overhead reasonable. We then
combine the results of CoCoNuT on these two sub-benchmarks to obtain the final number
of bugs fixed. With this correct setting, CoCoNuT has no access to data that would be
unavailable in a realistic scenario.

Similar to previous work [32, 87, 94, 115, 127, 138, 139, 140, 141, 143, 167, 200, 201, 209,
210, 252, 259, 260], we stop CoCoNuT after the first generated patch that is successfully
validated against the test suite. If no patch passes the test suite after the limit of six hours,
we stop and consider the bug not repaired by CoCoNuT. For evaluation purposes only,

28

three co-authors manually compare the plausible patches (i.e., patches that pass the test
cases) to the developers’ patches and consider a patch correct if they all agree it is identical
or semantically equivalent to the developers’ patch using the equivalence rules described in
previous work [142].

3.5.1 RQ1: How does CoCoNuT perform against state-of-the-art
APR techniques?

Approach: Table 3.2 shows that we compare CoCoNuT with 27 state-of-the-art G&V
approaches on six benchmarks for four different programming languages. We use
Defects4J [101] and QuixBugs [135] for Java, Codeflaws [231] and ManyBugs [126] for C,
and QuixBugs [135] for Python. For JavaScript; we use the 12 examples associated with
common bug patterns in JavaScript described in previous work (BugAID) [82]. The total
number of bugs in each dataset is under the name of the benchmark.

We compare our results with popular (e.g., GenProg) and recent (e.g., TBar) G&V
techniques for C and Java. We do not compare with the JavaScript APR technique
Vejovis [191] since it only fixes bugs in Document Object Model (DOM). We extract the
results for each technique from a recent evaluation [138] and cross-check against original
results when available. Perfect buggy location results are extracted from the GitHub
repository of previous work [142] and manually verified to remove duplicate bugs.

We run Angelix, Prophet, SPR, and GenProg on the entire Codeflaws dataset because
these techniques had not been evaluated on the full dataset. We use the default timeout
values provided by the Codeflaws dataset authors. Since Codeflaws consists of small
single-file programs, it is unlikely that these techniques would perform differently with a
larger timeout.

The results in Table 3.2 are displayed as x/y, with x the number of correct patches that
are ranked first by an APR technique, and y the number of plausible patches. We also
show in parentheses the number of bugs fixed by CoCoNuT that have not been fixed by
other techniques. ‘-’ indicates that a technique has not been evaluated on the benchmark
or does not support the programming language of the benchmark. For the BugAID and
ManyBugs benchmarks, we could not run the validation step; therefore we only display the
number of patches that are identical to developers’ patches († in the Table) and cannot
show the number of plausible patches.

Since different approaches used different fault localization (FL) techniques, we separate
them based on FL types (Column FL), as was done in previous work [139]. Standard

29

Table 3.2: Comparison with state-of-the-art G&V approaches. The number of bugs that
only CoCoNuT fixes is in parentheses (307). The results are displayed as x/y, with x the
number of bugs correctly fixed. and y the number of bugs with plausible patches. * indicates
tools whose manual fix patterns are used by TBAR. Numbers are extracted from either
the original papers or from previous work [142] which reran some approaches with perfect
localization. † indicates the number of patches that are identical to developer patches—the
minimal number of correct patches. - indicates tools that have not been evaluated on a
specific benchmark. The highest number of correct patches for each benchmark is in bold.

FL Tool

Java C Python JavaScript

Defects4J QuixBugs Codeflaws ManyBugs QuixBugs BugAID
393 bugs 40 bugs 3,902 bugs 69 bugs 40 bugs 12 bugs

S
tan

d
ard

1 Angelix [169] - - 318/591 18/39 - -
2 Prophet [148] - - 301/839 15/39 - -
3 SPR [150] - - 283/783 11/38 - -
4 Astor* [167] - 6/11 - - - -
5 LSRepair [141] 19/37 - - - - -
6 DLFix [134] 29/65 - - - - -

S
u
p
p
lem

ented

7 JAID [32] 9/31 - - - - -
8 HD-Repair* [125] 13/23 - - - - -
9 SketchFix* [87] 19/26 - - - - -
10 ssFix* [259] 20/60 - - - - -
11 CapGen* [252] 21/25 - - - - -
12 ConFix [108] 22/92 - - - - -
13 Elixir* [209] 26/41 - - - - -
14 Hercules [210] 49/72 - - - - -

P
erfect

15 SOSRepair [4] - - - 16/23 - -
16 Nopol [261] 2/9 1/4 - - - -
17 (j)Kali [167,201] 2/8 1/2 - 3/27 - -
18 (j)GenProg [127,167] 6/16 0/2 [255-369]/1423 2/18 - -
19 RSRepair [200] 10/24 2/4 - 2/10 - -
20 ARJA [269] 12/36 - - - - -
21 SequenceR [33] 12/19 - - - - -
22 ACS [260] 16/21 - - - - -
23 SimFix* [94] 27/50 - - - - -
24 kPAR* [138] 29/56 - - - - -
25 AVATAR* [139] 29/50 - - - - -
26 FixMiner* [115] 34/62 - - - - -
27 TBar [140] 52/85 - - - - -

CoCoNuT (not fixed by others) 44/85 (6) 13/ 20 (10) 407/ 576 (269) 7 †/- (0) 19/21 (19) 3 †/- (3)
Total bugs fixed by CoCoNuT 493 (307)

30

FL-based approaches use a traditional spectrum-based fault localization technique. Sup-
plemented FL-based APR techniques use additional methods or assumptions to improve
FL. For example, HD-Repair assumes that the buggy file and method are known. Finally,
Perfect FL-based techniques assume that the perfect localization of the bug is known.
According to recent work [138,142], this is the preferred way to evaluate G&V approaches,
as it enables fair assessment of APR techniques independently of the fault localization
approach used.

We exclude iFixR [116] because it uses kPAR to generate fixes which is already in the
Table. We choose kPAR since its evaluation is similar to our evaluation setup and allows
for a fairer comparison. iFixR proposes to use bug reports instead of test cases. However,
we believe that it is reasonable to keep test cases for validation because, even if they were
committed at a later stage, they were often available to the developers at the time of the
bug report since developers generally discover bugs by seeing a program fail given one
failing test case. Regardless, this is still a fair comparison with the 27 existing techniques
which all use test cases for validation.

TBar is a recent pattern-based technique that uses patterns implemented by previous
work (techniques marked with a * in Table 3.2). TBar shows how a combination of most
existing pattern-based techniques behaves with perfect localization.

Results: Overall, Table 3.2 shows that CoCoNuT fixes 493 bugs across six bug bench-
marks in four programming languages. CoCoNuT is the best technique on four of the six
benchmarks and is the only technique that fixes bugs in Python and JavaScript, indicating
that CoCoNuT is easily portable to different programming languages with little manual
effort.

On the Java benchmarks, CoCoNuT outperforms existing tools on the QuixBugs
benchmark, fixing 13 bugs, including 10 bugs that have not been fixed before. On Defects4J,
CoCoNuT performs better than all techniques but TBar and Hercules. In addition, 6 bugs
CoCoNuT fixes have not been fixed by any other techniques. Two of the 6 bugs require
new fix patterns that have not been found by any previous work from a decade of APR
research. We investigate these six bugs in detail in RQ2. In addition, fifteen of the bugs
fixed by Hercules are multi-hunk bugs (i.e., bugs that need changes in multiple locations
to be fixed), currently out of scope for CoCoNuT which mostly generates single-hunk bug
fixes. In the future, the method used by Hercules to fix multi-hunk bugs could be applied
to CoCoNuT.

Two of the 240 Defects4J bugs from after 2010 can only be fixed by models trained
with the training set containing data up to 2010. Surprisingly, the models trained with
data from before 2006 stay relevant and can fix bugs introduced 4 to 10 years after the

31

training data. This highlights the fact that, while training DL models is expensive, such
models stay relevant for a long time and do not need expensive retraining.

In Defects4J, 43% (19 out of 44) of the bugs fixed by CoCoNuT are not fixed by TBar
(the best technique), hence CoCoNuT complements TBar very well. There are also several
bugs fixed by TBar that CoCoNuT fails to fix. Seven of them are if statement insertions
(e.g., null check), and three of them are fixes that move a statement to a different location.
These bugs are difficult to fix for CoCoNuT because we targeted bugs that are fixed by
modifying a statement, hence these two transformations do not appear in our training set.
Fixing bugs by inserting if statements has been widely studied [140,150,260,261]. Instead,
we propose a new technique that fixes bugs that are more challenging for other techniques
to fix.

While we generate 1,000 patches for each bug per model, correct patches are generally
ranked very high. Ten of the 44 correct patches in Defects4J are ranked first by one of
the models. The average rank of a correct patch is 63 and the median rank is 4. The worst
rank of a correct patch is 728.

A potential threat to validity is that some tools use different fault localization techniques.
While we cannot re-implement all existing tools using perfect localization (e.g., some tools
are not publicly available), we try our best to mitigate this threat. First, we consider 13
tools that also use perfect localization for comparison, including TBar, which fixed the
most number of bugs in Defects4J. Second, TBar uses fix patterns from 10 tools (marked
with * in Table 3.2) with perfect localization. Thus, although some of these 10 tools do
not use perfect fault localization, we indirectly compare with these tools using perfect fault
localization. CoCoNuT fixes 6 bugs that have not been fixed by existing tools including
TBar.

On the C benchmarks, CoCoNuT fixes 414 bugs, 269 of which have not been fixed
before. CoCoNuT outperforms existing techniques on the Codeflaws dataset, fixing 105
more bugs than Angelix and has a 59% precision (407 out of 576). On the ManyBugs
benchmark, CoCoNuT fixes seven bugs, outperforming GenProg, Kali, and RSRepair but
is outperformed by other techniques.

We manually check for semantic equivalence for all generated patches except for GenProg
on ManyBugs. Instead, we manually check a random sample of 310 out of the 1,423 plausible
patches for Codeflaws generated by GenProg, because GenProg rewrites the program
before patching it, e.g., replacing a for loop with a while loop, which makes it difficult to
manually investigate all 1,423 plausible patches. The margin of error for this sample is 4%
with a 95% confidence level, thus, Table 3.2 shows the projected range of the number of
Codeflaws bugs that GenProg fixes.

32

- static float toJavaVersionInt(String version) {
+ static int toJavaVersionInt(String version) {

Figure 3.4: CoCoNuT’s Java Patch for Lang 29 in Defects4J that have not been fixed by
other techniques.

On the JavaScript and Python bug benchmarks, CoCoNuT fixes three and 19 bugs
respectively.

Since different bug benchmarks contain different distributions of different types of bugs,
and different APR tools fix different types of bugs, it is important to evaluate new APR
techniques on different benchmarks for a fair and comprehensive comparison. CoCoNuT is
the best technique on four of the six benchmarks.

Summary: CoCoNuT is the first approach that has been successfully applied without
major re-implementation to different programming languages, fixing 493 bugs in six
benchmarks for four popular programming languages, 307 of which that have not been
fixed by existing work, including six in Defects4J, a dataset that has been heavily
used to evaluate 22 other tools.

3.5.2 RQ2: Which bugs only CoCoNuT can fix?

Approach: For the bugs only CoCoNuT can fix in Defects4J, we rerun TBar, the best
technique for Java, on our hardware, with perfect localization, and without a time limit to
confirm that TBar cannot fix these bugs, even under the best possible conditions. For C, as
stated in RQ1, we run Angelix, SPR, Prophet, and GenProg on Codeflaws with the same
hardware we used for CoCoNuT for a fair comparison. CoCoNuT is the only technique
fixing bugs in the Python and JavaScript benchmarks.

Results: CoCoNuT fixes bugs by automatically learning new patterns that have not yet
been discovered, despite a decade of research on Java fix patterns. Mockito 5 (Figure 3.1a)
is a bug in Defects4J only CoCoNuT fixes because it requires patterns that are not covered
by existing pattern-based techniques (i.e., exception type update). Lang 29 (Figure 3.4) is
another bug that cannot be fixed by other tools because existing pattern-based techniques
such as TBar do not have a pattern for updating the return type of a function. TBar cannot
generate any candidate patches for these two bugs.

Thanks to the context-aware architecture, CoCoNuT fixes bugs other techniques do not
fix by correctly extracting donor code (e.g., correct variable names) from the context, while

33

- int indexOfDot=namespace.indexOf(’.’);
+ int indexOfDot=namespace.lastIndexOf(’.’);

(a) Java patch for Closure 92 in Defects4J.

- int end = message.indexOf(templateEnd ,start)
;

+ int end = message.lastIndexOf(templateEnd ,
start);

(b) Similar change to Closure 92 bug occurring in the training data.

Figure 3.5: Example of patches fixed only by CoCoNuT and related changes in the training
set.

- while True:
+ while queue:

(a) Python patch for BREADTH_FIRST_SEARCH in QuixBugs.

- while (true) {
+ while (!queue.isEmpty ()) {

(b) Java patch for BREADTH_FIRST_SEARCH in QuixBugs.

Figure 3.6: BREADTH_FIRST_SEARCH bugs fixed by CoCoNuT in both Python and
Java QuixBugs benchmarks.

34

techniques such as TBar rely on heuristics. An example of such bugs is in Figure 3.1b as
explained in Section 3.1.

CoCoNuT is the only technique that fixes Closure 92 because it learns from historical
data (Figure 3.5b) that the lastIndexOf method in the String library is a likely candidate
to replace the indexOf method. Other techniques such as TBar fail to generate a correct
patch because the donor code is not in their search space.

CoCoNuT directly learns patterns from historical data without any additional manual
work, making it portable to different programming languages. Figure 3.6 shows the same
bug in both the Java (Figure 3.6a) and Python (Figure 3.6b) implementations of the
QuixBugs dataset. CoCoNuT fixes both bugs, even if the patches in Java and Python are
quite different. Adapting pattern-based techniques for Java to Python would require much
work because the fix-patterns are very different, even for the same bug.

Summary: CoCoNuT fixes 307 bugs that have not been fixed by existing techniques,
including six bugs in Defects4J. CoCoNuT fixes new bugs by (1) automatically learning
new patterns that have not been found by previous work, (2) extracting donor code
from the context of the bug, and (3) extracting donor code from the historical
training data.

3.5.3 RQ3: What are the contributions of the different compo-
nents of CoCoNuT and how does it compare to other NMT-
based APR techniques?

Approach: To understand the impact of each component of CoCoNuT, we investigate them
individually. More specifically, we focus on three key contributions: (1) the performance
of our new NMT architecture compared to state-of-the-art NMT architectures, (2) the
impact of context, and (3) the impact of ensemble learning. We compare CoCoNuT with
DLFix [134] and SequenceR [33], two state-of-the-art NMT-based APR techniques and
three other state-of-the-art NMT architectures (i.e., LSTM [153], Transformer [242], and
FConv [71]). These models have not been used for program repair, so we implemented
them in the same framework as our work (i.e., using Pytorch [194] and the fairseq-py [2]
library). To ensure a fair comparison, we tune and train the LSTM, Transformer, and
FConv similarly to CoCoNuT. SequenceR [33] uses an LSTM encoder-decoder approach
to repair bugs automatically. We use the numbers reported by SequenceR and DLFix’s
authors on the Defects4J dataset for comparison since working versions of SequenceR
and DLFix were unavailable at the time of writing. DLFix [134] uses a new treeRNN
architecture that represents source code as a tree.

35

Comparison with State-of-the-art NMT: CoCoNuT fixes the most number of bugs,
with 44 bugs fixed in Defects4J. DLFix is the second best, fixing 29 bugs, followed by
FConv with 21 bugs while Transformer and SequenceR have similar performances, fixing
13 and 12 bugs respectively. The last baseline, LSTM, performs poorly with only 5 bugs
fixed. These results demonstrate that CoCoNuT performs better than state-of-the-art DL
approaches and that directly applying out-of-the-box deep-learning techniques for APR is
ineffective.

Impact of the Context: Figure 3.7 shows the total number of bugs fixed using the top-k
models, with k from 1 to 10. For all k, CoCoNuT outperforms an ensemble of FConv
models trained without using context. Our default CoCoNuT (with k = 10 models) fixes
six more bugs than using models without context (44 versus 38).

Advantage of Ensemble Learning: Figure 3.7 shows that as k increases from 1 to 10,
the number of bugs that CoCoNuT fixes increases from 22 to 44, a 50% improvement. We
observe a similar trend for the FConv models, indicating that ensemble learning is beneficial
independently of the architecture used. Model 9 and Model 7 are the best FConv and
Context-aware models respectively, both fixing 26 bugs.

While increasing k also increases the runtime of the technique, this cost is not prohibitive
because CoCoNuT is an offline technique and can be run overnight. In the worse case, with
k=10, CoCoNuT takes an average of 16.7 minutes to generate 20,000 patches for one bug
(for k=1, it takes an average of 1.8 minutes per bug).

While CoCoNuT fixes 44 in Defects4J, the average number of bug fixed by a single
model is 15.65. in Defects4J, 40% of the bugs are fixed by five or fewer models. Six of
the correctly fixed bugs are only fixed by one model, while only two bugs are fixed by all
models. This indicates that different models in our ensemble approach specialize in fixing
different bugs.

Summary: The new NMT architecture we propose performs significantly better than
baseline architectures. In addition, using ensemble learning to combine the models
improves the results, with a 50% improvement for k=10 compared to k=1.

3.5.4 RQ4: Can we explain why CoCoNuT can (or fail to) gener-
ate specific fixes?

The Majority of the Fixes are not Clones: By learning from historical data, the depth
of our neural network allows CoCoNuT to fix complex bugs, including the ones that require

36

Figure 3.7: Number of bugs fixed as the number of models considered in ensemble learning
increases.

- Calendar c = new GregorianCalendar(mTimeZone);
+ Calendar c = new GregorianCalendar(mTimeZone , mLocale);

Figure 3.8: CoCoNuT’s Java patch for Lang 26 in Defects4J.

generating new variables. As discussed at the start of Section 3.5, we only keep training and
validation instances from before the first bugs in our benchmarks for a fair evaluation. As
a result, the exact same bug cannot appear in our training/validation sets and evaluation
benchmarks. However, the same patch may still be used to fix different bugs introduced at
different times in different locations. Having such patch clones in both training and test
sets is valid, as recurring fixes are common. The majority of the bugs fixed by CoCoNuT
do not appear in the training sets: only two patches from the C benchmark and one from
the JavaScript benchmark appear in the training or validation sets. This indicates that
CoCoNuT is effective in learning and generating completely different fixes.

Analyzing the Attention Map: CoCoNuT can also fix bugs that require complex
changes. For example, the fix for Lang 26 from the Defects4J dataset shown in Figure 3.8
requires injecting a new variable mLocale. This new variable only appears four times in our
training set, and never in a similar context. However, mLocale contains the token Locale
which co-occurs in our training set with the buggy statement tokens Gregorian, Time, and
Zone.

The attention map in Figure 3.9 confirms that the token Time is important for generating
the Locale variable. Specifically, the tokenized input is shown on the y-axis while the
tokenized generated output is displayed on the x-axis. The token <CAMEL> between m and

37

Figure 3.9: Attention map for the correct patch of Lang 26 from the Defects4J benchmark
generated by CoCoNuT.

Locale indicates that these two tokens form one unique variable. The attention map
shows the relationship between the input tokens (vertical axis) and the generated tokens
(horizontal axis). The color in a cell represents the relationship of corresponding input
and output tokens. The color scale, shown on the right of the figure, varies from 0 (dark
blue) to 0.6 (dark red) and indicates the contribution of each input token for generating an
output token.

This attention map helps us understand why the model generates specific tokens. For
example, the second m in the output is generated because of the token m in the input (part
of mTimeZone), showing that the network can keep the naming convention when generating
new variables (square labeled 2 in Figure 3.9). The token Locale is mostly generated
because of the token Time, indicating that the network is confident these tokens should be
together (square 3). Finally, the tokens forming the variable mLocale are all influenced by
the input tokens) ; and EOS, indicating that this token is often used right before the end
of a statement (i.e., as the last parameter of the function call, rectangle 4 on Figure 3.9).
This example shows how the attention map can be used to understand why CoCoNuT
generates a specific patch.

38

Limitations of Test Suites: Patches that pass the test suite but are incorrect are an issue
that CoCoNuT and other APR techniques share. CoCoNuT could generate a correct fix
for 8 additional bugs if more time is given; however, for these 8 bugs, CoCoNuT generates
an incorrect patch that passes the test suite (we only validate the first candidate patch
due to time considerations) or timed out before the correct fix. Using enhanced test suites
proposed in previous work [263] may alleviate this issue.

3.5.5 Execution Time

Data Extraction: Extracting data from open-source repositories and training CoCoNuT
are one-time costs that can be amortized across many bugs and should not be counted in
the end-to-end time to fix one bug. For Java, extracting data from 59,237 projects takes
five days using three servers.

Training Time: The median time to train our context-aware NMT model for 1 epoch
during tuning is 8.7 hours. On average, training a model for 20 epochs takes 175 hours on
one GPU. Transformers and FConv networks are faster to train, taking an average of 2.5
and 2.7 hours per epoch. However, training the LSTM network is much slower (22 hours
per epoch).

This one time cost is to be compared to the decade of research spent designing and
implementing new fix patterns.

Cost to fix one bug: Once the model is trained, the main cost is the inference (i.e.,
generating patches) and the validation (i.e., running the test suite). During inference,
generating 20,000 patches for one bug (CoCoNuT default setup) takes 16.7 min on average
using one GPU. On our hardware, CoCoNuT’s median execution time to validate a bug is
six sec on Codeflaws and 6 min on Defects4J (benchmark with the largest programs and
test suites).

CoCoNuT median end-to-end time to fix a bug varies from 16.7 min on Codeflaws
to 22.7 min on Defects4J. In comparison, on identical hardware, the median time of other
tools that we ran on Codeflaws (Angelix, GenProg, SPR, and Prophet) varies from 30 sec
to 4 min. TBar, on the same hardware, has an 8 min median execution time on Defects4J.

While the end-to-end approach of CoCoNuT is slower than existing approaches, it is
still reasonable. In addition, we can shorten the execution time by reducing the number of
patches generated in inference. Generating only 1,000 patches (i.e., 50 patches per model)
would reduce CoCoNuT’s end-to-end time to 2 min on Codeflaws and 7 min on Defects4J

39

while still fixing most of the bugs (e.g., 34 in Defects4J). Parallelism on multiple GPUs
and CPUs can also speed up the inference.

3.6 Threats to Validity

The dataset used to train our approach is different from the ones used by other work (e.g.,
SequenceR and DLFix), which could impact our comparison results. However, the choice of
datasets and how to extract and represent data are a key component of a technique. In
addition, we compare our approach with LSTM, FConv, and Transformer architectures
using the same training data and hardware, which shows that CoCoNuT outperforms all
other three. Finally, both DLFix and SequenceR use data that was unavailable at the time
of the bug fix (i.e., their models are trained using instances committed after the bugs in
Defects4J were fixed), which could produce false good results as shown by prior work [230].

A challenge of deep learning is to explain the output of a neural network. Fortunately,
for developers, the repaired program that compiles and passes test cases should be self-
explanatory. For users who build and improve CoCoNuT models, we leverage the recent
multi-step attention mechanism [71] to explain why a fix was generated or not.

There is a threat that our approach might not be generalizable to fixing bugs outside
of the tested benchmarks. We use six different benchmarks in four different programming
languages to address this issue. In the future, it is possible to evaluate our approach in
additional benchmarks [81,160,208].

There is randomness in the training process of deep-learning models. We perform multiple
runs and find that the randomness in training has little impact on the performances of the
trained models.

3.7 Summary

We propose CoCoNuT, a new end-to-end approach using NMT and ensemble learning to
automatically repair bugs in multiple languages. We evaluate CoCoNuT on six benchmarks
in four different programming languages and find that CoCoNuT can repair 493 bugs
including 307 that have not been fixed before by existing techniques. In the future, we plan
to improve our approach to work on multi-hunk bugs.

40

Chapter 4

On the Correctness of Electronic
Documents: Studying, Finding, and
Localizing Inconsistency Bugs in PDF
Readers and Files

4.1 Motivation

Many different applications exist for displaying a given type of electronic document, and
inconsistencies between these applications can be critical sources of miscommunication. For
example, there are many Portable Document Format (PDF) readers (such as Acrobat Reader,
Evince, and Firefox), image file readers (such as ACDSee, Eye of GNOME, and Geeqie),
and word document readers (such as Microsoft Word, Abiword, and Libreoffice). Electronic
documents are increasingly displacing paper documents for delivering important information
including medical advice, bills, maps, and tax information. To avoid miscommunication, it
is crucial to display an electronic file consistently across different file readers.

The PDF format was created to alleviate the portability problems of electronic files.
Unfortunately, there are still many inconsistencies among PDF file readers. For example,
the Chrome and Mozilla support forums contain hundreds of complaints from users about
PDF files being displayed differently across readers. These issues include drug information
sent to doctors that cannot be properly displayed or opened [40], customers unable to read
their online bills [183], and web designers worrying that customers cannot correctly display

41

Figure 4.1: An example of a bug in Firefox. Chromium rendering on the left, Firefox
rendering on the right.

the PDF files on their websites [39]. There are two main causes of inconsistencies between
PDF readers.1

(1) Bugs in readers: PDF readers, such as Acrobat Reader, Evince, and Chromium, contain
bugs. Figure 4.1 presents such a bug in Firefox’s embedded PDF reader. The image on
the left shows the rendering of a PDF by Chromium, while the image on the right shows the
same document rendered by Firefox. Firefox fails to display the map properly and fills
large areas with black colour. Firefox developers confirmed our bug report [27].

(2) Bugs in files: PDF files contain bugs, causing readers to display them inconsistently,
or even fail to load them. For example, if a special font is not embedded in a PDF file, some
readers fail to display the contents of this file on a computer that does not contain this font.
If one can automatically detect those inconsistencies, the creators or owners of PDF files
could modify them to ensure the files they share will be displayed as intended by all users.

There is a blurry line between bugs in readers and bugs in files, as some PDF readers are
more tolerant to errors than others. In addition, we learned that in many cases, developers
are willing to provide workaround patches to the readers to tolerate bugs in malformed files.
For example, we reported a damaged file to the Poppler rendering library. In the comments
posted in the bug tracker [26] the developers confirmed that the file was broken, but since
key parts (e.g., the object catalogue) were undamaged, they decided that Poppler should
be able to render this file and proposed a fix.

1In this work, we use the term PDF reader, or just reader, to refer to any application that takes a PDF
file as input, such as PDF viewers, editors and processing utilities.

42

Regardless of whether the bugs are in readers or files, they cause content to be displayed
inconsistently, affecting the correct communication of information. As a result, it is
important to design techniques to automatically detect cross-reader inconsistencies, which
could reveal such critical bugs affecting electronic documents and can also lead to better
document recovery techniques, recently tackled by the research community [47,117,149].

In this work, we conduct a large-scale empirical study to understand the severity of
cross-reader inconsistencies, and propose new techniques to automatically detect them.
Specifically, we study the inconsistent display of popular PDF readers on more than 230,000
real-world PDF files previously mined from US government websites [68]. Since those files
are offered by the government, it is essential that they are opened and rendered consistently
by a wide range of PDF readers.

By manually inspecting how different readers behave on a small fraction of these PDF
files, we identify several challenges of automatically detecting bugs in readers and files.
First, a pixel-by-pixel comparison of the rendered images is too strict, leading to many
spurious alarms, e.g., due to tiny differences related to how certain characters are displayed.
Second, capturing and comparing rendered images accurately is expensive and impractical
for such a large data set, even on a cluster of machines. Third, many inconsistencies are
caused by the same underlying error in a reader or PDF file, resulting in many redundant
inconsistencies to be detected.

To address these challenges, we have devised a multi-stage approach for automatically
detecting crashes and inconsistencies. First, we load every document in a portfolio of
readers, and (1) report any crashes, and (2) record all warnings and errors logged by the
readers. Second, for each reader, we cluster documents based on the warnings and errors
issued in the first phase. Third, we select a representative from each cluster, load it in
several readers, and then capture and compare the rendered images across readers. Then,
we use a form of delta debugging [271] to precisely localize the source of inconsistency
and generate a reduced PDF file that only displays a small number of inconsistent objects.
Finally, we analyze any detected inconsistencies and report them to developers.

We apply our approach to the 230K files in the Govdocs1 database, which automatically
detected 30 unique bugs in popular PDF readers such as the ones embedded by Chromium
and Firefox. We also reported 33 bugs (including 11 manually detected on Windows readers),
some of which had already been confirmed or fixed by developers. These bugs affect the
correctness of the displayed PDF file, causing e.g., readers to crash or PDF elements to be
skipped.

In summary, we make the following contributions:

43

• We conduct the first (to the best of our knowledge) study of cross-reader inconsistencies
by manually examining and categorising a random sample of 2,313 PDF files from the
Govdocs1 database. We found that cross-reader inconsistencies are common—314 out
of 2,313 (13.5%) files are displayed inconsistently—the displayed image is different in at
least one reader. Common symptoms include missing images and font inconsistencies.

