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Abstract

Robots are used in many areas of industry and automation. Currently, human safety is
ensured through physical separation and safeguards. However, there is increasing interest
in allowing robots and humans to work in close proximity or on collaborative tasks. In
these cases, there is a need for the robot itself to recognize if a collision has occurred and
respond in a way which prevents further damage or harm. At the same time, there is
a need for robots to respond appropriately to intentional contact during interactive and
collaborative tasks.

This thesis proposes a classification-based approach for differentiating between several
intentional contact types, accidental contact, and no-contact situations. A dataset is de-
veloped using the Franka Emika Panda robot arm. Several machine learning algorithms,
including Support Vector Machines, Convolutional Neural Networks, and Long Short-Term
Memory Networks, are applied and used to perform classification on this dataset.

First, Support Vector Machines were used to perform feature identification. Compar-
isons were made between classification on raw sensor data compared to data calculated
from a robot dynamic model, as well as between linear and nonlinear features. The results
show that very few features can be used to achieve the best results, and accuracy is highest
when combining raw data from sensors with model-based data. Accuracies of up to 87%
were achieved. Methods of performing classification on the basis of each individual joint,
compared to the whole arm, are tested, and shown not to provide additional benefits.

Second, Convolutional Neural Networks and Long Short-Term Memory Networks were
evaluated for the classification task. A simulated dataset was generated and augmented
with noise for training the classifiers. Experiments show that additional simulated and
augmented data can improve accuracy in some cases, as well as lower the amount of real-
world data required to train the networks. Accuracies up to 93% and 84% we achieved by
the CNN and LSTM networks, respectively. The CNN achieved an accuracy of 87% using
all real data, and up to 93% using only 50% of the real data with simulated data added
to the training set, as well as with augmented data. The LSTM achieved an accuracy of
75% using all real data, and nearly 80% accuracy using 75% of real data with augmented
simulation data.
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Chapter 1

Introduction

Robots have been widely used in the manufacturing industry, and have replaced humans
in performing difficult or dangerous work [61]. In such industrial settings, human safety is
ensured via physical separation of humans and robots [61]. However, there is now a desire
to allow robots to act alongside humans, for the purposes of performing collaborative tasks,
or providing care to humans [29] [61]. In situations such as this, old methods of providing
safety by means of separation are no longer applicable, and new methods and standards
must be adopted [61] [29].

When collaborating with a human, a robot needs to avoid unintended collisions, but
also the ability to respond to an intentional interaction, as opposed to simply treating
an interaction as a collision. Previous research has developed collision-detection systems,
which can increase safety by allowing a robot to react appropriately to an unintended con-
tact [39] [70]. Previous works have also attempted to distinguish intentional interaction
from unintentional contact [38] [18]. These works have been limited to the detection of
collision, to distinguishing unintentional collisions from intentional interactions, or to ex-
tracting information about an occurring collision. They have not investigated determining
the human intent behind the interaction, which involves classifying the situation as one of
many types of intentional interactions.

This thesis investigates methods of classifying different intentional interaction types
between a human and an industrial manipulator robot, using Machine Learning classifiers.
The interaction types considered include: a rapid shove of the robot as if to prevent
or stop a collision, gradual adjustments to the robot, as if to correct for error or adjust
motion, light accidental contacts, and nominal operation. The ability to classify interaction
in this way can allow for improved safety and collaboration, as a robot will be able to
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respond appropriately based on understanding the human’s intent during the contact.
The classifiers are developed and tested in simulations and a physical interaction dataset.

First, a Support Vector Machine classifier is developed. An investigation into feature
selection is performed, which demonstrates the usefulness of combining model-based and
non-model-based features. A method used by [39], involving preforming classification for
each joint, is compared against whole-arm classification. Finally, sources of error are
isolated.

Second, classifiers based on two different neural network architectures are developed.
This thesis then investigates augmenting the training process of neural network classifiers
with data generated in simulation, to reduce the amount of real-world data needing to be
gathered.

1.1 Contributions

This thesis makes the following contributions:

Support Vector Machine, Convolutional Neural Network, and Long Short-Term Mem-
ory network classifiers are developed to distinguish between types of physical human-robot
interaction. Physical and simulation datasets are generated to evaluate the classifiers per-
formance.

The benefits of combining model-based and non-model-based features are demonstrated.
Feature exploration is performed, distinguishing between input data taken from robot
sensors, data calculated from a robot model, and data with additional transformations
performed. The results of the experiments performed demonstrate that combining model-
based and sensor-based features allows for increased performance. This strategy of com-
bining raw- and model-based features may be used with future classifiers to achieve better
results.

Support Vector Machines using data from the entire robot arm, or the use of an ensemble
of classifiers each trained on individual joints, as seen in [39] are compared. Classifiers that
act on data from individual joints, as opposed to the entire arm, are shown to provide
little or no additional benefits. A modification of this method to train multiple classifiers
on data from 3 joints only reaches the classification accuracy of a classifier trained on data
from the entire arm, but does not surpass it.

Improved neural network training through use of a simulated dataset, and ability to
train with less real-world data is demonstrated. A simulated dataset is generated to mimic
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a real-world dataset, and used to augment the training process of neural networks with
limited real-world data. Experiments demonstrate the ability of simulation data to improve
classification accuracy, and allow training with less real-world data. This method may be
beneficial in other situations where real-world data is sparse.

1.2 Thesis Outline

This thesis is organized as follows:

Chapter 2 presents background information and a review of literature relevant to this
thesis.

Chapter 3 presents the Machine Learning problem formulation, and common elements
of methodology used in this thesis.

Chapter 4 presents the development and testing of Support Vector Machines in classi-
fying human-robot contact.

Chapter 5 presents the development and testing of a convolutional and a Long Short-
Term Memory neural network for classifying human-robot contact, as well as the generation
of a simulated dataset.

Chapter 6 presents the results of the tests described in Chapter 4 and Chapter 5.

Chapter 7 presents final conclusions, limitations and suggestions for future work.
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Chapter 2

Background and Related Work

This chapter reviews the background concepts related to this thesis, including rigid body
dynamics, estimation of external torques, and an introduction to Support Vector Machines,
Convolutional Neural Networks, and Long Short-Term Memory Networks.

Next, previous works related to collision detection during human-robot interaction are
reviewed.

Finally, an overall summary is provided, identifying the open challenges and limitations
of current work.

2.1 Robot Modelling and State Estimation

This section reviews the rigid body dynamics and methods used to estimate external torque
acting on a robot. Where not otherwise specified, [65] was used as a reference when
compiling this information.

2.1.1 Robot Arm Kinematics

Consider a rigidly mounted robot arm, whose configuration is specified by a set of joint
angles. A frame is rigidly attached to each link. Joint angles can then be used to calculate
transformations between frames of the robot. Figure 2.1 [65] provides an illustration of
several links of a robot arm, along with the x and z-axes of the frames attached to each
link.
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Figure 2.1: Robot bodies and frames connected via joints [65]

Transformations between frames of a robot can be computed through the use of homo-
geneous transformations, which take the form:

T ji =

[
Rj
i pji

0R 1

]
(2.1)

with:

• T ji the transformation from frame i to j
• Rj

i the rotation from frame i to frame j
• pji the translation between from frame i to frame j.

One way to calculate these transformation is through the use of Denavit-Hartenburg
parameters, discussed in detail in [65] and also shown in Figure 2.1. These are parameters
which depend on the fixed geometry of the robot, and dynamic joint angles or positions.
For the parameters of joint i [65]:

• ai: distance from ẑi−1 to ẑi along x̂i−1
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• αi: angle from ẑi−1 to ẑi about x̂i−1

• di: distance from x̂i−1 to x̂i along ẑi
• θi: angle from x̂i−1 to x̂i about ẑi

the transformation can be calculated [65]:

T ii−1 =


cos (θi) − sin (θi) 0 ai

sin (θi) cos (αi) cos (θi) cos (αi) − sin (αi) sin (αi)di
sin (θi) sin (αi) cos (θi) sin (αi) cos (αi) cos (αi)di

0 0 0 1

 (2.2)

These transformations can be composed. The transformation of frame n with respect
to the robot’s base frame, 0 is [65]:

T n0 = Πn
i=1T

i
i−1. (2.3)

Forward Kinematics

Forward kinematics is the calculation of positions and orientations of part of a robot, in
the robot’s base frame, given the joint angles. This can be accomplished by taken the
given joints angles, calculating transformation matrices according to Equation (2.2), and
then composing these using Equation (2.3) [65]. The output of this, in general, includes 3
position components, and a rotation matrix R.

Instantaneous Kinematics

One can take the forward kinematic equation for a given point k on a robot, expressing
the rotation in Euler angles, and differentiate it with respect to time, obtaining equations
in the form [65]:

vk0 = J(q)q̇ (2.4)

Where vk0 is a vector composed of 3 linear and 3 angular velocities of point k with respect
to the robot’s base frame, given the n-dimensional vector q̇ of current joint velocities of the
robot, and J(q) is a 6× n matrix, referred to as the Jacobian. The matrix J(q) typically
contains nonlinear equations of joint angles, as the forward kinematics will often contain
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multiples of trigonometric functions of joint angles. Elements of J(q) can be written, for
element i of vko and joint j [65]:

Jij =
∂vi
∂qj

. (2.5)

Note that if the point k on the arm is located before some joints, the columns of J(q)
corresponding to those joints will be zero.

The instantaneous kinematics can be inverted to obtain [65]:

q̇ = J−1(q)vk0 . (2.6)

This formulation permits the joint velocities required to obtain velocity vk0 at point k
to be computed. In general, J(q) may not be square, full-rank, or well-conditioned. For
example, if J(q) is full row-rank, but not full column-rank, many right-inverses exist. In
these cases, numerical inversion or pseudo-inverses may be required [65].

2.1.2 Forces

If the robot is at rest and in contact with the environment, the Jacobian of the contact
point can be used to calculate the forces applied at that point by the robot, given the
current joint torques τ [65]:

f = (J(q)T )−1τ. (2.7)

In Equation (2.7), f is a 6-dimensional vector of 3 forces and 3 moments acting at the
point for which J(q) is calculated. The numerical issues discussed in the previous section
also apply here. For example, if J(q)T is full column-rank, but not full row-rank, many
left-inverses of J(q)T exist.

This equation can also be inverted [65]:

τ = (J(q)T )f. (2.8)
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2.1.3 Rigid Body Dynamics

The dynamics model used in this research [65] takes the form:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τm − τF + τext = τtot. (2.9)

where:

• q is a vector of joint angles, and q̇, q̈ are its derivatives
• M(q) is the inertia matrix, which is symmetric and positive-definite
• C(q, q̇)q̇ is a vector of centripetal and Coriolis terms
• g(q) is a vector of gravitational terms
• τm is the torques applied by the robot motors
• τF is torques induced by friction
• τext is torques induced on the robot joints by external forces

An important property of this equation [65], is the skew-symmetry of:

Ṁ(q)− 2C(q, q̇). (2.10)

It should be noted that the rigid body dynamics equation is highly nonlinear. In
addition, it requires joint acceleration values to compute τ . This can cause problems due
to sensor noise and numerical differentiation, as noted by [42].

2.1.4 External Torque Estimation through Observers

Haddadin et al. [42] present and compare several methods used to estimate the external
torques acting on a robot. These external torque estimates are widely used as collision-
detection signals, as will be discussed in Section 2.3.1. This section reviews a basic method
of estimating external torques, and a more advanced method, both described in detail in
[42].

Direct Estimation of External Torque

The most straightforward way of estimating the external torque acting on a robot is through
the use of the rigid body dynamics equation presented in Section 2.1.3:
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τ̂ext = M̂(q)q̈ + Ĉ(q, q̇)q̇ + ĝ(q)− τm (2.11)

With the hat-notation representing estimations of values.

Haddadin et al. [42] notes that while this method is direct, it is susceptible to noise in-
troduced through differentiation and double-differentiation of joint position measurements.

Haddadin et al. [42] [40] present a modification to the above method, which uses the
desired joint trajectory qd and derivatives to compute the expected torque:

τ̂ext = M̂(qd)q̈d + Ĉ(qd, q̇d)q̇d + ĝ(qd)− τm (2.12)

With a well-tuned controller, [42] argues that the desired trajectory will approximate
the actual trajectory well. This presents the advantage that the joint velocity and accel-
eration are not subject to sensor noise, or calculated numerically. However, this method
becomes dependent on the controller maintaining a trajectory close to the desired tra-
jectory. It will also not be valid if a collision moves the robot away from the planned
trajectory.

