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Abstract

Modern power systems are continuously developing into large and interconnected ones.

However, at the same time, restructuring within the power industry and reduced invest-

ment in transmission system expansions mean that power systems are operating closer

and closer to their limits, leaving them more vulnerable to fault outages than before. The

aspects of protection and control within power systems have thus become increasingly im-

portant as well as complicated. Concurrently, the continuous technological development in

communication and measurement has accelerated the occurrence and application of Wide-

Area Monitoring, Protection and Control (WAMPAC), a new kind of advanced scheme

based on wide-area measurements. The blackouts happened in North America as well as

in other countries over the past few years are also providing more incentives to scientists

and engineers to study wide-area protection and control systems. Communication networks

in smart grids bring increased connectivity at the cost of increased security vulnerabilities

and challenges. A smart grid can be a prime target for cyber terrorism because of its criti-

cal nature. As a result, smart grid security has already attracted significant attention from

governments, the energy industry, and consumers, leading to several important studies.

WAMPAC is the concept of using system-wide information via a centralized control

center or Energy Management System (EMS) to monitor and control the whole system.

Based on the situation and the required control action, the control center shares selected

data with specific remote locations that are in need of the data. The utilization of system-

wide information makes it easier to monitor the entire system and make better control and

protection decisions by the EMS. Although the communication system is the backbone of

these recent schemes, it makes them vulnerable to different types of cyber attacks. This

thesis aims to investigate the problem of cyber security in frequency-related WAMPAC

schemes. Two main schemes are considered as case studies: Automatic Generation Control

(AGC) and Wide-Area Under-Frequency Load Shedding (WAUFLS) protection schemes.

In addition, the cyber security of Power System State Estimation (PSSE), as a Wide-Area

Monitoring (WAM) scheme, has been revisited. As WAMPAC schemes are so varied in

their purpose and implementation, there is no general analysis to illustrate the potential
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impact of a cyber attack on all such schemes. However, some general types of system

responses are considered in this work.

First, with regard to AGC systems, a Kalman filter-based approach is proposed to de-

tect False Data Injection (FDI) in AGC systems. Because detecting FDI and removing the

compromised measurements are not enough in practical situations, the use of a simulta-

neous input and state estimation-based algorithm to detect and concurrently compensate

for FDI attacks against the measurements of AGC systems is investigated. Throughout

the use of this algorithm, the FDI attack signal is dealt with as an unknown input and

its value is estimated accordingly. Then, the estimated value for the FDI is used to com-

pensate for the effect of the attack so that the control center makes its decisions based on

the corrected sensor signals, not the manipulated ones. Unlike other approaches, and as

an extension to this work, the effect of AGC nonlinearities is studied during the attack

time. Recurrent Neural Networks (RNN)-based approach is proposed to detect FDI during

a time where any of the nonlinearities is affecting the system. The RNN-based approach

is used to classify and identify the attacks according to their behavior.

Second, with regard to WAUFLS protection schemes, this thesis investigates the prob-

lem of cyber attacks on WAUFLS. This is followed by a detailed analysis showing that an

adversary can launch an FDI attack against existing WAUFLS schemes in three different

ways depending on they access level to system data, which may lead to equipment damage

and/or system-wide blackout. To address this issue, a new mitigation scheme, that is ro-

bust against cyber attacks, is proposed to mitigate the effect of FDI attacks on WAUFLS.

The proposed scheme depends on trusted system states to run power flow, so the power

mismatch in the system is calculated. Finally, the calculated magnitude of disturbance is

used to decide on the amount and locations of the load shedding.

All proposed detection and mitigation methods in the thesis are tested using simulations

of benchmark and practical systems. In addition, sensitivity analysis is given after each

method.
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Chapter 1

Introduction

The electric power grid is one of the most complex engineering machines ever built by

humans. It is a highly interdependent cyber-physical system, where the dynamics of one

system are tightly coupled to those of another. The latest smart grids contain a large

number of interconnected areas, each of which has its own generators, loads and local

Supervisory Control And Data Acquisition (SCADA) systems.