• We design a technique to automatically detect crashes and inconsistencies across PDF
readers based on error filtering, clustering, and image processing techniques.

• We apply our techniques to the 230K files in the Govdocs1 database to find cross-reader
inconsistencies, which detected 30 unique bugs in popular PDF readers.

• We develop a technique to precisely locate document elements causing an inconsistency.
This can help developers identify potential bugs in document readers faster.

• We assemble a database of documents that expose errors in these readers, annotated
with the types of errors exposed, error messages triggered and a link to the discussion
of each bug report. This database could help researchers and practitioners address
other software reliability challenges including testing other readers, and diagnosing
and fixing bugs in readers and PDF files.

Our database is made available at http://srg.doc.ic.ac.uk/projects/pdf-errors.

4.2 Approach

Our technique takes a set of PDF documents and a portfolio of PDF readers as input, cross-
checks whether these readers open the same PDF document consistently, and outputs a list
of documents that crash readers or display differently in the readers. Display inconsistencies
in turn indicate either bugs in the readers or in the PDF document. For each document
that is detected inconsistent, we use delta debugging to produce a reduced PDF file that
only displays inconsistent objects. Our technique also outputs clusters of PDF documents,
each of which contains PDF documents that are likely to expose the same bug.

Figure 4.2 presents a high-level overview of our approach, which consists of three main
phases: the filtering phase (Section 4.2.1), the inconsistency detection phase (Section
4.2.2) and the inconsistency localization phase (Section 4.2.3). In the filtering phase, PDF
documents are opened in a portfolio of PDF readers. If a reader crashes on a PDF file, our
technique reports a crash bug. Otherwise, it collects error messages and warnings emitted

44

http://srg.doc.ic.ac.uk/projects/pdf-errors

Open in the portfolio of
readers and take screenshots

Crop images
Detect inconsistencies

Bug Reports

Documents

Open in the
portfolio of

readers

Extract error messages

Cluster files based on errors

mupdf: okular:

No errors

Mupdf

Chromium

Random sample from each cluster

Acrobat Reader

Okular

Filtering Phase:

Detection Phase:

Crashes

...

...

Reduce PDF files

Localization Phase:

Figure 4.2: Overview of our approach, which consists of three main phases: the filtering
phase (Section 4.2.1), the inconsistency detection phase (Section 4.2.2), and the inconsistency
localization phase (Section 4.2.3).

by the readers to standard error, and then clusters the documents that produce similar
error messages. From each cluster, our approach randomly selects a candidate and proceeds
to the second phase.

In the inconsistencies detection phase, our technique opens the candidates in a set
of PDF readers and captures screenshots. It then cleans the screenshots by removing
some captured elements of the graphical user interface (e.g., different background colour)
and applies an image similarity technique on the cleaned screenshots to detect display
inconsistencies. A display inconsistency between two readers happens when parts of the
same document are shown differently in the two readers.

We apply the inconsistency localization phase to each document that is displayed
inconsistently. In particular, we apply delta debugging [271] to reduce the number of visible
objects in the file. At the end, we obtain a reduced PDF file that only renders a small
number of inconsistent objects (usually one visible object). This allows developers to know
which type of objects in the PDF file is causing the issue.

We employ this three-phase approach to address the challenges described in the intro-
duction. One challenge is that comparing rendered images is expensive, and unscalable for
a large data set of 230K PDF files. For example, it takes 40 seconds to render and capture

45

a page with two readers and 5 seconds to compare them. Thus, the total amount of time
for rendering, capturing and comparing just the first pages of the 230K documents for only
two readers is approximately 125 days. To address this issue, the filtering phase employs a
lightweight approach to quickly identify PDF files that are more likely to be malformed or
trigger bugs in the readers. It also aims to group PDF files that cause the same bug in a
reader to address the challenge of different documents exposing the same underlying bug.

Another challenge is that a pixel-by-pixel comparison between the rendered images is
too strict, reporting differences that are often unnoticeable or unimportant to human eyes.
Thus, in the second phase, we leverage an advanced image similarity algorithm [212] that is
based on the human visual system to accurately detect bugs while tolerating unimportant
differences. We also report how other image similarity algorithms compare on this task.

4.2.1 Phase 1: Document filtering

The first phase of the process serves two purposes: (1) selecting the documents that are
likely to be malformed or trigger presentation problems in the readers, (2) grouping the
documents that exhibit similar erroneous behaviour.

Specifically, this phase opens each document in every PDF reader considered and
captures the error messages printed on the terminal. Intuitively, these error messages are
observable signs of potential bugs with either the reader or the document. These observable
signs are features that can help us group similar bugs, as it is reasonable to assume that
similar error messages are likely to indicate similar root bugs. Our results from Section 4.5
show that our filtering approach selects files that find relatively more unique bugs than in a
random sample.

We analyzed the standard error messages produced by the readers (across our
data set and other studied PDF documents) and prepared a set of 501 regular ex-
pressions corresponding to the observed classes of error messages. An example of
a regular expression is (Syntax Warning|Error): Could not parse ligature component
"(char|old|chart)" of "(char_[0-9] +|.+_old|bar_chart)" in parseCharName. For each
document that produces at least one error message, we try to match each message against
our set of regular expressions. The matching is performed separately for each document
and PDF reader. We ignore a message if it does not match any of the regular expressions.
Many times the same error message is emitted by different documents. We leverage this
fact to cluster documents based on the similarity of these emitted error messages.

We create feature vectors with each element of the vector corresponding to a single class
of error messages (as encoded by the regular expressions). The elements in the vector have

46

a value of 1 if the corresponding error was matched and 0 otherwise. These feature vectors
are then used by a clustering algorithm to group files which trigger similar error messages.

We use the popular K-means clustering algorithm [158,159]. K-means iteratively groups
a population of data points around K centroids representing the centres of the clusters. We
use the K-means++ algorithm [14] to choose the initial locations of the centroids and the
sum of squares (inertia) as a distance metric. We configure the algorithm to cluster ten
times and return the best assignment.

Establishing the right value of K—the number of clusters—is a known challenge in
K-means clustering. Having too few clusters results in data points with smaller degree of
similarity being grouped together, while having too many clusters poses a risk of putting
similar data points in separate clusters. To tackle this problem, we use a known selection
algorithm for K: the Silhouette [205] method. Silhouette is a coefficient describing how well
each of the data points in the set fits in its cluster. It is calculated by measuring how far
away a data point is from its cluster neighbours and also from the other clusters. The values
of the coefficient fall into the range of [-1, 1], where -1 means a bad clustering (elements
not in the right clusters), 0 means overlapping clusters and 1 means a good clustering. To
select the right K, we start with value 2, perform the clustering and calculate the Silhouette
coefficient. We then increase K by 1 and repeat the process. We stop when the Silhouette
coefficient is at least 0.9 and we use Euclidean distance as a metric. For each reader, we
generate a different set of clusters of PDF files. The rationale is that a given file may expose
different errors in different readers. For example, for a file F: reader R1 may generate
no error messages, while reader R2 generates one error message, and reader R3 generates
a different error message. This likely indicates that F exposes no bug in reader R1, but
two different bugs in R2 and R3. By clustering PDF files for each reader separately, our
approach can capture such differences.

4.2.2 Phase 2: Inconsistency detection

Error messages from PDF readers alone are not enough to detect inconsistencies accurately.
For example, two readers may emit identical error messages for one file, but this file may still
be displayed differently by the two readers because they have different recovery strategies to
address the error. Therefore, a graphical detection technique, our inconsistency detection
phase, is necessary to detect inconsistent images.

This phase performs three steps: (1) capturing screenshots of the PDF files rendered by
different PDF readers, (2) cropping the screenshots to remove the background and GUI

47

elements and (3) running an image similarity algorithm to detect inconsistent displays of
the same file with different readers.

Due to the size of our data set, we only consider the first page of each document when
detecting inconsistencies. We explain the rationale behind that choice in more detail in
Section 4.4.1.

Capturing rendered images. A straightforward approach to capturing the images
rendered by PDF viewers consists of running PDF readers in full-screen mode, displaying
the result on a real monitor, and taking a screenshot. However, this simple technique has
several flaws. First, the screenshot quality depends on the monitor’s display size. Second,
taking screenshots on a real monitor is slow, and does not scale to a large set of PDF files.

To improve the scalability of the screenshot capture process and the quality of the
images, we use Xvfb [262], a tool that renders graphics in a buffer instead of a real monitor.
Using Xvfb, we can set up a high screen resolution and ensure that the captured screenshots
are high-quality images. In addition, because the PDF files are rendered in memory, it
significantly increases the speed and scalability of the screen capture.

Cropping screenshots. As we display PDF files in full-screen mode, most of the GUI
control elements (e.g., for opening a file) are hidden. However, the screenshots still contain
elements that differ across PDF readers that are not related to document inconsistencies.
For example, if the screen resolution is larger than the rendered page, the PDF reader will
display a uniform background colour that can differ across PDF readers. Therefore, we use
PDFBox to extract the page size, and crop the screenshots to keep only the part of the
image containing the actual document.

Detecting display inconsistencies. Once we obtain cropped screenshots for each
document and PDF reader pair, we apply image processing techniques to detect display
inconsistencies.

We use a state-of-the-art algorithm for image similarity detection, called Complex
Wavelet Structural Similarity Index (CW-SSIM) [212]. This algorithm aims to detect
elements of an image that appear similar to the human eye by focusing on the structure of
the objects in the image. This is important because external sources can add noise (e.g.,
interpolation or anti-aliasing of the software and libraries used for capturing and cropping
screenshots.) The CW-SSIM index is robust to such nonstructural transformations.

The goal of this similarity metric is to decompose images into families of wavelets, (i.e.,
visual channels) that are similar to the decomposition done by human eyes to recognize
patterns [224]. Then the CW-SSIM index between two images is measured by comparing
discrete values of the wavelets obtained for the two images.

48

The CW-SSIM index ranges from 0 to 1. A value close to 1 indicates that the two
compared images are similar, hence no inconsistencies are detected. A low CW-SSIM value
indicates visual inconsistencies. For n readers, we select a base reader (Acrobat Reader),
and compare all remaining n− 1 readers with this base reader to obtain n− 1 CW-SSIM
indexes per file. If one of these indexes is below a certain threshold, the file is considered
inconsistent, i.e., the file is displayed differently in at least one PDF reader. If all the
CW-SSIM indexes are above the threshold, the file is considered consistent across all the
tested readers. We empirically chose a threshold of 0.88 by running a preliminary study on
a small set of PDF files.

We also experimented with seven other similarity algorithms and justify our choice of
CW-SSIM in Section 4.5.1.

4.2.3 Phase 3: Inconsistency localization

Once inconsistent files have been detected, we attempt to automatically find which elements
of the PDF file are causing the inconsistency. To locate the inconsistent elements, we
leverage a debugging technique called delta debugging [271]. The delta debugging algorithm
we used is described in Algorithm 1. T is the similarity threshold and sim the similarity
algorithm we used to compare screenshots (i.e., CW-SSIM).

The main idea is to iteratively remove visible objects of an inconsistent PDF file to
generate a minimum valid PDF file only containing a small number of inconsistent objects.
At each stage, we generate two PDF files, one containing half of the visible objects, and
the other containing the other half. Then, we run the inconsistency detection phase on
each PDF file and keep the one that still reveals the inconsistency. If both new files reveal
the inconsistency, we randomly select one. This process is then repeated until one of
the following three conditions is reached: (1) we obtain a PDF file containing only one
inconsistent object, (2) the new PDF file is no longer inconsistent, (3) we reach the tenth
iteration. Condition (2) can be reached due to false negatives in the image similarity
algorithm and cases where there is no single object responsible (e.g., performance bugs).
Condition (3) is to ensure that our algorithm remains scalable for PDF files containing tens
of thousands of visible objects and only happened for five files.

We implement the inconsistency localization algorithm using the Apache PDFBox
library, a Java library that can be used to manipulate or generate PDF files.

49

Algorithm 1 Delta Debugging Algorithm
Input: Inconsistent File F with objects {o1,...,on}
Output: List of objects included in the minimal PDF file

Initialization: count=0
DD(F,{o1,...,on}):

1: if (n = 1 or count = 10) then
2: return {o1,...,on}
3: end if
4: F1=F{o1,...,on/2}
5: F2=F{on/2+1,...,on}
6: if (sim(F1) < T and sim(F2) ≥ T) then
7: DD(F1,{o1,...,on/2})
8: count += 1
9: else if (sim(F2) < T and sim(F1) ≥ T) then
10: DD(F2,{on/2+1,...,on})
11: count += 1
12: else if (sim(F1) < T and sim(F2) < T) then
13: random(DD(F1,{o1,...,on/2}),DD(F2,{on/2+1,...,on}))
14: count += 1
15: else
16: return {o1,...,on}
17: end if

50

Table 4.1: Basic statistics, extracted using pdfinfo, for the GovDoc1 data set; pdfinfo
failed for 15 documents.

Min Max Median Average Total
File size 931B 68.8MB 155.1KB 579.9KB 127.8GB
Pages 1 3,200 10 27 6,443,316

4.3 Experimental setup

In this section we present the experimental setup used in our study. We describe our data
set in Section 4.3.1, our portfolio of readers in Section 4.3.2 and our infrastructure in Section
4.3.3.

4.3.1 Data set

Govdocs1 [68] is a data set of about one million documents crawled from US government
web pages (the *.gov domain). The set contains documents and files of various formats,
including PDF documents.

For this study, we extracted all the files with *.pdf extension from the data set. The
total number of extracted files is 231,232. We found that amongst the extracted files there
are 10 files which have the suffix .pdf but are not PDF files; that is 0.004% of all the files.
Furthermore, we have found that there are 1,309 duplicates within the extracted files; that
accounts for 0.57% of all the files. Neither the non-PDF files, nor the duplicates could have
negatively influenced the results as their percentage compared to the set size is negligible.

According to the metadata information attached to the Govdocs1 corpus, there are
another 3,688 files categorized as PDF. However, since these files do not have *.pdf
extension we do not consider them in our study.

In further sections of the work, when we refer to data set we mean the PDF files that
we use, rather than the whole Govdocs1 set, which also includes other types of files (unless
we explicitly state otherwise).

The data set is appropriate for our experiments for the following reasons:

• Widely-used publicly-available data set. The Govdocs1 data set has been widely
used by the digital forensics community [75] and the original paper [68] discussing in
detail the need for a curated corpus like Govdocs1 has over 200 citations up to date.
Also, the data set is freely available, which makes results accessible and reproducible.

51

• File Content Diversity. While it is true that Govdocs1 files were collected from a
common source (governmental web pages), the searches were performed using words
randomly chosen from a dictionary, random numbers and a combination of the two.
In total 25,330 unique search terms were used while crawling for the files in our PDF
set. We believe that such a high number of the search terms used contributes to the
data set diversity. We encountered a broad range of types of PDF documents in the
set, such as forms, scanned paper documents, scientific articles, and maps.

• File Size Diversity. The files in the set are also diverse in terms of file size and the
number of pages, as presented in Table 4.1.

• Creating Software Diversity. We inspected the files for optional metadata fields,
Creator and Producer.2 The Creator field is meant to store the name of the original
software that created the document for those documents which were initially created
in a different format and then converted to PDF. The Producer field is meant to store
the name of the software that converted the documents to the PDF format. While
these fields are optional, 90% of the files in our data set contain both of them.

Using the Creator and Producer fields, we extracted the information on the operating
system (OS) used to create a file. As expected, the majority of the files have been
created on Windows (68%). 14% of the files were created on Unix-based systems
(mostly Mac and Solaris). We could not extract OS information for the remaining
files.

We also looked at the software used to create the files. There are ∼18,000 unique
creators and ∼1,400 unique producers in our PDF set. These numbers are high
because they consider different versions of a product as different software. In order to
perform further analysis, we grouped different versions of similar software.

We found 54 applications that were used in the creation of at least 100 documents
(either as a producer or a creator). Adobe Acrobat Distiller is the most popular
software used by far (34% of the files were created by Distiller). This is not surprising
as Distiller is the most popular way to create PDF files on Windows. The second
most common tool to create PDF files in this data set is PScript (12%). PScript
is a document converter used by many different programs (e.g., Microsoft Office,
Ghostscript). Acrobat PDFMaker and the MacOS printer driver PDFWriter are also
quite common (respectively 8% and 7%). Other commonly used software includes
Microsoft Office suite (Word, PowerPoint, Excel), Adobe suite (Capture, Photoshop,

2http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf,
pg. 844

52

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

Table 4.2: Numbers of documents in our data set for various versions of the PDF standard.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Files # 954 6,665 41,082 52,804 87,008 22,123 19,304 1,276
Percentage 0.4% 2.9% 17.8% 22.8% 37.6% 9.6% 8.3% 0.6%

InDesign, etc.), LaTeX converters, printer drivers (Hewlett-Packard, Canon, Lex-
mark, etc.), browsers (Internet Explorer and Mozilla), commercial document creator
tools (QuarkXPress, Corel WordPerfect, Amyuni), open source document converters
(PrimoPDF, Ghostscript, OpenOffice, iText), and Apple software (Quartz, Keynote).

We also found a small number of files (673) for which the Creator or Producer fields
have been changed to “U.S. Gov. Printing Office" or “Government Accountability
Office." It is possible that these files have been generated using software specific to
the US government and therefore are not representative of PDF documents which
can be found elsewhere. However, they only represent 0.1% of all the Creator and
Producer fields.

Overall, our analysis of Creator and Producer metadata demonstrates the diversity
of the tools used to generate the PDF files, despite the fact that all of the files have
been crawled from a single source of US government domains.

• PDF Standard Revision and Creation Date Diversity. Table 4.2 presents a
detailed breakdown of the number of files in our data set for each of the PDF standard
version. There are representatives for every PDF standard revisions from 1.0 up to
1.7. The files creation date ranges from early nineties to 2009.3 Since version 1.7,
the PDF format has not changed much, with extensions regarding forms in 2008 and
2009, security in 2011 (change in the password checking algorithm), and a new format
2.0 in July 2017. Since we do not deal with password-protected files, we believe that
the 2011 update has little impact on our study. While the files created with the 2017
standard could create different types of inconsistencies, this update is too recent and
possibly fewer documents in this format have been created so far. The diversity of
PDF versions and document creation times is a desirable feature of the data set for
our study.

• Real-world documents. The documents from the Govdocs1 corpus are real-world
documents that have not been crafted, fuzzed or cherry-picked to highlight incorrect

3We filtered out all dates reported prior to the introduction of PDF 1.0 in 1992 and after the Govdocs1
paper publication year, i.e., 2009.

53

behaviors or security issues of a specific PDF reader. This is important because in
our study we want to find out about inconsistencies in “common” PDF files, in order
to better understand how often the problem occurs in the real-world scenarios.

• Privacy and contents issues. Creating a new documents corpus, e.g., by crawling
the web, is challenging from the legal and privacy point of view. Collected data might
contain personal information that should not be redistributed, copyrighted material
or illegal content, e.g., pornography. Govdocs1 corpus was designed in a way that it
can be used freely without violating the law.

4.3.2 Portfolio of readers

Many PDF readers are available for different operating systems. For this study, we focus
on readers running on the Linux operating system, and evaluate 11 popular PDF readers.
Three of the readers are command line utilities, but as mentioned in the introduction we
use the term reader to denote any application that processes PDF files.

In our portfolio we have three command line tools: pdfinfo, pdftk and ps2pdf, six
popular PDF readers: Acrobat Reader,4 Xpdf, Evince, Okular, qpdfview, MuPDF, and two
web browsers: Firefox and Chromium.

Evince, Okular, qpdfview and pdfinfo use the same PDF library, Poppler. However, the
codebases are quite different and these readers behave differently. A good example is one of
the bugs we reported5 in which an inconsistency is visible for Evince but not for Okular.
The PDF backend is only a part of the final result, as every PDF reader also needs the
rendering component that shows results on the screen. Because of that, we believe it makes
sense to test readers based on the same backend, even though some of the bugs are common
for all of them.

Table 4.3 presents the readers that we use in each phase. In the filtering phase we do not
consider the output from Firefox, Chromium and Acrobat Reader, because we found that
these readers do not produce any useful PDF parsing messages on the terminal (of these
three, only Firefox emitted parsing-related messages, but only for five of all the tested
documents). In the inconsistency detection and localization phases we do not use pdfinfo,
pdftk and ps2pdf, as they are command-line tools and do not display visual representation
of a PDF document.

4Acrobat Reader is not supported on Linux. We used the last available version from 2013, which is
newer than files in the data set.

5https://bugs.freedesktop.org/show_bug.cgi?id=97485

54

https://bugs.freedesktop.org/show_bug.cgi?id=97485

Table 4.3: Portfolio of PDF readers used in each phase.

Reader Version Phase 1 Phases 2 Phase3

pdfinfo 0.24.5 !

pdftk 2.01 !

ps2pdf 9.1 !

Xpdf 3.03-16 ! ! !

Evince 3.10.3 ! ! !

Okular 0.19.3 ! ! !

qpdfview 0.4.7 ! ! !

MuPDF 1.3-2 ! ! !

Firefox 44.0.2 !

Chromium 48 ! !

Acrobat Reader 9.5.5 ! !

4.3.3 Infrastructure

Phase 1: Filtering. We load all documents by using readers from our portfolio. To speed
up this time-consuming process, we leverage a cloud infrastructure. The infrastructure is
a set of virtual machines running in an Apache CloudStack-based cloud. We used Vagrant
with VirtualBox to create the machines. Each virtual machine is configured to have 16
CPUs running at 1GHz, with 16GB of RAM and a 80GB hard drive. We allocated around
30 such virtual machines in our cloud. Inside each machine there are 14 LXC containers, each
of them representing a separate execution environment. Both the VMs and the containers
are running Ubuntu 14.04. Each container is constrained to use only one core, leaving 2
free cores per each VM for the host OS. The containers are configured to run the graphical
interface LXDE in headless mode using Xdummy or Xvfb.

We split the document set into a number of partitions. Each container is assigned one
partition at a time. In our experiments we used a centralized storage mounted by all the
VMs in the cloud via the NFS protocol.

We control the containers using Ansible, which is a cloud automation tool. Each
container is loaded with an Ansible playbook (a sequence of commands) which performs
the necessary setup and invokes a Bash script which executes the experiment.

To cluster error messages, we implemented a Python v3 script which extracts feature
vectors from the captured standard error messages. The script makes use of the scikit-learn

55

package [217] for K-means clustering and the calculation of Silhouette coefficient.

We use xdotool to automatically perform the necessary graphical user interface interac-
tions such as mouse clicks or getting the name of the window.

Phase 2 and 3: Inconsistency Detection and Localization. These two phases were
performed on a different machine, equipped with an Intel i5-2400 3.10GHz CPU and 6GB
of RAM, running Ubuntu 14.04. Due to technical problems, the screenshots for Firefox
were captured in the cloud VMs. For related technical reasons, the Firefox screenshots
were not used in inconsistency localization6. We use the Xvfb virtual screen buffer to open
the files in high resolution.

To compare screenshots, we use MATLAB version R2015 and two libraries: Steerable
Pyramids [199] and CW-SSIM [44].

Performance. It takes around a week to load all the documents in the cloud. Once
standard errors are captured, it takes several hours to cluster the files. Comparing two
images with CW-SSIM in our setting takes 5s; we need seven comparisons (Acrobat Reader
vs the rest) per file, which requires 35-40s per file. Inconsistency localization takes roughly
8-11 minutes per file. We believe these numbers are reasonable, give the data set size and
that we operate on relatively large images (3000x3000 pixels before cropping).

4.3.4 Research questions.

In Sections 4.4, 4.5 and 4.6 we present a series of experiments. The experiments were
conducted to answer the following research questions:

1. Section 4.4: How frequent are cross-reader inconsistencies and what are the main
types of inconsistencies?

2. Section 4.5: How well does our automated technique perform in terms of finding
cross-reader inconsistencies?

3. Section 4.6: How well does our inconsistency localization based on delta debugging
perform?

6A bug in Xvfb prevented us to display the PDF files with Firefox in Fullscreen mode, making the
screenshots incorrect.

56

4.4 A Study of Cross-reader Inconsistencies

We first manually study a reasonably large random sample of 2,313 PDF files from the
Govdocs1 database. This empirical study has two main goals. The first is to understand how
severe cross-reader inconsistencies are, i.e., how often PDF files are displayed inconsistently
and what the common symptoms are.

The second goal is to produce a random set of PDF files with ground-truth knowledge
about cross-reader inconsistencies. Such information allows us to measure the standard
metrics of precision and recall of the automated detection techniques: precision is the
fraction of reported inconsistencies that are true inconsistencies, and recall or true positive
rate is the fraction of all true inconsistencies that are detected. F1 is the harmonic mean of
precision and recall.

4.4.1 Methods

It is impractical to manually examine the 230K files of the Govdocs1 database. Thus, we
study a one percent random sample of 2,313 documents. We open each document with the
eight graphical PDF readers (described in §4.3.2) and identify any rendering differences.
To reduce manual effort, we first automatically took screenshots of the displayed images in
each reader. Then one of the authors manually compared the screenshots to determine if
two screenshots generated from the same PDF file reveal any inconsistencies. If they do,
we then manually open the file in the two readers and compare the displayed PDF images
to confirm the inconsistency; it is to ensure that bugs in the screen capture tool do not
affect our results.

On average, a PDF file in our sample has 28 pages, and more than 64,000 pages for
all 2,313 files. For eight readers, there would be more than 500,000 images to check—
prohibitively expensive for a manual analysis. Therefore, we focus on inconsistencies found
on the first page of each document only.

Because we are not the authors of the PDF files, we do not know what is the correct
rendering for each file. Therefore, we use the “majority" rule to classify inconsistent displays.
If five readers or more have identical renderings and the others display the page differently,
we consider the five readers to be correct and the others incorrect.

When a reader cannot render a non-embedded font, it will replace it with a default font.
Most readers use different default fonts, and because there is no standardized behaviour on
the correct rendering of a missing font, we cannot determine which reader behaves correctly.
As a result, we only report the total number of such files.

57

Table 4.4: Number of consistent and inconsistent files. For the latter, we report how many
readers behave similarly (“agree”).

of files %
Consistent with all readers 1999 86.5%
Inconsistent 314 13.5%

7/8 readers agree 128 41%
6/8 readers agree 92 29%
5/8 readers agree 38 12%
≤4/8 readers agree 56 18%

One may consider using Acrobat Reader as the ground-truth, as it is developed by the
same company that created the PDF format. However, Acrobat Reader also has bugs, and
furthermore the Linux version is no longer supported, with several known bugs present [3].

4.4.2 Inconsistencies are common

Table 4.4 shows that cross-reader inconsistencies are quite common—out of the 2,313 pages
manually verified, 13.5% are rendered differently by at least one reader. Since these PDF
files originate from US government websites, they are meant to be correctly read by users
and were not generated to be displayed inconsistently in different readers on purpose. Yet,
a significant portion is not. The bottom part of Table 4.4 shows the agreement between
readers, e.g., in 41% of the cases 7 out of the 8 readers behave similarly.

To understand if our random sample size is big enough, we calculate the margin of error
for this sample, which is 1% with 95% confidence. This means that with 95% confidence,
the percentage of inconsistent files in the entire Govdocs1 database would be 13.5% ±1%.

When projected on the entire 230K database, this percentage represents 28K to 33K
inconsistent files, which can cause many of the miscommunication issues described in the
introduction. Since only the first pages of those documents have been studied, and an
inconsistency can happen anywhere in the document, the number of inconsistencies would
likely be bigger than 13.5% when all pages of the documents are considered.

58

Table 4.5: Issues detected in the random sample, sorted by type and reader. Acrobat
denotes Acrobat Reader.

Issue type Acrobat Reader Chromium Evince Firefox MuPDF Okular qpdfview Xpdf Total
Performance issues 0 1 0 1 0 15 8 0 25
Missing images 0 1 0 1 26 0 0 0 28
Map bugs 0 0 2 4 0 0 0 0 6
Colour inconsistencies 44 19 5 28 7 3 0 0 106
Gradient inconsistencies 0 0 5 6 3 1 0 0 15
Form inconsistencies 12 12 0 0 0 0 0 0 24
Others 2 4 4 16 25 6 0 0 57
Font issues 178
Total 58 37 16 56 61 25 8 0 261
Total Unique Bugs 3 5 4 9 8 2 0 0 31

4.4.3 Types of inconsistencies

Table 4.5 shows the different types of inconsistencies that we encountered. The numbers
from this table do not map directly to the number of files triggering inconsistencies presented
in Table 4.4, because one file can expose several issues in the same reader (e.g., missing an
image and displaying an incorrect colour) or the same issue in multiple readers (considered
as multiple bugs since they are present in multiple readers), and multiple files may expose
the same issue in one reader (e.g., the 26 missing-image inconsistencies of MuPDF shown in
Table 4.5 are all caused by a single MuPDF bug).

