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Abstract 

Lithium-ion batteries (LIBs) dominated the market due to their relatively high energy/power density, 

and long cycle life. However, a multitude of factors need to be addressed which have hindered further 

development of LIBs such as limited current density and safety issues. One of the effective 

methodologies to enhance the LIBs energy/power density is to employ alloy-based anode materials 

with higher theoretical capacity compared with graphite which is the common anode active material in 

LIBs. For instance, silicon has approximately ten times more capacity than graphite; however, intrinsic 

issues of silicon, such as high volume change during cycling and an unstable solid-electrolyte 

interphase (SEI) layer, lead to poor cyclability and cell degradation. One of the common strategies to 

alleviate the aforementioned silicon challenges is to use a composite graphite/silicon electrode. On one 

hand, experimental design and optimization of composite electrodes can be time-consuming, and in 

some cases, such as measuring stress evolution at the particle level of composite electrodes, unfeasible. 

On the other hand, incorporating multi-physics simulation can shed light on the chemo-mechanical 

behavior of composite electrodes and provide invaluable insights regarding lithiation-induced stress 

evolution and ultimately pave the path toward design and optimization of composite electrodes.  

Moreover, one of the main drawbacks of LIBs is safety concerns because of flammable liquid 

electrolytes. All-solid-state lithium-ion batteries (ASSBs) are a safer alternative to the conventional 

liquid electrolyte LIBs. ASSBs are based on utilizing a solid electrolyte to eliminate safety concerns 

such as thermal runaway and leakage of flammable liquid electrolytes. Additionally, the solid 

electrolyte can facilitate using high-capacity anode active materials, such as silicon and lithium plate, 

by inhibiting lithium dendrite formation and suppressing silicon volume expansion during the battery 

operation. Despite the clear advantages of ASSBs, critical challenges hinder their widespread 

application, including poor solid electrolyte/solid active material interfacial contact, low ionic 

conductivity of solid electrolytes, and poor electrochemical stability.  
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Solid electrolyte/active material (SE/AM) interface adversly affects the performance of the ASSBs. 

Since the two solid phases are not perfectly in contact with each other, void spaces block the ion 

pathways at the SE/AM interface. Moreover, due to the solid/solid nature of this interface, lithiation-

induced stress during the battery operation can cause stress peak points at the interface which leads to 

crack propagation within the solid electrolyte, loss of contact, and subsequently capacity fade and 

mechanical degradation. Therefore, ASSB microstructural investigation can enlighten the multi-

physics behavior of ASSBs.  

Using electrode imaging techniques, such as focused ion beam-scanning electron microscopy (FIB-

SEM) and X-ray computed tomography (XCT), can accurately capture the microstructures of 

electrodes. In particular, the XCT method is non-destructive and can provide a quantitative analysis of 

the electrode morphology such as particle and pore size distribution, porosity, and surface area. 

Moreover, the XCT reconstructed morphology can be adopted as the multi-physics simulation domain. 

The modeling framework in this study is comprised of an electrochemical model including conservation 

of mass/charge and a solid mechanics model based on the thermal-mass analogy to obtain lithiation-

induced stress within the electrode microstructure. The presented work aims to adopt the 3D 

reconstructed morphology of the electrode to study the physical, mechanical, and electrochemical 

properties of LIBs.  

In the first study, a multiscale framework was developed and validated for a composite 

graphite/silicon electrode. The model is an electrochemical-solid mechanics integration used to 

estimate the composite electrode performance, silicon deformation, and stress evolution. The effects of 

silicon percentage and current on cell performance, hydrostatic stress, lithium concentration, and 

deformation are investigated. Considering the effect of stress on the lithium chemical potential within 

silicon particles in microscale modeling can shed light on the formation of a lithium concentration 

gradient due to the stress, and thus can enhance the composite electrode model accuracy. Moreover, 
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physical constraints can cause the co-existence of compressive and tensile stress, while lithiation-

induced stress inside the silicon particles retard the lithiation process. In fact, lithiation retardation 

would form a core-shell structure that comprises a lithiated shell and an unlithiated core with an 

incompatible strain at the interface, causing higher von Mises stress. Physical constraints highly affect 

the hydrostatic stress formation in silicon particles and may impact the cell life cycle due to the 

anisotropic swelling of particles. The developed methodology is compatible with different composite 

electrodes, considers the effect of active material expansion/contraction, and can pave the path for 

developing physics-based battery state estimation models for composite Si-based electrodes.  

In the second study, a synchrotron transmission X-ray microscopy tomography system has been 

utilized to reconstruct the 3D morphology of ASSB electrodes. The electrode was fabricated with a 

mixture of Li(Ni1/3Mn1/3Co1/3)O2, Li1.3Ti1.7Al0.3(PO4)3, and super-P. For the first time, a 3D numerical 

multi-physics model was developed to simulate the galvanostatic discharge performance of an ASSB, 

elucidating the spatial distribution of physical and electrochemical properties inside the electrode 

microstructure. The 3D model shows a wide distribution of electrochemical properties in the solid 

electrolyte and the active material which might have a negative effect on ASSB performance. The 

results show that at high current rates, the void space hinders the ions’ movement and causes local 

inhomogeneity in the lithium-ion distribution. The simulation results for electrodes fabricated under 

two pressing pressures reveal that higher pressure decreases the void spaces, leading to a more uniform 

distribution of lithium-ions in the SE due to more facile lithium-ion transport. The approach in this 

study is a key step moving forward in the design of 3D ASSBs and sheds light on the physical and 

electrochemical property distribution in the solid electrolyte, active material, and their interface. 

In the last study, a chemo-mechanical model was developed for the ASSBs’ composite electrode 

using the reconstructed morphologies in the second study. This study aimed to shed light on the effects 

of the electrode microstructure and solid electrolyte/active material interface on the stress evolution 
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during the battery operation. The simulation results show that active material particles encounter 

compressive hydrostatic stress up to 4 GPa at the solid electrolyte/active material interface during 

lithiation while solid electrolyte limits their expansion. While, void spaces can partially accommodate 

active material volume expansion, and areas near void spaces have tensile stress within the range of 0-

1 Gpa. Therefore, the electrode with the higher external pressing pressure experiences a relatively 

higher hydrostatic stress due to a higher solid electrolyte/active material interface and less void space 

volume fraction. In other words, although increasing the external pressing pressure may alleviate 

contact resistances and improve the ion pathways, it can intensify lithiation induced stress within the 

electrode microstructure and causes fracture formation, contact loss, and mechanical degradation. For 

instance, at the end of lithiation, the von Mises stress in the active material particles is approximately 

zero while at the surface, AM confronts up to 4.9 GPa stress and the average von Mises stress within 

the microstructure with higher pressing pressure is 2.4 GPa compared to 1.5 GPa. Thus, microstructural 

investigation of ASSBs is critical to find an optimal design to maximize the ion pathways and limit the 

stress evolution within an acceptable range.  

Integrating the developed multi-physics models with data-driven methods can decrease the 

computational cost and leads to a holistic modeling framework for LIBs. Incorporating the self-learning 

feature of data-driven methods can mimic the experimental performance of batteries and predict the 

behavior of batteries with high fidelity. 
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Chapter 1 

Introduction 

1.1 Research Background and Motivation 

The shortage of conventional energy resources such as fossil fuel and raising environmental concerns 

has led to the rapid utilization and development of renewable energy resources. Due to the intermittent 

nature of renewable energies, storing energy during pick hours and give it back on demand is critical. 

Among all types of energy storage methods, Electrochemical energy storage (EES) technology has 

proven to be a reliable and efficient way to incorporate intermittent energy resources into existing 

electrical grid infrastructures. Moreover, the electrification of the automobile industry is one of the 

main paths toward global decarbonization [1] and a promising solution to address oil supply shortages 

and environmental pollution. In 2018, the global electric vehicle (EV) fleet reached 5.1 million, which 

is about 2 million higher than the previous year [2]. However, the EV industry still faces critical 

challenges such as limited driving range, long charging time, low battery lifetime, and safety 

considerations, which restrict widespread adoption of EVs. 

Among all types of batteries, lithium-ion batteries (LIBs) dominated the market [3]; however, a 

multitude of factors need to be addressed which hindered further development of LIBs such as limited 

current density and safety issues [4]. One way to address the limited energy density issue is to use alloy-

based anode active materials such as silicon (Si) or tin (Sn), which have up to ten times the specific 

capacity compared to the conventional graphite (Gr) anode.  However, intrinsic issues of alloy anodes, 

such as the high volume change during cycling and unstable solid-electrolyte interphase (SEI) layer, 

lead to poor cyclability and cell degradation. Many strategies have been deployed to mitigate the 

volume change of the electrode, such as forming Si nanostructures to buffer volume changes [5-7], 

employing Si/Gr composite electrode[8, 9], and the use of electrolyte additives to stabilize the SEI layer 

[10, 11]. Among these strategies, employing Si/Gr composite anode has garnered significant attention 
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due to the ease of fabrication and scalability compared to pure Si electrodes, improved stability, and 

the relatively higher capacity.  

It is worth noting that measuring stress evolution at the particle level of composite electrodes is 

unfeasible, although there are some efforts to shed light on in-situ stress formation throughout 

lithiation/delithiation of Si thin film [12] or employing micro-Raman spectroscopy to measure the 

lithiation-induced stress in Si particles [13]. On the other hand, employing mechanical-electrochemical 

models can provide invaluable insights regarding stress evolution in the electrode microstructure and 

elucidate the effects of operating conditions on the composite electrode performance. Mathematical 

models have been effective in electrode design and optimization [14]. Specifically, detailed 

mathematical modeling can accelerate the process of optimizing composite electrodes and addressing 

the bottleneck challenges. 

In addition to employing composite electrodes to overcome the LIBs limitation, All-solid-state 

lithium-ion batteries (ASSBs), which are based on solid electrolytes (SEs), are a safer alternative to the 

conventional liquid electrolyte LIBs. SEs can eliminate safety concerns such as thermal runaway and 

electrolyte leakage of flammable liquid electrolytes [15, 16]. Moreover, SEs can facilitate the future 

application of high capacity anode materials such as metallic lithium [17] and Si [18] by inhibiting the 

formation of needle-like microstructures called lithium dendrites on the surface of the lithium anode 

upon cycling [19] and limiting the large expansion of the Si anode during lithiation [20], thus improving 

their cycle lives. However, despite the clear advantages of ASSBs, critical challenges hinder their 

widespread application, including poor SE/solid active material (AM) interfacial contact, the low ionic 

conductivity of SEs, and poor electrochemical stability [15]. In terms of the SE/AM interface, it is 

difficult to develop a robust interface due to the limited understanding of the microstructure and 

reaction interface in ASSBs [21]. Since the two solid phases are not perfectly in contact with each other, 
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void spaces block the ion pathways at the SE/AM interface, thus negatively affecting the ASSB 

performance [22].  

One way to investigate the physical and electrochemical behavior of batteries is to use the 3D 

reconstructed geometry of the ASSB electrode instead of simplified 1D or 2D geometries. In recent 

years, various techniques such as focused ion beam-scanning electron microscopy (FIB-SEM) [23, 24], 

magnetic resonance imaging (MRI) [25], and computed tomography (CT) [26-29] have become 

available to capture the real microstructures of LIB electrodes. Among them, the non-destructive CT 

imaging technique is extensively used to characterize the physical and morphological properties of the 

electrode including directional tortuosity, porosity, particle size distribution, and specific surface area 

[28, 30-32]. The reconstructed 3D morphology can shed light on physical properties and can be used 

as the computational geometry for multi-physics simulations. As mentioned ASSB is a promising 

alternative for traditional LIBs while their morphology is rarely investigated. Morphological 

analysis of ASSBs can provide invaluable insights regarding the microstructural design of ASSBs 

by providing a clear understanding of the roles of phases in a composite electrode. It is precisely 

these considerations that motivate the work reported herein. 

1.2 Research Objective 

The objective of this Ph.D. research was to develop multi-physics mathematical models to simulate the 

physical, mechanical, and electrochemical behavior of LIBs. The developed models shed light on mass 

and charge transport, lithiation induced volume change, mechanical interaction, and morphological 

properties during battery operation. This Ph.D. study is comprised of three principal stages: 1) Multi-

scale multi-physics modeling of lithium-ion battery composite Gr/Si electrode. This framework 

consists of an electrochemical sub-model which implemented at a microscale level to simulate lithium 

diffusion within Si particles and at macroscale to obtain the discharge performance. Moreover, a solid 
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mechanics sub-model was incorporated at the microscale level to obtain the lithiation induced volume 

change of Si. The ultimate goal of this project was to develop a universal modeling framework to 

enlighten the behavior of composite alloy-based electrodes with considering volume changes. 2) Three-

dimensional modeling of all-solid-state lithium-ion batteries using synchrotron transmission x-ray 

microscopy tomography. 3) Chemo-mechanical modeling of stress evolution in all-solid-state lithium-

ion batteries using synchrotron transmission x-ray microscopy tomography. In stage two, the electrodes 

3D microstructure was reconstructed based on TXM images. The electrochemical and physical analysis 

were conducted on representative volume element (RVE) to obtain the electrochemical and physical 

properties distribution within the microstructure at various currents and external pressing pressures to 

investigate the effects of morphological parameters on the electrochemical behavior of ASSBs. In the 

third stage, the developed electrochemical model in stage two was coupled with a solid mechanics 

model to simulate the chemo-mechanical behavior of ASSBs. Special attention was paid to stress 

evolution at the solid electrolyte/active material interface.  
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1.3 Research Approach 

The overall structure of this thesis is shown in Figure 1-1. 

 

 

Figure 1-1 Thesis Layout 

 

This thesis is comprised of 6 chapters wherein Chapter 1 represents the motivation and objectives of 

the overall studies along with the thesis layout. Chapter 2 reviews the background information including 

LIBs and ASSBs working principals and modeling methodologies. Moreover, the advantages of 

electrodes CT imaging techniques are elaborated.  

In Chapter 3, a multi-scale multi-physics model is introduced to investigate the Gr/Si composite 

electrode performance considering the Si volume change during the battery operation. In the developed 

framework, the electrochemical sub-model and solid-mechanics sub-model are coupled to incorporate 

the effect of lithiation induced stress on the volume change in Si particles and update the lithium 

Ch1. Introduction 

Ch2. Background  

Ch6. Conclusions and Future Work 

Ch3. Multi-scale Multi-Physics Modeling of Lithium-Ion Battery Composite Gr/Si 

Electrode 

Ch4. Three-Dimensional Modeling of All-Solid-State Lithium-Ion Batteries Using 

Synchrotron Transmission X-ray Microscopy Tomography 

Ch5. Chemo-Mechanical Modeling of Stress Evolution in All-Solid-State Lithium-

Ion Batteries Using Synchrotron Transmission X-ray Microscopy Tomography 
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concentration in Si particles based on the new volume at each time step. The lithium transport equation 

in Si particles and solid mechanics equations are implemented at the microscale level passing the 

updated lithium concentration to macroscale to simulate the composite electrode performance. 

Chapter 4 introduces a three-dimensional model for ASSBs electrodes to investigate the effect of 

external pressing pressure on the morphological and electrochemical behavior of the composite 

electrode consists of the solid electrolyte, active material, and void space. To enhance the fidelity of 

the developed model, the 3D reconstructed microstructure of the electrodes are utilized as the geometry 

of the model. The SE’s resistance to ion transport was quantified by estimating the SE tortuosity using 

a heat transport analogy. The simulation showed that higher pressing pressure causes 26.8% less void 

space in the electrode and consequently 11.1% less tortuosity and 36.9% higher volume-specific surface 

area. The developed model elucidates the spatial distribution of physical and electrochemical properties 

inside the electrode microstructure. The 3D model shows a wide range of electrochemical properties 

distribution in the solid electrolyte (SE) and the active material (AM) which might have a negative 

effect on ASSB performance. The results show that at high current rates, the void space hinders the 

ions’ movement and causes local inhomogeneity in the lithium-ion distribution. 

In Chapter 5, a chemo-mechanical model is presented to shed light on the effects of lithiation induced 

stress on the SE/AM interface. The developed model has an electrochemical sub-model including 

diffusion and migration in the SE, diffusion in the AM, and charge transfer kinetics at the SE/AM 

interface computed on a 3D reconstructed morphology. Moreover, the solid mechanics sub-model 

determines the diffusion induced stress/strain employing a thermal-mass diffusion analogy. The 

presented model highlights the stress evolution at the SE/AM interface and investigates the effect of 

void spaces at the interface and role of external pressing pressure. It is worth noting that the mechanical 

stability of the electrode highly relies on the microstructure design. The results illustrate that although 

increasing the external pressing pressure can alleviate the SE/AM contact resistances and enhance the 
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ion transport, it may exacerbate the mechanical stability of the electrode. The main reason for this 

adverse effect is that lithium diffusion induced volume change in AM particles can lead to a contact 

loss and crack formation due to the excessive stress evolution at the interface. Moreover,  

Chapter 6 summarizes the main contributions of this Ph.D. dissertation and provides 

recommendations for future work.  
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Chapter 2 

Background 

2.1 Lithium-Ion Battery  

Lithium-ion battery (LIB) consists of a positive electrode and a negative electrode which divided by a 

separator that prevents electron pass while allows the ions to go through. During charge, at first, lithium 

de-intercalates from the positive electrode then diffuses in the electrolyte and intercalates into the active 

material in the negative electrode. During discharge, the aforementioned steps happen in reverse 

(Figure 2-1). The positive and negative electrode have various material and chemistry with different 

performance, specification and consideration depend on the battery application. 

 

In the negative electrode (Anode), graphite (Gr) is the most common material due to its low cost 

and good cycling stability. The reaction in the anode side with Gr is: 

𝐿𝑖𝐶6 ⇌ 𝐿𝑖(1−𝑥)𝐶6 + 𝑥𝐿𝑖+ + 𝑥𝑒−,        ( 2-1) 

Figure 2-1 Schematic of the lithium-ion battery with the 

graphite anode and LiCoO2 cathode. 
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and for the cathode side, there are quite a few materials that widely utilized in LIBs such as lithium 

manganese oxide (LiMn2O4) or LMO, Lithium cobalt oxide (LiCoO2) or LCO, lithium iron phosphate 

(LiFePO4) or LFP, and Lithium nickel manganese cobalt oxide (LiNiMnCo2) or NMC are the most 

common cathode active material. The cathode side reaction is (M stands for metal): 

𝒙𝑳𝒊+ + 𝒙𝒆− + 𝑴𝑶𝒚 ⇌  𝑳𝒊𝒙𝑴𝑶𝒚.     ( 2-2) 

      Electrodes in LIBs generally have active material, a binder, and a conductive additive such as 

carbon black. A slurry is formed by mixing the active material, binder, and conductive additive and 

cast onto a metal foil. The casting steps, type, and weight percentage of materials highly depend on the 

application. Carbon-based structures are the most common negative electrode active materials. The first 

commercial LIBs utilized petroleum coke as the negative active material, whereas most commercialized 

LIBs employing Gr. Gr electrode advantageous are abundance, high electrical conductivity, low cost, 

and relatively high energy density and capacity. In the Gr structure, atoms are arranged in hexagonal 

arrays which form planar sheets and the intercalated lithium is located between Gr layers. The lithium 

insertion potential leads to a reduction of electrolyte molecules and the formation of a solid electrolyte 

interface (SEI) during the first cycle [33]. Although SEI layer formation and stable SEI layer are critical 

for electrodes, it causes the irreversible capacity loss during SEI layer formation. A stable SEI layer 

prevents the electrolyte from further degradation while the composition of the SEI layer completely 

depends on the properties of active material, electrolyte composition, and cycling parameters. The 

thickness of the SEI layer varies from few Å to hundreds of Å which contain organic (reduction of 

electrolyte solvent like 𝐿𝑖2𝐶𝑂3) and inorganic compounds (reduction of salt anions like 𝐿𝑖𝐹, 𝐿𝑖𝐶𝑙, and 

𝐿𝑖2𝑂) [33]. 

       𝐿𝑖4𝑇𝑖5𝑂12 with a theoretical capacity of 175 mAh/g is an alternative for negative electrode active 

material. LTO electrode has relatively low capacity and high lithium insertion potential which leads to 
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a low cell voltage and low energy density cell. Whereas, the insertion potential is above the reduction 

potential of the most common organic electrolytes which prevents ant SEI layer formation during 

cycling. Furthermore, there is no lithium plating even at high current rates and low temperatures, which 

makes LTO an ideal material for high power applications [33]. Lithium metal is another candidate for 

employing as an anode active material due to its valuable advantageous such as high theoretical capacity 

(3860 mAh/g) and low electrochemical potential (-3.05 V). However, remarkable lithium dendritic 

formation at the surface of the lithium plate during cycling and considerable volume change hinders 

the large employment of Lithium plates. In fact, volume change during lithiation/delithiation is a 

common challenge in alloy-type anode materials as well. For instance, despite the high theoretical 

capacity of Si (4200 mAh/g) it suffers poor cycling stability due to large volume expansion up to three 

times at the end of lithiation. One way to address this challenge is to use solid electrolytes instead of 

liquid electrolytes.  

2.2 All-Solid-State Battery 

All-solid-state battery (ASSB) is a promising alternative for LIBs due to its remarkable advantages. 

Traditional LIBs mostly have organic liquid electrolytes that are highly flammable and have low 

thermal stability. However, inorganic SEs have higher thermal, mechanical, and electrochemical 

stability [34]. Working principals of ASSBs are the same as LIBs while lithium-ions de-intercalate 

form cathode and transport through SE to anode during charging and electrons move through an 

external circuit. Among various type of SEs, such as lisicons [35], perovskites [36, 37], nasicons [38, 

39], and garnets [40, 41], the nasicons structure, like Li1.3Al0.3Ti1.7(PO4)3 (LATP), can be an appealing 

alternative for today’s commercial liquid electrolytes due to their excellent stability against air and 

water and high ionic conductivity [42]. 
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SE/AM interfacial contact tremendously impacts the ASSBs performance, since SE unlike the liquid 

electrolyte is not able to form an ideal contact with AM and physical mismatch of these two solid phases 

creates void spaces at the interface. In ASSBs, the composite cathode generally fabricated with mixing 

the SE, AM, and a conductive agent. The composite microstructure and morphological properties 

depend on the mixing conditions such as external pressing pressure, temperature, etc. [43] while poor 

interfacial contact limits the lithium-ions transport pathways. Moreover, AM particle volume changes 

during lithiation/delithiation can lead to local stress build up in the microstructure, fracture propagation, 

and capacity fading [44]. Therefore, microstructure design is highly critical in ASSBs compared to 

liquid electrolyte cells while liquid electrolyte penetrates the porous electrode and the interfacial contact 

is not a remarkable issue. Most of the common cathode AM expand during lithiation; although this 

volume change is negligible compared to Anode AM, it is critical in ASSBs due to the solid/solid nature 

of the SE/AM interface. In other words, the liquid electrolyte can accommodate the slight volume 

expansion of cathode AM while in SE even a minor volume changes could cause particle fracture and 

eventually pulverization [45].  Therefore, further investigation of ASSBs interfacial contact is crucial 

since continuous expansion/contraction over the cycling of a cell can exacerbate the interfacial 

resistance and stress evolution.  

