
Simultaneous Local Motion Planning
and Control, Adjustable Driving

Behavior, and Obstacle
Representation for Autonomous

Driving

by

Mohamed Ashraf Gamaleldin Daoud

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2020

c© Mohamed Ashraf Gamaleldin Daoud 2020

Authors Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Chapter 1, 2, 3, 5 and 7 were authored solely by the author of the thesis. The co-authors
offered supervision and revised some of the contents included in Chapter 6.

The model predictive control proposed in Chapter 4 was implemented by the author of the
thesis. The vehicle and energy consumption modeling as well as the problem formulation
of the model predictive control were conceived by the author. Furthermore, the author
designed different simulation scenarios used for validating the proposed controller. Finally,
the author of the thesis wrote the first draft of the chapter, which was then revised by his
co-authors.

iii

Abstract

The evolving autonomous driving technology has been attracting significant research efforts
in both academia and industry because of its promising potentials. Eliminating the human
intervention in driving will drastically improve the road safety and will create more mobility
freedom for the humankind. Decision-making system in autonomy pipeline is the last
module that interacts directly with the surrounding environment. Typical decision-making
systems perform a variety of tasks including local motion planning, obstacle avoidance, and
path-following in a sequential manner. An alternative approach is to perform these tasks
simultaneously to obtain faster decision-making actions. This thesis focuses on designing an
optimization-based simultaneous controller that performs obstacle avoidance, local motion
planning, and vehicle control on roads regardless of their orientation while following a
target path, and also incorporates adjustable driving behavior.

Firstly, a decision-making scheme that enables autonomous driving for long trips while
expanding the usage of the available computational resources and ensuring obstacle avoid-
ance functionality is proposed. The proposed scheme utilizes a parallel architecture for
local motion planning and control layers to increase time efficiency. In addition, a novel
feasibility-guaranteed lane change and double lane change planners are introduced for path
planning and obstacle avoidance. Finally, an online parameterized curve generator is pro-
posed and integrated with a recently developed path-following controller.

Next, a nonlinear model predictive control (NMPC) scheme is developed for the path-
following control of autonomous vehicles. In addition, a dual-objective cost function which
is composed of a regulation part and an economic part is introduced. By tuning the weights
of this cost, a driving behavior can be implemented; two different driving behaviors are
designed, namely, energy-efficient and sport driving modes. Finally, a kinematic bicycle
model is used for predicting the vehicle motion while a longitudinal motion dynamic model
is used for estimating the energy consumption.

Finally, a novel representation framework for static maps and obstacles based on Fourier
Series is proposed. The framework relies on Complex Fourier Series analysis to reduce
the computation time and outputs mathematical equations to describe the shape of the
considered object. Furthermore, two methods were proposed, namely; offline method and
online method. The offline method is used to create accurate representations for static
maps and most common obstacles an ego vehicle may encounter. The online method is
used to model the free space around the vehicle when dealing with uncertain environments.

The proposed contributions fill significant gaps in the autonomous driving problem. All
the proposed work is tested and validated using numerical simulations and some experi-
ments. The results show the effectiveness of the proposed contributions.

iv

Acknowledgements

In the name of Allah, the most gracious and the most merciful. First and foremost praise
is to Allah, the Almighty, the greatest of all, on whom ultimately we depend for sustenance
and guidance. I thank the Almighty Allah for giving me the determination and the strength
to conduct my research. His continuous grace and mercy was with me throughout my life
from birth to date and ever more during the journey of my research.

I would like to express my sincere gratitude to Prof. William Melek and Prof. Derek
Rayside, for the promising opportunity they provided me with, for their continuous support
of my M.A.Sc. study and related research, for their patience, motivation, and immense
knowledge. Their guidance and feedback helped me all the time of research and writing
of this thesis. Many thanks to Prof. Christopher Nielsen and Prof. Baris Fidan for their
thoughtful comments and recommendations to make this thesis better.

I would also like to thank WATonomous design team for the stimulating discussions,
and their help throughout my research. In this team, I have worked with many motivated
members who are always keen to learn.

I would also like to thank my friends who have supported me during my program. I
would like to specially thank Ahmed Eid, Mohamed Alaa, Mahmoud Hanafy, Islam Moheb,
Mostafa Osman, Mohamed Alshorman, Dr. Mohamed Mehrez, Dr. Gebreel Abdulrahman,
and Dr. Ahmed El-Awady. Their existence in my life made me always feel as if I am home
with my family.

Finally, I would like to thank my parents Ashraf and Sahar, my sisters Radwa and
Sarah, and my wife Hanan.

v

Dedication

This is dedicated to my caring sisters Radwa and Sarah, my lovely supporting parents
Ashraf and Sahar, my wife and my backbone Hanan.

vi

Table of Contents

List of Figures x

List of Tables xiii

Abbreviations xiv

List of Symbols xv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Contributions . 3

1.3.1 Simultaneous Local Motion Planning and Control 3

1.3.2 Adjustable Driving Behavior using Dual-Objective NMPC 3

1.3.3 Obstacle Representation using Fourier Series 4

1.3.4 Benchmarking Proposed Schemes against Existing Controllers . . . 4

1.3.5 Validation of the Proposed Methodologies 4

1.4 Thesis Structure and Organization . 5

2 Background, Preliminaries and Related Work 6

2.1 Automated Driving Standards . 6

2.2 Optimal Control and MPC . 7

2.3 Vehicle Modeling . 8

2.3.1 Vehicle Kinematic Model . 8

2.3.2 Vehicle Dynamic Model . 8

2.3.3 Vehicle Models Comparison . 10

2.4 Decision-Making System . 10

2.4.1 Global Motion Planners . 10

vii

2.4.2 Behavioral Planners . 11

2.4.3 Local Motion Planners . 11

2.4.4 Feedback Control . 13

2.5 Recent Related Work . 14

2.5.1 Obstacle Avoidance using Collision-Free Trajectories 14

2.5.2 Obstacle Avoidance using Hard and Soft Constraints 15

2.5.3 Model Predictive Path-Following Control 16

2.5.4 Case Study: Nonlinear MPC controller on Chevy Bolt 16

2.5.5 Static Map and Obstacle Representation 17

2.5.6 Conclusion . 18

3 Simultaneous Local Motion Planning and Control 19

3.1 Introduction . 19

3.2 Global Planning and Behavioral Planning 19

3.3 Offline Route Feasibility Checker . 21

3.3.1 Waypoints Refinement . 21

3.3.2 Feasibility-Guaranteed Lane Change Planner 21

3.3.3 Curvature Calculation and Velocity Profile Refinement 26

3.4 Online Parameterized Curves Generator 27

3.4.1 Vehicle Positioning Relative to Global Route and Dynamic Looka-
head Distance . 27

3.4.2 Curve Fitting Problem Formulation 28

3.4.3 Feasibility-Guaranteed Double Lane Change Planner 30

3.5 Model Predictive Path-Following Control 33

3.5.1 MPFC Scheme . 33

3.5.2 Vehicle Model and OCP Formulation and Discretization 34

4 Path-following and Adjustable Driving Behavior of Autonomous Vehicles
using Dual-Objective Nonlinear MPC 37

4.1 Introduction . 37

4.2 Bicycle and Energy Consumption Models 38

4.2.1 Bicycle Model . 38

4.2.2 Energy Consumption Model . 39

4.3 Proposed Dual-Objective NMPC . 39

4.3.1 Path-following Control Problem . 39

4.3.2 NMPC Formulation . 40

4.3.3 Dual-Objective Cost Function . 41

viii

5 Obstacle Representation using Fourier Series 42

5.1 Introduction . 42

5.2 Complex Fourier Series Expansion . 42

5.3 Obstacle Representation . 44

5.3.1 Offline Method . 45

5.3.2 Online Method . 45

6 Simulation Results and Benchmarking 48

6.1 Introduction . 48

6.2 Simultaneous Local Motion Planning and Control Results 48

6.2.1 Offline Route Feasibility Checker Results 49

6.2.2 Online Curve Generator Results . 50

6.2.3 Model Predictive Path-following Control Results 52

6.3 Adjustable Driving Behavior Control Results 55

6.3.1 Dynamic Simulation Scenarios . 55

6.3.2 Real-time Simulation Results and Discussion 56

6.4 Obstacle Representation using FS Results 62

6.4.1 Obstacle Representation . 62

6.4.2 Static Map Representation . 64

7 Conclusion and Future Work 66

7.1 Simultaneous Local Motion Planning and Control 66

7.2 Adjustable Driving Behavior . 66

7.3 Obstacle Representation using Fourier Series 67

7.4 Possible Future Work . 67

References 68

ix

List of Figures

2.1 An illustration of how MPC finds control actions over a predefined prediction horizon

and predicts the future state of the system. 7

2.2 Kinematic bicycle model schematic. 8

2.3 Dynamic bicycle model schematic. 9

2.4 A simple graph showing vertices and edges representing a road network. 10

2.5 Left: An example of FSM. Right: An example of RL. 12

2.6 Tire friction ellipse and comfort rectangle constraints. 13

2.7 Combined feedback and feedforward controller block diagram. 14

2.8 An illustration of control actions with and without interpolation. 17

2.9 Experimental results from test track . 17

3.1 Architecture of the proposed approach. 20

3.2 The adopted FSM behavioral planner. 21

3.3 Three different sigmoid functions. 23

3.4 Effect of B and a on κmax,LC . 24

3.5 Left: first method, values of a and κmax,LC for B = Blat,LC and the fitted equation.

Right: second method, values of κmax,LC for different values of a and B and the fitted

two dimensional equation. 25

3.6 Vehicle positioning relative to the global route. 27

3.7 Overlapping in parametric curves generation. 30

3.8 Three different bell-shaped functions. 30

3.9 Left: first method, values of m and κmax,DLC for H = Hlat,DLC and the fitted equation.

Right: second method, values of κmax,DLC for different values of m and H and the fitted

two dimensional equation. 31

3.10 An illustration of finding the optimal H value. Note that the optimal H is not at the

center of the left lane. 32

4.1 Schematic diagram of the bicycle model, where I is the inertial frame and V is the vehicle

local frame. 38

4.2 A schematic of the path-following problem. 40

x

4.3 Effect of changing E in the dual-objective function. 41

5.1 The Argand diagram for a complex function f(t). 43

5.2 An obstacle and its sampled boundary. 44

5.3 An example of the offline method used to generate obstacle representation. 46

5.4 An example of the online method used to generate free space representation. 46

6.1 Left: Snapshots for the three LC maneuvers from CARLA, where Rglobal is in blue and

Rglobal,ref is in red. Right: Plots showing longitudinal and lateral distances for each

maneuver. 49

6.2 Road curvature information for each scenario. 50

6.3 Sample of curve fitting results and waypoints for the three scenarios. Right: Case 1.

Middle: Case 2. Left: Case 3. 51

6.4 Original parametric curve P and the traversed parametric curve Pclear. 53

6.5 Reference route Rglobal,ref and the traversed route for each case. 54

6.6 Relation between desired speed, MPC speed, and actual speed. 54

6.7 Left: Path-following error for each case. Right: velocity tracking output for each case. . 55

6.8 The developed ROS package block diagram. 56

6.9 Ackermann vehicle model . 56

6.10 Different test cases used for path-following. 57

6.11 Path-following simulation results for the straight line reference path. Left: Energy-

efficient mode. Right: Sport mode. 58

6.12 The overall vehicle speed in km/h for both driving modes. Left: Energy-efficient mode.

Right: Sport mode. 58

6.13 Consumed energy (Joules) by the vehicle simulation results. Left: Energy-efficient mode.

Right: Sport mode. 59

6.14 Path-following simulation results for the spline reference path. Left: Energy-efficient

mode. Right: Sport mode. 60

6.15 The overall vehicle speed in km/h for both driving modes. Left: Energy-efficient mode.

Right: Sport mode. 60

6.16 Path-following simulation results for the circular reference path. Left: Energy-efficient

mode. Right: Sport mode. 60

6.17 The overall vehicle speed in km/h for both driving modes. Left: Energy-efficient mode.

Right: Sport mode. 61

6.18 Steering angle control action. Red lines represent the upper and lower limits. Left:

Energy-efficient mode. Right: Sport mode. 61

6.19 Effect of the number of frequencies on the accuracy of the obtained representation. . . 62

6.20 Magnitude of every frequency for three different objects. 63

xi

6.21 Obtained representation after filtering out small magnitude frequencies. 63

6.22 Obtained representation for CARLA Town01. 64

6.23 Obtained representation for five-way intersection from CARLA Town03. Left: represen-

tation without reverse sampling. Right representation with reverse sampling 65

xii

List of Tables

3.1 A sample of maximum curvature values for different values of a and B. 23

6.1 Cases performed to test the proposed scheme. 49

6.2 LC maneuvers performed to test the proposed scheme. 50

6.3 Curve fitting computation time and error. 51

6.4 Constraints set on the optimization variables. 53

6.5 NMPC computation time and path-following error. 54

6.6 Simulated vehicle parameters . 56

6.7 Parameters and weights used for each test case 57

6.8 Comparison between driving modes for straight line path 59

6.9 Comparison between driving modes for the spline path 59

6.10 Comparison between driving modes for circular path 61

xiii

Abbreviations

CFS Complex Fourier Series

DLC Double Lane Change

DoF Degree of Freedom

FS Fourier Series

FSM Finitie State Machine

LC Lane Change

LS Least Squares

MDP Markov Decision Process

MIMO Multiple Input Multiple Output

MPC Model Predictive Control

MPFC Model Predictive Path-Following Control

NHTSA National Highway Traffic Safety Administration

NLP Nonlinear Programming

NMPC Nonlinear Model Predictive Control

OCP Optimal Control Problem

ODE Ordinary Differential Equation

PID Proportional-Integral-Derivative

RL Reinforcement Learning

RMSE Root Mean Squared Error

SAE Society for Automotive Engineers

SISO Single Input Single Output

SLAM Simultaneous Localization and Mapping

xiv

List of Symbols

ICR Instantaneous center of rotation.

κmax,dyn Maximum curvature a vehicle can handle based on its dynamic constraints.

κmax,kin Maximum curvature a vehicle can handle based on its kinematic constraints.

κmax,v Maximum curvature a vehicle can handle.

κmax,DLC Maximum curvature of a double lane change maneuver.

κmax,LC Maximum curvature of a lane change maneuver.

κ Curvature of the road at a certain point.

L Wheel base: distance between front axis and rear axis of the vehicle.

Mz Yaw moment acting on the vehicle.

R Turning radius of the vehicle.

an Fourier Series cosine coefficient.

ρa Air density.

αf Front-tire slip angle.

αr Rear-tire slip angle.

a1 Distance between front axle and C.G.

bn Fourier Series sine coefficient.

βs Vehicle side-slip angle.

a2 Distance between rear axle and C.G.

cn Fourier series complex coefficient.

Cαf Front-tire cornering stiffness.

C.G Center of gravity of the vehicle.

Cαr Rear-tire cornering stiffness.

xv

κroute Curvature information of the route.

δf Front wheel steering angle

dlong,DLC Longitudinal distance needed for a double lane change maneuver.

Cd Drag coefficient of the vehicle.

dLA,dyn Dynamic lookahead distance.

Af Frontal area of the vehicle.

Fx Longitudinal force acting on the vehicle.

Fy Lateral force acting on the vehicle.

Rglobal,ref The global route from a starting point to a given target destination after refine-
ment.

Rglobal The global route from a starting point to a given target destination.

Iz Mass moment of inertia around z-axis.

alat Lateral acceleration of the vehicle.

δ Double lane change lateral shift.

dlong,LC Longitudinal distance needed for a lane change maneuver.

along Longitudinal acceleration of the vehicle.

mv Mass of the vehicle.

Ωz Yaw rate of the vehicle.

Pclear Collision-free reference parametric curve.

P Reference parametric curve.

κstep Path evolution step-size parameter.

ξ Parametric curve parameter.

ρ Relative longitudinal distance between ego vehicle and an obstacle.

CR Rolling resistance of the vehicle.

θ Yaw angle of the vehicle.

vx Velocity of the vehicle in x direction relative to the vehicle’s frame.

vy Velocity of the vehicle in y direction relative to the vehicle’s frame.

v Velocity of the vehicle.

dwp Linear distance between two successive waypoints.

w Track width: distance between the center line of each of the two wheels on the same
axle of the vehicle.

xvi

Chapter 1

Introduction

1.1 Motivation

An autonomous vehicle, a.k.a. self-driving car, is a vehicle that can sense its environment
and interpret it correctly in order to drive safely with little or no human input. Autonomous
driving problem have enthused hundreds of researchers around the world in both academia
and industry. The motivation behind building autonomous vehicles technology is to create
a mode of mobility which can enhance safety and reduce accidents resulting from human
error and traffic congestion.

In 2018, there were 37,473 recorded fatalities in motor vehicle traffic crashes in the
United States alone, and 94% of them were assigned to driver error [1, 2]. Autonomous
vehicles technology can potentially eliminate the driver error and, consequently, reduce the
number of collisions and fatalities. In addition, autonomous vehicles are supposed to follow
driving rules of the road, which will result in safer traffic environments for all road users.
Moreover, autonomous driving will provide mobility freedom and support for people with
varying degrees of disabilities by making them more independent and productive. From
economic aspect, autonomous driving will allow passengers to make the most of their daily
commute time. In 2016, there were 12.6 million Canadians who commuted to work by car,
spending an average of 24 minutes on the trip, and almost 7% of them spent at least 60
minutes traveling to work [3]. Therefore, autonomous driving can help our workforce make
better use of their commute time, and increase their productivity.

Although autonomous driving concept has been around since 1920s, the first autonomous
vehicle was developed in 1980s. In 1986, Carnegie Mellon University developed the first
autonomous vehicle with people riding onboard. Despite its low speed, which was limited
because of low computational power available at that time, it was revolutionary, and in-
spired many researchers to pay closer attention to the technology. Later on, in 1995, a
notable achievement was driving for 5000 km across the United states with 98% of the
distance driven autonomously [4]. In 2004 and 2005, DARPA held the DARPA Grand
Challenges, which pushed autonomous vehicles technology into new territories. In 2005,
four vehicles were able to drive autonomously without human intervention for 212 km on
off-road course [5]. This milestone, accompanied by developments in sensing and computing
technology, paved the way for more and more progress in autonomous vehicles technology.

1

Generally, perception, localization and decision-making systems are the basis of au-
tonomous driving research. In perception, the aim is to utilize different sensors in captur-
ing and interpreting data from the environment to extract useful information about the
surrounding objects [6]. Localization focuses on estimating the current vehicle state by
fusing different sensory information. Finally, the decision-making system interacts directly
with the environment to safely drive the vehicle from the starting point to the target des-
tination. Decision-making system can be divided into four subsystems: route planning,
behavioral planning, local motion planning, and feedback control [7].

In a decision-making system, a global route planning algorithm tries to find the best
route through the road network from the vehicle current position to the destination. Be-
havioral planning is responsible for the qualitative driving actions that are dependent on
the surroundings and other road users. For instance, when the car is approaching a stop
line, the behavioral planning subsystem shall command the vehicle to stop. Given the
global route and any required qualitative driving actions, the local motion planning layer
translates the required maneuvers into feasible trajectories or paths that can be followed
by the vehicle. Finally, feedback control layer is used to interface with the actuators to
closely follow the desired motion profile [7].

Although many partially autonomous vehicles platforms have been introduced for con-
sumer use, the autonomous driving problem still needs more attention and investigation to
make fully autonomous vehicles feasible in the near future. This is basically because of the
amount of computational power required to drive the vehicle as well as deploy localization
and decision-making algorithms which can allow the vehicle to operate safely and effec-
tively in unstructured environments. Control and decision-making is the last layer in any
pipeline of autonomous driving that interacts directly with the surrounding environment.
Most of the current decision-making in the literature and associated control schemes are
sequential in a way that every layer depends on the previous one until a new control action
is generated. Although this sequential hierarchy may make the design of each layer easier,
it may introduce time delay limiting the speed of the decision-making scheme. Therefore, a
more time-efficient and parallel architecture scheme may reduce the decision-making time
while achieving efficient maneuvering performance in real time.