Takakura et al. [70] and Yamada et al. [76] also make use of an inverse dynamics model
to estimate the external torque acting on the robot. Both thresholding and comparing the
disturbance observer values to those from the last execution are suggested as methods to
detect a collision [70].

This method may provide an effective baseline for estimating the external torque on
a robot. However, the effect of noise added through differentiation, and any errors in the
dynamic model used, will decrease the quality of the estimation.

Momentum Observer

The final strategy discussed by [42] and also presented in [25] [27] [5], is the momentum
observer. The momentum observer makes use of the generalized momentum p of the robot:

p = M(q)(̇q). (2.13)

The observer makes use of several properties of the rigid body dynamics equation to
create an observer with gain parameter Ko and dynamics:

˙̂p = τm + CT (q, q̇)q̇ − g(q) + r, p(0) = p0 (2.14)
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ṙ = Ko(ṗ− ˙̂p) (2.15)

And the final form:

r = KO(p(t)−
∫ t

0

τm + CT (q, q̇)q̇ − g(q) + rds− p0) (2.16)

This observer serves as a stable first-order filter of the external torque acting on the
robot, with dynamics:

ṙ = KO(τext − r) (2.17)

As an extension to the joint velocity observer, the momentum observer avoids the need
for inversion of the mass matrix. Compared to using inverse dynamics, it does not require
the double-differentiation of joint positions to calculate acceleration.

2.2 Background on Classifiers

This section presents a brief overview of the classifier methods used in this thesis, which
include Support Vector Machines, Convolutional Neural Networks, and Long Short-Term
Memory Networks.

2.2.1 Support Vector Machines

Support Vector Machines (SVMs) are a supervised machine learning method. In this thesis,
they are used to perform classification.

Given a dataset consisting of pairs of feature vectors and labels (xi, yi), with yi ∈
[−1,+1] defining the class of sample i, a SVM learns a weight vector w and bias scalar
b. These define a hyperplane in feature-space which separates the data samples with
maximum margin between samples and the hyperplane, such that [14]:

xTi w + b > 0, yi = +1

xTi w + b < 0, yi = −1.
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This is done through the use of the Lagrangian function [14]:

L = 0.5||w||2 −
l∑

i=1

αiyi(x
T
i w + b) +

l∑
i=1

αi (2.18)

with lagrange multipliers αi.

This formulation is feasible if the data is linearly separable in feature-space [14]. When
the data is not linearly separable, the SVM solves for the optimal separating hyperplane
and margins by introducing positive slack variables ζ. The equations above then become
[14]:

xi · w + b ≥ +1− ζi, yi = +1

xi · w + b ≤ −1 + ζi, yi = −1

ζi ≥ 0,∀i

and

L = 0.5||w||2 + C
∑
i

ζi −
l∑

i=1

αi{yi(xi · w + b)− 1 + ζi}+
l∑

i=1

µiζi (2.19)

with Lagrange multipliers µi and coefficient C chosen by the user to penalize errors in
classification.

Figure 2.2 illustrates a the solution to a SVM with non-separable data.

11



Figure 2.2: Illustration of SVM hyperplanes with non-separable data. Adapted from [14]

SVMs can perform well in high-dimensional spaces and tend to avoid overfitting [39]
[14]. SVMs are able to ignore any vectors not supporting the decision boundary, and can
function even in cases where the dimensionalty of vectors is grater than the number of
samples [10]. They can also be extended through the use of nonlinear kernel functions [14].

2.2.2 Deep Neural Networks

Deep neural networks are a type of machine learning method. They are composed of layers
of connected neurons. A deep neural network consists of an input layer, which receives
numerical input data, hidden layers of neurons, and an output layer, which outputs the
network prediction.

A single neuron in a network is connected to those in the preceding layer. The neuron
has a numerical weight assigned to each of these connections, as well as a bias term. When
doing a forward calculation of the network, the outputs of proceeding neurons are multiplied
with their corresponding weights, and summed together with the bias. A nonlinear function
is then calculated on this sum, and the output used as the output of the neuron. During
training, the weights and bias terms of each neuron are adjusted. Figure 2.3 illustrates a
single neuron in layer j of a network, with inputs, weights, and output shown.
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Figure 2.3: Illustration of single neuron in a Deep Neural Network [17]

Many neurons are placed in parallel to make up a layer. In dense neural network layers,
each neuron in a given layer is connected to all neurons in the preceding and succeeding
layers. Figure 2.4 illustrates this.

Figure 2.4: Illustration of layers in a Deep Neural Network [17]

2.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning method, designed to
work with data which has a grid-like structure, such as images. A CNN typically consists
of convolutional layers, pooling, and dense layers [77].

A convolutional layer consists of an application of kernels, or arrays of numbers. These
numbers are arranged in a small grid. This grid is placed over and moved along the input
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grid of data. At each location, the element-wise product is taken between overlapping
kernel values and input data values [77]. The sum of these values is then fed to the output
of the layer, and an activation function is applied. Applying multiple kernels leads to
multiple output layers stacked depth-wise. During training, the values in each kernel are
learned to identify and extract features. This is illustrated in Figure 2.5.

Figure 2.5: Illustration of applying a kernel to an input grid of data [77]

Pooling layers serve to reduce the size of the data at various layers of the network. This
is done by combining various nearby values in the input layer to the pooling layer. For
example, with a ’max pooling’ layer of 2x2 pooling, each 2x2 grid of data will be reduced
to a 1x1 element containing the maximum value [77]. Figure 2.6 illustrates this.
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Figure 2.6: Illustration of 2x2 max pooling layer [77]

The application of repeated layers of convolution and pooling can lead to the extraction
of a hierarchy of features at various levels. Often, the last of these layers is connected to
one or more dense layers of the network, which provides the final classification prediction
[77].

2.2.4 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks are a type of network which work with time-
series input data, and hold a memory of previous states within the timeseries. LSTM
neurons contain an internal state, as well as internal ’gates’ connected to the input and
output, as well as a forgetting gate. This combination of gates an internal states is able
to allow a LSTM neuron to learn how to remember or forget information [67]. Figure 2.7
and Figure 2.8 show two different depections of an LSTM neuron. Figure 2.7 shows a
more complicated arrangement of an LSTM into a memory cell, while Figure 2.8 shows an
unrolled LSTM neuron. LSTMs can then be arranged into networks.
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Figure 2.7: Illustration of LSTM memory cell [67]

Figure 2.7 shows some internal structures of an LSTM cell. A memory block contains
one or more constant error carousels (CECs) which have recurrent connections. Updates to
the cell are controlled by an input gate. The inner state is updated by taking element-wise
multiplication of inputs and input gate elements, and adding these to the internal state.
An output gate controls connections to the next layer in the network. The internal state
is multiplied element-wise with output gate values, and taken as inputs to the next layer.
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Figure 2.8: Illustration of LSTM neuron. Adapted from [54]

2.3 Related Works

This section reviews previous work in collision and contact detection during physical
human-robot interaction. A large body of work exists on collision detection, which is
critical for ensuring safety. Other works attempt to extract additional information from
contact, or determine some form of intent from a contact.

This section first reviews previous works which use model-based methods, followed by
those which use machine learning methods, and presents a final summary of identified
trends.

The goal of this thesis is to be able to classify human intent, so that the robot can
ultimately adapt its control strategy accordingly. Various papers discuss the benefits of
being able to modify control strategies based on context, including examples discussed by
[29] and [3].

Ajoudani [3] reviews recent works on human-robot interfaces. They note the benefits
of using multiple sensors to allow operation in a variety of contexts, and note that force-
torque sensors are commonly used in collaborative tasks. They also describe benefits of a
robot platform capable of adapting its control scheme given a changing situation. Finally,
[3] notes the capability of humans to adapt to changing robot dynamics, which suggests a
human can learn to make use of a system which determines intent and responds accordingly.

Argall and Billard [6] review a number of works on tactile human-robot interaction.
They classify work on tactile sensing into three domains: ’responding to disturbance’,
’state classification’, and ’behavioural selection’. The first and third apply most directly
to this thesis. The papers in these areas tended to use contact location information, and
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the magnitude of applied forces. A similar pattern was seen when grouping works that
performed ’behaviour execution’ and ’behaviour guidance’, which correspond to the work
in this thesis.

2.3.1 Model-Based Methods

This subsection discusses model-based methods which have been identified in previous
works. The majority of these methods have used model information to estimate exter-
nal torques, and used these torque measurements in various ways, especially for collision
detection.

Estimating External Torques

Many papers suggest detecting a collision by estimating the external torque acting on a
robot, and indicating a collision has occurred if this surpasses some value. Some works use
these estimates directly to detect collisions, including [42], [76], [70], [5] , while others use
these estimates in machine learning models, including [39], [60].

In general, thresholds set for these purposes must be able to accommodate noise from
sensors, model error, or other sources of error [42], [19]. [70] suggests comparing estimates
of external torque to readings from past periods in repetitive tasks.

The momentum observer appears to be the most promising of the observers presented
in [42], and is the primary observer investigated in this work. This observer is also used in
[25], [5], [13], [37], [39], [19], [26], [28].

Kouris et al. [46] make use of the Fast Fourier Transform, applied to either end-effector
force readings or external joint torque readings, to detect collisions. The FFT is calculated
on a fixed-size window of data every time a new sample is received from the sensors, for
frequency values between 10 and 100 Hz. The rate of change in the magnitude of the FFT
calculated between the two windows is used as a collision-detection signal.

De Luca at al. [25], used the calculated residual vectors in a control law to respond
to the collision. These were found to cause the robot to retreat from collision rapidly.
Smilarly, Gaz et al. [37] use calculated residual vectors as part of their control law. Similar
information is recovered by the method in [11].

Buodonno and De Luca [13] use a combination of a force-torque sensor on the base
of the robot, and the momentum observer (sometimes replaced with a joint acceleration
estimate) to determine the location and magnitude of a contact force. This is done through
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a geometric approach, using knowledge of the robot’s kinematic and dynamic model. This
process can be used without some combination of these sensors if assumptions are made
about the contact force [13].

Mikhel et al. [52] investigates two methods for determining the location of a contact
on a robot, both of which use measurements/estimates of external joint torques. The first
method attempts to solve for two contact forces on the robot which minimize the error be-
tween the expected and measured external forces. This method is limited to only 2 possible
contacts, and does not consider the shape of the robot. The second method considers a
grid of points on the robot’s surface. For each point, the optimal force applied to the point
which would match the observed external torques is calculated, through formulation as a
quadratic optimization problem. The point/force with the greatest probability is chosen.
This method has the advantage that it determines nearly the exact location on the robot of
a contact, an can be expanded to multiple contact points, but can be more computationally
expensive. Of note is that both methods only make use of external torque estimates.

Haddadin et al. [42] note that a collision will not introduce external torques onto
robot joints further away from the robot base than the point of collision. Thus, comparing
estimates of external torque to find the ’farthest’ link with an external torque present
will allow one to identify that link as the link in collision. [42] then discussed geometric
approaches for identifying the specific location of the contact, when possible. This provides
a simple method of isolating the colliding link, and collision location using only estimates
of external torques.

Modifications to Observers

Haddadin et al. [40] discuss two modifications to the momentum observer.

The first is to apply a high-pass filter to the residuals, in order to eliminate modelling
error. Haddadin et al. argue that the robot dynamics would contain low-frequency signals,
relative to torques generated by impact. These signals would then be removed by high-pass
filtering. Similar strategies are also used by [38].

The second is to use the difference between momentum observer residuals and estimates
of external torque made using the desired trajectory as the signal of interest. Once again,
[40] notes that this requires a stiff controller in order to function well.

De Luca and Flacco [26] modify the momentum observer by removing the forces mea-
sured by a force-torque sensor located on the robot’s end effector. This allows forces applied
at the end-effect to be considered intentional, and discarded from the momentum observer
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residuals, while other external forces can still be detected. This would not, however, be
useful for detecting collisions occurring at the end-effector.

Vorndamme et al. [73] use estimates of external joint torques combined with force-
torque sensors to detect collisions on a humanoid robot. [73] considers situations with
force-torque sensors placed on the middle or ends of the robot limbs. Collision detect is done
via thresholding, both of external joint estimations, and external sensed wrenches at the
force-torque sensors (corrected for any robot dynamics). The methods used by [73] require
either the measurement or estimation of joint acceleration values. The collision detection
method itself does not appear to have been tested independently, although simulated tests
were run on collision isolation (described below). High accuracy in localization is reported
when the Jacobian of the contact point is high-rank, with decreasing accuracy at decreasing
ranks.