System data are collected from Remote Terminal Units (RTUs), Intelligent Electronic

Devices (IEDs), integrated remote substations, and local SCADA systems under a frame-

work of standard communication protocols such as IEC-60870 and IEC-61850. These

data are exchanged over a Wide Area Network (WAN) via an Inter-utility Control Center

Communication Protocol (ICCP). The SCADA/EMS efficiently uses IEDs for performing

remote monitoring and control actions. The IEDs, as monitoring and control interfaces to

the power system equipment, are installed in remote site/substation control centers and

can be integrated using suitable communication networks. The IEDs and local commu-

nication can be locally accessed over a Local Area Network (LAN), while the remote site

control center is connected to the SCADA/EMS and other engineering systems through

the power system WAN [2].

WAMPAC utilizes system-wide information and sends selected data to specific remote

locations. Phasor Measurement Units (PMUs), driven by the Global Positioning System
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(GPS), provide real-time synchrophasor measurements for voltage and current phasors

throughout the grid. These measurements offer real-time visibility to the dynamics of

the power system that complement traditional SCADA measurements. Synchrophasor

networks can give significant advantages by providing fast and precise measurements that

can be reported at rates as high as 60 times per second [3]. This is mainly because

SCADA measurements, in Wide-Area Monitoring Systems (WAMS), are unable to provide

a timely assessment of the system due to low sampling rates as well as a lack of time

synchronization [4].

Recently, and due to the availability of PMU measurements, WAMPAC is being used

in different applications. These applications include PSSE, AGC, real-time contingency

analysis, Remedial Action Schemes (RAS), security constrained optimal power flow, eco-

nomic dispatch, unit commitment, phase angle monitoring, power oscillation monitoring,

power damping monitoring, voltage stability monitoring, and dynamic line rating [5]. The

common remedial actions against wide-area disturbances are generator rejection, load re-

jection, Under-Frequency Load Shedding (UFLS) schemes, Out-of-Step (OOS) relaying,

Under-Voltage Load Shedding (UVLS) schemes, etc.

1.1 Motivation and Challenges

Traditionally, SCADA systems were not built with security as an important design

criterion. The exposure of SCADA network infrastructure to cyber threats has thus in-

creased enormously due to the enhanced interconnectivity of SCADA and public network

infrastructures. Over the past decade, the power grid’s SCADA and several other Crit-

ical Infrastructures (CI) such as banking, water distribution, oil and natural gas, smart

grids, etc., are increasingly being targeted by advanced, sophisticated adversaries, as these

infrastructures are critical to national security and societal well-being [6–8]. Therefore,

the data being transmitted in the communication system represent an attractive target

for attackers, increasing the vulnerability of these critical systems [9]. In smart grids,

the common types of cyber attacks are smart grid Denial of Service (DoS) attacks, timing
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de-synchronization attacks, malware attacks, and FDI and manipulation attacks [10,11].

A recent example of malware that targets Industrial Control Systems (ICS) is Win32/

Industroyer, which is a sophisticated malware designed to disrupt the working processes

of ICS used in electrical substations. Other examples include Stuxnet, which struck an

Iranian nuclear facility in 2010 [12, 13], and the attack against Ukraine’s power system

in December 2015. In the latter incident, the attackers were able to install a malware

called BlackEnergy on the control center computers of three energy distribution companies

in Ukraine and temporarily disrupt the electricity supply to the end consumers, which

resulted in thousands of homes and facilities suffering a power outage for several days [14].

This cyber attack showed the inadequacy of relying on just infrastructure- based traditional

cyber security measures when dealing with a resourceful and sophisticated adversary. The

adversary was able to steal valid credentials through social engineering to get into the

control network and perform reconnaissance and planning for several months. These types

of incidents, similar in nature to insider threats, highlight the need to go beyond a single

layer of security in order to detect and quickly recover from a sophisticated cyber attack.

The need to develop intelligent countermeasures in multiple layers, to secure SCADA

infrastructure elements and the fundamental applications they support, is being increas-

ingly recognized. Several governmental reports have highlighted various weaknesses in

cyber security for the electric sector that could result in major impacts due to emerging

Advanced Persistent Threats (APTs) and also the urgent need to take measures to protect

them [15]. The Department of Energy (DOE)’s Office of Electricity Delivery and Energy

Reliability (OE) was set up for the main purpose of overseeing activities that enhance the

reliability and resilience of the nation’s energy infrastructure.