1.2 Problem Statement

Autonomous vehicles typically perform a variety of tasks as part of their decision-making,
including local motion planning, obstacle avoidance, and path-following. These tasks are
typically implemented as separate modules running sequentially in the decision-making
pipeline of the vehicle. An alternative design approach is to integrate the computations
of some of these tasks together, while running others in parallel. Such a design has the
potential to make faster decisions for three reasons: first, it reduces the number of se-
quential layers and the volume of data that needs to be passed through the processing
pipeline of the vehicle, thus reducing the time latency for updating the control actions;
second, parallelism expands the usage of the available computational resources compared
to the modular sequential pipeline design; and third, such a design might minimize the
computation power needed since some of these tasks are closely interrelated, so there is
potential for one algorithm to solve several of them simultaneously.

2

A typical drawback of parallel-integrated design is that it is often more difficult to design
as compared to the sequential technique. That is because of the complexity and uncertainty
of each task. Prior work on integrated controllers has been limited to lateral control on
straight roads while avoiding obstacles [8]. This work advances the state of the art in
parallel-integrated controller design by performing both longitudinal and lateral vehicle
control on roads regardless of their curvature and orientation while following a target path,
and also incorporates adjustable driving behavior. For instance, an autonomous vehicle
might be operated in a more energy-efficient manner or a sportier manner.

1.3 Contributions

1.3.1 Simultaneous Local Motion Planning and Control

Most of the existing global planners tackle the problem of finding the best route from the
starting point to a given target destination while abstracting away some of the lower details
of the roads such as dynamic obstacles. This approach is acceptable as it helps in reducing
the complexity of finding the optimal route.

Therefore, to execute a global route safely, we divide it into smaller sections, incor-
porate behavioral planning qualitative decisions, and apply any modifications needed to
make route calculation within the confines of the vehicle’s constraints. These modifica-
tions include smoothing Lane Change (LC) and Double Lane Change (DLC) maneuvers
and making them feasibility-guaranteed. After that, the generated local motion profile
is represented by parametric curves. Such a representation can be executed safely by
most feedback controllers. Thus, our novel proposed methodology stands out versus others
existing in the literature as it:

• relies on pre-processing the global route to minimize online computation time.

• dynamically changes lookahead distance based on road shape.

• efficiently incorporates feasibility-guaranteed DLC maneuvering without the need of
re-planning.

• is parameterized and can be tuned based on the operating conditions.

We finally integrate the proposed methodology with path-following NMPC scheme pro-
posed in [9] with the required adjustments to make it suitable for autonomous vehicles.
The proposed scheme relies on integrated-parallel design and we call it Simultaneous Lo-
cation Motion Planning and Control.

1.3.2 Adjustable Driving Behavior using Dual-Objective NMPC

Driving behavior of vehicles is a main concern in automotive industry and road traffic
safety because of its effects on the environment in terms of energy consumption as well as
the safety of other road users [10, 11]. Therefore, driving behavior heavily affects energy

3

consumption of cars. However, there is a trade off between energy saving and performance.
Although autonomous vehicles are expected to provide more efficient rides, passengers may
opt for faster rides. We propose using a dual-objective NMPC scheme that changes the
driving behavior of autonomous vehicles based on the passengers’ preference.

1.3.3 Obstacle Representation using Fourier Series

Modeling the static map and the obstacles within the ego vehicle environment is crucial to
ensure that the obtained motion plans are safe and collision-free. Since collision checking is
performed online, it should be reliable, accurate and computationally efficient. The major-
ity of the current approaches for obstacle representation use conservative approximations
to ensure the safety of the obtained plans. However, since obstacles usually have irregular
shapes, the approximate representation introduced in the literature may not be accurate
enough. Instead, we propose using Fourier Series (FS) to represent static obstacles in the
scene, as FS is capable of translating any closed shape into one mathematical equation.
Similarly, road area can be modeled as constraints, which can be incorporated into the
controller design as soft or hard constraints. Such a technique may help in guiding the
vehicle through an optimal collision-free path. Generating static obstacles representation
using FS can be done offline, hence, the computational cost is eliminated.

1.3.4 Benchmarking Proposed Schemes against Existing Con-
trollers

To evaluate the performance of different proposed methodologies, we benchmarked their
performance against different existing algorithms available in the literature [12–17]. Such
comparison validates the efficacy of the proposed work and help identify areas for potential
improvement in future investigations.

1.3.5 Validation of the Proposed Methodologies

All of the proposed methodologies have been tested using real-time simulations using
CARLA Open-source simulator [18] and Gazebo Dynamic Simulator [19]. The simula-
tions performed cover various road shapes and driving scenarios to show the effectiveness
of the proposed schemes.

Some validation with an autonomous Chevy Bolt, belonging to the Watonomous team,
has been done. An earlier version of the controller presented in Chapter 3 has been in
use on the vehicle for almost a year. This earlier version is described in more details in
Chapter 2. A more recent version of the controller has been integrated with the overall
pipeline of the vehicle, and this integration has been tested in simulation but not on the
road. Due to Covid-19 pandemic, experimental validation had to be suspended in order to
abide to the emergency orders by Ontario public health which required campus closure.

4

1.4 Thesis Structure and Organization

This thesis is organized as follows:

• Chapter 1: In this chapter, we provide the motivation for this research thesis.
Next, we define our problem statement precisely. Finally, we present the proposed
contributions of our research.

• Chapter 2: A background, preliminaries and most recent related work are reviewed
in this chapter.

• Chapter 3: Demonstrates and formulates our simultaneous local motion planning
and control scheme.

• Chapter 4: Introduces the proposed dual-objective NMPC scheme for driving be-
havior change.

• Chapter 5: Presents the proposed Fourier Series methodology for obstacle repre-
sentation.

• Chapter 6: Details the validation of our approach using numerical simulations,
benchmarks the proposed scheme against other algorithms in the literature, and
discusses the results.

• Chapter 7: Finally, this chapter concludes our work and outlines possible future
work.

5

Chapter 2

Background, Preliminaries and
Related Work

In this chapter, we start by discussing the most common automated driving standards.
Next we give a brief on optimal control and Model Predictive Control (MPC). Then we
discuss different used vehicle models. After that, we give more details on decision-making
systems. Finally, we outline some of the most recent related work on path-following using
MPC in the literature.

2.1 Automated Driving Standards

Different institutions around the world started to create standards to categorize levels of
automated driving, such as German Federal Highway Institute (BASt) [20], the National
Highway Traffic Safety Administration (NHTSA) [21], and the Society for Automotive En-
gineers (SAE) [22]. The most widely used one is the SAE J3016 standard, which categorizes
levels of autonomy into six different levels ranging from no driving automation (level 0) to
full driving automation (level 5). In level 0, the driver is responsible for all vehicle motion
control even when active safety systems are engaged. In level 1 (Driver Assistance), driving
automation system is responsible for either the lateral or the longitudinal vehicle motion
control (e.g. lane change or cruise control). In level 2 (Partial Driving Automation), both
lateral and longitudinal vehicle motion are executed by the driving automation system, but
objects detection and event response task is performed by the driver as well as supervising
the driving automation system. In level 3 (Conditional Driving Automation), the auto-
mated driving system is responsible for the entire dynamic tasks but the driver must be
ready to intervene when necessary. In level 4 (High Driving Automation), in addition to all
dynamic driving tasks, the system is responsible for bringing the vehicle to safe status in
case of fallback until the user intervenes. In level 5 (Full Driving Automation), the system
will be able to do all tasks with zero human intervention. Current developed autonomous
driving systems lay between level 3 and level 4.

6

2.2 Optimal Control and MPC

In order to represent dynamic systems and processes mathematically, we use differential
equations or difference equations to create such models. These models can then help in
designing the best control law either using classical control or modern control. Classical
control theory focuses on Single Input Single Output (SISO) systems and is based on
Laplace representation of the systems. In addition, the control action, which is the input
to the system, is determined based on the error signal as the controller tries to drive it to
zero. On the other hand, modern control theory deals with Multiple Input Multiple Output
(MIMO) systems. In addition, modern control theory uses state space representation such
that the whole system is described using a set of first order differential equation in case of
continuous time domain, and difference equations in case of discrete time domain.

Optimal control lies under modern control techniques, and its main target is to minimize
or maximize certain performance index while satisfying system constraints. This is done
by finding the optimal control actions that will drive the system to a final target state.
Therefore, an Optimal Control Problem (OCP) formulation requires a mathematical model
of the system, a performance index that reflects the desired behavior of the system, and a
set of constraints on states and control actions. For more information on optimal control
theory, we refer the reader to [23,24].

MPC is a finite-horizon optimal control method at which the control actions are cal-
culated by iteratively solving an open loop OCP over a predefined horizon in future. The
OCP is formulated given a performance index, which characterizes the control objective.
The main challenge in MPC is its computational cost, which usually limits its running
frequency. In MPC the target is to usually minimize a performance index, and hence, we
call it cost function instead. Applied control actions are obtained by taking only the first
element of an optimal control sequence, which results from solving the OCP [25]. Solving
the OCP is done repetitively on a finite prediction horizon using the actual state of the
system as a starting point, and hence incorporates a feedback mechanism. This feedback
is essential in handling different disturbances acting on the system as well as inaccuracy
of system model used in prediction [26]. MPC has been used in autonomous vehicles [27],
holonomic mobile robots [28] and non-holonomic mobile robots [29]. Fig. 2.1 shows an
illustration of MPC controller and how it drives dynamic systems to the desired state.

t

x

tk tk+1tk−1 tk+2tk−2 tk+N. . .tk−3. . .

Control Action Reference State Actual State Predicted State

FuturePast

Figure 2.1: An illustration of how MPC finds control actions over a predefined prediction horizon and
predicts the future state of the system.

7

2.3 Vehicle Modeling

Generally, two techniques are used for vehicle modeling. The first one, called kinematic
modeling, uses geometric constraints to define the motion of the vehicle. The second one,
called dynamic modeling, uses all of the forces and moments acting on the vehicle to define
its motion. We will outline both ways in the next subsections.

2.3.1 Vehicle Kinematic Model

XI

YI

δf

C.G

ICR

θv
R

βs

xv

yv

Figure 2.2: Kinematic bicycle model
schematic.

For any mobile robot, a kinematic model can be derived
by enforcing the constraints of the robot’s wheels. In
case of vehicles, the front wheels can be combined into
one virtual central front wheel. Similarly, rear wheels
can be combined into a wheel at the middle. This ap-
proximation is valid since R >> L and R >> w, where
R is the vehicle turning radius, L is the wheelbase, and
w is the track width. Now, the motion of the model
is governed by the front steerable wheel and the rear
fixed wheel. In the kinematic model, we assume that
the wheel plane remains vertical and there is only one
contact point between the wheel and the ground. In
addition, we assume that there is no sliding at the contact patch, and the wheel motion
is only because of its rolling. These assumptions enable us to set two constraints on each
wheel of the vehicle. Firstly, the wheel must roll to generate motion in longitudinal di-
rection. Secondly, the wheel must not slip laterally. These constraints are also known as
vehicle nonholonomic constraints. For more information on wheel constraints, we refer the
reader to [30]. Fig. 2.2 shows a schematic of the kinematic bicycle model, where ICR is
the instantaneous center of rotation, v is the vehicle speed, δf is the front wheel steering
angle, θ is the heading angle of the vehicle and βs is the side slip angle of the vehicle.

Two-wheeled vehicle kinematic model can be derived relative to several reference points.
Here, we use the vehicle’s C.G as a reference and the vehicle frame is attached to it as
shown in Fig. 2.2. Therefore the vehicle kinematic model becomes:ẋIẏI

θ̇I

 =

v cos(θ + βs)

v sin(θ + βs)
v cos(βs) tan(θ)

L

 (2.1)

and

βs = tan−1
(lr tan δf

L

)
(2.2)

where ẋI and ẏI are vehicle velocity in the inertial frame and θ̇I is the yaw rate.

2.3.2 Vehicle Dynamic Model

As the vehicle speed increases, effect of dynamics starts to become more significant on the
vehicle behavior, and a more accurate vehicle model is thus needed. Since the purpose

8

here of vehicle modeling is to find the optimal control inputs, there is a trade-off between
model accuracy and optimization complexity.

Generally, a high-fidelity model is not required for optimization. The most common
dynamic vehicle model used for model-based control combines wheels on each axle into one
central wheel similar to the kinematic model introduced above. In addition, it neglects the
Degree of Freedom (DoF) of the car suspension system, and hence, the dynamic model has
only three DoFs. However, as it incorporates vehicle dynamic effect, the model violates the
kinematic constraints, resulting in a more realistic behavior. The relaxation of kinematic
constraints means that each wheel may have a lateral velocity component, e.g. vwheel,y 6= 0,
and the longitudinal motion is due to both rolling and slipping of the tire. Fig. 2.3 shows
a schematic of the dynamic bicycle model and forces acting on each wheel, where a1 is the
distance between the front axle and the C.G., a2 is the distance between the rear axle and
the C.G., αf is the front-tire slip angle, αr is the rear-tire slip angle and Ωz is the yaw rate.

X

Y

a1 a2

Fx,r

Fy,r Fx,f

Fy,f

vx

vy

vx

a2Ωz−vy
vx

vy+a1Ωz

Ωz

C.G

δfαr

αf

Figure 2.3: Dynamic bicycle model schematic.

Interaction between the road plane and tires generates a 3D force system that includes
three forces and three moments. However, we focus only on longitudinal force Fx, lateral
force Fy, and yaw moment Mz to obtain the dynamic model:

v̇x =
1

mv

(Fxf + Fxr) + Ωvy (2.3a)

v̇y = −Cαf + Cαr
mvvx

vy +

[−a1Cαf + a2Cαr
mvvx

− vx
]
Ωz +

Cαr
m

δf (2.3b)

Ω̇z =

[−a1
2Cαf + a2

2Cαr
Izvx

]
Ωz +

[−a1Cαf − a2Cαr
Izvx

]
vy +

a1Cαf
Iz

δf (2.3c)

where Cαf and Cαr are the front-tire and the rear-tire cornering stiffness respectively,
mv is the mass of the vehicle and Iz is the moment of inertia around the Z-axis of the
vehicle. The inputs for the dynamic model are the steering angle δf and driving force Fx
coming from the engine torque. By setting the longitudinal speed vx to a constant, the
dynamic model becomes linear, and therefore reduces the computational power needed for
optimization. Consequently, assuming constant speed of the vehicle lets us control vehicle
lateral motion using only the steering angle. For more information on tire forces and the
complete derivation of the model, we refer the reader to [31] or any other vehicle dynamics
textbook.

9

2.3.3 Vehicle Models Comparison

While dynamic vehicle model is able to capture the vehicle actual performance more ac-
curately, using it for optimization in Nonlinear Model Predictive Control (NMPC) is com-
putationally expensive as it is highly nonlinear [32], and requires double integration to get
position predictions. Therefore, one way to incorporate it is by decoupling longitudinal
and lateral dynamics from each other and designing a separate control for each of them.
However, their behavior is tightly coupled.

On the other hand, kinematic model has less nonlinearity, and can be integrated once
to get position prediction. The kinematic model can be used for wide range of speeds with
relatively high accuracy [32]. However, it fails in predicting the vehicle states accurately
in case of high speeds.

Another major drawback of the dynamic model is that its parameters change based on
several factors such as tire pressure and ambient temperature [33]. This issue may drift
the prediction away from the actual behavior of the vehicle in case of huge errors between
model parameters and actual parameters.

In conclusion, kinematic model shows good performance for normal urban driving cases.
Meanwhile, dynamic model gives more accurate results in highway driving, but it needs
iterative estimation of tire parameters.

2.4 Decision-Making System

2.4.1 Global Motion Planners

With high level of abstraction, a decision-making system shall find the optimal route from
a starting location to a given destination by navigating the road network. Usually optimal
route refers to the route with the shortest amount of time or distance it takes for the
vehicle to reach its given destination [34]. Since the spatial planning scale is in kilometers,
neglecting low-level planning constraints is acceptable. Therefore, the main constraints
induced on the planning task are speed limits, traffic flow, and road lengths.

v1

v2

v3

v4

v5

v6

v7

v8

e1

e2

e3

e4

e5

e6

e7

e8

e9
e10

e11 e12

Figure 2.4: A simple graph showing
vertices and edges representing a road

network.

Taking the advantage of the road network being
highly structured, it can be represented using a math-
ematical structure known as a graph [35]. A graph is a
discrete structure composed of vertices and edges where
each vertex represents a point on the road network, and
each edge represents a road segment connecting any two
points on the road network as shown in Fig. 2.4. The
cost of traversing each edge can be modeled by assign-
ing weights to this edge. Therefore, finding the optimal
route, or sets of edges that connect the starting loca-
tion to a given destination, can be done by searching
the graph for the minimum cost route.

Various algorithms can be used to find the optimal path such as the well-known Dijk-
stra [36] or A* [37] algorithms, but as the search space grows and covers millions of edge,

10

it becomes impractical to use them [7]. Global planning problem has attracted significant
interest in the recent years, and many innovative solutions have been introduced to find
the optimal route in milliseconds on continent scale road network [38] [39]. For more infor-
mation, we refer the reader to [34] for a comprehensive survey of practical global planning
algorithms.

2.4.2 Behavioral Planners

Behavioral planning facilitates the vehicle to navigate through the global route and to
interact safely with other road users. This is done by selecting the proper driving action or
maneuver considering the rules of the road, signals from infrastructure, and both static and
dynamic obstacles around the vehicle [40]. For example, when the vehicle is approaching
a signed intersection, if the traffic light is red, the behavioral planning layer will command
the vehicle to stop until the traffic light becomes green and the intersection area is safe to
proceed. Therefore, the output of the behavioral planning layer is qualitative actions that
decide the driving action that the vehicle shall execute.

Since most of the scenarios that a vehicle may encounter are repetitive, e.g. all-way
stop intersections, roundabouts, approaching a leading vehicle, etc, these scenarios can be
modeled as a Finitie State Machine (FSM). The transitions between states are governed
based on the perceived environment of the vehicle. For instance, most of the teams in
the DARPA Urban Challenge have used FSM coupled with different heuristics to solve
behavioral planning problem [41]. However, one drawback of using FSM is that it may
suffer from rules explosion as the number of modeled scenarios increases [42]. Consequently,
this approach is only sufficient for limited operational design domains.

Another way to tackle behavioral planning problem is by Reinforcement Learning (RL)
techniques such as Markov Decision Process (MDP). In RL, an agent learns how to interact
properly with a given environment by taking actions and receiving a continuous reward.
The target for the agent is to maximize the reward by learning the optimal policy that
generates the most optimal actions given a certain state of the environment. For example,
the work in [43] uses MDP to formulate the behavioral planning problem. However, as RL
techniques require intensive training, simple simulation environments are being used for
training, which cannot ensure robustness in real-time utilization. Fig. 2.5 shows examples
of behavioral planning systems. For more information on RL we refer the reader to [44].

2.4.3 Local Motion Planners

Given the global route to a given destination and the qualitative decisions obtained from
the behavioral planning, local motion planning is responsible for generating a feasible,
collision-free, and comfortable motion profile to be executed by the control layer.

If the planned motion consists of coupled information of location with respect to time,
e.g. when to be where, the motion profile is called trajectory. However, the majority of
local planners decompose motion planning task into path generation and velocity profile
generation. Local planners can be divided based on how they generate the motion profile
into three major categories: variational methods, graph-search methods, and incremental

11

Envrionment State

Agent

Reward

Action

Environment

Change
Lane

Track
Speed

Follow
leading
vehicle

Decelerate
to stop

Stop

Figure 2.5: Left: An example of FSM. Right: An example of RL.

search methods. Here, we give a brief on each group of methods. For more details on these
categories, we refer the reader to [7].

Variational methods

These methods use calculus of variations techniques to find the optimal motion profile. This
can be done by representing the search space, obstacles, and vehicle kinematic constraints
as an OCP. Although these methods can converge quickly to locally optimal solutions, their
convergence to a feasible path is sensitive to the provided initial guess. For a dedicated
survey on this topic we refer the reader to [45].

Graph-search methods

Graph-search methods start by discretizing the workspace of the vehicle as a graph, similar
to the one shown in Fig. 2.4, where the vertices model a finite set of vehicle states and
the edges represent needed control actions to achieve these states. Next, a graph-search
algorithm can be used to find the minimum cost path. Although this approach is fast,
the discretization of the search space limits the possible maneuvers that the vehicle can
perform. An example of these techniques is PRM [46], and state lattice planning [47].