Cho et al. [18] use a modified version of the momentum observer [19] to distinguish
intended contacts and collisions. This new observer takes the form of a high-pass filtered
version of the momentum observer residuals. The justification offered is similar to that
from [38]: external forces are likely to be applied at much slower rates during interactions
than during collisions. [18] note that this method in and of itself will not allow a robot to
perform a tasks which includes high-frequency forces, such as many manufacturing tasks.
In these cases, more information may be required. Unlike [38], this method also relies on
an accurate dynamic model of the robot.

Energy Observer

Haddadin et al. [42] note that collisions should be expected to change the energy of a
robotic system, making the observation of energy in the system a potentially useful method
of detecting collisions. The initial equation of the energy observer was presented as:

r(t) = Ko(Ê(t)−
∫ t

0

(q̇T τm + r)ds− Ê(0)), r(0) = 0 (2.20)

With [42]:

• residual values r

• gain Ko

• Estimate of total energy ˆE(t)
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[42] modified the equation to take the form:

r(t) = ko(T̂ (t)−
∫ t

0

(q̇T (τm + ĝ(q)) + r))ds− T̂ (0)) (2.21)

With:

• Estimate of kinetic energy T̂ (t)
• Estimate of gravity vector ĝ(q)

Haddadin et al. [42] note that this method will not detect collisions in cases where
the robot is not in motion (ie: q̇ = 0). In addition, collisions where the external force
lies perpendicular to the robot’s motion at that point will not be detected. However, [42]
note that the estimation of power transferred to/from the robot may still be useful when
making decisions related to the collision. The measurement of kinetic energy in the robot
may be useful in determining what type of interaction has occurred. However, the inability
to detect external forces when the robot is not moving, or is otherwise perpendicular to
the robot’s motion, presents a large weakness to this method. As suggested by [42], this
method may be most useful for providing additional information after the detection of a
collision or interaction.

2.3.2 Machine Learning Methods

This section reviews works which use machine learning in physical human-robot interaction,
particularly detecting collisions, and extracting information about collision events. The
works are divided by the type of model used. A summary of these methods is presented at
the end of the section, including details on the inputs and outputs of the models, dataset
sizes, and accuracies.

Support Vector Machines

Golz et al. [39] use a support vector machine (SVM) to distinguish between collisions and
interactions. To do this, several nonlinear features are calculated from estimates of external
joint torque, and used as inputs to the SVM. A SVM was trained for each joint, with the
predictions from all joints accumulated for a final prediction. SVMs perform well in high-
dimensional spaces, do not require large amounts of data for training, and can provide fast
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classification [39], making them useful for live classification and rapid prototyping. [39]
trained SVMS to both distinguish between collision and interaction, and to classify a body
part that the robot collided with. This paper lists many nonlinear features which may
be useful in performing classification. However, the use of each individual feature is not
justified.

While works such as [31], [75], [60] attempt to detect collisions on the basis of the entire
arm, [39] performs classification on a per-joint basis and amalgamates results.

Losey et al. [50] review attempts at intent detection, focusing on healthcare applica-
tions. Among these, they provide an example of an SVM being used in the control of
prosthetics.

Hidden Markov Models

DiLello et al. [31] use a sticky-Hierarchical Dirichlet Process Hidden Markov Model to
learn expected force/torque sensor readings for a particular task. In this case, [31] took
the measurements of each state to be the force and torque measurements of the robot
end-effector, along with their first derivatives. This method is able to detect collisions by
computing the probability of observing a given set of sensor measurements over a nominal
execution period. If this probability is below some threshold, this can indicate a collision
has occurred [31]. Classes are further used to predict the type of object collided with. The
use of derivatives supports the idea that the frequency or speed of events carries important
information.

Wu et al. [75] used a similar approach; a HMM was used to model sensor observations
while completing a task. In this case, however, the cartesian position of the robot was
combined with end-effector wrench measurements as the measurement from each state.
[75] also detected anomalies based on the cumulative log-likelihood of each action. If the
log-likelihood drops below a threshold, it is considered an anomaly.

A weakness of both of these methods is that ”Models are trained for individual skills...”
[75]. This presents limitations to making this method scale and generalize to new tasks.
In addition, both of these methods made use of force-torque sensor measurements. These
are sensors that not all robot platforms possess.

Neural Networks

Popov et al. [60] designed several neural networks for use in collision detection. The first
network distinguished between collision and non-collision. It used 7 input neurons, each
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receiving estimated external joint torque values, and a layer with 14 hidden neurons. As
shown in [60], the network was able to out-perform a simple thresholding method in terms
of classification accuracy.

The improved performance from using a neural network suggests that there may be
similar improvements to be seen using more advanced ML solutions for collision classifi-
cation. It is also worth noting that only estimated external joint torques were used as
input. Different values, or filtered values, may be able to provide more useful information
if torques alone do not contain enough information.

Next, Popov et al. [60] also used two neural networks to identify the link, and the lo-
cation along the link, where a collision was occurring. These networks contained different
numbers of hidden layers, but both accepted external torques as input. Once again, im-
provement was seen compared to a thresholding solution similar to that described by [42].
However, this method only isolates the collision location in terms of a scalar distance from
the base of the robot, and will not identify the exact location in the way the geometrical
approaches in [42] might.

Finally, [60] used elements of the Fast Fourier Transform of the external torques as
input to a network. This network was able to distinguish between hard and soft collision
objects. It is also noteworthy that [60] used results of the FFT calculated on external
joint torques as opposed to the torques themselves. This suggests the torque values alone
did not provide the best information for the classification, and supports the use of other
nonlinear features in [39], and their investigation in this thesis.

Lu et al. [51] used a neural network to detect collisions, and predict contact forces and
locations on a robot. The neural network takes readings from two force-torque sensors and
robot joint angles across a short time window as inputs. The outputs are the position and
contact force of contacts on various links of the robot. When compared against a model-
based approach, the neural-network based approach had lower error. However, [51] notes
that a large amount of training data is required. In addition, the circumstances this was
tested under were limited, with only one or two joints of the robot in motion. A model-
based approach to determine the contact location was also developed, which produced a
higher error in estimating the contact position/force.

Sharkawy and Aspragathos [64] use a neural network to detect collisions. This network
is trained to use errors in joint position and joint velocities to predict the external torques
acting on the robot. This network was trained against external torques estimated by a
Kuka LWR controller. It’s notable that this method was able to bypass reliance on a robot
model, and this method also demonstrates the use of joint velocity in collision detect as
a useful signal. However, it relied on information from joint torque sensors to train the
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network. The network was also only trained to perform this classification with one joint
of the robot active.

Briquet-Kerestedjian et al. [12] use a neural network to distinguish collisions from
interactions or no-contact situations, and localize contact to the upper or lower arm. This
network was trained on joint velocity data, and estimates of external joint torques. The
network was designed with sub-networks for each joint’s input data, with 10 hidden-layer
neurons for each joint fed into the output layer. Data was sampled with a period of 40ms,
and a history of 40 samples, or 160ms was used for training and classification. This work
can provide a useful reference for possible rates and timeframe of data required to perform
good estimation. While the frequencies that might be needed to capture and classify
events will vary depending on robot, situation, and motion, this provides a starting point
of values to consider. It is also notable that [12] made an attempt to avoid model-based
and frequency-based features, such as those used by Golz et al. [39].

Cremer et al. [24] perform intent estimation by using a neural network with radial basis
functions to estimate a human’s desired trajectory for the robot in task-space. Inputs to
the network were the force applied by the human, and the current end-effector position and
velocity in cartesian space. Weights for the network were learned online, and allowed for
smooth guiding of a robot arm, along with a learned inner-loop controller. It is motivating
to see the cartesian pose and velocity used as valuable inputs, along with the external force
applied to the robot,as in [75]. However, the goal of this project will be classification of
intent, as opposed to inferring an intended trajectory of the robot.

Learning Expected Error

Bolotnikova et al. [11] trained a binary tree predictor to estimate the expected tracking
error when following a trajectory. The difference between measured and expected error is
used as a collision detection signal, indicating a collision when it passes a given threshold.
This method also demonstrates ML algorithms used to compensate for a lack of sensors.
However, this method was tested in relatively limited circumstances.

The model used by [11] was trained through motions of each joint, while the joints
immediately before and after it were also moved. The authors did not specify if a separate
model was trained for each joint, or if this simply represented different testing scenarios.

Summary of Machine Learning Methods

Table 2.1 presents a summary of the machine learning methods.
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2.3.3 Other Methods

This subsection reviews works which do not clearly fall into the previous categories. These
papers use rates of change of raw sensor values, or make use of external sensors, without
using them within an ML model.

Geravand et al. [38] use motor currents to detect collisions. They do this by measuring
the currents, and applying both high-pass (HPF) and low-pass (LPF) filters. The reasoning
behind this is that a LPF will remove high-frequency noise present in sensor measurements,
but retain the effects of low-frequency modelling error and interactions. In contrast a HPF
will remove low-frequency components of interactions, but retain high-frequency collisions.
A connection can be made to [40], where filtering is suggested as a means to ignore torque
estimate errors introduced by modelling error.

Je at al. [45] proposes a collision signal based on the change in recent motor currents.
This was shown to allow collisions to be detected on a 2-dof robot arm, without any
knowledge of the robot model needed. However, this was not tested on a more complicated
arm, and may not provide enough information to distinguish other information about an
interaction.

This use of motor currents provides a potentially useful method of detecting collisions
when joint torque sensors are not available, such as in the TALOS humanoid robot [56].

De Luca and Flacco [26] use a vision sensor to determine if a contact is likely intentional
or not. This is done by visually estimating the location of a contact, and determining if
it is within an allowed or expected interaction zone on the robot. This method would,
however, require a vision sensor in the workspace, and would rely on a pre-known model
of how humans are likely to interact with the robot.

2.3.4 Sensors Used

Table 2.2 presents a summary of different types of sensors used in the previous works
presented. A large variety of sensors have been used in collision detection, ranging from
simple joint position sensors, to external force-torque sensors mounted on a robot. The
most common are sensors mounted at robot joints, such as joint position and torque sensors.
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2.3.5 Summary

A large number of model-based methods rely on the estimation and thresholding of external
joint torques. These are in turn often estimated through the use of the momentum observer.
This method is likely be be useful in providing contextual information to the robot, and
may be modified in many ways.

A variety of machine learning methods have also been proposed. Many make use of
raw sensor information to detect collisions, or the calculation of external joint torques.
Some methods make additional use of derivatives of sensor values, while others calculate
nonlinear features for classification.

Distinguishing collisions from interactions can be done simply using filtering, or as part
of machine learning classification. The ability to make this distinction using filtering is
likely a result of the different events occurring at different frequencies, allowing signals
induced by one or the other to be filtered out. The methods used to distinguish colli-
sions from interactions tend to focus on just these two classes, and not varying types of
interaction, which this thesis explores.

Both model-based and machine-learning-based methods have been used for determining
the location of a collision on a robot. Geometric approaches are greatly aided with the
presence of additional sensors, such as force-torque sensors. Machine learning methods tend
to make use of these sensors as well. The location of a collision or contact on the robot
may provide useful information in classifying an interaction. However, ML methods used
to determine this tend to use simplified models or require many sensors, and full geometric
methods may not have enough sensors present, or can be computationally intensive.

An estimate of the external force applied to the robot can be found using external
torque estimates and Equation 2.7. To the author’s knowledge, the transfer of this into
work-space, in the absence of end-effector force-torque sensors, has not been investigated
in the works discussed in the form of machine learning. While a neural network may be
expected to learn applicable portions of this transformation, providing the network with
pre-transformed inputs may be beneficial.

2.4 Limitations and Areas for Development

Beyond distinguishing collisions from interactions, few works attempt to classify forms of
intent behind an interaction. Such knowledge may be useful in selecting an appropriate
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robot response. Whereas other works differentiated between collisions and interactions,
this thesis will attempt to differentiate between interactions of different types.

A wide variety of sensors have been used, with position/velocity and torque sensors
being the most common. The use of model-based features such as the momentum observer
is also common. A comparative investigation into the values that provide the most useful
information may be beneficial to future researchers, by allowing smaller sets of sensors to
be selected with confidence that they will provide enough data.

Similarly, the use of different features should be compared. This can determine which
features provide the most useful information. For example, [60] used the FFT in classifying
hard/soft contacts, while the FFT was just one of many features used by [39]. A deeper
analysis will reveal which features are most useful.