The Cyber security for Energy Delivery Systems (CEDS) program, created by the DOE

OE, has adopted a strategic and hierarchical approach to funding several R&D projects

that specially target multiple domains. Their aim is to develop novel solutions that go

beyond traditional Information Technology (IT) infrastructure-based security to leverage

the physical properties of the grid as part of application layer security [8]. Recognizing

the importance of the cyber security of the Energy Delivery Systems (EDS), the DOE
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OE released a road map in September 2011 to address the issues and concerns relevant to

energy sector cyber security [16]. Also, the OE created the cyber security for the CEDS

program to assist the energy sector asset owners (electric, oil, and gas) by developing cyber

security solutions for energy delivery systems through integrated planning and a focused

R&D effort [17].

The DOE, in coordination with the National Institute for Standards and Technology

(NIST) and the North American Electric Reliability Corporation (NERC) developed a

cyber security Risk Management Process (RMP) for the electric sector that will enable

organizations to proactively manage cyber security risk [18]. Additionally, several efforts,

like NERC Critical Infrastructure Protection (CIP) [19] and NIST Interagency Report

(NISTIR) 7628 [20], are being made at the national level to ensure that the appropriate

standards and safeguards are put in place to protect the electric power grid from potential

cyber vulnerabilities and threats.

In addition to the above efforts, lots of research efforts are done to assess and address

the problem of cyber attacks in power systems. However, the area of WAMPAC, in general,

has been barely visited. The developers of the current WAMPAC schemes did not consider

the problem of cyber attacks during the design stage, and still use the communication

channels and communication standards that can be attacked. In addition, most of the

approaches that have been proposed recently to tackle this problem are not real-time and

are based on unpractical and/or simplified assumptions.

Among different WAMPAC applications, the cyber security of wide-area frequency-

based schemes have not been given enough consideration in the literature claiming that

power frequency is a global parameter and any attack to frequency measurements can

be easily detected. However, this is not the case for the application that depend on the

frequency variations between different areas in the same power system e.g., AGC and

WAUFLS schemes. There is a lack of research in the area of mitigating cyber attacks

on AGC systems. In addition, the current WAUFLS schemes still depend on traditional

ways on evaluating system disturbance and performing load shedding. Therefore, there

is a need for developing wide-area frequency-based applications that takes the problem of
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cyber security into consideration during the design process of these schemes.

1.2 Objectives

The main objective of this thesis is to investigate the effect of cyber attacks on WAMPAC

applications, including AGC, PSSE and WAUFLS, and go beyond traditional security so-

lutions, i.e., to develop new real-time attack-detection and mitigation methods for critical

wide-area frequency-related applications. These developed methods leverage both cyber

and physical aspects of the grid. This is in addition to proposing new WAMPAC schemes

that take cyber security issues into consideration.

1.3 Outline of the Thesis

Chapter 2 presents a thorough literature review of all considered topics in this research.

It also includes a discussion and a list of gaps extracted from previous works.

Chapter 3 investigates in detail the problem of cyber attacks on frequency-related

wide-area applications, including AGC and WAUFLS. In addition, a brief overview of FDI

attacks on PSSE is provided to serve the content of the thesis. An attack model (i.e.,

attacker capabilities as well as possible damage to a power system) and a mathematical

formulation of the problems are presented, and different simulation scenarios that show

the problem are discussed.

Chapter 4 proposes a method using a Kalman filter to detect FDI attacks on AGC

systems. In addition, a simultaneous input and state estimator is utilized to mitigate

the effect of FDI attacks on AGC systems in real time. A linearized AGC model is used

throughout this chapter. System stability after mitigation using the proposed approach is

then studied. Different case studies are carried out to show the accuracy and efficiency of

the proposed approach.
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Chapter 5 proposes detection and mitigation schemes against FDI attacks on AGC

systems considering system nonlinearities. RNN-based approache is proposed as a detection

and identification mean. For mitigation, load forecast is used.