Incremental search methods

These methods randomly sample the control actions, and incrementally generate reachable
paths (known as tree) for the vehicle to traverse. Once the tree reaches the target goal
region, the search ends and the desired path is then traced and returned to the controller.
This category is extremely fast compared to others. However, the generated paths generally
have poorer quality. Some examples of these techniques are RRT [48], and SST [49].

The resulting motion profile can take generally two forms; parameterized curves or
non-parametric paths. While non-parametric paths such as straight line segments and
waypoints may be suitable for representing the global route, parameterized curves are more

12

preferred for local motion planning. This is because parameterized curves incorporate
vehicle kinematic constraints that ensure path feasibility, and dynamic constraints that
ensure passengers comfort.

A parametric curve can be described as a set of parameterized equations, e.g. two or
more equations parameterized by the same arbitrary variable. In autonomous driving, two
of the most used parametric curves are quintic splines [50] and cubic spirals [51]. This is
because, they can guarantee that the path is continuous and differentiable.

Velocity profile generation

alat

along

Figure 2.6: Tire friction ellipse
and comfort rectangle constraints.

Velocity profile generation is often constrained to ensure
its smoothness, safety and comfort. This is can be done
by minimizing the jerk of the velocity profile, and by con-
straining the longitudinal and lateral accelerations to cope
with maximum tire forces. In addition, tire limits are usu-
ally higher than the acceleration tolerable by passengers.
Therefore, unless in urgent maneuvers, a comfort rectan-
gle that represents comfortable accelerations limit can be
imposed instead [52]. Fig. 2.6 shows tire friction ellipse
and the comfort window limits.

2.4.4 Feedback Control

To drive the vehicle on the desired reference motion profile, a feedback control layer is
needed to interface with the actuators and regulate any tracking error. In general, it
is likely for errors to be generated while execution because of disturbances acting on the
vehicle as well as inaccuracies of the vehicle model used for prediction. Therefore, feedback
control layer generates a control law that should be able to minimize any tracking error.

Some control techniques decouple longitudinal motion control and lateral motion control
from each other to ease the design of a proper control law. For example, the dynamic system
model described in equation (2.3) is often used for lateral control with the assumption of
constant longitudinal speed such as in [53]. Longitudinal control, e.g. cruise control,
usually use linear feedback control laws such as Proportional-Integral-Derivative (PID)
control. Other techniques combine feedforward control with PID to improve tracking
performance. In feedforward control law, system models are used to generate control
actions. Combining both feedforward and feedback control helps in improving the overall
performance [54]. Fig. 2.7 shows a block diagram for such a controller.

On the other hand, lateral control laws are usually nonlinear and can be divided into
two main categories; geometric controllers and dynamic controllers. Geometric controllers
are based on the geometry of the reference path and vehicle kinematic models. However,
they do not consider time evolution of vehicle state, which make their performance limited
to low speed driving. The most two well known geometric controllers are Stanley con-
troller [55] and Pure Pursuit controller [56]. On the other side, dynamic controllers can
work on minimizing current error as well as future predicted error. The most used dynamic

13

Plant
OutputReference Feedback

Controller

Feedforward
Controller

+ +
+

-

Figure 2.7: Combined feedback and feedforward controller block diagram.

controllers are MPC and sliding mode control [57]. One more point to add is that MPC
can handle longitudinal and lateral control at the same time.

2.5 Recent Related Work

In this section we study recent work done related to local motion planning and control.

2.5.1 Obstacle Avoidance using Collision-Free Trajectories

In [15] a combined trajectory planning and tracking system is introduced. The system uses
state lattice algorithm for trajectory planning. State lattice algorithm lies under graph-
search methods group, and relies on discretizing the workspace into a set of target points.
Next, feasible trajectories are generated to each target point, and the optimal trajectory
is selected based on a certain performance index. The selected trajectory is then executed
by a trajectory tracking MPC. This system works in a sequential way, and generates a new
trajectory at every iteration making the tracking part fully dependent on the planning
part. Moreover, to increase the speed of trajectory planning, the available target points
are limited because of the discretization of the search space as mentioned before. Although
the controller design is based on continuously linearizing a vehicle kinematic model similar
to (2.1) to solve for optimal control actions, the average computation time was 0.04 s, which
is relatively high. In addition, the system uses a constant, relatively short, lookahead dis-
tance of 20 m. Finally, as the proposed scheme works in a sequential way, synchronization
with the rest of the pipeline cannot be made as time needed for solving trajectory planning
and tracking problems may vary.

A vehicle obstacle avoidance trajectory planning and tracking method using optimal
control techniques is introduced in [58]. To plan an LC maneuver, a safety constraint
representing a safe longitudinal distance between the ego vehicle and the obstacle is set.
For lateral acceleration profile, a three segment sinusoidal curve is used. The trajectory
planning tries to find fastest LC maneuver that follows the aforementioned profile while
maintaining certain constraints such as maximum lateral velocity and acceleration and
the safe longitudinal distance. However, as the method does an LC maneuver when it
counters an obstacle without returning back to the original lane, a global rerouting may be
needed as the path of the vehicle is changed. In addition, this method does not consider a

14

global route while planning the maneuver. Finally, the proposed method assumes constant
longitudinal speed, which is not necessary in case of LC maneuver.

An NMPC controller is presented in [13] to track a sigmoid reference path. The con-
troller approximates the reference path by tracking the yaw angle and lateral displacement
while adopting tire dynamics. Tire dynamics are captured by using Pacejka tire model [59],
which is a semi-empirical model based on experimental data. The proposed system gen-
erates the reference path needed for LC maneuver based on the desired longitudinal and
lateral distances. Although using a sigmoid function for LC maneuver gives the user the
ability to tune longitudinal and lateral distance needed, the proposed approach does not
incorporate having a global route and relies on updating the desired longitudinal distance.
In addition, it assumes only straight roads and does not consider road orientation. Finally,
although Pacejka formula is extremely useful in modeling tires nonlinear characteristics, its
nonlinearity increases the computational burden of NMPC especially that the ego vehicle
should maintain operation within the linear region of the tire to ensure stability on the
road.

2.5.2 Obstacle Avoidance using Hard and Soft Constraints

A local path planning framework is introduced in [14] that can handle multiple obstacles
using an adaptive MPC. The framework focuses on DLC maneuver by defining hard con-
straints representing any obstacle vehicles that may exist in front of the ego vehicle. While
hard constraints approach forces MPC to avoid obstacles, the maneuver is achievable in
ideal case where the exact location of every obstacle is known. However, when dealing with
uncertainty in real life, MPC may enter the danger region and act in an unexpected way
to enforce the hard constraints. In addition, the proposed framework does not address the
lateral acceleration of DLC maneuver, which may exceed tire maximum lateral accelera-
tion, or passengers comfort rectangle. Finally, the proposed scheme does not mention path
tracking while no obstacles are present. In other words, global route is not incorporated
in the framework design.

In [16], a potential field method is used to represent road area and obstacles for path
planning task. This representation is then used to generate collision-free path using gra-
dient descent. To track the obtained path, a multi-constrained MPC scheme is used to
calculate the front wheel steering angle. While potential fields can help in generating
collision-free trajectories in real-time, the feasibility of the generated path is not guaran-
teed as the optimization problem does not consider vehicles constraints. In addition, to
ease potential fields generation, only straight roads are considered. Lastly, the proposed
method works in a sequential way, which may result in lowering the frequency of updating
the control actions. Similarly, in [8] the same methodology is used for road and obstacle
representation. However, instead of using gradient descent, potential field representation
is added to the objective function, allowing the obtained trajectory to be feasible for the
vehicle. However, these two proposed schemes do not consider the longitudinal motion of
the vehicle and assume constant longitudinal velocity. Moreover, simulation tests did not
cover long trips with different maneuvers and different road shapes.

15

2.5.3 Model Predictive Path-Following Control

A novel generic Model Predictive Path-Following Control (MPFC) approach for nonlinear
systems is proposed in [9]. The approach relies on parametric curves representation for
the desired path. Next, the path parameter that determines path evolution is augmented
as an extra state with system states. In addition, a virtual control input is also added to
the OCP. The virtual control input determines the time dynamics of the path parameter.
This extra virtual control input adds an extra DoF to the controller giving it the chance
to optimally follow a given path while meeting the used system model constraints.

Similarly, in [17], the authors used the same path-following technique for longitudinal
and lateral vehicle control. The proposed nonlinear MPC scheme shows the effectiveness
of the approach in running in real time on an actual vehicle. The authors also introduce a
switchable single track model for optimization. The model consists of a kinematic model
and a dynamic model, and the switching between these two models is done according to the
current vehicle speed. However, as the proposed controller switches between two different
models during operation, the stability of the switching is a major issue. Moreover, the
proposed scheme does not consider obstacle avoidance and LC maneuvers. In addition, it
requires the path to be set before operation.

2.5.4 Case Study: Nonlinear MPC controller on Chevy Bolt

A case study was conducted using an actual autonomous vehicle platform to validate the
efficacy of using NMPC to solve path-following problem. In the case study, several experi-
ments have been performed using a basic go-to-goal, a.k.a point stabilization, NMPC for-
mulation. The used platform is an autonomous Chevy Bolt, belonging to the Watonomous
team, and it is equipped by a NovAtel GNSS sensor to provide highly accurate location
and orientation information of the current state of the vehicle.

The implemented and tested NMPC on Bolt uses the same kinematic model (2.1).
Despite of using parameterized curves to describe the desired path of the vehicle, the
reference state of the vehicle was being updated iteratively. The new reference states are
found using a basic local-planner layer and behavioral-planning layer to allow the vehicle
navigate safely through the environment. In addition, the interface with Bolt’s drive-train
was done using torque commands and not speed. Therefore, longitudinal dynamics of the
vehicle is used, equation (2.4), to find the proper torque input.

Tm =
r

G
(mvalong +mvgCR +

1

2
ρaCdAfv

2) (2.4)

where Tm is the electric motor torque, r is the wheel radius, G is the total gear reduc-
tion ratio, mv is the mass of the vehicle, along is the acceleration of the vehicle, g is the
gravitational acceleration, CR is the rolling resistance, ρa is the air density, Cd is the drag
coefficient, Af is the frontal area of the vehicle, and v is the longitudinal speed of the
vehicle.

The NMPC was running at a frequency of 5 [Hz]. As a result, the vehicle steering
angle and the vehicle torque were changing suddenly in uncomfortable way. Decreasing
the upper and lower bounds on the acceleration and the steering angle rate did not solve

16

the problem completely. Thus, a better approach was implemented using interpolation
to find new control inputs between every two successive iterations. This increased the
smoothness of vehicle motion, and hence, improving passengers experience. As an optimal
control sequence for the whole prediction horizon is obtained at every iteration in NMPC
and only the first obtained control action is applied, the second one along with the first one
are used to interpolate new control actions until the OCP is solved in the next iteration.
Figure 2.8 shows an example of control actions with and without interpolation.

t

u
with interpolation with interpolation

without interpolation

Figure 2.8: An illustration of control actions with and without interpolation.

This NMPC scheme was able to drive Bolt around the test track on an average speed of
18 [km/h]. This speed was set as the maximum possible speed and can be easily increased
if needed. Figure 2.9 shows the obtained path of the vehicle on Waterloo test track and
its satellite view.

(a) Vehicle path measured using NovAtel GNSS
(b) Google Maps Satellite view

Figure 2.9: Experimental results from test track

Although the implemented NMPC showed promising results, the error between the
reference path and the ego vehicle was not satisfactory. In addition, velocity tracking
was not verified for different speeds. These limitations are addressed and improved in the
subsequent chapters.

2.5.5 Static Map and Obstacle Representation

Different mathematical representations have been proposed and used to represent obstacles.
In [60] unions of overlapping spheres technique is discussed to approximate obstacles in
3D. Since the autonomous driving problem can be represented in 2D, this approximation
is relaxed to circles. To model obstacles with relatively high aspect ratio, elliptical shapes

17

can be used [61,62]. However, as these approximations must be conservative; objects must
be covered entirely. Consequently, these approximations may result in false representation
of free space as obstacles.

2.5.6 Conclusion

To conclude, recent related work addresses various solutions for local motion planning
and control. However, most of these solutions focus solely on one particular point. Some
approaches try to address both problems, but as explained above, a more generic approach
is needed. Finally, most of the frameworks presented above focus on certain maneuvers and
do not consider road orientation, long trips, and the preceding layers of the decision-making
system. Consequently, our aim is to introduce a novel methodology that incorporate global
routing and behavioral planning, while simultaneously generating and tracking local motion
profiles.

18

Chapter 3

Simultaneous Local Motion Planning
and Control

3.1 Introduction

In this chapter, we present our proposed simultaneous local motion planning and control
scheme. The main focus of our approach is to enable autonomous driving for long trips
while reducing the burden of computational complexity and ensuring obstacle avoidance
functionality. The main contributions introduced in this chapter are:

• A parallel architecture for local motion planning and control layers.

• Feasibility-guaranteed LC and DLC maneuvers planners.

• An online parameterized curve generator.

We start by planning a route from the current location of the vehicle to a given des-
tination. Next, we execute a route feasibility checker that examines the feasibility of the
obtained path in terms of vehicle kinematic and dynamic constraints and makes any neces-
sary modifications. After that, while driving the vehicle autonomously, we run four modules
continuously; a behavioral planner that makes any necessary qualitative actions; explained
in the next section, an online parameterized curve generator to the target destination, a
feasibility-guaranteed DLC planner, and an MPFC to track the path with minimum error.
Fig. 3.1 shows the architecture of the proposed approach.

3.2 Global Planning and Behavioral Planning

Nowadays with the recent developments in highly detailed maps creation, a.k.a HD maps,
global planners can find routes with significantly high precision to a centimeter level [63].
Therefore, a global route can now describe LC maneuvers with high accuracy [64]. As
a result, given a target destination, a global route can include information about LC
maneuvers, lane markings, road boundaries, intersections, waypoints at the center of the

19

Global
Planning

Route Feasi-
bility checker

DLC

Planner

Behavioral

Planner

MPFC
Parameterized

Curve
Generator

Figure 3.1: Architecture of the proposed approach.

lanes and speed limits. However, although HD maps push the limits of global planning,
the obtained route generally suffers from high discretization of waypoints and may not
fully incorporate vehicle dynamic constraints. Therefore, after obtaining a global route,
our proposed scheme tries to fill the gap by pre-processing the global route offline. More
details are provided in the next section.

As previously mentioned in 2.4.2, behavioral planning layer can take many forms de-
pending on the complexity considered. Since the thesis focus is not on behavioral planning,
we use an FSM behavioral planner to cover most of the possible cases a local planner may
encounter while driving autonomously. Note that different scenarios covered by a behav-
ioral planner may lead to the same qualitative action sent to the local planning layer.
Fig. 3.2 shows the implemented behavioral planning FSM, six states are modeled and they
are:

• Track desired speed: while following a desired path, maintain the reference speed.

• Follow a leading vehicle: while following the reference path, if there is a leading
vehicle, maintain the leading vehicle speed with a safe distance until a safe DLC
maneuver is possible.

• Make a DLC maneuver: to safely avoid a static or dynamic obstacle on the current
lane, deviate temporarily from the reference path and make a DLC then converge
back to the original reference path.

• Decelerate to stop: decelerate the vehicle speed until reaching a complete stop.

• Stop: Keep the vehicle stopped until it is safe to proceed.

• Reroute: If the error between the desired path and the actual location of the vehicle
is large, or no path has been created, find a new route to the target destination.

20

Reroute

Track
Speed

DLC
Maneuver

Follow
Leading
Vehicle

Decelerate
to stop

Stop

Figure 3.2: The adopted FSM behavioral planner.

3.3 Offline Route Feasibility Checker

3.3.1 Waypoints Refinement

Generally, two coordinate systems can be used for waypoint representation, which are S-
L coordinate system and X-Y inertial coordinate system. Here, we adopt X-Y inertial
coordinate system, as it is continuous in the whole space.

Describing global route as waypoints is very useful, but sometimes the obtained way-
points may be spaced unevenly. For a given global route Rglobal that is described by
waypoints WP s and a waypoint linear spacing distance dwp, first we check whether the
waypoints of the global route satisfy the distance dwp. If not, our approach interpolates
new waypoints to ensure even spacing between waypoints. In case of an LC maneuver,
the algorithm calls an LC planner to reroute the maneuver. LC planner is discussed in
more details in the next subsection. Finally, the equally spaced route Rglobal,ref is then
returned. Ensuring equal spacing between waypoints is a crucial step for the curve fit-
ting introduced later in this chapter as it guarantees smoothness of path-following. The
proposed methodology is shown in Alg. 1.

3.3.2 Feasibility-Guaranteed Lane Change Planner

Global planners may or may not incorporate vehicle constraints in planning an LC maneu-
ver. Note that our scope here is for LC maneuvers required to reach a given destination
and not for obstacle avoidance. The latter will be discussed in the next section. Hence, we
adopt the work in [12] and [13] with some modifications to re-plan LC maneuvers. By us-
ing a sigmoid function, a smooth LC can be planned by defining the required longitudinal
and lateral distances. For simplicity, we represent the LC maneuver by parameterizing y
coordinate by x coordinate. To facilitate different road orientations, the equation can then
be rotated by a road angle θroad. The general sigmoid function is given by:

y(x) =
B

1 + e−a(x−c) (3.1)

where B is the lateral displacement needed, c is the maneuver location along the x axis and
a represents how fast an LC maneuver takes place. In [12] and [13], parameter c is used

21

Algorithm 1: Waypoints Spacing Checker

Input: Rglobal, dwp
Output: Rglobal,ref

1 begin
2 Rglobal,ref [0]←− Rglobal[0]
3 oldWP←− 0
4 for WP ∈ Rglobal do
5 if LaneChange did not occur then
6 Distance = getDistance(Rglobal,ref [end], WP)
7 if Distance < dwp OR LaneChange then
8 oldWP←−WP
9 Continue

10 else if Distance == dwp then
11 oldWP←−WP
12 AppendToRglobal,ref (WP)

13 else if Distance > dwp then
14 newWP = Interpolate(Rglobal,ref [end],oldWP, WP)
15 AppendToRglobal,ref (newWP)

16 else
17 Plan a lane change maneuver.

to determine the maneuver’s longitudinal distance and a is used to represent the urgency
of the maneuver. However, this representation assumes starting from the zero point along
the x axis. Therefore, in our approach we rely on a to determine the longitudinal distance
dlong,LC of an LC maneuver. Fig. 3.3 shows the effect of changing a with respect to dlong,LC .
After examining the sigmoid function behavior, dlong,LC and a can be correlated regardless
of the value of B and c by:

dlong,LC =
8

a
(3.2)

The pivotal question is how to determine dlong,LC value given a lateral displacement B.
The key factor is the maximum curvature κmax,v that a vehicle can handle given its dynamic
and kinematic constraints. Mathematically, curvature κ shows the speed of rotation of the
tangent line to a curve at a certain point [65], and it is the reciprocal of the radius of
curvature:

κ =
1

R
(3.3)

It can also be formulated directly by:

κ =

∣∣x′y′′ − y′x′′∣∣[
(x′)2 + (y′)2

] 3
2

(3.4)

22

B

c

13.33 m

20.00 m

26.67 m

a = 0.6a = 0.4a = 0.3

Figure 3.3: Three different sigmoid functions.

and for plane curves where y = f(x), κ is reduced to:

κ =
|y′′|[

1 + (y′)2
] 3

2

(3.5)

Therefore, to find κ of an LC maneuver represented by a sigmoid function, first and second
derivatives of (3.1) are calculated as follows:

y′(x) = −a · e−a(x−c) ·
[−B(

1 + e−a(x−c)
)2

]
and can be simplified to:

y′(x) = a · y(x) ·
[
1− y(x)

B

]
(3.6)

Similarly:

y′′(x) = a ·
[
y′(x) ·

[
1− y(x)

B

]
− y(x) · y

′(x)

B

]
(3.7)

Maximum curvature κmax,LC of an LC maneuver depends on B and a. As shown in table 3.1
and in Fig. 3.4, κmax,LC increases as a or B increase. Note that an increase in a results in
a decrease in dlong,LC .

a

B
1.0 2.0 3.0 4.0

0.05 0.0025 0.005 0.0075 0.01

0.1 0.01 0.02 0.03 0.04

0.15 0.0225 0.045 0.0675 0.09

0.2 0.04 0.08 0.12 0.16

Table 3.1: A sample of maximum curvature values for different values of a and B.