Previous works have shown both the use of raw sensor measurements, and of features
calculated from a dynamics model of the robot. The use of raw sensor data compared to
observer-based features is investigated in this thesis.
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Chapter 3

Problem Formulation and Setup

This chapter describes the problem formulation and data generation/preparation for the
methods described in Chapters 4 and 5.

3.1 Problem Formulation

The overall objective of this thesis is to develop ML methods to classify different types of
physical interaction between a human and robot. Extracting additional information, such
as interaction location, is considered out of scope for this thesis.

The classifier developed will be used to differentiate between one of four classes. These
classes were chosen to cover a range of possible ways a human might interact with a
robot, and which might require different responses. Each class is presented below with a
motivating/illustrating scenario:

None: No interaction. Nominal operation of the robot arm

Bump: Light accidental contact. Might occur during close collaborative tasks. May or
may not require a response from the arm

Adjust: Gentle adjustment of the robot to provide feedback. Might occur to guide the
robot to correct errors in end-effector location, or to slightly manipulate trajectory
during motion. Might be appropriate for the robot to adapt a compliant controller
to be guided effectively
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Shove: Vigorous movement of the arm to prevent collision, damage, or injury. Might
occur if robot is moving rapidly and likely to damage the human or environment.
Note that this class represents an intentional action meant to precede and prevent
a collision. Might be appropriate for the robot to recoil or halt motion to prevent
collision

More formally, following notation from [59], the problem is defined as estimating the
label yi of a sample of data xi, with yi ∈ {1, 2, 3, 4} indexing each of the above classes, and
xi ∈ X ⊆ Rs×T , where s is the number of sensors recording data during the sample, and T
is the number of timesteps recorded. The machine learning problem is to learn a mapping
g : X → Y . This is a supervised learning problem, with a dataset D = {(xi, yi), i = 1...N},
which will be divided into training and testing sets. Note that g may include both a ML
model, as well as any processing of data.

Classifiers will be evaluated on their accuracy over a selection of M samples used as a
testing set. To understand the classifier performance, the confusion matrix of the classifier
M will also be used. Given a set of labels in the test set {yi, i = 1...M}, and corresponding
predictions {y∗i , i = 1...M}, these are calculated as:

Acc =
1

M
ΣM
i=11(y∗i = yi)

Mij = ΣM
i−11{yi = i}1{y∗i = j}

The time required to calculate features for classification is discussed in Appendix B.
However, it is not a key consideration in this thesis.

3.2 Dataset Generation

This section discusses the generation of a dataset used for training and evaluating classifiers.

3.2.1 Robot Details

The Franka Emika Panda [33] is a robot arm with seven actuated joints, and a gripper
attachment. Each joint includes position, velocity, and torque sensing. The Panda is
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designed to allow safe interaction with humans. An image of the Panda arm is shown in
Figure 3.1.

Figure 3.1: Panda robot arm [74]

When calculating dynamic forces acting on the Panda, dynamic parameters calculated
using the methods provided in [36] were used.

3.2.2 Experimental Conditions

Two experimental conditions were used to generate datasets.

In the first condition, the robot held a static pose, with no intentional movement. The
human then performed an action on the robot. Data gathered under this condition forms
what is referred to as the ’static’ dataset.

In the second condition, the robot moved between two given poses. The human per-
formed an action on the robot in the middle of this motion. Data gathered under this
condition forms what is referred to as the ’dynamic’ dataset.
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3.2.3 Data Recorded

During operation, data is recorded from the joint sensors of the Panda. These sensors
provide information on joint position, velocity, and measured torque, as well as timestamps.
The data was recorded at approximately 600 Hz. All of this information is collected into
timeseries during data recording.

3.2.4 Sample Gathering

The datasets were generated by the author interacting with the Panda robot arm in various
poses or during motion between poses. The poses of the robot arm were chosen to attempt
to achieve wide coverage of the workspace, with joint values shown in Table 3.1. For the
static dataset, these poses were used directly. For the dynamic dataset, the robot moved
from pose A to the other poses.

Table 3.1: Joint positions of robot poses (units in radians)

Pose Name q1 q2 q3 q4 q5 q6 q7

A 0.0 -0.78 0.0 -2.36 0.0 1.57 0.78
B -1.92 -0.26 2.72 -1.71 0.46 2.8 -1.0
C 0.24 1.0 0.37 -0.63 -0.34 2.90 0.84
D -0.8 1.4 1.0 -1.5 -1.5 3.75 2.0
E -1.0 0 1.8 -2.8 -0.1 3.0 0.75
F -0.4 1.6 1.3 -1.9 -0.4 1.8 -0.8
G 0.05 0.32 0.34 -0.89 -1.52 3.2 2.3
H 0 1.0 0.85 -0.8 -1.83 2.5 1.0

For the purposes of this thesis, a ’sample’ refers to one session of recording data during
interaction between a human and the robot arm, during which sensor data on joint posi-
tions, velocities, and torques was gathered, along with timestamps. Along with the known
interaction performed, these form the pair (xi, yi). Each sample gathered is transformed
into one input/output pair for machine learning classifiers through the processing described
below, and any additional processing needed for an individual classifier. The process for
gathering a sample is as follows:

1. Place arm in position for a given pose, according to Table 3.1

2. Begin recording sensor information (joint positions, velocities, and torques)
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3. Begin robot arm motion (if applicable)

4. Interaction performed by author

5. Robot motion halts

6. Data recording ended

Each sample was gathered with a specified action type. Typically, 3 repetitions of each
of these cases were gathered. During each recording, an interaction type from Section 3.1
was pre-assigned, and performed by the author during data recording. An interaction time
was also pre-planned and stored in meta-data.

While gathering the static dataset, interactions were performed with specified links of
the arm. Each pose from Table 3.1 was used in generating this dataset.

While gathering the dynamic dataset on the Panda robot arm, the speed of motion
between poses was also varied. In this dataset, there was no specification of a given link to
interact with; the link was chosen during the action by the author, and was not recorded.
Movements occurred from pose ’A’ from Table 3.1 to every other pose.

3.3 Data Preprocessing

Before being used in classification, the data from each dataset is pre-processed.

3.3.1 Selecting Window of Data

The first step in data preprocessing is selecting a window of data from each sample in
which the given interaction is known or estimated to have occurred. Appendix A describes
in detail the development and testing of methods to identify the best size window. It
was found that using the planned interaction time performed optimally for the dynamic
dataset. A programmatic method performed better for the static dataset, as described in
Appendix A.

3.3.2 Calculation of Features

The second step in data preprocessing is the calculation of the features to be used by a
classifier. Two types of features are discussed in this thesis, and are presented in Table 3.2.
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Table 3.2: Feature types used in this thesis

Type Description Examples
Timeseries
Features

Data that exists at each timestep
Recorded raw or calculated

Joint position q(t)
Joint torque τ(t)

Scalar
Features

Calculated from timeseries features
May be a single value (ex: mean)

May be a finite number of values (ex: FFT)

Mean of joint position q(t)
FFT coefficients of τ(t)

Timeseries Features

Joint acceleration and power are calculated trivially from the raw data using finite differ-
ences and element-wise multiplication of velocity and torque, respectively. Together with
the raw data, these are referred to as ’sensor-based’ features.

Additional features are calculated using a dynamic model of the Panda robot arm, and
are referred to as ’model-based’ features. These are calculated using the Pinocchio rigid
body dynamics library [16] [15]. Table 3.3 presents these features, and their method of
calculation. Features are calculated for each joint i.

Table 3.3: Calculated timeseries features

Feature
Notation

For Joint i
Calculation of Feature

Momentum Observer Residuals ri(t) Equation (2.16)
Gravity Compensation Toque gi(t) g(q) in Equation (2.9)

Inverse Dynamics Torque τinv,i
τtot in Equation (2.9)
With 0 external forces

External Power Pext,i Pext,i = ri(t) ∗ vi(t)

The momentum observer residual and inverse dynamics torque features are considered
based on their use in literature, such as [42], [76], [70], [5]. The gravity compensation
torque and external power features were also considered, due to ease of implementation.

Finally, the momentum observer residuals are projected into the workspace, to estimate
the 6-dof external force applied to the robot. This follows the equation:

f(t) = (J(q)T )−1r(t) (3.1)
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The sets of 3 forces, 3 moments, and 2 magnitudes of each, are termed ’workspace’
timeseries features. These features are intended to capture information which may be
relevant in workspace, and not joint-space.

Scalar Features

Scalar features are features calculated over a given timeseries feature. The majority of these
features were chosen based on their use in [39]. Many of these features are calculated using
the mean and standard deviation [23] of a timeseries feature, given below for a timeseries
feature s(t) with N timesteps:

s̄ =
1

N

N∑
i=1

si (3.2)

σs =

√√√√ 1

N

N∑
i=1

(si − s̄)2 (3.3)

Table 3.4 presents the scalar features used in classification, as well as methods for
calculating them, with notation also taken from [39]. This considers each feature to be
calculated from a timeseries feature s(t) with N timesteps. Most features are calculated
using the numpy [55] or scipy [71] libraries, or based on the definition provided.
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Table 3.4: Calculated scalar features

Feature Calculation of Feature
Mean Equation (3.2)

Variance σ2
s

Range max(s(t))−min(s(t))

Delta sN − s0

Skew
∑N

i=1(si−s̄)
Nσ3

s

Energy
∑N

t=0 s(t)
2

Hjorth Mobility
Hjorth Complexity

[9] [39]

Mob(s) =
√

V ariance(ṡ)
V ariance(s)

Comp(s) = Mob(ṡ)
Mob(s)

[53] [39]
Implemented with pyeeg [8]

Fast Fourier
Transform

FFT (s) = y such that

y[k] = ΣN−1
n=0 e

−2πj kn
N s[n]

Calculated using scipy [71] fftpack [72]

Typically, every scalar feature is calculated for every timeseries feature.

3.4 Final Dataset Details

Table 3.5 provides the final details of the datasets generated.

Table 3.5: Details of generated datasets

Dataset Samples Poses Actions Links

Static 334
8 Poses

41-42 samples each

96 each of
Bump/Adjust/Shove

46 None

72 samples for each link
46 no interaction

Dynamic 255
7 Movements

30-45 samples each

51 each of
Bump/Adjust/Shove

102 None
Not Recorded

Figure 3.2 shows example force profiles taken during the generation of the static dataset.
They show the magnitude of the estimated external force acting on the hand link of the
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Panda robot arm. These estimates were generated by using the Momentum Observer given
by Equation 2.16 to estimate external torques, and Equation 2.7 to calculate external forces.
One can see that these profiles differ in both magnitude and shape of the profile. Note that
some estimated external forces are expected even in the ’None’ case, due to any existing
modelling errors.

Figure 3.2: Samples of force profiles taken during actions of the provided classes. Each
sample is shown on a separate line in the appropriate subplot.
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Chapter 4

Support Vector Machine based
human-robot contact classification

This chapter describes the use of a Support Vector Machine (SVM) to classify human-robot
contact types. The use of a SVM is motivated by the work of [39], as well as the ability of
SVMs to perform well with limited amounts of data.

The chapter describes the process used to identify the timeseries and scalar features
which can be used by an SVM to reach optimal performance, showing that using a combina-
tion of sensor-based and model-based timeseries features, including frequency information,
will lead to the best performance.

A classifier using information from all joints is compared to per-joint methods, moti-
vated by [39], and [12]. A method to further increase performance over these approaches
is introduced.

Section 4.1 presents the process for performing feature identification. Section 4.2
presents the process for testing per-joint classifiers, as used in [39]. Section 4.2.2 presents
an extension to these per-joint methods. Finally, Section 4.3 presents common elements to
testing and evaluating a SVM, which are used to evaluate each of the testing conditions.

4.1 Identifying Useful Features

Feature-identification tests are performed to identify features that will perform well when
used to train an SVM. Features that lead to a high classification accuracy are desired. In
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addition, identifying a small number of features which can be quickly computed is also
desired.

An evaluation of both timeseries and scalar features is described and presented in
Appendix B. The results shown have identified several useful timeseries features, including
joint torques, joint velocities, and momentum observer residuals. In addition, the Range
scalar feature was shown to out-perform other features.

In order to test the benefits of comparing sensor- and model- based features, several
combinations of timeseries features are tested. During each of these tests, the Range scalar
feature will be used, as per Appendix B. The following timeseries features will be used in
training and evaluating SVMs:

1. Joint velocities (sensor-based)

2. Joint torques (sensor-based)

3. Momentum observer residuals (model-based)

4. All of the above (combination)

The results of these tests are shown and discussed in Section 6.1.1.