We describe each type of inconsistency below:

Performance issues. The first type of inconsistencies one notices when opening a
PDF file concerns performance. This is not a graphical bug by itself, but our tool was able
to detect it nonetheless. While we can ensure that the reader is fully loaded before taking
the screenshot, it is not trivial to ensure the PDF page is fully rendered before taking a
screenshot. If the reader takes too long to render the file, the screen capture might occur
before the file is fully displayed. We decided to allow a reasonable time of 30s for the reader
to display the file. If after this time the file is still not rendered correctly, we report a
performance bug. Our results indicate that MuPDF, Acrobat Reader, Evince and Xpdf always
render the PDF files within 30s, while the other PDF readers experience performance
problems for some files.

Missing images. We observed several cases of missing images during our study. While
in principle those issues could also be created by bugs in the PDF files (e.g., incorrectly
compressed images), the 28 issues we encountered were caused by bugs in Chromium, Firefox
and MuPDF. The bug in MuPDF was already known, while the other bugs were new and

59

Figure 4.3: An example of a missing image bug in MuPDF. MuPDF on the right, other readers
on the left.

confirmed by the developers. Figure 4.3 shows the missing image bug in MuPDF. This bug
happened because of specific image encodings that were not well supported by the readers.
This issue is critical when it occurs in scanned documents for which each page consists in
one large image. In such cases, the buggy reader only displays blank pages.

Map bugs. Maps are challenging to render because they are generally made of several
superposed layers of graphic vectors and often contain advanced features such as transparent
objects. In the data set, we found several maps that were incorrectly rendered, similar to
the example in Figure 4.1. These are bugs in the PDF readers.

Colour inconsistencies can either be bugs in the reader or in the PDF file. Figure 4.4
shows a colour bug in the Ubuntu version of Acrobat Reader 9.5.5. In this example, the
background colour rendered by Acrobat Reader is different from the background colour
rendered by other readers. Colour bugs can also be caused by buggy files, if the colour space
of the file is incorrectly encoded. While no information is usually lost, this significantly
affects the design of the document and can be a major issue for graphic designers.

Form inconsistencies. These inconsistencies occur when forms are included in the
PDF file. Chromium and Acrobat Reader highlight editable fields while other readers do not.
We believe such discrepancies are neither bugs in the PDF files, nor in the readers.

Others. This category contains a wide range of inconsistencies that appear rarely and
are generally caused by bugs in a specific reader or rendering library. For example, we
found a bug in Evince that occurs only in rare cases when a PDF file contains images that

60

Figure 4.4: Example of colour discrepancy between Acrobat Reader (left) and other readers
(right)

have a colour depth inferior to 8 bits. Figure 4.5 displays an example of this bug. We filed
this bug against the Poppler rendering library and the developers fixed it. 7

Font inconsistencies. As we cannot know which readers display the correct font,
we only report the total number of files that had at least one font inconsistency (178 in
Table 4.5). Indeed, 178 out of 314 files that reveal inconsistencies contain a font inconsistency.
This inconsistency occurs when an uncommon font is not embedded in the PDF file. In this
case, the reader will either use a default font to replace the non-embedded font or simply
not display the text. Figure 4.6 shows and example of this issue.

Reader reliability. Our experiments enable us to assess the relative reliability of the
eight readers. The row Total of Table 4.5 shows the total number of bugs exposed in each
reader, while the row Total Unique Bugs presents the number of unique bugs. We assessed
uniqueness manually based on the type of inconsistency, potential identical warnings and
error messages, the similarity of the documents, and whether the exact same set of readers
behave similarly. For example, if two PDF files have the same inconsistency (e.g., a jpeg
image is not displayed) with the same readers, then we consider that these two files reveal
only one unique bug. On the other hand, if the image in the first file is incorrectly displayed
with one specific reader (e.g., Evince) and the image in the second file is incorrectly displayed

7https://bugs.freedesktop.org/show_bug.cgi?id=94371

61

https://bugs.freedesktop.org/show_bug.cgi?id=94371

Figure 4.5: An example of “other" types of inconsistencies. Chromium rendering on the left,
distorted Evince rendering on the right.

Figure 4.6: Chromium (left) can render the incorrectly embedded characters, while other
readers (right) cannot.

62

with a different reader (e.g., Chromium), then these two PDF files reveal two unique bugs.
Visual inconsistencies are often subjective, so best effort judgement seems to be a reasonable
approach.

We can use both measures as an approximation of reader’s reliability. With all other
factors being equal, the higher the number of unique bugs, the lower the quality of a
reader’s codebase. On the other hand, under the assumption that the Govdocs1 data set
is representative of real-world documents (which we discuss in Section 4.3.1), the total
number of bugs in each reader correlates with its frequency of failure in the field. Looking
at these two metrics, MuPDF is the least reliable reader with 8 unique bugs and 61 bugs,
while the most reliable reader is Xpdf with no bugs.

Summary. The experiments presented in this section try to answer the research question
How frequent are cross-reader inconsistencies and what are the main types of inconsistencies?
As we found out, cross-reader PDF inconsistencies are surprisingly common and we can
categorize the inconsistencies into several common types. Finally, some PDF readers exhibit
more visual inconsistencies than others.

4.5 Automatic results

In this section, we evaluate our automatic inconsistency detection technique described in
Section 4.2. We devised two experiments, one using the random sample of documents that
we manually inspected in Section 4.4, and the other using the entire 230K database.

4.5.1 Results for the random sample

We perform the first experiment on the sample of documents studied in Section 4.48. This
experiment evaluates the inconsistency detection phase of our approach: we perform image
comparison on all files in the evaluation set without filtering to potentially identify all
inconsistent PDF files. The aim of this experiment is to use the manually-determined
ground truth to establish the precision and recall of our automated image comparison
technique.

8For technical reasons we needed to exclude one file from the sample, because PDFBox was unable to
parse it.

63

Our automatic tool detected 189 true inconsistent files, which revealed 21 unique bugs
in the readers and 124 incorrect files. We consider a file as incorrect if it does not follow
the PDF format specification or does not embed or subset non-standard fonts. While
font embedding is not included in the PDF specifications, it is included in many publisher
standards. For example, the minimum requirements for PDF published on IEEE Xplore
platform include “embed or subset all fonts” [54].

The detection precision, recall and F1 for our approach are 33%, 60%, and 43%
respectively. While 43% is the highest F1 value, we can tune the threshold of our technique
to obtain different precision and recall values. In other words, because our inconsistency
detection tool is based on a similarity score, we can modify the threshold to either reduce
the number of false positives or false negatives. Figure 4.7 shows the ROC curve associated
with the CW-SSIM similarity algorithm we used. This curve shows that we can get a
reasonably good true positive rate (60%) while keeping a low false positive rate (20%).
Increasing the true positive rate to 80% can be done if we accept to increase the false
positive rate to 50%.

We also experimented with other image similarity algorithms: Absolute Error (AE),
Mean Absolute Error (MAE), Mean Squared Error (MSE), square Root Mean Squared Error
(RMSE), Normalized Cross Correlation (NCC), Peak Signal to Noise Ratio (PSNR) [89]
and Perceptual Hash (PHASH) [270]. Figure 4.7 shows the ROC curves for each of them.
CW-SSIM and PHASH are the best performing image comparison metrics. We select
CW-SSIM as it was our first choice; it is also a bit faster (we did not perform a thorough
time measurement but we believe that one second is a good estimate).

False positives: 73% of the false positive results are due to limitations of CW-SSIM.
Some documents contain few or no structured elements (e.g., almost blank pages), making
it difficult for CW-SSIM to identify structural similarities. These are edge cases where
simpler techniques such as a histogram comparison might provide more accurate results.
Future work could be done to use different image comparison algorithms depending on the
visual features of the PDF file being evaluated. 11% of the false positives are due to GUI
problems that are not correctly removed from the screenshots. In 10% of the cases, the
files were correctly detected as inconsistent by our algorithm, but the manually generated
ground truth was incorrect. The remaining false positive results were mostly due to spurious
graphical bugs. We do not consider these spurious graphical bugs as true positives because
their root cause is external to the PDF reader (e.g., bugs in the Unity graphical shell).

False negatives: Local inconsistencies such as font inconsistencies can be challenging to
detect. For example, consider a document in which only a few words are rendered with an
incorrect font; automatically detecting those few incorrectly rendered words is hard. This

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

	P
os
iti
ve
	R
at
e

False	Positive	Rate

CWSSIM PHASH AE MAE RMSE MSE NCC PSNR

Figure 4.7: ROC curves for different image similarity algorithms.

concerns the vast majority of the inconsistent files classified as correct by our tool. Those
“local” discrepancies are very hard to spot when looking at the entire pages because most of
the page is actually rendered correctly. Possible improvements could be done by extracting
the locations of the different text boxes from the PDF’s metadata and running the image
comparison on specific parts of the screenshot.

4.5.2 Results for the entire set

In the second experiment we evaluate our end-to-end approach, as described in Section
4.2. We analyze the whole data set of over 230,000 files: in the first stage, we load each
document in every PDF reader used for this phase, detect crashes and capture emitted
error messages. We then create clusters of documents for each reader based on the emitted
error messages, randomly select one document from each cluster and run our inconsistency
detection tool on the first page of the document. The reason for random selection of a single
document from each cluster is the assumption that clustering should group documents with
similar issues together. This allows to minimize the number of tested files to just one file
per cluster; in our experiments, this reduces the test set size from 230K to 103. Although it
is a heuristic, our experiments show that it yields good results.

Error messages. The number of documents in the Govdocs1 data set that cause the
readers to emit an error message of interest varies between 3,771 and 28,438, with an

65

Table 4.6: Number of crashes detected. The number of unique errors is shown in parentheses.

Reader ps2pdf pdftk Evince qpdfview Others Total
Crashes 2 (2) 5,281 (3) 112 (2) 8 (2) 0 5,403 (9)

Table 4.7: Inconsistencies for cluster candidates. The third column shows the number of
inconsistent cluster candidates. The number of unique bugs is shown in parentheses.

Clusters Number of Inconsistent Bugs triggered
for clusters candidates by candidates
pdfinfo 5 2 2
pdftk 2 1 1
ps2pdf 19 7 7
Xpdf 9 2 2
Evince 41 16 23
Okular 2 2 3
qpdfview 13 4 5
MuPDF 12 6 6
Total 103 40 49 (10)

average of 15,293 and a median of 14,085 across the PDF readers. In total 65,406 files
generated warnings or error messages in at least one of the readers, which accounts for 28%
of documents in the set.

Crashes. In the first phase of our approach, we detect PDF reader crashes, such as
segmentation faults and aborts. Table 4.6 presents the number of non-spurious crashes
observed in ps2pdf, pdftk, Evince and qpdfview (the other readers had no crashes or only
spurious ones).

Inconsistency bugs. Table 4.7 shows the number of clusters created for each PDF reader
after running the filtering phase. This varies between only 2 clusters for pdftk and Okular
and 41 for Evince, for a total of 103 clusters.

The column Clusters for indicates the PDF reader that generated the error messages
that were used for clustering. The column Number of clusters presents the number of
cluster obtained.

We randomly sampled one file (or candidate) from each cluster and compared the
rendered images both manually and using our automated technique. We assume that the

66

file selected from the cluster is representative of the other files in the cluster. In the table
we only display the results of manual inspection in order to illustrate the usefulness of
clustering independently of the accuracy of image comparison, but we also present the
results of our automatic tool below.

The column Inconsistent candidates reports the number of candidates that are inconsis-
tent across the readers and the column Bugs triggered by candidates displays the number
of bugs triggered by the inconsistent candidates. An inconsistent file can trigger different
bugs in different readers, so this number might be higher than the number of inconsistent
candidates.

For example, the first row shows that documents which generate error messages in
pdfinfo were split into five clusters. From each of the clusters we randomly sample one
candidate, resulting in a total of five candidates. Two out of these five candidates are
inconsistent across PDF readers. Further manual examination of these two candidates
indicates that they reveal two bugs.

In total, 40 out of 103 candidates have inconsistencies. Therefore 38% files selected via
clustering are inconsistent compared to only 13.5% inconsistent files in our random sample
discussed in Section 4.4. Across the inconsistent cluster candidates we found a total of
49 bugs, out of which 10 were unique. The rate of unique bugs to the number of files for
cluster candidates is 10/ 103 = 9.7%, which is higher that the rate of 31/ 2,313 = 1.3% for
the random sample. The higher percentages of inconsistent files and unique bugs suggest
that the clustering approach is indeed effective.
Results of image comparison on the candidates: Finally, if we use the automatic
image comparison-based inconsistency detection, we get 24 cluster representatives detected
as inconsistent, which contain a total of 31 bugs, 6 unique bugs and 14 incorrect files.
Correlation with file producer: With pdfinfo, we retrieved the authorship data of the
files producing standard errors or having non-zero return status. We extracted creator,
producer and author of the file to see whether there is a correlation between inconsistent
files and the software that produced them. The results are non-conclusive although there
are many files that share common origins: there are ∼18,000 distinct creators, ∼1,400
distinct producers and ∼48,000 distinct authors.

We further analyzed the metadata of the files in the random sample, as presented in
Table 4.4. First, we analyzed the correlation with the version of PDF document.

Table 4.8 presents the percentage of files for each PDF version in our sample, as well as
the percentage of inconsistent files for each version. First, we can see the distribution of
files across PDF versions in our random sample closely follows the distribution of our entire
data set showed in Table 4.2.

67

Table 4.8: Comparison between the distribution of files across PDF versions in the entire
random sample and in the inconsistent files from the random sample.

Percentage 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Whole random sample 0.6% 3.0% 16.8% 23.2% 37.8% 9.2% 8.8% 0.7%
Inconsistent files 2.5% 3.5% 20.4% 21.3% 25.8% 12.1% 13.7% 0.6%

Second, the distribution of inconsistent files across PDF versions roughly follows the
distribution of the PDF versions in the sample, with a few exceptions. The largest difference
occurs for PDF 1.4. Indeed, this version represents 37.8% of the random sample, but only
25.8% of the inconsistent files. Additionally, we measured the Pearson correlation between
inconsistent files and PDF versions and did not find any correlation. For all PDF versions,
the Pearson coefficient is between -0.1 and 0.1.

We also analyzed the correlation between creators and producers that were used to
produce more than 20 documents in our random sample.

We found 12 creators used to generate more than 20 documents: InDesign, Pscript,
Capture, PDFMaker, Print Server, PageMaker, POP90, Office, FrameMaker, WordPerfect,
Microsoft Word, and QuarkXPress.

Only three creators have a small correlation with inconsistent PDF files. InDesign and
QuarkXPress have a small positive correlation (Pearson coefficient between 0.1 and 0.3)
with files rendered inconsistently. PScript presents a small negative correlation (Pearson
coefficient between -0.1 and -0.3). For all the other creators, we found no correlation with
incorrectly rendered documents.

There are seven producer fields used in more than 20 documents: Acrobat Distiller,
Acrobat PDF Writer, Acrobat PDF Library, Ghostscript, Corel PDF Engine, Etymon, and
PDFContext. None of them shows any significant correlation with inconsistently rendered
PDF documents.

Summary of inconsistencies and bugs detected in both experiments: Our tech-
nique automatically detected inconsistencies and bugs in both the experiments in Section
4.5.1 and Section 4.5.2. In total, our approach detected 229 inconsistent files and 5,403
crashes/exceptions automatically, including 30 unique bugs in the readers and 138 incorrect
files. The number of unique bugs (30) is not the sum of the number of bugs detected in
each experiment, as some bugs overlap.

Bug reports: One of the outcomes of the project was filing 33 bug reports of which 17
were confirmed or fixed. We filed the bugs throughout the project, with some of them being

68

spotted during the development of the tool. We did not report all bugs, as some of them
had already been reported or fixed.

The list of bug reports is presented on our project website at
https://srg.doc.ic.ac.uk/projects/pdf-errors/results.html.
Currently out of 33 reported bugs, 8 have already been fixed, 9 have been confirmed as
true bugs, 5 have been triaged as “won’t fix”, and 11 await confirmation. Note that one of
the fixed bugs (#17 on the list) was marked as a duplicate as there was a parallel report of
a problem. We still count the bug towards the 33 unique bugs as that was our judgement
at the time of reporting.

Summary. The experiments presented in this section try to answer the research question
How well does our automated technique perform in terms of finding cross-reader inconsisten-
cies? We show that the technique is able to find more inconsistencies in cluster candidates
compared to a random selection of documents. We also show that our algorithm of choice
for visual inconsistency detection is one of the two algorithms with the best ROC curve.

4.6 Inconsistency Localization Evaluation

To evaluate the accuracy of our inconsistency localization technique, we run it on the 189
true inconsistent files detected by our approach on the random sample (see Section 4.5.1).
The inconsistency localization algorithm was able to generate a reduced PDF file in 86% of
cases. Most files (139) were reduced to only two visible objects, 13 to only one, and 21 to
more than two.

We evaluated the correctness of the reduced PDF files by manually examining them to
verify whether they actually reveal an inconsistency. 84% of the reduced PDF files display
an element that is inconsistent. Figure 4.8a shows an example of inconsistent file incorrectly
displayed by Okular and Figure 4.8b shows the same issue on the reduced file obtained
after inconsistency localization. As we can see, the file has been reduced to only contain
the inconsistent element.

43% of the incorrectly reduced PDF files are due to the inconsistency not being caused
by a specific element. For example, MuPDF has a bug in its fullscreen functionality that does
not work correctly when the size of the page is too large or too small compared to the
screen’s resolution, regardless of the elements in the file. The other 57% of the cases seem
to be caused by false positives in CW-SSIM.

69

https://srg.doc.ic.ac.uk/projects/pdf-errors/results.html

(a)

(b)

Figure 4.8: Inconsistency between Adobe Reader (left) and Okular (right) before (a) and
after reduction (b).

In number of bytes, reduced files are 31% smaller than the original file. This is a
relatively small reduction compared to the one in number of displayed objects, as a PDF
file must contain many base structures to remain valid. We refer to the size of these base
structures as the base file size. Using the base file size, we can also compute the relative
size reduction, i.e., reduced file size − base file size

original file size − base file size
. Our approach has a substantial relative

size reduction of 86%.

Summary. The experiments presented in this section try to answer the research question
How well does our inconsistency localization based on delta debugging perform? We show
that in most cases the localization algorithm was able to reduce the “buggy” document to
just a couple of visible objects.

4.7 Cross-OS Inconsistencies

Since there are more Windows users than Linux users, there is a possibility that developers
of PDF readers spend more time improving the reliability of their PDF readers on Windows
than on Linux, and it is possible that the inconsistencies we found are only a problem on
Linux.

70

In this section, we aim at determining whether the files we detected as inconsistent
on Linux readers also reveal bugs in Windows PDF readers. More specifically, we aim at
answering the following two research questions:

Question 1: Are the inconsistencies we detected OS specific?

Question 2: Can we use the files we detected as inconsistent on Linux to detect bugs in
another OS and other PDF readers?

4.7.1 PDF Readers on Windows

To understand whether the inconsistencies we found are OS specific, we chose, when possible,
equivalent Windows versions of the software we tested on Linux. More precisely, Firefox,
Chromium and MuPDF have an equivalent version for Windows. For Xpdf we only found a
more recent version (4.00.1) while for Evince, only an older version was found (2.32.0.145).
For Acrobat Reader, we chose to use the most recent version on Windows (Acrobat Reader
DC) as it is likely to be the most used PDF reader on this OS. Okular and qpdfview do not
have a Windows version available.

We completed this set of Windows PDF readers with two popular readers that are
specific to Windows. The first one is Edge, Microsoft default browser on Windows 10, and
the second one is Sumatra PDF, a popular lightweight PDF reader. In total we evaluated 8
PDF readers on Windows 10.

4.7.2 Experiment Details

For this experiment, we focused on the files we reported during our evaluation of Linux
PDF readers. We reported 19 files revealing 22 different bugs. We focused on these files
because these represent unique bugs that we found.

4.7.3 Results

Are the inconsistency we detected OS specific?

To answer this research question, we focus on bugs we reported for PDF readers that are
cross-OS (e.g., Firefox, Chromium). The goal is to find out whether these bugs only occur
in the Linux version or in both versions of the reader. When possible, we used the same

71

Table 4.9: Comparison between bugs on Linux and Windows version of PDF readers. #
Linux column shows the number of bugs reported on Linux. # Windows represents the
number and percentage of the reported bugs that also occur in the Windows version of the
reader

PDF reader # Linux # Windows
Firefox 7 5 (71%)
Chromium 4 3 (75%)
mupdf 2 1 (50%)
Evince 3 3 (100%)
Total 16 12 (75%)

Table 4.10: Number of reported inconsistent files on Linux that also reveal bugs in Windows
readers.

Acrobat Firefox Chromium Edge Sumatra Evince mupdf xpdf
5/19 11/19 3/19 5/19 5/19 7/19 6/19 4/19

version of the reader (Firefox, Chromium, MuPDF). In the case of Evince, the Windows version
is older than the Linux version.

The results displayed in Table 4.9 show that 75% of the bugs we reported for Linux also
occur on Windows 10. The reason is that most of these bugs occur in the shared backend
library that parses the PDF file and not in the OS specific source code.

Can we use the files we detected as inconsistent on Linux to detect bugs in
another OS and other PDF readers?

To answer this question, we check how many of the inconsistent files we reported for Linux
readers also reveal bugs on Windows readers. Table 4.10 displays the number of reported
inconsistent files on Linux that also reveal bugs on Windows readers. For example, the
Acrobat column indicates that 5 of the 19 inconsistent files on Linux readers reveal bugs
in Acrobat Reader on Windows. We reported 11 bugs to the developers for the Windows
readers (4 for Acrobat Reader, 3 for Edge and 4 for Sumatra PDF).

The files we reported for Linux helped us find inconsistencies in all the Windows readers
tested. In particular, we found inconsistencies in Acrobat Reader DC, the most recent
version of Acrobat Reader on Windows. We also found 5 inconsistencies in both Microsoft

72

Edge and Sumatra, two PDF readers that do not have an equivalent reader working on
Linux.

This study highlights that the PDF inconsistency problem is not restricted to Linux
readers, and that the files which are inconsistent on Linux readers are also likely to reveal
inconsistencies in Windows readers.

4.8 Discussion and Threats to Validity

4.8.1 Conclusion Validity

Visual inconsistencies can be subjective. While most of them are clear (e.g., crashes and
missing images), some are ambiguous (e.g., colour differences can be so small that some
people consider them different while others see no difference). Therefore, there is a potential
threat regarding the labelling of inconsistencies in our study. To mitigate this issue, the
labelling was done by one of the authors, then independently verified by another author
and two other students.

We empirically choose an optimal threshold and image comparison algorithm for our
data set. However our study covers very diverse documents, and the optimal threshold
or image comparison algorithm might be different for specific types of documents (e.g.,
image or text). In the future, we plan to take the content of the file into consideration for
choosing the optimal threshold and image comparison algorithm to use.

4.8.2 Internal Validity

Despite its large size of about 230K files, the PDF files used in our evaluation come from a
single source of the U.S. government’s websites. Thus, the results on other PDF files may
be different. However, the data set should be reasonably representative for real-world PDF
files. To mitigate this issue, we did an extensive study on the data set, investigated the
files’ metadata and found out the files were produced by a wide range of software.

We mostly focus on PDF readers available on Linux. However, we claim the PDF
inconsistency issue is generalizable to other platforms. To support this claim, we did a
small study on the 18 files we reported for Linux PDF readers and found that these files
also reveal inconsistencies in 8 different Windows PDF readers.

73

4.8.3 Construct Validity

If one PDF file exposes the same bug in all readers, and causes all readers to fail in the
same way (e.g., all display an identical but wrong image), our approach would fail to detect
this bug as there are no visual inconsistencies. However, in practice, we have not seen such
cases during our manual examination.

4.8.4 External Validity

Although the presented technique is tuned for PDF documents, it is not bound to the PDF
format. The same methodology of capturing error messages and return codes, clustering
and then comparing screenshots could be applied to other document readers, like e.g., MS
Word viewers, image viewers or web browsers. The aspects that need to be adjusted for a
specific application, e.g., a different document type, are the regular expressions used for
the emitted messages and the cropping functionality which removes application specific UI
elements from the screenshots. The technique is applicable in a broader context because we
treat programs in the portfolio in a black-box manner and capture their externally visible
behaviour only.

More generally, the technique can be used to tackle the problems that arise when
cross-checking a portfolio of programs on a large data set of inputs: which inputs to select
(error messages), how to group similar inputs (clustering) and how to detect issues using a
similarity metric (image comparison). The presented tool can be used by end-users to check
that the published document is presented as expected and by developers to automatically
detect bugs in a portfolio of viewers.

4.8.5 Practical Applicability

We envision the practical applicability of this research in two directions: 1) as empirical
evidence/systematic study of the PDF inconsistency problem, and 2) as a technique/method-
ology for cross-testing a portfolio of reader programs and for cross-verification of document
correctness.

Our empirical research highlights and quantifies the, otherwise anecdotal, problem of
cross-reader PDF inconsistencies. The fact that these inconsistencies appear is an interesting
problem on its own due to the intended portable nature of the PDF format. The results also
show the difficulty of implementing a complex document format standard and a potential
for inconsistencies to appear across different implementations of the standard. We hope

74

that our empirical study will spawn further research into document correctness and reader
testing.

Our proposed inconsistency detection technique and prototype could be applied by:

• Developers to test their implementations of parsers and viewers. Our error clustering
algorithm can help select interesting documents, the delta-debugging component can
help to narrow down the problems and the minimized document can serve as a test
case.

• Publishers/designers to make sure that the document looks consistently and as
expected across multiple viewers (similarly to what is being done for web pages).

• End-users for sanity checks against bugs such as missing images or inability to load a
file in certain readers.

• Other researchers who want to study similar inconsistency issues but find the data
set is too large for thorough analysis.

4.9 Summary

This work presents and quantifies the research problem of cross-reader inconsistencies,
which are caused by bugs in readers and files. We conduct an empirical study on 2,313
PDF files, which shows that cross-reader inconsistencies are common. In addition, we
propose techniques to detect and localize inconsistencies automatically on over 230K PDF
documents. Our approach has detected 30 unique bugs on Linux. We also reported 33 bugs
to developers, 17 of which have already been confirmed or fixed.

Our database of clusters of PDF files and detected bugs, which we make available at
http://srg.doc.ic.ac.uk/projects/pdf-errors, could help researchers and practition-
ers address software reliability challenges including testing other readers, and diagnosing
and fixing bugs in readers and PDF files.

75

http://srg.doc.ic.ac.uk/projects/pdf-errors

Chapter 5

Measuring the Impact of Code
Dependencies on Software Architecture
Recovery Techniques

5.1 Motivation

Software architecture is crucial for program comprehension, programmer communication,
and software maintenance. Unfortunately, documented software architectures are either
nonexistent or outdated for many software projects. While it is important for developers
to document software architecture and keep it up-to-date, it is costly and difficult. Even
medium-sized projects, of 70K to 280K source lines of code (SLOC), require an experienced
recoverer to expend an average of 100 hours of work to create an accurate “ground-truth”
architecture [65]. In addition, as software grows in size, it is often infeasible for developers
to have complete knowledge of the entire system to build an accurate architecture.

Many techniques have been proposed to automatically or semi-automatically recover
software architectures from software code bases [13,42,67,111,164,240]. Such techniques
typically leverage code dependencies to determine what implementation-level units (e.g.,
symbols, files, and modules) form a semantic unit in a software system’s architecture.
To understand their effectiveness, thorough comparisons of existing architecture recovery
techniques are needed. Among the studies conducted to evaluate different architecture
recovery techniques [13,165,256], the latest study [64] compared nine variants of six existing
architecture recovery techniques. This study found that, while the accuracy of the recovered
architectures varies and some techniques outperform others, their overall accuracy is low.

76

This previous study used include dependencies as inputs to the recovery techniques.
These are file-level dependencies established when one file declares that it includes another
file. In general, the include dependencies are inaccurate. For example, file foo.c may
declare that it includes bar.h, but may not use any functions or variables declared or
defined in bar.h. Using include dependencies, one would conclude that foo.c depends on
bar.h, while foo.c has no actual code dependency on bar.h.

In contrast, symbol dependencies are more accurate. A symbol can be a function or a
variable name. For example, consider two files Alpha.c and Beta.c: file Alpha.c contains
method A; and file Beta.c contains method B. If method A invokes method B, then method
A depends on method B. Based on this information, we can conclude that file Alpha.c
depends on file Beta.c.

A natural question to ask is, to what extent would the use of symbol dependencies
affect the accuracy of architecture recovery techniques? We aim to answer this question
empirically, by analyzing a set of real-world systems implemented in Java, C, and C++.