2.2.1 Solid Electrolyte  

The functionality of solid electrolytes is the same as liquid electrolytes and separators while allows 

lithium-ions to crossover between anode and cathode and block electron transport [34]. Generally, 

electrolytes should have high ionic conductivity, high ionic transference number, low electronic 

conductivity, and wide electrochemical stability window [46]. Among all types of solid electrolytes, 

LISICON, and LiPON-type of solid electrolytes have low ionic conductivity, sulfide, anti-perovskite, 

and argyrodite-type are unstable in the ambient atmosphere, while garnet, perovskite, and NASICON-

type can be a promising alternative for liquid electrolytes [34]. However, employing solid electrolytes 
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still has a long way to go since it suffers from low wettability compared to liquid electrolyte and high 

interfacial resistance.  

2.3 Lithium-Ion Battery Physics-Based Models 

Numerical simulation is an effective tool to shed light on the electrochemical and physical behavior of 

LIBs. Numerical simulation generally categorized into physics-based modeling and data-driven 

modeling. Physics-based modeling comprises of a wide range of electrochemical, mechanical, electrical 

models with different level of complexity, fidelity, and computational cost aimed to simulate complex 

non-linear behavior of LIBs. Physics-based models are based on solving governing partial differential 

equations while data-driven methods are based on implementing self-learning algorithms on large data-

sets to predict the desired properties. The application of data driven methods in batteries is presented 

in 0.  

2.3.1 Single-Particle Model 

Generally, in a single particle model, electrodes substitute with a single particle without considering 

the porous structure of the electrodes. In other words, the lithium diffusion in particles simulated based 

on Fick’s mass transport. Then, the Butler-Volmer equation employed to calculate the applied flux on 

the spherical surface. The lithium concentration within the particle obtained by: 

  
𝝏𝒄𝟏
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= −𝒋𝒏𝑫𝟏                            ( 2-3) 

Where 𝑐1 is lithium-ion concentration inside the active material particles, 𝑅𝑝 is particle radius, 𝐷1is 

the diffusivity of the active material, 𝑗𝑛 is pore-wall flux. By employing Butler-Volmer equation at the 

particle interface: 

 𝒋𝒏 =
𝑰

𝑭
=

𝒊𝟎

𝑭
(𝒆𝒙𝒑 (
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𝜶

,                  ( 2-5) 



 

 13 

where 𝑖0, , 𝑘0, F, R, and T are exchange current density, the reaction rate constant, Faraday constant, the 

universal gas constant, and Temperature, respectively. 𝐶1𝑠, 𝐶2𝑠, 𝐶𝑚𝑎𝑥  , 𝜙1, 𝑈 are lithium-ion 

concentration at the interface of active material and electrolyte, the maximum concentration of lithium 

inside the solid matrix, solid-phase potential, and open circuit potential, respectively. Although the 

single particle model is not capable to accurately predict the performance of the battery due to 

neglecting the effect of electrolyte on the voltage and the lithium concentration inside the particle [47, 

48], it can provide a rough estimation for on-line application with a low computational cost.  

2.3.2 Homogenous Pseudo-Two-Dimensional Model 

Pseudo-two-dimensional (P2D) model is a relatively accurate and detailed model compared to a single 

particle model. P2D models can simulate the lithium concentration in solid phases and electrolyte. P2D 

models are emanated from porous electrode theory which was developed by Newman in 1975 [49]. 

Twenty years later, Fuller and Doyle in separate researches implement the porous theory on a battery 

cell with a positive electrode, negative electrode, electrolyte, and separator [50, 51]. These researches 

are the base of many developed models in recent years [52-54].  

      The P2D models consider two different directions, x-direction represents the cell thickness and r 

direction is the particle radius. Through cell thickness, the P2D model has several BCs to satisfy 

continuities and conservations of fluxes. The electrode-current collector interfaces have insulation 

conditions for all parameters except the solid phase potential. For simulating liquid phase in the cell, 

the lithium concentration in the liquid phase, and the charge balance in the electrolyte can be obtained 

by:  

𝜺
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=

𝝏

𝝏𝒙
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where 𝜀 is the electrode porosity, 𝑐2 is the concentration of lithium in liquid phase, 𝐷𝑒𝑓𝑓 is effective 

diffusivity, 𝑡+
0  is the transference number of the lithium-ion in the solution, and 𝑎 is the specific surface 

area. Additionally, 𝑖2 is current density in the liquid phase, 𝑓2 is electrolyte molar activity coefficient, 

and 𝑘𝑒𝑓𝑓  is effective conductivity. The lithium concentration and charge balance in solid-phase are 

calculated by: 

𝑰 − 𝒊𝟐 = −𝝈𝒆𝒇𝒇
𝝏𝝓𝟏

𝝏𝒙
,                     ( 2-8) 
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𝒊𝟎 = 𝑭𝒌𝟎(𝒄𝟐𝒔)𝜶(𝑪𝒎𝒂𝒙 − 𝑪𝟏𝒔)𝜶𝑪𝟏𝒔
𝜶

,                        ( 2-11) 

where 𝜙1 is electric charge in a solid phase, c1 is the concentration of lithium in a solid phase, I is the 

applied current density, and σeff is the effective conductivity of a solid matrix.  

2.3.3 Heterogeneous Microstructural resolved model   

In homogenous models such as single-particle and P2D models, the electrode structure is completely 

assumed to be a perfectly mixed solution of solid particles and the pore electrolyte. This assumption 

simplifies the geometry from 3D particle structures to one geometrical domain for solid particles and 

pore electrolyte. Then, the effective charge and mass transfer properties can be defined based on 

porosity and tortuosity to consider the effects of the specific geometry and the particles. Whereas, in 

heterogeneous models, the solid particles and pore electrolyte are defined in separate domains. In these 

models, the charge and mass transfers define in their related domain based on a reconstructed 

morphology of the electrode; therefore, heterogeneous models have higher reliability since they 

consider the effect of the electrode microstructure on the performance of the battery. In this thesis, X-

ray computed tomography (XCT) technology has been employed to reconstruct the 3D morphology 
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of electrodes. In the following section, XCT working principles and its application in LIBs briefly 

described.  

2.4 Electrode Imaging 

2.4.1 X-Ray Computed Tomography (XCT) 

XCT is mostly known as a medical imaging procedure to produce cross-sectional images of a targeted 

area to see the inside of the object without cutting by employing x-ray measurements. Recently, XCT 

technology widely utilized in porous media [55], batteries [26], and fuel cell [56, 57] applications to 

obtain the microstructure tomography. Computed tomography refers to a computerized x-ray imaging 

procedure in which a narrow beam of x-rays pointed to the object and rotated around it to generate 

cross-sectional images (slices). The collected slices can be digitally stacked to form a three-dimensional 

image. The main advantage of XCT compared to other imaging techniques such as FIB-SEM [58] is 

the non-destructive nature of XCT. Electrodes imaging in this dissertation was performed by 

transmission x-ray microscopy (TXM) at the advanced photon source of the Argonne National 

Laboratory. Figure 2-2 shows the operation principals of XCT. Firstly, focused x-ray passing through 

the sample and Frensel zone plane focuses the x-rays at the detector. TXM requires a series of 2D x-

ray transmission images (radiographs) around a single axis of rotation. Therefore, the sample is placed 

on a rotary stage to facilitate 180˚ imaging. XCT slice images has a predefined thickness which is 

presents by voxels. A XCT slice can be computationally reconstructed by combining a set of 

radiographs.  
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Figure 2-2 XCT Overview [59] 

2.4.2 Image Segmentation 

Image segmentation has a vital role in digital image processing and it refers to dividing an image into 

its constituent regions based on color, shape, and position [60]. Each of these regions represents a phase 

in the electrode, such as a solid phase or pore phase. Segmentation can be done automatically when we 

have decent gray level contrast or manually when the images have poor contrast. Generally, automatic 

segmentation is more accurate and faster than manual segmentation which is a time-consuming 

procedure. Among all segmentation techniques, thresholding is widely used for electrode image 

segmentation. The ultimate goal is to replace a grayscale image with 256 levels to an image with a 

fewer number of levels. The threshold value can be assigned by visual judgment based on the histogram 

of the image data. Moreover, there are some thresholding algorithms such as the Otsu or mean algorithm 
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which can be utilized to perform automatic thresholding. For instance, in the Otsu method, two phases 

are considered as two clusters. The grayscale values of these clusters are obtained by [61]: 

𝑪𝟏 = ∑ 𝒑(𝒊)𝑻
𝒊=𝟎 ,              ( 2-12) 

𝑪𝟐 = ∑ 𝒑(𝒊)𝟐𝟓𝟓
𝒊=𝑻+𝟏 .              ( 2-13) 

The goal of this method is to maximize the variance between clusters. In the first step, the variances of 

the two clusters are calculated. 𝜇1 and 𝜇2 are the mean values of the clusters. 

𝝈𝟏
𝟐 = ∑ (𝒊 − 𝝁𝟏)𝟐𝒑(𝒊)𝑻

𝒊=𝟎 ,            ( 2-14) 

𝝈𝟐
𝟐 = ∑ (𝒊 − 𝝁𝟐)𝟐𝒑(𝒊)𝟐𝟓𝟓

𝒊=𝑻 .             ( 2-15) 

Then, the variance between the clusters is calculated. 𝜇 is the mean value of all grayscale values. 

𝝈𝑩𝒊
𝟐 = 𝑪𝟏(𝝁𝟏 − 𝝁)𝟐 + 𝑪𝟐(𝝁𝟐 − 𝝁)𝟐,             ( 2-16) 

𝝈𝑻
𝟐 = 𝑪𝟏𝝈𝟏

𝟐 + 𝑪𝟐𝝈𝟐
𝟐.              ( 2-17) 

In this method, the threshold value is obtained by maximizing the ratio of 
𝜎𝐵𝑖

3

𝜎𝑇
2 . In this study, AVIZO 

software was utilized to identify phases in grayscale CT images and reconstruct 3D morphology. 

AVIZO software has various built-in algorithms to increase contrast. For instance, a median filter is a 

non-linear digital filtering technique, often used to preserve edges while removing noise. Such noise 

reduction is a typical pre-processing step to improve the results of later processing like segmentation 

or edge detection. Moreover, the dilation algorithm can be implemented to smooth boundaries and 

remove possible false threshold segmentation gradient-induced errors at the active material particle 

boundaries.  
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Chapter 3 

Multi-scale Multi-Physics Modeling of Lithium-Ion Battery 

Composite Gr/Si Electrode  

3.1 Introduction 

Employing alloy-based materials as the anode active material is a promising solution to enhance the 

capacity of the battery due to their higher capacity compared to common anode active materials. 

However, a multitude of factors needs to be addressed which prevents large scale utilization of these 

materials, specifically, considerable volume changes during lithiation/delithiation.  

Lithiation/delithiation in the layered materials such as Gr involves an intercalation mechanism, where 

lithium-ions can insert/extract into/from the interlayer space of these materials. Intercalation causes 

relatively negligible volume change and is unlikely to affect the host material structure [62]. However, 

the total number of lithium insertion sites is limited, which restricts the total capacity [63]. On the other 

hand, some materials such as Si, Sn, etc. host lithium-ions thorough an alloying mechanism, which 

involves bond formation during lithiation and bond breaking during delithiation [64]. Although the 

specific capacity from the alloying mechanism is higher, the large number of lithium-ions reacted 

trigger a remarkable volume change during lithiation/delithiation. Due to this, the unstable SEI layer 

and high stress evolution are the major reasons for capacity degradation in LIBs with Si-based anodes.  

Mathematical models have been effective in electrode design and optimization [14]. Specifically, 

detailed mathematical modeling can accelerate the process of optimizing composite electrodes and 

addressing the bottleneck challenges. Most of the developed models for composite electrodes can 

predict the cycling performance of fabricated cells [50, 65, 66]. Based on Newman’s pseudo-2D (P2D) 

model [51, 67], Albertus et al. developed a mathematical model for the 𝐿𝑖𝑦𝑀𝑛2𝑂4/

𝐿𝑖𝑦𝑁𝑖0.8𝐶𝑜0.15𝐴𝑙0.05𝑂2  composite cathode which accurately predicts the experimental half-cell 
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performance [52]. Mao et al. used a similar model to determine the ratio of two active materials in an 

unknown composite electrode. The compositions were found to be LiMn2O4 (LMO) and LiNixMnyCo1-

x-yO2 (NMC) from scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy 

(EDX). To determine the ratios, they compared the simulated performance of composite electrodes at 

different ratios against the experimental data. The best curve fit of the simulation and experiment 

provided the LMO/NMC ratio [53].  

All the studies listed above tested active materials that experience negligible volume change during 

cycling, whereas Si particles have considerable volume change during lithiation/delithiation. To 

account for the volume change, mechanical stress experienced inside the electrode during cycling 

should be simulated. To address this, Wang et al. developed a stress-strain model to calculate the large 

deformation of Si nano-spheres upon lithiation. The simulation results showed good agreement against 

the lithiation time and lithiation phase thickness growth was achieved from in situ transmission electron 

microscopy (TEM) [68]. In subsequent work, the authors developed a model to investigate the stress 

evolution of pure Si upon lithiation/delithiation [14, 69]. The model coupled the electrochemical 

kinetics, species transfers, and mechanical stress to find the effect of large deformation of the Si 

particles on the cell electrochemical kinetics[14]. Recently, Gao et al. published a modeling framework 

for a Si-C composite anode. They investigated the effect of Si weight percentage in the composite 

electrode on the cell performance and stress evolution; however, they did not consider the effect of the 

lithium chemical potential in Si and how it changes under stress [70]. In fact, stress causes a free energy 

difference between Si and LixSi which leads to a chemical potential change of lithium within Si [69]. 

Therefore, considering the chemical potential changes can enhance the accuracy of the developed 

models for the Si-based composite electrode. In other words, hydrostatic stress in Si particles can retard 

the lithiation, resulting in an unlithiated core and a large lithium concentration gradient within the Si 

particle, which causes capacity fade.  
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Overall, inadequate fundamental understanding and quantitative insights on the Si-based composite 

electrode is one of the main challenges that hinder further development of this electrode. A multi-scale 

modeling framework can provide quantitative insights about the mechanical and electrochemical 

behavior of the composite Gr/Si electrode. To the best of knowledge, there is no universal multi-scale 

model developed for Gr/Si composite electrodes that considers chemical potential changes of lithium 

within Si particles and are compatible with a wide compositional ratio. In the present study, a multi-

scale model is developed for the Gr/Si electrode based on integrating an electrochemical and a solid 

mechanics model. The electrochemical sub-model includes the diffusion equation in the electrolyte and 

active materials, electrolyte potential, and potential of the active materials. Moreover, the solid 

mechanics sub-model employs a thermal-mass diffusion analogy to simulate the Si 

expansion/contraction during lithiation/delithiation. Incorporating the effect of stress on the lithium 

chemical potential within Si particles at microscale modeling can enhance the composite electrode 

model fidelity and shed light on the lithium concentration gradient within Si due to the stress. The 

developed model is then employed to investigate the effect of the Si percentage on the electrode 

behavior. In this way, the model is simulated for three different Si percentages, validated by the 

electrodes fabricated with different Gr/Si composition ratio. 

This chapter is structured in the following format: first, the electrode fabrication and performance 

testing are discussed. Then, the modeling steps and governing equations for the electrochemical and 

mechanical sub-models are presented. The modeling framework was implemented in COMSOL 

Multiphysics 5.5. Finally, the simulation results are presented and profoundly discussed with 

concluding remarks.  



 

 21 

3.2 Experiment 

In this study, coin cells were fabricated to determine the electrochemical performance of the composite 

Gr/Si electrodes. Si nanoparticles (diameter ~100 nm) were purchased from Nanostructured & 

Amorphous Materials, Inc., USA. Spherical natural Gr with a diameter ranging from 10 μm to 30 μm 

was purchased from MTI Corporation, U.S. PVDF was used as a binder material and carbon Super-P 

as a conductive agent. All chemicals were used as received. The weight ratio of active materials, PVDF, 

and Super-P were maintained at 85:7.5:7.5 in all prepared electrodes. Four active material compositions 

with various ratios of Gr/Si were prepared. Gr contents were 75%, 77.5%, 80%, and 85% respectively 

in the fabricated electrode, and the corresponding Si contents were 10%, 7.5%, 5%, and 0% (all the 

percentages are in mass %). All compositions were mixed with a rotating mixer for 10 minutes, stirred 

on a magnetic stirrer for half an hour, and finally sonicated for half an hour. This mixing procedure was 

repeated three times before the slurry was cast onto a copper foil using a doctor blade. 

The cast electrodes were dried, calendared, and cut before final coin cell assembly in an argon-filled 

glovebox (MBRAUN, Germany). The electrolyte was 1 M lithium hexafluorophosphate in ethylene 

carbonate/diethyl carbonate (weight ratio 3:7). lithium metal was used as the counter and reference 

electrode. Charge and discharge tests were performed on a battery tester from Neware, China. Two 

current densities of 50 mA/g and 100 mA/g were used to study the galvanostatic charge/discharge 

behavior of the cells. Potentiostatic electrochemical impedance spectroscopy was performed on an 

electrochemical workstation (Princeton Applied Research, U.S.) with a small perturbation current. The 

starting and ending frequencies were 1 MHz and 0.01Hz, respectively. 

3.3 Modeling 

To consider the effect of volume changes and measure the stress evolution during lithiation/delithiation 

of the composite Gr/Si anode, the developed model comprised two sub-models: 1) electrochemical sub-

model: employing a pseudo-two-dimensional (P2D) model which is based on the porous electrode and 
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concentrated solution theories [49, 67] to consider the diffusion within the electrolyte, diffusion within 

active materials (i.e., Gr and Si), potential of the electrolyte and active materials, and charge transfer 

kinetics at the active materials/electrolyte interface; 2) mechanical sub-model: using thermal-mass 

analogy to simulate the Si volume expansion/contraction [68] and measure the stress evolution during 

lithiation/delithiation.  

3.3.1 Electrochemical Sub-Model 

Lithium diffusion in the active materials is generally described by Fick’s mass transport law [71]: 

𝑱𝑳𝒊
𝒏 = −𝑫𝑳𝒊

𝒏 𝛁𝒄𝑳𝒊
𝒏 ,                        

( 3-1) 

𝝏𝒄𝑳𝒊
𝒏

𝝏𝒕
= −𝛁. 𝑱𝑳𝒊

𝒏 ,               ( 3-2) 

where  𝐷𝐿𝑖
𝑛 , 𝐽𝐿𝑖

𝑛 , and 𝑐𝐿𝑖
𝑛  are the diffusion coefficient of lithium, lithium flux, and lithium concentration 

in the active materials and n can represent either Gr or Si. To incorporate the stress effect to the chemical 

potential within Si, the concentration gradient is replaced by the chemical potential gradient [69]: 

𝑱𝑳𝒊
𝑺𝒊 = −

𝑫𝑳𝒊
𝑺𝒊

𝑹𝑻
𝒄𝑳𝒊

𝑺𝒊𝛁𝝁𝑳𝒊(𝝈),                         ( 3-3) 

and the chemical potential can be obtained by: 

𝝁𝑳𝒊(𝝈) = 𝝁𝑳𝒊 + ∆𝝁𝑳𝒊(𝝈),              ( 3-4) 

where 𝜇𝐿𝑖 represents the lithium chemical potential within Si under zero stress and ∆𝜇𝐿𝑖(𝜎) is the 

change in chemical potential under stress. Employing the ideal solution assumption, lithium chemical 

potential can be obtained by [14]: 

𝝁𝑳𝒊 =  −𝒎𝑭𝑼,                ( 3-5) 
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where m is the number of lithium-ion charges (m=1), F is Faraday’s constant, and U is the open-circuit 

voltage. Moreover, the changes in chemical potential under stress are related to hydrostatic stress 𝜎ℎ:  

∆𝝁𝑳𝒊(𝝈) = 𝜶𝜴𝝈𝒉,              ( 3-6) 

where 𝛼 is the coefficient defining the effect of hydrostatic stress on the chemical potential and 𝛺 is 

the partial molar volume and represents volume changes during lithiation of one mole of lithium into 

Si [14]. The main advantage of considering the effect of hydrostatic stress on the chemical potential is 

that at the microscale, hydrostatic stress can suppress the lithium diffusion within Si particle. Therefore, 

an unlithiated core and a large gradient of lithium concentration cause capacity loss. On the active 

material/electrolyte interface, the reaction is described using Butler-Volmer kinetics [28]: 

𝒊𝒑𝒐𝒔
𝒏 = 𝒊𝟎,𝒑𝒐𝒔

𝒏 (𝒆
𝜶𝒑𝒐𝒔𝑭𝜼

𝑹𝑻 − 𝒆−
(𝟏−𝜶𝒑𝒐𝒔)𝑭𝜼

𝑹𝑻
),                    ( 3-7) 

𝒊𝟎,𝒑𝒐𝒔
𝒏 = 𝑭𝒌𝒑𝒐𝒔

𝒏 (
(𝒄𝑳𝒊,𝒎𝒂𝒙

𝒏 −𝒄𝑳𝒊
𝒏 )𝒄𝑳𝒊+

(𝒄𝑳𝒊,𝒎𝒂𝒙
𝒏 −𝒄𝑳𝒊

𝒏 )𝒄𝑳𝒊+,𝟎 

)
𝜶𝒑𝒐𝒔

(
𝒄𝑳𝒊

𝒏 −𝒄𝑳𝒊,𝒎𝒊𝒏
𝒏

𝒄𝑳𝒊,𝒎𝒂𝒙
𝒏 −𝒄𝑳𝒊,𝒎𝒂𝒙

𝒏 )
𝟏−𝜶𝒑𝒐𝒔

,             ( 3-8) 

where 𝑐𝐿𝑖,𝑚𝑎𝑥
𝑛  and 𝑐𝐿𝑖,𝑚𝑖𝑛

𝑛  are the maximum and minimum of the lithium concentration in the active 

materials, and 𝑖𝑝𝑜𝑠
𝑛 , 𝑖0,𝑝𝑜𝑠

𝑛 , 𝑘𝑝𝑜𝑠
𝑛 , and 𝛼𝑝𝑜𝑠 are the current density, exchange current density, the reaction 

rate constant, and apparent transfer coefficient, respectively. The active material potential and the 

overpotential can be calculated by [26]: 

𝒊𝒑𝒐𝒔
𝒏 = − 𝝈𝒑𝒐𝒔

𝒏 𝛁𝝋𝑨𝑴
𝒏  ,                ( 3-9) 

𝜼𝒏 = 𝝋𝑨𝑴
𝒏 − 𝝋𝑬 − 𝑼 − 𝒊𝒑𝒐𝒔

𝒏 𝑹𝑺𝑬𝑰,             ( 3-10) 

where 𝜑𝐴𝑀
𝑛 , 𝜑𝐸, 𝑅𝑆𝐸𝐼  and 𝜎𝑝𝑜𝑠

𝑛  are the active material potential, electrolyte potential, SEI layer 

resistance, and conductivity of active material, respectively. It is worth noting that in all aforementioned 

equations, n can be either Si or Gr. Therefore, the total current can be obtained by: 

𝑰𝒕 = 𝟑𝑴𝒕 ∑
𝜺𝒏𝒊𝒑𝒐𝒔

𝒏

𝝆𝒏𝑹𝒏

𝑵
𝒏=𝟏 ,                   ( 3-11) 
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where 𝑀𝑡 , 𝜀𝑛 , 𝜌𝑛 , and 𝑅𝑛 are the total mass of active materials, the mass fraction of active materials, 

density of active materials, and the average particle radius of active materials, respectively. Moreover, 

the transport of lithium-ion inside the electrolyte can be written as:  

𝜺
𝝏𝒄𝑬

𝝏𝒕
= 𝜵. (𝑫𝒆𝒇𝒇𝜵𝒄𝑬) +

𝒂𝒏𝒊𝒑𝒐𝒔
𝒏 (𝟏−𝒕+

𝟎 )

𝑭
,             ( 3-12) 

where 𝜀, 𝑎𝑛, and 𝑡+
0  are electrode porosity, the specific surface area of the active materials, and 

transference number. Additionally, Ohm’s law will be employed to calculate the electrolyte potential: 

𝒊𝑬 = −𝜿𝒆𝒇𝒇𝜵𝜱𝑬 +
𝜿𝒆𝒇𝒇𝑹𝑻

𝑭
(𝟏 − 𝒕+

𝟎 )𝜵𝒍𝒏 𝒄𝑬,                   ( 3-13) 

where 𝑖𝐸 is the current density in the electrolyte and  𝜅𝑒𝑓𝑓 is the effective conductivity. In fact, the 

computed lithium concentration by electrochemical sub-model passed to the mechanical sub-model to 

compute the Si particle deformation during lithiation/delithiation. Then, the concentration updated with 

the new volume of Si particles.  