4.2 Comparing Whole-Arm and Per-Joint Methods

In previous work, classifiers for each individual joint have also been reported, using SVMs
in [39], and the use of sub-networks connected to individal joints in [12].

The work in this thesis generally performs classification on a whole-arm basis, combining
information from every joint with one classifier. This section describes the comparison of
the whole-arm approach, and per-joint approach. In addition, this section presents a new
approach to per-joint methods.

4.2.1 Whole-Arm and Per-Joint Comparison

The process for comparing whole-arm and per-joint approaches takes 3 phases. The dataset
used is held consistent across all phases.
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First, a SVM classifier will be trained using data for the entire arm. This will be used
for comparison later.

Next, 7 classifiers are trained, each using data related to only a single joint of the robot
arm. In cases of using model-based information such as the momentum observer, values
are calculated using information from the entire arm, and the element corresponding to
each individual joint is extracted for use. These classifiers are trained using the procedure
described in Section 4.3.3, with 25 classifiers trained to generate a distribution of accuracies.
The trained classifier for each joint is used to perform classification on the entire dataset
to produce probabilities for each class.

Finally, following the method of [39], each classifier is used to predict the probability
that a sample xi,j belongs to each class, pj(class(xi,j) = c), where i indexes the sample
number, and j indexes each classifier. This uses the scikit-learn SVC’s predict log proba
function, which uses cross-validation to train a probability model for classification [63].
The probability predicted for each class is summed over the probabilities produced by each
joint’s classifier. The class c for which the total probability is greatest is then taken as the
final prediction.

y∗i = argmax
c

7∑
j=1

pj(class(xi,j) = c) (4.1)

These predicted and true classes are then used in evaluating the accuracy of the clas-
sifier. The prediction process is outlined in Algorithm 1, and an illustration is provided in
Figure 4.1. Note that lines 3, 4, and 5 of Algorithm 1 are also relevant to the training of
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each per-joint SVM; the SVMs are trained only on data from their corresponding joints.

Algorithm 1: SVM Per-Joint Method for Classification

Input : Trained SVMs; testing dataset
Output: Predicted class y∗i for each sample in dataset

1 forall Sample si ∈ dataset do
2 Extract label yi of si;
3 forall Joints j ∈ {1, 2, 3, 4, 5, 6, 7} do
4 Extract timeseries features associated with joint j;
5 Calculate feature vector xi,j;
6 Select trained SVMj;
7 forall Class c ∈ {1, 2, 3, 4} do
8 Use SVMj to calculate probability pj(class(xi,j) = c);
9 end

10 end

11 prediction y∗i = argmax
c

∑7
j=1 pj(class(xi,j) = c);

12 end

Figure 4.1: Illustration of Per-Joint SVM method

The results of these tests are shown and discussed in Section 6.1.2.

4.2.2 Extending Per-Joint Methods

This sub-section presents an extension to the per-joint method. It is believed that if features
from each individual joint contain enough information to make a prediction, then using
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multiple joints may provide more information. Thus, a smaller number of more-accurate
classifiers may provide better overall classification results.

This extension modifies the second phase of the process described above, particularly
lines 3 and 4 of Algorithm 1. Instead of using data related to only a single joint of the
robot arm, classifiers are trained with data from 3 consecutive joints of the robot arm (ie:
classifier j uses data from joints j − 1, j, j + 1). This is repeated for all combinations of
consecutive joints, for a total of 5 classifiers.

y∗i = argmax
c

6∑
j=2

pj(class(xi,j) = c) (4.2)

In the third phase of the process, the summation is performed over the 5 existing
classifiers. The classification process is outlined in Algorithm 2, and illustrated in Figure
4.2.

Algorithm 2: SVM Modified Per-Joint Method for Classification

Input : Trained SVMs; testing dataset
Output: Predicted lass y∗i for each sample in dataset

1 forall Sample si ∈ dataset do
2 Extract label yi of si;
3 forall Index j ∈ {2, 3, 4, 5, 6} do
4 Extract timeseries features associated with joint j − 1;
5 Extract timeseries features associated with joint j;
6 Extract timeseries features associated with joint j + 1;
7 Calculate feature vector xi,j;
8 Select trained SVMj;
9 forall Class c ∈ {1, 2, 3, 4} do

10 Use SVMj to calculate probability pj(class(xi,j) = c);
11 end

12 end

13 prediction y∗i = argmax
c

∑7
j=1 pj(class(xi,j) = c);

14 compare yi and y∗i
15 end
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Figure 4.2: Illustration of Per-Joint SVM with new approach

The results of these tests are shown and discussed in Section 6.1.2.

4.3 Testing Methodology

This section describes common methods used in performing tests using SVMs.

4.3.1 Data Generation

The tests in this section use the datasets described in Section 3.2. During each test, the
following process is followed to create a dataset useable for a SVM:

1. Select sample from dataset, x ∈ X ⊆ Rs×T

2. Extract window of data: x→ x′ ∈ Rs×T ′
, T ′ ≤ T

3. Select timeseries feature to be used: x′ → x′′ ∈ Rs′×T ′
, s′ ≤ s

4. Calculate all scalar features and concatenate to form a feature vector: x′′ → z ∈ Rn

5. Extract true class of sample from metadata, y

In this way, a dataset of input/output pairs (zi, yi) is generated. The feature vector zi
is used as input to the classifier.
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4.3.2 SVM Implementation

SVMs are implemented using scikit-learn’s [58] SVC implementation. In addition to this,
scikit-learn’s StandardScaler is used to scale training and testing data.

4.3.3 SVM Evaluation Procedure

Given a usable dataset, SVMs are trained on the data. In order to generate a robust
understanding of training results, 25 SVMs will be trained. Each SVM will be assigned
a random 80% of the dataset as training data, and 20% as testing data. The average
accuracy of SVMs over the testing data, along with it’s standard deviation, will be shown
in the results.
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Chapter 5

Neural Networks for Human-Robot
Contact Classification

This chapter describes the use of neural networks to classify human-robot contact types,
and the development of methods to augment their training data. Neural networks were
chosen due to their improved expressive power over SVMs. However, neural networks often
require large amounts of data to train. For example, [12] reported a training dataset of
over 300,000 samples for classifying interaction type and location on a robot arm. This
can present problems when it is difficult or time-consuming to gather sufficient data on
a robot. This chapter presents a method of augmenting the training dataset of neural
networks using data generated in simulation, in order to require less real-world training
data.

This section describes the method of testing neural networks to be used, the design of
a Convolutional Neural Network (CNN) and Long Short-Term Neural Network (LSTM),
and the generation of a simulated dataset for use in testing.

Section 5.1 describes the process used to test training neural networks using simulated
data, and the augmentation of this data. Section 5.2 describes the architectures of the
networks used in each test. Finally, Section 5.3 discusses the generation of the simulated
dataset used in these tests.
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5.1 Training NNs with Simulated Data

Tests are performed to determine if simulated data can be used to reduce the amount
of real-world data required to train the networks. A simulated dataset is generated as
described below. Each network is tested under variations in the amount of real data used,
the addition of simulated data, and the level of noise used to augment the simulated data.
This follows the process outlined below:

Algorithm 3: Neural Network testing process

1 forall Percentage p in {50%, 75%, 100%} do
2 Extract p% of real dataset;
3 Train and evaluate network on real data only;
4 Add simulated data to training set; Train and evaluate network;
5 Add second copy of simulated data to training set; Train and evaluate network;
6 forall Noise level n in {1, 5, 10} do
7 Augment simulated data with noise magnitude n; Train and evaluate

network;

8 end

9 end

This is intended to identify the ability to achieve good performance with less real-world
data gathered and any optimal levels of noise needed for augmentation.

5.1.1 Reduction of Real Data

Tests are performed with various portions of the real-world data used by the neural net-
works. This is intended to show that the simulated data augments the training process such
that a lesser amount of real-world data is needed. Elements of the dataset are excluded on
a random basis.

5.1.2 Simulation Data and Augmentation

Tests are performed with and without simulated data added to the training dataset, as
well as augmentation to the simulated data. This is indented to identify any augmentation
levels which produce optimal results, and to separate the effect of the addition of data
from the augmentation of data. The cases tested using the process from Algorithm 3 are:
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Real: Real data only. Intended for use as a baseline comparison

1xSim: Simulation data added with no augmentation. Only one copy of the dataset is
added. Intended to capture effect of adding simulated data.

2xSim: Simulation data added with no augmentation. The set of simulated data is added
twice, to capture the effect of doubling the dataset. Intended to capture effect of
increasing amount of simulated data without noise.

Augmenation: Simulation data added with augmentation at various joint torque noise
levels. Dataset doubled as described in Section 5.3.5. Intended to capture effect of
augmentation on performance.

The results of these tests are shown and discussed in Section 6.2.

5.2 Network Details

Two neural network types are developed and tested. These include a convolutional neu-
ral network (CNN), and long short-term memory network (LSTM). Both networks are
implemented using the Keras library [20], and are not pre-trained.

CNN Architecture

The CNN network is designed to take an input of timeseries features, formatted in a 2D
grid, and perform 2D convolutions during classification.

The network design was based on [35] and [7], which use CNNs to perform tactile object
recognition and material classification, respectively. In particular, these works use similar
amounts of data to the real dataset used in this thesis, and [35] uses a similar number of
input channels.

Both examples used only two convolutional layers, the second having twice the filters of
the first. An initial network was created with two convolutional layers of 32 and 64 kernels,
and a single dense layer of 32 neurons. Max pooling in the time dimension was used after
each convolutional layer. Batch normalization, leaky ReLU, and Dropout is added after
every pooling and dense layer.

A grid-search is performed by modifying the architecture in the following ways:
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Depth: Multiply number of layers in the network. Selected from [1, 2, 4]

Width: Multiple number of neurons in each layer. Selected from [0.5, 1, 2]

Dropout: Dropout rate in network. Selected from [0.00, 0.10, 0.25]

Inputs: Input timeseries features. Selected from [Raw sensor data, joint torques/velocities/residuals]

The grid-test identified the following values as the optimal parameters, or modifications
to parameters, from the base network, shown in Table 5.1:

Table 5.1: Optimal parameters adjustments for CNN

Parameter Value
Depth Multiplier 4
Width Multiplier 2

Dropout Rate 0.0 (0.02 used)

Inputs
Joint positions, velocities, and torques

(Raw sensor data)

The optimal results appear to come from both a deep and wide network, as well as
operating on raw sensor data.

The final network structure is shown in Figure 5.1.

Figure 5.1: Architecture of CNN used

The width of data in each layer is only approximate, as data size depends on the
particular dataset used. The data is sized to fit the largest sample of data in the dataset,
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with other samples zero-padded to match this size. With a window of 0.5s and a frequency
of approximately 600 Hz, each sample is expected to be approximately 21 inputs by 300
timesteps in size.

LSTM Architecture

The LSTM network is designed to accept timeseries features as direct input. The network
design was based on [2] and [49], which perform collision detection and inverse dynamics
estimation, respectively. In particular, [49] estimates the inverse dynamics of a 7-dof robot
arm.

[2] uses only 2 LSTM hidden layers, and [49] tests several combinations, with results
favoring fewer, wider layers. An initial network was created with two LSTM layers of 32
and 16 layers, followed by a dense layer of 16 neurons. Batch normalization, leaky ReLU,
and Dropout is added after every layer.

The same grid search as for CNN was performed for the LSTM. The grid-test identified
the following values as the optimal parameters, or modifications to parameters, from the
base network, shown in Table 5.2:

Table 5.2: Optimal parameter adjustments for LSTM

Parameter Value
Depth Multiplier 2
Width Multiplier 2

Dropout Rate 0.0 (0.02 used)

Inputs
Joint velocities, torques, and residuals

(Same as SVM)

The optimal results come from a deeper network, as well as a wider network. It is
notable that the features chosen are those which performed best for the SVMs, and differ
from those used by the CNN. While an advantage of neural networks is the ability to learn
complicated functions from raw input data, examples such as [60] have demonstrated the
benefit of performing some feature selection to introduce more useful features to networks.

The final network structure is shown in Figure 5.2.
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Figure 5.2: Architecture of LSTM used

The LSTM network did not require the consistent data sizing which the CNN required.
However, samples are still expected to be 21 features by approximately 300 timesteps long.