Dependencies can be grouped to different levels of granularity, which can affect the
manner in which recovery techniques operate. Generally, dependencies are extracted at
the file level. For large projects, dependencies can be grouped to the module level, where
a module is a semantic unit defined by system build files. Module dependencies can be
used to recover architectures even when finer-grained dependencies do not scale. In this
work, we study the extent to which the granularity of dependencies affects the accuracy of
architecture recovery techniques.

Another key factor affecting the accuracy of a recovery technique is whether dependencies
utilized as input to a technique are direct or transitive. Transitive dependencies can be
obtained from direct dependencies by using a transitive-closure algorithm, and may add
relationships between strongly related components, making it easier for recovery techniques
to extract such components from the architecture. However, as the number of dependencies
increases, the use of transitive dependencies with some recovery techniques may not scale
to large projects.

Different symbols can be used (functions, global variables, etc.) to create a symbol
dependency graph, but it is unclear which symbols have the most impact on the accuracy
of architecture recovery techniques. In this work, we study the impact of function calls
and global variable usage on the quality of architecture recovery techniques. In addition,
both C++ and Java offer the possibility of using dynamic-bindings mechanisms. Several
techniques exist to build dynamic-bindings graphs [18, 46, 227] and, despite the existence of
two early studies [84,203] about the impact of call-graph construction algorithms, and the
origins of software dependencies on basic architecture recovery, no work has been done to

77

study the effect of dynamic-bindings resolution on recent architecture recovery techniques.

The last question we study pertains to the scalability of existing automatic architecture
recovery techniques. While large systems have been studied and their architectures analysed
in previous work [24, 55,236], the largest software system used in the published evaluations
of automatic architecture recovery techniques is Mozilla 1.3, comprising 4MSLOC, and it
revealed the scalability limits of several recovery techniques [64]—an old version of Linux
was also studied, but its size reported in previous evaluations was only 750KSLOC. The size
of software is increasing, and many software projects are significantly larger than 4MSLOC.
For example, the Chromium open-source browser contains nearly 10MSLOC. In this work,
we test whether existing automatic architecture recovery techniques can scale to software
of such size.

To this end, this work compares the same nine variants of six architecture recovery
techniques from the previous study [64], as well as two additional baseline algorithms,
using eight different types of dependencies on five software projects to answer the following
research questions (RQ):

RQ1: Can more accurate dependencies improve the accuracy of existing architecture
recovery techniques?

RQ2: What is the impact of different input factors, such as the granularity level, the use
of transitive dependencies, the use of different symbol dependencies and dynamic-bindings
graph construction algorithms, on existing architecture recovery techniques?

RQ3: Can existing automatic architecture recovery techniques scale to large projects
comprising 10MSLOC or more?

This work makes the following contributions:

• We compared nine variants of six architecture recovery techniques using eight types
of dependencies at different levels of granularity to assess their effects on accuracy.
More specifically, we studied the impact of dynamic-bindings resolution algorithms,
function calls, and global variable usage on the accuracy of recovery algorithms. We
also expand the previous work by studying whether using a higher level of granularity
or transitive dependencies improve the accuracy of recovery techniques. This is the
first substantial study to the impact of different types of dependencies for architecture
recovery.

• We found that the types of dependencies and the recovery algorithms have a significant
effect on recovery accuracy. In general, symbol dependencies produce software archi-
tectures with higher accuracy than include dependencies (RQ1). Our results suggest

78

that, apart from the selection of the “right” architecture recovery techniques, other
factors to consider for improved recovery accuracy are the dynamic-bindings graph
resolution algorithm, the granularity of dependencies, and whether such dependencies
are direct or transitive (RQ2).

• Our results show that the accuracy is low for all studied techniques, with only one
technique (ACDC) consistently producing better results than k-means, a basic machine
learning algorithm. This corroborates past results [64] but does so on a different set
of subject systems, including one significantly larger system, and for a different set of
dependency relationships.

• We recovered the ground-truth architecture of Chromium (svn revision 171054). This
ground-truth architecture was not available previously and we obtained it through two
years of regular discussions and meetings with Chromium developers. We also updated
the architectures of Bash and ArchStudio that were reported in [65]. All ground-truth
architectures have been certified by the developers of the different projects.

• We propose a new submodule-based architecture recovery technique that combines
directory layout and build configurations. The proposed technique was effective in as-
sisting in the recovery of ground-truth architectures. Compared to FOCUS [49], which
is used in previous work [65], to recover ground-truth architectures, the submodule-
based technique is conceptually simple. Since the technique is used for generating a
starting point, its simplicity can be beneficial; any issues potentially introduced by
the technique itself can later be mitigated by the manual verification step.

• We found some recovery techniques do, and some do not, scale to the size of Chromium.
Working with coarser-grained dependencies and using direct dependencies are two
possible solutions to make those techniques scale (RQ2 and RQ3).

5.2 Approach

Our approach is illustrated in Figure 5.1. First, we extract different types of dependencies
for each projects. Then, we provide those dependencies as input to six different architecture
recovery techniques. We also evaluate three additional techniques that take the project’s
source code as input. Finally, we used K-means results and architectures extracted from the
directory structure of the project as a baseline. To evaluate the quality of the architecture
recovered from different sets of dependencies, we obtain a ground-truth architecture of
each project that was certified by each project’s developers or main architect. Then, we

79

Recovery TechniquesSymbol
Dependencies

Include
Dependencies

ACDC

Bunch-SAHC Bunch-NAHC

LIMBO

WCA-UEM WCA-UENM

Source Code ARC ZBR-tok ZBR-uni

Comparison

a2a MoJoFM

c2c_cvg TurboMQ

...

Manual
Refinement

Subdirectory
Layout

Submodule-based
Recovery

Preliminary
Architecture

Ground-Truth
Architecture

Recovered
Architectures

Similarity
Scores

Directory
Structure K-means

Baseline

Figure 5.1: Overview of our approach

measure the quality of the architectures recovered automatically by comparing them to the
ground-truth architecture using four different metrics.

In the rest of this section, we describe the manner in which we extract the dependencies
we study, and elaborate on our approach for obtaining ground-truth architectures.

5.2.1 Obtaining Dependencies

Both symbol dependencies and include dependencies represent relationships between files,
but the means by which these dependencies are determined vary.

C/C++ Projects

To extract symbol dependencies for C/C++, we use the technique built by our team that
scales to software systems comprising millions of lines of code [247]. The technique compiles
a project’s source files into LLVM bitcode, analyzes the bitcode to extract the symbol
dependencies for all symbols inside the project, and groups dependencies based on the files
containing the symbols. At this stage, our extraction process has not considered symbol
declarations. As a result, header-file dependencies are often missed because many header
files only contain symbol declarations. To ensure we do not miss such dependencies, we
augment symbol dependencies by analyzing #include statements in the source code.

80

These symbol dependencies are direct dependencies, which may be used at the file
level or grouped at the module level. For large projects such as Chromium 1 and ITK 2,
many developer teams work independently on different parts of the project. To facilitate
this work, developers divided these projects into separated sections (modules) that can be
updated independently. To group code-level entities at the module level, we extract module
information from the build files of the project provided by the developers (e.g. makefile
or equivalent). Transitive dependencies are obtained for all projects using the Floyd-
Warshall [61] algorithm on symbol dependencies. Because the Floyd-Warshall algorithm did
not scale for Chromium, we also tried to use Crocopat [21] to obtain transitive dependencies
for Chromium and encountered similar scalability issues.

To extract include dependencies we use the compiler flag -MM. Include dependencies are
similar to the dependencies used in prior work [64].

Java Projects

To extract symbol dependencies for Java, we leverage a tool that operates at the Java
bytecode level and extracts high-level information from the bytecode in a structured and
human readable format [202]. This allows for method calls and member access (i.e.,
relationships between symbols) to be recorded without having to analyze the source code
itself. Using this information provides a complete picture of all used and unused parts of
classes to be identified. We can identify which file any symbol belongs to, since the Java
compiler follows a specific naming convention for inner classes and anonymous classes. With
information about usage among symbols and resolving the file location for each symbol, we
can build a complete graph of the symbol dependencies for the Java projects. This method
accounts only for symbols used in the bytecode and does not account for runtime usage
which can vary due to reflective access.

We approximate include dependencies for Java by extracting import statements in Java
source code by utilizing a script to determine imports and their associated files. To ensure
we capture potential build artifacts, the Java projects are compiled before extracting import
statements. The script used to extract the dependencies detects all the files in a package.
Then for every file, it evaluates each import statement and adds the files mentioned in the
import as a dependency. When a wildcard import is evaluated, all classes in the referred
package are added as dependencies.

1https://www.chromium.org/developers/how-tos/chromium-modularization
2https://itk.org/Wiki/ITK/Release_4/Modularization

81

The Java projects studied do not contain well-defined modules. In addition, our ground-
truth architecture is finer-grained than the package level. For example, Hadoop ground-truth
architecture contains 67 clusters when the part of the project we study contains only 52
packages. Therefore, we cannot use Java packages as an equivalent of C++ modules for
our module-level evaluation for those specific projects. When studying larger Java projects,
using Java packages could be a good alternative to modules defined in the configuration
files used for C++ projects.

Relative Accuracy of Include and Symbol Dependencies

C/C++ include dependencies tend to miss or over-approximate relationships between files,
rendering such dependencies inaccurate. Specifically, include dependencies over-approximate
relationships in cases where a header file is included but none of the functions or variables
defined in the header file are used (recall Section 5.1).

In addition, include dependencies ignore relationships between non-header files (e.g.,
.cpp to .cpp files), resulting in a significant number of missed dependencies. For example,
consider the case where A.c depends on a symbol defined in B.c because A.c invokes a
method defined in B.c. Include dependencies will not contain a dependency from A.c to B.c
because A.c includes B.h but not B.c. For example, in Bash, we only identified 4 include
dependencies between two non-header files, although there are 1035 actual dependencies
between non-header files based on our symbol results. Include dependencies miss many
important dependencies since non-header files are the main semantic components of a
project.

A recovery technique can treat non-header and header files whose names before their
extensions match (e.g., B.c and B.h) as a single unit to alleviate this problem. However,
this remedy does not handle cases where such naming conventions are not followed or when
the declarations for types are not in a header file.

Include dependencies use transitive dependencies for header files. Consider an example
of three files A.c, A.h, and B.h, where A.c includes A.h and A.h includes B.h; A.c has an
include dependency with B.h because including A.h implicitly includes everything that A.h
includes.

For Java projects, include dependencies miss relationships between files because they do
not account for intra-package dependencies or fully-qualified name usage. At the same time,
include dependencies can represent spurious relationships because some imports are unused
and wildcard imports are overly inclusive. Include dependencies are therefore significantly
less accurate than symbol dependencies.

82

Overall Accuracy of Symbol Dependencies

To ensure the symbol dependencies we extracted are accurate, we randomly sampled 0.05%
of the symbol dependencies and investigated whether these dependencies are correct. This
small sample represents 343 dependencies we manually verified. The sampling was done
uniformly across projects and dynamic bindings resolutions (interface-only or class hierarchy
analysis). We did not find any incorrectly extracted dependencies in this sample, the margin
of error being 5.3% with 95% confidence.

We did not quantitatively check whether all the existing dependencies were extracted,
as it would be extremely time-consuming to do. However, when building the tool used for
extracting dependencies [246], qualitative sanity checks were done to make sure the tool
did not miss obvious dependencies.

5.2.2 Obtaining Ground-Truth Architectures

To measure the accuracy of existing software architecture recovery techniques, we need to
know a “ground-truth” architecture of a target project. Since it is prohibitively expensive
to build architectures manually for large and complex software, such as Chromium, we use
a semi-automated approach for ground-truth architecture recovery.

We initially showed the architecture recovered using ACDC to a Chromium developer.
He explained that most of the ACDC clusters did not make sense and suggested that we
start by considering module organization in order to recover the ground truth.

In response, we have introduced a simple submodule-based approach to extract auto-
matically a preliminary ground-truth architecture by combining directory layout and build
configurations. Starting from this architecture, we worked with developers of the target
project to identify and fix mistakes in order to create a ground-truth architecture.

The submodule-based approach groups closely related modules, and considers which
modules are contained within another module. It consists of three steps. First, we determine
the module that each file belongs to by analyzing the configuration files of the project.

Second, we determine the submodule relationship between modules. We define a
submodule as a module that has all of its files contained within the subdirectory of another
module. We first determine a module’s location, which is defined as the common parent
directories that contain at least one file belonging to the module. Then we can determine if
a particular module has a relation to another module.

83

Figure 5.2: Example Project Layout

Figure 5.3: Example Project Submodules

For example, assume a project has four modules named A, B, C, and D. The file
structure of the project is shown in Figure 5.2, while the module structure that we generate
is shown in Figure 5.3.

• Module A: contains fileA1.cpp and fileA2.cpp. Location is project/folder2.

• Module B: contains fileB1.cpp and fileB2.cpp. Location is project/folder2/
folder2_2.

• Module C: contains fileC1.cpp. Location is project/folder2/folder2_3.

• Module D: contains fileD1.cpp and fileD2.cpp. Location is both project/
folder1 and project/folder2/folder2_3.

Based on the modules’ locations, we determine that module B is a submodule of module
A because module B’s location project/folder2/folder2_2 is within module A’s location
project/folder2. Similarly, module C is a submodule of module A. The reason module D
has two folder locations is because there is no common parent between the two directories.
If module D had a file in the project folder, then its location would simply be project.
Module D is not a submodule of module A because it has a file located in project/folder1.

This preliminary version of the ground-truth architecture does not accurately reflect
the “real” architecture of the project and additional manual corrections are necessary. For
example, Chromium has two modules webkit_gpu, located in the folder webkit/gpu, and

84

content_gpu, located in the folder content/gpu. The two modules are in completely
separate folders and are grouped in different clusters by the submodule approach. However,
both are involved with displaying GPU-accelerated content and should be grouped together
to indicate their close relationship to the gpu modules. This is an example where the
submodule approach based on folder structure may not accurately reflect the semantic
structure of modules and needs to be manually corrected.

Hundreds of hours of manual work are then required to investigate the source code
of the system to verify and fix the relationships obtained. When we are satisfied with
our ground-truth version, we send to the developers the list of clusters containing files
and modules in the Rigi Standard Format and a visual representation of how the clusters
interact with one another for certification. Multiples rounds of verifications, based on
developers’ feedback, are necessary to obtain an accurate ground-truth architecture. For the
recovery of Chromium, we also had several in-person meetings with a Chromium developer
where he explained to us his view of the project’s architecture and updated the parts of
our preliminary architectures that were inaccurate. During these meetings, the Chromium
developer investigated those clusters to see if they make sense (for example, whether the
cluster names match with his understanding of Chromium modules and clusters). Then
we showed him which files belongs to each cluster using different visualizations (e.g. the
"spring" model from Graphviz [63] and a circular view using d3 Javascript library [234]),
and he also verified if they were correctly grouped. When he did not agree, we checked if
there was some mistakes on our side (i.e. inaccuracy in the submodule technique) or if it
was a bug in the Chromium module definition.

It took two years of meetings and email exchanges with Chromium developers to obtain
a ground truth.

The final ground truth we obtain is a nested architecture. Because most of the ar-
chitecture recovery techniques produce a flat architecture, we flatten our ground-truth
architecture by grouping modules that are submodules of one another into a cluster. In the
example above, we cluster modules A, B and C into a single cluster and leave module D on
its own.

Previous work [49, 65] mentioned there might exist different ground-truth architectures
for the same project. Despite the fact that our submodule-based approach only recover
one ground truth, it is possible to use our approach as a starting point for recovering
several ground truths, by having different recoverers and receiving feedback from different
developers.

Prior work [65] used a different approach, FOCUS [49], to recover preliminary versions of
ground-truth architectures. Compared to FOCUS, the proposed submodule-based technique

85

is conceptually simpler. However, the submodule-based technique uses the same general
strategy as FOCUS and can, in fact, be used as one of FOCUS’s pluggable elements. This
fact, along with the extensive manual verification step, suggests that the strategy used as
the starting point for ground-truth recovery does not impact the resulting architecture (as
already observed in [65]).

5.3 Selected Recovery Techniques

We select the same nine variants of six architecture recovery techniques as in previous
work [64] for our evaluation. We also used 2 baseline clustering algorithms, the K-means
algorithm and a directory-based recovery technique. Four of the selected techniques (ACDC,
LIMBO, WCA, and Bunch [164]) use dependencies to determine clusters, while the remaining
two techniques (ARC and ZBR [42]) use textual information from source code. We include
techniques that do not use dependencies to (1) assess the accuracy of finer-grained, accurate
dependencies against these information retrieval-based techniques and to (2) determine
their scalability.

The view that the techniques we evaluate recover are structural views representing
components and their configurations. Such views are fundamental and should be as correct as
possible before making other architectural decisions. For example, behavioral or deployment
views are still highly dependent on accurate component identification and the configurations
among components.

Algorithm for Comprehension-Driven Clustering (ACDC) [240] is a clustering
technique for architecture recovery. We included ACDC because it performed well in
several previous studies [13, 64, 165, 256]. ACDC aims to achieve three goals. First, to help
understand the recovered architecture, the clusters produced should have meaningful names.
Second, clusters should not contain an excessive number of entities. Third, the grouping is
based on identified patterns that are used when a developer describes the components of
a software system. The main pattern used by ACDC is called the “subgraph dominator
pattern". To identify this pattern, ACDC detects a dominator node n0 and a set of nodes
N = {ni | i ∈ N} that n0 dominates. A dominator node n0 dominates another node ni

if any path leading to ni passes through n0. Together, n0, N , and their corresponding
dependencies form a subgraph. ACDC groups the nodes of such a subgraph together into a
cluster.

Bunch [163, 164] is a technique that transforms the architecture recovery problem
into an optimization problem. An optimization function called Modularization Quality

86

Table 5.1: Evaluated projects and architectures. †Cluster denotes the number of clusters in
the ground-truth architectures. N/A means the value is not available.

Project Version Description SLOC File Cluster† Inc Dep. Sym Dep. Trans Dep. Mod Dep.
Chromium svn-171054 Web Browser 10M 18,698 67 1,183,799 297,530 N/A 4,455
ITK 4.5.2 Image Segmentation Toolkit 1M 7,310 11 169,017 30,784 19,281,510 2,700
Bash 4.2 Unix Shell 115K 373 14 2,512 2,481 26,225 N/A
Hadoop 0.19.0 Data Processing 87K 591 67 1,656 3,101 79,631 N/A
ArchStudio 4 Architecture Development 55K 604 57 866 1,697 10,095 N/A

(MQ) represents the quality of a recovered architecture. Bunch uses hill-climbing and
genetic algorithms to find a partition (i.e., a grouping of software entities into clusters)
that maximizes MQ. As in previous work [64], we evaluate two versions of the Bunch
hill-climbing algorithms—Nearest and Steepest Ascent Hill Climbing (NAHC and SAHC).

Weighted Combined Algorithm (WCA) [166] is a hierarchical clustering algorithm
that measures the inter-cluster distance between software entities and merges them into
clusters based on this distance. The algorithm starts with each entity in its own cluster
associated with a feature vector. The inter-cluster distance between all clusters is then
calculated, and the two most similar clusters are merged. Finally, the feature vector of
the new cluster is recalculated. These steps are repeated until WCA reaches the specific
number of clusters defined by the user. Two measures are proposed to measure the inter-
cluster distance: Unbiased Ellenberg (UE) and Unbiased Ellenberg-NM (UENM). The
main difference between these measures is that UENM integrates more information into
the measure and thus might obtain better results. In our recent study [64], UE and UENM
performed differently depending on the systems tested, therefore, we evaluate both.

LIMBO [12] is a hierarchical clustering algorithm that aims to make the Information
Bottleneck algorithm scalable for large data sets. The algorithm works in three phases.
Clusters of artefacts are summarized in a Distributational Cluster Feature (DCF) tree.
Then, the DCF tree leaves are merged using the Information Bottleneck algorithm to
produce a specified number of clusters. Finally, the original artefacts are associated with a
cluster. The accuracy of this algorithm was evaluated in several studies. It performed well
in most of the experiments [13,165], except in one recent study [64] where LIMBO achieved
surprisingly poor results.

Architecture Recovery using Concerns (ARC) [67] is a hierarchical clustering
algorithm that relies on information retrieval and machine learning to perform a recovery.
This technique does not use dependencies and is therefore not used to evaluate the influence
of different levels of dependencies. ARC considers a program as a set of textual documents
and utilizes a statistical language model, Latent Dirichlet Allocation (LDA) [22], to extract
concerns from identifiers and comments of the source code. A concern is as a role, concept

87

or purpose of the system studied. The extracted concerns are used to automatically identify
clusters and dependencies. ARC is one of the two best-scoring techniques in our previous
evaluation [64] and thus is important to compare against when evaluating for accuracy.

Similar to ARC, Zone Based Recovery (ZBR) [42] is a recovery technique based on
natural language semantics of identifiers and comments found in the source code. Each
file is represented as a textual document and divided into zones. For each word in a zone,
ZBR evaluates the term frequency-inverse document frequency (tf-idf) score. Each zone
is weighted using the Expectation-Maximization algorithm. ZBR has multiple methods
for weighting zones. The initial weights for each zone can be uniform (ZBR-uni), or set
to the ratio of the number of tokens in the zone to the number of tokens in the entire
system (ZBR-tok). We chose these two weighting variations to ensure consistency with the
previous study [64]. The last step of ZBR consists of clustering this representation of files
by using group-average agglomerative clustering. ZBR demonstrated accuracy in recovering
Java package structure [42] but struggled with memory issues when dealing with larger
systems [64].

Previous techniques are clustering algorithms specifically designed for architecture
recovery. To obtain an estimate of the quality of the architectures generated by these
algorithms, we used two baselines. For the first baseline, we cluster the files using the
K-means algorithm. Each entity (i.e., a file or module) is represented by a feature vector
{f1,f2,...,fn}, where n is the number of features. Each of the n features represents a
dependency with one of the n entities in the project.

For the second baseline, we used the directory structure of the project as an
approximation of the architecture of the software. If automatic architecture recovery
techniques cannot generate a recovered architecture that is superior to the directory
structure of the project, then the recovery technique is not helpful for the specific project.
To generate this approximated architecture, we use the same implementation as previous
work [123].

5.4 Experimental Setup

In this section, we describe our experimental environment, how we obtained the ground-
truth architectures for each project, the parameters used in our experiments, and the
different metrics used to assess the quality of the recovered architectures.

88

5.4.1 Projects and Experimental Environment

We conduct our comparative study on five open source projects: Bash, ITK, Chromium,
ArchStudio, and Hadoop. Detailed information about these projects can be found in
Table 5.1. We choose those specific version of Bash and Chromium because they were
the most recent versions available when we started our ground-truth recovery. For Arch-
Studio, Hadoop and ITK, we picked those versions because their respective ground-truth
architectures were already available.

To run our experiments, we leveraged two machines and parallel processing, due to
the large size of some projects. We ran ZBR with the two weight variations described in
Section 5.3 on a 3.2GHz i7-3930K desktop with 12 logical cores, 6 physical cores, and 48GB
of memory. We ran all the other recovery techniques on a 3.3GHz E5-1660 server with 12
logical cores, 6 physical cores, and 32GB memory.

For Bash, Hadoop, and ArchStudio, all techniques take a few seconds to a few minutes
to run. For large projects, such as ITK and Chromium, each technique takes several hours
to days to run. Running all experiments for Chromium would take more than 20 days of
CPU time on a single machine. Consequently, we parallelized our experiments.

5.4.2 Extracted Dependencies

For the C/C++ projects, the number of include dependencies is much larger than the
number of symbol dependencies, e.g., 297,530 symbol dependencies versus 1,183,799 include
dependencies for Chromium. This is the result of both transitive and over-approximation
of dependencies, detailed in Section 5.2.1.

The number of transitive dependencies shown in Table 5.1 for ITK is strikingly high. We
leverage Class Hierarchy Analysis (CHA) [46] to build the dynamic-bindings dependency
graph of symbol dependencies which, in turn, is used for extracting dependencies. When
using CHA, we consider that each time a method from a specific class is called, all its
subclasses are also called. Depending on how the developers use dynamic bindings, this
can generate a large number of dependencies. For example, for ITK, more than 75% of the
dependencies extracted are virtual function calls, as opposed to just 11% for Chromium.
This high proportion of dynamic bindings also results in an extremely large number of
transitive dependencies.

For Chromium, the algorithm to obtain transitive dependencies ran out of memory on
our 32GB server. None of the recovery technique scaled for ITK with transitive dependencies.
Given that Chromium is around ten times larger than ITK, it is safe to assume that, even

89

if we were able to obtain the transitive dependencies for Chromium, none of the technique
would scale to Chromium with transitive dependencies.

5.4.3 Ground-truth architectures

To assess the effect of different types of dependencies on recovery techniques, we obtained
ground-truth architectures for each selected project. Compared to previous work [64],
we do not use Linux 2.0.27 and Mozilla 1.3 because our tool that extracts symbol-level
dependencies for C++ projects works with LLVM. Making those two projects compatible
with LLVM would require heavy manual work. In place of those medium-sized projects, we
included ITK. We also included a very large project, Chromium, for which we recovered
the ground truth. Due to issues resolving library dependencies with an older version of
OODT, for which a ground-truth architecture is available [65], we were unable to use it for
our study.

For Chromium, the ground-truth architecture was obtained by manually improving the
preliminary architecture extracted using the submodule approach outlined in Section 5.2.2.
After several updates and meetings with a Chromium developer, the ground-truth architec-
ture was certified by one of Chromium’s main developers. ITK was refactored in 2013 and
its ground-truth architecture, extracted by ITK’s developers, is available. We contacted one
of ITK’s lead developers involved in the refactoring who confirmed that this architecture
was still correct for ITK 4.5.2.

The version of Bash used in a recent architecture-recovery study [64] was from 1995.
Bash has been changed significantly since then (e.g., from 70KSLOC to 115KSLOC).
Therefore, we recovered the ground-truth architecture of the latest version of Bash and
used it in our study. Our certifier for Bash is one of Bash’s primary developers and its sole
maintainer, who also recently authored a chapter on Bash’s idealized architecture [25].

The ground-truth architecture for ArchStudio was updated, from prior work [65], to
be defined at the file level instead of at the class level. Additionally, ArchStudio’s original
ground-truth architecture had a number of inconsistencies and missing files, which were
verified and corrected by ArchStudio’s primary architect.

Hadoop, an open-source Java project used in a recent architecture-recovery study [64],
was the other Java project we evaluated. Its original ground-truth architecture was based on
version 0.19.0 and had to be converted from the class level to the file level for our analysis.
For our analysis, we focused on the HDFS, Map-Reduce, and core parts of Hadoop.

90

5.4.4 Architecture Recovery Software and Parameters

To answer the research questions, we compare the clustering results obtained from nine
variants of the six architecture recovery techniques, using include and symbol depen-
denciesdifferent types of dependencies. All input dependencies and output recovered
architectures are generated in the Rigi Standard Format [226]. We obtained ACDC and
Bunch from their authors’ websites. The K-means-based architecture recovery technique
was implemented using the scikit-learn python library [195]. For the other techniques, we
used our implementation from our previous study [64,123]. Each of those implementations
was shared with the original authors of the recovery techniques and confirmed as correct [64].
Due to the non-determinism of the clustering algorithms used by ACDC and Bunch, we
ran each algorithm five times and reported the average results. WCA, LIMBO, ARC and
K-means can take varying numbers of clusters as input. We experimented with 20 clusters
bellow and above the number of clusters in the ground truth, with an increment of 5 for all
cases. For example, for ArchStudio, we ran these algorithms for 40 to 80 clusters. ARC also
takes a varying number of concerns as input. We experimented with 10 to 150 concerns in
increments of 10. We report the average results for each technique.

5.4.5 Accuracy Measures

There might be multiple ground-truth architectures for a system [23,65]; that is, experts
might disagree. Therefore, a recovered architecture may be different from a ground-truth
architecture used in this work, but close to another ground-truth architecture of the same
project. To mitigate this threat, we selected four different metrics commonly used in other
automatic architecture recovery evaluations to measure the impact of the different inputs
on the quality of the recovered architectures.

One of the metrics—normalized TurboMQ—is independent of any ground-truth architec-
ture, which calculates the quality of the recovered architectures. When we use normalized
TurboMQ to compare different recovery techniques, the threat of multiple ground-truth
architectures should not apply. The remaining three metrics—MoJoFM, a2a and c2ccvg—
calculate the similarity between a recovered architecture and a ground-truth architecture.
If one recovery technique consistently performs well according to all metrics, it is less likely
due to the bias of one metric or the particular ground-truth architecture. Although using
four metrics cannot eliminate the threat of multiple ground-truth architectures entirely, it
should give our results more credibility than using MoJoFM alone.

We used MoJoFM, a2a and c2ccvg’s implementations provided by the developers of

91

each technique. For TurboMQ, we used our own implementation based on the technique
described by the original authors [179].