Mathematical derivation of a generic mathematical formula that links B, a and κmax,LC
is not feasible because of the complexity of substituting equations (3.6) and (3.7) in (3.5).

23

Figure 3.4: Effect of B and a on κmax,LC .

To solve this issue, we propose two methods. The first one is simple and more straight
forward, it sets the B value to a typical lateral displacement Blat,LC needed to perform a
complete LC maneuver. Then, using the numerically generated data, we fit an equation
that links a and κmax,LC such that a = f(κmax,LC). Therefore, for a given κmax,v, value of
a that reflects dlong,LC , can be calculated easily and directly.

The second method uses the numerically generated data to fit a two dimensional func-
tion that maps the values of a and B to the values of κmax,LC , such that κmax,LC = f(a,B).
After that, for a given B and κmax,LC , the value of a can then be numerically calculated
by finding the roots of the resulting equation. Fig. 3.5 shows the obtained curve for both
methods.

In the results shown in Fig. 3.5, Blat,LC = 3.6 m for the first method and the equation
obtained for a is given by:

a(κ) = 8.616× 106κ5 − 1.23e× 106κ4 + 6.587× 104κ3 − 1677κ2 + 26.6κ+ 0.02233 (3.8)

where κ = κmax,LC for simplicity. For the second method, the obtained equation is:

κ(a,B) = −0.0003849 + 0.01688a+ 6.824× 10−5B − 0.1094a2 − 0.01148aB

+ 8.455× 10−5B2 + 0.1768a3 + 0.1703a2B + 0.001221aB2 − 1.808× 10−5B3

− 0.1052a3B − 0.006476a2B2 − 8.759× 10−6aB3 + 8.83× 10−7B4

where a ∈ [0, 0.4] and B ∈ [0, 10]. By substituting given values of B and κmax,LC , the
previous equation can be reduced to:

γ3a
3 + γ2a

2 + γ1a+ γ0 = 0 (3.9)

where γ0, . . . , γ3 are constants and a can be found by solving for the roots of (3.9) and
taking the root λ such that λ ∈ [0, 0.4].

24

0 0.01 0.02 0.03 0.04 0.05 0.06

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

B
a

κ
m
a
x
,L
C

Figure 3.5: Left: first method, values of a and κmax,LC for B = Blat,LC and the fitted equation. Right:
second method, values of κmax,LC for different values of a and B and the fitted two dimensional equation.

Value of κmax,LC should be less than or be equal to κmax,v at any given instance.
Furthermore, κmax,v must indicate dynamic and kinematic limits of the ego vehicle. We
assume that the maximum kinematically admissible curvature for a vehicle is κmax,kin.
The value of κmax,kin depends on the minimum turning radius Rmin of the vehicle. The
recommended values of Rmin for passenger vehicles lies in [10.4 − 10.7] [m] [66]. The
maximum dynamically admissible curvature for a vehicle κmax,dyn depends on vehicle lateral
acceleration alat and vehicle speed v at a certain instance such that:

κmax,dyn =
alat
v2

(3.10)

Since this step is done offline, speed limit of the road along with maximum comfortable
lateral acceleration are used to find κmax,dyn. Finally, κmax,v is set to be the minimum of
κmax,kin and κmax,dyn such that:

κmax,v = min{κmax,kin, κmax,dyn} (3.11)

Although both methods introduced above use over-fitted equations, the expected values
of a and B in real cases should not be out of the specified range. Thus, by using the first or
second method, the obtained sigmoid equation that describes an LC maneuver is dynam-
ically and kinematically feasible for the ego vehicle to follow. The two proposed previous
methods are summarized in Alg. 2 and Alg. 3 where XLC and YLC are the coordinates of
LC maneuver in the global frame, θroad is the road orientation and vlim is the speed limit.

25

Algorithm 2: First method

Input: XLC , YLC , θroad, vlim, κmax,kin,
Blat,LC

Output: LCwp

1 begin
2 κmax,dyn = alat

v2lim
.

3 κmax,v = min{κmax,kin, κmax,dyn}.
4 aLC = a(κmax,v) using (3.8)
5 B = Blat,LC .
6 Generate y(x) using equation (3.1).
7 Rotate y(x) by θroad.
8 Translate y(x) by XLC and YLC .
9 Generate LCwp.

Algorithm 3: Second method

Input: XLC , YLC , θroad, vlim, κmax,kin,
B

Output: LCwp

1 begin
2 κmax,dyn = alat

v2lim
.

3 κmax,v = min{κmax,kin, κmax,dyn}.
4 Find γ0, . . . , γ3 using κmax,v and B.
5 Solve equation (3.9) for aLC .
6 Generate y(x) using equation (3.1).
7 Rotate y(x) by θroad.
8 Translate y(x) by XLC and YLC .
9 Generate LCwp.

3.3.3 Curvature Calculation and Velocity Profile Refinement

Curvature of the route directly affects the speed of a vehicle as explained in equation (3.10).
However, since the reference global route Rglobal,ref is represented by equally spaced way-
points and not a mathematical equation, curvature formula given in equation (3.4) cannot
be used.

Instead, we introduce Menger curvature. Menger curvature of three points in multi-
dimensional euclidean space corresponds to the reciprocal of a radius of a circle that passes
through these three points [67]. Therefore, curvature of the route can be calculated using
Menger curvature iteratively. For three points in the Euclidean space P1, P2 and P3,
Menger curvature is given by:

κ =
4A

|dist(P1, P2)| · |dist(P2, P3)| · |dist(P3, P1)| (3.12)

where A is the area of triangle formed by P1, P2 and P3, and dist(., .) is the Euclidean
distance between two points. Since waypoints spacing dwp is relatively small, deviation in
Z direction (height) of waypoints can be neglected. Therefore, we assume that waypoints
lie on the X-Y plane. Accordingly, the area A can be found iteratively for three points
using the following equation:

A =

∣∣∣∣P1,x(P2,y − P3,y) + P2,x(P3,y − P1,y) + P3,x(P1,y − P2,y)

2

∣∣∣∣ (3.13)

where P1,x and P1,y are X-Y components of P1 and so on. Thus, curvature information of
Rglobal,ref can now be calculated using equations (3.12) and (3.13).

To generate a velocity profile for Rglobal,ref we rely on speed limit information for each
waypoint on the route. However, speed limits are set based on road regulations and do
not usually consider sharp turns. For example, in an urban driving scenario, speed limit
usually lies within 50 km/h - 60 km/h. However, to make a sharp turn at an intersection,
the vehicle is not expected to drive on the speed limit. Therefore, after generating the

26

velocity profile based on speed limit information, we refine it based on the route curvature
information. This can be done by reformulating equation (3.10) as follows:

v =

√
alat
κroute

(3.14)

where alat is the maximum comfortable lateral acceleration and κroute is the calculated
route curvature using equations (3.12) and (3.13). We will use route curvature information
again for curve fitting, which will be discussed in the next section.

3.4 Online Parameterized Curves Generator

In this section we discuss our methodology to follow the refined route Rglobal,ref from the
starting point to a given destination.

3.4.1 Vehicle Positioning Relative to Global Route and Dynamic
Lookahead Distance

As discussed in the previous section, Rglobal,ref consists of a series of equally spaced way-
points. This representation raises a problem of determining the nearest waypoint on the
route to the actual location of the vehicle. One way to solve this issue is by searching
the whole route for the nearest waypoint to the actual location. However, as it is being
performed online while driving autonomously, it may be too computationally expensive in
case of long routes. Instead, we propose an efficient localization algorithm that can find
the nearest waypoint efficiently.

||||||||||||||

[

]

||||||||||||||

: Euclidean distance

: Global route

: Equivalent distance

: Current location

: Previous location

Figure 3.6: Vehicle positioning
relative to the global route.

The algorithm starts by finding the actual location of
the ego vehicle. This can be done using different sen-
sors such as GNSS and IMUs. Next we find the euclidean
distance between the current location and the previous lo-
cation recorded for the vehicle. After that, this euclidean
distance is projected on the global route Rglobal,ref . Note
that the actual location of the ego vehicle is ahead of the
projected distance. Therefore, this projected distance is
used to generate a search window that covers a distance at
within which the vehicle lies. Then, the euclidean distance
between every waypoint in the search space and the actual
location is calculated, and the waypoint with the small-
est euclidean distance is used as the actual location of the
ego vehicle. An example is given in Fig. 3.6 where the red
brackets are the search window. Note that although the
example shows that the current location of the vehicle is
perfectly on the route Rglobal,ref , the algorithm can handle
vehicle deviation from the route as well.

Here, dynamic lookahead distance approach is intro-
duced. Generally, lookahead distance term refers to a

27

point ahead of the vehicle by a certain distance. Usually short lookahead distances are
being used to locally plan the vehicle motion. However, in our approach we decouple the
obstacle avoidance and the local motion planning into two separate problems. Given the
global route Rglobal,ref , and the nearest waypoint to the actual location of the vehicle, a
subset of the waypoints is used to generate a parametric curve for the vehicle to follow. As
road shapes vary significantly based on the road network design, a fixed lookahead distance
may result in a poor curve generation, or it may cover relatively short distance. Instead,
our approach uses road curvature information to dynamically change the lookahead dis-
tance, so that the generated parametric curve covers the longest possible distance while
maintaining minimum error to the route Rglobal,ref . For example, if the road is straight,
retrieved curvature value will be zero, and thus, maximum lookahead distance is set. On
the other hand, for relatively big curvature values, a smaller lookahead distance is used.
Here, the dynamic lookahead distance dLA,dyn is set such that dLA,dyn ∈ [12.5, 100] m. The
proposed algorithm for vehicle position, dynamic lookahead distance and parametric curve
generation is summarized in Alg. 4.

Algorithm 4: Generate a new parametric curve P
Input: Search Length, dwp, Rglobal,ref

Output: P
1 begin
2 Search Index = 0
3 while did not Arrive do
4 Location = Get ego vehicle location
5 Euclidean Distance = getDistance(Location, Rglobal,ref [Search Index])
6 Search Index = Search Index + Euclidean Distance/dwp
7 Last Search Index = Search Index + Search Length
8 for n in range(Search Index, Last Search Index) do
9 SearchArray.append(getDistance(Location, WP[n]))

10 FitIndStart = SearchIndex + SearchArray.index(min{SearchArray})
11 dLA,dyn = getLookAhead(getCurvatureInfo)

12 FitIndEnd = FitIndStart +
dLA,dyn

dwp

13 P = GenerateSpline(FitIndStart, FitIndEnd)

3.4.2 Curve Fitting Problem Formulation

In this subsection, we present our proposed approach for the curve fitting optimization
problem. As we decouple the obstacle avoidance and the local motion planning, the purpose
here is to generate a parametric curve using a subset ofRglobal,ref regardless of any obstacles.
Obstacle avoidance is discussed in the next subsection of this chapter.

Generally, in a curve fitting problem, the purpose is to construct a mathematical equa-
tion that provides the best fit to a series of data. One way to perform curve fitting is by
using Least Squares (LS), at which an optimization problem is formulated to obtain the
optimal curve parameters. A general optimization problem has the following formulation:

28

min
u

Ψ(u) (3.15a)

s.t. g1(u) ≤ 0, (3.15b)

g2(u) = 0. (3.15c)

where Ψ is the optimization criterion, u is a vector of optimization variables, g1(u) is a
vector of inequality constraints and g2(u) is a vector of equality constraints. For an LS
curve fitting problem, let us denote the series of points that we need to fit by Λ such that
Λ = λ1, λ2, . . . , λn and λi = [xi, yi]

>, and the equation that we are trying to fit to these
points by f(ξ). Therefore, the optimization criterion Ψ is the summation of the squared
error between Λ and f(ξ) such that:

Ψ =
n∑
i=1

∣∣∣∣λi − f(ξi)
∣∣∣∣2, (3.16)

where n is the number of points, and the optimization variables u are the parameters of
the desirable equation f(ξ). g1(u) and g2(u) constraints are not necessarily needed unless
the output equation must meet certain constraints. For example, if a certain point must
lie exactly on the output equation, it can be enforced as equality constraints.

To generate a parametric curve P parameterized by a path variable ξ for a series of
waypoints, we use two parametric equations, one for X direction and one for Y direction
as follows:

P(ξ) =

[
x̄(ξ)

ȳ(ξ)

]
, (3.17)

and for each parametric equation, we use a 5th order polynomial (quintic spline):[
x̄(ξ)

ȳ(ξ)

]
=

[
α5ξ

5 + α4ξ
4 + α3ξ

3 + α2ξ
2 + α1ξ + α0

β5ξ
5 + β4ξ

4 + β3ξ
3 + β2ξ

2 + β1ξ + β0

]
. (3.18)

In addition, the path variable ξ is set such that ξi ∈ [0, 1] and ∆ξ = 1
n
. Since ξ values are

equally spaced, global route waypoints must be equally spaced as well to ensure unbiased
fitting and smooth behavior as mentioned earlier. Therefore, the curve fitting optimization
problem becomes:

min
u

Ψ(u) =
n∑
i=1

∣∣∣∣λi − f(ξi)
∣∣∣∣2 (3.19a)

and the optimization variables:

u =
[
α0 α1 α2 α3 α4 α5 β0 β1 β2 β3 β4 β5

]>
(3.20)

To solve the curve fitting optimization problem, we use an open-source numerical opti-
mization tool called CasADi [68], which uses the interior point method (IPOPT) [69]. One
point to note is that the number of waypoint n is fixed regardless of the lookahead distance
used. Therefore, the computation time needed to generate the parametric curve P is al-
most constant and can be synchronized. Note that at time t = k, the parametric curve Pk
must overlap with the previous parametric curve Pk−1 to ensure smoothness and continuity
of the reference path. Fig. 3.7 illustrates an example of two overlapping curves.

29

Pk
Pk−1

Ego vehicle at k − 1

Ego vehicle at k

Pk−1 Overlapping curves

Pk

Figure 3.7: Overlapping in parametric curves generation.

3.4.3 Feasibility-Guaranteed Double Lane Change Planner

In literature, different methods have been proposed to achieve obstacle avoidance as out-
lined in 2. To the best of the author’s knowledge, DLC maneuver has not been addressed
using bell-shaped exponential functions. We propose using a bell-shaped function as a
collision-free trajectory for the vehicle to perform a DLC maneuver safely and smoothly.
Similar to our approach in 3.3.2, for simplicity, we study the behavior of a bell-shaped
function in X-Y plane given by:

y(x) =
2H

1 + e(mx)2
, (3.21)

where H is the maximum lateral shift needed to perform a DLC maneuver, or generally,
obstacle avoidance, and m is the sharpness of the maneuver. Note that m also determines
the longitudinal distance dlong,DLC needed to perform a DLC maneuver. After examining
the behavior of equation (3.21), dlong,DLC andm can be correlated by the following equation:

dlong,DLC =
4

m
. (3.22)

Fig. 3.8 shows three different plots for different values of m and their corresponding
dlong,DLC . Selection of dlong,DLC depends on the maximum curvature the vehicle can handle

H

16.0 m

20.0 m

25.0 m

m = 0.25m = 0.20m = 0.16

Figure 3.8: Three different bell-shaped functions.

30

0 0.05 0.1 0.15

0

0.05

0.1

0.15

0.2

0.25

H
m

κ
m
a
x
,D
L
C

Figure 3.9: Left: first method, values of m and κmax,DLC for H = Hlat,DLC and the fitted equation.
Right: second method, values of κmax,DLC for different values of m and H and the fitted two

dimensional equation.

given its speed and maximum comfortable lateral acceleration. To derive an expression
for the maximum curvature of DLC maneuver κmax,DLC , we base our derivation on equa-
tion (3.5). Therefore, the first and second derivative of equation (3.21) should be calculated
as follows:

y′(x) =
−2H(

1 + e(mx)2
)2 · 2mx ·m · e(mx)2 , (3.23)

and can be simplified to:

y′(x) = −2m2x · y(x) ·
[
1− y(x)

2H

]
. (3.24)

Similarly:

y′′(x) = 2m2 ·
[
x · y(x) · y

′(x)

2H
− x · y′(x) ·

[
1− y(x)

2H

]
− y(x) ·

[
1− y(x)

2H

]]
. (3.25)

Similar to our approach in 3.3.2, we numerically generate values for maximum curvature
κmax,DLC . In addition, as finding a mathematical relation between κmax,DLC and H and
m is unfeasible, we use the same methods introduced before in 3.3.2. First method,
which is suitable for a typical DLC maneuver, fixes the value of H to a typical lane width
denoted by Hlat,DLC . Then, an equation of m in terms of κmax,DLC is generated such that
m = f(κmax,DLC).

The second method fits a two dimensional function using the numerically generated
data such that the obtained function maps m and H values to κmax,DLC values so that
κmax,DLC = f(m,H), where H ∈ [0, 10] and m ∈ [0, 0.2]. Finally, for a given H and
κmax,DLC , m value can be numerically calculated by finding the roots of the resulting
equation. Fig. 3.9 shows the obtained curve for both methods. For Hlat,DLC = 3.6, the
resulting equation becomes:

m(κ) = 2.598× 104κ5 − 1.042× 104κ4 + 1565κ3 − 111.9κ2 + 4.928κ+ 0.01156 (3.26)

31

where κ = κmax,DLC for simplicity. For the second method, the obtained equation is:

κ(m,H) = m2H

which can be reduced for a value of H and κmax,DLC to:

γ1m
2 + γ0 = 0 (3.27)

where γ0 and γ1 are constants and m can be found by solving for the roots of (3.27) and
taking the root λ such that λ ∈ [0, 0.2].

Value of κmax,DLC should be less than or equal to κmax,v at any given instance. We rely
on equation (3.11) to set the value of κmax,DLC . Since in an obstacle avoidance scenario,
the obstacle itself might be dynamic and moving. Therefore, the variable x denoted in
equation (3.21) represents the relative distance between the obstacle and the ego vehicle
in longitudinal direction.

As mentioned before, we decouple local motion planning and obstacle avoidance into
two separate problems. Since in a generic obstacle avoidance scheme the lateral distance H
is not necessarily equal to the lane width, the optimal H value may need to be found using
a search algorithm. However, our approach reduces the search space into one dimensional
search. That is to say, optimal value of H should be the safest lateral distance to the
obstacle and road boundaries regardless of the obstacle relative longitudinal distance to
the ego vehicle, and H sign determines the direction of the DLC maneuver. Fig. 3.10 shows
an example of obstacle blocking a small part of the left lane. In such a case, the optimal
H value will be greater than typical lane width. Thus, we reformulate the equation (3.21)
to:

δ(ρ) =
2H

1 + e(mρ)2
, (3.28)

where δ is the lateral shift in vehicle coordinate frame and ρ is the relative longitudinal
distance between ego vehicle and the obstacle in vehicle coordinate frame. Note that there
is no longitudinal shift in the vehicle coordinate frame. To integrate our collision avoidance

Optimal lateral shift

Figure 3.10: An illustration of finding the optimal H value. Note that the optimal H is not at the
center of the left lane.

methodology with the obtained parametric curve P , the resulting bell-shaped equation is
simply added to P since it is already in the vehicle coordinate frame. Thus, the reference
collision-free path Pclear can be obtained by incorporating road orientation angle θroad as
follows:

Pclear(ξ,H, ρ) =

[
x̄(ξ)

ȳ(ξ)

]
+ δ(ρ,H)

[
cos(θroad)

− sin(θroad)

]
(3.29)

32

This proposed methodology can handle much faster response for collision-free paths gen-
eration as it temporarily shifts the reference path to avoid obstacles while allowing the
ego vehicle to smoothly converge back to the original route. In addition, shifting the path
P temporarily does not affect the vehicle positioning relative to the global route, as the
the algorithm will find the corresponding waypoint on the path and use it as the actual
location of the vehicle to generate the next.