5.2.1 Network Training and Testing

Both networks are trained using the Keras library. During training, data is generally used
in a 70/30 train/testing split. The testing set is further divided into two sets comprising
15% of the total data each. The first is used as validation data during training, and used for
early stopping and model checkpointing. The second is used to evaluate the performance
of the final model. The choice of 15% of data for these sets was made to ensure both sets
had a sufficient amount of data, as opposed to the 10% that each set would contain if the
80/20 division used for SVMs was repeated.

Training is done for up to 500 epochs, with early stopping active. Once training has
completed, the last checkpointed model is loaded for testing.

Limited time and resources prevented performing a full k-fold cross-validation of the
models. Thus, an attempt to approximate the performance of the network is made, and
predict variability when training networks with random initialization of weights. It should
be noted that this will likely have the effect of underestimating the effect of random ini-
tialization of network weights. During testing, random subsets of 40% of the final testing
dataset are taken, and classification performance is evaluated. The average accuracy, and
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its standard deviation, are reported. It is hoped that this selection will provide a sufficient
estimate of the variability of the network, as opposed to providing a single accuracy value
based on the entire 15% of the test set.

5.3 Dataset Generation

In order to address the problem of limited data, a set of data produced in simulation
is generated. Once again, two datasets are generated to mimic the static and dynamic
datasets discussed in Section 3.2.

5.3.1 Simulation Dynamics and Control

The simulation is run at 1200 Hz, with joint velocities and positions updated in increments
of 10 sub-steps within each period, and data recorded at 600 Hz. Dynamics are calculated
using the Pinocchio rigid body dynamics library [16], [15]. The dynamics are updated using
equations (2.9) and (2.8) to calculate the joint accelerations due to dynamics, external
forces, and motor torques:

τdyn = C(q, q̇)q̇ + g(q)

q̈ = M(q)−1(τm + τext − τdyn)
(5.1)

With the acceleration values calculated, joint position and velocities are integrated for
several sub-steps. Integration of joint positions is performed using the pinocchio library.

q+ = (dtsim/n sub steps)q̇

q̇+ = (dtsim/n sub steps)q̈
(5.2)

The controls active on each joint were a combination of gravity compensation and PID
control. Joint torque limits are enforced according to [34].

5.3.2 Robot Parameters

The parameters used for the Panda robot arm in simulation are those calculated in [36],
using provided code. It should be noted that this identification did not include the hand
of the robot, and an estimate of the hand’s dynamic parameters was used.
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5.3.3 Simulated Motion

During generation of the static dataset, the same poses used in generating the real dataset
were used, as described in Table 3.1. This was done to achieve good correspondence with
the real dataset. To augment the dataset, while still maintaining close correspondence to
the real dataset, random Gaussian noise was added to joint positions. This noise had zero
mean and a standard deviation of 0.1rad. Positions were randomly chosen during each
simulated sample generation.

During generation of the dynamic dataset, the start pose and selection of end poses
were also chosen to mimic the real-world dataset. Joint positions for both start and end
pose were shifted by random noise with a standard deviation of 0.1 rad. A motion profile
for each joint to follow was generated using a quintic trajectory, allowing for zero velocity
and acceleration at each endpoint. Average joint speeds between 0.01 and 0.5 rad/s were
chosen, compared to the limits of 0.1 and 0.3 rad/s of the real dataset.

The generation of each sample began with 3 seconds of holding the start position. A
motion phase was executed for 4s for the static dataset, and as long as required for the
dynamic dataset. External forces were applied starting at the midpoint of this period,
delayed by a random time between 0 and 0.25 seconds. The correct starting time for
application of external forces was recorded in metadata. Finally, an additional 5s of holding
the end position was simulated and recorded, to allow and force application to finish.

5.3.4 Application of External Forces

A critical aspect of the simulation is the application of forces corresponding to correct
physical interaction classes. In order to meet this requirement, force profiles were generated
for each interaction type. Parameters of these profiles, such as duration and maximum
value, were tuned by visual inspection so that estimates of external forces from real and
simulated datasets would appear similar. Force profiles from real-world data were taken
from the static dataset, and compared against the static simulated dataset. A selection of
profiles is shown for each interaction type in Figure 5.3.
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Figure 5.3: External force profiles for real and simulated datasets

It is not known why some of the ’Bump’ profiles from the real-world dataset exhibit
significantly larger peaks than most. This may be part of natural variation in the force
applied by the author, caused by applying forces near a singularity of the robot, or due to
an unknown factor. The simulated profiles appear to match well with the remaining force
profiles of the ’Bump’ class.

During the generation of a data sample, the created force profiles are used to generate
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the magnitude of an external force. This force is then applied in a random direction along
the horizontal plane. The direction is chosen randomly for each sample, and held constant
throughout the sample. The forces are applied to the end link of the simulated robot. This
does not match the real dataset, which consisted of interactions with multiple links, and
the effect of this limitation is discussed in Section 6.2.3.

5.3.5 Artificial Noise

As the simulation performed does not contain sensor noise, this noise is introduced into
the data immediately before training. The noise is introduced in two forms:

Joint Torque Sensor Noise

The joint torque sensor readings were taken from static real-world dataset samples, in
situations where no contact occurred. The standard deviation of these values across the
entire sample was calculated, and these were averaged across all available samples. This
was repeated for each joint to build a baseline of joint torque sensor noise.

These values are used to augment the simulated joint torque measurements. At each
timestep, zero-mean Gaussian noise is added to the recorded torque value of each joint.
The standard deviation of this noise is a multiple of the real-world torque sensor standard
deviations. Various multiples are used and tested.

Momentum Observer Augmentation

In order to generate a more varied dataset, different momentum observer gain values are
used. These values are chosen to be 10% higher and lower than the nominal gain value.
This results in a doubling of the dataset, as two copies are produced. The momentum
observer values are calculated after the torque sensor noise is added to the dataset.

In the case that the dataset is doubled without augmentation, the nominal value of the
momentum observer gain is used to generate both samples.

5.3.6 Generated Dataset Details

Table 5.3 provides the final details of the simulated datasets.
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Table 5.3: Details of the simulated datasets

Dataset Samples Poses Actions
Simulated

Static
1233

8 Poses
135-160 samples each

304-311 each of
Bump/Adjust/Shove/None

Simulated
Dynamic

1380
7 Movements

174-212 samples each
332-356 each of

Bump/Adjust/Shove/None
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Chapter 6

Results

This chapter presents the results of the tests performed. Figure 6.1 shows the overall results.
The SVM demonstrates improvement when the best-performing features are chosen, which
includes a combination of raw sensor-based and model-based features, but no improvement
when using per-joint methods. The CNN and LSTM both demonstrate improvements when
adding simulated data, and the CNN demonstrates this even when using less real-world
data. Section 6.1 and Section 6.2 discuss these results further.

Figure 6.1: Overall results of classifiers

6.1 Detailed SVM Results

This section provides detailed results on the SVM tests performed.
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6.1.1 Feature Identification

Figure 6.2 shows the classification performance when using different time series features.

Figure 6.2: Classifier accuracies using various timeseries features

It can be seen that a classifier trained on both sensor- and model-based features out-
performs a classifier trained on any single feature. This improvement is seen regardless of
dataset used. Appendix B describes additional feature identification tests performed.

6.1.2 Per-Joint Methods

Figure 6.3 shows the results of per-joint classification, recreating the approach proposed
in [39]. Note that while the per-joint method of [39] is re-created, [39] classified only
interaction/collision or colliding object type, while these results show the use of the four
classes presented in Section 3.1.
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Figure 6.3: Classification accuracy of per-joint ensemble classifier

It can be seen that the classification results from SVMs trained on outputs from single
joints are often more than 50% accurate. This is a promising result for building an ensemble
classifier. However, the ensemble performs similarly to, or less well than, a classifier trained
on the entire arm.

Figure 6.3 shows the results of per-joint classification, using the newly-proposed multi-
joint strategy.

Figure 6.4: Classification accuracy of modified per-joint ensemble classifiers

The accuracy results from classifiers trained on subsets of joints are all above 50%, once
again showing promise. When combining these results, the final classification accuracy is
approximately equal to the whole-arm classifier. While this achieves higher performance
than the previous method, it does not out-perform the simpler whole-arm classification.

It is likely that the individual classifiers trained provide similar predictions for the data,
and in this way do not complement each other in a way that leads to greater overall classi-
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fication. However, Figure 6.4 shows that accuracy near the performance of the whole-arm
classifier can be achieved using only subsets of joints. This may prove useful in scenarios
where fast performance is needed, and occasional inaccurate results can be tolerated, or
the classification problem is simplified.

6.1.3 Discussion

The highest accuracy achieved by a SVM when classifying the combination of static and
dynamic data has given an accuracy of approximately 87%. In comparison, [39] reported an
accuracy of 97%, however when classifying between collision and interaction only. Popovic
et al. [60] reported accuracies of 99% when classifying collisions vs nominal operation and
94% when determining the link in contact. This thesis investigates a classification problem
with a larger set of classes than these other works. Thus, some reduction in accuracy is
expected.

Factors limiting performance may include the additional number of classes used, the
problem domain of classifying between interaction types, or due to aspects of the data
used.

Speed Influence

A likely confounding factor is the speed of the arm during dynamic experiments. Motion
or acceleration will exacerbate errors in the dynamic model due to friction. Figure 6.5
shows the results of classification with various speeds of arm movement included in the
data. Three series are shown: arm motion at a given speed, arm motion at or below a
given speed, and arm motion at or below a given speed, including static data.
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Figure 6.5: Effects of joint speed on SVM accuracy

While it can be seen that using a dataset consisting of only higher-speed data results
in some loss in accuracy, this effect is not seen when slower-speed data is introduced.

This is likely due to the features used in classification. While joint velocity and torques
will be different under different speeds, the range of their values will likely stay relatively
the same across the timespan of a data window. The momentum observer residuals will
ideally be equivalent until an interaction occurs, aside from modelling errors being excited
at different speeds.

Classes and Context

Several of the classes used in this thesis would fall under a single class of ’intentional
interaction’ in other works. This use of more classes would be expected to lead to a
reduction in accuracy if they are harder to separate by the classifier.
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Figure 6.6 shows the confusion matrices generated from tests. These matrices are
normalized by row (ie: by each true label), and summed over the 25 SVMs tested in each
case. The classes are labelled as (N)one, (A)djust, (B)ump, and (S)hove.

Figure 6.6: Confusion matrix of SVM results

Within the static dataset, there is a reduction in accuracy among the ’Shove’ class.
Reduced accuracy is seen for the ’Adjust’ and ’Bump’ class in the dynamic dataset, which
correspond to actions with generally lower magnitudes of applied force. Overall, actions
appear to be more often mis-classified as actions which are less vigorous, or have a lower
magnitude of applied force. Figure 6.7 shows a plot of the magnitude of the residual vector
for both correctly and incorrectly classified samples of the dynamic dataset, of the window
of data used in classification. It can be seen that the incorrectly-labelled samples appear

63



to have plots with a lower magnitude than most of those which were correctly labeled. It
is likely variance in user actions produce these less-vigorous motions, which are classified
incorrectly.

Figure 6.7: Magnitude of residual vector for correctly- and incorrectly-classified samples

Figure 6.8 shows the results of classification with fewer classes. The ’Reaction’ case
considers the ’Bump’ action equivalent to no action; each class may correspond to the
need to respond in a different way. The ’Contact’ case considered the ’Adjust’, ’Shove’,
and ’Bump’ classes to be equivalent; this is a closer approximation of the classes in [39].
Figure 6.8 displays the new distribution of actions into separate classes under each case.
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Figure 6.8: Accuracies of SVMs with reduced numbers of classes

Both of these demonstrate some improvement when used with the dynamic dataset,
and the ’Contact’ case shows improvement with the combined dataset.

Figure 6.9 shows a repetition of these tests where certain low-accuracy actions are
removed from each dataset. In the ’Limited’ cases, the ’Shove’ action is removed from the
static dataset and the ’Adjust’ action is removed from the dynamic dataset. Note that
this refers to samples being excluded from the dataset, and not simply reclassified. the
’Contact’ case introduces the reduction in classes discussed above, and the ’Intentional’
case considers the ’Bump’ action to be equivalent to no action.
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Figure 6.9: Classification accuracy when limiting contexts and classes

Each case shows improvement over the normal classification scheme. The greatest
improvement comes from the combination of limiting the number of classes, removing
certain actions, and ignoring the ’Bump’ action.

It can be seen that limiting either the classes used in the ML problem or the actions
performed in different situations leads to better results in accuracy. While these classifier
designs may not be as applicable in a pHRI scenario, where each action should be expected
at any time, this comparison indicates which cases are most challenging for the classifier.