MoJoFM [253] is defined by the following formula,

MoJoFM(M) = (1−
mno(A,B)

max(mno(∀A,B))
)× 100% (5.1)

where mno(A,B) is the minimum number of Move or Join operations needed to transform
the recovered architecture A into the ground truth B. This measure allows us to compare
the architecture recovered by the different techniques according to their similarity with the
ground-truth architecture. A score of 100% indicates that the architecture recovered is the
same as the ground-truth architecture. A lower score results in greater disparity between A
and B. MoJoFM has been shown to be more accurate than other measures and was used
in the latest empirical study of architecture recovery techniques [64,111].

Architecture-to-architecture [122] (a2a) is designed to address some of MoJoFM
drawbacks. MoJoFM’s Join operation is excessively cheap for clusters containing a high
number of elements. This is particularly visible for large projects. This results in high
MoJoFM values for architectures with many small clusters. In addition, we discovered that
MoJoFM does not properly handle discrepancy of files between the recovered architecture
and the ground truth. This observation corroborates results obtained in recent work [122].
We tried to reduce this problem by adding the missing files to the recovered architecture
into a separate cluster before measuring MoJoFM, but this does not entirely solve the issue.
In complement of MoJoFM, we use a new metric, a2a, based on architecture adaptation
operations identified in previous work [170, 193]. a2a is a distance measure between two
architectures:

a2a(Ai, Aj) = (1− mto(Ai, Aj)

aco(Ai) + aco(Aj)
)× 100%

mto(Ai, Aj) = remC(Ai, Aj) + addC(Ai, Aj) +

remE(Ai, Aj) + addE(Ai, Aj) +movE(Ai, Aj)

aco(Ai) = addC(A∅, Ai) + addE(A∅, Ai) +movE(A∅, Ai)

wheremto(Ai, Aj) is the minimum number of operations needed to transform architecture
Ai into Aj; and aco(Ai) is the number of operations needed to construct architecture Ai

from a “null” architecture A∅.

92

mto and aco are used to calculate the total numbers of the five operations used to
transform one architecture into another: additions (addE), removals (remE), and moves
(movE) of implementation-level entities from one cluster (i.e., component) to another;
as well as additions (addC) and removals (remC) of clusters themselves. mto(Ai, Aj) is
calculated optimally by using the Hungarian algorithm [185] to maximise the weights of a
bipartite graph built with the clusters from Ai and Aj.

Cluster-to-cluster coverage (c2ccvg) is a metric used in our previous work [66] to
assess component-level accuracy. This metric measures the degree of overlap between the
implementation-level entities contained in two clusters:

c2c(ci, cj) =
|entities(ci) ∩ entities(cj)|

max(|entities(ci)| , |entities(cj)|)
× 100%

where ci is a technique’s cluster; cj is a ground-truth cluster; and entities(c) is the set
of entities in cluster c. The denominator is used to normalize the entity overlap in the
numerator by the number of entities in the larger of the two clusters. This ensures that c2c
provides the most conservative value of similarity between two clusters.

To summarize the extent to which clusters of techniques match ground-truth clusters,
we leverage architecture coverage (c2ccvg). c2ccvg is a change metric from our previous
work [66] that indicates the extent to which one architecture’s clusters overlap the clusters
of another architecture:

c2ccvg(A1 ,A2) =
|simC (A1 ,A2)|
|A2 .C |

× 100%

simC (A1 ,A2) = {ci | (ci ∈ A1,∃cj ∈ A2) ∧
(c2c(ci, cj) > thcvg)}

A1 is the recovered architecture; A2 is a ground-truth architecture; and A2.C are the clusters
of A2. thcvg is a threshold indicating how high the c2c value must be for a technique’s
cluster and a ground-truth cluster in order to count the latter as covered.

Normalized Turbo Modularization Quality (normalized TurboMQ) is the final
metric we are using in this work. Modularization metrics measure the quality of the
organization and cohesion of clusters based on the dependencies. They are widely accepted
metrics which have been used in several studies [15,162,180]. We implemented the TurboMQ
version because it has better performance than BasicMQ [179].

93

To compute TurboMQ two elements are required: intra-connectivity, and extra-
connectivity. The assumption behind this metric is that architectures with high intra-
connectivity are preferable to architectures with a lower intra-connectivity. For each cluster,
we calculate a Cluster Factor as followed:

CFi =
µi

µi + 0.5×
∑

j εij + εji

µi is the number of intra-relationships;εij + εji is the number of inter-relationships
between cluster i and cluster j. TurboMQ is defined as the sum of all the Cluster Factors:

TurboMQ =
k∑

i=1

CFi

We note that TurboMQ by itself is biased toward architectures with a large number of
clusters because the sum of CFi will be very high if the recovered architecture contains
numerous clusters. Indeed, we found that for Chromium, the architecture recovered by
ACDC contains thousands of clusters. The TurboMQ value for this architecture was
400 times higher than the TurboMQ values of architectures obtained with other recovery
techniques. To address this issue, we normalized TurboMQ by the number of clusters in
the recovered architecture.

5.5 Evaluation and Results

This section presents the results of our study that answer the three research questions,
followed by a comparison of our results and those of prior work. Tables 5.2-5.21 show the
results for all four metrics when applied to a combination of a recovery technique and
system; and, if applicable for such a combination, the results for a type of dependency:
Include, Symbol, Funct ion alone, function and global variables (F-GV), Transitive, and
Module-level dependencies. Symbol dependencies may be resolved by ignoring dynamic
bindings (No Vir) or using a class hierarchy analysis of dynamic bindings (S-CHA) or with
interface-only resolution of dynamic bindings (S-Int). Bash does not contain dynamic
bindings because it is implemented in C, and our tool cannot extract function pointers.

For certain combinations of recovery techniques and systems, a result may not be
attainable due to inapplicable combinations (NA), techniques running out of memory
(MEM), or timing out (TO). For example, information retrieval-based techniques such as
ARC and ZBR do not rely on dependencies. Therefore, normalized TurboMQ results are

94

Bash
Algo. Inc. Sym. Trans. Funct. F-GV
ACDC 52 57 38 49 50
Bunch-NAHC 53 43 34 49 46
Bunch-SAHC 57 52 34 43 49
WCA-UE 34 24 24 29 30
WCA-UENM 34 24 24 31 30
LIMBO 34 27 27 22 22
K-means 59 55 49 47 46
ARC 43
ZBR-tok 41
ZBR-uni 29
Dir. Struc. 57

Table 5.2: MoJoFM results for Bash.

Chromium
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 64 70 73 71 62 71 71
Bunch-NAHC 28 31 24 29 52 29 35
Bunch-SAHC 12† 71† 43† 42 57 39 29
WCA-UE 23 23 23 27 76 29 29
WCA-UENM 23 23 23 27 73 29 29
LIMBO TO 23 3 26 79 27 27
K-means 40 42 43 43 78 45 45
ARC 54
ZBR-tok MEM
ZBR-uni MEM
Dir. Struc. 69

Table 5.3: MoJoFM results for Chromium. † Scores denote results for intermediate
architectures obtained after the technique timed out.

95

ITK
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 52 55 52 48 35 60 60
B.-NAHC 37 36 35 35 46 45 47
B.-SAHC 32 46 43 41 51 54 53
WCA-UE 30 31 44 45 64 36 36
WCA-UENM 30 31 44 45 61 36 36
LIMBO 30 31 44 38 60 36 35
K-means 38 42 39 43 68 60 61
ARC 24
ZBR-tok MEM
ZBR-uni MEM
Dir. Struc. 59

Table 5.4: MoJoFM results for ITK.

ArchStudio
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 60 60 77 78 71 75 74
Bunch-NAHC 48 40 49 47 40 53 46
Bunch-SAHC 54 39 53 40 38 53 54
WCA-UE 30 30 32 45 32 31 31
WCA-UENM 30 30 32 45 33 31 31
LIMBO 23 23 24 25 24 24 23
K-means 44 37 39 41 43 39 38
ARC 56
ZBR-tok 48
ZBR-uni 48
Dir. Struc. 88

Table 5.5: MoJoFM results for ArchStudio.

96

Hadoop
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 24 29 41 41 28 41 41
Bunch-NAHC 23 21 24 24 17 26 26
Bunch-SAHC 24 26 28 26 20 29 28
WCA-UE 13 12 15 28 17 17 17
WCA-UENM 13 12 15 28 17 17 17
LIMBO 15 13 14 14 13 13 14
K-means 30 25 29 28 29 29 29
ARC 35
ZBR-tok 29
ZBR-uni 38
Dir. Struc. 63

Table 5.6: MoJoFM results for Hadoop.

Bash
Algo. Inc. Sym. Trans. Funct. F-GV
ACDC 65 80 80 41 41
Bunch-NAHC 68 84 83 41 41
Bunch-SAHC 69 84 83 40 41
WCA-UE 65 81 81 40 40
WCA-UENM 65 81 81 39 40
LIMBO 63 79 79 38 37
K-means 67 84 84 41 40
ARC 67
ZBR-tok 71
ZBR-uni 70
Dir. Struc. 64

Table 5.7: a2a results for Bash.

97

ITK
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 67 74 63 58 84 48 48
Bunch-NAHC 71 78 68 58 85 47 47
Bunch-SAHC 69 78 66 57 85 48 47
WCA-UE 74 82 47 39 89 48 48
WCA-UENM 74 82 47 39 88 48 48
LIMBO 70 78 44 36 87 46 46
K-means 74 82 71 61 89 51 51
ARC 54
ZBR-tok MEM
ZBR-uni MEM
Dir. Struc. 61

Table 5.8: a2a results for ITK.

Chromium
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 71 73 74 64 82 62 62
Bunch-NAHC 69 73 76 66 81 63 63
Bunch-SAHC 60† 71† 66† 66 83 64 62
WCA-UE 70 75 78 68 84 66 66
WCA-UENM 70 75 78 68 82 66 66
LIMBO TO 70 73 64 83 61 61
K-means 71 74 77 67 86 65 65
ARC 54
ZBR-tok MEM
ZBR-uni MEM
Dir. Struc. 60

Table 5.9: a2a results for Chromium. † Scores denote results for intermediate architectures
obtained after the technique timed out.

98

ArchStudio
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 71 86 88 83 92 87 88
Bunch-NAHC 69 80 81 75 80 81 81
Bunch-SAHC 70 80 82 74 80 81 82
WCA-UE 70 83 84 81 83 82 83
WCA-UENM 70 83 84 81 84 82 83
LIMBO 67 79 79 74 78 77 78
K-means 70 81 82 77 83 81 82
ARC 84
ZBR-tok 85
ZBR-uni 86
Dir. Struc. 87

Table 5.10: a2a results for ArchStudio.

Hadoop
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 68 81 84 79 80 84 84
Bunch-NAHC 67 79 80 76 78 80 80
Bunch-SAHC 67 80 81 76 79 81 81
WCA-UE 68 80 80 78 81 81 81
WCA-UENM 68 80 80 78 81 81 81
LIMBO 67 79 79 75 79 78 79
K-means 70 81 81 77 82 82 82
ARC 82
ZBR-tok 81
ZBR-uni 83
Dir. Struc. 88

Table 5.11: a2a results for Hadoop.

99

Bash
Algo. Inc. Sym. Trans. Funct. F-GV
ACDC 9 22 6 29 29
Bunch-NAHC 25 31 20 33 28
Bunch-SAHC 30 30 20 28 28
WCA-UE 0 7 7 10 10
WCA-UENM 0 7 7 5 10
LIMBO 6 13 8 7 7
K-means 0 17 6 14 16
ARC 5 11 NA
ZBR-tok 2 8 NA
ZBR-uni 2 5 NA
Dir. Struc. 1 4 NA

Table 5.12: Normalized TurboMQ results for Bash.

Chromium
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 15 19 18 20 46 24 24
Bunch-NAHC 4 24 9 26 51 16 19
Bunch-SAHC 2† 30† 11† 23 45 29 11
WCA-UE 0 2 2 2 36 2 2
WCA-UENM 0 2 2 2 37 2 3
LIMBO TO 2 2 2 34 2 2
K-means 0 17 13 19 35 22 22
ARC 2 5 NA
ZBR-tok MEM
ZBR-uni MEM
Dir. Struc. 2 5 NA

Table 5.13: Normalized TurboMQ results for Chromium. † Scores denote results for
intermediate architectures obtained after the technique timed out.

100

ITK
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 33 24 18 32 47 40 40
Bunch-NAHC 15 23 23 22 50 34 37
Bunch-SAHC 10 29 23 21 50 44 37
WCA-UE 3 9 3 2 51 11 9
WCA-UENM 3 9 3 2 47 10 9
LIMBO 7 11 5 1 35 9 9
K-Means 13 24 15 13 37 31 25
ARC 9 33 NA
ZBR-tok MEM
ZBR-uni MEM
Dir. Struc. 9 9 NA

Table 5.14: Normalized TurboMQ results for ITK.

ArchStudio
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 66 41 76 84 71 72 74
Bunch-NAHC 72 42 74 85 35 74 75
Bunch-SAHC 71 41 76 85 50 72 74
WCA-UE 1 11 22 65 15 10 19
WCA-UENM 1 11 22 65 15 10 19
LIMBO 2 12 31 38 7 24 27
K-means 13 21 38 51 29 35 39
ARC 18 25 NA
ZBR-tok 6 17 NA
ZBR-uni 5 15 NA
Dir. Struc. 1 26 NA

Table 5.15: Normalized TurboMQ results for ArchStudio.

101

Hadoop
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 48 28 59 65 29 57 58
Bunch-NAHC 40 26 53 61 17 52 48
Bunch-SAHC 40 31 53 61 18 54 56
WCA-UE 1 5 8 34 7 6 8
WCA-UENM 1 5 8 33 7 6 8
LIMBO 2 7 19 25 2 17 17
K-means 11 13 29 34 9 26 27
ARC 6 13 NA
ZBR-tok 5 10 NA
ZBR-uni 7 13 NA
Dir. Struc. 1 20 NA

Table 5.16: Normalized TurboMQ results for Hadoop.

Bash
Algo. Inc. Sym. Trans. Funct. F-GV
ACDC 20 47 71 27 77 93 13 40 94 0 7 50 0 7 21
Bunch-NAHC 6 20 53 6 20 71 1 10 46 1 10 36 1 9 37
Bunch-SAHC 7 23 43 16 37 81 3 13 46 0 6 41 0 11 37
WCA-UE 0 6 63 0 4 61 0 1 58 0 0 26 0 1 23
WCA-UENM 0 6 63 0 4 61 0 1 58 0 2 24 0 6 45
LIMBO 0 0 57 0 0 60 0 0 63 0 0 32 0 0 32
K-means 10 19 49 9 28 69 9 26 57 0 5 41 0 2 46
ARC 4 20 54
ZBR-tok 7 7 71
ZBR-uni 0 0 50
Dir. Struct. 14 36 64

Table 5.17: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
Bash.

102

ITK
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 0 0 57 0 0 48 0 0 31 0 0 31 8 8 54 0 8 38 0 8 38
B.-NAHC 0 0 31 0 0 38 0 0 34 0 0 34 5 23 60 0 0 32 0 0 31
B.-SAHC 0 0 0 0 2 54 0 0 29 0 0 23 6 29 57 0 0 34 0 0 32
WCA-UE 0 0 23 0 0 24 0 8 23 0 0 8 18 40 78 0 0 38 0 0 38
WCA-UENM 0 0 23 0 0 23 0 8 23 0 0 8 18 32 80 0 0 38 0 0 38
LIMBO 0 0 8 0 0 12 0 0 5 0 0 0 26 40 86 0 0 9 0 0 9
K-means 0 0 44 0 8 51 0 3 53 0 9 54 29 46 87 0 6 45 0 8 53
ARC 0 0 23
ZBR-tok MEM
ZBR-uni MEM
Dir. Struct. 0 0 8

Table 5.18: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
ITK.

Chromium
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 16 30 80 17 45 92 17 37 87 10 23 83 13 17 28 9 17 80 10 17 80
B.-NAHC 0 0 7 0 0 26 0 0 3 0 0 9 7 14 33 0 0 4 0 3 25
B.-SAHC 0 6 19 14 33 80 7 12 36 4 10 54 8 16 39 0 1 38 0 0 4
WCA-UE 0 0 3 0 0 3 0 0 3 0 0 3 17 37 79 0 0 3 0 0 4
WCA-NM 0 0 3 0 0 3 0 0 3 0 0 3 12 35 76 0 0 3 0 0 4
LIMBO TO 0 0 0 0 0 0 0 0 0 25 45 69 0 0 0 0 0 0
K-means 3 7 31 1 6 25 2 8 24 1 5 20 24 43 78 1 5 21 1 4 20
ARC 1 3 25
ZBR-tok MEM
ZBR-uni MEM
Dir. Struct. 4 7 23

Table 5.19: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches
for Chromium. † Scores denote results for intermediate architectures obtained after the
technique timed out.

103

ArchStudio
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 9 21 47 21 54 77 56 77 93 52 75 89 52 72 85 42 64 77 42 62 77
B.-NAHC 2 5 21 2 6 28 3 11 41 3 10 34 2 5 26 5 13 44 3 9 41
B.-SAHC 3 10 35 2 7 33 5 13 46 5 8 20 4 7 27 3 11 48 5 19 46
WCA-UE 0 5 37 0 5 29 2 14 38 19 35 53 2 13 39 0 7 37 0 8 47
WCA-NM 0 5 37 0 5 29 2 14 38 19 35 53 2 13 39 0 7 37 0 8 47
LIMBO 0 0 69 0 0 65 0 0 68 0 0 74 0 0 63 0 0 66 0 0 68
K-means 6 25 58 1 18 57 5 24 53 8 23 53 8 33 69 4 22 53 5 24 57
ARC 9 29 59
ZBR-tok 4 16 65
ZBR-uni 4 23 47
Dir. Struct. 74 91 100

Table 5.20: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
ArchStudio.

Hadoop
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 0 3 43 4 13 39 7 18 49 7 18 45 4 10 36 7 16 52 9 16 52
B.-NAHC 1 3 35 1 1 28 1 4 36 1 4 33 1 3 24 2 5 35 2 5 38
B.-SAHC 1 3 32 1 7 40 2 6 35 2 6 34 1 3 20 2 8 38 1 5 36
WCA-UE 0 7 37 0 12 29 1 12 33 2 9 42 1 12 33 2 15 38 1 12 35
WCA-NM 0 7 37 0 12 29 1 12 33 2 9 41 1 12 33 2 15 38 1 12 35
LIMBO 0 0 64 0 0 54 0 0 55 0 0 64 0 0 58 0 0 57 0 0 55
K-means 2 22 71 1 15 60 3 19 64 2 16 60 1 14 53 3 18 65 3 19 64
ARC 6 24 63
ZBR-tok 4 16 65
ZBR-uni 4 23 47
Dir. Struct. 28 45 75

Table 5.21: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for
Hadoop.

104

not meaningful when studying the impact of the different factors of the dependencies. For
this reason, we only report normalized TurboMQ for include and symbol dependencies and
mark the other combinations as inapplicable.

We do not report results obtained utilizing transitive dependencies for Chromium and
ITK because, as discussed above, the use of such dependencies with those projects caused
scalability problems. Module-level dependencies are only reported for ITK and Chromium,
since they are the only projects that define modules in their documentation or configuration
files.

5.5.1 RQ1: Can accurate dependencies improve the accuracy of
recovery techniques?

As explained in section 5.2.1, include dependencies present some issues (e.g. missing
relationships between non-header files, etc.) which can be solved by using more accurate
dependencies based on symbol interactions. Therefore, to answer this research question, we
focus on results obtained using include (Inc) and symbol dependencies (Sym, S-Int, and
S-CHA), which are presented in Tables 5.2-5.21. In these Tables, we reported the average
results for each technique and each type of dependency.

Three recovery techniques—ARC, ZBR-tok, and ZBR-uni—do not rely on dependencies;
however, we include them to assess the accuracy of symbol dependencies against these
information retrieval-based techniques. The best score obtained for each recovery technique
across all type of dependencies is highlighted in dark gray; the best score between include
and symbol dependencies for each technique, when applied to a particular technique, is
highlighted in light gray.

Our results indicate that symbol dependencies generally improve the accuracy of recovery
techniques over include dependencies. According to a2a scores (Tables 5.7-5.11) relying on
both types of symbol dependencies outperforms relying on include dependencies for all of
the combinations of techniques and systems which use dependencies. The only exception
is in the case of ITK, where relying on include dependencies outperforms interface-only
resolution for dynamic bindings. As ITK contains a large number of dynamic-bindings
dependencies (more than 75%), using interface-only resolution likely results in a significant
loss of information, making those dependencies inaccurate. When doing a complete analysis
of the dynamic-bindings dependencies of ITK (S-CHA), using symbol dependencies with a
class hierarchy analysis of dynamic bindings outperforms using include dependencies for
all techniques. On average, using symbol dependencies respectively improves the accuracy
by 9 percentage points (percentage point, pp, is the unit for the arithmetic difference

105

between two percentages) according to a2a. For a2a, the technique obtaining the greatest
improvement from the use of symbol dependencies, as compared to include dependencies, is
K-means, followed by Bunch-SAHC, with an average improvement of, respectively, 12 pp
and a 10 pp for a2a.

MoJoFM results (Tables 5.2 to 5.16) followed a similar trend, with symbol dependencies
generally improving the accuracy of the recovered architecture over include dependencies
for five of the projects. However, for Bash, include dependencies produce better results
than symbol dependencies for all techniques but ACDC.

Tables 5.17-5.21 show c2ccvg for three different values of thcvg , i.e., 50%, 33%, and 10%,
(from left to right) for each combination of technique and dependency type. The first
value depicts c2ccvg for thcvg = 50% which we refer to as a majority match. We select this
threshold to determine the extent to which clusters produced by techniques mostly resemble
clusters in the ground truth. The other two c2ccvg scores show the portion of moderate
matches (33%) and weak matches (10%).

Dark gray cells show the highest c2ccvg for each recovery technique across all type
of dependencies. Light gray cells show the highest c2ccvg between include and symbol
dependencies for each technique, when applied to a particular technique for a specific
threshold thcvg . Several rows do not have any highlighted cells; such rows indicate that
c2ccvg is identical for include and symbol dependencies. We observe significant improvement
when using symbol dependencies over include dependencies, even for thcvg = 50%. For
example, in Table 5.20, for ACDC on ArchStudio, the c2ccvg for thcvg = 50% for include
dependencies is 9%, while using symbol dependencies increased it to 56% with symbol
dependencies and interface-only resolution. Overall, Tables 5.17 to 5.21 indicate that (1) the
use of symbol dependencies generally produces more accurate clusters (majority matches);
and that (2) c2ccvg is low regardless of the types of dependencies used.

Tables 5.12 to 5.16 presents the normalized TurboMQ results, which measure the
organization and cohesion of clusters independent of ground-truth architectures. Both types
of symbol dependencies generally obtain higher normalized TurboMQ scores than include
dependencies, ACDC and Bunch with CHA resolution being exceptions for ArchStudio
and Hadoop. In other words, symbol dependencies help recovery techniques produce
architectures with better organization and internal component cohesion than include
dependencies. TurboMQ results of the summation of individual scores for each cluster
in the architecture make it biased toward architectures with an extremely high number
of clusters. For example, ACDC for Chromium, with more than 2000 clusters, obtains
TurboMQ scores with one to two orders of magnitude larger than the other metrics.

106

Statistical Significance Test

We conduct statistical significance tests to verify whether using accurate dependencies
improves the quality of recovery techniques. We do not use paired t-tests because our data
does not follow a normal distribution. Instead, we use the Wilcoxon signed-rank test, which
is a non-parametric test.

We also measure the Cliff’s δ, a non-parametric effect size metric, to quantify the
difference among the different types of dependencies. Cliff’s δ ranges from -1 to 1. The sign
of the δ indicates whether the first or second sample contains higher values. For example,
when looking at results using include versus results obtained using symbol dependencies
with CHA resolution for MoJoFM in Table 5.23, the δ is positive, indicating that results
obtained with symbol dependencies and CHA resolution are generally better than the ones
obtained using include dependencies results. In contrast, the δ for direct versus transitive
dependencies is negative, indicating that using direct dependencies generally produces
higher results. To interpret the effect size, we use the following magnitude: negligible
(|δ| < 0.147), small (|δ| < 0.33), medium (|δ| < 0.474), and large (0.474 ≤ |δ|) [204]. To
compute these tests, we use average measurements obtained for each type of dependencies
and metrics across all projects. This represents 35 paired samples per metric. We report
these results in Tables 5.22 and 5.23.

When comparing include dependencies and symbol dependencies with interface-only
dynamic-bindings resolution, for 4 out of 6 metrics—a2a, TurboMQ, and two c2ccvg metrics
(majority and moderate matches)— we found that the p-values are inferior to 0.001,
suggesting our results are statistically significant. For these four metrics, we observed a
reasonably high effect size, varying from small (c2ccvg metrics) to large (a2a).

When comparing include dependencies and symbol dependencies with CHA, we found
that the p-values are inferior to 0.02, for 3 out of 6 metrics. The effect size for these 3
metrics vary from negligible (c2ccvg metrics) to large (a2a).

c2ccvg with weak coverage not being significant indicates that the type of dependency
does not matter for producing a “weak" approximation of the ground-truth architecture.
However, when attempting to obtain a better architecture (i.e. with a moderate coverage),
working with symbol dependencies with interface-only dynamic-bindings resolution is
preferable.

107

Table 5.22: Wilcoxon Signed Rank when comparing different types of dependencies.

Metrics p-values
Inc. vs S-CHA Inc. vs S-Int S-Int vs Trans. S-Int vs Funct. Funct. vs F-GV

MoJoFM .87 .06 .004 .60 .59
a2a <.001 <.001 .61 <.001 .32
TurboMQ .03 <.001 <.001 .28 .28
c2ccvg _weak .20 .10 .02 .007 .77
c2ccvg _mod .02 <.001 .02 .006 .82
c2ccvg _maj .22 .003 .01 .24 .64

Table 5.23: Cliff’s δ Effect Size Tests. A negative value indicates that the effect size favor
of the first dependency type listed.

Metrics Effect Size
Inc. vs S-CHA Inc. vs S-Int S-Int vs Trans. S-Int vs Funct. Funct. vs F-GV

MoJoFM .03 .11 -.19 .05 -.01
a2a .96 .64 -.10 -.37 .02
TurboMQ .36 .39 -.48 .08 .01
c2ccvg _weak .12 .10 -.14 -.20 -.01
c2ccvg _mod .09 .17 -.14 -.17 .03
c2ccvg _maj .05 .17 -.23 -.11 -.006

Summary of RQ1

The overall conclusion from applying these four metrics is that symbol dependencies
allow recovery techniques to increase their accuracy for all systems in almost every case,
independently of the metric chosen. Especially, using a2a metrics, we observed a statistically
significant improvement coupled with a large effect size in favor of symbol dependencies
with interface-only dynamic-bindings.

Despite the accuracy improvement of using symbol dependencies over include dependen-
cies, c2ccvg results for majority match are low. This indicates that these techniques’ clusters
are significantly different from clusters in the corresponding ground truth. It suggests that
improvement is needed for all the evaluated recovery techniques.

108

5.5.2 RQ2: What is the impact of different input factors, such as
the granularity level, the use of transitive dependencies, the
use of different symbol dependencies and dynamic-bindings
graph construction algorithms, on existing architecture re-
covery techniques?

There are several types of dependencies that can be used as input to recovery techniques.
First, we can break symbol dependencies based on the type of symbol (functions, global
variables, etc.). Another important factor to take into consideration concerns the way we
resolve dynamic bindings. Finally, we also look at the transitivity and the granularity level
of the dependencies. Those different factors are considered as important for other software
analyzes and have a significant impact on the quality of the recovered architectures.

Impact of Function Calls and Global Variables

Function calls are the most common type of dependencies in a system. The question we
study pertains to whether the most common dependencies have the most significant impact
on the quality of the recovery techniques.

Global variables typically represent a small, but important part of a program. Global
variables are a convenient way to share information between different functions of the same
program. If two functions use the same global variables, they might be similar and the files
they belong to could be clustered together. Two functions may, in fact, be dependent on each
other if they both utilize the same global variable. Therefore, adding a global-variable-usage
graph to the function-call graph could help connect similar elements, that do not directly
interact with one another via function calls.

We do not use global variable dependencies alone, because for most of the systems, only
a minority of elements accesses global variables. Therefore, by considering global variable
dependencies alone, we would miss a large number of elements of the system, making several
metrics inaccurate. Instead, we measure the improvement on the quality of the recovered
architectures obtained by adding global variable dependencies to functions calls compared
to using function calls alone. Static analysis using LLVM can detect global variables for C
and C++ projects. For Java projects, we consider variables containing the static keyword
as an approximation of C/C++ global variables.