3.5 Model Predictive Path-Following Control

3.5.1 MPFC Scheme

NMPC, or MPC in general, has been attracting attention in recent years to tackle the
control aspect of autonomous driving because of its promising performance in dealing with
nonlinear systems [16]. As stated in 2.2, the key point of NMPC is formalizing an OCP
and solving it iteratively to obtain the optimal control actions. In general, this formulation
depends on the nature of the application and the desired performance of the controller.
Broadly speaking, two of the main problems in the control of robots are setpoint stabi-
lization and trajectory tracking problems. Setpoint stabilization refers to controlling the
motion of a robot to reach a final target state regardless of the traversed path. In trajectory
tracking, a time varying reference is being used to control the speed and traversed path of
a robot [70]. However, autonomous driving, and some other applications, require higher
priority for error minimization between a given reference path and the ego vehicle, rather
than maintaining a strict reference speed. Therefore, vehicle speed might be modified to
achieve better path-following accuracy [70].

For this type of applications, the objective is to design a controller which decides on
the optimal speed to follow a given path in order to minimize the deviation between the
reference path and the actual location of the vehicle. The path-following problem in this
case is referred to as Output Path Following with Velocity Assignment, where output space
refers to the output of the system y in terms of system states x.

For two dimensional output space, some assumptions are made to define the path-
following problem:

• The reference path has no pre-defined timing information.

• The reference path, denoted by S, is a parameterized curve.

• The reference path S is continuously differentiable.

S = {G ∈ R3 | ξ ∈ [ξ0, ξf] � G = s(ξ)}. (3.30)

where G contains the information of a point coordinates in the global X-Y frame and its
orientation, ξ is the path parameter, ξ0 and ξf are the upper and lower bounds of ξ, and
s : R → R3. Note that ξ is time dependent, but its dynamics is not specified. Specifying
ξ time evolution will result in a trajectory tracking problem.

To solve the Output Path Following with Velocity Assignment problem, the controller
should achieve the following conditions:

33

1. Path convergence: The system output y, which is function of the system states,
converges to the reference path S:

lim
t→∞

∣∣∣∣∣∣y(x)− s
(
ξ(t)

)∣∣∣∣∣∣ = 0.

2. Velocity convergence: The path velocity ξ̇(t) converges to a predefined ξ̇ref (t) such
that:

lim
t→∞

∣∣∣∣∣∣ξ̇(t)− ξ̇ref (t)
∣∣∣∣∣∣ = 0.

3. Constraints satisfaction: Constraints on system states and control actions must be
satisfied for t ∈ [t0,∞).

One more point, defining path velocity ξ̇ref (t) is not equivalent to trajectory tracking
formulation. That is because defining ξ̇ref (t) does not enforce a timed reference state on
the controller.

The proposed method is named Model Predictive Path-Following Control (MPFC) [70,
71], and it treats the path parameter ξ as an extra virtual state of the system. This virtual
state ξ(t) behavior is governed by an Ordinary Differential Equation (ODE), referred to as
timing law, that is based on an additional virtual control action ϑ such that ϑ ∈ R. The
timing law is often chosen as an integrator chain. Here, we use a single integrator as a
timing law such that:

ξ̇(t) = ϑ(t) (3.31)

Note that ϑ(t) ∈ [0,∞), which means that the path parameter ξ(t) is monotonically
increasing towards the reference path parameter ξref since ξ(t) is the integration of ϑ(t).
The reference path parameter ξref is set to be equal to ξf , which marks the end of the
path.

The work in [17] shows the effectiveness of MPFC [70] to solve path-following problem
for autonomous vehicles. However, it cannot deal with long routes, lane changes or obstacle
avoidance since the path is required to defined a priori. Therefore, by proposing our online
parametric curve generator and DLC planner, we extend MPFC [70] to solve path-following
problem for any desired route length while safely avoiding dynamic obstacles.

3.5.2 Vehicle Model and OCP Formulation and Discretization

The vehicle model used in our MPFC is the vehicle kinematic model (2.1). We re-state
the model here again for the reader’s convenience:

ẋ =

ẋẏ
θ̇

 = f
(
x(t),u(t)

)
=

v cos(θ + βs)

v sin(θ + βs)
v cos(βs) tan(θ)

L

 ,x =

xy
θ

 ,u =

[
v

δf

]
(3.32)

where:

βs = arctan
(lr tan δf

L

)
(3.33)

34

where x and y are the position of the vehicle in X-Y global frame, θ is the vehicle orientation
in the global frame, v is the velocity of the ego vehicle at its C.G., β is the side-slip angle
of the vehicle, u is the control actions of the system, lr is the distance between the rear
axle and the C.G., L is the wheel base length of the vehicle, and δf is the steering angle.
This model is used to control the ego vehicle to follow the collision-free path Pclear. Recall
that Pclear is parameterized by ξ, H and ρ. Since the lateral shift δ(ρ,H) is temporary, we
focus on following the path P(ξ) and integrate δ(ρ,H) later.

Now we augment the system (3.32) and (3.31) together to get:

ż =

[
ẋ

ξ̇

]
=

[
f
(
x(t),u(t)

)
ϑ

]
,w =

[
u

ϑ

]
. (3.34)

The reference path S in our case is the parameterized curve P and its path parameter
is ξ. The reference state vector xref for a certain ξ can be described as:

xref = p(ξ) =

xrefyref
θref

 (3.35)

where xref and yref are equal to x̄(ξ) and ȳ(ξ) defined in equation (3.18), and θref is given
by:

θref = arctan

(∂yref
∂ξ

∂xref
∂ξ

)
. (3.36)

One point to note is that the second requirement 2 of the controller is replaced with a
vehicle reference speed. This reference speed implicitly assigns a reference path velocity.

To formulate the constrained NMPC problem, first we introduce the cost functional J
to be minimized in continuous time:

J
(
x, ξ,u, ϑ

)
=

∫ t0+TH

t0

[∣∣∣∣xref − x
∣∣∣∣2
Q

+
∣∣∣∣u̇∣∣∣∣2

R
+
∣∣∣∣vref − v∣∣∣∣2ι +

∣∣∣∣ξref − ξ∣∣∣∣2µ]dt. (3.37)

where Q ∈ R3×3, R ∈ R2×2, ι ∈ R and µ ∈ R are diagonal weighting matrices, t0 is the
initial time, and TH is the prediction horizon. Therefore the constrained NMPC problem
formulation is:

min
u(t),ϑ(t)

J
(
x(t), ξ(t),u(t), ϑ(t)

)
(3.38a)

s.t. ẋ(t) = f
(
x(t),u(t)

)
, ∀t ∈ [t0, t0 + TH] (3.38b)

ξ̇(t) = ϑ(t), ∀t ∈ [t0, t0 + TH] (3.38c)

u̇(t)min ≤ u̇(t) ≤ u̇(t)max, ∀t ∈ [t0, t0 + TH] (3.38d)

umin(t) ≤ u(t) ≤ umax(t), ∀t ∈ [t0, t0 + TH] (3.38e)

ξ0(t) ≤ ξ(t) ≤ ξref (t), ∀t ∈ [t0, t0 + TH] (3.38f)

0 ≤ ϑ(t) <∞, ∀t ∈ [t0, t0 + TH] (3.38g)

where u̇(t)min and u̇(t)max are the upper and lower limits on the vehicle acceleration and
the steering angle rate, umin and umax are the upper and lower limits on the vehicle speed

35

and the steering angle, ξ0(t) represents the starting point of the path and ξ0(t) = 0 in our
case, and ξref (t) represents the end point of the path and is set such that ξ(t)ref = 1.

In order to solve the OCP (3.38) numerically, we discretize it using Runge-Kutta 4th or-
der method (RK4). The discretized OCP is then reformulated as Nonlinear Programming
(NLP) problem by multiple shooting technique using an open-source numerical optimiza-
tion tool called CasADi [68]. Finally, the NLP problem is solved using CasADi and the
interior point optimizer (IPOPT) [69].

The aforementioned NMPC controller can accurately follow the parametric curve P
with minimal deviation and while tracking the reference speed as close as possible. How-
ever, although this formulation shows promising results in path-following and has high
potential to improve the current existing control of autonomous vehicles [17], it is not
suitable for long routes, and does not handle obstacle avoidance problem.

Therefore, as stated before, a global route Rglobal,ref cannot be described as a one
parametric curve. Thus, by continuously generating new parametric curves that start
from the current location of the vehicle and covers the global route Rglobal,ref for a certain
dynamic lookahead distance dLA,dyn, the MPFC scheme can be extended for much longer
trips. Note that at each time the parametric curve P is updated, path parameter ξ needs
to be reset such that ξ = ξreset, and the ξreset value depends on the vehicle desired speed.
Lastly, the method proposed in section 3.4.3 is used to solve obstacle avoidance problem by
adding the lateral shift δ(ρ,H) directly to xref to form Pclear. Note that ρ and H are not
included in OCP (3.38) as they are externally set based on the interaction with obstacles.

Finally, several simulations have been conducted and discussed in 6.2 to validate all of
the aforementioned proposed techniques with comparisons to other existing schemes in the
literature.

36

Chapter 4

Path-following and Adjustable
Driving Behavior of Autonomous
Vehicles using Dual-Objective
Nonlinear MPC 1

4.1 Introduction

Driving behavior is a main concern in automotive industry and road traffic safety because
of its effects on the environment in terms of energy consumption as well as the safety of
other road users [10,11]. Particularly, autonomous vehicles are expected to achieve better
driving behavior compared to human driving to ensure both the safety of other road users,
and the comfort of the vehicle passengers [16]. Moreover, this driving behavior should be
adjusted according to the preference of the vehicle passengers.

Here, we propose a control methodology that changes the driving behavior of au-
tonomous vehicles using a dual-objective NMPC. The controller changes the driving behav-
ior based on the passengers preference, energy saving mode or sport mode, while following
a given reference path. This is accomplished by changing the weights of each term in
the dual-objective cost function used in NMPC. A kinematic bicycle model is used as the
prediction model of the NMPC controller based on the comparison made in 2.3.3.

A real-time simulation model adapting the kinematic bicycle model is developed on
Gazebo dynamic simulator [19]. Moreover, the proposed controller implementation is linked
to the simulator using the Robot Operating System (ROS) [73]. The proposed controller
performance is tested and validated with different road shapes.

1Some of the content of this chapter was published as Mohamed A. Daoud, Mostafa Osman, Mohamed
W. Mehrez, and William W. Melek, ”Path-following and Adjustable Driving Behavior of Autonomous
Vehicles using Dual-Objective Nonlinear MPC”, in IEEE Int. Conf. of Vehicular Electronics and Safety
(ICVES), 2019 [72].

37

4.2 Bicycle and Energy Consumption Models

In this section, first we present the kinematic bicycle model used for the motion prediction
of the vehicle. Next, we describe the adopted vehicle energy consumption model.

4.2.1 Bicycle Model

The kinematic bicycle model used here is derived by expressing wheels’ rolling and sliding
constraints. By combining the motion of each wheel under these constraints, the bicycle
model is obtained [30]. This model expresses vehicle’s motion in terms of the front wheel
angular speed and its steering angle, which can be used to compute rear wheel speed.
Fig. 4.1 shows a schematic diagram of the bicycle model, where l is the vehicle’s wheel
base, θ is the heading angle relative to the inertial frame, C.G. is the center of gravity of
the vehicle, ICR is the instantaneous center of rotation, and δf is the front wheel steering
angle.

XI

YI

l/2
l/2

δf

δr = 0

C.G.
θ

ICR

XV

YV

Figure 4.1: Schematic diagram of the bicycle model, where I is the inertial frame and V is the vehicle
local frame.

The discrete-time bicycle kinematic model can be written as follows:

xkyk
θk

︸ ︷︷ ︸

xk

= fd(xk−1,uk) = xk−1 + ts rφ̇f

cos δf cos θ − sin δf
2

sin θ

cos δf sin θ +
sin δf

2
cos θ

sin δf
l

︸ ︷︷ ︸

fc(x(t),u(t))

,

where fc is the continuous time model and fd is its Euler discretization, k is the current

time step, x =
[
x y θ

]> ∈ R3 is the state vector of the vehicle which is composed of
the planar Cartesian coordinates of the center of the vehicle [x, y] as well as the heading
angle θ, and ts ∈ R>0 is the sampling time. For the completeness of the mathematical
formulation, the relation between rear wheel angular speed and front wheel angular speed
is given by:

φ̇r = φ̇f cos(δf).

38

4.2.2 Energy Consumption Model

In order to model the energy consumption in an electric ground vehicle, motor torque
expressed in equation (4.1) is used.

Tm =
r

G
(mvalong +mvgCR +

1

2
ρaCdAfv

2) (4.1)

where Tm is the electric motor torque, r is the wheel radius, G is the total reduction ratio,
mv is the vehicle mass, along is the vehicle longitudinal acceleration, g is the gravitational
acceleration, CR is the rolling resistance, ρa is the air density, Cd is the drag coefficient,
Af is the frontal area of the vehicle, and v is the vehicle longitudinal speed. The motor
torque equation (4.1) considers only motion in the longitudinal direction of the vehicle
without taking into consideration the lateral forces. This is because the longitudinal motion
consumes the major amount of energy in a ground vehicle.

Using equation (4.1), the total input energy Ein to the vehicle can be calculated through
integrating the input power over time as shown below.

Ein =

∫ tf

0

Tm ω

η
dt, (4.2)

where η ∈ R>0 represents the electric motor efficiency, ω is the angular speed of the electric
motor in rad/sec, and tf is the final time of the vehicles operation.

4.3 Proposed Dual-Objective NMPC

In this section, we start by explaining the path-following control problem and our proposed
solution approach. Next, we formulate the OCP of the nonlinear model predictive control
(NMPC) scheme. Finally, we introduce the proposed dual-objective cost function utilized
to change the behavior of the controller as discussed in Section 4.1.

4.3.1 Path-following Control Problem

We are considering a path-following control using both vehicle’s speed and steering as
control inputs. Let us define the vehicle current state by xk, and the final target state by
xf , where xk,xf ∈ [xmin,xmax], and xmin, xmax are the upper and lower limits of state
x, respectively. Moreover, we assume that xk and xf are points on a geometric path S.
Therefore, the path-following problem now requires that the vehicle state xk moves along
the path S towards the path end point xf , while satisfying the state and control constraints.

Since the driving behavior changes based on the desired mode, S is not parameterized
in time as the path timing itself is not known a priori [74]. Consequently, we parameterize
S in a scalar path variable ε, i.e. S = s(ε). Now, the proposed path-following problem is
summarized in Alg. 5. In this algorithm, at each iteration, we calculate the actual path
variable εact based on the current state xk and the parametric representation of S. Then,
we add an increment ψ ∈ R to εact to obtain the reference path variable εref . Finally, εref

39

is used to find the next reference state xref . Here, we use κstep as a path evolution step-size
parameter that determines the smoothness of the transition along the path S. Fig. 4.2
shows a schematic of the proposed path-following methodology. Note that the proposed
path-following approach in Fig. 4.2 is simpler than the method used in 3.5.

Algorithm 5: Path-following

1 foreach time step k do
2 Error = norm(xf − xk)
3 Allowable Error = 0.3
4 if Error > Allowable Error

then
5 ψ = κstep − κstep

1 + Error

6 εact = s−1(xk)
7 εref = εact + ψ
8 xref = s(εref)

9 else
10 End of path reached
11 end

12 end

YI

Path S

xref
xk

×xf

XI

Figure 4.2: A schematic of the path-following
problem.

Notice that the formulation of the increment ψ allows it to automatically decrease as
the error between the current state and target state becomes smaller as shown below, i.e.
lim

xk→xf

ψ = 0.

4.3.2 NMPC Formulation

The constrained nonlinear model predictive control (NMPC) problem can be formulated
as shown in equation (4.3). As can be seen in the equation, the problem is to minimize
a cost function (introduced below) subject to the system kinematic model as well as the
bounded constraints on the states, the controls, and the change in controls.

min
U

J(U) (4.3a)

s.t. xk+1 = fd(xk−1,uk), ∀k ∈ [k, k +N] (4.3b)

∆Umin ≤ ∆U ≤ ∆Umax,∀k ∈ [k, k +N − 1] (4.3c)

Umin ≤ U ≤ Umax, ∀k ∈ [k, k +N − 1] (4.3d)

xmin ≤ x ≤ xmax, ∀k ∈ [k, k +N] (4.3e)

In (4.3), J : R2×N → R≥0 is the cost function, uk := [φ̇f , δf]
> ∈ R2 is the control

action at time k, and U := {uk, ...,uk+N−1} ∈ R2×N is the set of control actions over the
prediction horizon N , and Umin, Umax are the upper and lower limits on U, respectively.
Also, ∆uk = uk − uk−1 is the change in the control action at time k, where for k = 0,
∆u0 = u0− p where p is the current measured wheel angular speed φ̇f and steering angle
δf . ∆U := {∆uk, ...,∆uk+N−1} ∈ R2×N is the set of ∆uk over N , and ∆Umin, ∆Umax are
the upper and lower limits on ∆U, respectively.

40

4.3.3 Dual-Objective Cost Function

Here, we discuss our main contribution which is the use of a dual-objective cost function
to consider different driving behaviors. By changing the weight of each element in the
cost function, the NMPC solution differs to adjust the controller behavior based on the
passengers preference.

Furthermore, by adding an economic term that represents the energy consumption to
the cost function, NMPC considers minimizing the power at each iteration. Therefore,
the produced control actions reduce the needed driving power as well as the error to the
reference signal.

To compute the total needed energy for a certain given path, equation (4.2) is used.
To reduce the total consumed energy, either the motor efficiency or the output power,
represented in terms of torque and angular speed, can be added to the cost function. In
our method, we use the output power in the cost function. This showed an efficient and
more comfortable driving behavior in our analysis. The proposed quadratic dual-objective
cost function is given by:

J =
N∑
k=0

||xref − xk||2Q +
N−1∑
k=0

||∆uk||2R︸ ︷︷ ︸
Jr

+
N∑
k=0

||Tm ω||2E︸ ︷︷ ︸
Je

, (4.4)

where Jr is the regulating cost, Je is the economic cost, Q ∈ R3×3, R ∈ R2×2, and E ∈ R
are diagonal weighting matrices.

By reducing the weight of the output power in Je, the NMPC controller focuses more
on minimizing the error to the reference path signal and vice versa. Thus, we can obtain
different driving behaviors by modifying the weights Q,R, and E as shown in Fig. 4.3.

0 E Max
Sport

Driving
Efficient
Driving

Figure 4.3: Effect of changing E in the dual-objective function.

We present our results for the proposed approach in 6.3.

41

Chapter 5

Obstacle Representation using
Fourier Series

5.1 Introduction

Modeling the static map and the obstacles in the ego vehicle environment is crucial to
ensure the safety of the obtained motion plans from the approach proposed in Chapter 3.
Since collision detection is performed online, it should be reliable, accurate and compu-
tationally efficient. Collision detection requires proper obstacle spatial representation in
the environment of the vehicle. The majority of the current approaches for obstacle rep-
resentation use conservative approximations such as unions of overlapping spheres [60] to
ensure the safety of the obtained plans. However, since obstacles usually have irregular
shapes, there is a trade-off between accuracy of the representation and its computational
complexity.

Inspired by the work in [75], in this chapter we propose the usage of Complex Fourier
Series (CFS) to create mathematical models for geometric shapes and obstacles an ego
vehicle may encounter while driving autonomously. Briefly, the proposed method works as
follows:

1. Sample the boundary of the obstacle equally.

2. Determine number of frequencies needed based on the obstacle shape.

3. Compute Fourier Series.

In the next section, we give a brief on CFS mathematical background. Afterwards, we
present our methodology which uses CFS for obstacle representation.