6.2 Neural Network Tests

This subsection reviews the results of introducing simulated data and data augmentation,
as well as reducing the amount of real-world data, for the CNN and LSTM networks,
respectively. Significant trends are discussed in each subsection, while Appendix C discuss
the trend for each series of data, as well as results of this test preformed on only the static
or dynamic datasets.
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6.2.1 CNN Results

Figure 6.10 presents the CNN classifier results. Note that the left and right subplots show
the performance of the classifier using the same set of data under multiple conditions. The
left subplot shows the addition of simulated data without noise augmentation and the right
subplot shows the effect of data augmentation with noise. Also note that the results for
’2xSim’ and ’0’ of the respective subplots are duplicates, meant to show continuity between
the addition of simulated data, and augmentation of the data by noise.

Figure 6.10: Results of reducing real-world data and adding simulated data with varying
levels of noise augmentation with CNN

In two cases shown in Figure 6.10, the CNN outperforms the SVM classifier accuracy
with an accuracy of 92%. This is seen in the case of using 50% of real-world data with one
copy of simulated data, and using 100% of real-world data with two copies of simulated
data. The CNN also outperforms the SVM classifier accuracy with an accuracy of 93%
when including all real data and two copies of simulated data.

Observing Figure 6.10, there does not appear to be a statistically significant trend when
using 75% or 100% of the real-world data. It is unknown why the use of 100% real-world
data and 1xSim data produces a one-time drop in performance; this is likely due to random
initialization or data selection during the test-train split, but will require additional testing
such as k-fold cross-validation to determine.

The 50% real-world data series, however, presents a trend. By adding simulation data,

67



the performance of the classifier increases to 88% at the 1xSim point, nearly the same
performance as the network with 100% real-world data and no added simulation data.

The effect of noise augmentation of the simulated dataset appears to lead to slight
increases in performance in the 50% and 100% real-world data cases.

6.2.2 LSTM Results

Figure 6.11 presents the LSTM classifier resutls.

Figure 6.11: Results of reducing real-world data and adding simulated data with varying
levels of augmentation with LSTM

Observing Figure 6.11, similar trends are seen when adding simulated data to the 50%
real-world dataset. However, in this case, these trends are echoed in the 100% real-world
dataset, with an increase being seen with each amount of real-world data. The performance
level of the 50% real-world data series does not appear to reach the point of the 100% real-
world data with no simulated data added. These results suggest that additional training
data will improve results further.

It is not known why the improvements are not seen in the 75% real-world data series,
which shows a drop and slight recover in accuracy as simulated data is added. This may
simply be due to random initialization of the network or selection/splitting of test/train
data.
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The effect of augmentation of the simulated dataset does not appear to have a consistent
effect.

6.2.3 Discussion

The CNN classifier can outperform the SVM when sufficient training data is available.
However, most cases of training the CNN, and all cases of training the LSTM, have not
achieved the same performance as the SVM on the combined dataset (87%). This may be
due to a few factors.

Dataset Size

The simulated datasets were created to be approximately 3-4 times the size of the cor-
responding real datasets. With momentum observer augmentation, the doubling of the
dataset corresponds to multiples of 6-8. The trends shown often show increased accuracy
with additional simulated data, suggesting that even larger datasets may provide improved
results.

Randomness in NN Training

NNs are trained with random initialization. This may lead to variations in performance,
especially with the potential to encounter local minima during training. While additional
time and computational resources may allow for proper k-fold cross-validation and esti-
mation of network variance, current results should be interpreted with this limitation in
mind.

Simulated Data Interactions

The current datasets used contain only actions performed on the end-effector link. This
contrasts to the real datasets, which consist of actions performed on many links of the
robot. The simulated data may have provided increased accuracy when classifying inter-
actions with the end-effector, but biased predictions of samples not involving end-effector
interactions.
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Chapter 7

Conclusions

This section presents the final conclusions of this thesis, limitations, and proposals for
future work.

7.1 Conclusions

In this thesis, the classification of different types of intentional interactions in pHRI was
investigated. This was done through the generation of a dataset, and the development of
various classifiers. Methods of improving the accuracy of each classifier were investigated.

7.1.1 Support Vector Machines

The first classifiers developed were support vector machines. Feature identification showed
that there were accuracy increases seen from combining sensor-based and model-based
timeseries features, and that simply using the Range of each timeseries feature as scalar
inputs to the classifier gave the best performance. This is surprising given the many
past works which used frequency-based data, but allows for a simple implementation of a
classification system.

An investigation into using a single SVM for each joint of the robot, and combining
their results, showed little improvement over using a single SVM with inputs from the
entire arm. A proposed modification, which included SVMs trained on subsets of joints,
also showed no significant improvement. This suggests that simple classification systems,
with only a single classifier, can perform well.
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A final investigation into limiting factors suggests that the major limiting factor in
achieving higher classification accuracy lies with identifying certain actions in certain con-
texts. In particular, more subtle interactions appear to be harder to identify. While
ignoring these situations is not appropriate for pHRI, it shows some areas of further de-
velopment.

7.1.2 Neural Networks

Two neural networks, a Convolutional Neural Network and a Long Short-Term Memory
network, were developed. A dataset of simulated data was developed, to investigate the
improvement of the networks’ performance with augmented datasets.

Both networks showed improvement when adding the simulated data with the CNN
achieving higher accuracy than the SVM. In particular, higher accuracy with less real-
world data was demonstrated, especially by the CNN. However, this effect was not entirely
consistent across networks, or the amount of real-world data used. Drawing further con-
clusions should be reserved until a more rigorous k-fold cross-validation can be performed.

7.2 Limitations

The primary limitation of this work is the limited amount of real-world data gathered.
In particular, all real-world data was gathered by the author. This has the potential to
bias the data towards pre-conceived notions of each interaction type, and thus be more
easily-separable. Larger studies should be performed before generalizing these results.

A limitation of the neural network development was the lack of k-fold cross-validation,
due to limited time and computational resources. While an attempt was made to estimate
network performance uncertainty, it cannot fully capture the effects of multiple trained
networks.

7.3 Future Work

There are several areas where the investigations and results presented in this thesis can be
improved upon.
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7.3.1 Varied Participants

An attempt should be made to gather data from a greater number of participants inter-
acting with the robot arm. This will allow for a larger dataset to be generated, and will
capture any variations in how different participants interact with a robot. This can help
determine the robustness of an approach similar to that this thesis presented, and if it is
fit for use in real-world applications.

Such a study can also be implemented in a way that gathers data where a proper task
is being performed, as opposed to the arbitrary poses used in this thesis.

7.3.2 Recording of Applied Forces

Future experiments should be performed while recording the forces applied by the human
participants (ie: by using a force sensor). This will be beneficial in identifying the starting
time of an interaction. It will also allow simulated forces to be generated in a way that
better matches the real-world applied forces, as it will allow forces to be generated to match
the applied forces, as opposed to applying forces which generate similar calculated values
(ie: momentum observer residuals).

7.3.3 Additional Robots and Sensors

The methods and experiments in this thesis should also be tested on other robot platforms.
This will help to show robustness, as well as identify features which work well on multiple
platforms.

These experiments can make use of any additional sensors installed on the platforms.
While these results will be limited to only platforms with each particular set of sensors,
they may provide significant benefits. The extension of the per-joint methods to per-joint
and per-sensor methods may lead to the development of a modular classification system.

7.3.4 Modifications to Data Classes

Additional classes could also be considered in the future. For example, it may be more
useful to classify interactions on a sliding scale, to classify based on required reactions, etc.
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7.3.5 Formalized Feature Extraction

Future work should consider performing feature identification using more formal methods.
This may include using algorithms such as the Recursive Feature Elimination feature within
the sklearn library [1], or additional methods applicable to the machine learning model
being considered.

7.3.6 Neural Network Testing

The following improvements should be investigated for training neural networks for this
application.

Simulated Data Improvements

The simulated data created for this thesis was limited in the simulated interactions. The
interactions were only simulated with the end link of the robot arm, and only with forces
in the horizontal plane. Future works should simulate forces interacting with different
links, and in more varied directions of applied forces. Both the CNN and LSTM will likely
benefit from the generation of larger datasets.

K-Fold Cross-Validation

K-fold cross-validation should be performed. This will allow the actual variance between
training different networks to be captured.

Network Architecture Design

A larger-scale grid-search, or other method of optimizing network architecture, should be
investigated. This process will also benefit from proper k-fold cross-validation.

Standardizing Split Data

The methods used to reduce data size, and to split data between train/validation/test sets,
where entirely random. This leaves the possibility that some tests involved datasets with
mismatched amounts of data in each class, or from static/dynamic contexts.
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Further work should investigate properly splitting the available data to preserve the
portions of classes and motion contexts in each set.

7.3.7 Developing a Real-Time System

Future efforts should be made to develop a classification system operating in real-time on
a robot. This can improve the ability to perform real-world experiments, as well as lead
to testing of different reaction strategies. It will also motivate the selection of quickly-
calculated features, and finding optimized implementations of the ML tools and features
discussed in this thesis.

Similarly, the real-time system should also investigate classification with shorter win-
dows of data. A 0.5s window of data was used in this thesis. As this is a preliminary work,
and the proposed classification system is not responsible for responding directly to colli-
sions, this is considered acceptable at the moment. However, future works should attempt
to increase the response time of any system where safety is a concern.
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[5] Alin Albu-Schäffer, Sami Haddadin, Ch Ott, Andreas Stemmer, Thomas Wimböck,
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Appendix A

Windows

A.1 Selecting Window Size

Before performing classification, each sample of data must be reduced to a reasonable
timespan including measurements from when the interaction to be classified occurred.
This is only a requirement for this offline processing of data, as it will not be required in
a classifier running online with live data. However, it is an important aspect to consider,
as it controls the quality of data used to train and test the classifiers.

Multiple methods of identifying the time the interaction occurred have been imple-
mented and tested. Each is used to isolate a window of data T seconds long, given an
initial estimate of the start of the interaction time, Te. After any method is applied, the
full sample of data is cropped to this window for further classification.

A.1.1 Hard-Coded Window

The easiest method makes use of an estimated time when each interaction occurs. This
estimated time corresponds to the time the author was signaled to begin the interaction
while gathering the datasets, and is encoded into the recorded data. Using a hard-coded
method, a timeframe of T seconds an be selected, and the two endpoints of the interaction
window can be set to the times T/2 seconds before and after the estimated interaction
time, potentially with a hard-coded shift in time. While this is the simplest method, it is
not robust to human error in performing the interaction at the correct time.
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A.1.2 Programatically-Found Window

The final two strategies used involve identifying where an interaction appears to be occur-
ring. At a high level, these methods take a window of time before the interaction occurs,
and calibrate the expected noise in some signal. Then, the time when the signal begins to
vary by more than some value is used as the start time.

The process for selecting the window of data is described in Algorithm 4. The process
relies on a method of identifying when a signal changed sufficiently to consider the inter-
action as starting. Two methods of comparing the difference in the signal are described in
Table A.1, each providing different times ta and tb used in Algorithm 4.
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Algorithm 4: Data Window Extraction

Input : Full set of recorded data of current sample
containing times, joint positions q(t), velocities v(t), and torques τ(t)
Estimated interaction time Te
Desired window length T

Output: Recorded data of one T -second segment of the overall sample
1 forall Sample si ∈ dataset do

2 Define signal s(t) =
∑7

i=1 τi(t)
2;

3 Define start of calibration window tcs = Te − 2;
4 Define end of calibration window tce = tcs + T ;
5 Calculate s(t) from t = tcs to t = tce;
6 Calculate standard deviation of signal σ(s(t)|tcetcs)
7 Begin at end of calibration window tb = tce;
8 Initialize ∆t = 0;
9 Set c from empirical testing: c = 5.5;

10 while Window not found and tce+ ∆t < Tend do
11 Increment ∆t by one timestep;
12 Determine ta and tb using Difference or Change method;
13 if |s(ta)− s(tb)| > c ∗ σ(s(t)|tcetcs) then
14 Indicate window found;
15 Exit Loop;

16 end

17 end
18 if Window not found then
19 Set tb = Te;
20 end
21 Extract window from tb to tb + T

22 end

Table A.1: Methods for calculating change in signal

Method Description ta tb
Difference One fixed time ta = Te − T tb = tce + ∆t

Change Moving comparison ta = tce+ ∆t tb = ta + 0.15s

When this occurs, tb is taken as the start time of the interaction. If no such time is
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found, each method falls back to the estimated start time.