Chapter 6 presents a new WAUFLS protection scheme that is robust against cyber

attacks. The proposed scheme is explained in detail. A practical system is used to test the

scheme, and simulation results are given to show its accuracy, robustness against attacks,

speed, and reliability.

Chapter 7 provides the conclusion of the thesis. It also articulates the platform for

future research work.
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Chapter 2

Background and Literature Review

2.1 Cyber-Physical Security of Smart Grids

”The grid” refers to the electric grid, which is a network of generation stations, trans-

mission lines, substations, transformers and more that deliver electricity from the power

plant to the end user. According to the NIST’s conceptual model of a smart grid [21],

what makes a grid ”smart” is the digital technology that allows for two-way communica-

tion between the utility and its customers and the metering along the transmission lines.

Markets, Service Provider, Operations, Bulk Generation, Transmission, Distribution and

Customer are the seven logical domains of a smart grid. The first three deal with data

collection and power management, while the last four deal with power and information

flows in the smart grid. These domains are connected to each other through variety of

communication links that are governed by various communication protocols.

In addition, smart grids have different components and assets, such as power generation,

distribution, consumers, regional control centers, substations, field devices, communication

and networking devices, phase-measuring units, protecting relays, intelligent electronic de-

vices, remote terminal units, human machine interfaces, home appliances, circuit breakers,

log servers, data concentrators, protocol gateways, tap changers, smart meters, etc. All of
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these components are connected in a smart grid to operate, monitor, and control power

flow and measurements.

However, the legacy cyber-security techniques are no longer sufficient to meet the cyber-

security requirements of the smart grid and its assets. For instance, consumers are con-

cerned about their privacy, as their lifestyle could be exposed to malicious users due to

compromised data communication networks. Similarly, Advanced Metering Infrastructure

(AMI), commonly known as smart meters, can be easily compromised; once they are, it

is almost impossible to change their passwords (PINs), as these devices do not have their

own keyboards to change passwords/PINs. Thus, a controller may be needed to deploy

new passwords automatically once a smart meter is compromised. Thus, smart grid sys-

tems have unique features, goals, objectives and challenges when providing a reliable power

supply and robust communications [9].

2.1.1 Security Requirements in Smart Grids

Smart grids present a variety of technical and regulatory challenges for security [22,23].

These challenges include: 1) the complexity and scale of future power systems; 2) tra-

ditional communication vulnerabilities; 3) new communication requirements; 4) trust-

worthiness among all participants (users, protocol, devices, etc.); 5) legacy devices; 6)

heterogeneous technologies and protocols; 7) proprietary systems; and 8) users’ privacy.

To overcome these challenges, a broad range of security properties are required by the

power systems, such as availability, confidentiality, integrity, authentication, authoriza-

tion, freshness, efficiency, privacy, scalability, adaptability and evolvability, and authentic-

ity [9, 10, 22,24–33]. These requirements can be defined as follows:

Availability: Availability means that the data must be available to the authorized

parties when there is a need for these data, without any security compromise [9, 10, 32,

33]. It ensures that all network resources (e.g., data, bandwidth, equipment, servers) are

always available at all nodes for the authorized parties [24, 27, 29]. The importance of the

availability of data stems from the fact that the cyber layer in power systems manages the
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continuous power flow in the physical layer. Therefore, any data shortage may drive power

system operators to make wrong decisions.

Confidentiality: Confidentiality means that data are disclosed only to authorized

individuals or systems [9,10,27,29,32,33]. Critical data in power system (e.g., meter data)

should be confidential. Meter data are critical because they provide information about

the usage patterns for individual appliances, which can reveal personal activities through

nonintrusive appliance monitoring. For this purpose, meter data should be protected

such that only intended parties can access the information. Price information and control

commands are not critical as long as they are public knowledge. [30].

Integrity: Integrity refers to the assurance that the accuracy and consistency of the

data are maintained. No unauthorized modification, destruction or loss of data goes with-

out being detected [9,10,24,27,29,32,33]. Integrity of price information, meter data, control

commands, and software used in power system substations is critical. For instance, nega-

tive prices injected by an attacker can cause an electricity utilization spike, as numerous

devices would simultaneously turn on to take advantage of the low price. The impact of

attacking the integrity of meter data and control commands is mostly limited to revenue

loss. However, the integrity of software is critical, since compromised software or malware

can control any device and component in the power system [30].