5.2 Complex Fourier Series Expansion

Joseph Fourier has shown from the study of two differential equations, the wave and the
heat equations, that real periodic mathematical equations can be expanded using infinite

42

trigonometric series named Fourier Series (FS) expansion [76,77]. Firstly, Fourier trigono-
metric series is given by:

f(t) =
a0

2
+
∞∑
n=1

[
an cos(n · 2πt) + bn sin(n · 2πt)

]
(5.1)

where a0, an, bn are called Fourier constants, and n ∈ N such that n = 1, 2, . . . ,∞. Since FS
is periodic, the periods of cos(n·2πt) and sin(n·2πt) are 1

n
. Accordingly, Fourier series (5.1)

can represent periodic functions that are of period 1 [76]. The Fourier coefficients can be
calculated using the following expressions:

an = 2
∫ 1

0
f(t) cos(n · 2πt) dt, n = 0, 1, 2, . . .

bn = 2
∫ 1

0
f(t) sin(n · 2πt) dt, n = 1, 2, 3, . . .

(5.2)

However, equation (5.1) can be further extended and written in the complex exponential
form using Euler’s formula (5.3).

e±jθ = cos θ ± j sin θ

cos θ = 1
2
(ejθ + e−jθ)

sin θ = 1
2j

(ejθ − e−jθ)
(5.3)

Therefore, a periodic complex function f(t) can be written as a sum of complex expo-
nentials as follows:

f(t) =

nup∑
n=nlow

cne
n·j2πt (5.4)

where t ∈ [0, 1], nlow and nup are lower and upper frequency limits (ideally nlow = −∞ and
nup =∞), and cn are complex constants. The constants cn can be calculated by:

cn =

∫ 1

0

f(t) · e−n·j2πtdt. (5.5)

The output space of a periodic complex function f(t) is two dimensional, and is referred
to as the complex space. Usually, Argand diagram is used to represent complex numbers
geometrically using Cartesian axes, where the real number line is assigned to the x-axis,
while the imaginary number line is assigned to the y-axis as shown in Fig. 5.1.

f(t)

Im
ag

in
ar

y

Real

Figure 5.1: The Argand diagram for a complex function f(t).

In the next section, we will show how CFS can be used for obstacle representation.

43

5.3 Obstacle Representation

A proper obstacle representation technique should be computationally efficient, stable,
scalable, and can handle different of shapes. Since autonomous driving problem is mainly
considered in two dimensional environments, obstacles can be treated as complex functions.
These complex functions model the boundaries of the obstacles, making obstacle represen-
tation more accurate and robust. The main reason behind using CFS instead of FS is to
find a proper representation by calculating only one integration numerically, equation (5.5),
rather than four different integrations as in equation (5.2). Since only one integration op-
eration is performed using CFS as opposed to four, CFS will be much faster, and hence,
computationally efficient for obstacle representation in real time implementation.

In order to make such a representation for an obstacle Oi, first we evenly sample the
outer boundary of Oi into pi points as shown in Fig. 5.2. Next, to find the complex

Im
ag

in
ar

y

Real
Im

ag
in

ar
y

Real

Figure 5.2: An obstacle and its sampled boundary.

coefficients cn, equation (5.5) is calculated numerically by converting it into a summation
such that:

cn =

pi∑
n=0

f(τ) · e−τ ·j2π, τ =
n

pi
. (5.6)

Note that τ ∈ [0, 1]. Increasing the number of boundary samples pi of obstacle Oi increases
the accuracy of the obtained representation. Note that equations (5.1) and (5.2) can be
used to obtain the same representation, but it requires doing the analysis for the values
of the x-axis and the values of the y-axis separately. Instead, after finding the complex
constants cn, FS real representation for x-axis values and y-axis values can be obtained
knowing that:

cn = An + jBn (5.7)

and by using Euler’s formula (5.3):

cn · en·j2πτ = [An cos(n · 2πτ)−Bn sin(n · 2πτ)]︸ ︷︷ ︸
x(τ)

+j [Bn cos(n · 2πτ) + An sin(n · 2πτ)]︸ ︷︷ ︸
y(τ)

(5.8)
and

ax,n = An, bx,n = −Bn, ay,n = Bn, by,n = An (5.9)

where ax,n, bx,n, ay,n and by,n are Fourier constants for Fourier representation of x values
and y values respectively. This is useful to omit the usage of complex numbers after
obtaining such a representation.

44

The key question is how to use CFS to create obstacles representation. We propose two
different methods to create these representation depending on the nature of the considered
obstacle and the mode of operation:

• Offline method: For the most common obstacles, create a library offline of accurate
representations using a top view image of these obstacles.

• Online method: While driving, create a simple representation for the environment
using the available sensory information.

5.3.1 Offline Method

Since this method is entirely performed offline, the computational cost of obtaining an
accurate representation is ignored. To sample obstacle boundary with relatively large
number of samples, a top view image is used. We use computer vision techniques to
suppress the obstacle to its outer boundary. Afterwards, by taking the outer boundary
pixels as samples, an accurate representation can be obtained. Note that the scale between
the used image and the actual obstacle is required to enlarge the obtained representation
to the obstacle actual size.

After getting the outer boundary, its pixels are used as boundary samples pi and ac-
cordingly, equation (5.6) is used to find cn complex constants. To ensure the safety of the
obtained obstacle representation, we scale up the representation by 1.5%. This percentage
is sufficient to cover any small protruding parts of the obstacle that was not modeled while
generating the representation, and acts as a safety factor in case of inaccuracy in the scale
between the actual obstacle size and its top view image. Fig. 5.3 shows an example of
obstacle representation generation using the offline method.

Increasing the number of frequencies, e.g. increasing nup or decreasing nlow, required to
generate such a representation will result in a more accurate representation. However, as
the number of frequencies increases, the computational cost of collision detection becomes
higher. Alg. 6 summarizes the proposed offline method, where I is the top view image,
and SC is the scale between the image and actual size.

Algorithm 6: Obstacle Representation: Offline Method

Input: I, SC,nlow,nup
Output: ax,n,bx,n,ay,n,by,n

1 Outer Boundary = getBoundary(I)
2 xVal, yVal = getOrderedCoordinates(Outer Boundary)
3 ax,n, bx,n, ay,n, by,n = getFourierRep(SC, xVal, yVal, nlow, nup)

5.3.2 Online Method

Since the scenarios autonomous vehicles may encounter while driving are countless, mod-
eling all kinds of obstacles is unfeasible. Herein, we propose our online obstacle represen-
tation method for unknown obstacles based on the available sensory information. Usually,

45

(1) Original Obstacle (2) Obstacle Boundary

(3) Obtained Representation (4) Scaled Representation

Figure 5.3: An example of the offline method used to generate obstacle representation.

an autonomous vehicle sensor suite is equipped by a stereo vision system, a lidar, a radar,
and ultrasonic sensors [78]. These sensors provide depth information of the surrounding
environment.

Since the depth information of obstacles in the scene are measured from the prospective
of the ego vehicle, this information shows the significant parts of the obstacles that the
ego vehicle is facing. Therefore, the measured free space around the ego vehicle can be
modeled as one mathematical equation using the aforementioned approach.

Ego Vehicle

Figure 5.4: An example of the online method used to generate free space representation.

Fig. 5.4 shows an example of a map with three obstacles in the scene, where the ellipse
shows the range of the ego vehicle sensors, and the red loop shows the measured depth
information. Note that this approach does not require any computer vision preprocessing
and relies entirely on the available depth information.

46

Because of the dynamic nature of the obstacles in the scene, e.g. relative speed between
the ego vehicle and static and dynamic obstacles, the relative distance to the ego vehicle
is variable in time. Consequently, the red loop shown in Fig. 5.4 is dynamically changing.
Therefore, the dynamic generation of the free space representation using the available
sensory data must be done ahead of time to allow for corrective action when risk of collision
exists. The proposed algorithm provides fast generation of the free space since it is not
an optimization-based method. Instead, it relies on numerical integration to find such a
representation. This representation would be useful to ensure that the ego vehicle does
not collide with any obstacles in the scene. Alg. 7 summarizes the proposed online method
where D is depth information.

Algorithm 7: Free Space Representation: Online Method

Input: D
Output: ax,n,bx,n,ay,n,by,n

1 Outer Boundary = getBoundary(D)
2 xVal, yVal = getOrderedCoordinates(Outer Boundary)
3 ax,n, bx,n, ay,n, by,n = getFourierRep(xVal, yVal, nlow, nup)

A significant note on FS approach is that it is vulnerable to discontinuities. This means
that, it cannot be used directly to model open loops. The reason behind this limitation is
that FS method is suitable only for periodic functions. To overcome this limitation, the
open loop can be sampled such that τ ∈ [0, 0.5] in equation (5.6), and resampled again in
the reverse direction such that τ ∈ (0.5, 1]. This reverse sampling will form closed loops
over the open loops and will represent them accurately. In such case, to use the obtained
representation, there will be no need to use the full range of τ , e.g. τ ∈ [0, 1]. Instead, half
of the period would be sufficient.

To conclude, in this chapter we proposed the usage of Fourier Series for obstacle repre-
sentation to create accurate mathematical models in relatively short time. Two methods
were proposed; offline and online methods. The offline method creates accurate models for
well known obstacles, while the online method creates models for the free space in case
of interacting with unknown obstacles based on the available depth information. We run
the proposed methodology on different obstacles and maps to validate its efficacy and the
results obtained are presented in 6.4.

47

Chapter 6

Simulation Results and
Benchmarking

6.1 Introduction

In this chapter we present the results obtained for the proposed methodologies in Chapter 3,
Chapter 4, and Chapter 5. First, in section 6.2 we show the validation of the Simultaneous
Local Motion Planning and Control scheme. Afterwards, in section 6.3 we present the re-
sults of the proposed Driving Behavior Control scheme. Finally, in section 6.4 we illustrate
the efficacy of Fourier Series usage for obstacle representation.

6.2 Simultaneous Local Motion Planning and Control

Results

Here, we present our results obtained for the methodology proposed in Chapter 3. To
assess the proposed scheme, we test it using three different cases:

1. Case 1: Two LC maneuvers with different longitudinal distance.

2. Case 2: Two DLC maneuvers to avoid obstacle vehicles and one LC maneuver.

3. Case 3: One DLC for multiple obstacles avoidance.

These cases were performed using CARLA simulator [18], which is an open-source simulator
for autonomous driving research. CARLA simulator has the potential to simulate cars in re-
alistic scenarios, where the environment and other road users interact dynamically with the
ego vehicle. A screen recording videos for each case has been uploaded on YouTube at the
following link: www.youtube.com/playlist?list=PL5vYvbYXildsANRkOL73jP1fmbezyEqES

To generateRglobal for each case, we rely on CARLA builtin route planner. The ultimate
goal for each case is to pre-process theRglobal using the Offline Route Feasibility Checker 3.3
to obtainRglobal,ref . Upon obtaining the reference routeRglobal,ref , the ego vehicle follows it
using the Online Parameterized Curves Generator 3.4 and Model Predictive Path-Following
Control 3.5. Table 6.1 summarizes the details for each case.

48

www.youtube.com/playlist?list=PL5vYvbYXildsANRkOL73jP1fmbezyEqES

Table 6.1: Cases performed to test the proposed scheme.

Case Route Length LC maneuvers Dynamic Obstacles

1 386.67 [m] 2 0

2 976.06 [m] 1 2 separated obstacles

3 657.74 [m] 0 3 obstacles in a row

6.2.1 Offline Route Feasibility Checker Results

As mentioned before, global planners may or may not consider vehicles constraints in
planning LC maneuvers. CARLA global planner used in our testing ignores vehicles con-
straints. Hence, three different LC maneuvers have been tested and rerouted by the intro-
duced method in 3.3 using sigmoid functions. To obtain feasibility-guaranteed maneuvers,
the longitudinal distance dlong,LC has been calculated based on speed limit and maximum
comfortable lateral acceleration as described by equations (3.2),(3.8) and (3.10). Fig. 6.1
shows the three LC maneuvers and table 6.2 shows their parameters.

20 30 40 50 60 70 80 90 100

Position in Y [m]

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Po
si

tio
n

in
X

[m
]

Rglobal

Rglobal,ref

140 150 160 170 180 190 200 210 220 230

Position in Y [m]

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Po
si

tio
n

in
X

[m
]

Rglobal

Rglobal,ref

−300 −290 −280 −270 −260 −250 −240 −230

Position in Y [m]

−512

−511

−510

−509

−508

−507

−506

−505

−504

−503

Po
si

tio
n

in
X

[Y
]

Rglobal

Rglobal,ref

Case 1: LC(1)

Case 1: LC(2)

Case 2: LC(3)

Figure 6.1: Left: Snapshots for the three LC maneuvers from CARLA, where Rglobal is in blue and
Rglobal,ref is in red. Right: Plots showing longitudinal and lateral distances for each maneuver.

49

Table 6.2: LC maneuvers performed to test the proposed scheme.

Lane Change alat vlim κ a dlong,LC

Case 1: LC(1) 1.0 [m/s2] 30 [km/h] 0.014400 [1/m] 0.191799 41.71 [m]

Case 1: LC(2) 1.0 [m/s2] 50 [km/h] 0.005184 [1/m] 0.137464 58.20 [m]

Case 2: LC(3) 1.0 [m/s2] 50 [km/h] 0.005184 [1/m] 0.137464 58.20 [m]

Although [12] and [13] have used sigmoid functions to plan LC maneuvers to ensure
their smoothness, equation generation has not been reported. On the other hand, our
introduced approach finds the best feasible maneuver based on the vehicle constraints.
Moreover, as it can be seen in Fig. 6.1, the introduced framework succeeds in planning LC
maneuvers and integrates it with the original route regardless of road orientation.

After obtaining Rglobal,ref , road curvature information is then calculated using equa-
tions (3.12) and (3.13). Road curvature information is used in the online parameterized
curves generator as proposed in 3.4 to change the lookahead distance dynamically. Calcu-
lated road curvatures for each case are shown in Fig. 6.2.

0 200 400 600 800 1000 1200 1400 1600

Waypoint

0.00

0.01

0.02

0.03

0.04

0.05

C
ur

va
tu

re
[1

/m
]

0 500 1000 1500 2000 2500 3000 3500 4000

Waypoint

0.00

0.01

0.02

0.03

0.04

0.05
C

ur
va

tu
re

[1
/m

]

0 500 1000 1500 2000 2500 3000

Waypoint

0.00

0.01

0.02

0.03

0.04

0.05

C
ur

va
tu

re
[1

/m
]

Case 2: curvatureCase 1: curvature

Case 3: curvature

Figure 6.2: Road curvature information for each scenario.

6.2.2 Online Curve Generator Results

Given the reference global route Rglobal,ref represented as waypoints and road curvature
information, this module finds the nearest waypoint on the global route to the actual loca-
tion of the vehicle. Afterwards, a subset of the waypoints is taken to generate a reference
parametric curve P using two fifth order splines, one for X values and one for Y values.

50

Fig. 6.3 illustrates samples of the results. Note that the length of the fitted curve differs
from one sample to another. Table 6.3 outlines the the maximum and absolute average
of fitting error and computational time needed where the maximum values are highlighted
in yellow. The recorded time is the total time for finding the nearest waypoint to the
ego vehicle location, determining the dynamic lookahead distance, waypoints preparation,
and solving the LS problem to generate the parametric curve. The maximum obtained
error 0.0162 [m] value is acceptable compared to typical lane width (3.6 - 3.75) [m]. To
synchronize curve generation time, we use a frequency of 2 Hz to generate new parametric
curve. In other words, the reference parametric curve P is updated twice every second.
The maximum computation time (0.1188 [s]) in the worst case is less than a quarter of
the corresponding time of the used update frequency (0.5/4 = 0.125 [s]) which makes the
worst case acceptable.

8.4 8.5 8.6 8.7 8.8 8.9

x [m]

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

y
[m

]

Waypoints
Fitted Curve

−465 −460 −455 −450 −445 −440 −435 −430 −425 −420

x [m]

−24

−22

−20

−18

−16

−14

−12
y

[m
]

Waypoints
Fitted Curve

−509 −508 −507 −506 −505 −504 −503 −502 −501 −500

x [m]

−300

−290

−280

−270

−260

−250

−240

y
[m

]

Waypoints
Fitted Curve

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

x [m]

40

45

50

55

60

65

70

75

80

y
[m

]

Waypoints
Fitted Curve

−507.0 −506.5 −506.0 −505.5 −505.0

x [m]

−120

−115

−110

−105

−100

−95

−90

−85

−80

y
[m

]

Waypoints
Fitted Curve

−370 −360 −350 −340 −330 −320 −310

x [m]

−430

−429

−428

−427

−426

−425

−424

−423

y
[m

]

Waypoints
Fitted Curve

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

x [m]

160

170

180

190

200

210

220

y
[m

]

Waypoints
Fitted Curve

−508.4 −508.2 −508.0 −507.8 −507.6 −507.4 −507.2

x [m]

−240

−230

−220

−210

−200

−190

−180

y
[m

]

Waypoints
Fitted Curve

−350 −340 −330 −320 −310 −300 −290

x [m]

−429.5

−429.0

−428.5

−428.0

−427.5

−427.0

y
[m

]

Waypoints
Fitted Curve

Figure 6.3: Sample of curve fitting results and waypoints for the three scenarios.
Right: Case 1. Middle: Case 2. Left: Case 3.

Table 6.3: Curve fitting computation time and error.

Case Avg. Fitting Error Max. Fitting Error Avg. Fitting Time Max. Fitting Time

1 0.0088 [m] 0.0714 [m] 0.0539 [s] 0.0792 [s]

2 0.0162 [m] 0.1384 [m] 0.0791 [s] 0.1107 [s]

3 0.0054 [m] 0.0469 [m] 0.0821 [s] 0.1188 [s]

Mean 0.0365 [m] 0.0856 [m] 0.0717 [s] 0.1029 [s]

51

As stated before, the lookahead distance dLA,dyn is set dynamically based on road cur-
vature. The lookahead distance varies such that dLA,dyn ∈ [12.5, 100] m, and is determined
according to the following piece-wise equation:

dLA,dyn(κmax) =

100 [m] , κmax < 0.0002

87.5 [m] , 0.0002 ≤ κmax < 0.0010

75.0 [m] , 0.0010 ≤ κmax < 0.0016

62.5 [m] , 0.0016 ≤ κmax < 0.0100

50.0 [m] , 0.0100 ≤ κmax < 0.0200

37.5 [m] , 0.0200 ≤ κmax < 0.0350

25.0 [m] , 0.0350 ≤ κmax < 0.0360

12.5 [m] , 0.0360 ≤ κmax

(6.1)

Since a new P is obtained every half a second, the shortest lookahead distance is still
relatively feasible. That is because the ego vehicle cannot reach the end of the path before
receiving the next one since its speed cannot cover the current parametric curve in less
than 0.5 second.

Dynamic obstacle avoidance is performed using the proposed method in 3.4.3. Given
the location and the velocity of the obstacles on the road, a bell-shaped function is created
to perform a feasibility-guaranteed DLC maneuver for each obstacle. In case of multiple
obstacles moving in row, or long obstacles like buses, the longitudinal distance is kept
zero until going back to the original lane is safe. Three cases have been tested using the
introduced solution to show its efficacy. All obstacles were moving at a speed of 20 km/h.
The first two cases involved the ego vehicle performing a DLC to evade an upfront dynamic
obstacle. Meanwhile, in the third case, the ego vehicle performed a DLC to evade three
dynamic obstacles in a row ahead of it. Fig. 6.4 shows the three cases. Note that in the
third case, the longitudinal distance needed to perform the DLC maneuver is relatively
longer than the first two DLC maneuvers.

Comparing our method to the one proposed in [14], which uses hard constraints to omit
obstacle region from the solution space, the results obtained are smoother and guaranteed
to be feasible for the ego vehicle. The computational time needed to obtain the bell-
shaped function is negligible compared to searching for the optimal path like in [15, 16].
In addition, none of the previous methods incorporated road shape in their solution.

6.2.3 Model Predictive Path-following Control Results

After receiving the parametric curve Pclear, the MPFC module follows it with minimum
possible error while tracking the reference speed with less priority as stated before. First,
we present the set constraints on the optimization variables in the OCP (3.38) in table 6.4.

52

−250 −200 −150 −100 −50 0

Position in Y [m]

−510

−500

−490

−480

−470

−460

Po
si

tio
n

in
X

[m
]

Original Route
Traversed Double Lane Change

−350 −300 −250 −200 −150 −100

Position in X [m]

−434

−432

−430

−428

−426

−424

−422

Po
si

tio
n

in
Y

[m
]

Original Route
Traversed Double Lane Change

−300−250−200−150−100−50

Position in X [m]

−430

−420

−410

−400

−390

−380
Po

si
tio

n
in

Y
[m

]

Original Route
Traversed Double Lane Change

Case 2: DLC (2)Case 2: DLC (1)

Case 3: DLC (3)

Figure 6.4: Original parametric curve P and the traversed parametric curve Pclear.