This process is illustrated in Figure A.1. The first plot shows the joint torque mea-
surements of all seven of the Panda’s joints. The bottom plot shows a plot of the signal
s(t). The vertical black line at 3.0s shows the estimated interaction time. The calibration
window is shown highlighted in yellow, from 1.0s to 2.0s. The interaction start time was
detected at approximately 3.5s, and the final selection of the 0.5s window is highlighted in
pink. The plot was made using the Difference-Based method, using c = 5.5

Figure A.1: Illustration of the windowing process

A.1.3 Results of Initial Testing

An initial set of tests indicated the following choices of window-choosing strategies for each
dataset. These tests were performed similar to the tests described in Section 4, with joint
torque timeseries features, and mean, variance, and range scalar features used across all
tests.

The results showed that the Difference strategy performed best for the static real
dataset, while hard-coded windows performed best for the real dynamic, and simulated,
datasets.
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Appendix B

SVM Dataset Investigation

The appendix describes a detailed investigation into the performance of SVMs on the real
datasets. This includes feature identification, as well as the effects of filtering input data
before classification.

B.1 Description of Classification

With the appropriate window of data selected, classification can be performed. There are
3 major components to this process:

1. Calculation and Selection of Timeseries Features

2. Calculation and Selection of Scalar Features

3. Training and Evaluation of Classifiers

B.1.1 Calculation of Timeseries Features

The first step in this process is to calculate any additional timeseries features from the
recorded sensor readings. These include (along with a shorthand label used in some figures):

• Joint acceleration (from finite differences)
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• Momentum Observer residuals

• External Forces (estimated from residuals)

• Internal joint power (product of joint velocity and torque)

• External joint power (product of residual and torque)

and additional model-based features. The Pinocchio rigid body dynamics library [16],
introduced by Carpentier et al. [15], was used to perform model-based calculations.

B.1.2 Selection of Timeseries Features

The second step in the process is to select which timeseries features will be used in each
classification test. For example, one classifier may use the measured torques from every
joint, while another may use the measured torque and velocity of a single joint.

B.1.3 Selection of Scalar Features

The third step in the process is the selection of which scalar features to use. A scalar feature
is a single (or multiple finite) value calculated from a timeseries of data. For example, the
mean is a scalar feature, whether calculated over a set of joint torque readings, or external
force values. A list of the scalar features is given below, with many taken from [39].
Unless otherwise noted, these were implemented using the Python numpy [55] or scipy [71]
libraries, or through manual implementation with Python

• Mean
• Variance
• Range
• Delta (final - initial value)
• Skew
• Energy
• Hjorth Mobility and Complexity [43] [9] [8], referenced as ’Hjorth’
• Fast Fourier Transform (FFT)
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B.1.4 Testing of Classifiers

Classifiers are trained and tested as described in Section 4.3.3. 25 SVMs are trained on
the provided data, each using a random selection of 80% of the data, with 20% held out
for testing.

B.2 Testing of Timeseries Features

The first tests were conducted to determine the most useful timeseries features for classi-
fication. In these tests, the mean, variance, and range scalar features are used.

B.2.1 Sensor-Based Timeseries Features

This test compares the various timeseries features which are recorded directly from sensors
on the Panda, or can be simply calculated (acceleration and internal power). The results
are shown in Figure B.1.

Figure B.1: Comparison of Sensor-Based timeseries features

Figure B.1 shows that the best performance is seen when using either joint velocity
or joint torque as timeseries features. There is an increase in accuracy seen when using
all features. However, a smaller selection of features will generally be preferred due to
computational efficiency.
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B.2.2 Model-Based Timeseries Features

This test compares the various timeseries features which must be calculated using a dy-
namic model of the robot. In this test, only those features which map to joint-space are
shown. The results are shown in Figure B.2.

Figure B.2: Comparison of Model-Based timeseries features

Figure B.2 a more varied set of results. Both gravitational force and inverse-dynamics
torque perform will on the static dataset. However, the momentum observer residuals
perform the best over all datasets. There is a similar performance gain in combining all
features.

B.2.3 Workspace-Based Timeseries Features

The final timeseries features to be tested are those which exist in the work-space, or
cartesian space. On the Panda, these are the estimated external forces and torques acting
on the arm, and are estimated using the momentum observer residuals. Figure B.3 shows
the results of testing three versions of these features:

• 3-element vector of external forces
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• 3-element vector of external moments

• 2-element vector of the magnitudes of the above

Figure B.3: Comparison of Workspace-Based timeseries features

Figure B.3 shows that very few of these features provide classification results above
50%.

B.2.4 Combinations of Timeseries Features

As explored in Section 4 and presented in Section 6, the combination of joint velocity,
torque, and momentum observer residuals was show to perform will over all datasets.
Figure B.4 shows a test of combinations of these features.

92



Figure B.4: Comparison of combinations of timeseries features

It can be seen from Figure B.4 that the combination of all three timeseries features
does perform the best. The next-best performing combination across all datasets is the
combination of forces and momentum observer residuals, which is also a combination of
sensor- and model-based features. It should be noted that the combination of these 3
features out-performs all of the previously presented ’All’ features tested.

It remains a possibility that the workspace-based features may provide some addi-
tional information when combined with joint-space-based features. Figure B.5 shows the
addition of linear forces or force/moment magnitudes to the torque/residual and veloc-
ity/torque/residual features.
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Figure B.5: Addition of workspace-based timeseries features

It can be seen that this addition does not further improve the classification results.
This is surprising, given previous works such as [75] and [31] which make use of end-effector
wrench measurements. A complicating factor may be that the location of application of
a force is needed to accurately reconstruct the force. Performance might be improved in
other methods such as those used in [60], or simply isolation of the contact link [42] are
used in order to determine the correct jacobian for the calculation.

B.3 Testing of Scalar Features

These tests were conducted to determine the most useful scalar features for classification.
These tests were run parallel to the timeseries features tests, and the joint torque timeseries
features were used for all tests. Figure B.6 shows the accuracies produced by using each
feature.
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Figure B.6: Comparison of scalar features

The best results come from the use of the range, hjorth mobility and complexity, and
Fast Fourier Transform features. Note that the label ’FFT MAGX’ refers to the use of the
first X magnitudes returned by the FFT. Figure B.7 shows a test where varying numbers of
magnitudes returned by the FFT were used for classification. 3 was chosen as the optimal
number across all datasets.

Figure B.7: SVM performance with differing numbers of FFT components

It is notable that both the Hjorth and FFT features include information on the fre-
quency of a signal. It is also interesting that a simple feature such as the range of a the
timeseries features provides such relatively high accuracies.

In the interests of future development of a live classifier, the time taken to calculate
each feature was also recorded. It should be noted that no development into optimal
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implementations has been done, and thus, only the relative times taken for each feature
are currently of interest. Figure B.8 shows the average time taken in microseconds to
calculate each feature across the entire dataset. For simplicity, this was performed only on
the static dataset.

Figure B.8: Time taken to calculate each feature

From Figure B.8, the Hjorth and FFT features take a significant amount of time to
compute, while the Range feature does not take a significant amount of time. In future
tests, while the Hjorth and FFT features will continue to be investigated, quickly-calculated
features and their combinations will be investigated as well.

B.3.1 Investigating Combinations of Scalar Features

Range feature is the highest-performing feature, with the Hjorth and FFT features still
performing among the best. Figure B.9 shows a test of combinations of these features. In
addition, the combination of Mean, Variance, and Range (’MVR’) is tested, in hopes that
these quickly-calculated features will complement each other.
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Figure B.9: Testing scalar feature combinations

It can be seen that the use of the range feature alone still provides the optimal results.

B.4 Additional Approaches

This section lists additional approaches taken to investigate ways to improve classification
performance.

B.4.1 Filtering of Data

Low-pass filtering can be used to remove noise present in sensor measurements. High-pass
filtering has been suggested to remove modelling errors by [40].

A test was created to determine the effect of filtering sensor data. Low- and High-pass
filters were implemented using the scipy [71] signal library. Filters were applied to joint
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position, velocity, and torque measurements. Momentum observer values were calculated
after this process. A combination of static and dynamic datasets was used.

Figure B.10: Testing effect of filtering sensor data

No improvement over the unfiltered case can be seen.
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Appendix C

Detailed Neural Network Results

This appendix discusses the results of neural networks in additional depth. This includes
an estimation of the variance between multiple trained networks and attempts to estimate
this variance, and more detailed results of the tests described in Chapter 5.

C.1 Network Variance

There are many sources of variance in training neural networks. Each time a NN is ini-
tialized, it is given an initial set of random weights. During training, different selec-
tions/divisions of data into train/test sets may be done, especially when the datasets
themselves vary. During training, the training data is also shuffled between epochs. All of
these can lead to different results with different networks.

An attempt was made to estimate this variance, and evaluate methods of estimating
it. A CNN was trained five times on the real dataset. The results were compared with a
single trained network, which used subsets of the training data to estimate the variance in
training, as described in Section 5.2.1. These results are shown in Figure C.1.
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Figure C.1: Estimation of variance of trained networks

It can be seen that there is a significant variance when training multiple neural net-
works. In addition, the method of estimating this variance underestimates the magnitude
of the variance. While current limitations still prevent a proper k-fold cross-validation,
interpretations of these results should keep this in mind.

C.2 CNN Augmentation Results

This section reviews the results of augmenting the training of a CNN with simulation
data, as originally shown in Figure 6.10. This section presents these results, as well as
similar tests performed with only static and dynamic datasets. This comparison may
suggest additional trends, or strengthen those already seen through demonstrating the
trends repeatedly. Figure C.2 shows the results of tests with both datasets, Figure C.3 the
results with the static dataset only, and Figure C.4 ith the dynamic dataset only.
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Figure C.2: CNN performance with training augmentation on all datasets

Figure C.3: CNN performance with training augmentation on static dataset only
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Figure C.4: CNN performance with training augmentation on dynamic dataset only

The trends noted in Section 6.2 was the increase in accuracy under the 50% case.
This increase is seen with both the static and dynamic datasets as well, and some further
increases are seen with added noise augmentation. There appears to be an overall increase
in the performance of the 75% series as well. Finally, the 100% series stays constant and
then degrades in the static case, while it increases and levels off in the dynamic case. Table
C.1 outlines any trends for each series of data, during both simulated data addition and
augmentation.

Table C.1: Detailed trends from CNN test

Dataset Real Data % Adding Simulated Data Augmenting Simulated Data
Both 50% Increase then decrease Increase at higher levels

Both 75% Steady increase No significant trend

Both 100% Unexplained drop No significant trend

Static 50% Increase then decrease Slight increase

Static 75% Increase then decrease Increase then decrease

Static 100% Steady increase Decrease then increase

Dynamic 50% Increase then hold Slight increase

Dynamic 75% Increase then decrease Decrease then increase

Dynamic 100% Steady increase Decrease then increase
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C.3 LSTM Augmentation Results

This section reviews the results of augmenting the training of a LSTM with simulation
data, as originally shown in Figure 6.11. This section presents these results, as well as
similar tests performed with only static and dynamic datasets. This comparison may
suggest additional trends, or strengthen those already seen through demonstrating the
trends repeatedly. Figure C.5 shows the results of tests with both datasets, Figure C.6 the
results with the static dataset only, and Figure C.7 ith the dynamic dataset only.

Figure C.5: LSTM performance with training augmentation on all datasets
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Figure C.6: LSTM performance with training augmentation on static dataset only

Figure C.7: LSTM performance with training augmentation on dynamic dataset only

The trends noted in Section 6.2 were an increase in the 50% series and 100% series
accuracy as simulation data was added. Using only the static dataset, there is an increase
seen across all series. The effect of noise augmentation is different for each series, with
the 50% and 75% series seeing overall improvements, and the 100% series seeing a slight
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decrease. Using the dynamic dataset, a drop in accuracy is seen for the 75% and 100% se-
ries, while the 50% series experiences a drop and then increase. Augmenting the simulated
data with noise appears to generally increase the accuracy. Table C.2 outlines any trends
for each series of data, during both simulated data addition and augmentation.

Table C.2: Detailed trends from LSTM test

Dataset Real Data % Adding Simulated Data Augmenting Simulated Data
Both 50% Slight increase Little change

Both 75% Decrease Some increase

Both 100% Steady increase Decrease and increase

Static 50% Steady increase Overall increase

Static 75% Overall increase Decrease then increase

Static 100% Steady increase Decrease

Dynamic 50% Decrease then increase Overall decrease

Dynamic 75% Steady decrease Increase then decrease

Dynamic 100% Steady decrease Increase then decrease
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