3.3.2 Solid Mechanics Sub-Model 

The Si deformation during cycling is due to the mechanical constraints and the lithiation/de-lithiation 

[68]. The ratio of the new volume V to the initial volume V0 is proportional to the lithium concentration 

[72]. In a Si particle under a stress-free environment, the ratio of V/V0 is obtained by: 

     
𝑽

𝑽𝟎
= 𝐝𝐞𝐭(𝑭𝒄) = 𝟏 + 𝜴∆𝑪,                   ( 3-14) 

where 𝐹𝑐 is the lithiation induced deformation. The Si volume expansion can be obtained by a thermal-

mass diffusion analogy. The thermal strain is:  

𝜺𝒊𝒋 = 𝜷∆𝑻𝜹𝒊𝒋,                ( 3-15) 



 

 25 

where β is the thermal expansion coefficient and ∆𝑇 is the temperature increase, which is equivalent to 

the increase of the effective concentration ∆𝐶𝑒𝑓𝑓 . The expansion coefficient can be calculated by[68]: 

𝜷 =
( √(𝟏+𝜴∆𝑪)𝟑

−𝟏

∆𝑪𝒆𝒇𝒇
.             ( 3-16) 

    To estimate the stress formation, the Cauchy stress tensor 𝜎 can be derived based on deformation 

F, and second Piola-Kichhoff stress S by [73]: 

𝝈 = (𝐝𝐞𝐭(𝑭))−𝟏𝑭𝑺𝑭𝑻.                 ( 3-17) 

     In microscale, the lithium concentration in Si particle is calculated by employing the aforementioned 

electrochemical model as well as the Si particle deformation and stress evolution based on the 

mechanical model. Then, the averaged updated lithium concentration based on the new volume of Si 

particle is passed to the macroscale where the electrode electrochemical behavior is modeled with 

considering Gr and Si as two separate active materials of a porous electrode. Consequently, the current 

density is passed from the macroscale to microscale.  

     The Si particle size is relatively smaller than Gr and can be assumed that in a composite electrode, 

Si particles are constrained with Gr and binder. Therefore, in the mechanical sub-model, it is assumed 

that one-quarter of Si particle surface area has a fixed constraint and half a quarter of the surface area 

has a roller boundary condition (Figure 3-1). The other boundaries can freely expand due to the porous 

nature of the composite electrode. Moreover, the macroscale and microscale boundary conditions are 

presented in Figure 3-1.  

     Integrating these two aforementioned sub-models leads to a comprehensive framework for the 

modeling of Si-based composite electrodes. Although in this work there are only two types of anode 

active materials, Gr and Si, the developed model is scalable to more complex composite electrodes. 

Moreover, the developed model has a relatively low computational cost and can be employed for on-

line estimation of Si-based battery states, such as state of charge, state of health, and state of power. 

The model parameters are listed in Table 3-1. To obtain the deformation of Si during cycling, the Si 
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mechanical properties such as its Poisson’s ratio, elastic modulus, and yielding stress should be 

determined. The assumed Poisson’s ratio is based on the Shenoy et al. report [74] varying from 0.28 to 

0.24 depending on the state of charge; the yielding stress range is 1.6-0.6 GPa [75], and Young’s 

modulus is 50 GPa [76]. The modeling framework is illustrated in Figure 3-1. The electrode assumed 

to have an isotropic microstructure and the lithium diffusivity is not concentration dependent. The 

effective diffusivity is calculated based on using bilk diffusion coefficient and the Bruggeman 

correlation. The partial molar volume of Li in Si represents the volume changes of a host Si particle 

after accommodating one mole of Li.  

 

Table 3-1 List of the model parameters 

parameter Symbol Si  Gr 

Electrode thickness(m)    L  *5.5 × 10−5  

Radius of type n particle (m) Rn *5×10-8  *10-5 

Cathode area (m2)    A  *1.01× 10−4  

Binary diffusion coefficient of 

Li in type n particle (m2s−1) 
𝐷𝐿𝑖

𝑛
 3× 10−16 [14]  6.51× 10−11 [77] 

apparent transfer coefficient    𝛼𝑝𝑜𝑠  0.5[54]  

Electrode porosity     𝜺  .35[53]  

Initial electrolyte 

concentration (mol m−3) 
ce  *1000  

Li-ion transference number t+
0   0.36[54]  

Separator thickness (m)     Lsep  *2.5 × 10−5  

Bulk diffusion coefficient in 

/s)2electrolyte (mthe  
    De  1.27× 10−11  

Separator porosity      𝜺sep  0.55c  

Exchange current density 

)2on Li foil electrode (A/m 
if
0  20[54]  

Faraday constant (C/mol)     F  96478  

Gas constant (J/mol K)     R  8.314  

Temperature (K)     T  298  

Partial molar volume of Li 

/mol)3in Si (m 
𝛺  9× 10−6 [78]   

*: measured, c: Celgard product data sheet   
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Figure 3-1 Modeling methodology 

3.4 Results and Discussion 

Si particle size affects the composite electrode cycle life, where smaller Si particles have a lower 

volume change and particle pulverization is less likely to occur. The SEM images of the composite 

electrodes with Si wt% of 5, 7.5, and 10% are illustrated in Figure 3-2. It is worth noting that the 

dispersed distribution of Si particles verifies that employing a P2D model with two active materials is 

a reasonable approach to model a Gr/Si composite electrode, and integrating with a solid mechanic 

model to incorporate the Si particles deformation throughout lithiation/delithiation. The average 

particle size of Gr and Si is approximated as 10 𝜇m and 50 nm, respectively.  
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Figure 3-2 SEM images of the composite Gr/Si electrode with (a-b) 5% Si, (c-d) 7.5% Si, and (e-

f) 10% Si. 

3.4.1 Impedance Measurements 

Electrochemical Impedance Spectroscopy (EIS) is an effective tool to investigate the impedance 

evolution of the composite Gr/Si electrode during the charge/discharge cycles. Typically, the EIS of 

the lithium-ion batteries consists of two partially overlapped semicircles and a sloping straight line at 

low frequency [79]. The Rb is the bulk cell resistance which depends on the electrical contact resistance 

in the current collectors, resistance in the outer circuit, the electric conductivity of the electrodes, 

electrolyte, and separator, and the ionic conductivity of the electrolyte. Furthermore, the diameter of 

the semicircle depends on charge transfer resistance and SEI layer parameters, such as the RSEI and CSEI 
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which are the resistance and the capacitance of the SEI layer of the electrodes, respectively. In other 

words, RSEI accounts for the ionic diffusion resistance of the lithium-ion in the SEI layer [80]. W is the 

Warburg impedance which indicates the diffusion of lithium through electrode [81]. The EIS of the 

pure Gr electrode is compared to the composite electrode with different Si wt% after the first charge. 

As shown in Figure 3-3, the diameter of high-frequency semicircles of the composite electrodes is 

larger than that of the pure Gr electrode, which means that the composite electrodes have a higher 

charge transfer resistance compared to pure Gr electrode. The main reason for EIS analysis is to 

incorporate the SEI layer resistance into the developed model. Therefore, an equivalent circuit model 

was fitted to the EIS data to obtain the RSEI at various Si percentages, as seen in Table 3-2. The fitted 

equivalent circuit model is presented in Figure 3-3b. The estimated SEI resistance was incorporated 

into the developed model for overpotential calculation.  

 

Table 3-2 Composite electrode resistance parameters based on the equivalent circuit model 

 

 0% Si  5% Si  7.5% Si 

 Rb RSEI R1 R2  Rb RSEI R1 R2  Rb RSEI R1 R2 

1st charge 3.85 9.32 22.66 15.55  12.55 13.58 28.89 19.8  5.49 54 38.1 37.3 
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3.4.2 Performance prediction 

The open-circuit voltage of pure Gr and Si is presented in Figure 3-4a. To obtain the open-circuit 

voltage profile, pure Gr and Si electrodes were fabricated and galvanostatically discharged at a very 

low rate of 8 mA/g. The experimental results of the galvanostatic discharge performance of composite 

Gr/Si electrodes at 100 mA/g after the second discharge are shown in Figure 3-4b. The composite Gr/Si 

electrodes have various ratios of 5%, 7.5%, and 10% Si. In fact, a higher Si percentage leads to a higher 

cell capacity. The total capacity of the cell with 10% Si is 600 mAh/g, which is 19% and 47% higher 

than the cell with 7.5% and 5% Si respectively. To validate the developed model, the simulation data 

obtained based on the described electrochemical-mechanical model (Modeling section) were compared 

with the experimental results at two currents. As illustrated in Figure 3-4c, the developed model can 

accurately predict the total capacity and the voltage plateau of the composite electrode at various 

currents and composition ratio. Indeed, the voltage plateau is a vital indicator of the on-line estimation 

of the battery state of charge. Therefore, the developed framework can be expanded for the on-line 

(b) 

Figure 3-3 (a) EIS analysis of the composite electrode versus pure Gr electrode after the 1st 

cycle and (b) equivalent circuit model of the composite electrode 
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estimation of the batteries’ state of charge with the Si-based electrode. In fact, available electrochemical 

battery state estimation models cannot be accurately applied for Si-based electrodes since they do not 

consider the effect of Si volume changes and stress evolution.  

 

Figure 3-4 Open circuit voltage of Si and Gr (a), the discharge rate of the composite electrode 

with a different composition at 100 mA/g rate (b), experimental data versus simulation results at 

(c) 50 mA/g and (d) 100 mA/g. 

 

3.4.3 Effects of Si percentage 

Increasing the Si percentage in a Si-based composite electrode favorably enhances the cell energy 

density, although higher Si percentage can exacerbate the cell degradation due to the larger volume 
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changes and stress formation. Therefore, finding an optimal tradeoff of Si percentage and total capacity 

is a critical challenge in Gr/Si composite cell design and fabrication. Moreover, constraints can affect 

the stress evolution in Si particles. Thus, to incorporate the effect of external constraints, three points 

are considered on a Si particle: point A cannot expand due to the external constraints, point B is located 

at the interface of the fixed region and free region, and point C can freely expand. As illustrated in 

Figure 3-5a, point A has compressive stress during lithiation, but point C has an entirely tensile stress. 

Moreover, point B has compressive stress at the beginning of lithiation due to the dominant effect of 

external constraints and a transition to tensile stress throughout the lithiation. This transition may cause 

mechanical degradation and exacerbate the crack formation. Previously, this behavior was reported for 

stress variation in radius-direction of Si particles [69]. It is worth noting that at the end of discharge the 

compressive stress at point A is about threefold the tensile stress at point C. In other words, external 

constraint has a vital role in the stress evolution of Si particles. To address this challenge, providing 

free space in the composite electrode microstructure is beneficial. Additionally, with increasing the Si 

wt% from 5% to 10%, hydrostatic stress becomes higher. The main reason is that at higher Si 

percentage, the composite electrode tends to have larger volume changes, which lead to higher 

hydrostatic stress at the same operating condition (Figure 3-5).  

As presented in Figure 3-5b, lithium concentration within Gr is much lower than Si, which is 

expected considering the theoretical capacities of Gr and Si. With increasing Si wt% in the Gr/Si 

composite electrode, the trend in lithium concentration within Gr during lithiation remains almost 

identical, while there is a slight decrease in lithium concentration in the Si particles. The reason for this 

lower concentration is that at a constant current there is a larger number of Si particles to host the 

lithium-ions.  To extensively elaborate the effect of external constraints on the Si particles, von Mises 

stress evolution throughout the particle diameter during the lithiation is illustrated in Figure 3-5c and 

5d for 10% and 5% Si, respectively. At the end of lithiation, the particle has the highest stress. The left 
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boundary represents the free point and it has relatively lower stress compared to the right boundary, 

which is point B located at the interface of the fixed and free regions. In other words, the von Mises 

stress has a remarkable value at the end of lithiation in point B due to the external physical constraint 

(Figure 3-5c). Moreover, the composite electrode with lower Si percentage follows the same trend; 

however, the estimated von Mises stress is lower due to the decreased tendency of the composite 

electrode toward expansion (Figure 3-5d).   

With a closer look at  Figure 3-5c-d, there is a local maximum of stress near the center of the Si 

particle (x=0.5). In fact, the lithiation induced stress inside the Si particles retard the lithiation process. 

Therefore, the Si particles would have a core-shell structure comprising a lithiated shell and an 

unlithiated core[63] (Figure 3-1). The unlithiated core results in a decreased capacity, while the 

incompatible strain at the interface of the core and the lithiated shell leads to a higher von Mises stress. 

Additionally, the local peaks have a tendency to the right side (point B), which illustrates the anisotropic 

swelling of Si particles due to the external constraint effect. 
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Figure 3-5 (a) Hydrostatic stress of Si particles during discharge and (b) lithium concentration 

in Gr and Si at two compositional ratio at 50 mA/g discharge current and von Mises stress 

through particle diameter at (c) 10% Si and (d) 5% Si 
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3.4.4 Effects of the current  

Rate performance analysis can shed light on the effect of current on the composite electrode 

performance. The lithium concentration in the active materials, hydrostatic stress, and deformation ratio 

at two currents (50 and 100 mA/g) are illustrated in Figure 3-6. Increasing the current results in a lower 

average lithium concentration in the Si particles and a slightly lower amount in Gr particles. The main 

reason is that at a high current rate there is a capacity loss. During discharge, a predefined cut-off 

voltage will stop the current when the surface concentration reaches its maximum value. However, 

there is a lithium concentration gradient inside the electrode active material particles, which limits the 

total deliverable capacity. This concentration gradient in Si particles at high current is considerable due 

to the higher lithium concentration within Si particles compared to Gr (see Figure 3-6a). Moreover, at 

high current, the cell has higher overpotential which intensifies the capacity loss. 

      Although increasing the current unfavorably decreases the total capacity, it triggers less 

deformation and hydrostatic stress in Si particles. As plotted in Figure 3-6b, the hydrostatic stress 

during lithiation in all three points of A, B, and C is slightly lower at higher current. Implementing the 

same analogy for higher currents, it is concluded that employing composite Si-based electrodes can be 

a promising solution for the next generation of lithium-ion batteries with higher energy density and is 

compatible with fast charging, where at higher currents the Si particles encounter less stress evolution 

and deformation. Si particles have 12% more expansion at the end of lithiation with the lower current 

rate (see  Figure 3-6c). Limiting the volume changes by increasing the current can be highly beneficial 

to restrict cell degradation and mechanical failure. Moreover, at high current, the von Mises stress is 

slightly lower throughout the Si particle due to the smaller stress evolution; therefore, crack formation 

is less likely to happen (Figure 3-6d). 
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Figure 3-6 Effects of current rate on the (a) Li concentration in Gr and Si, (b) hydrostatic stress of 

Si particles, and (c) deformation of Si particles in a composite Gr/Si electrode with 10% Si 
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3.4.5 Effects of high Si percentage 

As mentioned, the developed framework is applicable for a wide range of composite electrodes, 

considering the effect of volume changes and stress evolution throughout lithiation/delithiation. The 

ultimate goal is to maximize the capacity with acceptable cycle life. Therefore, in this section, the effect 

of increasing the Si wt% up to 20% is investigated. As illustrated in Figure 3-7a, the hydrostatic stress 

at the interface point (point B) dramatically increased when changing the Si percentage from 10% to 

20%. At the end of lithiation, it is higher than point C which can freely expand. In other words, the 

impact of physical constraints becomes more critical at higher Si mass loading while the wide range of 

stress in point B from compressive to tensile stress could tremendously affect the cycle life. Moreover, 

point A stress evolution follows the expected trend while external physical constraint causes growing 

compressive stress during lithiation. Increasing Si mass loading can exacerbate stress formation. At the 

end of lithiation for the 20 wt% Si composite electrode, point A, B, and C have 62%, 565%, and 130% 

higher hydrostatic stress compared to the composite electrode with 10 wt% Si.  

Another remarkable aspect is the deformation ratio of the Si particles during cycling. This ratio is a 

vital parameter in the microstructure design of Si-based composite electrodes as well as the macroscale 

cell design. Si volume change is inevitable due to the intrinsic behavior of Si alloying; however, a clear 

robust estimation of Si deformation can accelerate the Si-based composite electrode microstructure 

design. As presented in  Figure 3-7b, the deformation ratio in the composite electrode with 20% Si is 

71% higher than the electrode with 10% Si. Therefore, the composite electrode microstructure should 

be able to accommodate these volume changes to avoid excessive stress and crack propagation. 

Additionally, the von Mises stress at the surface of the Si particle, especially point B (right side of 

Figure 3-7c) becomes larger at higher Si percentage. For instance, for a composite electrode with 20 

wt% Si compared to 10 wt% Si, the von Mises stress at point B is 98% higher.  
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Figure 3-7 Effects of high Si percentage on the (a) hydrostatic stress, (b) deformation ratio, 

and (c) von Mises stress thorough particle diameter in three composite electrodes discharged 

with 50 mA/g current. 
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3.5 Conclusions 

In this study, a multi-scale electrochemical-mechanical modeling framework was developed for a 

composite Gr/Si electrode. The experiments were conducted with the different compositional ratios of 

Gr and Si, and galvanostatically cycled at two currents to validate the developed model. EIS analysis 

was performed to estimate the SEI layer resistance based on fitting an equivalent circuit model to the 

experimental data. Then, the obtained resistance was incorporated into the model for overpotential to 

increase accuracy. The developed framework is comprised of an electrochemical sub-model developed 

based on a P2D model for a composite electrode with two active materials, Gr and Si, integrated with 

a solid mechanics’ sub-model. The solid mechanics sub-model employed a thermal-mass analogy to 

obtain the Si deformation during cycling.  

The presented model has a good agreement with the experimental data conducted in different currents 

and various compositional ratios of Gr and Si. Increasing the Si wt% from 5% to 10% increased the 

tensile and compressive stresses up to 2.5 and 1.8 times, respectively. Moreover, physical constraints 

have a vital effect on the Si stress evolution and deformation, while Si particles encounter compressive 

and tensile stresses concurrently during cycling. For instance, at the end of lithiation for a composite 

electrode with 10 wt% Si, a fixed point on a Si particle under external mechanical constraints 

experienced 1243 MPa compressive stress, whereas a free point has 454 MPa tensile stress. 

Furthermore, lithiation induced stress inside the Si particles retard the lithiation process, forming a core-

shell structure that comprises a lithiated shell and unlithiated core. The unlithiated core results in a 

decreased capacity, while the incompatible strain at the interface of the unsaturated core and lithiated 

shell leads to a higher von Mises stress with an anisotropic swelling of particles due to the external 

constraint effect.  
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Chapter 4 

Three-Dimensional Modeling of All-Solid-State Lithium-Ion 

Batteries Using Synchrotron Transmission X-ray Microscopy 

Tomography 

4.1 Introduction  

As mentioned, LIBs have dominated the electrochemical energy storage market for over a decade due 

to their high energy density, high design flexibility, and long cycle life [82, 83]; however, electric 

vehicles or medical instruments require LIBs with higher safety and a wider thermal stability range [15, 

84]. All-solid-state lithium-ion batteries (ASSBs), which are based on solid electrolytes (SEs), are a 

safer alternative to the conventional liquid electrolyte LIBs. One of the main drawbacks of ASSBs is 

poor SE/AM contact due to the solid/solid nature of this interface. Since the two solid phases are not 

perfectly in contact with each other, void spaces block the ion pathways at the SE/AM interface, thus 

negatively affecting the ASSB performance [22].  

Mathematical models have been proven to be an efficient way to shed light on the physical and 

electrochemical phenomena occurring in LIBs. Experimentally validated models can provide 

indispensable insight into their performance and limiting challenges. Mathematical models have been 

previously applied to simulate the charge/discharge performance of ASSBs [85-88], but most of these 

models are one dimensional (1D) and do not include the real microstructure of the electrode and SE in 

their modeling framework. For instance, Danilov et al. developed the first model that included 1D 

charge transfer kinetics at the SE/AM interface, diffusion and migration of ions in the SE, and diffusion 

of ions in the intercalation AM [86]. While their model could simulate the galvanostatic 

charge/discharge profiles at low to moderate c-rates in good agreement with experimentally measured 

data [86], their model failed to predict the performance at high current rates. Kazemi et al. addressed 

this issue by defining a variable AM diffusion coefficient as a function of lithium concentration instead 
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of an assumed constant value [85], allowing them to simulate the voltage profiles accurately at low and 

high current rates up to 50 C (5 mA cm-2). Raijmakers et al.  improved the accuracy of the 1D model 

by considering mixed ionic/electronic conductivity in the positive electrode, electrical double layers at 

the SE/AM interfaces, and defining the ionic/electronic diffusion coefficient as a function of lithium 

concentration in the AM [88]. With this improved model, they showed that overpotential in the SE is 

the main contributor to the overall voltage losses during discharge, while charge transfer losses are 

another major reason for battery performance losses in addition to electrical double layer losses at the 

SE/AM interface and diffusion in the positive electrode [88]. In terms of the SE, all the aforementioned 

models are based on a binary electrolyte assumption and electro-neutrality in the SE; Wolff et al. tried 

to elucidate fundamental differences between single-ion and binary conducting electrolytes by 

implementing a pseudo-two dimensional (P2D) single-ion model [89]. They demonstrated that a single-

ion conduction cell produces higher capacity by exhibiting less voltage losses within the electrolyte. 