Overall, MoJoFM and normalized TurboMQ values for function calls alone and symbol
dependencies are highly similar. However, for c2ccvg and a2a, results from all symbol

109

dependencies are significantly better than results from function calls alone. For example,
a2a results are, on average 16.8 pp better when using all symbol dependencies available
(S-CHA) than when using function calls alone. Despite the fact that function calls have
a major impact on the accuracy of architecture recovery techniques, using function calls
alone is not sufficient for obtaining accurate recovered architectures.

The impact of global variable usage is minor. For example, on average, adding global
variable usage to function call dependencies improves the results by 0.1 pp according to a2a.
The impact of global variables is reduced because of the small number of global variable
accesses in the projects used in our study. For example, Chromium’s C and C++ Style
Guide 3 discourages the use of global variables. We acknowledge that our results would
likely be different for a system relying heavily on global variables, such as the Toyota ETCS
system, which contains about 11,000 global variables [110,114].

We performed statistical tests and confirmed that symbol dependencies are better than
functions alone for architecture recovery for 3 out of 6 metrics (p-value <0.05), with an
effect size varying from small to medium in favor of symbol dependencies with interface-only
resolution. In addition, we did not observe a statistical difference among architectures
recovered from dependencies involving functions alone, and dependencies involving both
functions and global variables. It confirms that global variable usage is not a key dependency
for accurate architecture recovery for the projects we studied.

Summary: The impact of global variable on the quality of the recovered architectures
is minor and using symbol dependencies produces better architectures than using
function calls alone.

Impact of Dynamic-bindings Resolution

Dynamic-bindings resolution is a known problem in software engineering, and several
possible strategies for addressing it have been proposed [18, 46, 227]. Due to the high
number of dynamic bindings in C++ and Java projects, the type of resolution chosen when
extracting symbol dependencies can significantly impact the accuracy of recovery techniques.
However, it is unclear which type of dynamic-bindings resolution has the greatest impact on
the architecture of a system. To determine which dynamic-bindings resolution to utilize for
recovery techniques, we evaluate three different resolution strategies: (1) ignoring dynamic
bindings, (2) interface-only resolution, and (3) CHA-based resolution.

3https://www.chromium.org/developers/coding-style

110

Ignoring dynamic bindings is the easiest solution to follow. More importantly, including
it as a possible resolution strategy allows us to determine whether doing any dynamic
bindings analysis improves recovery results.

For interface-only resolution, we only consider the interface of the virtual functions
as being invoked and discard potential calls to derived functions. This is the simplest
resolution that can be performed that does not ignore dynamic bindings.

For the third resolution strategy, we use Class Hierarchy Analysis (CHA) [46], which is
a well-known analysis that is computationally costly to perform. For this type of resolution,
we consider all the derived functions as potential calls. This resolution also creates a larger
dependency graph than interface-only resolution.

The results obtained when ignoring dynamic bindings are shown in column No DyB. The
results for symbol dependencies obtained with CHA and Interface-only dynamic-bindings
resolution are respectively presented in column S-CHA and S-Int. Bash, written in C, is
the only project which does not contain any dynamic bindings.

The results obtained when discarding dynamic bindings (column No DyB) are generally
not as good as with other symbol dependencies. According to a2a, using only non-dynamic-
bindings dependencies reduces the accuracy of the recovery techniques for all projects
and all techniques when compared to using dynamic bindings and the average a2a results
without dynamic bindings are 11 pp lower than the results with CHA and 6 pp lower than
the results with interface-only resolution.

There are a few exceptions for Chromium, Hadoop, and ArchStudio with the metrics
MoJoFM and normalized TurboMQ. The reason for unexpectedly high results with MoJoFM
and normalized TurboMQ is that using partial symbol dependencies is not well handled
by those two metrics. Using partial symbol dependencies —in our case, we discard
symbol dependencies that are dynamic bindings— results in (1) a significant mismatch
of files between the ground-truth architecture and the recovered architectures, and (2)
a disconnected dependency graph. The file mismatches create artificially high MoJoFM
results, and the disconnected dependency graphs can lead to extremely high or even perfect
normalized TurboMQ scores, as it is the case for ArchStudio when using Bunch without
dynamic-bindings dependencies. c2ccvg results are not conclusive either way.

When looking at interface-only and CHA resolutions, we observe a difference in behavior
of the two Java projects and the two C/C++ projects. For Java-based Hadoop and
ArchStudio, using an interface-only resolution seems to greatly improve the results over
using CHA. Those results are obtained for both projects and for all metrics, with only
two exceptions for c2ccvg in Hadoop (Table 5.20) where using CHA provides slightly better
results. On average, according to normalized TurboMQ, using interface-only resolution

111

improves the results by 20 pp for ArchStudio and Hadoop. However, for C++-based ITK
and Chromium, the normalized TurboMQ results are improved by 6 pp when using CHA
for dynamic-bindings resolution.

There could be several reasons for this difference. First, the two C++ projects are
between 10 and 200 times larger than the two Java projects we studied. It is possible that
a complete analysis of dynamic bindings only becomes necessary for large projects with
many complex virtual objects. Second, in Java, methods are virtual by default, while in
C++, methods have to be declared as virtual by using the keyword virtual. C and C++
developers also have the possibility to use function pointers instead of dynamic bindings,
which are currently not handled properly by our symbol dependency extractor. Those
two elements could also be a reason why we observed different affects of dynamic-bindings
resolutions for C++ and Java projects.

Summary: Our overall results indicate that, to obtain a more accurate recovered
architecture, the choice of the dynamic-bindings resolution algorithm depends on the
project studied. Specifically, if the project contains a high number of dynamic bindings,
CHA is likely to produce better recovery results. Otherwise, interface-only resolution
is preferable. Ignoring dynamic bindings is ill-advised in most cases.

Transitive vs. Direct Dependencies

A transitive dependency can be built from direct dependencies. For example, if A depends
on B, and B depends on C, then A transitively depends on C. Recovery techniques can use
as input (1) direct dependencies only or (2) transitive dependencies. To compare direct
dependencies against transitive dependencies, we run a transitive closure algorithm on the
symbol dependencies and study the effect of adding transitive dependencies on the accuracy
of architecture recovery. We did not use include dependencies for this study because, as
explained in Section 5.2.1, include dependencies for C and C++ projects are not direct
dependencies. Furthermore, we did not include Chromium because the algorithm generating
transitive dependencies does not scale to that size, even when we tried to use advanced
computational techniques, such as Crocopat’s use of binary decision diagrams [21]. For
ITK, although we were able to obtain transitive dependencies, none of the architecture
recovery techniques scaled to its size. Therefore, we cannot report those results. Results for
Bash, Hadoop, and ArchStudio, are reported in the tables corresponding to the different
metrics (column Trans).

When comparing the results obtained with direct (Sym for Bash and S-Int for Hadoop
and ArchStudio) and transitive (Trans) symbol dependencies, we observe that using direct

112

dependencies generally provides similar or better results. Results with MoJoFM, normalized
TurboMQ, and c2ccvg tend to favor the use of direct dependencies over transitive dependen-
cies (+15 pp on average for normalized TurboMQ when using direct dependencies, +4.9 pp
on average for MoJoFM).

According to a2a, using transitive dependencies has a minor impact (-0.33 pp on average)
on the results. a2a gives importance to the discrepancy of files between the recovered
architecture and the ground truth. As no files are added or removed when obtaining the
transitive dependencies from the direct dependencies, this discrepancy is exactly the same
between the direct and transitive dependencies. This is why we do not observe a significant
difference between direct and transitive dependencies results when using a2a.

When running statistical tests, we found that results from direct dependencies (S-Int)
are statistically different from results obtained from transitive dependencies for all metrics,
except a2a, confirming our conclusion that direct dependencies have a positive impact on
the quality of the recovered architectures.

Summary: With fewer dependencies, using direct dependencies is more scalable than
transitive dependencies. In summary, direct dependencies help generate more accurate
architectures than transitive dependencies in most cases.

Impact of the Level of Granularity of the Dependencies

Results at the module level are reported for ITK and Chromium under the column Mod.
of Tables 5.3, 5.4, 5.8, 5.9, 5.13, 5.14, 5.18, and 5.19. Module dependencies are obtained
by adding information extracted from the configuration files to group files together. This
information is written by the developers and could represent the architecture of the project
as it is understood by developers. Given the inherent architectural information in such
dependencies, it is expected that they would improve a recovery technique’s accuracy.
Because we only have module dependencies for ITK and Chromium, we do not have enough
data points to measure statistical significance of our results. However, results obtained from
module-level dependencies tend to be much better than from file-level dependencies. For
example, on average, compared to using the best file-level dependencies, using module-level
information improves the results by 7.5 pp according to a2a.

113

Summary: Overall, our results indicate that module information, when available,
significantly improves recovery accuracy and scalability of all recovery techniques. As
shown in Table 5.1, the number of module dependencies is almost 70 times lower
than the number of file dependencies. Because of this reduction in the number of
dependencies, we obtain results from all recovery techniques in a few seconds when
working at the module level, as opposed to several hours for each technique when
working at the file level.

5.5.3 RQ3: Can existing architecture recovery techniques scale to
large projects comprising 10MSLOC or more?

Scalability

Overall, ACDC is the most scalable technique. It took only 70-120 minutes to run ACDC on
Chromium on our server. The WCA variations and ARC have a similar execution time (8
to 14 hours), with WCA-UENM slightly less scalable than WCA-UE. Bunch-NAHC is the
last technique which was able to terminate on Chromium for both kinds of dependencies,
taking 20 to 24 hours depending on the kind of dependencies used. LIMBO only terminated
for symbol dependencies after running for 4 days on our server.

Bunch-SAHC timed out after 24 hours for both include and symbol dependencies. We
report here the intermediate architecture recovered at that time. Bunch-SAHC investigates
all the neighboring architectures of a current architecture and selects the architecture
that improves MQ the most; Bunch-NAHC selects the first neighboring architecture that
improves MQ. Bunch-SAHC’s investigation of all neighboring architectures makes it less
scalable than Bunch-NAHC.

LIMBO failed to terminate for include dependencies after more than 4 days running on
our server. Two operations performed by LIMBO, as part of hierarchical clustering, result in
scalability issues: construction of new features when clusters are merged and computation
of the measure used to compare entities among clusters. Both of these operations are
proportional to the size of clusters being compared or merged, which is not the case for
other recovery techniques that use hierarchical clustering (e.g., WCA).

ZBR needs to store data of the size nzV , where n is the number of files being clustered,
z is the number of zones, and V is the number of terms. For large software (i.e., ITK and
Chromium), with thousands of files and millions of terms, ZBR ran out of memory after
using more than 40GB of RAM.

114

The use of symbol dependencies improves the recovery techniques’ scalability over
include dependencies for large projects (i.e., ITK and Chromium). The main reason for
this phenomenon is that include dependencies are less direct than symbol dependencies.

As mentioned in the discussion of the previous research question, working at the module-
level significantly reduces the number of dependencies and, therefore, greatly improves the
scalability of all dependency-based techniques for large projects. Indeed, at the module-level
we were able to obtain results in a few seconds, even for techniques that did not scale with
file-level dependencies.

Metrics vs. Size

While some algorithms are scalable for large projects, it does not mean that results obtained
for large systems are as relevant as results obtained for smaller systems. We verify if
automatic architecture recovery techniques perform equally for software of all sizes by
measuring the evolution of the architectures’ quality, when the size of the projects increases.

Overall, we can see that results for Chromium (the largest project) are generally less
accurate than results for Bash, ArchStudio, or Hadoop (the smallest projects). However,
results for ITK are generally worst than for Chromium, despite ITK being ten times smaller.
Because we only study 5 different projects, we cannot draw clear conclusions. Nonetheless,
the fact that results for ITK are worst than for Chromium seems to indicate that the
size of the project under study is not the only factor affecting the quality of recovered
architectures. Other factors such as the programming language, the coding style, and the
use of dynamic bindings probably also have an impact that we can’t measure with only five
different projects.

5.5.4 Comparison with Baseline Algorithms

To see whether software architecture recovery algorithms are effective, we compare their
results with two baseline recovered architecture.

For the first baseline, we recovered the architecture based on the directory structure of
the project. According to a2a results, all recovery techniques performed better than the
baseline for Bash, ITK and Chromium. A similar trend can be observed for TurboMQ and
c2ccvg, with a few exception (e.g. WCA and Limbo for Chromium for TurboMQ). This
seems to indicate that architecture recovery techniques might be helpful to improve the
architecture of these projects.

115

Table 5.24: Wilcoxon Signed Rank for each algorithm when compared to K-means

Metrics p-values
ACDC Bunch-NAHC Bunch-SAHC WCA-UE WCA-UENM Limbo

MoJoFM <.001 .002 .27 <.001 <.001 <.001
a2a .42 <.001 <.001 .11 .11 <.001
TurboMQ <.001 <.001 <.001 <.001 <.001 <.001
c2ccvg _weak .003 <.001 .004 <.001 <.001 0.004
c2ccvg _mod .002 <.001 .003 <.001 <.001 <.001
c2ccvg _maj <.001 <.001 .65 <.001 <.001 <.001

Table 5.25: Cliff’s δ Effect Size Tests. A negative value indicates that the effect size is in
favor of K-means.

Metrics Effect Size
ACDC Bunch-NAHC Bunch-SAHC WCA-UE WCA-UENM Limbo

MoJoFM .54 -.25 -.04 -.67 -.64 -.86
a2a -.005 -.15 -.16 -.08 -.08 -.31
TurboMQ .52 .49 .51 -.66 -.66 -.53
c2ccvg _weak .27 -.57 -.45 -.56 -.56 -.11
c2ccvg _mod .24 .58 -.33 -.57 -.55 -.97
c2ccvg _maj .42 -.25 -.06 -.55 -.55 -.77

For ArchStudio and Hadoop, the directory structure-based architecture consistently
outperforms architectures recovered with other algorithms, except for TurboMQ for which
results are less consistent. This seems to indicate that ArchStudio and Hadoop already
have a directory relatively similar to their ground truth architecture and that architecture
refactoring might not be necessary for these two projects.

Our second baseline consists in comparing the algorithms specifically designed for
architecture recovery (ACDC, Bunch, WCA, and Limbo) with the results obtained from
a basic machine learning algorithm, k-means, used with default parameters. Tables 5.24
and 5.25 show the statistical significance and the effect size of the difference between
K-means and other algorithms, independently from the dependencies used. ACDC is the
only algorithm that produces equivalent or better results than K-means consistently, for all
metrics. WCA-UE and Limbo always produce worst results than K-means. Finally, the
two Bunch algorithms produce better results than K-means only for some metrics.

The three techniques that performed consistently worst than the baseline algorithm are
all hierarchical clustering algorithms. It is possible that techniques based on hierarchical
clustering are not adapted to recover flat architectures. Results could be different for other

116

projects or ground-truth architectures.

5.5.5 Summary of Results

Overall, we discovered three main findings from our study. First, using accurate symbol
dependencies improves the quality of the recovered architectures. Second, using direct
dependencies is more scalable and generally improves the quality of the results. Finally,
working with high-level dependencies (i.e. module dependencies) is another key factor for
scalable and high-quality architecture recovery of large systems.

5.5.6 Comparison with the Prior Work

As previously mentioned, three of our subject systems were also used in our previous
study [64]. It is difficult to compare our results with the prior study because of the
differences described in Section 5.4.3. When using the same type of dependencies (Inc)
as in our previous study, we observe minor differences for some algorithms. However, on
average, the MoJoFM scores only drop by 0.1 pp for all techniques over the scores reported
in [64]. In the cases of Hadoop and ArchStudio, our previous study used a different level of
granularity (class level), which makes comparison with current work irrelevant.

5.6 Threats to Validity

This section describes several secondary results of our research such as issues encountered
with the different metrics, extreme architectures, and guidelines concerning the dependencies,
the architecture recovery techniques, and the metrics to use in future work.

5.6.1 Metrics Limitations

As mentioned in section 5.4.5, some metrics have limitations and can be biased toward
specific architectures. In this section, we explain the limitations we encountered with two
of the metrics we used. Those limitations appeared because, the metrics in question were
neither explicitly intended for nor adapted to specific types of dependencies.

The dependencies are often incomplete. For example, include dependencies generally
contain fewer files than the ground-truth architecture. The reasons were explained in

117

Section 5.2.1, including the fact that non-header-file to non-header-file dependencies are
missing. Unfortunately, one of the most commonly used metrics, MoJoFM, assumes that
the two architectures under comparison contain the same elements. Given this limitation,
one can create a recovery technique that achieves 100% MoJoFM score easily but completely
artificially. The technique would simply create a file name that does not exist in a project,
and place it in a single-node architecture. The MoJoFM score between the single-node
architecture and the ground truth will be 100%. By contrast, the a2a metric is specifically
designed to compare architectures containing different sets of elements.

In addition to the “file mismatch” issue with MoJoFM, we also identified issues with
TurboMQ, as discussed in Section 5.4.5. Replacing TurboMQ by its normalized version
yielded an improvement. However, one has to be careful when using normalized TurboMQ.
We identified two boundary cases where normalized TurboMQ results are incorrectly high.
It is possible to obtain the maximum score for normalized TurboMQ by grouping all the
elements of the recovered architecture in a single cluster. As there will be no inter-cluster
dependencies, the score will be 100%. We manually checked all recovered architectures
to make sure this specific case never happened in our evaluation. The second “extreme
case” occurs when the dependency graph used as input is not fully connected. This can
happen when using only partial symbol dependencies (i.e., global variable usage, non-
dynamic-bindings dependency graph, etc.). In this case, some recovery techniques will
create architectures in which clusters are not connected to one another. This also results
in a normalized TurboMQ score of 100%. In our evaluation, this issue occurs when using
non-dynamic-bindings dependencies for ArchStudio and Chromium in Tables 5.13 and 5.15.
This is a limit of normalized TurboMQ when using partial dependencies.

Those are specific issues we observed performing our analysis. It is conceivable that
biases towards other types of architecture have yet to be discovered. This suggests that
a separate, more extensive study on the impact of different architectures on the metrics
would be useful in order to obtain a better understanding of those metrics. Such a study
has not been performed to date.

Metrics are convenient because they quantify the accuracy of an architecture with a score,
allowing comparisons between recovery techniques. Our study has included, developed,
adapted, and evaluated a larger number of metrics than prior similar studies. However, the
value of this score by itself must be treated judiciously. Obviously, the “best” recovered
architecture is the one that is the closest to the ground-truth. At the same time, important
questions such as “Is the recovered architecture good enough to be used by developers?”,
“Can an architecture with an a2a score of 90% be used for maintenance tasks?” cannot
be answered by solely using metrics. A natural outgrowth of this work, then would be
to involve real engineers in performing maintenance tasks in real settings. Then it would

118

be possible to evaluate the extent to which the metrics are indicative of the impact on
completing such tasks. We are currently preparing such a study with the help of several of
our industrial collaborators.

The metrics chosen in this work measure the similarity and quality of an architecture
at different levels—the system level (measured by MoJoFM and a2a), the component
level (measured by c2ccvg) and the dependency-cohesion level (measured by normalized
TurboMQ). In future work, we intend to measure the accuracy of an architecture from an
additional perspective, by analyzing whether the architecture contains undesirable patterns
or follows good design principles.

5.6.2 Selecting Metrics and Recovery Techniques

Using only one metric is not enough to assess the quality of architectures. However, some
metrics are better than others depending on the context. When working on software
evolution, the architectures being compared will likely include a different set of files. In this
case, a2a, c2ccvg, and normalized TurboMQ are more appropriate than MoJoFM, which
assumes that no files are added or removed across versions. If the architectures being
compared contain the same files (e.g., comparing different techniques with the same input),
a2a will give results with a small range of variations, making it difficult to differentiate the
results of each technique. In this case, MoJoFM results are easier to analyze than the ones
obtained with a2a.

We do not claim that one recovery technique is better than the others. However, we can
provide some guidelines to help practitioners choose the right recovery technique for their
specific needs. According to our scalability study, ACDC, ARC, WCA, and Bunch-NAHC
are the most adapted to recover large software architectures. When trying to recover the
low-level architecture of a system, practitioners should favor ACDC, as it generally produces
a high number of small clusters. If a different level of abstraction is needed, WCA, LIMBO,
and ARC allow the user to choose the number of clusters of the recovered architecture.
Those techniques will be more helpful for developers who already have some knowledge of
their project architecture.

5.6.3 Non-uniqueness of Ground-Truth Architectures

There is not necessarily a unique, correct architecture for a system [23, 65]. Recovering
ground-truth architectures require heavy manual work from experts. Therefore, it is
challenging to obtain different certified architectures for the same system. As we are using

119

only one ground-truth architecture per project, there is a threat that our study may not
reflect other ground-truth architectures. To reduce this threat, we use four different metrics,
including one independent of the ground-truth architecture. Two of the metrics used in this
study were developed by some authors of this work, which might have caused a bias in this
study. However, all four metrics, including metrics developed independently, follow the same
trend—symbol dependencies are better than include dependencies—which mitigates some
of the potential bias. Furthermore, actual developers or architects of the projects aided in
the production of our ground-truth architectures, further reducing any bias introduced in
those architectures.

5.6.4 Number of Projects Studied

We have evaluated recovery techniques on only five systems, which limits our study’s
generalizability to other systems. Adding more projects is challenging. First, manually
recovering the ground-truth architecture of a test project is time-consuming and requires
the help of an expert with deep knowledge of the project [65]. Second, the projects studied
need to be compatible with the tools used to extract dependencies. For example, the C++
projects evaluated need to be compilable with Clang. To mitigate this threat, we selected
systems of different sizes, functionalities, architecture paradigms, and languages.

5.7 Summary

This work evaluates the impact of using more accurate symbol dependencies, versus the
less accurate include dependencies used in previous studies, on the accuracy of automatic
architecture recovery techniques. We also study the effect of different factors on the
accuracy and scalability of recovery techniques, such as the type of dynamic bindings
resolution, the granularity-level of the dependencies and whether the dependencies are
direct or transitive. We studied nine variants of six architecture recovery techniques on five
open-source systems. To perform our evaluation, we recovered the ground-truth architecture
of Chromium, and updated ArchStudio and Bash architectures. In addition, we proposed a
simple but novel submodule-based architecture recovery technique to recover preliminary
versions of ground-truth architectures. In general, each recovery technique extracted a
better quality architecture when using symbol dependencies instead of the less-detailed
include dependencies. Working with direct dependencies at module level also helps with
obtaining a more accurate recovered architecture. Finally, it is important to carefully choose

120

the type of dynamic-bindings resolution when working with symbol dependencies, as it can
have a significant impact on the quality of the recovered architectures.

In some sense this general conclusion that quality of input affects quality of output
is not surprising: the principle has been known since the beginning of computer science.
Butler et al. [28] attribute it to Charles Babbage, and note that the acronym “GIGO” was
popularized by George Fuechsel in the 1950’s. What is surprising is that this issue has
not previously been explored in greater depth in the context of architecture recovery. Our
results show that not only does each recovery technique produce better output with better
input, but also that the highest scoring technique often changes when the input changes.

There are other dimensions of architecture recovery that are worthy of future explo-
ration, such as: recovering nested architectures; evaluating the usefulness of the recovered
architecture to do specific maintenance tasks; and resolving function pointers and dynamic
bindings.

The results presented here clearly demonstrate that there is room for more research
both on architecture recovery techniques and on metrics for evaluating them.

Availability The ground-truth architectures are available at
http://asset.uwaterloo.ca/ArchRecovery.

121

Chapter 6

Future Work

The projects in this thesis could be further supported and expanded with the following
future work. Section 6.1 details future work on NMT-based program repair, Section 6.2 lists
some possible extensions on finding bugs in electronic documents and readers, Section 6.3
proposes improvement in software architecture recovery. Finally, Section 6.4 proposes
applications of machine learning and deep learning on other software engineering tasks.

6.1 Automatic Program Repair: Better Abstraction for
Scalable NMT-based program repair

While CoCoNuT’s results from Chapter 3 are promising, there are still room for improve-
ment.

First, CoCoNuT and other NMT-based approaches use a very large vocabulary. NMT
is effective for NLP tasks because most natural languages contain about 50,000 to 80,000
words. However, source code can have an infinite number of tokens. For example, CoCoNuT
contains a vocabulary of 139,423 tokens, making it challenging (and expansive) for the
network to learn and generalize.

Second, despite such large vocabulary sizes, there are a lot of rare tokens that cannot
be captured, also called out-of-vocabulary (oov) tokens, even when the vocabulary contains
several hundreds of thousand tokens (e.g., project specific tokens that only appear in specific
test benchmarks). It is very challenging for NMT-based techniques like CoCoNuT to fix
bugs that include oov tokens because the correct patch is outside of the search space.

122

- steps.add(new Pair <Integer ,Integer >(start , helper));
+ steps.add(new Pair <Integer ,Integer >(start , end));

(a) Patch for HANOI in QuixBugs for Java.

- v1.v2(new v3<Integer ,Integer >(v4, v5));
+ v1.v2(new v3 <Integer ,Integer >(v4 , v6));

(b) Abstracted version of the buggy and clean lines

v1={ steps}, v2={add}, v3={Pair}, v4={start}
v6={height , end}

(c) Mapping between abstracted variables and identifiers in the source code

Figure 6.1: Bug, abstraction, and mapping for the HANOI bug in QuixBugs that CoCoNuT
cannot fix without using abstracted template.

A future direction to expand CoCoNuT could address the vocabulary size issue by
abstracting all the tokens to the form: v concatenated with a unique number. Instead of
learning the correct patch, which is too difficult without knowing the entire project, the
NMT model focuses on learning the correct template to transform a buggy line to a fixed
line (e.g., insert a new variable or add a function call) [251].

Figure 6.1 shows an example of such an abstraction. Figure 6.1a shows the buggy and
clean lines, as starting with a ‘-’ and ‘+’ respectively. The buggy line is first abstracted
(line started with a ‘-’ in Figure 6.1b) and the model uses historical data to generate
an abstracted patch (line with a ‘+’ in Figure 6.1b). Figure 6.1c shows the constraints
automatically extracted from the source code we use to build a complete patch. v1 to v4
are inferred from the buggy line while v6 is inferred by automatically extracting variables
in scope that match the signature of Pair<Integer, Integer> (i.e., variables of type
Integer). There are two such variables in scope, but only the patch using v6=end passes
all test cases. Previous work that does not use abstraction fails to generate the correct
patch because it does not know which variables are in scope and attempts to replace helper
with variables from other projects that appear in the training data.

Such an approach significantly reduces the size of the vocabulary used by CoCoNuT,
from 139,423 to 2,651. As a result, it is faster to train, contains more correct patches in
its search space, and overall fixes more bugs than previous work. Tufano et al. [238] and
Wei [251] use a similar abstraction but did not solve the challenges created by such an
abstraction detailed below.

Even if the model can generate the correct abstracted fix, it might not be ranked first.
Furthermore, for each abstracted fix in a realistic project there are potentially hundreds or
even thousands of possible variables to choose from. For example, the bug Closure 92 in

123

Defects4J is fixed by replacing the method indexOf with the method lastIndexOf. Such
method are from an external library that are imported using wild card import statements.
As a result, in practice there are hundreds of methods in scope for this patch. Therefore,
even if the correct abstracted patch has a high rank, a naive approach to reconstruct the
correct patch might still generate thousands of patches before reaching the correct one,
which is unscalable. Even the one-file programs from QuixBugs can have up to 200 potential
callable functions in scope from common libraries.

This issue can be addressed in future work by extracting software engineering
knowledge. Specifically, we can keep track of variables in scope of the buggy line, extract
functions’ signature (i.e., number of parameters, and return type) and perform type analysis
to narrow down the number of candidate tokens.

While such information helps narrow down the set of possible variables, there are
still many candidate variables or functions to reconstruct a patch that need to be ranked
efficiently.

Preliminary evaluation using this approach fixed 17 bugs in the Java QuixBugs [135]
benchmark while CoCoNuT, the current state-of-the-art on this benchmark presented in
Chapter 3, only fixed 13 bugs.

6.2 Detecting Bugs in PDF Documents and Readers

In the future, we plan to automatically fix the detected bugs in PDF files to ensure
consistency across readers. The fault localisation component of our technique based on
delta-debugging makes it possible to narrow down the problem to specific objects in the
document. Then we could focus on removing or fixing those problematic objects. Fixing
PDF documents is not a trivial task due to document format constraints such as cross-
reference table that lists object offsets in the file, or object numbers which are used to
cross-reference objects within the document. Even removal of a problematic object may
result in a need to update other objects referencing the removed one or object offsets in the
mentioned cross-reference table.

Another potential line of work is to extend the technique to other operating systems
and document types. That would involve preparing the corresponding virtual machines and
tuning our screenshot capture tools. Other document/file types might also need a different
similarity metric—a study of ROC curves similar to the presented one might be necessary
to pick the best metric for the task.

124

Finally, with more engineering effort we could improve system’s performance and try to
analyze randomly chosen pages of the document or a whole document, rather than the first
page only. We believe that the current performance is reasonable given the data set size.
However, more work in this area would make it possible to further scale up the technique.