Table 6.4: Constraints set on the optimization variables.

Parameter Lower Bound Upper Bound

u̇(t) u̇(t)min =

[−3 m/s2

−1 rad/s

]
u̇(t)max =

[
3 m/s2

1 rad/s

]
u(t) u(t)min =

[−16 m/s

−π
4

rad

]
u(t)max =

[
16 m/s
π
4

rad

]

Second, the reference path and the traversed path for every scenario are illustrated
in 6.5. The two LC maneuvers can clearly be seen in case (1), while the three DLC
maneuvers in case (2) and case (3) are shown as deviation between Rglobal,ref and the
traversed route.

As it can be seen in Fig. 6.5, the ego vehicle was able to follow the path with minimum
possible error. Path-following error is presented in Fig. 6.7 and summarized in table 6.5
where the maximum values are highlighted in yellow. The error for all cases is very small
and is negligible relative to a standard lane width as it does not exceed 12.5 cm. Com-
putation time is also very small especially that the OCP is nonlinear. Since tracking the
reference speed is not a strict requirement in our problem, there is some deviation between
the reference speed (blue) and the NMPC output speed command (green) and the actual
vehicle speed (red) as shown in Fig. 6.7. The matching between the NMPC speed and the
actual speed is more important as it reflects the ability of the NMPC to consider the dy-
namics of the vehicle while solving for the control actions. In addition, the NMPC output
speed is robust regardless of the shape of the reference speed signal. Fig. 6.6 shows the
relation between desired speed, MPC speed, and actual speed.

53

−100 −50 0 50 100 150 200 250 300

Position in Y [m]

−5

0

5

10

15

20

25

Po
si

tio
n

in
X

[m
]

Desired State
Actual State

−600−500−400−300−200−1000

Position in X [m]

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

Po
si

tio
n

in
Y

[m
]

Desired State
Actual State

−600−500−400−300−200−1000

Position in X [m]

−450

−400

−350

−300

−250

−200

Po
si

tio
n

in
Y

[m
]

Desired State
Actual State

Case 2Case 1

Case 3

Figure 6.5: Reference route Rglobal,ref and the traversed route for each case.

Table 6.5: NMPC computation time and path-following error.

Case
Avg. Following

Error

Max. Following

Error

Avg. Computation

Time

Max. Computation

Time

1 0.0670 [m] 0.1241 [m] 0.0248 [s] 0.1153 [s]

2 0.0587 [m] 0.1214 [m] 0.0370 [s] 0.1164 [s]

3 0.0539 [m] 0.1117 [m] 0.0383 [s] 0.0873 [s]

Mean 0.0599 [m] 0.1190 [m] 0.0334 [s] 0.1063 [s]

Behavioral
Planner

MPC
Controller

Actual
Vehile

Desired Speed MPC Speed Actual Speed

Figure 6.6: Relation between desired speed, MPC speed, and actual speed.

In comparison to the solution proposed in [15], our approach has smaller error and
less computational time, while driving on almost the same speeds. Although the method
proposed in [17] uses the same path-following scheme, it uses only a constant reference
speed, and hence, the effect of different reference speeds is not studied. In addition, it does
not handle long trips as the reference parametric curve is created beforehand. Finally,
obstacle avoidance has not been integrated in any other scheme for autonomous vehicles
using the path-following method introduced in [9].

54

0 5 10 15 20 25 30 35 40

Time

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
at

h
Fo

llo
w

in
g

E
rr

or
[m

]

0 10 20 30 40 50 60 70 80 90

Time

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
at

h
Fo

llo
w

in
g

E
rr

or
[m

]

0 10 20 30 40 50 60

Time

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
at

h
Fo

llo
w

in
g

E
rr

or
[m

]

0 5 10 15 20 25 30 35 40

Time [s]

0

2

4

6

8

10

12

14

16

Ve
lo

ci
ty

[m
/s

]

Desired Speed
MPC Speed
Actual Speed

0 10 20 30 40 50 60 70 80 90

Time [s]

0

2

4

6

8

10

12

14

16

Ve
lo

ci
ty

[m
/s

]

Desired Speed
MPC Speed
Actual Speed

0 10 20 30 40 50 60

Time [s]

0

2

4

6

8

10

12

14

Ve
lo

ci
ty

[m
/s

]

Desired Speed
MPC Speed
Actual Speed

Case (1)

Case (2)

Case (3)

Figure 6.7: Left: Path-following error for each case. Right: velocity tracking output for each case.

6.3 Adjustable Driving Behavior Control Results

Here, we present our results obtained for the methodology proposed in Chapter 4.

6.3.1 Dynamic Simulation Scenarios

The proposed controller is tested on a car model developed in Gazebo [19] simulator. The
parameters of the model are for a Chevrolet Bolt car, see Table 6.6. The NMPC con-
troller is formulated using CasADi optimization library [68] and solved using the interior
point method (IPOPT) [69]; the controller is implemented in Python programming lan-
guage. The simulator and the controller are integrated under the Robot Operating System
(ROS) [73]. The developed vehicle dynamic model satisfies Ackermann condition, i.e. when
a vehicle is moving slowly on a curve, it turns slip-free [31]. Ackermann condition is given
by:

cot(δo)− cot(δi) =
w

l
, (6.2)

55

where δi and δo are the inner and the outer steering angles, respectively. The dimensions
w and l are illustrated in Fig. 6.9.

Table 6.6: Simulated vehicle parameters

Parameter Value Parameter Value

mv 1615 [kg] G 7

l 2.6 [m] A 2.0 [m2]

w 1.5 [m] ρa 1.2 [kg/m3]

r 0.2 [m] Cd 0.45

Cr 0.015 η 70% - 95%

NMPC
Node

Bicycle to

Ackermann Node

Gazebo Dynamic

Simulator Node

φ̇f , δf

δi, δo
φ̇fi, φ̇fo

φ̇ri, φ̇ro

Actual Vehicle Pose

Figure 6.8: The developed ROS package
block diagram. XI

YI

l

w

w

δi δo

ICR

Figure 6.9: Ackermann vehicle model

Fig. 6.8 shows the developed ROS package. In this figure, φ̇fi and φ̇fo are the spinning
speed of the front inner and outer wheels, respectively; and φ̇ri and φ̇ro are the spinning
speed of the rear inner and outer wheels, respectively. It is worth mentioning that this
implementation is suitable for electric vehicles in which each wheel is driven independently
(using in-wheel motors) without a main motor and a drive-line transmission.

The reference paths used in our implementation are geometric splines simulating road
and traffic lanes as suggested in [79]. We consider three main scenarios to test the proposed
dual-objective NMPC in solving the path-following control problem given in Alg. 5. The
reference paths in these scenarios are modeled using geometric equations as shown in
Fig. 6.10.

6.3.2 Real-time Simulation Results and Discussion

In this section, we present our real-time simulation results. We consider mainly two driving
modes: energy-efficient driving mode, and sport driving mode. The two driving modes are
tested with each reference path shown in Fig. 6.10. Here, we first present the tuning
parameters of the proposed NMPC controller. Then, we present the simulation results for
the considered driving scenarios.

Tuning parameters for NMPC

Tuning the cost function weights of each term is important to ensure satisfactory NMPC
performance. Table 6.7 shows the used parameters and weights, which led to the best

56

(a) Straight Path
ε ∈ [0, 1000]
x = ε, y = 0

(b) Third Order Polynomial Path
ε ∈ [0, 200]

x = ε , y = ε3

8000

(c) Circular Path
ε ∈ [−π2 , π]

x = 50 cos(ε), y = 50 (1 + sin(ε))

Figure 6.10: Different test cases used for path-following.

path-following performance, for each test scenario. All simulations were conducted using a
prediction horizon of N = 20 and a sample time of ts = 0.2 [sec], Umin = [−15, −π

6
]>, Umax

= [100, π
6
]>, ∆Umin = [−8,−0.1]>, and ∆Umax = [4, 0.1]>. The path evolution step-size

parameter κstep depends on the road shape. This is because it represents increments in
meters in the first two cases, while it represents increments in radians in the third case,
see Fig. 6.10.

Table 6.7: Parameters and weights used for each test case

Driving

Scenario
Params Efficient Mode Sport Mode

Straight

Line

κstep 30 30

Q diag(4.75, 4.75, 100) diag(4.75, 4.75, 100)

R diag(3, 20) diag(1, 1)

E 2.5× 10−10 0

Spline

Path

κstep 20 20

Q diag(10, 10, 2) diag(10, 10, 2)

R diag(1, 1) diag(1, 1)

E 2.5× 10−10 0

Circular

Path

κstep 0.157 0.157

Q diag(100, 100, 0) diag(100, 100, 0)

R diag(1, 1) diag(1, 1)

E 2.5× 10−10 0

Straight Line Path

Most of city roads can be modeled as straight segments. In this test scenario, we consider
the reference path in Fig. 6.10a; the path length is 1000 meter. Results obtained are
shown in Fig. 6.11, 6.12 and 6.13 and summarized in table 6.8, where RMSE is Root Mean
Squared Error (RMSE). As can be seen in Fig. 6.12, the velocity profile shows slower
acceleration and deceleration for the energy-efficient mode. Meanwhile, sport mode showed

57

0 200 400 600 800 1000

-5

0

5

0 200 400 600 800 1000

-5

0

5

Figure 6.11: Path-following simulation results for the straight line reference path. Left:
Energy-efficient mode. Right: Sport mode.

0 50 100 150 200 250

0

5

10

15

20

25

0 20 40 60 80 100 120 140

0

5

10

15

20

25

30

35

40

45

50

Figure 6.12: The overall vehicle speed in km/h for both driving modes. Left: Energy-efficient mode.
Right: Sport mode.

a higher speed velocity profile. Fig. 6.13 shows the efficacy of the proposed controller in
saving energy, while following the desired path, in case of the energy-efficient mode when
compared to the sport mode. The summary of the results in Table 6.8 shows that the
energy-efficient mode was able to reduce the total consumed energy by 48% compared to
the sport mode. Also, sport mode was able to arrive faster than the energy-efficient mode
by 51.4%. The RMSE for both scenarios is very small. Small RMSE shows the effectiveness
of the proposed controller in following the reference path.

Third Order Spline Path

Curved roads are very common cases especially in highways, and they can be modeled
using polynomial splines. Now, we consider the reference path in Fig. 6.10b with a total
length of 175.5 meter. Results obtained are shown in Fig. 6.14 and 6.15, and summarized in
table 6.9. The results show a similar behavior compared to the straight line path. However,
as this path is shorter, total consumed energy for both scenarios is less than that for the
straight line path.

58

0 50 100 150 200 250

0

2

4

6

8

10

12

14
10

4

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

2.5

3
10

5

Figure 6.13: Consumed energy (Joules) by the vehicle simulation results. Left: Energy-efficient mode.
Right: Sport mode.

Table 6.8: Comparison between driving modes for straight line path

Parameter Efficient Mode Sport Mode

Total Energy Consumption 124.764 [kJ] 259.93 [kJ]

Total Travel Time 236.79 [sec] 121.62 [sec]

Average Speed 15.20 [km/h] 29.60 [km/h]

RMSE 0.2871 [m] 0.3161 [m]

End Point Error 0.0168 [m] 0.0017 [m]

Circular Path

Finally, we use a circular reference path, Fig. 6.10c, to demonstrate the ability of the
proposed controller in maintaining a fixed turning radius while driving. The total path
length is 235.62 meter. Results obtained are shown in Fig. 6.16 and 6.17, and summarized
in table 6.10.

Table 6.9: Comparison between driving modes for the spline path

Parameter Efficient Mode Sport Mode

Total Energy Consumption 26.86 [kJ] 44.2 [kJ]

Total Travel Time 45.67 [sec] 34.89 [sec]

Average Speed 13.83 [km/h] 18.11 [km/h]

RMSE 1.1335 [m] 0.9628 [m]

End Point Error 0.0512 [m] 0.0824 [m]

59

0 20 40 60 80 100

0

20

40

60

80

100

120

140

0 20 40 60 80 100

0

20

40

60

80

100

120

140

Figure 6.14: Path-following simulation results for the spline reference path. Left: Energy-efficient
mode. Right: Sport mode.

0 10 20 30 40 50

0

5

10

15

20

25

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

40

Figure 6.15: The overall vehicle speed in km/h for both driving modes. Left: Energy-efficient mode.
Right: Sport mode.

-60 -40 -20 0 20 40 60

0

10

20

30

40

50

60

70

80

90

-60 -40 -20 0 20 40 60

0

10

20

30

40

50

60

70

80

90

Figure 6.16: Path-following simulation results for the circular reference path. Left: Energy-efficient
mode. Right: Sport mode.

60

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Figure 6.17: The overall vehicle speed in km/h for both driving modes. Left: Energy-efficient mode.
Right: Sport mode.

0 10 20 30 40

-30

-20

-10

0

10

20

30

0 10 20 30

-30

-20

-10

0

10

20

30

Figure 6.18: Steering angle control action. Red lines represent the upper and lower limits. Left:
Energy-efficient mode. Right: Sport mode.

Similar to the previous results, energy-efficient mode was able to reduce energy con-
sumption, while sport mode was able to minimize total travel time.

The proposed controller maintained the input and state constraints throughout all
simulations. Fig. 6.18 shows the computed steering angles for the spline path and the
circular path for both driving modes. It can be noted from the figure that the control
actions did not go beyond their limits. Path-following results for the three test cases are
available at the following link: https://youtu.be/2dSwTR1gk20.

Table 6.10: Comparison between driving modes for circular path

Parameter Efficient Mode Sport Mode

Total Energy Consumption 31.06 [kJ] 55.48 [kJ]

Total Travel Time 43.34 [sec] 32.13 [sec]

Average Speed 19.57 [km/h] 26.40 [km/h]

RMSE 0.4832 [m] 0.3395 [m]

End Point Error 0.0284 [m] 0.0015 [m]

61

https://youtu.be/2dSwTR1gk20

6.4 Obstacle Representation using FS Results

6.4.1 Obstacle Representation

The most common obstacle an ego vehicle may encounter while driving are other vehicles
on the road. The methodology proposed in Chapter. 5 is used to represent different vehicles
with different shapes and sizes. The accuracy of obtained representation depends heavily
on two main factors; number of samples of the outer boundary, and most importantly,
number of frequencies fn used in modeling. Fig. 6.19 shows the results for five different fn
for the same vehicles. Notice the effect of the used fn on the accuracy of the representation.

fn = 16, nlow = −8, nup = 8

fn = 32, nlow = −16, nup = 16

fn = 48, nlow = −24, nup = 24

fn = 80, nlow = −40, nup = 40

fn = 96, nlow = −48, nup = 48

Figure 6.19: Effect of the number of frequencies on the accuracy of the obtained representation.

62

The number of frequencies fn is set depending on the nature of the application and
the complexity of the shape. For fast collision detection, a lower fn would be more useful.
Note that we rely on edge detection of the outer boundary of the object to create its
representation. To simplify the complexity of an object shape, the outer boundary can be
simplified first.

The effect of the frequencies is further studied for different shapes. Higher frequencies
usually show smaller magnitudes. For a number of frequencies fn = 80, the magnitude
of every frequency is plotted in Fig. 6.20. Note that small frequencies are plotted using
a smaller scale. The zero frequency is responsible for the C.G location of the object, and
hence, its magnitude does not affect the representation but only translates it. To reduce

0

100

200

300

400

500

600

700

800

900

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-40 -30 -20 -10 0 10 20 30 40

0

50

100

150

200

250

300

350

400

450

500

0

2

4

6

8

10

12

-40 -30 -20 -10 0 10 20 30 40

0

50

100

150

200

250

300

350

400

450

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-40 -30 -20 -10 0 10 20 30 40

M
a
g
n
it
u
d
e

M
a
g
n
it
u
d
e

M
a
g
n
it
u
d
e

M
a
g
n
it
u
d
e

M
a
g
n
it
u
d
e

M
a
g
n
it
u
d
e

Frequency Frequency Frequency

Figure 6.20: Magnitude of every frequency for three different objects.

the mathematical complexity, frequencies with small magnitudes can be omitted. Keeping
the high magnitude components only should be able to model the object with relatively
high accuracy. Fig. 6.21 shows the same objects in Fig. 6.20 after removing components
with magnitudes smaller than 0.75.

0

100

200

300

400

500

600

700

800

900

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-40 -30 -20 -10 0 10 20 30 40

0

50

100

150

200

250

300

350

400

450

500

0

2

4

6

8

10

12

-40 -30 -20 -10 0 10 20 30 40
0

50

100

150

200

250

300

350

400

450

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-40 -30 -20 -10 0 10 20 30 40

Frequencies removed: 42 Frequencies removed: 29 Frequencies removed: 54

Remaining frequencies: 38 Remaining frequencies: 51 Remaining frequencies: 26

M
a
g
n
it
u
d
e

M
a
g
n
it
u
d
e

M
a
g
n
it
u
d
e

M
a
g
n
it
u
d
e

M
a
g
n
it
u
d
e

M
a
g
n
it
u
d
e

Frequency Frequency Frequency

Figure 6.21: Obtained representation after filtering out small magnitude frequencies.

63

6.4.2 Static Map Representation

Similarly, the road network map can be represented using the same approach. Such rep-
resentation may aid in identifying the drivable regions on the road in adverse weather
conditions as well as help in vehicle localization. Similar to modeling the outer boundary
of obstacles, creating map representation can be done using the road boundaries, which
can be obtained from the HD maps. Note that HD maps are represented using different
standards such as OpenStreetMap [80].

The proposed methodology has been tested on CARLA Town01 as shown in Fig. 6.22,
where the green lines are the obtained representations. Each closed loop is modeled us-
ing fn = 80 as a mathematical equation, and hence, this map is represented by eight
mathematical equations.

Figure 6.22: Obtained representation for CARLA Town01.

When a portion of the map is required to be modeled and not the entire map, this
portion can be modeled by the same way. However, it will introduce some open loops.
This is actually normal since any map is connected with another bigger road network, and
hence, open loops must exist. To tackle the existence of open loops, we use the reverse
sampling method proposed in Chapter 5.

To show its validity, we apply it on five-way intersection taken from CARLA Town03.
Fig. 6.23 shows the results for road boundary modeling with and without reverse sampling.
Note that in both cases, every green open loop is represented using one equation. We use

64

fn = 80 for the representation on the left and fn = 50 for the representation on the right.
As it can be seen, modeling with reverse sampling gives a much better result, even in case
of smaller number of frequencies.

Figure 6.23: Obtained representation for five-way intersection from CARLA Town03.
Left: representation without reverse sampling. Right representation with reverse sampling

The proposed methodology can also be used in autonomous mobile robots and can be
further extended to model objects in 3D. Such a technique has the potential to improve
mapping and 3D construction techniques. In case of modeling the surrounding environ-
ment, the magnitude and phase of each frequency would represent the features of the
environment.

65

Chapter 7

Conclusion and Future Work

In this chapter, we summarize the major contributions proposed in the thesis and describe
some of the possible future work. The main thesis focus was to introduce faster decision-
making schemes. The primary problems considered and discussed in the thesis were local
motion planning and control, driving behavior change, and obstacle representation. The
main contributions proposed in the thesis are:

1. A simultaneous local motion planning and path-following control scheme.

2. An adjustable driving behavior using dual-objective cost function methodology.

3. An obstacle representation using Fourier series framework.

7.1 Simultaneous Local Motion Planning and Control

In chapter 3, we proposed a simultaneous local motion planning and path-following control
scheme. The proposed approach enables autonomous driving for long trips while reducing
the burden of computational complexity and ensuring obstacle avoidance functionality. The
proposed scheme works simultaneously through utilizing a parallel architecture for local
motion planning and control layers. In addition, novel feasibility-guaranteed lane change
and double lane change planners were introduced for path planning and obstacle avoid-
ance. Moreover, a dynamic lookahead distance based on road curvature information was
proposed. Finally, an online parameterized curve generator was proposed and integrated
with Model Predictive Path-Following Control [9]. To show the validity of the proposed
methodology, different real-time simulation scenarios were conducted using CARLA open
source simulator. The results, demonstrated in 6.2, showed the efficacy of the proposed
decision-making architecture.