This makes the single-ion a better alternative to binary electrolytes specifically for high current and 

high energy (thick electrode) applications. In terms of the ASSB electrode design and microstructures, 

further investigation of the effects of electrode geometry and homogeneity is critical to identifying the 

optimal electrode structure [89]. Bates et al. developed a 2D model for ASSBs to obtain lithium 

concentration and voltage profiles using simplified rectangle shapes [90]. Clancy et al. compared the 

performances of ASSBs with three structures (thin film, 3D core-shell, and 3D electrodes) and showed 

that implementing 3D nanostructures can effectively enhance the areal energy and power density 

compared to a thin-film electrode [91]. Although these models can simulate the charge/discharge 

performance, they cannot describe in detail the physical and electrochemical behavior of the ASSB; 

specifically, they fail to describe the effects of electrode microstructure’s heterogeneity on the lithium-

ion transport within the SE and AM, as well as their interface.  
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One way to investigate the physical and electrochemical behavior of ASSBs is to use the 3D 

reconstructed geometry of the ASSB electrode instead of simplified 1D or 2D geometries. Among 

electrode imaging techniques, a non-destructive CT imaging technique is widely utilized to characterize 

the physical and morphological properties of the electrode including directional tortuosity, porosity, 

particle size distribution, and specific surface area [28, 30-32]. For instance, Banerjee et al. investigated 

the effects of compression on the permeability, diffusivity, and pressure drop using CT images [92]. 

They showed that the compression resulted in a 58% reduction in permeability and a 25% reduction in 

diffusion [92]. However, there are only a few studies that have been done on the 3D reconstructed 

microstructure of ASSBs [21, 22, 93, 94]. Li et al. reconstructed the real 3D geometry of an ASSB 

using synchrotron transmission X-ray microscopy tomography [22]. They showed that particle-based 

ASSBs have a critical SE/AM interfacial issue that highly influences the lithium-ion transport and 

intercalation reaction rate, causing low capacity, poor rate capability, and cycle life [22]. Tippens et al. 

used in-situ CT to investigate the SE/lithium metal electrode interface during cycling [93]. They 

demonstrated that fracture formation is the main reason for the impedance increase during cycling [93]. 

Choi et al. reconstructed an ASSB composite cathode with FIB-SEM to analyze its physical properties 

including volume ratio, connectivity, tortuosity, and pore formation [21]. Later, they analyzed the 

electrochemical lithiation/delithiation inside ASSB composite cathodes with 3D atom-probe 

tomography [94], showing that poor SE/AM contact triggers significant lithium-ion variation during 

lithiation/delithiation [94].  

Overall, there is a knowledge gap in understating the SE/AM interface that hinders the further 

development of ASSBs [15]. 3D reconstructed microstructures can be used as the model geometry 

along with a multi-physics modeling framework to provide quantitative insights about the mechanical 

and electrochemical behavior of ASSBs. To the best of the authors’ knowledge, there is no multi-

physics model developed for ASSBs based on the 3D reconstructed electrode. In the presented study, 
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a multi-physics model is developed for ASSBs based on the reconstructed 3D morphology of electrodes 

for an ASSB. The model includes charge transfer kinetics at the SE/AM interface, diffusion and 

migration in the SE, and diffusion in the AM in the reconstructed 3D morphology of the three-phase 

electrode. The model is then employed to investigate the effect of compression on the ASSB behavior. 

In this way, the model is simulated for two different reconstructed geometries, obtained from electrodes 

fabricated under two different pressing pressures. This paper is structured in the following fashion: 

first, the electrode fabrication, synchrotron transmission X-ray microscopy (TXM) imaging techniques, 

and three-phase electrode reconstruction are discussed. The ASSB was processed and reconstructed by 

the AvizoTM software package. Then, the modeling steps, morphological analysis, governing equations, 

and geometry selection are presented. The 3D modeling framework is implemented in Comsol 

Multiphysics 5.4. Finally, the simulation results are shown and discussed with concluding remarks. 

4.2 Experimental 

4.2.1 Material Synthesis and Electrode Fabrication  

Li1.3Ti1.7Al0.3(PO4)3 (LTAP) was synthesized using aluminum oxide (Al2O3), titanium dioxide (TiO2), 

lithium carbonate (Li2CO3), and ammonium dihydrogen phosphate ((NH4)2H2PO4). The solid mixture 

was ground and heated, then ball milled for 6 hours, reheated for 2 hours, and again ball milled for 12 

hours to obtain the final LTAP powder. The all-solid-state electrode is fabricated using 

Li(Ni1/3Mn1/3Co1/3)O2 (NMC) as the AM, Super-P carbon as the electron conductor, and LTAP as the 

SE with a mass ratio of 47:6:47 (wt %). Then, the electrode was pressed under two different pressing 

pressures (700 psi and 1300 psi) to modify the porosity and interfacial contact of the SE and AM [22, 

95].  
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4.2.2 TXM Tomography 

TXM within the Advanced Photon Source (APS) facility at Argonne National Laboratory was 

employed to obtain the morphological data of the three-phase electrode. A 8 keV beam was utilized to 

capture the images by rotating the sample for 180º with 2 s exposure time at each rotational step 

increment (0.25º). A total of 1000 virtual 2D slices were reconstructed. The 3D reconstructed volume 

was 700 × 700 × 1000 voxels with 58.2 × 58.2 × 58.2 nm3 voxels resolution. The electrodes were 

fabricated and imaged at two pressing pressures, where external pressing pressure directly affects the 

physical properties of the electrode. Figure 4-1a-c shows the representative 2D slice images of the 

electrode fabricated under 700 psi and 1300 psi pressure, respectively. The white domain represents 

the AM, the gray is the SE and the black domain is the void space. AvizoTM was used for the 

segmentation of AM, SE, void spaces, and reconstruction of the three-phase electrode. Firstly, to reduce 

the noise of images, a median filter was applied. This filter is an effective way to remove impulse 

noises. Then, a de-blur filter was used to increase the contrast between phases. Segmentation with two 

thresholds, one separating the pore and SE phases and the other separating the AM and SE causes the 

formation of a thin layer of SE at the SE/AM interface. This very thin layer of SE is due to the grayscale 

gradient and is not realistic. Therefore, a dilation algorithm was used to replace the SE thin layer with 

the extension of the AM which has less than 5 pixels thickness and causes negligible error owing to the 

comparatively large size of the AM particles. The same thresholds were used for both pressing 

pressures. Finally, the 3D morphologies of the three-phase electrode were reconstructed after dilation. 

Figure 4-1e-g represents the AM phase, SE, and void space resulting from 700 psi pressure and Figure 

4-1h-j represents the same phases after 1300 psi pressure. The super-P carbon volume fraction is 

included in the void phase. Figure 4-1 shows that as the pressing pressure increases, the volume fraction 

of the AM and SE is increased while the fraction of void space is decreased. Later, the effect of external 
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pressing pressure on the electrode physical properties and void space volume fraction will be 

thoroughly discussed.  

 

Figure 4-1 2D CT images of the electrode at two pressing pressures, (a) 700 psi, and (c) 1300 psi. 

3D reconstructed morphology of the electrode at two pressing pressures, (b) 700 psi, and (d) 1300 

psi. (e) AM, (f) SE, and (g) void space at 700 psi. (h) AM, (i) SE, and (j) void space at 1300 psi. 



 

 46 

4.3 Modeling  

4.3.1 Morphological and Transport Properties 

Dd3D reconstructed microstructures of the three-phase electrode at two pressing pressures were 

analyzed to obtain its physical properties including electrode porosity, ԑ, volume-specific surface area, 

a, and directional tortuosity, τ. Tortuosity is defined as the free-space transport decrease caused by the 

electrode geometry and complex ion pathway. The transport problem has a direct analytical solution 

for simple geometries, or finite element/finite difference methods are used for complex geometries [96]. 

Tortuosity is defined as: 

𝝉 = 𝜺𝝈
𝝈𝒆𝒇𝒇⁄ ,                    ( 4-1) 

where 𝜎 is the bulk ionic conductivity in the SE and 𝜎𝑒𝑓𝑓 is the effective ionic conductivity. To obtain 

directional tortuosity, a FEM simulation of potential distribution, 𝜑, using Laplace equation is 

performed on the SE domain: 

𝛁. (𝛁𝝋) = 𝟎.               ( 4-2) 

To obtain the directional tortuosity of the SE for electrodes fabricated under two pressures, and the 

potential of two parallel faces (inlet/outlet) is set to 0 and 1 and the rest of the faces are set to zero flux. 

Then, J, the areal flux at the inlet/outlet can be calculated based on integration over the inlet/outlet 

boundary (S) by: 

𝐉 = ∫  𝝈
𝝏𝝋

𝝏𝒙𝒊
𝒅𝒔

𝑺
,               ( 4-3) 

and  𝜎𝑒𝑓𝑓 is calculated by: 

 𝝈𝒆𝒇𝒇 =
𝑱

𝑨

𝑳

∆𝝋
,                 ( 4-4) 
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where A is the perpendicular cross-section area, L is the distance between inlet and outlet, and ∆𝜑 is 

the potential difference, which is set to 1. If we substitute Eq. (3) and (4) into (1), the directional 

tortuosity can be calculated by: 

𝝉𝒊 =
𝜺 𝑨

𝑳 ∫
𝝏𝝋

𝝏𝒙𝒊𝑺

 .                ( 4-5) 

Eq. (5) shows that directional tortuosity is not a function of the domain ionic conductivity. The 

Bruggeman correlation is widely used in various fields [96] to estimate the tortuosity of porous media; 

it estimates 𝜏 as a function of porosity [97] by:  

𝝉 = 𝜺−𝟎.𝟓.                 ( 4-6) 

This correlation is based on solving the diffusive transport problem by considering either spheres or 

cylinders as transport obstructions. However, the accuracy of the Brugemann relation has been 

questioned for complex microstructures [96]. To be able to compare the directional tortuosities obtained 

from the reconstructed geometries by the Brugemann tortuosity, the characteristic tortuosity is 

suggested based on directional tortuosities by [98]: 

𝝉𝒄 = 𝟑[𝝉𝒙
−𝟏 + 𝝉𝒚

−𝟏 + 𝝉𝒛
−𝟏]−𝟏,              ( 4-7) 

 

where τx, τy, τz are directional tortuosities obtained by Eq. (5). 

4.3.2 Governing Equations 

The model governing equations include the charge transfer kinetics at the SE/AM interface, diffusion 

and migration of ions in the SE, and diffusion of ions in the AM. The equations consist of five unknown 

variables 𝑐𝐿𝑖, 𝑐𝐿𝑖+, 𝑐𝑛−, 𝜑𝑠, and 𝜑𝑆𝐸 which represent lithium concentration in the AM, lithium-ion 

concentration in the SE, negative charge concentration in the SE, AM potential, and SE potential, 

respectively; these are determined by solving mass and charge transport equations in the AM and SE 
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domains and considering the electro-neutrality condition in the SE (Figure 4-2). The equations are 

implemented on the three-phase reconstructed structure of the ASSB to obtain the electrochemical 

property distributions in the real microstructure as well as the voltage profiles. As mentioned 

previously, in ASSBs the SE facilitates ion conduction. The ionic conductivity of the SE is generally 

several orders of magnitude lower than common liquid electrolytes [99]. Therefore, it is assumed that 

all electrochemical reactions occur at the SE/AM interface [86]. Fick’s mass transport law is used to 

describe the lithium diffusion in the AM domain as [100, 101]: 

𝑱𝑳𝒊 = −𝑫𝑳𝒊𝛁𝒄𝑳𝒊,              ( 4-8) 

𝝏𝒄𝑳𝒊

𝝏𝒕
= −𝛁. 𝑱𝑳𝒊,                          

( 4-9) 

where  𝐷𝐿𝑖 , 𝐽𝐿𝑖, 𝑐𝐿𝑖 are the diffusion coefficient of lithium, lithium flux, and lithium concentration in 

AM, respectively. On the SE/AM interface, the reaction is described using Butler-Volmer kinetics: 

𝒊𝒑𝒐𝒔 = 𝒊𝟎,𝒑𝒐𝒔(𝒆
𝜶𝒑𝒐𝒔𝑭𝜼

𝑹𝑻 − 𝒆−
(𝟏−𝜶𝒑𝒐𝒔)𝑭𝜼

𝑹𝑻
)
,              ( 4-10) 

𝒊𝟎,𝒑𝒐𝒔 = 𝑭𝒌𝒑𝒐𝒔 (
(𝒄𝑳𝒊,𝒎𝒂𝒙−𝒄𝑳𝒊)𝒄𝑳𝒊+

(𝒄𝑳𝒊,𝒎𝒂𝒙−𝒄𝑳𝒊)𝒄𝑳𝒊+,𝟎 

)
𝜶𝒑𝒐𝒔

(
𝒄𝑳𝒊−𝒄𝑳𝒊,𝒎𝒊𝒏

𝒄𝑳𝒊,𝒎𝒂𝒙−𝒄𝑳𝒊,𝒎𝒊𝒏
)

𝟏−𝜶𝒑𝒐𝒔

,           ( 4-11) 

where 𝑐𝐿𝑖,𝑚𝑎𝑥 and 𝑐𝐿𝑖,𝑚𝑖𝑛 are the maximum and minimum of the lithium concentration in AM, and 

𝑖𝑝𝑜𝑠, 𝑖0,𝑝𝑜𝑠, 𝑘𝑝𝑜𝑠, 𝛼𝑝𝑜𝑠, and F are the current density, exchange current density, the reaction rate 

constant, apparent transfer coefficient, and Faraday’s constant, respectively. The AM potential can be 

calculated by: 

𝒊𝒑𝒐𝒔 = −𝝈𝒑𝒐𝒔𝛁𝝋𝒔,             ( 4-12) 

where 𝐸𝑒𝑞 is the open circuit potential, and 𝜑𝑆𝐸, 𝜑𝑠, and 𝜎𝑝𝑜𝑠 are the SE potential, AM potential, and 

conductivity of solid active material, respectively. In the SE, the chemical reaction is:  

𝑳𝒊𝟎 ↔  𝑳𝒊+ + 𝒏−,           ( 4-13) 
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where bonded lithium (𝐿𝑖0) is transferred to a lithium-ion and releases a negative charge [86]. 𝑘𝑑  is 

defined as the dissociation rate of this reaction and the inverse reaction rate is defined as 𝑘𝑟. Therefore, 

the overall reaction is [86]: 

𝒓𝒅 =  𝒌𝒅𝒄𝑳𝒊𝟎 − 𝒌𝒓𝒄𝑳𝒊𝒄𝒏− ,            ( 4-14) 

𝒄
𝑳𝒊+
𝒆𝒒

= 𝒄𝒏−
𝒆𝒒

= 𝛅𝒄𝟎,                     ( 4-15) 

where δ is the fraction of the total dissociated lithium at equilibrium and  𝑐
𝐿𝑖+
𝑒𝑞

, 𝑐𝑛−
𝑒𝑞

, and 𝑐0 are the 

lithium-ion concentration at equilibrium, negative charge concentration at equilibrium, and total lithium 

concentration in the SE, respectively. Transport of lithium-ions and negative charges in the SE are 

modeled by the Nernst-Planck equation [88]:  

𝝏𝒄𝒊

𝝏𝒕
+ 𝛁. 𝑱𝒊 = 𝒓𝒅,              ( 4-16) 

𝑱𝒊 = −𝑫𝒊𝛁𝒄𝒊 +
𝒛𝒊𝑭

𝑹𝑻
𝑫𝒄𝒊𝛁𝝋𝑺𝑬,            

( 4-17) 

where 𝑧𝑖 and 𝐷𝑖  are the species’ charge and diffusivity, respectively. The electro-neutrality condition 

implies that, at any time in the SE, 𝑐𝐿𝑖+ = 𝑐𝑛−. Faraday’s law is used to couple the flux at the interface 

of the SE and AM as: 

𝑱𝒏 =
𝒊𝒑𝒐𝒔

𝑭
,                ( 4-18) 

where n is the normal unit vector to the interface and 𝐽𝑛 is the lithium mass transport flux at the SE/AM 

interface. At all SE cube sides, ∇𝜑 = 0 𝑎𝑛𝑑 ∇𝑐 = 0. Each of the transport processes has a contribution 

to the total overpotential [102]. The concentration overpotential in AM is [86]: 

𝜼𝒄 = 𝝋𝒑𝒐𝒔 − 𝝋𝒑𝒐𝒔
𝒆𝒒

,              ( 4-19) 

where 𝜑𝑝𝑜𝑠 and 𝜑𝑝𝑜𝑠
𝑒𝑞

 are the AM potential and potential at equilibrium. Kinetic overpotential at the 

SE/AM and Ohmic overpotential in SE are derived by [102]: 
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𝜼𝒌 =
𝟏

𝑨𝒊𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆
∫ 𝜼𝑩𝒖𝒕𝒍𝒆𝒓−𝑽𝒐𝒍𝒎𝒆𝒓 𝒅𝑨𝒊𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆,            ( 4-20) 

𝜼𝝉 = ∆𝝋𝑺𝑬,               ( 4-21) 

where 𝐴𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒  is the SE and AM interface area and 𝜑𝑆𝐸 is the SE potential. 

 

4.3.3 RVE Selection 

It should be noted that using the whole 3D reconstructed electrode morphology as the model geometry 

would be computationally expensive. One way to address this issue is to use a representative volume 

element (RVE) instead of the whole electrode structure. RVE is a sub-volume of the whole electrode 

that has the same measured property values compared to the whole electrode with negligible error [103].  

The SE, AM, and pore volume fractions and volume specific surface area of the AM are calculated 

to figure out the size of RVE. The three-phase volume fractions for the whole domains with seven 

different volume sizes are presented in Table 4-1 for two pressing pressures. Table 4-1 shows that the 

SE, AM, and pore volume fractions for an RVE size of 7097 μm3 and larger are similar to the whole 

electrode (within 2% error). Accordingly, the smallest suitable RVE size would be 7097 μm3; however, 

to minimize the error of selecting a specific region of the geometry, the electrochemical performance 

Figure 4-2 Modeling framework 
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simulation and morphological analysis were modeled on a sub-volume geometry with the dimension 

of 400 × 400 × 400 Voxels (12617 μm3) (Figure 4-3), i.e., all represented 3D morphologies in the 

following figures have 400 × 400 × 400 voxels; current density direction and current collector 

illustrated in Figure 4-3c. The simulations were conducted on CMC compute cad cluster with 8 nodes 

delivering 8.6 TFLOPS. The running time for each simulation varies from 2 to 4 hours. 
 

 

Figure 4-3 3D reconstructed RVEs of the ASSB at (a) 700 psi, and (b) 1300 psi pressing pressure; 

yellow, red, and grey colors represent the SE, AM, and void space, respectively, and (c) current 

collector and current density direction. 

Table 4-1 The Volume fraction of different phases of the reconstructed 3D geometry at two 

pressing pressures. 

Pressing pressure 700 psi 

Total Volume (μm3) 19714 15968 12617 9660 7097 4929 3154 

Volume specific surface area (1/μm) 0.522 0.531 0.554 0.562 0.583 0.593 0.612 

Solid Active material (%) 
28.1 27.6 27.9 29.3 29.2 27.1 27.2 

Solid Electrolyte (%) 
44.9 45.1 44.5 43.2 43.3 57.6 60.5 

Pore (%) 
27.0 27.3 27.6 27.5 27.5 15.3 12.3 

 

Pressing pressure 1300 psi 

Total Volume (μm3) 19714 15968 12617 9660 7097 4929 3154 

Volume specific surface area (1/μm) 0.617 0.622 0.631 0.642 0.648 0.652 0.664 

Solid Active material (%) 
28.1 27.8 28.7 27.7 28.2 27.4 19.3 

(c)) (a)) (b)) 
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Pressing pressure 700 psi 

Solid Electrolyte (%) 
52.6 53.2 51.5 53.8 53.1 55.1 60.6 

Pore (%) 
19.3 20.0 19.8 18.5 18.7 17.6 20.1 

4.4 Results and Discussion  

To investigate the heterogeneity and isotropy of the electrode’s microstructure, tortuosities of the SE 

domain were estimated and compared in different directions using the method presented in the 

modeling section. The directional, characteristic, and Bruggeman tortuosities are presented in Table 

4-2. The characteristic tortuosity, τc is obtained using Equation (4-7) and the Bruggeman tortuosity is 

calculated with Equation (4-6) where 𝜀 is equal to the SE volume fraction. The Bruggeman tortuosity, 

obtained based on a  geometry of equally sized spheres, is slightly lower than the characteristic tortuosity 

due to its neglecting of the heterogeneous structure. Furthermore, lower tortuosity of the electrode with 

higher pressing pressure verifies that higher pressing pressure leads to less void space and consequently 

less ionic transport resistance through the SE; i.e., in this case, higher pressing pressure causes 26.8% 

less void space in the electrode and consequently 11.1% less tortuosity and 36.9% higher volume 

specific surface area. 

Table 4-2 Directional tortuosities based on 3D reconstructed geometry and implementing heat 

transport analogy. 

 700 psi 1300 psi 

In-plane directional tortuosity, τx 1.53 1.52 

In-plane directional tortuosity, τy 1.54 1.40 

Through-plane directional tortuosity, τz 1.8 1.38 

Characteristic tortuosity, τc 1.61 1.43 

Bruggeman tortuosity, τB 1.50 1.39 

 

Although 1D models [86, 87] can predict the voltage-capacity performance by considering 

macroscale geometry, they fail to describe the variation of physical and electrochemical properties 
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inside the heterogeneous electrode structure. To obtain the spatial distribution of physical and 

electrochemical properties inside the electrode microstructure including lithium concentration, current 

density, and potential, the presented model in the modeling section is simulated on the 3D reconstructed 

electrode structures (Figure 4-3). Moreover, to investigate the effect of the external pressing pressure 

on the physical and electrochemical phenomena, the electrode structures fabricated under two pressures 

of 700 and 1300 psi are considered. 

To validate the accuracy of the developed model, the simulation results are compared against the 

experimental cycling performance of an ASSB with LTAP as SE and LiMn2O4 as AM for which 

experimental performance data was available [95]. Figure 4-4a shows the modeling performance 

against the experimental data for galvanostatic charging at 0.1 C current rate. The model/experiment 

comparison shows relatively good agreement. Table 4-3 shows the parameters used to simulate the 

modeling result in Figure 4-4.  𝐷𝐿𝑖 , the diffusion coefficient for lithium in the AM, 𝐷𝐿𝑖+, the diffusion 

coefficient for lithium-ions in the SE, and 𝐷𝑛−, the diffusion coefficient for n− in the SE are considered 

the model adjustable parameters and determined to be 1.76 × 10−13 𝑚2𝑠−1, 0.9 × 10−13 𝑚2𝑠−1, and 

5.1 × 10−13 𝑚2𝑠−1, respectively, by comparing the simulation results against the experimental data. 