6.3 Software Architecture Recovery

Dependencies. The work described in Chapter 5 explores whether the type of dependencies
used affects the quality of the architecture recovered, and answers in the affirmative: Each
recovery technique improves if more detailed input dependencies are used.

The results of Chapter 5 show, however, that any attempted evaluation of architecture
recovery techniques must be careful about dependencies: For example, if we look at the
best architecture recovery technique to recover Bash, MoJoFM would select a different best
technique in four out of five cases with different input dependencies; c2ccvg in 3/5 cases; and
normalized TurboMQ in 2/5 cases. a2a is more stable and would select Bunch-SAHC in all
the cases, but a2a also shows that most of the techniques perform similarly for Bash when
using similar dependencies. If we look at the other projects, we also observe that none of
the metrics always pick the same best recovery technique when using different dependencies.

In Chapter 5, we evaluate architecture recovery techniques using source-code dependen-
cies. Other types of dependencies can alternatively be used. For example, one can look at
a developers’ activity (e.g., files modified together) to obtain code dependencies [113] and
further work is necessary to evaluate if completely different types of dependencies such as
directory structure, historical information or developer’s activity can be use in the context
of automatic architecture recovery.

In addition, we do not consider weighting dependencies. For example, consider FileA
that uses one symbol from FileB, and FileC that uses 20 symbols from FileB. Intuitively, it
seems that FileB and FileC are more connected than FileA and FileB. Unfortunately, the
current implementations of the architecture recovery techniques do not consider weighted
graphs. Using weighted dependencies could also be a way to improve the quality of the
recovered architectures.

Nested architectures. The architecture recovery techniques evaluated in Chapter 5 all
recover “flat”, i.e., non-hierarchical architectures. We focus on flat architectures for several
reasons. First, for 4/5 systems we only have access to a flat ground-truth architecture.
Second, the existing automatic architecture recovery techniques we evaluate only recover
flat architectures.

125

In previous work on obtaining ground-truth architectures [65], results indicate that
architects do not necessarily agree as to the importance of having a nested or flat architecture.
However, when discussing with Google developers during the recovery of Chromium’s ground
truth, it appeared that they view their architecture as a nested architecture in which files
are clustered into small entities, themselves clustered into larger entities. Some work has
been done on improving metrics to compare nested architectures [221,222], but little work
has been done on proposing and evaluating automatic techniques for recovering nested
architectures. A proper treatment of nested architectures, while out of scope of this work,
is an important area for future research.

Multiple Ground-Truth Architectures. The work in Chapter 5 relies on several
metrics used for evaluation of architecture recovery, some of which require a ground-truth
architecture that might not be unique. More empirical work is needed to explore the idea of
multiple ground-truth architectures for a given system. One possible direction is to conduct
ground-truth extraction with different groups of engineers on the same system. Another
direction would be to have system engineers develop ground-truth architectures starting
from automatically recovered architectures. Ground-truth architectures are important for
quality architecture-recovery evaluation and deserve further examination.

6.4 Explainable Defect Prediction:

Much work has been done using machine learning for defect prediction [5, 62, 72,72,73,88,
96,97,98,102,133,171,172,173,174,178,181,188,216,232,248,264,266,272,275]. However
one of the main issue to address for defect prediction to be widely adopted by industry is
to improve the explainability of the results [96, 97,129].

For example, the empirical study led by Jiarpakdee et al. [97] found that 55% of the users
found model agnostic explanations necessary to understand defect prediction results and
make them actionable. However, the effort to provide good explanations to the results have
been limited, varying to presenting explanations based on features used in the model [96]
or simply providing similar changes that occurred in the training set [97].

One possible application of deep learning for defect prediction could be to automatically
generate explanation for the detected bugs using similar approaches that have been used to
automatically generate commit messages [95,144] or comments from source code [86].

126

Chapter 7

Conclusion

This thesis demonstrates that machine learning can be used effectively for many tasks
related to software dependability. We illustrated this fact with three projects in three
different domains of software dependability.

In Chapter 3, we propose a new NMT architecture, CoCoNuT, and demonstrate its
efficacity for automatic program repair, fixing 493 bugs on six benchmarks in four different
programming languages.

In Chapter 4, we first introduce the novel problem of cross-reader inconsistencies, which
are caused by bugs in readers and files and shows that cross-reader inconsistencies are
common. Furthermore, we propose a ML-based approach to select bug-revealing inputs and
combined it to a new technique that detect and localize inconsistencies automatically. Our
approach has detected 30 unique bugs on Linux and Windows systems. We also reported
33 bugs to developers, 17 of which have already been confirmed or fixed.

In chapter 5, we evaluate the impact of using more accurate symbol dependencies on
the accuracy of automatic architecture recovery techniques. We also study the effect of
different factors on the accuracy and scalability of recovery techniques, such as the type
of dynamic bindings resolution, the granularity-level of the dependencies and whether the
dependencies are direct or transitive. We studied nine variants of six architecture recovery
techniques on five open-source systems.

Together these projects show that, applied correctly, machine learning and deep learning
can significantly improve software dependability.

127

References

[1] Understand, Scitools.com. https://scitools.com.

[2] Fairseq-py. https://github.com/pytorch/fairseq, 2018.

[3] Archlinux, [wontfix] wrong colours in adobe reader (acroread). https://bbs.
archlinux.org/viewtopic.php?id=193918.

[4] Afsoon Afzal, Manish Motwani, Kathryn Stolee, Yuriy Brun, and Claire Le Goues. Sos-
repair: Expressive semantic search for real-world program repair. IEEE Transactions
on Software Engineering, 2019.

[5] Igor Aizenberg and Claudio Moraga. Multilayer feedforward neural network based
on multi-valued neurons (mlmvn) and a backpropagation learning algorithm. Soft
Computing, 11(2):169–183, 2007.

[6] Mahdi Nasrullah Al-Ameen, Md Monjurul Hasan, and Asheq Hamid. Making findbugs
more powerful. In 2011 IEEE 2nd International Conference on Software Engineering
and Service Science, pages 705–708. IEEE, 2011.

[7] Carol V Alexandru. Guided code synthesis using deep neural networks. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 1068–1070. ACM, 2016.

[8] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey
of machine learning for big code and naturalness. ACM Computing Surveys (CSUR),
51(4):81, 2018.

[9] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to repre-
sent programs with graphs. In International Conference on Learning Representations,
2018.

128

https://scitools.com
https://github.com/pytorch/fairseq
https://bbs.archlinux.org/viewtopic.php?id=193918
https://bbs.archlinux.org/viewtopic.php?id=193918

[10] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network
for extreme summarization of source code. In International Conference on Machine
Learning, pages 2091–2100, 2016.

[11] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning dis-
tributed representations of code. Proceedings of the ACM on Programming Languages,
3(POPL):40, 2019.

[12] Periklis Andritsos, Panayiotis Tsaparas, Renée J Miller, and Kenneth C Sevcik.
LIMBO: Scalable Clustering of Categorical Data. In Adv. Database Technol. - EDBT
2004, pages 531–532. 2004.

[13] Periklis Andritsos and Vassilios Tzerpos. Information-Theoretic Software Clustering.
IEEE Trans. on Softw. Eng., 31(2), February 2005.

[14] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

[15] Mahir Arzoky, Stephen Swift, Allan Tucker, and James Cain. Munch: An Efficient
Modularisation Strategy to Assess the Degree of Refactoring on Sequential Source
Code Checkings. In Proc. ICST Workshops, pages 422–429, 2011.

[16] Moumita Asad, Kishan Kumar Ganguly, and Kazi Sakib. Impact analysis of syntactic
and semantic similarities on patch prioritization in automated program repair. In 2019
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 328–332. IEEE, 2019.

[17] Nathaniel Ayewah, William Pugh, David Hovemeyer, J David Morgenthaler, and
John Penix. Using static analysis to find bugs. IEEE software, 25(5):22–29, 2008.

[18] David F Bacon and Peter F Sweeney. Fast static analysis of c++ virtual function
calls. ACM Sigplan Notices, 31(10):324–341, 1996.

[19] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[20] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[21] Dirk Beyer. Relational Programming with CrocoPat. In Proc. ICSE, pages 807–810,
Shanghai, China, 2006. IEEE.

129

[22] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. J.
Mach. Learn. Res., 3:993–1022, March 2003.

[23] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux As a Case Study:
Its Extracted Software Architecture. In Proc. ICSE, pages 555–563, New York, NY,
USA, 1999. ACM.

[24] Stefan Brahler. Analysis of the android architecture. Karlsruhe institute for technology,
7, 2010.

[25] A. Brown and G. Wilson. In The Architecture of Open Source Applications. Lulu,
2011.

[26] Bugzilla, bug 94260 - pdf file doesn’t load or is displayed inconsistently. https:
//bugs.freedesktop.org/show_bug.cgi?id=94260.

[27] Bugzilla@Mozilla, Bug 1244729 - [PDF Viewer] Incorrect PDF display (large portions
of the map appear as black) . https://bugzilla.mozilla.org/show_bug.cgi?id=
1244729.

[28] Jill Butler, William Lidwell, and Kritina Holden. Universal Principles of Design.
Rockport Publishers, Gloucester, MA, 2nd edition, 2010.

[29] Saikat Chakraborty, Miltiadis Allamanis, and Baishakhi Ray. Tree2tree neural
translation model for learning source code changes. arXiv preprint arXiv:1810.00314,
2018.

[30] Chris Chedgey, Paul Hickey, Paul O’Reilly, and Ross McNamara. Structure101.

[31] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning
Affordance for Direct Perception in Autonomous Driving. In ICCV, 2015.

[32] Liushan Chen, Yu Pei, and Carlo A Furia. Contract-based program repair without
the contracts. In Automated Software Engineering (ASE), 2017 32nd IEEE/ACM
International Conference on, pages 637–647. IEEE, 2017.

[33] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. Sequencer: Sequence-to-sequence learning for
end-to-end program repair. IEEE Transactions on Software Engineering, 2019.

[34] Shamil Chollampatt and Hwee Tou Ng. A Multilayer Convolutional Encoder-Decoder
Neural Network for Grammatical Error Correction. 2018.

130

https://bugs.freedesktop.org/show_bug.cgi?id=94260
https://bugs.freedesktop.org/show_bug.cgi?id=94260
https://bugzilla.mozilla.org/show_bug.cgi?id=1244729
https://bugzilla.mozilla.org/show_bug.cgi?id=1244729

[35] Shamil Chollampatt and Hwee Tou Ng. A multilayer convolutional encoder-decoder
neural network for grammatical error correction. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, February 2018.

[36] Shauvik Roy Choudhary. Detecting cross-browser issues in web applications. In
Software Engineering (ICSE), 2011 33rd International Conference on, pages 1146–
1148. IEEE, 2011.

[37] Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. Crosscheck: Com-
bining crawling and differencing to better detect cross-browser incompatibilities in
web applications. In Software Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on, pages 171–180. IEEE, 2012.

[38] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. Webdiff: Automated
identification of cross-browser issues in web applications. In Software Maintenance
(ICSM), 2010 IEEE International Conference on, pages 1–10. IEEE, 2010.

[39] Chromium Bug Tracker, PDF’s not displaying with Chromes PDF Distiller. https:
//code.google.com/p/chromium/issues/detail?id=333918.

[40] Google Chrome Help Forum, PDF viewer bug with tcpdf. https://productforums.
google.com/forum/#!msg/chrome/tVNKJhiv-XQ/tH9RZyPlJGwJ.

[41] Aviad Cohen, Nir Nissim, and Yuval Elovici. Maljpeg: Machine learning based
solution for the detection of malicious jpeg images. IEEE Access, 8:19997–20011,
2020.

[42] Anna Corazza, Sergio Di Martino, Valerio Maggio, and Giuseppe Scanniello. Investi-
gating the use of lexical information for software system clustering. In Proc. CSMR,
pages 35–44. IEEE, 2011.

[43] Igino Corona, Davide Maiorca, Davide Ariu, and Giorgio Giacinto. Lux0r: Detection
of malicious pdf-embedded javascript code through discriminant analysis of api
references. In Proceedings of the 2014 Workshop on Artificial Intelligent and Security
Workshop, pages 47–57. ACM, 2014.

[44] Complex-wavelet structural similarity index (cw-ssim).
http://www.mathworks.com/matlabcentral/fileexchange/
43017-complex-wavelet-structural-similarity-index--cw-ssim-.

131

https://code.google.com/p/chromium/issues/detail?id=333918
https://code.google.com/p/chromium/issues/detail?id=333918
https://productforums.google.com/forum/#!msg/chrome/tVNKJhiv-XQ/tH9RZyPlJGwJ
https://productforums.google.com/forum/#!msg/chrome/tVNKJhiv-XQ/tH9RZyPlJGwJ
http://www.mathworks.com/matlabcentral/fileexchange/43017-complex-wavelet-structural-similarity-index--cw-ssim-
http://www.mathworks.com/matlabcentral/fileexchange/43017-complex-wavelet-structural-similarity-index--cw-ssim-

[45] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling
with gated convolutional networks. In Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, page 933–941. JMLR.org, 2017.

[46] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In ECOOP’95—Object-Oriented
Programming, 9th European Conference, Åarhus, Denmark, August 7–11, 1995, pages
77–101. Springer, 1995.

[47] Brian Demsky and Martin Rinard. Data structure repair using goal-directed reasoning.
In Proceedings of the 27th international conference on Software engineering, pages
176–185. ACM, 2005.

[48] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
Hoppity: Learning graph transformations to detect and fix bugs in programs. In
International Conference on Learning Representations, 2019.

[49] Lei Ding and Nenad Medvidovic. Focus: A Light-Weight, Incremental Approach
to Software Architecture Recovery and Evolution. In Proc. WICSA, pages 191–200,
Washington, DC, USA, 2001. IEEE CS Press.

[50] Yangruibo Ding, Baishakhi Ray, Premkumar Devanbu, and Vincent J Hellendoorn.
Patching as translation: the data and the metaphor. In ASE’20, 2020.

[51] Thomas Durieux and Martin Monperrus. Dynamoth: dynamic code synthesis for
automatic program repair. In Proceedings of the 11th International Workshop on
Automation of Software Test, pages 85–91. ACM, 2016.

[52] Cyntrica Eaton and Atif M Memon. An empirical approach to evaluating web
application compliance across diverse client platform configurations. International
Journal of Web Engineering and Technology, 3(3):227–253, 2007.

[53] Guillaume Endignoux, Olivier Levillain, and Jean-Yves Migeon. Caradoc: a pragmatic
approach to pdf parsing and validation. In 2016 IEEE Security and Privacy Workshops
(SPW), pages 126–139. Ieee, 2016.

[54] IEEE CONTENT ENGINEERING. PDF Specification for IEEE Xplore (Part A-Core
Requirements). IEEE, 2008.

[55] Jean-Marie Favre. Cacophony: Metamodel-driven software architecture reconstruction.
In Reverse Engineering, 2004. Proceedings. 11th Working Conference on, pages 204–
213. IEEE, 2004.

132

[56] Jean-Marie Favre, Frédéric Duclos, Jacky Estublier, Remy Sanlaville, and Jean-
Jacques Auffre. Reverse engineering a large component-based software product. In
Software Maintenance and Reengineering, 2001. Fifth European Conference on, pages
95–104. IEEE, 2001.

[57] Mattia Fazzini and Alessandro Orso. Automated cross-platform inconsistency de-
tection for mobile apps. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 308–318. IEEE, 2017.

[58] Patrick J. Finnigan, Richard C. Holt, Ivan Kalas, Scott Kerr, Kostas Kontogiannis,
Hausi A Muller, John Mylopoulos, Stephen G. Perelgut, Martin Stanley, and Kenny
Wong. The software bookshelf. IBM systems Journal, 36(4):564–593, 1997.

[59] R. Fiutem, P. Tonella, G. Antoniol, and E. Merlo. A Cliché-Based Environment to
Support Architectural Reverse Engineering. In Proc. ICSM, pages 319–328. IEEE CS
Press, 1996.

[60] Roberto Fiutem, Giulio Antoniol, Paolo Tonella, and Ettore Merlo. ART: an Ar-
chitectural Reverse Engineering Environment. Journal of Software Maintenance,
11(5):339–364, 1999.

[61] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345,
1962.

[62] Wei Fu and Tim Menzies. Revisiting unsupervised learning for defect prediction. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
pages 72–83, 2017.

[63] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. SOFTWARE - PRACTICE AND
EXPERIENCE, 30(11):1203–1233, 2000.

[64] Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. A comparative analysis of
software architecture recovery techniques. In Proc. ASE, pages 486–496. IEEE, 2013.

[65] Joshua Garcia, Ivo Krka, Chris Mattmann, and Nenad Medvidovic. Obtaining Ground-
truth Software Architectures. In Proc. ICSE, ICSE ’13, pages 901–910, Piscataway,
NJ, USA, 2013. IEEE Press.

[66] Joshua Garcia, Duc Le, Daniel Link, Arman Shahbazian Pooyan Behnamghader,
Eder Figueroa Ortiz, and Nenad Medvidovic. An empirical study of architectural

133

change and decay in open-source software systems. Technical report, USC-CSSE,
2014.

[67] Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Medvidovic, and Yuanfang
Cai. Enhancing Architectural Recovery Using Concerns. In Perry Alexander, Corina S.
Pasareanu, and John G. Hosking, editors, ASE, pages 552–555, 2011.

[68] Simson Garfinkel, Paul Farrell, Vassil Roussev, and George Dinolt. Bringing science
to digital forensics with standardized forensic corpora. digital investigation, 6:S2–S11,
2009.

[69] Tao Ge, Furu Wei, and Ming Zhou. Fluency Boost Learning and Inference for
Neural Grammatical Error Correction. Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, 1:1–11, 2018.

[70] Tao Ge, Furu Wei, and Ming Zhou. Reaching Human-level Performance in Automatic
Grammatical Error Correction: An Empirical Study. (3):1–15, 2018.

[71] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. pages 1243–1252, 2017.

[72] Baljinder Ghotra, Shane McIntosh, and Ahmed E Hassan. Revisiting the impact of
classification techniques on the performance of defect prediction models. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 1,
pages 789–800. IEEE, 2015.

[73] Emanuel Giger, Marco D’Ambros, Martin Pinzger, and Harald C Gall. Method-level
bug prediction. In Proceedings of the 2012 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, pages 171–180. IEEE, 2012.

[74] Georgios Gousios and Diomidis Spinellis. Ghtorrent: Github’s data from a firehose. In
2012 9th IEEE Working Conference on Mining Software Repositories (MSR), pages
12–21, 2012.

[75] Cinthya Grajeda, Frank Breitinger, and Ibrahim Baggili. Availability of datasets for
digital forensics–and what is missing. Digital Investigation, 22:S94–S105, 2017.

[76] Alan Grosskurth and Michael W. Godfrey. A Case Study in Architectural Analysis:
The Evolution of the Modern Web Browser, 2007.

134

[77] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In Proceedings
of the 40th International Conference on Software Engineering, pages 933–944. ACM,
2018.

[78] Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. Synthesize,
execute and debug: Learning to repair for neural program synthesis. arXiv preprint
arXiv:2007.08095, 2020.

[79] Rahul Gupta. Deep Learning for Bug Localization and Program Repair. PhD thesis,
2020.

[80] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing
common c language errors by deep learning. In AAAI, pages 1345–1351, 2017.

[81] Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Arpád Beszédes,
Rudolf Ferenc, and Ali Mesbah. Bugsjs: A benchmark of javascript bugs. In 2019
12th IEEE Conference on Software Testing, Validation and Verification (ICST), pages
90–101. IEEE, 2019.

[82] Quinn Hanam, Fernando S de M Brito, and Ali Mesbah. Discovering bug patterns in
javascript. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 144–156. ACM, 2016.

[83] Ahmed E Hassan. Predicting faults using the complexity of code changes. In 2009
IEEE 31st international conference on software engineering, pages 78–88. IEEE, 2009.

[84] Ahmed E Hassan, Zhen Ming Jiang, and Richard C Holt. Source versus object code
extraction for recovering software architecture. In Reverse Engineering, 12th Working
Conference on, pages 10–pp. IEEE, 2005.

[85] Vincent J Hellendoorn and Premkumar Devanbu. Are deep neural networks the best
choice for modeling source code? In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE, pages 763–773, 2017.

[86] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation
with hybrid lexical and syntactical information. Empirical Software Engineering,
25(3):2179–2217, 2020.

[87] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. Sketchfix: a tool for
automated program repair approach using lazy candidate generation. In Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference

135

and Symposium on the Foundations of Software Engineering, pages 888–891. ACM,
2018.

[88] Qiao Huang, Xin Xia, and David Lo. Supervised vs unsupervised models: A holistic
look at effort-aware just-in-time defect prediction. In 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 159–170. IEEE,
2017.

[89] Quan Huynh-Thu and Mohammed Ghanbari. Scope of validity of psnr in image/video
quality assessment. Electronics letters, 44(13):800–801, 2008.

[90] ISO. Part 1, Graphic Technology: Pre Press Digital Data Exchange. ISO, 2001.

[91] ISO. Document Management: Electronic Document File Format for Long-term
Preservation. ISO, 2005.

[92] F. Jelinek, R. L. Mercer, L. R. Bahl, and J. K. Baker. Perplexity – a measure of the
difficulty of speech recognition tasks. Journal of the Acoustical Society of America,
62:S63, November 1977. Supplement 1.

[93] Young-Seob Jeong, Jiyoung Woo, and Ah Reum Kang. Malware detection on byte
streams of pdf files using convolutional neural networks. Security and Communication
Networks, 2019, 2019.

[94] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. Shaping
program repair space with existing patches and similar code. pages 298–309, 2018.

[95] Siyuan Jiang, Ameer Armaly, and Collin McMillan. Automatically generating commit
messages from diffs using neural machine translation. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, pages
135–146. IEEE Press, 2017.

[96] Tian Jiang, Lin Tan, and Sunghun Kim. Personalized defect prediction. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 279–289. Ieee, 2013.

[97] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, Hoa Khanh Dam, and John Grundy.
An empirical study of model-agnostic techniques for defect prediction models. IEEE
Transactions on Software Engineering, 2020.

136

[98] Xiao-Yuan Jing, Shi Ying, Zhi-Wu Zhang, Shan-Shan Wu, and Jin Liu. Dictionary
learning based software defect prediction. In Proceedings of the 36th International
Conference on Software Engineering, pages 414–423, 2014.

[99] Mona Erfani Joorabchi, Mohamed Ali, and Ali Mesbah. Detecting inconsistencies in
multi-platform mobile apps. In 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), pages 450–460. IEEE, 2015.

[100] Marcin Junczys-Dowmunt, Roman Grundkiewicz, Shubha Guha, and Kenneth
Heafield. Approaching Neural Grammatical Error Correction as a Low-Resource
Machine Translation Task. (2016):595–606, 2018.

[101] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of existing
faults to enable controlled testing studies for java programs. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, pages 437–440. ACM,
2014.

[102] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. A large-scale empirical study of just-in-time
quality assurance. IEEE Transactions on Software Engineering, 39(6):757–773, 2012.

[103] Masahiro Kaneko, Yuya Sakaizawa, and Mamoru Komachi. Grammatical Error Detec-
tion Using Error- and Grammaticality-Specific Word Embeddings. Proceedings ofthe
The 8th International Joint Conference on Natural Language Processing, (2016):40–48,
2017.

[104] Ah Reum Kang, Young-Seob Jeong, Se Lyeong Kim, Jonghyun Kim, Jiyoung Woo,
and Sunoh Choi. Detection of malicious pdf based on document structure features
and stream objects. Journal of The Korea Society of Computer and Information,
23(11):85–93, 2018.

[105] Ah Reum Kang, Young-Seob Jeong, Se Lyeong Kim, and Jiyoung Woo. Malicious pdf
detection model against adversarial attack built from benign pdf containing javascript.
Applied Sciences, 9(22):4764, 2019.

[106] Rick Kazman and S Jeromy Carrière. Playing detective: Reconstructing software
architecture from available evidence. Automated Software Engineering, 6(2):107–138,
1999.

137

[107] Holger M Kienle and Hausi A Müller. Rigi—an environment for software reverse
engineering, exploration, visualization, and redocumentation. Science of Computer
Programming, 75(4):247–263, 2010.

[108] Jindae Kim and Sunghun Kim. Automatic patch generation with context-based
change application. Empirical Software Engineering, 24(6):4071–4106, 2019.

[109] Sunghun Kim, Hongyu Zhang, Rongxin Wu, and Liang Gong. Dealing with noise in
defect prediction. In 2011 33rd International Conference on Software Engineering
(ICSE), pages 481–490. IEEE, 2011.

[110] MT Kirsch, VA Regenie, ML Aguilar, O Gonzalez, M Bay, ML Davis, CH Null,
RC Scully, and RA Kichak. Technical support to the national highway traffic safety
administration (nhtsa) on the reported toyota motor corporation (tmc) unintended
acceleration (ua) investigation. NASA Engineering and Safety Center Technical
Assessment Report (January 2011), 2011.

[111] Kenichi Kobayashi, Manabu Kamimura, Koki Kato, Keisuke Yano, and Akihiko
Matsuo. Feature-gathering Dependency-based Software Clustering using Dedication
and Modularity. Proc. ICSM, 0:462–471, 2012.

[112] Jeffrey Koch and Kendra Cooper. Aovis: A model-driven multiple-graph approach
to program fact extraction for aspectj/java source code. Software Engineering: An
International Journal, 1, 2011.

[113] Martin Konôpka and Mária Bieliková. Software developer activity as a source for
identifying hidden source code dependencies. In SOFSEM 2015: Theory and Practice
of Computer Science, pages 449–462. Springer, 2015.

[114] Phil Koopman. A case study of toyota unintended acceleration and software safety.
Presentation. Sept, 2014.

[115] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein, Martin
Monperrus, and Yves Le Traon. Fixminer: Mining relevant fix patterns for automated
program repair. arXiv preprint arXiv:1810.01791, 2018.

[116] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Martin Monperrus,
Jacques Klein, and Yves Le Traon. ifixr: bug report driven program repair. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 314–
325, 2019.

138

[117] Tomasz Kuchta, Cristian Cadar, Miguel Castro, and Manuel Costa. Docovery:
Toward generic automatic document recovery. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, pages 563–574. ACM,
2014.

[118] Tomasz Kuchta, Thibaud Lutellier, Edmund Wong, Lin Tan, and Cristian Cadar. On
the correctness of electronic documents: studying, finding, and localizing inconsistency
bugs in pdf readers and files. Empirical Software Engineering, 23(6):3187–3220, 2018.

[119] Petri K Laine. The role of sw architecture in solving fundamental problems in object-
oriented development of large embedded sw systems. In Software Architecture, 2001.
Proceedings. Working IEEE/IFIP Conference on, pages 14–23. IEEE, 2001.

[120] Pavel Laskov. Detection of malicious pdf files based on hierarchical document structure.
In In Proceedings of the Network and Distributed System Security Symposium, NDSS
2013. The Internet Society, 2013.

[121] Pavel Laskov and Nedim Šrndić. Static detection of malicious javascript-bearing
pdf documents. In Proceedings of the 27th Annual Computer Security Applications
Conference, pages 373–382. ACM, 2011.

[122] Duc Le, Pooyan Behnamghader, Joshua Garcia, Daniel Link, Arman Shahbazian,
and Nenad Medvidovic. An Empirical Study of Architectural Change in Open-Source
Software Systems. In Proceedings of the 12th Working Conference on Mining Software
Repositories (MSR 2015), 2015.

[123] Duc Minh Le, Pooyan Behnamghader, Joshua Garcia, Daniel Link, Arman Shahbazian,
and Nenad Medvidovic. An empirical study of architectural change in open-source
software systems. In Proceedings of the 12th Working Conference on Mining Software
Repositories, pages 235–245. IEEE Press, 2015.

[124] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence
modulo inputs. ACM SIGPLAN Notices, 49(6):216–226, 2014.

[125] Xuan Bach D Le, David Lo, and Claire Le Goues. History driven program repair.
1:213–224, 2016.

[126] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. The manybugs and introclass
benchmarks for automated repair of c programs. IEEE Transactions on Software
Engineering, 41(12):1236–1256, 2015.

139

[127] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Genprog:
A generic method for automatic software repair. Ieee transactions on software
engineering, 38(1):54–72, 2012.

[128] Timothy Lethbridge and Nicolas Anquetil. Comparative Study of Clustering Algo-
rithms and Abstract Representations for Software Remodularization. IEE Proceedings
- Software, 150(3):185–201, 2003.

[129] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou, and E James
Whitehead. Does bug prediction support human developers? findings from a google
case study. In 2013 35th International Conference on Software Engineering (ICSE),
pages 372–381. IEEE, 2013.

[130] Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu. Software defect prediction via
convolutional neural network. In Software Quality, Reliability and Security (QRS),
2017 IEEE International Conference on, pages 318–328. IEEE, 2017.