7.2 Adjustable Driving Behavior

In chapter 4, we introduced a new path-following controller based on a dual-objective
NMPC. The proposed controller adjusts the driving behavior of the autonomous vehicle

66

based on the passenger’s preference. Two different controller behaviors were designed,
namely, energy-efficient mode and sport mode. Moreover, a dual-objective cost function is
used to shift between these two modes. In order to validate the proposed controller, differ-
ent simulation scenarios were designed and implemented using Gazebo dynamic simulator.
The results, presented in 6.3, showed the efficacy of the proposed controller.

7.3 Obstacle Representation using Fourier Series

In chapter 5, a novel static map and obstacle representation using Fourier Series framework
was proposed. The framework relies on Complex Fourier Series analysis to reduce the
computation time. The output of the framework is mathematical equations that describe
the shape of either the obstacle or the map. Furthermore, two methods were proposed,
namely; offline method and online method. The offline method was used to create accurate
representations for static maps and most common obstacles an ego vehicle may encounter.
The online method was used to model the free space around the vehicle when dealing with
uncertain environments. To test the proposed framework, different obstacles with different
shapes and sizes were considered as well as two static maps. The results, illustrated in 6.4,
showed the efficacy of the proposed framework.

7.4 Possible Future Work

While simulation results presented in thesis validate all the proposed contributions, ex-
perimental work will show the efficacy of the proposed contributions in real life scenarios.
Although all of the experimental facilities are available on campus, the experimental val-
idation had to be suspended in order to abide to the emergency orders by Ontario public
health because of Covid-19 pandemic which required campus closure.

The decision-making presented in chapter 3 uses FSM for behavioral planning. How-
ever, RL has the potential to deal with more unexpected scenarios. Therefore, an RL
behavioral planner may make the proposed scheme more generic. The parameterized curve
generator can also be optimized to obtain new splines with shorter time. Finally, prediction
models for the dynamic obstacles may improve the proposed collision avoidance techniques.

In chapter 4, we presented two different driving modes. However, different driving be-
haviors beside the sport and energy-efficient modes can also be designed. The stability
of the proposed controller is to be rigorously proven with and without stabilizing con-
straints [25]. Finally, the effect of switching between different modes throughout vehicle
operation will be studied in terms of the controller stability.

The approach proposed in chapter 5 can also be further extended to model objects in
3D. Such a technique has the potential to improve mapping and 3D reconstruction tech-
niques. In addition, this approach may help in solving loop closure problem in Simultaneous
Localization and Mapping (SLAM) since it represents the features of each coordinate of
the map separately. Finally, such a technique can replace spline generations used in lane
markings detection and path planning. Lastly, all the aforementioned techniques can be in-
tegrated together to obtain a decision-making system that incorporates all of the proposed
features.

67

References

[1] Early Estimate of Motor Vehicle Traffic Fatalities in 2018. National Highway Traffic
Safety Administration, Washington, D.C., USA, 2019.

[2] Critical reasons for crashes investigated in the national motor vehicle crash causation
survey. National Highway Traffic Safety Administration, Washington, D.C., USA,
2018.

[3] Study: Long commutes to work by car. Statistics Canada, 2019.

[4] No Hands Across America Journal. https://www.cs.cmu.edu/afs/cs/usr/

tjochem/www/nhaa/Journal.html, 1995. [Online]; accessed 12-November-2019.

[5] The DARPA Grand Challenge: Ten Years Later. https://www.darpa.mil/

news-events/2014-03-13, 2014. [Online]; accessed 12-November-2019.

[6] Hao Zhu, Ka-Veng Yuen, Lyudmila Mihaylova, and Henry Leung. Overview of envi-
ronment perception for intelligent vehicles. IEEE Transactions on Intelligent Trans-
portation Systems, 18(10):2584–2601, 2017.

[7] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli. A
survey of motion planning and control techniques for self-driving urban vehicles. IEEE
Transactions on intelligent vehicles, 1(1):33–55, 2016.

[8] Yadollah Rasekhipour, Amir Khajepour, Shih-Ken Chen, and Bakhtiar Litkouhi. A
potential field-based model predictive path-planning controller for autonomous road
vehicles. IEEE Transactions on Intelligent Transportation Systems, 18(5):1255–1267,
2016.

[9] Timm Faulwasser, Benjamin Kern, and Rolf Findeisen. Model predictive path-
following for constrained nonlinear systems. In Proceedings of the 48h IEEE Con-
ference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference, pages 8642–8647. IEEE, 2009.

[10] Jack N Barkenbus. Eco-driving: An overlooked climate change initiative. Energy
Policy, 38(2):762–769, 2010.

[11] Tomer Toledo and Tsippy Lotan. In-vehicle data recorder for evaluation of driving
behavior and safety. Transportation Research Record, 1953(1):112–119, 2006.

68

https://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/Journal.html
https://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/Journal.html
https://www.darpa.mil/news-events/2014-03-13
https://www.darpa.mil/news-events/2014-03-13

[12] Carlo Ackermann, Jakob Bechtloff, and R Isermann. Collision avoidance with com-
bined braking and steering. In 6th International Munich Chassis Symposium 2015,
pages 199–213. Springer, 2015.

[13] Path tracking for autonomous vehicles based on nonlinear model: Predictive control
method, author=Li, Shaosong and Li, Zheng and Zhang, Bangcheng and Zheng, Shun-
hang and Lu, Xiaohui and Yu, Zhixin, year=2019, institution=SAE Technical Paper.
Technical report.

[14] Alberto Franco and Vitor Santos. Short-term path planning with multiple moving
obstacle avoidance based on adaptive MPC. In 2019 IEEE International Conference
on Autonomous Robot Systems and Competitions (ICARSC), pages 1–7. IEEE, 2019.

[15] Chaoyong Zhang, Duanfeng Chu, Shidong Liu, Zejian Deng, Chaozhong Wu, and
Xiaocong Su. Trajectory planning and tracking for autonomous vehicle based on
state lattice and model predictive control. IEEE Intelligent Transportation systems
magazine, 11(2):29–40, 2019.

[16] Jie Ji, Amir Khajepour, Wael William Melek, and Yanjun Huang. Path planning
and tracking for vehicle collision avoidance based on model predictive control with
multiconstraints. IEEE Transactions on Vehicular Technology, 66(2):952–964, 2016.

[17] Robert Ritschel, Frank Schrödel, Juliane Hädrich, and Jens Jäkel. Nonlinear
Model Predictive Path-Following Control for Highly Automated Driving. IFAC-
PapersOnLine, 52(8):350–355, 2019.

[18] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st An-
nual Conference on Robot Learning, pages 1–16, 2017.

[19] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In 2004 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages
2149–2154. IEEE, 2004.

[20] Tom M. Gasser et al. Legal consequences of an increase in vehicle automation. BASt
(German Federal Highway Institute), 2013. BASt-Report F83.

[21] Preliminary statement of policy concerning automated vehicles. US National High-
way Trafc Safety Administration. National Highway Traffic Safety Administration,
Washington, D.C., USA, 2013.

[22] Taxonomy and defnitions for terms related to driving automation systems for on-road
motor vehicles. Society for Automotive Engineers, 2018.

[23] D Subbaram Naidu. Optimal control systems. CRC press, 2002.

[24] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation, 2004.

[25] Lars Grüne and Jürgen Pannek. Nonlinear model predictive control. In Nonlinear
Model Predictive Control, pages 45–69. Springer, 2017.

69

[26] James B Rawlings. Tutorial overview of model predictive control. IEEE control
systems magazine, 20(3):38–52, 2000.

[27] Shuo Cheng, Liang Li, Hong-Qiang Guo, Zhen-Guo Chen, and Peng Song. Longitu-
dinal collision avoidance and lateral stability adaptive control system based on MPC
of autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems,
2019.

[28] Mohamed W Mehrez, Karl Worthmann, Joseph PV Cenerini, Mostafa Osman,
William W Melek, and Soo Jeon. Model Predictive Control without terminal con-
straints or costs for holonomic mobile robots. Robotics and Autonomous Systems,
127:103468, 2020.

[29] Karl Worthmann, Mohamed W Mehrez, Mario Zanon, George KI Mann, Raymond G
Gosine, and Moritz Diehl. Model predictive control of nonholonomic mobile robots
without stabilizing constraints and costs. IEEE Transactions on Control Systems
Technology, 24(4):1394–1406, 2015.

[30] Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza, and Ronald C Arkin.
Introduction to autonomous mobile robots. MIT press, 2011.

[31] Reza N Jazar. Vehicle dynamics: theory and application. Springer, 2017.

[32] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. Kinematic
and dynamic vehicle models for autonomous driving control design. In 2015 IEEE
Intelligent Vehicles Symposium (IV), pages 1094–1099. IEEE, 2015.

[33] Edward M Kasprzak, Kemper E Lewis, and Douglas L Milliken. Inflation pressure
effects in the nondimensional tire model. SAE Transactions, pages 1781–1792, 2006.

[34] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route
planning in transportation networks. In Algorithm engineering, pages 19–80. Springer,
2016.

[35] Rahul Kala. On-road intelligent vehicles: Motion planning for intelligent transporta-
tion systems. Butterworth-Heinemann, 2016.

[36] Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

[37] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[38] Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A search
meets graph theory. In Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 156–165. Society for Industrial and Applied Mathematics,
2005.

70

[39] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact
routing in large road networks using contraction hierarchies. Transportation Science,
46(3):388–404, 2012.

[40] Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vini-
cius Brito Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago Meireles
Paixão, Filipe Mutz, et al. Self-driving cars: A survey. Expert Systems with Applica-
tions, page 113816, 2020.

[41] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA urban challenge:
autonomous vehicles in city traffic, volume 56. springer, 2009.

[42] Magnus Olsson. Behavior trees for decision-making in autonomous driving, 2016.

[43] Sebastian Brechtel, Tobias Gindele, and Rüdiger Dillmann. Probabilistic MDP-
behavior planning for cars. In 2011 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pages 1537–1542. IEEE, 2011.

[44] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
2011.

[45] John T Betts. Survey of numerical methods for trajectory optimization. Journal of
guidance, control, and dynamics, 21(2):193–207, 1998.

[46] Lydia E Kavraki, Mihail N Kolountzakis, and J-C Latombe. Analysis of probabilis-
tic roadmaps for path planning. IEEE Transactions on Robotics and Automation,
14(1):166–171, 1998.

[47] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially constrained
mobile robot motion planning in state lattices. Journal of Field Robotics, 26(3):308–
333, 2009.

[48] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The international journal of robotics research, 30(7):846–894, 2011.

[49] Yanbo Li, Zakary Littlefield, and Kostas E Bekris. Sparse methods for efficient asymp-
totically optimal kinodynamic planning. In Algorithmic foundations of robotics XI,
pages 263–282. Springer, 2015.

[50] Aurelio Piazzi and C Guarino Lo Bianco. Quintic g/sup 2/-splines for trajectory
planning of autonomous vehicles. In Proceedings of the IEEE Intelligent Vehicles
Symposium 2000 (Cat. No. 00TH8511), pages 198–203. IEEE, 2000.

[51] Alonzo Kelly and Bryan Nagy. Reactive nonholonomic trajectory generation via para-
metric optimal control. The International Journal of Robotics Research, 22(7-8):583–
601, 2003.

[52] Yu Zhang, Huiyan Chen, Steven L Waslander, Tian Yang, Sheng Zhang, Guangming
Xiong, and Kai Liu. Toward a more complete, flexible, and safer speed planning for
autonomous driving via convex optimization. Sensors, 18(7):2185, 2018.

71

[53] Jingjing Jiang and Alessandro Astolfi. Lateral control of an autonomous vehicle. IEEE
Transactions on Intelligent Vehicles, 3(2):228–237, 2018.

[54] Khaled Sailan and Klaus Dieter Kuhnert. Modeling and design of cruise control system
with feedforward for all terrian vehicles. Computer Science & Information Technology
(CS & IT), 2013.

[55] Gabriel M Hoffmann, Claire J Tomlin, Michael Montemerlo, and Sebastian Thrun.
Autonomous automobile trajectory tracking for off-road driving: Controller design,
experimental validation and racing. In 2007 American Control Conference, pages
2296–2301. IEEE, 2007.

[56] Jarrod M Snider et al. Automatic steering methods for autonomous automobile path
tracking. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08, 2009.

[57] Gilles Tagne, Reine Talj, and Ali Charara. Higher-order sliding mode control for
lateral dynamics of autonomous vehicles, with experimental validation. In 2013 IEEE
Intelligent Vehicles Symposium (IV), pages 678–683. IEEE, 2013.

[58] Yinan Wang, Ting Qu, Jianxin Chu, Shuyou Yu, and Hongyan Guo. Trajectory
Planning and Tracking Control of Vehicle Obstacle Avoidance based on Optimization
Control. In 2019 Chinese Control Conference (CCC), pages 3157–3162. IEEE, 2019.

[59] Hans Pacejka. Tire and vehicle dynamics. Elsevier, 2005.

[60] Kevin M Lynch and Frank C Park. Modern Robotics. Cambridge University Press,
2017.

[61] Xiaohan Chen, Yingmin Jia, Junping Du, and Fashan Yu. Formation control of
mobile robots with input constraints: an elliptic approximation approach. In 2011
11th International Conference on Control, Automation and Systems, pages 186–191.
IEEE, 2011.

[62] Mohamed W Mehrez, George KI Mann, and Raymond G Gosine. Formation stabiliza-
tion of nonholonomic robots using nonlinear model predictive control. In 2014 IEEE
27th Canadian Conference on Electrical and Computer Engineering (CCECE), pages
1–6. IEEE, 2014.

[63] Exploding The Map. a16z.com/2017/09/16/exploding-map-evolution-cartography-deep-map,
2014. [Online]; accessed 12-November-2019.

[64] Niels Joubert, Tyler GR Reid, and Fergus Noble. Developments in modern gnss and
its impact on autonomous vehicle architectures. arXiv preprint arXiv:2002.00339,
2020.

[65] Curvature and Radius of Curvature. https://www.math24.net/curvature-radius/,
2014. [Online]; accessed 6-June-2020.

[66] Vehicle turning paths. https://www.dimensions.com/collection/

vehicle-turning-paths-radius. [Online]; accessed 12-June-2020.

72

a16z.com/2017/09/16/exploding-map-evolution-cartography-deep-map
https://www.math24.net/curvature-radius/
https://www.dimensions.com/collection/vehicle-turning-paths-radius
https://www.dimensions.com/collection/vehicle-turning-paths-radius

[67] Jean-Christophe Léger. Menger curvature and rectifiability. Annals of mathematics,
149:831–869, 1999.

[68] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
CasADi – A software framework for nonlinear optimization and optimal control. Math-
ematical Programming Computation, In Press, 2018.

[69] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical Pro-
gramming, 106(1):25–57, Mar 2006.

[70] Timm Faulwasser and Rolf Findeisen. Nonlinear model predictive control for con-
strained output path following. IEEE Transactions on Automatic Control, 61(4):1026–
1039, 2015.

[71] Timm Faulwasser, Janine Matschek, Pablo Zometa, and Rolf Findeisen. Predictive
path-following control: Concept and implementation for an industrial robot. In 2013
IEEE International Conference on Control Applications (CCA), pages 128–133. IEEE,
2013.

[72] Mohamed A Daoud, Mostafa Osman, Mohamed W Mehrez, and William W Melek.
Path-following and Adjustable Driving Behavior of Autonomous Vehicles using Dual-
Objective Nonlinear MPC. In 2019 IEEE International Conference of Vehicular Elec-
tronics and Safety (ICVES), pages 1–6. IEEE, 2019.

[73] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, and Andrew Ng. Ros: an open-source robot operating sys-
tem. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics, Kobe, Japan, May 2009.

[74] Mohamed W Mehrez, Karl Worthmann, George KI Mann, Raymond G Gosine, and
Timm Faulwasser. Predictive path following of mobile robots without terminal stabi-
lizing constraints. IFAC-PapersOnLine, 50(1):9852–9857, 2017.

[75] Grant Sanderson. But what is a Fourier series? from heat flow to circle drawings —
de4. https://www.youtube.com/watch?v=r6sGWTCMz2k, June 2019.

[76] RUSSELL L Herman. An Introduction to Fourier and complex analysis with ap-
plications to the spectral analysis of signals. University of North Carolina Wilm-
ington, Wilmington, NC, online publication, http://people. uncw. edu/hermanr/-
mat367/FCABook/Book2013/FunctionSpaces. pdf, 2013.

[77] Elias M Stein and Rami Shakarchi. Fourier analysis: an introduction, volume 1.
Princeton University Press, 2011.

[78] Jaycil Z Varghese, Randy G Boone, et al. Overview of autonomous vehicle sensors
and systems. In International Conference on Operations Excellence and Service En-
gineering, pages 178–191, 2015.

[79] Alexey Abramov, Christopher Bayer, Claudio Heller, and Claudia Loy. A flexible
modeling approach for robust multi-lane road estimation. In 2017 IEEE Intelligent
Vehicles Symposium (IV), pages 1386–1392. IEEE, 2017.

73

https://www.youtube.com/watch?v=r6sGWTCMz2k

[80] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org .
https://www.openstreetmap.org, 2017.

74

 https://www.openstreetmap.org

	List of Figures
	List of Tables
	Abbreviations
	List of Symbols
	Introduction
	Motivation
	Problem Statement
	Contributions
	Simultaneous Local Motion Planning and Control
	Adjustable Driving Behavior using Dual-Objective NMPC
	Obstacle Representation using Fourier Series
	Benchmarking Proposed Schemes against Existing Controllers
	Validation of the Proposed Methodologies

	Thesis Structure and Organization

	Background, Preliminaries and Related Work
	Automated Driving Standards
	Optimal Control and MPC
	Vehicle Modeling
	Vehicle Kinematic Model
	Vehicle Dynamic Model
	Vehicle Models Comparison

	Decision-Making System
	Global Motion Planners
	Behavioral Planners
	Local Motion Planners
	Feedback Control

	Recent Related Work
	Obstacle Avoidance using Collision-Free Trajectories
	Obstacle Avoidance using Hard and Soft Constraints
	Model Predictive Path-Following Control
	Case Study: Nonlinear MPC controller on Chevy Bolt
	Static Map and Obstacle Representation
	Conclusion

	Simultaneous Local Motion Planning and Control
	Introduction
	Global Planning and Behavioral Planning
	Offline Route Feasibility Checker
	Waypoints Refinement
	Feasibility-Guaranteed Lane Change Planner
	Curvature Calculation and Velocity Profile Refinement

	Online Parameterized Curves Generator
	Vehicle Positioning Relative to Global Route and Dynamic Lookahead Distance
	Curve Fitting Problem Formulation
	Feasibility-Guaranteed Double Lane Change Planner

	Model Predictive Path-Following Control
	MPFC Scheme
	Vehicle Model and OCP Formulation and Discretization

	Path-following and Adjustable Driving Behavior of Autonomous Vehicles using Dual-Objective Nonlinear MPC
	Introduction
	Bicycle and Energy Consumption Models
	Bicycle Model
	Energy Consumption Model

	Proposed Dual-Objective NMPC
	Path-following Control Problem
	NMPC Formulation
	Dual-Objective Cost Function

	Obstacle Representation using Fourier Series
	Introduction
	Complex Fourier Series Expansion
	Obstacle Representation
	Offline Method
	Online Method

	Simulation Results and Benchmarking
	Introduction
	Simultaneous Local Motion Planning and Control Results
	Offline Route Feasibility Checker Results
	Online Curve Generator Results
	Model Predictive Path-following Control Results

	Adjustable Driving Behavior Control Results
	Dynamic Simulation Scenarios
	Real-time Simulation Results and Discussion

	Obstacle Representation using FS Results
	Obstacle Representation
	Static Map Representation

	Conclusion and Future Work
	Simultaneous Local Motion Planning and Control
	Adjustable Driving Behavior
	Obstacle Representation using Fourier Series
	Possible Future Work

	References