The considered diffusion coefficient values in the presented model are in the range of reported values 

in literature (10-16 -10-12 m2 s-1) [99, 104, 105]. Additionally, to verify the validity of the developed 3D 

model, the discharge performance is compared with the available 1D model [86] using the same model 

parameters presented in Table 4-3. In order to scale the volumetric current source term for the 1D 

model, 𝑖1𝐷 =
𝑎

𝑎0
𝑖3𝐷, where 𝑎 is the volume specific area obtained by reconstructed morphology (Table 

4-1) and 𝑎0 is the volume specific area for the 1D model. At various current rates, 3D and 1D models 

have almost identical voltage profiles; however, the 3D model predicts slightly higher ohmic resistance 

due to included electrode microstructure in the model geometry (Figure 4-4b).  
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Table 4-3 Model Parameters 

Parameter Unit Estimated Value Description 

𝒂𝟎 𝑚𝑜𝑙 𝑚−3 6.01 × 104 [86] Total activity of Li atoms in SE matrix  

𝒌𝒓 𝑚3𝑚𝑜𝑙−1𝑠−1 0.9 × 10−8 [86] Lithium-ion recombination reaction rate 

δ - 0.18 [86] Fraction of free lithium-ion in equilibrium 

𝑫𝑳𝒊+ 𝑚2𝑠−1 0.9 × 10−13  Diffusion coefficient for lithium-ion in the SE (LTAP) 

𝑫𝑳𝒊  𝑚2𝑠−1 1.76 × 10−13  Diffusion coefficient for lithium in AM (NMC) 

𝑫𝒏− 𝑚2𝑠−1 5.1 × 10−13  Diffusion coefficient for 𝑛− in the electrolyte 

𝒂𝒑𝒐𝒔
𝒎𝒂𝒙 𝑚𝑜𝑙 𝑚−3 2.33 × 104 [86] Maximum activity of the lithium in the positive 

electrode 
𝜶𝒑𝒐𝒔 - 0.6 [86] Charge transfer coefficient in the positive electrode 

𝒌𝒑𝒐𝒂 𝑚𝑜𝑙 𝑚−2𝑠−1 5.1 × 10−6 [86] Rate constant charge transfer positive electrode 

L μm 14.33  Thickness of the SE (for 1D model) 

M μm 8.95  Thickness of the AM (for 1D model) 

 

 

Figure 4-4 (a) Comparison of the modeling (line) and experimental data set (dots), and (b) 

comparison of the 3D developed model with 1D Model based on ref. [13]. 

 

(b) (a) 
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After validating the developed model, the model is employed to predict the galvanostatic discharge 

performance of the ASSB with NMC as the active material. To demonstrate the effect of different 

pressing pressures during electrode fabrication on the ASSB behaviors, the simulation results are 

conducted on the reconstructed RVEs with two pressing pressures, (Figure 4-3). Applying external 

pressing pressure causes lower void space volume fraction and leads to more homogenous distribution 

of electrochemical properties. Although the high external pressure would increase the contact area 

between the SE and active materials by decreasing the void space fraction, it can damage the SE due to 

its brittle nature [106]. However, the capacity of the cell with different pressing pressures is almost the 

same at various C-rates; Figure 4-5a shows that there is a higher ohmic loss at lower pressing pressure 

that could be attributed to poor SE/AM contact and higher interfacial resistance. Figure 4-5b illustrates 

the contribution of the various overpotential components during discharging at 3.2 C and 12.8 C for the 

electrode with a 700 psi pressing pressure. Remarkably, concentration overpotential within the AM has 

the largest contribution at the end of discharge due to the steep concentration gradient of lithium. During 

the discharge, Ohmic overpotential in SE has a considerable contribution; whereas, imperfect SE/AM 

interface leads to a large kinetic overpotential at the beginning of the discharge process. On the other 

hand, at high discharge current rate (12.8 C), the kinetic overpotential contribution becomes larger, and 

ohmic overpotential contribution is less than 3.2 C discharge rate.   

1D models are based on macro-sized geometries (a 1D line) and do not consider the effect of 

microstructure on the electrochemical property distribution [85, 86, 88]. However, these assumptions 

are not valid for real ASSB cells, which have an inhomogeneous microstructure with AM particles of 
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different sizes and shapes and random void space formations. Even though the 1D models can 

successfully predict the capacity performance, they fail to predict the physical and electrochemical 

property variations which may cause cell degradation [102, 107]. The key advantage of using 

reconstructed morphologies in this study is to visualize the heterogeneities inside the SE and AM which 

can contribute to electrode degradation. The presented study sheds light on the spatial distribution of 

electrochemical properties in ASSBs and specifically the effects of pressing pressure on the cell 

performance and physical and electrochemical behaviors of the cell.  

 

Figure 4-5 (a) Effect of external pressing pressure on the galvanostatic discharge performance of 

the ASSB at various current rates, and (b) overpotentials in the composite electrode under 700 

psi pressing pressure at two current rates. 

Figure 4-6a-c and d-f show the lithium distribution in the AM at various state of charges (SOCs) 

during galvanostatic discharge at 3.2 C for two pressing pressures of 700 and 1300 psi, respectively. 

During discharge, the average lithium concentration in the AM is higher at higher pressing pressure 

which verifies that increasing pressure facilitates lithium-ion transport inside the AM. Figure 4-6g-l 

presents lithium concentration histograms for two pressures; this demonstrates that higher pressure 

(a) (b
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leads to more uniform lithium distribution inside the AM. At 0.7 SOC for 700 psi pressing pressure, 

there is a wider range of lithium distribution inside the AM, with lithium concentrations in the range of 

14200-16200 (mol.m-3) at 700 psi compared to 14400-15400 (mol.m-3) at 1300 psi (Figure 4-6g-l). In 

addition, Figure 4-6a-f shows that smaller particles have higher lithium concentrations due to their 

higher specific surface areas, comparable with previous heterogeneous study with liquid electrolyte 

[26, 100]. The dashed lines in Figure 4-6 histograms represent the concentration value of the 

homogenous Danilov 1D Model [86]. Since the homogenous model does not consider the 

microstructure of the electrode, it cannot predict the distribution range of lithium concentration; 

however, the homogenous model result is close to the average value of the lithium concentration 

simulated with this 3D model. 

The lithium-ion distribution in the SE is presented in Figure 4-7. To show the lithium-ion gradient 

inside the SE, the lithium-ion distribution is illustrated on two cross-section planes. There are some 

specific points with higher lithium-ion concentration adjacent to the void spaces since void spaces block 

the lithium-ion path and cause non-uniform lithium-ion distribution (Figure 4-7a-f). A similar trend 

was reported in a previous ASSB microstructural study [108]. At lower pressing pressure of 700 psi, 

the electrode has 16% less SE and 28% more void space compared to the electrode at 1300 psi. This 

leads to a 56% larger range of lithium-ion distribution in the SE at 700 psi compared to 1300 psi. At 

700 psi, the lithium-ions distribute in the range of 8000-15000 (mol.m-3) compared to the range of 9500-

13000 (mol.m-3) at 1300 psi. This larger range of lithium-ion concentration at low pressing pressure 

may cause non-uniform expansion/contraction and consequently stress formation in the cell, which can 

cause cell performance degradation (Figure 4-7a-f g-l). The lithium-ion concentration based on the 1D 

model (dashed line) is almost constant over the discharge, while lithium-ion histograms of the 3D 

models illustrate the variation of lithium-ion concentration during discharge.  
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Figure 4-6 Lithium concentration in the AM phase with two pressing pressures: (a-c) 700 psi, 

(d-f) 1300 psi at 3.2C current rate, and various SOCs. Histogram representing the lithium 

concentration in the AM with two pressing pressures: (g-i) 700 psi, (j-l) 1300 psi 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

SOC=0.7     SOC= 0.4                    End of discharge 
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Figure 4-7 Lithium-ion concentration in the SE with two pressing pressures:  (a-c) 700 psi, (d-f) 

1300 psi at 3.2C current rate, and various SOCs. Histogram representing the lithium-ion 

concentration with SE two pressing pressures: (g-i) 700 psi, (j-l) 1300 psi during galvanostatic 

discharge (3.2C) at various SOCs. Dashed lines represent the 1D model 

SOC=0.7                       SOC= 0.4           End of discharge 

(g) (h) (i) 

(j) (k) (l) 

(a) (b) (c) 

(d) (e) (f) 
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At higher current rates, structural heterogeneity has a stronger effect on the physical and 

electrochemical property distributions [28]. To investigate the effect of pressing pressure at high 

currents, the lithium concentration distribution in the AM and lithium-ion distribution in the SE at 12.8 

C current rate are presented in Figures Figure 4-8 and Figure 4-9, respectively. Comparing Figure 4-6g 

with Figure 4-8g, it is noticeable that at the higher current rate the lithium distribution has a 240% wider 

range at the low pressing pressure where more void spaces and higher tortuosity cause non-uniform 

lithium distribution in the AM. Comparing lithium-ion distribution in the SE at 3.2 C (Figure 4-7) and 

12.8 C (Figure 4-9), a lithium-ion concentration gradient is established along the lithium-ion transport 

direction and has a wider range at the higher current rates and lower pressing pressures. Additionally, 

at the high current rate, the lithium concentration range highly deviates from the 1D model results 

(dashed line) due to the complex microstructure of the electrode which is neglected in the 1D model.  

As mentioned, interfacial resistance and specifically void spaces hinder the lithium-ion transport 

[108]. To further investigate this, the SE potential and current density distribution for the two electrodes 

fabricated under different pressures are presented in Figures Figure 4-10-13. Figure 4-10 shows that at 

700 psi, the potential ranges from -40 mV to 0 mV at the end of discharge which is 2.5 times higher 

than the range of -16 mv to 0 mV at 1300 psi. As illustrated in Figure 4-11, with increasing current rate, 

the electrolyte voltage drop at the end of discharge ranges from -250 mV to 0 mV which is 6.25 times 

higher compared to the voltage drop at 3.2 C; however, at higher pressing pressure increasing the 

current rate has less effect on the SE voltage drop. In fact, the SE voltage drop is the main contribution 

to the ASSBs overpotential [88], and at high current rates, it has a more significant role in determining 

the overpotential distribution. Chemomechanical contraction of AM during delithiation leads to contact 

loss and higher interfacial resistance[109]. Additionally, volume changes during cycling may cause 

crack formation in SE which increase the tortuosity and lead to a capacity fade[110]; however, in the 
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presented model this effect is neglected and the aforementioned imperfect contact in the reconstructed 

morphologies is due to initial pore distribution in the composite electrode.  

Figure 4-12 shows the distribution of current density at the SE/AM interface, where the complex 

microstructure of the electrode causes large current densities within ionic pathways with a small cross-

sectional area perpendicular to the current direction. At high currents, the lithium-ion concentration 

differences in the SE and AM become larger which leads to a higher current density at the SE/AM 

interface. The current density has an inhomogenous distribution with a peak at the neck of a “sandglass” 

microstructure. Specifically, the current density has a wide range of distribution with several peak 

points with a high current density of 24 A m-2 which is almost 2 times the average current density (12.8 

A m-2). In the close-up view shown in Figure 4-13, all of these points are observed to be located near 

sandglass microstructures where there is a limitation on ion transport.   
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Figure 4-8 Lithium concentration in AM phase with two pressing pressures: (a-c) 700 psi, (d-f) 

1300 psi at 12.8C current rate, and various SOCs. Histogram representing the lithium 

concentration in AM with two pressing pressures: (g-i) 700 psi, (j-l) 1300 psi during galvanostatic 

discharge (12.8C) at various SOCs. Dashed lines represent the 1D model values. 

SOC=0.7     SOC= 0.4                   End of discharge 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 
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Figure 4-9 Lithium-ion concentration in SE with two pressing pressures:  (a-c) 700 psi, (d-f) 1300 

psi at 12.8 C current rate and various SOCs. Histogram representing the lithium-ion 

concentration in SE with two pressing pressures: (g-i) 700 psi, (j-l) 1300 psi during galvanostatic 

discharge (12.8 C) at various SOCs. Dashed lines represent the 1D model values. 

SOC=0.7     SOC= 0.4             End of discharge 

(g) (h) (i) 

(j) (k) (l) 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4-10 Potential in SE with two pressing pressures:  (a-c) 700 psi, (d-f) 1300 psi at 3.2C 

current rate, and various SOCs. Histogram representing the SE potential at two pressing 

pressures: (g-i) 700 psi, (j-l) 1300 psi during galvanostatic discharge (3.2C) at various SOCs. 

Dashed lines represent the 1D model values. 

SOC=0.7     SOC= 0.4           End of discharge 

(g) (h) (i) 

(j) (k) (l) 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4-11 Potential in the SE with two pressing pressures: (a-c) 700 psi, (d-f) 1300 psi at 12.8 C 

current rate, and various SOCs. Histogram representing the SE potential at two pressing 

pressures: (g-i) 700 psi, (j-l) 1300 psi during galvanostatic discharge (12.8 C) at various SOCs. 

Dashed lines represent the 1D model values. 

SOC=0.7     SOC= 0.4                    End of 

discharge 

(g) (h) (i) 

(j) (k) (l) 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4-12 Current density at SE/AM interface at (a) 700 psi pressing pressure, and the end of 

discharge, at 3.2 C current rate, (b) 700 psi pressing pressure, and the end of discharge, at 12.8 

(g) (h) 

(a) (b) 

(c) (d) 

(e) (f) 



 

 67 

C current rate, (c) 1300 psi pressing pressure, and the end of discharge, at 3.2 C current rate, (d) 

1300 psi pressing pressure, and the end of discharge, at 12.8 C current rate. (e-h) Histogram 

representing the SE/AM interface current density at (a-d) conditions, respectively.  Dashed lines 

represent the 1D model values. 

 

 

Figure 4-13 A close-up view of the current density distribution at the SE/AM interface at 700 

psi pressing pressure, (a) 3.2 C current rate, and (b) 12.8 C current rate. The highest current 

density occurs near void spaces. 

  

(a) 

(b) 
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4.5 Conclusions 

In this study, the first 3D multi-physics simulation of ASSBs based on reconstructed X-ray CT images 

was accomplished. The imaging was conducted using 58.2 nm resolution synchrotron TXM for two 

electrodes with different external pressing pressures to investigate the effects of compression on the 

physical and electrochemical property behaviors. The SE’s resistance to ion transport was quantified 

by estimating the SE tortuosity using a heat transport analogy. The simulation showed that higher 

pressing pressure causes 26.8% less void space in the electrode and consequently 11.1% less tortuosity 

and 36.9% higher volume specific surface area. Void spaces block the lithium-ion pathways in the SE 

and cause resistance in the electrode, which may lead to performance loss.  

The main advantage of the 3D heterogeneous model with a reconstructed microstructure compared 

to the homogenous models with averaged values for the physical parameters is that a better 

understanding of the effects of microstructure on the cell performance can be achieved, allowing for a 

comprehensive assessment of the performance barriers, specifically the SE/AM interface challenge. 

For instance, the simulation showed that the lithium-ions in the SE and AM have an inhomogenous 

distribution specifically at lower pressing pressures which may cause cell degradation. Comparing 

homogenous 1D and heterogeneous 3D model results demonstrated that, although the predicted voltage 

profiles are almost identical, the 3D model predicts higher ohmic losses due to the consideration of the 

electrode microstructure. Notably, at high current rates, the heterogeneity has a higher impact on the 

electrochemical property distributions where lithium-ion concentrations have a wider distribution 

range. The SE voltage drop distribution analysis depicted that at low pressing pressure the SE voltage 

drop is about twice that at high pressing pressure. It was also shown that in addition to the AM particle 

shape, which has a significant effect on current density distribution at the interface with the SE, the 

void spaces also play a critical role, i.e. current density peaks happen at the neck of sandglass 

microstructures and least near void spaces. Overall, the presented 3D heterogeneous model sheds light 
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on all aforementioned ASSBs’ critical challenges and is a useful tool to address the effects of 

microstructural heterogeneity on cell behavior.  
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Chapter 5 

Chemo-mechanical Modeling of Stress Evolution in All-Solid-State 

Lithium-Ion Batteries Using Synchrotron Transmission X-ray 

Microscopy Tomography 

5.1 Introduction 

The widespread adoption of electric vehicles (EVs) highly relies on the development of high-

performance electrochemical energy storage systems. In past years, conventional lithium-ion batteries 

(LIBs) are commonly used to power the EVs, although these batteries still face critical challenges such 

as the flammability of organic liquid electrolyte, limited operating temperature and voltage range, and 

limited capacity. All-solid-state lithium-ion batteries (ASSBs) is a promising alternative to overcome 

the aforementioned drawbacks by employing an inflammable solid electrolyte (SE). They present less 

safety concerns and can facilitate high energy density cells by incorporating a Li metal anode. Despite 

the invaluable advantages of ASSBs, a multitude of factors need to be addressed. For instance, SEs, 

especially polymer solid-state electrolytes (SPEs), have poor ionic conductivity (10-6 S.cm-1) and 

interfacial incompatibility among inorganic ASSBs at the SE/active material (AM) interface [43] also 

hinders large scale employment of ASSBs.  

     The SE/AM interfacial contact tremendously impacts the performance of ASSBs, as in contrast to 

liquid electrolytes, the physical mismatch between the two solid phases creates void spaces at the 

interface. In ASSBs, the composite cathode is generally fabricated by mixing the SE, AM, and a 

conductive agent. The composite microstructure and morphological properties depend on the mixing 

conditions, such as the external pressing pressure and temperature [43] while poor interfacial contact 

limits the lithium-ions transport pathways. Moreover, AM particle volume changes during 

lithiation/delithiation can lead to local stress build up in the microstructure, fracture propagation, and 

capacity fading [44]. Therefore, microstructure design is highly critical in ASSBs in comparison to 
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liquid electrolyte cells, where liquid electrolyte penetrates the porous electrode and the interfacial 

contact is not a remarkable issue. Most of the common cathode AMs expand during lithiation; although 

this volume change is negligible compared to that observed in alloy-based anode AMs, it is critical in 

ASSBs due to the solid/solid nature of the SE/AM interface. In other words, while liquid electrolyte 

cells can accommodate slight volume expansions of the cathode AM, for SE cells even minor volume 

changes could cause particle fracture and eventually pulverization [45].  Therefore, further investigation 

of the interfacial contact of ASSBs is crucial, since continuous expansion/contraction over the cycling 

of a cell can exacerbate the interfacial resistance and stress evolution.  

The main sources of interfacial resistance at the SE/AM interface are the poor physical contact of the 

SE and AM [111], electrochemical instability of the SE/AM interface during cycling, and chemo-

mechanical strain at the interface due to volume changes [112]. One of the effective approaches to 

improve poor contact in ASSBs is to optimize the external pressing pressure during the fabrication 

process [113]. The stress measurement techniques in ASSBs are generally categorized in the 

experimental method: employing multi-beam optical stress sensor (MOSS) which correlate the 

stress/strain in a thin film to its curvature during cycling [114, 115], finite element method (FEM): 

developing an electrochemical-mechanical model to compute the stress/strain by solving transport 

equations in the microstructure [116], and analytical approach, to calculate the stress evolution in 

ASSBs. It is worth noting that conducting in situ experiments on the SE/AM in ASSBs is difficult and 

time-consuming, whereas computational modeling can shed light on SE/AM morphological and 

electrochemical behavior and provide invaluable insights about ASSBs microstructural design [117].  

There are a number of studies on the computational measurement of stress/strain in ASSBs available 

in the literature, which are mostly focused on  1D thin film[43, 118], or 2D planar geometries [116, 

119, 120]. For instance, Bucci et al. developed the first quantitative analysis of ASSBs mechanical 

reliability by considering diffusion-induced volume changes. They reported that SEs with a low 
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stiffness  are more likely to have micro-cracks due to their large deformation [116]. Moreover, Tian et 

al. developed a FEM-based electrochemical-mechanical model to evaluate stress in ASSBs. They 

reported that SE decomposition also causes volume change and consequently stress/strain formation in 

addition to diffusion-induced expansion [119]. It worth noting that they assumed an ideal physical 

contact at the SE/AM interface, although as discussed earlier, practical ASSBs, do not have complete 

interfacial contact. Recently, Yu et al. studied the deformation and stresses in the ASSB electrode by 

employing a virtual polycrystalline microstructure. They investigated the sintering and lithiation 

induced stress in the microstructure [121]. However, they assumed complete wettability of the SE while 

in realistic reconstructed microstructure of ASSBs, void space distribution has a remarkable effect on 

the electrochemical properties [117] and consequently on the lithiation induced stress. 

To accurately portray the effect of morphology on the stress/strain evolution in ASSBs, the 3D 

reconstructed microstructure can be a prominent solution. Among various ex-situ imaging techniques, 

computed tomography (CT) is commonly used for LIBs to reconstruct 3D morphology based on 2D 

CT images [26, 27]. Employing CT reconstructed morphology can shed light on the spatial distribution 

of physical and electrochemical parameters such as lithium concentration, current density, and 

overpotential within the SE and AM phase [117]. Therefore, integrating a chemo-mechanical model for 

diffusion-induced stress modeling in ASSBs with 3D reconstructed morphology can provide invaluable 

insights regarding the stress/strain distribution at the SE/AM interface.  

In this work, a chemo-mechanical model was implemented on 3D reconstructed ASSB morphologies 

fabricated under two different external pressing pressure for the first time. The primary goal is to shed 

light on the effect of the imperfect solid/solid interfacial contact of SE/AM on the stress/strain 

formation throughout charge-discharge cycling under a wide range of currents, as well as the effect of 

external pressing pressure on this phenomenon. The developed model has an electrochemical sub-

model that includes diffusion and migration in the SE, diffusion in the AM, and charge transfer kinetics 
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at the SE/AM interface computed on a 3D reconstructed morphology. Moreover, the solid mechanics 

sub-model determines the diffusion induced stress/strain by employing a thermal-mass diffusion 

analogy. This chapter is structured in the following format: first, the electrochemical and solid 

mechanics sub-models are discussed. Then, the 3D modeling framework was implemented in Comsol 

Multiphysics 5.5. Finally, the simulation results are presented and discussed. The schematic of this 

study is presented in Figure 5-1.  

 

Figure 5-1 Schematic of chemo-mechanical modeling of ASSBs 
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5.2 Modeling 

In LIBs the volume change of the cathode AM is often neglected; however, in ASSBs the AM cathode 

particles are surrounded by the SE where a minor volume change could cause critical issues. During 

cycling, the lithiation/delithiation of AM particles leads to morphological changes within AM particles 

to accommodate lithium-ions while SE structure changes are negligible due to its intrinsic nature [112]. 

The developed model consists of the electrochemical sub-model to solve charge transfer kinetics at the 

SE/AM interface, diffusion and migration of ions in the SE, and diffusion of ions in the AM. The 

equations have five unknown variables 𝑐𝐿𝑖, 𝑐𝐿𝑖+, 𝑐𝑛−, 𝜑𝑠, and 𝜑𝑆𝐸 which represent lithium 

concentration in the AM, lithium-ion concentration in the SE, negative charge concentration in the SE, 

AM potential, and SE potential, respectively. The gradient of lithium concentration within the AM is 

passed to the solid mechanics sub-model to determine the stress/strain evolution, which considers the 

SE/AM mechanical constraints in two different morphologies fabricated under different external 

pressing pressure.  