[131] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. Cclearner: A
deep learning-based clone detection approach. In Software Maintenance and Evolution
(ICSME), 2017 IEEE International Conference on, pages 249–260. IEEE, 2017.

[132] Min Li, Yunzheng Liu, Min Yu, Gang Li, Yongjian Wang, and Chao Liu. Fepdf: a
robust feature extractor for malicious pdf detection. In 2017 IEEE Trustcom/Big-
DataSE/ICESS, pages 218–224. IEEE, 2017.

[133] Ming Li, Hongyu Zhang, Rongxin Wu, and Zhi-Hua Zhou. Sample-based software
defect prediction with active and semi-supervised learning. Automated Software
Engineering, 19(2):201–230, 2012.

[134] Yi Li, Wang Shaohua, and Tien N. Nguyen. DLfix: Context-based code transformation
learning for automated program repair. In Software Engineering (ICSE), 2020
IEEE/ACM 42nd International Conference on. IEEE, 2020.

[135] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. QuixBugs:
a multi-lingual program repair benchmark set based on the quixey challenge. In
Proceedings Companion of the 2017 ACM SIGPLAN International Conference on
Systems, Programming, Languages, and Applications: Software for Humanity, pages
55–56. ACM, 2017.

140

[136] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, Andrew
Senior, Fumin Wang, and Phil Blunsom. Latent predictor networks for code generation.
arXiv preprint arXiv:1603.06744, 2016.

[137] Daniel Link, Pooyan Behnamghader, Ramin Moazeni, and Barry Boehm. Recover
and relax: Concern-oriented software architecture recovery for systems development
and maintenance. In 2019 IEEE/ACM International Conference on Software and
System Processes (ICSSP), pages 64–73. IEEE, 2019.

[138] Kui Liu, Anil Koyuncu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein, and
Yves Le Traon. You cannot fix what you cannot find! an investigation of fault
localization bias in benchmarking automated program repair systems. In 2019 12th
IEEE Conference on Software Testing, Validation and Verification (ICST), pages
102–113. IEEE, 2019.

[139] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. Avatar: Fixing
semantic bugs with fix patterns of static analysis violations. In 2019 IEEE 26th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 1–12. IEEE, 2019.

[140] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. Tbar: Revisiting
template-based automated program repair. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019, pages 31–42,
New York, NY, USA, 2019. ACM.

[141] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé F Bissyandé.
Lsrepair: Live search of fix ingredients for automated program repair. In 2018 25th
Asia-Pacific Software Engineering Conference (APSEC), pages 658–662. IEEE, 2018.

[142] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé François D Assise
Bissyande, Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves
Le Traon. On the efficiency of test suite based program repair: A systematic
assessment of 16 automated repair systems for java programs. In 42nd ACM/IEEE
International Conference on Software Engineering (ICSE), 2020.

[143] Xuliang Liu and Hao Zhong. Mining stackoverflow for program repair. In 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 118–129. IEEE, 2018.

[144] Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. Neural-machine-translation-based commit message generation: how far are

141

we? In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pages 373–384, 2018.

[145] Zhuo Ran Liu and Yang Liu. Exploiting Unlabeled Data for Neural Grammatical
Error Detection. Journal of Computer Science and Technology, 32(4):758–767, 2017.

[146] Benjamin Livshits and Thomas Zimmermann. Dynamine: finding common error
patterns by mining software revision histories. ACM SIGSOFT Software Engineering
Notes, 30(5):296–305, 2005.

[147] Fan Long, Peter Amidon, and Martin Rinard. Automatic inference of code transforms
for patch generation. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE, volume 2017, 2017.

[148] Fan Long et al. Automatic patch generation via learning from successful human
patches. PhD thesis, Massachusetts Institute of Technology, 2018.

[149] Fan Long, Vijay Ganesh, Michael Carbin, Stelios Sidiroglou, and Martin Rinard. Au-
tomatic input rectification. In Software Engineering (ICSE), 2012 34th International
Conference on, pages 80–90. IEEE, 2012.

[150] Fan Long and Martin Rinard. Staged program repair with condition synthesis. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
pages 166–178. ACM, 2015.

[151] Fan Long and Martin Rinard. An analysis of the search spaces for generate and
validate patch generation systems. In Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on, pages 702–713. IEEE, 2016.

[152] Qi Luo, Kevin Moran, Denys Poshyvanyk, and Massimiliano Di Penta. Assessing test
case prioritization on real faults and mutants. In 2018 IEEE international conference
on software maintenance and evolution (ICSME), pages 240–251. IEEE, 2018.

[153] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[154] Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek Rayside, Nenad
Medvidovic, and Robert Kroeger. Comparing software architecture recovery techniques
using accurate dependencies. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 2, pages 69–78. IEEE, 2015.

142

[155] Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek Rayside, Nenad
Medvidovic, and Robert Kroeger. Comparing software architecture recovery techniques
using accurate dependencies. Proc. ICSE (SEIP), 2015.

[156] Thibaud Lutellier, Devin Chollak, Joshua Garcia, Lin Tan, Derek Rayside, Nenad
Medvidović, and Robert Kroeger. Measuring the impact of code dependencies on
software architecture recovery techniques. IEEE Transactions on Software Engineering,
44(2):159–181, 2017.

[157] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin
Tan. Coconut: combining context-aware neural translation models using ensemble for
program repair. In Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 101–114, 2020.

[158] J MacQueen. On convergence of k-means and partitions with minimum average
variance. In Annals of Mathematical Statistics, volume 36, page 1084. INST MATHE-
MATICAL STATISTICS IMS BUSINESS OFFICE-SUITE 7, 3401 INVESTMENT
BLVD, HAYWARD, CA 94545, 1965.

[159] James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA., 1967.

[160] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. Bears: An
extensible java bug benchmark for automatic program repair studies. In 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 468–478. IEEE, 2019.

[161] Davide Maiorca, Igino Corona, and Giorgio Giacinto. Looking at the bag is not enough
to find the bomb: an evasion of structural methods for malicious pdf files detection.
In Proceedings of the 8th ACM SIGSAC symposium on Information, computer and
communications security, pages 119–130. ACM, 2013.

[162] Ali Safari Mamaghani and Mohammad Reza Meybodi. Clustering of Software Systems
Using New Hybrid Algorithms. In Proc. CIT, pages 20–25, 2009.

[163] S. Mancoridis, B. S. Mitchell, and C. Rorres. Using Automatic Clustering to Produce
High-Level System Organizations of Source Code. In Proc. IWPC, pages 45–53, 1998.

143

[164] Spiros Mancoridis, Brian S. Mitchell, Yih-Farn Chen, and Emden R. Gansner. Bunch:
A Clustering Tool for the Recovery and Maintenance of Software System Structures.
In Proc. ICSM, 1999.

[165] Onaiza Maqbool and Haroon Babri. Hierarchical Clustering for Software Architecture
Recovery. IEEE Trans. Softw. Eng., 33(11):759–780, November 2007.

[166] Onaiza Maqbool and Haroon Atique Babri. The Weighted Combined Algorithm: A
Linkage Algorithm for Software Clustering. In Proc. CSMR, pages 15–24. IEEE CS
Press, 2004.

[167] Matias Martinez and Martin Monperrus. Astor: A program repair library for java. In
Proceedings of the 25th International Symposium on Software Testing and Analysis,
pages 441–444. ACM, 2016.

[168] WM McKeeman. Differential testing for software, digital tech. J, 10:100–107, 1998.

[169] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable multiline
program patch synthesis via symbolic analysis. In Proceedings of the 38th international
conference on software engineering, pages 691–701. ACM, 2016.

[170] Nenad Medvidovic. ADLs and Dynamic Architecture Changes. In Proc. ISAW, ISAW
’96, pages 24–27, New York, NY, USA, 1996. ACM.

[171] Thilo Mende and Rainer Koschke. Revisiting the evaluation of defect prediction
models. In Proceedings of the 5th International Conference on Predictor Models in
Software Engineering, pages 1–10, 2009.

[172] Thilo Mende and Rainer Koschke. Effort-aware defect prediction models. In 2010 14th
European Conference on Software Maintenance and Reengineering, pages 107–116.
IEEE, 2010.

[173] Thilo Mende, Rainer Koschke, and Marek Leszak. Evaluating defect prediction models
for a large evolving software system. In 2009 13th European Conference on Software
Maintenance and Reengineering, pages 247–250. IEEE, 2009.

[174] Andrew Meneely, Laurie Williams, Will Snipes, and Jason Osborne. Predicting failures
with developer networks and social network analysis. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software engineering, pages
13–23, 2008.

144

[175] Ali Mesbah and Mukul R Prasad. Automated cross-browser compatibility testing.
In Proceedings of the 33rd International Conference on Software Engineering, pages
561–570. ACM, 2011.

[176] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.
Deepdelta: learning to repair compilation errors. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 925–936, 2019.

[177] Hrushikesh N. Mhaskar, Sergei V. Pereverzyev, and Maria D. van der Walt. A deep
learning approach to diabetic blood glucose prediction. In Front. Appl. Math. Stat.,
2017.

[178] Bharavi Mishra, K Shukla, et al. Defect prediction for object oriented software using
support vector based fuzzy classification model. International Journal of Computer
Applications, 60(15), 2012.

[179] Brian S. Mitchell. A Heuristic Approach to Solving the Software Clustering Problem.
In Proc. ICSM, pages 285–288. IEEE CS Press, 2003.

[180] Brian S. Mitchell and Spiros Mancoridis. On the Automatic Modularization of
Software Systems Using the Bunch Tool. IEEE Trans. Softw. Eng., 32(3):193–208,
March 2006.

[181] Audris Mockus and David M Weiss. Predicting risk of software changes. Bell Labs
Technical Journal, 5(2):169–180, 2000.

[182] Lili Mou, Rui Men, Ge Li, Lu Zhang, and Zhi Jin. On end-to-end program generation
from user intention by deep neural networks. arXiv preprint arXiv:1510.07211, 2015.

[183] Mozilla Support Forum, PDF.js not being displayed correctly. https://support.
mozilla.org/en-US/questions/948061.

[184] Hausi Muller. Integrating information sources for visualizing java programs. In Pro-
ceedings of the IEEE International Conference on Software Maintenance (ICSM’01),
page 250. IEEE Computer Society, 2001.

[185] James Munkres. Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

145

https://support.mozilla.org/en-US/questions/948061
https://support.mozilla.org/en-US/questions/948061

[186] Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. Neural
sketch learning for conditional program generation. In International Conference on
Learning Representations, 2018.

[187] Gail C Murphy, David Notkin, and Kevin Sullivan. Software reflexion models: Bridging
the gap between source and high-level models. ACM SIGSOFT Software Engineering
Notes, 20(4):18–28, 1995.

[188] Jaechang Nam, Wei Fu, Sunghun Kim, Tim Menzies, and Lin Tan. Heterogeneous
defect prediction. IEEE Transactions on Software Engineering, 44(9):874–896, 2017.

[189] Courtney Napoles and Chris Callison-Burch. Systematically Adapting Machine
Translation for Grammatical Error Correction. Proceedings of the 12th Workshop on
Innovative Use of NLP for Building Educational Applications, pages 345–356, 2017.

[190] Liam O’Brien, Christoph Stoermer, and Chris Verhoef. Software architecture recon-
struction: Practice needs and current approaches. Technical report, DTIC Document,
2002.

[191] Frolin S Ocariza, Jr, Karthik Pattabiraman, and Ali Mesbah. Vejovis: Suggesting
fixes for javascript faults. In Proceedings of the 36th International Conference on
Software Engineering, pages 837–847, 2014.

[192] Jugnu Gaur Ochin. Cross browser incompatibility: Reasons and solutions. Interna-
tional Journal of Software Engineering & Applications (IJSEA), 2(3), 2011.

[193] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based
Runtime Software Evolution. In Proc. ICSE, pages 177–186, Washington, DC, USA,
1998. IEEE CS Press.

[194] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. Pytorch, 2017.

[195] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[196] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. Building program
vector representations for deep learning. In International Conference on Knowledge
Science, Engineering and Management, pages 547–553. Springer, 2015.

146

[197] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. Cradle: cross-backend
validation to detect and localize bugs in deep learning libraries. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), pages 1027–1038.
IEEE, 2019.

[198] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosen-
thal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. Problems and opportunities in
training deep learning software systems: An analysis of variance. In 2020 IEEE/ACM
Automated Software Engineering. IEEE, 2020.

[199] matlabpyrtools. http://www.x.org/archive/X11R7.6/.

[200] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. Does
genetic programming work well on automated program repair? In 2013 International
Conference on Computational and Information Sciences, pages 1875–1878. IEEE,
2013.

[201] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis of patch plausibility
and correctness for generate-and-validate patch generation systems. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis, pages 24–36.
ACM, 2015.

[202] Derek Rayside and Kostas Kontogiannis. Extracting Java Library Subsets for De-
ployment on Embedded Systems. Sci. Comput. Program., 45(2-3):245–270, November
2002.

[203] Derek Rayside, Steve Reuss, Erik Hedges, and Kostas Kontogiannis. The Effect of
Call Graph Construction Algorithms for Object-Oriented Programs on Automatic
Clustering. In Proc. IWPC, pages 191–200. IEEE CS Press, 2000.

[204] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek. Appropriate statistics
for ordinal level data: Should we really be using t-test and Cohen’s δ for evaluating
group differences on the NSSE and other surveys? In annual meeting of the Florida
Association of Institutional Research, February, pages 1–3, 2006.

[205] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[206] Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. X-pert: a web
application testing tool for cross-browser inconsistency detection. In Proceedings of

147

http://www.x.org/archive/X11R7.6/

the 2014 International Symposium on Software Testing and Analysis, pages 417–420.
ACM, 2014.

[207] Tõnis Saar, Marlon Dumas, Marti Kaljuve, and Nataliia Semenenko. Cross-browser
testing in browserbite. In Web Engineering, pages 503–506. Springer, 2014.

[208] Ripon K Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R Prasad.
Bugs. jar: a large-scale, diverse dataset of real-world java bugs. In Proceedings of the
15th International Conference on Mining Software Repositories, pages 10–13, 2018.

[209] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. Elixir: effective
object oriented program repair. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, pages 648–659. IEEE Press, 2017.

[210] Seemanta Saha, Ripon K Saha, and Mukul R Prasad. Harnessing evolution for
multi-hunk program repair. In Proceedings of the 41st International Conference on
Software Engineering, pages 13–24. IEEE Press, 2019.

[211] Keisuke Sakaguchi, Matt Post, and Benjamin Van Durme. Grammatical Error
Correction with Neural Reinforcement Learning. 2017.

[212] Mehul P Sampat, Zhou Wang, Shalini Gupta, Alan Conrad Bovik, and Mia K
Markey. Complex wavelet structural similarity: A new image similarity index. Image
Processing, IEEE Transactions on, 18(11):2385–2401, 2009.

[213] Eddie A Santos, Joshua C Campbell, Abram Hindle, and José Nelson Amaral. Finding
and correcting syntax errors using recurrent neural networks. PeerJ PrePrints, 2017.

[214] Samir G Sayed and Mohmed Shawkey. Data mining based strategy for detecting
malicious pdf files. In 2018 17th IEEE International Conference On Trust, Security
And Privacy In Computing And Communications/12th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE), pages 661–667. IEEE,
2018.

[215] Allen Schmaltz, Yoon Kim, Alexander M. Rush, and Stuart M. Shieber. Adapting
Sequence Models for Sentence Correction. 2017.

[216] Adrian Schröter, Thomas Zimmermann, and Andreas Zeller. Predicting compo-
nent failures at design time. In Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering, pages 18–27, 2006.

148

[217] Scikit learn. http://scikit-learn.org/stable/.

[218] Hossain Shahriar, Komminist Weldemariam, Thibaud Lutellier, and Mohammad
Zulkernine. A model-based detection of vulnerable and malicious browser extensions.
In 2013 IEEE 7th International Conference on Software Security and Reliability,
pages 198–207. IEEE, 2013.

[219] Hossain Shahriar, Komminist Weldemariam, Mohammad Zulkernine, and Thibaud
Lutellier. Effective detection of vulnerable and malicious browser extensions. Com-
puters & Security, 47:66–84, 2014.

[220] Flash Sheridan. Practical testing of a c99 compiler using output comparison. Software:
Practice and Experience, 37(14):1475–1488, 2007.

[221] Mark Shtern and Vassilios Tzerpos. A framework for the comparison of nested software
decompositions. In Reverse Engineering, 2004. Proceedings. 11th Working Conference
on, pages 284–292. IEEE, 2004.

[222] Mark Shtern and Vassilios Tzerpos. Lossless comparison of nested software decompo-
sitions. In Reverse Engineering, 2007. WCRE 2007. 14th Working Conference on,
pages 249–258. IEEE, 2007.

[223] Charles Smutz and Angelos Stavrou. Malicious pdf detection using metadata and
structural features. In Proceedings of the 28th Annual Computer Security Applications
Conference, pages 239–248. ACM, 2012.

[224] Joshua A Solomon, Denis G Pelli, et al. The visual filter mediating letter identification.
Nature, 369(6479):395–397, 1994.

[225] Hasan Sözer. Evaluating the effectiveness of multi-level greedy modularity clustering
for software architecture recovery. In European Conference on Software Architecture,
pages 71–87. Springer, 2019.

[226] Margaret-Anne D Storey, Kenny Wong, and Hausi A Müller. Rigi: a visualization
environment for reverse engineering. In Proceedings of the 19th international conference
on Software engineering, pages 606–607. ACM, 1997.

[227] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick
Lam, Etienne Gagnon, and Charles Godin. Practical virtual method call resolution
for Java, volume 35. ACM, 2000.

149

http://scikit-learn.org/stable/

[228] Nikita Synytskyy, Richard C Holt, and Ian Davis. Browsing software architectures with
lsedit. In Program Comprehension, 2005. IWPC 2005. Proceedings. 13th International
Workshop on, pages 176–178. IEEE, 2005.

[229] Damian A Tamburri and Rick Kazman. General methods for software architecture
recovery: a potential approach and its evaluation. Empirical Software Engineering,
23(3):1457–1489, 2018.

[230] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. Online defect prediction
for imbalanced data. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 2, pages 99–108. IEEE, 2015.

[231] Shin Hwei Tan, Jooyong Yi, Sergey Mechtaev, Abhik Roychoudhury, et al. Codeflaws:
a programming competition benchmark for evaluating automated program repair
tools. In Proceedings of the 39th International Conference on Software Engineering
Companion, pages 180–182. IEEE Press, 2017.

[232] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi Mat-
sumoto. The impact of automated parameter optimization on defect prediction models.
IEEE Transactions on Software Engineering, 45(7):683–711, 2018.

[233] Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine Man-
zagol, Charles Sutton, and Edward Aftandilian. Learning to fix build errors with
graph2diff neural networks. In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, pages 19–20, 2020.

[234] Swizec Teller. Data Visualization with D3.Js. Packt Publishing, 2013.

[235] Paolo Tonella, Roberto Fiutem, Giuliano Antoniol, and Ettore Merlo. Augmenting
Pattern-Based Architectural Recovery with Flow Analysis: Mosaic -A Case Study. In
Proc. WCRE, pages 198–207, 1996.

[236] Yuki Tsuchitoi and Hideki Sugiura. 10 mloc in your office copier. IEEE software,
28(6):93, 2011.

[237] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. An empirical investigation into learning bug-fixing
patches in the wild via neural machine translation. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering. ACM,
pages 832–837, 2018.

150

[238] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. An empirical study on learning bug-fixing patches in
the wild via neural machine translation. ACM Transactions on Software Engineering
and Methodology (TOSEM), 28(4):1–29, 2019.

[239] Zacharias Tzermias, Giorgos Sykiotakis, Michalis Polychronakis, and Evangelos P
Markatos. Combining static and dynamic analysis for the detection of malicious
documents. In Proceedings of the Fourth European Workshop on System Security,
page 4. ACM, 2011.

[240] Vassilios Tzerpos and R. C. Holt. ACDC : An Algorithm for Comprehension-Driven
Clustering. In Proc. WCRE, pages 258–267. IEEE, 2000.

[241] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh.
Neural program repair by jointly learning to localize and repair. In ICLR 2019, 2019.

[242] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, pages 5998–6008, 2017.

[243] F Waldman. Lattix LDM. In 8th International Design Structure Matrix Conference,
Seattle, Washington, USA, October 24-26. 2006.

[244] Jinyong Wang and Ce Zhang. Software reliability prediction using a deep learning
model based on the rnn encoder–decoder. Reliability Engineering & System Safety,
2017.

[245] Ke Wang, Rishabh Singh, and Zhendong Su. Dynamic neural program embedding for
program repair. arXiv preprint arXiv:1711.07163, 2017.

[246] Pei Wang. Generating accurate dependencies for large software. 2013.

[247] Pei Wang, Jinqiu Yang, Lin Tan, Robert Kroeger, and David Morgenthaler. Generating
Precise Dependencies For Large Software. In Proc. MTD, pages 47–50, May 2013.

[248] Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. Deep semantic feature learning
for software defect prediction. IEEE Transactions on Software Engineering, 2018.

[249] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic features for de-
fect prediction. In Software Engineering (ICSE), 2016 IEEE/ACM 38th International
Conference on, pages 297–308. IEEE, 2016.

151

[250] Song Wang, Jaechang Nam, and Lin Tan. Qtep: quality-aware test case prioritization.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
pages 523–534, 2017.

[251] Moshi Wei. Abstraction mechanism on neural machine translation models for auto-
mated program repair. Master’s thesis, University of Waterloo, 2019.

[252] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. Context-
aware patch generation for better automated program repair. In Proceedings of the
40th International Conference on Software Engineering, pages 1–11. ACM, 2018.

[253] Zhihua Wen and Vassilios Tzerpos. An Effectiveness Measure for Software Clustering
Algorithms. In Proc. IWPC, pages 194–203, 2004.

[254] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Deep
learning code fragments for code clone detection. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, pages 87–98. ACM,
2016.

[255] Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshyvanyk.
Toward deep learning software repositories. In Mining Software Repositories (MSR),
2015 IEEE/ACM 12th Working Conference on, pages 334–345. IEEE, 2015.

[256] Jingwei Wu, Ahmed E. Hassan, and Richard C. Holt. Comparison of Clustering
Algorithms in the Context of Software Evolution. In Proc. ICSM, pages 525–535,
2005.

[257] Chenchen Xiao and Vassilios Tzerpos. Software Clustering Based on Dynamic Depen-
dencies. In Proc. CSMR, CSMR ’05, pages 124–133, Washington, DC, USA, 2005.
IEEE CS Press.

[258] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from
massive noisy labeled data for image classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2691–2699, 2015.

[259] Qi Xin and Steven P Reiss. Leveraging syntax-related code for automated program
repair. In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, pages 660–670. IEEE Press, 2017.

[260] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. Precise condition synthesis for program repair. In Proceedings of the 39th
International Conference on Software Engineering, pages 416–426. IEEE Press, 2017.

152

[261] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian Lamelas
Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. Nopol: Auto-
matic repair of conditional statement bugs in java programs. IEEE Transactions on
Software Engineering, 43(1):34–55, 2017.

[262] Xvfb, x window system version 11 release 7.6. http://www.x.org/archive/X11R7.
6/.

[263] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. Better test cases for
better automated program repair. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 831–841. ACM, 2017.

[264] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep learning for
just-in-time defect prediction. In 2015 IEEE International Conference on Software
Quality, Reliability and Security, pages 17–26. IEEE, 2015.

[265] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in c compilers. In Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation, pages 283–294, 2011.

[266] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu,
Baowen Xu, and Hareton Leung. Effort-aware just-in-time defect prediction: simple
unsupervised models could be better than supervised models. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 157–168, 2016.

[267] Helen Yannakoudakis, Marek Rei, Øistein E Andersen, and Zheng Yuan. Neural
Sequence-Labelling Models for Grammatical Error Correction. Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pages 2795–2806,
2017.

[268] Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. Random program
generator for java jit compiler test system. In Third International Conference on
Quality Software, 2003. Proceedings., pages 20–23. IEEE, 2003.

[269] Yuan Yuan and Wolfgang Banzhaf. Arja: Automated repair of java programs via
multi-objective genetic programming. IEEE Transactions on Software Engineering,
2018.

[270] Christoph Zauner. Implementation and benchmarking of perceptual image hash
functions. na, 2010.

153

http://www.x.org/archive/X11R7.6/
http://www.x.org/archive/X11R7.6/

[271] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

[272] Feng Zhang, Quan Zheng, Ying Zou, and Ahmed E Hassan. Cross-project defect
prediction using a connectivity-based unsupervised classifier. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), pages 309–320. IEEE,
2016.

[273] Zhuo Zhang, Yan Lei, Xiaoguang Mao, and Panpan Li. Cnn-fl: An effective approach
for localizing faults using convolutional neural networks. In 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 445–455. IEEE, 2019.

[274] Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, Ling Xu, and Junhao Wen.
Improving deep-learning-based fault localization with resampling. Journal of Software:
Evolution and Process, page e2312, 2020.

[275] Shi Zhong, Taghi M Khoshgoftaar, and Naeem Seliya. Unsupervised learning for
expert-based software quality estimation. In HASE, pages 149–155. Citeseer, 2004.

154

	List of Figures
	List of Tables
	Introduction
	Project 1 – Combining Context-Aware Neural Translation Models using Ensemble for Automated Program Repair:
	Project 2 – On the Correctness of Electronic Documents: Studying, Finding, and Localizing Inconsistency Bugs in PDF Readers and Files:
	Project 3 – Measuring the Impact of Dependencies on Software Architecture Recovery Techniques:
	Publications

	Related Work
	Neural Machine Translation Models for APR
	Deep Learning for Automatic Program Repair:
	G&V Program Repair:
	Grammatical Error Correction (GEC):
	Deep Learning in Software Engineering:

	Finding, and Localizing Inconsistency Bugs in PDF Readers and Files
	Cross PDF Reader Inconsistency:
	Cross Browser Inconsistency:
	Vulnerabilities in PDF files:
	Differential Testing:
	Document Recovery:

	Software Architecture Recovery Techniques
	Comparison of Software Architecture Recovery Techniques:
	Recovery of Ground-Truth Architectures:

	CoCoNuT: Combining Context-Aware Neural Translation Models using Ensemble for Program Repair
	Motivation
	Background and terminology
	Approach
	Challenges
	Data Extraction
	Input Representation and Tokenization
	Context-Aware NMT Architecture
	Ensemble Learning
	Patch Validation
	Generalization to Other Languages

	Experimental Setup
	Evaluation and Results
	RQ1: How does CoCoNuT perform against state-of-the-art APR techniques?
	RQ2: Which bugs only CoCoNuT can fix?
	RQ3: What are the contributions of the different components of CoCoNuT and how does it compare to other NMT-based APR techniques?
	RQ4: Can we explain why CoCoNuT can (or fail to) generate specific fixes?
	Execution Time

	Threats to Validity
	Summary

	On the Correctness of Electronic Documents: Studying, Finding, and Localizing Inconsistency Bugs in PDF Readers and Files
	Motivation
	Approach
	Phase 1: Document filtering
	Phase 2: Inconsistency detection
	Phase 3: Inconsistency localization

	Experimental setup
	Data set
	Portfolio of readers
	Infrastructure
	Research questions.

	A Study of Cross-reader Inconsistencies
	Methods
	Inconsistencies are common
	Types of inconsistencies

	Automatic results
	Results for the random sample
	Results for the entire set

	Inconsistency Localization Evaluation
	Cross-OS Inconsistencies
	PDF Readers on Windows
	Experiment Details
	Results

	Discussion and Threats to Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity
	Practical Applicability

	Summary

	Measuring the Impact of Code Dependencies on Software Architecture Recovery Techniques
	Motivation
	Approach
	Obtaining Dependencies
	Obtaining Ground-Truth Architectures

	Selected Recovery Techniques
	Experimental Setup
	Projects and Experimental Environment
	Extracted Dependencies
	Ground-truth architectures
	Architecture Recovery Software and Parameters
	Accuracy Measures

	Evaluation and Results
	RQ1: Can accurate dependencies improve the accuracy of recovery techniques?
	RQ2: What is the impact of different input factors, such as the granularity level, the use of transitive dependencies, the use of different symbol dependencies and dynamic-bindings graph construction algorithms, on existing architecture recovery techniques?
	RQ3: Can existing architecture recovery techniques scale to large projects comprising 10MSLOC or more?
	Comparison with Baseline Algorithms
	Summary of Results
	Comparison with the Prior Work

	Threats to Validity
	Metrics Limitations
	Selecting Metrics and Recovery Techniques
	Non-uniqueness of Ground-Truth Architectures
	Number of Projects Studied

	Summary

	Future Work
	Automatic Program Repair: Better Abstraction for Scalable NMT-based program repair
	Detecting Bugs in PDF Documents and Readers
	Software Architecture Recovery
	Explainable Defect Prediction:

	Conclusion
	References