5.2.1 Electrochemical Sub-Model 

Although an inorganic SE behaves as a single-ion conductors [122]; it is widely common to simulate 

the SE as a binary electrolyte [85, 123, 124]. In a single ion-conducting electrolyte there is only one 

charged mobile species, Li+, while in the binary electrolyte, the Li+ and counterion are mobile. To 

implement a binary electrolyte methodology for SE simulation, electroneutrality condition ∑ 𝑧𝑘𝑐𝑘 = 0 

is assumed (k is either 𝐿𝑖+ or 𝑛−). Therefore, at any time in the SE, 𝑐𝐿𝑖+ = 𝑐𝑛−. The overall reaction in 

SE is defined by: 

𝒓𝒅 =  𝒌𝒅𝒄𝑳𝒊𝟎 − 𝒌𝒓𝒄𝑳𝒊+𝒄𝒏−,                   ( 5-1) 

where 𝑘𝑑  is the dissociation rate of  𝐿𝑖 →  𝐿𝑖+ + 𝑛−, and 𝑘𝑟 is the inverse reaction rate. At the 

equilibrium state, the mobile lithium defined by: 
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𝒄
𝑳𝒊+
𝒆𝒒

= 𝒄𝒏−
𝒆𝒒

= 𝛅𝒄𝟎,                ( 5-2) 

where 𝑐
𝐿𝑖+
𝑒𝑞

, 𝑐𝑛−
𝑒𝑞

, 𝑐0, and δ are the lithium-ion concentration at equilibrium, negative charge 

concentration at equilibrium, total lithium concentration, and fraction of mobile lithium in the SE, 

respectively. Nernst-Planck equation was implemented to simulate the lithium-ions transport behavior 

in the SE: 

                                 
𝝏𝒄𝑳𝒊+

𝝏𝒕
+ 𝛁. −𝑫𝑳𝒊+𝛁𝒄𝑳𝒊+ +

𝒛𝑳𝒊+𝑭

𝑹𝑻
𝑫𝑳𝒊+𝒄𝑳𝒊+𝛁𝝋𝑺𝑬 = 𝒓𝒅,              ( 5-3) 

where 𝑧𝐿𝑖+, 𝐷𝐿𝑖+, F, 𝜑𝑆𝐸 are the valence number, diffusion coefficient, Faraday’s constant, and SE 

potential, respectively. Lithium diffusion within the AM phase was estimated by Fick’s mass transport 

equation: 

𝝏𝒄𝑳𝒊

𝝏𝒕
= −𝛁. (−𝑫𝑳𝒊𝛁𝒄𝑳𝒊),                         

( 5-4) 

where  𝑐𝐿𝑖 and 𝐷𝐿𝑖  are the lithium concentration and diffusion coefficient of lithium in AM, 

respectively. Moreover, the rate of electrochemical reaction at the SE/AM interface is obtained by using 

Butler-Volmer kinetics as:  

𝒊𝒑𝒐𝒔 = 𝒊𝟎,𝒑𝒐𝒔(𝒆
𝜶𝒑𝒐𝒔𝑭𝜼

𝑹𝑻 − 𝒆−
(𝟏−𝜶𝒑𝒐𝒔)𝑭𝜼

𝑹𝑻
)
,              ( 5-5) 

𝒊𝟎,𝒑𝒐𝒔 = 𝑭𝒌𝒑𝒐𝒔 (
(𝒄𝑳𝒊,𝒎𝒂𝒙−𝒄𝑳𝒊)𝒄𝑳𝒊+

(𝒄𝑳𝒊,𝒎𝒂𝒙−𝒄𝑳𝒊)𝒄𝑳𝒊+,𝟎 

)
𝜶𝒑𝒐𝒔

(
𝒄𝑳𝒊−𝒄𝑳𝒊,𝒎𝒊𝒏

𝒄𝑳𝒊,𝒎𝒂𝒙−𝒄𝑳𝒊,𝒎𝒊𝒏
)

𝟏−𝜶𝒑𝒐𝒔

,              ( 5-6) 

where 𝑖𝑝𝑜𝑠, 𝑖0,𝑝𝑜𝑠, 𝑘𝑝𝑜𝑠 , 𝛼𝑝𝑜𝑠, 𝑐𝐿𝑖,𝑚𝑎𝑥 and 𝑐𝐿𝑖,𝑚𝑖𝑛 are the current density, exchange current density, 

apparent transfer coefficient, the reaction rate constant, and maximum and minimum of the lithium 

concentration in AM. The potential in the AM phase, 𝜑𝑠, is described using Ohm’s law in solids as 

follows: 

𝒊𝒑𝒐𝒔 = −𝝈𝒑𝒐𝒔𝛁𝝋𝒔,                ( 5-7) 
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where 𝜎𝑝𝑜𝑠 is the conductivity of solid AM. At all SE cube sides, ∇𝜑 = 0 𝑎𝑛𝑑 ∇𝑐 = 0. The calculated 

lithium concentration in the AM and SE phases at each time step will be passed to the solid mechanics 

sub-model to calculate the diffusion induced stress formation.  

5.2.2 Solid Mechanics Sub-Model 

In ASSBs, the SE/AM interface has a vital role since only lithium-ions can transport through this 

interface; however, the solid rigid surfaces of the SE and AM lead to a gap formation at the interface. 

Therefore, ASSBs cannot form a perfect SE/AM interface. At the microscopic level, diffusion-induced 

stress and strain exacerbate the contact problem [43]. To quantify the stress formation in the AM, SE, 

and SE/AM interface during cycling, a solid mechanics model was developed and coupled with the 

aforementioned electrochemical model. The deformation gradient is obtained by [78]: 

𝑭 = (𝑰 + 𝛁𝒖),                 ( 5-8) 

where u is the displacement vector and I is the identity matrix. Lithium insertion leads to SE and AM 

volume expansion while the volume change depends on lithium concentration gradient ∆𝑐: [125] 

𝑽

𝑽𝟎
= 𝐝𝐞𝐭(𝑭𝒄) = 𝟏 + 𝜴∆𝒄,               ( 5-9) 

where V, V0, and 𝐹𝑐 are the current volume, initial volume, and lithium concentration induced 

deformation. The general definition of 𝛺 is the partial molar volume change of host material after 

accommodating one mole of a guest atom. For lithium in NMC111, 𝛺 = 3 × 10−6  𝑚
3

𝑚𝑜𝑙⁄  [44]. The 

lithiation induced deformation calculated by: 

𝑭𝒄,𝒊𝒋 = √𝟏 + 𝜴∆𝒄
𝟑

𝜹𝒊𝒋,              ( 5-10) 

where 𝛿𝑖𝑗 is the Kronecker delta. To evaluate the stress formation, the Cauchy stress tensor 𝜎 can be 

derived by [73]: 

𝝈 = (𝐝𝐞𝐭(𝑭))−𝟏𝑭𝑺𝑭𝑻,              ( 5-11) 
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where S is the second Piola-Kirchhoff stress. In the electrode microstructure. To implement lithiation 

induced expansion, thermal-mass diffusion analogy was incorporated while temperature increment is 

replaced by a concentration difference. The strain is calculated by: 

𝜺𝒊𝒋
𝑻 = (√𝟏 + 𝜴∆𝒄

𝟑
−𝟏)∆𝒄𝜹𝒊𝒋.              ( 5-12) 

The boundary condition at the SE/AM interface is assumed to be a flexible attachment. The modeling 

methodology and all boundary conditions are illustrated in Figure 5-2 and model parameters are 

presented in Table 5-1. Li diffusion coefficient assumed to be concentration independent during 

cycling. Also, Fraction of free lithium-ion in equilibrium assumed to be 0.18.  

 

Figure 5-2 Modeling methodology including electrochemical and solid mechanics sub-models 

governing equations, boundary condition, current collector and current density direction. 
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Table 5-1 Model parameters 

 

5.2.3 RVE Selection 

As mentioned, the reconstructed morphology was used to compute the electrochemical and solid 

mechanics equations. It is worth noting that utilizing the whole electrode microstructure can be 

computationally expensive. Therefore, a representative volume element (RVE) was chosen instead of 

the whole electrode microstructure. To ensure the validity of results in RVE, the SE, AM, and pore 

volume fractions and volume specific surface area of the AM were measured and compared at various 

RVE sizes to minimize the difference with the whole electrode structure. Therefore, the electrochemical 

and solid mechanics simulations were modeled on a sub-volume geometry with a dimension of 

350 × 350 × 450 Voxels (10867 μm3) which has similar properties compared to the whole 

microstructure (Table 5-2). The reconstructed morphology of the composite electrodes under 1300 psi 

Parameter Unit Estimated Value Description 

𝒂𝟎 𝑚𝑜𝑙 𝑚−3 6.01 × 104 [86] Total activity of Li atoms in SE matrix  

𝒌𝒓 𝑚3𝑚𝑜𝑙−1𝑠−1 0.9 × 10−8 [86] Lithium-ion recombination reaction rate 

δ - 0.18 [86] Fraction of free lithium-ion in equilibrium 

𝑫𝑳𝒊+ 𝑚2𝑠−1 0.9 × 10−13 [117] Diffusion coefficient for lithium-ion in the SE (LTAP) 

𝑫𝑳𝒊  𝑚2𝑠−1 1.76 × 10−13 [117] Diffusion coefficient for lithium in AM (NMC) 

𝑫𝒏− 𝑚2𝑠−1 5.1 × 10−13 [117] Diffusion coefficient for 𝑛− in the electrolyte 

𝒂𝒑𝒐𝒔
𝒎𝒂𝒙 𝑚𝑜𝑙 𝑚−3 2.33 × 104 [86] Maximum activity of the lithium in the positive 

electrode 

𝜶𝒑𝒐𝒔 - 0.6 [86] Charge transfer coefficient in the positive electrode 

𝒌𝒑𝒐𝒂 𝑚𝑜𝑙 𝑚−2𝑠−1 5.1 × 10−6 [86] Rate constant charge transfer positive electrode 

𝜴  𝑚3𝑚𝑜𝑙−1 3 × 10−6 [44] partial molar volume change of NMC-111 

𝑬𝑨𝑴 𝐺𝑝𝑎 199 [126] Young’s modulus of NMC-111 

𝒗𝑨𝑴 - 0.25 [126] Poisson’s ratio of NMC-111 

𝑬𝑺𝑬 𝐺𝑝𝑎 143.7 [127] Young’s modulus of LTAP 

𝒗𝑨𝑴 - 0.25 [127] Poisson’s ratio of LTAP 
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and 700 psi are presented in Figure 5-3. The generated mesh for 1300 psi electrode has 276543 elements 

(Figure 5-3g) and the 700 psi electrode has 234579 elements (Figure 5-3i). The simulations were 

conducted on CMC compute cad cluster with 8 nodes delivering 8.6 TFLOPS. The running time for 

each simulation varies from 40 to 42 hours. The meshing was conducted using AVIZO software without 

any mesh refinement.  

Table 5-2 Volume specific surface area, AM, SE, and pore volume fractions in different RVE 

sizes in two composite electrodes with different external pressing pressures.  

Pressing pressure 1300 psi 

Total Volume (μm3) 19714 15968 12617 10867 7097 4929 3154 

Volume specific surface 

area (1/μm) 

0.601 0.614 0.620 0.621 0.635 0.649 0.658 

Solid Active material (%) 
28.5 28.2 27.9 28.8 27.5 27.1 24.3 

Solid Electrolyte (%) 
51.8 52.4 52.9 52.5 53.4 54.8 56.8 

Pore (%) 
19.7 19.4 19.2 18.7 19.1 18.1 18.9 

 

Pressing pressure 700 psi 

Total Volume (μm3) 19714 15968 12617 10867 7097 4929 3154 

Volume specific surface 

area (1/μm) 

0.502 0.514 0.522 0.521 0.538 0.551 0.567 

Solid Active material (%) 
29.3 28.7 28.3 29.9 27.4 26.1 25.4 

Solid Electrolyte (%) 
43.8 44.2 43.7 42.6 45.2 54.1 56.8 

Pore (%) 
26.9 27.1 28.0 27.5 27.4 19.8 17.8 
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Figure 5-3 Reconstructed morphology of the electrode at two pressing pressures, (a-c) 1300 psi, 

(d-f) 700 Psi, (g) mesh and (h) reconstructed 3 phase electrode under 1300 psi pressing pressure, 

(i) mesh and (j) reconstructed 3 phase electrode under 700 psi pressing pressure. 

(b) 

(d) (f) 

(i) (j) 

(a) (c) 

(g) (h) 

(e) 

Active Material           Solid Electrolyte     Void Space 
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5.3 Results and Discussion 

The heterogeneous microstructure of the ASSB composite electrodes causes the in-homogenous 

distribution of physical and electrochemical properties within the electrodes’ morphology. 

Additionally, the mechanical stability of the electrode highly relies on the microstructural design, and 

lithiation/delithiation induced expansion/contraction can cause contact loss and crack formation at the 

SE/AM interface [128]. To quantify the effect of the electrode morphology on the lithium distribution 

in the AM, the electrochemical sub-model methodology was implemented on the reconstructed 

microstructures fabricated under two external pressing pressures. As illustrated in Figure 5-5a-f, during 

the lithiation, there is a declining trend of lithium concentration in the AM along with the applied 

current density direction and a gradient in the AM particle radius direction due to lithium transport 

limitation. Moreover, at the surface of the AM particles, the imperfect SE/AM interface limits the 

lithium-ion pathways, which causes a variation in lithium concentration. Increasing the external 

pressing pressure can enhance the contact area and lithium transport, which can be verified by a higher 

average of lithium concentration in the AM particles at any state of charge (SOC) for the electrode with 

1300 psi external pressing pressure applied compared with 700 psi applied, see Figure 5-5g-l. To ensure 

the fidelity of results, the developed electrochemical model was validated and compared with the 

experimental data [117]. To highlight the heterogeneous distribution of lithiation induced stress 

within the composite electrode, the results are illustrated on either two cross-section planes 

(yz-xz) or the yz plane. Figure 5-4 presents the morphology of the electrodes fabricated with 

1300 psi and 700 psi pressing pressure.  
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Figure 5-4 Cross-section view of the composite electrode with 1300 psi external pressing pressure 

in (a) two yz and xz planes, and (c) yz plane. Cross-section view of the composite electrode with 

700 psi external pressing pressure in (b) two yz and xz planes, and (d) yz plane.  
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Figure 5-5 Lithium concentration in AM under two external pressing pressure (a-c) 1300 psi 

and (d-f) 700 psi during 3 C discharge rate. Histograms illustrate the lithium concentration in 

AM under two external pressing pressure (g-i) 1300 psi and (j-l) 700 psi during 3 C discharge 

rate. 
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5.4 Results and Discussion  

5.4.1 Effects of external pressing pressure 

It is worth noting that although increasing the external pressing pressure can alleviate the SE/AM 

contact resistances and enhance the ion transport, it may negatively affect the mechanical stability of 

the electrode. The main reason for this is that lithium diffusion induced volume change in AM particles 

can lead crack formation and a loss of contact due to the excessive stress evolution at the interface. The 

lithiation induced stress during the 1 C discharge rate in the composite electrode with 1300 psi external 

pressing pressure is illustrated in Figure 5-6a-c using two cross-section planes. The maximum stress is 

observed at the end of lithiation due to high lithium concentration. With closer examination, anisotropic 

stress distribution within the AM particles not only depends on their shapes, but also depends on the 

void space distribution at the SE/AM interface. In other words, void spaces at the SE/AM interface 

could partially accommodate volume changes and the AM particles undergo lower stress compared to 

the points with perfect contact with the SE. To clarify the effect of the SE/AM interface on the stress 

distribution, the stress evolution over 1 C discharge in the composite electrode with 700 psi external 

pressing pressure is illustrated in Figure 5-6d-f. Comparing Figure 5-6c and Figure 5-6f, it can be 

concluded that the electrode with lower external pressing pressure encounters low hydrostatic stress 

under the same operating conditions due to its lower SE/AM surface area.  On the z-y plane, the 

hydrostatic stress at the AM/pore interface is as low as 0.7 GPa (end of discharge), while the hydrostatic 

stress at the SE/AM is within the range of 3-4 GPa at the same SOC. Throughout lithiation, the 

distribution of lithiation-induced stress within the AM follows the same trend while hydrostatic stress 

within AM particles is mostly compressive except near void spaces (Figure 5-6g-l). 

To further elaborate on the effects of the external pressing pressure and the composite electrode 

microstructure on the distribution of lithiation induced stress, the von Mises stress distribution is 

illustrated in Figure 5-7. The von Mises stress evolution in the composite electrode under 1300 psi 
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pressing pressure during 1 C lithiation is presented in Figure 5-7a-c on two cross-section planes and 

Figure 5-7g-i on a yz plane. Under the same conditions, the Von Mises stress evolution for the 

electrode fabricated with 700 psi external pressing pressure is presented in Figure 5-7j-l. The results 

show that von Mises stress peak points happen at the SE/AM interface. For instance, at the end of 

lithiation, the composite electrode encounters several peak points of 5 Gpa at SE/AM interface while 

the von Mises stress at AM/pore interface is below 1 Gpa. Moreover, the electrode with higher pressing 

pressure has a relatively higher von Mises stress specifically at the SE/AM interface which could cause 

fracture formation within the SE. Although higher pressing pressure can enhance ion pathways and 

alleviate contact resistances at the SE/AM interface [117], it causes excessive stress evolution at the  

SE/AM interface. Therefore, the microstructural design of ASSBs is highly critical to find an optimal 

tradeoff of the fabrication process such as external pressing pressure and the electrode chemo-

mechanical performance.  
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Figure 5-6 Hydrostatic stress in the composite electrode during 1C lithiation fabricated under 

(a-c) 1300 psi and (d-f) 700 psi illustrated in two cross-section planes (zy and xz). Hydrostatic 

stress in the composite electrode during 1C lithiation fabricated under (g-i) 1300 psi and (j-l) 

700 Psi illustrated in yz plane. 

  

 

(d) (e) (f) 

(g) (h) (i) 

SOC= 0.7 SOC= 0.4 End of Discharge 

(j) (k) (l) 

(a) (b) (c) 
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Figure 5-7 Von Mises stress in the composite electrode during 1C lithiation fabricated under (a-

c) 1300 psi and (d-f) 700 psi illustrated in two cross-section planes (zy and xz). Von Mises stress 

in the composite electrode during 1C lithiation fabricated under 

  

(d) (e) (f) 

(g) (h) (i) 

SOC= 0.7 SOC= 0.4 End of Discharge 

(j) (k) (l) 

(a) (b) (c) 
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5.4.2 Effects of Current 

In addition to morphological properties, applied current can affect the mechanical and electrochemical 

behavior of ASSBs. With increasing current, there is not enough time to fully lithiate the AMs, therefore 

the heterogeneous distribution of lithium concentration within the AM would have a wide range which 

limits the electrode capacity. The effects of current on electrochemical properties within the ASSB 

microstructure were previously investigated thoroughly. On the other hand, applied current can attribute 

to stress evolution during battery operation. The hydrostatic von Mises stress during 3 C lithiation is 

compared with 1 C lithiation. The hydrostatic and von Mises stress are presented in Figure 5-8a-c and  

Figure 5-8d-f for 3 C lithiation in two cross-section planes, respectively. Figure 5-8g-l illustrates the 

aforementioned stresses on a yz plane with the same order. Comparing Figure 5-8 with Figure 5-7 and 

Figure 5-6, it can be concluded that the hydrostatic stress and von Mises stress within the microstructure 

under 1C and 3C lithiation almost have an identical distribution. At high currents, lithium concentration 

has a relatively larger gradient within the AM particles and the lower lithium concentration at the 

particles’ core may alleviate the stress evolution. The same observation was previously reported for 

other active materials such as Si [129]. However, the partial molar volume of NMC is much lower than 

Si. Thus, increasing current cannot significantly decrease the stress evolution within the microstructure 

(Figure 5-8).  
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Figure 5-8  (a-c) Hydrostatic stress and (d-f) von Mises stress in the composite electrode during 

3C lithiation fabricated 700 psi illustrated in two cross-section planes (zy and xz). (g-i) 

Hydrostatic stress and (j-i) von Mises stress in the composite electrode during 3C lithiation 

fabricated under 700 Psi illustrated in yz plane. 

(d) (e) (f) 

(g) (h) (i) 

SOC= 0.7 SOC= 0.4 End of Discharge 

(j) (k) (l) 

(a) (b) (c) 
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5.4.3 Effects of SE Stiffness 

The mechanical properties of SEs have rarely been investigated in the literature, although optimizing 

the SE mechanical properties can effectively attenuate stress evolution within the composite electrode 

microstructure, and prevent fracture propagation and mechanical degradation. Although the Young’s 

modulus of the SE in this study (LTAP) is 143.7 GPa, there is a wide range of available SEs with low 

stiffness, such as sulfide solid electrolytes that fall in the range of 14-25 GPa [116]. Overall, stiff SEs 

are more likely to undergo mechanical fracture and lose contact [130]. Therefore, to quantify the effect 

of SE stiffness, the hydrostatic and von Mises stress in the composite electrode are compared at two SE 

Young’s modulus, 14.3 GPa, and 143 Gpa. Figure 5-9a-c and Figure 5-9d-f illustrate the hydrostatic 

and von Mises stress within the composite microstructure, fabricated under 700 psi external pressing 

pressure, at the end of 1C lithiation for the SE with 14.3 GPa SE Young’s modulus, respectively. Figure 

5-9g-l presents the aforementioned stresses on a yz plane with the same order.  The presented results 

show that the SE stiffness tremendously affects the lithiation-induced stress within the ASSBs’ 

microstructure. For instance, at the end of lithiation, the maximum hydrostatic stress and von Mises 

stress, in the composite electrode with the stiffer SE, are 3 GPa and 4.9 GPa, respectively; while in the 

other electrode (ESE= 14.3 GPa), the maximum hydrostatic stress and von Mises stress are 0.6 GPa and 

1 GPa, respectively. Thus, employing SE with low stiffness can be beneficial to inhibit stress evolution; 

however, the stiff electrolyte can suppress AM volume change. Suppressing AM expansion mostly 

becomes critical for alloy-based anode active materials which have relatively larger volume expansion, 

and to prevent dendrite formation on lithium metal anodes [131]. Therefore, optimizing the SE stiffness 

based on the application and AMs can balance the stress evolution and volume changes. 

    Figure 5-10a-c and Figure 5-10d-f illustrate the hydrostatic and von Mises stress within the 

composite microstructure, fabricated under 1300 psi external pressing pressure, at the end of 1C 

lithiation with considering 14.3 GPa SE Young’s modulus, respectively. Figure 5-9g-l presents the 
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aforementioned stresses on a yz plane with the same order. The presented results support the 

aforementioned state that decreasing SE stiffness can limit the stress evolution. However, the yield 

strength of materials is proportional to Young’s modulus; thus, crack formation at stress peak points in 

the SE with low stiffness is more likely to happen.  
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Figure 5-9 (a-c) Hydrostatic stress and (d-f) von Mises stress in the composite electrode during 

1C lithiation fabricated under 700 psi external pressing pressure illustrated in two cross-section 

planes (zy and xz). (g-i) Hydrostatic stress and (j-i) von Mises stress in the composite electrode 

during 1C lithiation fabricated under 700 Psi illustrated in yz plane. SE Young’s module is 

assumed to be 14.3 Gpa. 

(d) (e) (f) 

(g) (h) (i) 

SOC= 0.7 SOC= 0.4 End of Discharge 

(j) (k) (l) 

(a) (b) (c) 
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Figure 5-10 (a-c) Hydrostatic stress and (d-f) von Mises stress in the composite electrode during 

1C lithiation fabricated under 1300 psi external pressing pressure illustrated in two cross-section 

planes (zy and xz). (g-i) Hydrostatic stress and (j-i) von Mises stress in the composite electrode 

during 1C lithiation fabricated under 1300 Psi illustrated in yz plane. SE Young’s module is 

assumed to be 14.3 Gpa 

(d) (e) (f) 

(g) (h) (i) 

SOC= 0.7 SOC= 0.4 End of Discharge 

(j) (k) (l) 

(a) (b) (c) 
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5.4.4 Anisotropic Displacement  

Anisotropic volume changes of AM particles leads to a change in particle shape, which may cause 

mechanical degradation and contact loss with SE [132]. The variation of directional displacement under 

1C lithiation in the AM phase of composite electrodes with 700 psi and 1300 psi external pressing 

pressure is illustrated in Figure 5-11a. Displacement in the z-direction (parallel to the applied external 

pressing pressure) has the lowest value; while in the 700 psi electrode, the AM phase has a maximum 

displacement of 958 nm and 847 nm in the x- and y-directions (perpendicular to the applied external 

pressing pressure), respectively. With increased external pressing pressure, the displacement variation 

significantly decreased, where the AM phase maximum displacement becomes 439 nm and 259 nm in 

the x- and y-directions, respectively. The main reason is that external pressing pressure suppresses the 

void space and thus limits the displacement. Moreover, applying external pressing pressure can prevent 

anisotropic swelling of the active materials while directional displacement at lower external pressing 

pressure has a wider range of distribution (Figure 5-11a).  

As mentioned in section 5.4.3, the current has a negligible effect on the lithiation-induced stress 

evolution within the electrode microstructure due to the relatively low partial molar volume expansion 

of the NMC. To further elaborate on this issue, the directional displacement of the AM phase under 1 

C and 3 C lithiation are compared in Figure 5-11b. The directional displacements, specifically at the 

perpendicular directions, are somewhat lower.  At high currents, a larger gradient of lithium 

concentration within the AM particles causes slightly lower lithiation-induced expansion at the end of 

lithiation because the concentration at the AM particle surface reaches the cut-off value while the 

lithium concentration inside the particle is lower. Additionally, the effects of SE stiffness on the 

anisotropic displacement of the AM phase are illustrated in Figure 5-11c. Although decreasing the SE 

Young’s module can alleviate the stress evolution, the AM phase possesses relatively larger 

displacement which can intensify crack propagation within the microstructure. For instance, when 
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changing the SE Young’s module from 143.7 GPa to 14.3 GPa, the AM maximum displacement at the 

end of lithiation is 2350 nm and 2300 nm in the x- and y-direction, respectively.    

 

Figure 5-11 (a) Directional displacement of AM phase in composite electrodes with 700 psi and 

1300 psi external pressing pressure during 1C lithiation and (b) directional displacement of AM 

phase phase in composite electrodes with 700 psi external pressing pressure during 1C and 3C  

lithiation and (c) directional displacement of AM phase in composite electrodes with 700 psi 

during 1C lithiation considering SE Young’s modulus of 14.3 GPa and 143 GPa. 

  

(a) (b) 

(c) 
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5.5 Conclusions 

In this study, we developed a chemo-mechanical model for ASSBs composite electrode that 

incorporates a 3D reconstructed microstructure of the electrode using TXM images, fabricated under 

two external pressing pressures. The simulation results clarify the effects of SE/AM interface and void 

space distribution within the microstructure on the lithiation induced stress during the battery operation. 

The results show that AM particles encounter compressive hydrostatic stress up to 4 GPa at the SE/AM 

interface during lithiation, while the SE limits their expansion. On the other hand, void space can 

partially accommodate the AM expansion, where areas near void spaces have tensile stress within the 

range of 0-1 Gpa. The electrode with higher external pressing pressure experiences a relatively higher 

hydrostatic stress due to a higher SE/AM interfacial contact and the decreased amount of void space. 

The simulated von Mises stress confirms this behavior. At the end of lithiation, the von Mises stress in 

AM particles is approximately zero while at the surface, the AM confronts up to 4.9 GPa stress which 

could cause crack formation and mechanical degradation. The electrode with higher pressing pressure 

has more peak stress points and the average von Mises stress within the microstructure with higher 

pressing pressure is 2.4 GPa compared to 1.5 GPa. Therefore, the microstructural design of the SE/AM 

interface is critical to find an optimal tradeoff of maximizing ion pathways and minimizing the stress 

evolution. It was also shown that unlike anode AMs, which have larger volume expansion, the effects 

of current on the stress evolution in the composite cathode microstructure is negligible due to the 

relatively small partial molar volume of cathode AMs. However, SE stiffness has a significant impact 

on the stress evolution and anisotropic displacement in the composite electrode.  Decreasing SE 

stiffness, by changing the SE Young’s module, can adjust the maximum hydrostatic stress and von 

Mises stress from 3 GPa and 4.9 GPa to 0.6 GPa and 1 GPa, respectively. Conversely, the stiff SE can 

suppress AM swelling and  attenuate anisotropic displacement of AMs which may improve the 

mechanical integrity of the composite electrode.  
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Chapter 6 

Conclusions and Future Work 

6.1 Summary and Conclusions 

In the present thesis, multi-physics models have been successfully developed to clarify the physical, 

electrochemical, and mechanical behavior of LIBs. The developed models aimed to tackle LIBs’ 

challenges and provide invaluable insights regarding cell design. Employing alloy-based anode active 

materials with higher theoretical capacity and solid electrolytes, instead of common flammable organic 

liquid electrolytes, is investigated to address the limited energy density and safety drawbacks of LIBs.  

Earlier in the thesis work, a multi-scale multi-physics model was developed to study a composite 

Gr/Si electrode for LIBs. The model was based on macroscale P2D modeling of cycling performance 

based on the aforementioned electrochemical sub-model integrated with microscale single-particle 

modeling of Si including the lithium transport equation within the particle and solid mechanics sub-

model to investigate the lithiation-induced stress evolution during the battery operation. In each time 

step, the lithium concentration within the Si particle updated with the new volume due to the particle 

expansion/contraction throughout lithiation/delithiation. The main advantage of this developed 

universal modeling framework is the adaptability of this methodology to a wide range of composite 

electrodes. It has also given remarkable insights regarding the effects of the current and Si percentage 

on the deformation and stress evolution considering the effect of lithium chemical potential within Si 

and how it changes under stress. Moreover, it can shed light on developing physics-based battery state 

estimation models for composite Si-based electrodes that considers the effects of Si deformation and 

stress evolution.  

Additionally, the physical, electrochemical, and mechanical behavior of ASSBs were modeled to 

investigate the advantages and limitations of employing solid electrolyte instead of conventional liquid 
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electrolytes in LIBs. The developed model was implemented on the reconstructed 3D morphology of 

the composite ASSB electrodes to enhance the fidelity of the model. The main benefit of incorporating 

the 3D microstructure of the electrode, compared with 1D and 2D simplified geometries, is that the 

developed model can enlighten the heterogeneous distribution of physical and electrochemical 

properties within the microstructure and the effects of fabrication and operation conditions on these 

properties. Special attention was paid to the SE/AM interface while the imperfect contact and 

solid/solid nature of this interface could limit the ion pathways and intensify cell degradation and 

capacity fade.  

To further elaborate the effect of the SE/AM interface and void spaces in the composite electrode 

microstructure, a chemo-mechanical model was developed based on solving an electrochemical and 

solid mechanics coupled model on the 3D reconstructed morphology of the composite ASSB electrodes 

using XCT imaging technique. The developed model highlights the vital role of the fabrication process 

on the cell performance while composite electrodes encounter remarkable stress which varies in the 

microstructure depending on the shape of the active material particles and their contact with the SE. It 

is worth noting that lithiation-induced stress has peak points at SE/AM interfaces due to the solid/solid 

nature of this interface. Maximizing SE/AM contact with increasing external pressing pressure during 

fabrication may enhance ion pathways and alleviate contact resistances; however, the higher contact 

causes larger stress evolution at the interface which may lead to crack formation and mechanical 

degradation. Unlike anode AMs, which have larger volume expansion, effects of current on the stress 

evolution in the composite cathode microstructure is negligible due to the relatively small partial molar 

volume of cathode AMs. However, SE stiffness has a significant impact on the stress evolution and 

anisotropic displacement in the composite electrode. Decreasing SE stiffness can alleviate stress 

evolution. Conversely, stiff SE can suppress the AM swelling and  attenuate anisotropic displacement 

of AMs which may improve the mechanical integrity of the composite electrode. 
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In conclusion, integrating multi-physics modeling with XCT technology can effectively address the 

LIBs’ challenges and provide invaluable insights to tackle these challenges and find an optimal design 

based on the application criteria.  

6.2 Proposed Future Work 

Based on the findings of this Ph.D. study, some future directions for the modeling of LIBs can be 

suggested: 

1. Integrating multi-physics modeling with a data-driven methodology 

Multi-physics modeling is a powerful tool to investigate the behavior of batteries; however, it 

has some limitations such as relatively high computational. While the data-driven methodology 

has a self-learning intrinsic feature that can tremendously decrease computation cost and predict 

the behavior of LIBs with high precision. Furthermore, data-driven methods can be applied to 

various types of batteries without the necessary knowledge of occurring phenomena, while multi-

physics model implementation requires accurate solving of governing equations. In other words, 

highly non-linear and complex reactions in batteries may not completely be captured by multi-

physics simulation; however, data-driven methods can effectively consider all aspects of the 

system with training the model over the experimental data sets. 

2. Incorporating machine learning algorithms in interpreting electrodes microstructure morphology 

Due to the recent improvement of imaging technology, new facilities are able to capture the 

electrode image with the resolution of a few nanometers. Image segmentation to differentiate 

phases of an electrode is a quite challenging task. Segmentation is a time-consuming process and 

the accuracy of the results highly depends on the threshold values, specifically for separating 

more than two phases in an image. Machine learning algorithms such as a convolutional neural 

network (CNN) are widely employed for facial recognition and analyzing documents. CNN can 
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effectively apply to the grayscale electrode images to recognize phases. The main benefit of 

using CNN would be higher accuracy and less computation cost.  

3. Mechanical stress analysis in ASSBs under a real operating condition 

In the present study, the lithiation induced stress extensively elaborated under a galvanostatic 

discharge condition. However, real operating conditions may intensify the stress evolution. 

Therefore, the developed chemo-mechanical framework can be implemented using a dynamic 

driving cycle such as Federal Urban Driving Schedule (FUDS) or Urban Dynamometer Driving 

Schedule (UDDS) to investigate the stress at various operating scenarios.  

4. Employing pore network modeling  

One of the effective ways to reduce the multi-physics simulation computational cost is to employ 

the pore network modeling method, instead of adopting 3D reconstructed morphology of the 

electrode. Implementing pore network methodology, specifically on a large stack of electrode 

images, can lead to a substantially fewer number of unknowns.  
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Appendix 

Data-Driven methods  

In a pack of battery a comprehensive battery management system (BMS) can appraise battery pack 

states accurately, e.g., state of charge (SOC), state of health (SOH), and state of power (SOP) to enhance 

the efficiency and safety of the battery pack. However, the non-linear behavior of batteries, caused by 

complex electrochemical reactions, aging effects, ambient conditions, and variable user habits make 

the battery state estimation a controversial challenge [133]. Despite the various state estimation 

methods that have been proposed in recent years [134-137], there is no holistic framework that can be 

implemented over a wide range of operating conditions.  

In recent years, artificial intelligence (AI) has gained significant attention in a wide variety of sectors. 

It is the fastest-growing branch of the high-tech industry and refers to enabling machines to perform 

tasks intelligently. AI has tremendous potential in developing the next generation of smart battery 

management systems for electric vehicles (EVs). Employing the self-learning intrinsic feature of AI 

methodology can capture the non-linear complex dynamic of batteries; while, with training the AI-

based model over a large data set, an accurate on-line battery state estimation can be accomplished.  

Moreover, to decrease the charging time of EVs, several solutions have been proposed to tackle this 

challenge at various levels, e.g., designing novel material durable at high currents using machine 

learning (ML) [138] or optimizing the charging protocol to decrease the battery internal resistance and 

minimize the adverse effects of fast charging on cell degradation [139, 140]. The US Department of 

Energy (DOE) set a goal of 10 miles of driving range per minute of charge which requires fast and 

efficient charging [141]. However, there is no comprehensive and quantitative charging protocol 

developed for various batteries and applications to minimize performance attenuation. Solving such a 

complex problem with many parameters requires a large number of experiments that could take several 
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months to years. On the other hand, ML methodology can reduce the number and duration of the 

experiments [139]. For instance, the charging protocol has a direct effect on the batteries’ lifetime. 

Experimenting all combinations would be cumbersome, while the ML approach can predict and 

optimize the charging protocol rapidly and precisely. Additionally, the charging protocol has a vital 

role in minimizing the capacity and power fade that generally occurs during fast charging. Although 

there are some studies on optimizing the charging protocol that include experimental [139, 142], 

physics-based [143-145], or equivalent circuit models (ECMs) [146, 147], these approaches are either 

limited to specific operating conditions and chemistries or may not be valid/accurate at high currents. 

On the other hand, with ML methodology [148] the charging protocol can be modified based on current 

states of the system and environmental conditions to minimize the charging time and maximize the 

lifetime. 

It is worth noting that the inconsistency among internal parameters as well as the external 

environment of cells in a pack/system has detrimental effects on the pack’s capacity, power capability, 

and lifetime [149]. Inconsistency of variables such as operating voltage, SOC, and capacity may cause 

deep charge/discharge of some cells, which leads to consequences such as mechanical degradation and 

thermal runaway. Current equalization methods to mitigate this, including passive circuits [150, 151], 

using resistors to remove extra energy, and active circuits [152-154] that transfer excess energy among 

cells, are still immature and require further investigation. The passive method is only applicable during 

the charging phase and it requires lengthy equalization times [155]. Although the active method is 

relatively reliable, it still faces issues such as low accuracy and complex implementation. However, 

integrating passive/active methods with ML approaches such as fuzzy logic [156] and neural network 

[157] can lead to invaluable insights about equalization strategies and predicting the required 

equalization patterns with an accurate estimation of the selected equalization variables and finding the 

optimal tradeoff of equalization time and energy efficiency.  
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Regarding the aforementioned critical challenges in this area, it is crucial to develop a holistic multi-

scale framework to address BMS challenges, including accurate cell state estimation, cell equalization, 

and charging protocol optimization, see Figure A-1. The framework will be based on big-data analysis 

over different chemistries, operating conditions, and environmental conditions to ensure the 

adaptability of the framework using reduced-order physics-based models and ML methods.  

 

Figure A-1 Artificial intelligence perspective in electric vehicles, challenges and solutions 
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Battery State Estimation 

      State of Charge (SOC)- A ratio of the available battery charge to the maximum capacity, which is 

simple to define although challenging to estimate. SOC estimation has a vital role in BMS operation 

since it has a direct effect on measuring SOH, address the inconsistency among batteries, and 

optimizing the charging protocol. An accurate SOC estimation leads to a safe and reliable system 

operation [134]. SOC estimation methods are generally organized into four categories: 1) 

straightforward approach: either correlating SOC with an external parameter (e.g., open-circuit voltage 

[158] (OCV) or AC impedance) or coulomb counting [159] with the integration of discharge current 

over the time, 2) Model-based approach: using chemical and/or electrical models to simulate the 

complex reactions of batteries, which is known as the electrochemical model [160] [71] (EM) and 

equivalent circuit model [161, 162] (ECM), 3) Adaptive filter algorithm: sets of mathematical equations 

to predict the dynamic state of a battery by filtering uncertainties and inaccurate observations, including 

the Kalman filter [163] (KF), extended Kalman filter (EKF) [164, 165], unscented Kalman filter (UKF) 

[166, 167], particle filter [168] (PF), recursive least square [169] (RLS), or a combination of these 

methods[168, 170]. Generally, filter algorithms are integrated with model-based methods to obtain the 

battery SOC. KF is a linear prediction algorithm of the current state of measurement based on an earlier 

state. Therefore, KF is not suitable for battery applications due to the nonlinear nature of reactions in 

batteries [171], whereas EKF and UKF are more applicable to estimate the SOC because of their 

relatively higher accuracy in non-linear problems, 4) Data-driven approach: accurate SOC estimation 

by implementing self learning algorithms with battery parameters such as voltage, current, temperature, 

ambient temperature and humidity, and storage conditions. Data-driven approaches are mainly focused 

on using neural network (NN) [133], fuzzy logic (FL) [172, 173], support vector machine (SVM) [137], 

or a combination of these methods.  
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      Recently, there have been some efforts to employ deep learning (DL) methods such as a deep neural 

network (DNN)[174], deep belief network (DBN) [175], and recursive neural network with a gated 

recurrent unit (RNN-GRU) [176-178] or using a long short-term memory (RNN-LSTM) [179] to 

enhance the accuracy of the predicted SOC. The main advantage of employing DL is its hierarchical 

structure with a more hidden layer compared to NN, which enhances its ability to precisely predict the 

battery states and consider the role of complex electrochemical reactions in battery aging [180], see 

Figure A-2. DNN can predict the SOC based on measured battery signals, such as the voltage, current, 

and temperature with mean absolute errors (MAEs) below 1% [174]. The depth of DNN (number of 

computational layers) has a vital role in the accuracy of the model. Generally, increasing the number 

of computational layers enhances the model performance, although an increase beyond a specific point 

causes overfitting and a larger mean squared error (MSE) [181]. As illustrated in theFigure A-2c, DBN 

is a deep learning algorithm suitable for modeling non-linear systems comprised of stacks of restricted 

Boltzmann machine (RBM) and a regression layer as the output layer [175]. RBM is a generative 

stochastic network that represents the dependency structure among random variables. Combining the 

DBN approach to simulate the non-linear behavior of batteries with EKF to filter the noise at various 

operating conditions can generate an accurate robust SOC estimation model with the MAE < 0.57% 

[175].  

      Two major architectures in DL are the recursive neural network (RNN) and the feedforward neural 

network (FNN). In the FNN design the information flow over the neurons is unidirectional; while in 

RNN, neurons can have a cyclic interconnection [181]. RNN is more robust in evaluating the battery’s 

dynamic, aging, and hysteresis effects as it can use historical information, see Figure A-2. However, 

RNN is unable to capture long-term dependencies because of the gradient vanishing phenomenon [176]. 

In fact, RNN parameter update using gradient while over the time gradient becomes smaller and RNN 

can not effectively update its parameters. To address this issue, several modified RNNs have been 
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proposed to control the gradients' information propagation. Among these methods, long short-term 

memory (LSTM) and gated recurrent unit (GRU) can effectively capture long-term sequential 

dependencies [177]. GRU has a relatively simpler structure and requires less memory. In this method, 

there is a reset gate and an update gate to drop unwanted information and propagate useful information, 

respectively [176]. Therefore, GRU can address long-term dependencies, which is an essential 

requirement for battery modeling. On the other hand, LSTM employs a relatively complex 

methodology with three gates: input, output, and forgot gates. These gates control the influence of 

memory on the output and forgot rate [182]. RNN-LSTM can model the battery SOC with MAE less 

than 0.6% [179]. As presented in the  

Table A- 1, the DL methods can estimate SOC more accuretly over a wide range of operating condition 

compared to conventional data-driven methods such as NN or FL.   

 

Table A- 1 Data-driven methods used for SOC estimation 

 

 

 Method Error Temperature Test Case 

 DNN [174] 0.61% MAE 0.78% RMSE 
2.38% MAX (25 °C) 

−20 to 25 °C Dynamic drive cycles, ±18A, Range of 
ambient temperatures 

DNN[181] 20.4% MAE,6.3% RMSE (25 °C) 0, 25, and 45 °C FUDS 

DBN+KF[175] 0.57% MAE, 0.7% RMSE, 2.5% 
MAX,  

 Dynamic stress test (DST) 

RNN-LSTM[179] 0.6% MAE, 0.7% RMSE, 2.6% MAX, 
(25 °C) 

0, 10, and 25 °C  Dynamic drive cycles, ±18A, Range of 
ambient temperatures 

RNN-LSTM[178] 0.66% MAE, 0.5% RMSE (30 °C) 0, 30, and 50 °C federal urban driving schedule (FUDS) 

RNN-GRU[178] 0.49% MAE, 0.64% RMSE (30 °C) 0, 30, and 50 °C FUDS 

RNN-GRU [177] 0.32% MAE, 2.0% MAX (25 °C) 0, 10, and 25 °C UDDS 

RNN-GRU [176] 1.65% MAE, 2.15% RMSE (27 °C) 0,10,20,27,30, 
40, and 50 °C 

dynamic stress test (DST) and (FUDS) 

     

NN[133] 1.17% RMSE  35, and 60 °C Calendared aged cell, CCCV cycling.  

NN[166] 1.91% RMSE  10, 20, and 40 °C 2.6 Ah Lithium-ion battery cycling 

FL[172] 0.82% MAE 0.97% RMSE 
2.45% MAX (25 °C) 

0, 25, and 45 °C FUDS and WUBSUB 
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Figure A-2 Structure of a (a) Neural Network (NN) with one hidden layer, (b) Forward Neural 

Network (FNN) with n hidden layers, (c) Deep Belief Network (DBN) with a stack of restricted 

Boltzmann machine, and (d) Recursive Neural Network (RNN)  

 

      State of Health (SOH)- In addition to SOC, the state of health (SOH) of batteries is one of the critical 

parameters in BMS. SOH elucidates the battery energy delivery capability compared to its original 

condition (fresh battery). SOH is a suitable gauge to determine the end of life of a battery based on the 

application; for instance, EVs preferably require a SOH > 80% [133]. SOH estimation is a challenging 

task with no direct solution due to the large number of factors that affect battery aging, such as ambient 

conditions, storage temperature, and cycling specifications. Additionally, the estimation method should 

be scalable to the battery pack and precisely estimate the battery state at various operating conditions. 

(c) 

(b(a

(d
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Therefore, a clear understanding of aging mechanisms is a crucial pre-requisite for developing a precise 

SOH estimation model. Aging mechanisms in lithium-ion batteries mainly consist of a loss of lithium-

ions due to consumption in side reactions, loss of active material from mechanical degradation during 

cycling, and internal resistance increases due to solid electrolyte interphase (SEI) formation and losses 

of electrical contact in the electrode [183, 184].   

       SOH estimation methods are generally organized in three categories: 1) Experimental approaches: 

physical analysis (including destructive methods) or electrochemical analysis, such as OCV monitoring 

[185], incremental capacity analysis (ICA) [186-188], and differential voltage analysis (DVA) [189], 

2) Model-based methods such as EM [190] and ECM [191], integrating with filter algorithms like KF 

[192] and PF [193] to enhance the fidelity [194], 3) Data-driven methods such as NN [133, 195], SVM 

[137, 196], and RNN [197]. Although physical analysis can precisely determine battery ageing 

mechanisms, it is not applicable for EVs since it requires a large number of experiments, is mostly 

destructive, and is limited to the laboratory environment. For instance, using a scanning electron 

microscope (SEM) or X-ray diffraction (XRD) can elucidate the aging mechanism and is beneficial for 

battery research and development, whereas BMS ideally requires an online and robust SOH estimation 

model based on the battery pack electrochemistry and ambient conditions. Among the experimental 

approaches, ICA has garnered much attention since it can be an in-situ battery health measurement tool 

that correlates the incremental capacity (IC) curve peaks during constant current charging to the battery 

age [186, 198]. However, locating IC peaks is challenging due to noises in voltage measurements. 

Therefore, either a filter algorithm such as a Gaussian filter [186] (GS) can be employed or voltage 

intervals can be chosen in an almost constant voltage region to relatively minimize the voltage 

measurement noise [187]. Although using the ICA method can lead to a relatively precise SOH 

estimation model with 1.08% MAE, it still suffers from a lack of adaptability to different battery 

chemistries and operating conditions. Among all the aforementioned methods, a data-driven approach 
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is a promising tool specifically for on-line applications such as EVs. Measuring the battery parameters, 

such as the voltage, current, and temperature throughout the whole battery life leads to a robust 

estimation model that considers the non-linear relation of parameters and the complex aging 

mechanisms. For instance, SVM can be trained off-line with a large volume of collected data under 

various aging conditions, then used to predict the SOH at various on-line environments and load 

conditions with RMSE < 4% [137]. Moreover, when trained over a large data set of batteries in various 

age conditions, NN can map battery parameters to the SOH with RMSE < 2% [133]. Although these 

data-driven methods can capture the non-linearity of the system, they need a large volume of data and 

cannot effectively predict the time-series related systems, where time-series data can capture the battery 

ageing process and increase the model fidelity [199]. Therefore, employing RNN can solve the 

mentioned limitations by considering the effect of time dependency. Additionally, to overcome the 

long-range dependency issue, modified RNN such as RNN-LSTM or RNN-GRU are the most suitable 

methods. An enhanced RNN architecture called independently RNN (IndRNN) was proposed recently 

where each neuron only receives its history instead of full connectivity to all other neurons. The main 

advantage of IndRNN compared to RNN is that IndRNN can mitigate the long-term gradient vanishing 

problem and has better perforamnce compared to RNN-LSTM and RNN-GRU SOH prediction models 

[197], see Table A- 2. As mentioned, the main challenge of employing RNN is incapability of this 

structure to capture long-term dependecy due to the gradient vanishing or explosion. As illustrated in 

the Figure A-3a, a LSTM unit has three gates including forget gate 𝑓𝑘 , input gate 𝑖𝑘 , and output 

gate𝑜𝑘. The forget gate determines the effect of cell memory 𝑐𝑘−1 on the current step input; the input 

gate limits the effect of the current step input on the cell memory, and the output gate governs the 

infleunce of the cell memory on the output.  These gates are activated with a sigmoid function σ. 

Therefore, LSTM is able to carry information over the time and mitigate the RNN main deficiency. 

Moreover, GRU unit has a reset gate 𝑟𝑘 , and update gate 𝑧𝑘, to determine the output in each step. GRU 
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has a relatively easier training process due to a lower number of parameters and  simpler structure, see 

Figure A-3b.  

 

Figure A-3 Structure of a (a) LSTM unit with three gates: forget gate, 𝒇𝒌 , input gate, 𝒊𝒌 , and 

output gate, 𝒐𝒌 , and (b) a GRU unit with two gates: reset gate, 𝒓𝒌 and update gate, 𝒛𝒌. 

 

Table A- 2 Data-driven methods used for SOH estimation 

 

      State of Power (SOP)- state of power (SOP) represents the maximum available power of batteries, 

i.e., the maximum power that batteries can supply or receive over a short period with safe operation 

[201]. In a pack of cells connected in series, the cell with the lowest SOP limits the power capability of 

the pack; therefore, the inter-cell inconsistencies have a vital role in the deliverable power of the battery 

pack. Moreover, developing an accurate SOP estimation model is more challenging compared to SOC 

 Method Error Temperature Test Case 

     

IndRNN[197] 1.56% MAE 1.87% RMSE 3.57% MAX 25 °C NASA’s Randomized Battery Usage Dataset  

RNN-
GRU[197] 

2.29% MAE 2.66% RMSE 4.89% MAX 25 °C NASA’s Randomized Battery Usage Dataset  

RNN-
LSTM[197] 

2.67% MAE 3.13% RMSE 5.86% MAX 25 °C NASA’s Randomized Battery Usage Dataset  

DNN[200] 
 

3.42% RMSE 25 °C NASA Data repository CCCV cycling 

     
NN[133] 1.67% RMSE  35, and 60 °C Calendared aged cell, CCCV cycling.  
SVM[196] 3% MAX for 95% of all cases  25, and 55 °C 20 Ah and 24 Ah Lithium-ion battery cycling 

SVM+PF[137] 4% RMSE 25 °C 2.2 Ah Lithium-ion battery DST test 
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and SOH. The main reason is that SOP estimation relies on the SOC and SOH of batteries, where a 

minor estimation error of them can exacerbate the SOP prediction inaccuracy [202]. There are quite a 

few studies regarding the on-line estimation of the SOP available in the literature, which are mostly 

based on employing ECM methods to simulate the battery dynamic [203, 204]. An algorithm such as 

recursive least squares (RLS) [203], particle swarm optimization (PSO) [204], or KF [205, 206] will 

then be employed to identify the ECM parameters; while the effect of inter-cell inconsistencies rarely 

considered in SOP estimation. For instance,  identifying the ECM by considering the inter-cell 

inconsistencies in a battery pack enhances the accuracy of SOP estimation by diagnosing the weakest 

cell [207]. However, the main drawback of ECM-based approaches is that they cannot consider the 

electrochemical dynamic of the cell [135]. Therefore, incorporating a reduced-order EM can be the 

future trend of SOP estimation methods. Additionally, SOC and SOH estimation data-based platforms 

can be extended to obtain the battery SOP as well. It is worth noting that most of the available models 

in the literature are developed for single state estimation or joint estimation of two states; however, 

there is a knowledge gap in developing a comprehensive framework that can accurately estimate all 

battery states simultaneously, e.g., SOC, SOH, and SOP.  

Charging Protocol 

Battery charging patterns directly affect battery lifetime and safety. The ultimate goal is a fast and 

efficient charging pattern with minimum performance attenuation. The first step of charging pattern 

optimization is to recognize the critical parameters. For instance, low ambient temperatures decrease 

the charge rate and there is a higher chance of lithium plating, which leads to battery degradation [208]. 

Charging strategies are mainly defined as the variation of current density during the charging process 

and generally divided into three categories: 1) Pre-defined methods, including constant current (CC), 

constant current constant voltage [142] (CC-CV), multistage constant current [209, 210] (MCC), and 
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pulse charging [211, 212] techniques, 2) Model-based methods, including optimization based on ECM 

[146] and EM [213-215], and 3) Data-driven methods, using ML methodologies such as a NN or early-

prediction method [139].  

      CC-CV is the most common charging pattern consist of a constant current charging interval up to 

reaching a cut-off voltage, followed by applying a constant voltage until the current reaches a preset 

minimum value. The main challenges of CC-CV are the relatively long charging time and low 

efficiency at high currents. There are some modified charging protocols that help overcome the CC-

CV drawbacks. For instance, employing two or more CC stages, followed by a CV interval mainly to 

limit the heat generation and reduce the charging time. Moreover, the pulse charging technique is 

widely used to decrease the concentration polarization and decelerate the mechanical degradation [216]. 

In this method, the charging current is periodically interrupted by a short rest period. Overall, pre-

defined methods are widely adopted due to the simplicity and ease of operation; however, they do not 

account for battery dynamics that lead to capacity loss and safety concerns, especially at high currents. 

It has been experimentally demonstrated that batteries with different chemistries under the same CC-

CV charging pattern have much different cycle life and a wide range of responses at different ambient 

temperatures [142]. Therefore, the charging protocol should be updated based on the on-line battery 

states and ambient conditions to maximize the battery cycle life.   

      Model-based charging pattern optimization is commonly used in a closed-loop control structure to 

accurately adjust the current based on real-time battery parameters such as voltage, resistance, and 

temperature. The key performance indicators are the battery temperature, capacity retention, and 

charging time. Therefore, in model-based approaches either EM [217] or ECM [146] is integrated with 

an optimization algorithm such as genetic algorithm (GA) [148], dynamic programming [145, 217] 

(DP), or biography-based optimization [144] (BBO) to search for the optimal current pattern; i.e., 

looking for the successful tradeoff of the aforementioned indicators. For instance, employing an 
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electrochemical-thermal coupled model can monitor the battery internal dynamic behavior including 

SEI formation and lithium plating during cycling, where a DP optimization can then be employed to 

find the optimal charging pattern. The optimized multi-stage charging protocol can reduce the capacity 

fade by 4.6% after 3300 cycles [145]. The main challenge of EM is the complexity of the battery 

dynamic, including the electrochemical, electrical, thermal, and aging phenomena which require 

solving a set of coupled non-linear partial differential equations (PDEs) [218]. Thus, EM is a 

computationally expensive method and is not a suitable approach for on-line applications such as EVs.  

There are some efforts to develop reduced-order models such as ECM [148] or reduced-order physics-

based models [213, 214], which are commonly adopted in BMS due to their relatively acceptable 

computational cost. ECMs are developed based on the electrical-thermal dynamic of batteries and have 

a relatively simple structure and ease of implementation; however, they have lower fidelity compared 

to EM because they ignore the electrochemical phenomena. Employing a reduced-order physics-based 

model integrated with a model predictive control (MPC) leads to an optimal charging pattern that can 

reduce charging time while also increasing the battery lifetime [214]. In other words, battery SOC and 

SOH are estimated based on reduced-order physics-based models and a MPC can find an optimum 

tradeoff between the charging time and SOH. Although this method is relatively suitable for on-line 

application, its accuracy for battery state estimation is generally less than the aforementioned data-

driven methods due to simplification assumptions that cannot completely capture the non-linear battery 

dynamic. Moreover, most studies in the literature optimized the charging pattern for a single cell; 

however, pack-level aging can not necessarily be extrapolated from single-cell evaluation. IC analysis 

of a pack voltage response and a single cell illustrates that non-uniform temperature distribution in the 

pack exacerbates aging effects [219]. Therefore, further investigation of pack-level aging mechanisms 

is critical to optimize the charging pattern for EVs. Data-driven methods, specifically RNN, can 

effectively derive the optimal charging pattern while considering the dynamic states of battery and 
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ambient conditions, although, to the best of knowledge, there is no extensive study of battery charging 

pattern optimization using the DL approach.  

      Another aspect of employing a machine learning approach in optimal charging pattern recognition 

is to quantitatively predict cycle life using early cycles to significantly reduce the time necessary for 

experiments [220]. Integrating this early-prediction method with an optimization algorithm such as the 

Bayesian method can reduce the total number of experiments and also lead to the optimal charging 

pattern based on predefined criteria [139]. Overall, charging pattern optimization still has significant 

room for improvement before a general platform can be developed that is scalable to implement in 

practical applications.  

Battery Equalization 

Battery cells in a pack are not identical, since the manufacturing process, packing assembly, or 

environmental factors could cause minor differences in the cell aging [221]. Inter-cell inconsistencies 

can accelerate pack degradation and limit the total capacity; i.e., in a module of cells connected in 

series, the charging/discharging process should stop when the first cell reaches the cut-off voltage even 

while other cells are not completely charged/discharged. Therefore, employing an equalization 

management system is crucial in EVs. Equalization implementation usually is based on considering 

one or more variables, such as the SOC [156, 157], operating voltage [222-225], and capacity [152], in 

which the main goal is to reach consistency in these variables. Among these indicators, the operating 

voltage equalization is easily implemented and avoids complex variables estimation; however, the 

operating voltage does not accurately reflect the internal state of the batteries. In this method, cells with 

a higher terminal voltage in a pack are discharged while the lower-voltage cells are charged until 

reaching equal operating voltages [149]. Capacity-based equalization can maximize the pack capacity 

but is limited to static load conditions, and employing this method in EVs requires extensive complex 
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adjustments[152]. Therefore, the SOC-based equalization approach is the most suitable methodology 

for EV application because of their relatively higher equalization effectiveness. However, the outcome 

tremendously depends on the SOC estimation method, i.e., an accurate SOC estimation method can 

greatly help the equalization management system.  

      The equalization control method can be divided into two categories: 1) Active equalization (non-

dissipative) – transferring energy from one cell to another to equalize the variables, 2) Passive 

equalization (dissipative) – employing resistors on each cell to reach equalized variables. The passive 

method has a relatively simple circuit and easier implementation; however, it causes excessive power 

loss and has a low equalization speed due to safety considerations [156]. Active equalization is 

generally based on employing a Buck-Boost circuit, using inductance to equalize adjacent cells [157]. 

In the literature, the mean difference algorithm is mainly used in the Buck-Boost circuit to discharge 

the higher energy battery and charge the lower energy battery [226]. On the other hand, by employing 

fuzzy logic control (FLC), the equalization current can be dynamically adjusted according to desired 

variables. Comparing FLC to the mean difference algorithm, it can reduce the equalization time by 49% 

and improve energy efficiency by 4.88% [157]. As mentioned, the main advantages of the AI-based 

approach are the self-learning intrinsic feature and adaptability to highly non-linear dynamics. 

Employing AI has been demonstrated as a successful tool to equalize the desired variables of the battery 

pack. In the literature, genetic algorithm (GA) [227] and FLC [156, 157, 228] have been utilized to 

obtain cell equalization and have demonstrated better performance compared to common equalization 

algorithms. Overall, the challenge of equalization is the accurate measurement of battery internal 

parameters and consequently the robust estimation of SOC. Therefore, employing the aforementioned 

SOC methods based on DL can have a great impact on the total pack capacity and equalization time. 

The available methods, benefits, drawbacks, and future trends of state estimation, charging protocol 

optimization, and inter-cell equalization are presented in the Table A- 3. 
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Table A- 3 methods, benefits, drawbacks, and future trend of state estimation, charging 

protocol optimization, and inter-cell equalization 

 Method Benefits Drawbacks Future Trend 
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EM Considering electrochemical dynamic High computational cost  

 

 

 

 

 

RNN-based 

methods are able 

to accurately 

consider the 

complex 

dynamics of cells 

and incorporate 

the effect of long-

term sequential 

dependencies 

which is 

necessary for 

battery state 

estimation 

 

ECM Low computational cost, considering 

the electrical-thermal dynamic 

Cannot incorporate the effects of 

electrochemical reactions 

KF Filtering the uncertainties to find 

optimal variables 

Low accuracy and robustness 

NN Good accuracy and computational cost 

in non-linear dynamic modeling 

Unable to capture time-series related 

system such as battery aging mechanisms 

FL Non-linear dynamic simulation with 

employing partial truth concept 

Large computational cost 

 

SVM Employing a regression algorithm to 

convert the non-linear model to a linear 

model 

Requires large data-set and potential of 

overfitting 

 

DNN Precise prediction of battery states with 

considering complex electrochemical 

reactions 

Unable to capture time-series related 

system such as battery aging mechanisms 

DBN strong feature extraction ability and 

lower number of parameters compared 

to DNN 

Overfitting potential 

 

RNN-

GRU 

Precisely incorporate the aging effect 

with capture long-term sequential 

dependencies 

Complex structure and large 

computational cost 
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CC-CV Easy implementation  Long charging time and low efficiency at 

high current rates 
 

 

 

 

Optimal tradeoff 

between the 

charging time and 

battery cycle life 

can be achieved 

by employing a 

data-driven 

method to adjust 

the charging rate 

based on SOC 

and SOH 

 

MCC Lower heat generation and charging 

time compared to CC-CV 

Long charging time of CV step to 

prevent overcharging/discharging 

Pulse 

charge 

Decrease the concentration polarization 

and decelerate the mechanical 

degradation 

Lack of research in optimizing pulse 

amplitude and width 

EM Adjust the current rate based on real-

time battery parameters  

High computational cost 

 

ECM Rapidly adjust the current rate based on 

real-time battery parameters   

 Neglecting the model complex 

dynamic due to employing simplified 

circuits 

 

Data-

driven 

Incorporate the cell history to find 

optimal charging pattern on-line  

Requires large data set and high 

computational cost  

In
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r-
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n
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n
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Active High energy efficiency and equalization 

speed 

Low accuracy and complex 

implementation 
Employing an 

active 

equalization 

circuit integrated 

with a FLC/GA 

to adjust the 

equalization 

current based on 

an accurate SOC 

estimation 

 

Passive Relatively simple circuit and easier 

implementation 

Excessive power loss and low 

equalization speed 

Mean 

algorithm 

Easy implementation Lower energy efficiency and equalization 

speed compared to FLC and GA 

FLC Dynamically adjusting the equalization 

current based on the desired variables 

Scalability difficulties due to complex 

FLC design based on the dynamic of 

batteries 

GA Effective optimization tool for complex 

non-linear problems 

 

Relatively large computational cost 
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Challenges and future direction  

Despite great efforts in addressing BMS challenges, there are still several critical issues that require 

further investigation. Most of the state estimation research in the literature is focused on cell behavior; 

however, the scalability of these methods to battery module and pack is a challenging task. Although 

EM and ECM can provide useful insights into complex battery dynamics, they are not a promising 

solution for on-line state estimation in EVs. For instance, EM either is too complex, computationally 

expensive, and specifically developed for pre-set conditions, or cannot simulate the highly non-linear 

complex dynamic of batteries due to simplification assumptions in reduced-order physics-based 

models. Moreover, ECM has been employed to some extent for battery state estimation; however, they 

are developed based on the electrical-thermal response of batteries, neglecting the effects of 

electrochemical reactions. There have been some efforts to employ data-driven approaches in battery 

state estimation including SOC and SOH, which are mostly limited to specific operating conditions. 

Developing a robust state estimation model has an invaluable effect on addressing other BMS 

challenges as well. The accuracy of data-driven methods highly depends on the data-set size; therefore, 

training of data-driven models should be performed with a large data-set and/or by integrating with 

ECM and reduced-order physics-based models to accelerate the training process.  

      Moreover, the developed data-driven model should be able to incorporate the aging mechanisms at 

a wide range of operating conditions. In fact, the scalability and adaptability of the state estimation 

approach are crucial. To achieve this goal, off-line training is critical, but not sufficient, and on-line 

model enhancement can be beneficial to increase the model fidelity. It is worth noting that employing 

the DL approach can accelerate the universal state estimation model development due to its remarkable 

potential to capture the non-linearity of complex systems.  

      On the other hand, charging protocol optimization is an ongoing challenge in the EVs industry, 

which aims to find an optimal tradeoff between the charging time and battery cycle life. Since the 
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charging pattern can tremendously affect the battery aging, common pre-determined charging patterns 

such as CC-CV should not be a prominent option as they neglect the dynamic behavior of batteries, 

whereas on-line adjustment of the charging rate according to SOC and SOH can be highly beneficial to 

achieve this goal. Although there is some effort in the literature to optimize the charging pattern based 

on SOC and SOH measurement using a reduced-order physics-based model integrated with 

optimization algorithms, they are mainly restricted to single-cell consideration. It is worth noting that 

pack-level aging can not necessarily be extrapolated from cell evaluation. Therefore, investigating the 

charging pattern in the battery pack based on on-line SOC and SOH estimation integrated with 

optimization algorithms can be a future direction to find optimal charging patterns. The critical aspects 

involve employing DL methodology to enhance the state estimation robustness and find the link 

between cell-level and pack-level aging to successfully balance the charging time and cycle life. Special 

attention should be paid to the effects of low temperatures on the optimal charging pattern recognition.  

Another crucial aspect that should be considered in the charging pattern optimization of a battery pack 

is that the internal parameters and ambient conditions can cause inter-cell inconsistency. This 

inconsistency enhances the pack degradation and could cause over-charging/discharging of cells. 

Therefore, an equalization management system should be considered as well, to equalize the desired 

cell variables. Among the aforementioned equalization variables, the SOC is suitable since it can 

appropriately represent the condition of cells and be estimated rapidly and accurately on-line. From the 

software aspect of the equalization management system, the first step is an accurate on-line quantitative 

estimation of inter-cell inconsistencies which is related to the battery state estimation model. Then, an 

optimized algorithm considering the operating conditions should be utilized to minimize the 

equalization time and energy loss.  

      Overall, AI methodology can be a promising solution to optimize the BMS in EVs. The ultimate 

goal is to develop a universal framework based on employing the DL approach, specifically the RNN-
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GRU method trained with a large data-set at various operating conditions. Despite the complex 

structure of RNN-GRU, this method can effectively capture long-term sequential dependencies, which 

are highly critical during the battery lifetime. The developed framework should be compatible with a 

wide range of ambient conditions and be able to estimate the battery states robustly. Additionally, an 

optimization method (e.g., GA) should be integrated to determine the optimal charging pattern and 

minimize the inter-cell inconsistencies. These implementations will increase the reliability and cycle 

life of battery packs with a reasonable charging time, allowing EVs to compete with combustion engine 

vehicles.  

Conclusion 

The applications of AI in EVs are critically reviewed in this paper with a focus on addressing 

key challenges for the BMS, including an accurate state estimation, optimized charging 

protocol, and inter-cell inconsistency equalization. Various state estimation methods are 

systematically evaluated, highlighting their fundamentals, benefits, and drawbacks. The 

significance of optimizing the charging pattern is elaborated, as common pre-defined methods 

have long charging times and are not able to modify the charging pattern based on the battery 

dynamic and environmental conditions. It is worth noting that inter-cell inconsistencies of 

variables such as operating voltage or SOC can exacerbate the battery pack aging, limit the 

total capacity, and have adverse effects on the state estimation model accuracy. This review 

sheds light on the prospects of employing AI to develop a universal framework to address the 

aforementioned challenges. In contrast, the currently available methodology is mostly limited 

to specific cell chemistry, pre-defined operating conditions, or cannot capture the multi-scale 

highly non-linear dynamic of the battery pack. 
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      In summary, there is a knowledge gap in addressing these BMS challenges. Developing a 

holistic multi-scale framework to address these challenges, e.g., accurate state estimation, cell 

equalization, and charging protocol optimization, is highly critical for developing the next 

generation of EVs. The framework can be based on acquiring large data-sets over a wide range 

of cell chemistries, operating conditions, and environmental conditions to ensure the scalability 

of the framework. Integrating reduced-order physics-based models and DL methodology can 

lead to a comprehensive framework that accurately equalizes the cells and adjusts the charging 

pattern based on robust state estimation. 
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