Authorization: Authorization is also known as access control because it makes sure

that the access rights of every entity in the substation are defined for the purposes of

access control [27]. While distinguishing between valid and invalid users for all other

security objectives, e.g., confidentiality, integrity, etc., authorization in relation to access

control restricts the ability to issue commands to the plant control system. Violation of

authorization may cause safety issues [28].

Authentication: Authentication simply refers to verifying the identity of a commu-

nication system practitioner and linking this identity to a system-internal principal (e.g.,

valid user account) by which this user is known to the system. In other words, authen-

tication is validation that the communicating parties are who they claim to be, and that

messages supposedly sent by these parties are indeed sent by them [27]. Other security ob-
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jectives, most notably authorization, distinguish between legitimate and illegitimate users

based on authentication [28]

Non-repudiation: Non-repudiation is one of the most important regulatory require-

ments. It means the assurance that irrefutable proof will exist to verify the truthfulness

of any claim of an entity [27,28] which is relevant to establish accountability and liability.

Privacy: Privacy issues have to be covered with the derived customer consumption

data created in metering devices. Consumption data contains detailed information that

can be used to gain insights on a customer’s behavior [28].

Freshness: Freshness indicates that the data in the power system are fresh and not

replayed by an attacker. There are two main quantities that should be included in any

message: the data needed to be communicated, and the delay information. If the message

has only the data without the delay information, it is referred to as having weak freshness.

However, if the message also includes information that can be used to estimate the delay,

it has strong freshness. Weak freshness is sufficient for applications where preventing a

message replay attack is of main concern, but strong freshness is needed for applications

such as time synchronization within networks [24].

Efficiency: Depending on where the solution will be employed, the grid has varying

real-time requirements that make efficiency essential. Common use of constrained devices

and networks add to this need [22].

Scalability: Due to the increasing scale of the power system, scale is important re-

garding the number of devices and the increasing number of interactions between grid

entities [22]. Current smart grid implementations have a small number of devices, e.g.,

AMI. With more AMIs, the transmitted data volume will increase, together with the

bandwidth usage. The physical tampering of smart meters needs to be addressed in wide

AMI deployment [23].

Adaptability and Evolvability: Adaptability and evolvability refer to a device’s

design being able to allow for adaptation and evolution, as most devices last decades, with

some even outlasting the lifetimes of cryptographic tools [22].
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2.1.2 Classification of Threats

Many threats can affect the operation of smart grids at different stages and layers.

These threats are classified in Table 2.1 according to the attack target [34, 35]. A more

detailed explanation for each threat is given below the table.

Table 2.1: Classification of Cyber-Physical Attacks on Smart Grids

Attack Cyber Physical Attack Target

Denial of Service (DoS) X X Availability

Eavesdropping X Confidentiality

False Data Injection (FDI) X Integrity

Malicious software patching X X Authentication

Man-in-the-middle X X Integrity, Confidentiality

Rogue devices X Integrity, Confidentiality

Unauthorized access X Authorization, Confidentiality

Wireless scrambling X Integrity

• Man-in-the-middle attacks: By gaining access to a communication channel, an

adversary can alter metering devices and thus compromise the availability and in-

tegrity of power system data. Conditions and impacts of such attacks are presented

in [36] and a data-framing attack is proposed in [37]. The replay attack is another

form of man-in-the-middle attack that can incur catastrophic negative impacts [38].

• DoS: DoS attacks target the availability security objective by attempting to corrupt,

delay or block critical communication links through flooding the communication with

bogus traffic [39]. Different communication layers in the power systems are found to

be susceptible to DoS attacks [29]: (i) Channel Jamming can occur on the physical

layer, with effects ranging from delayed delivery of messages to complete denial of

service [40]; (ii) in the Media Access Control (MAC) layer, attackers can modify MAC

parameters and cause a spoofing attack. An intrusion-detection method is proposed
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in [41] to detect threats on an IEC61850 automated substation; (iii) network and

transport layer targeted attacks can severely affect the performance of end-to-end

communication. For example, [42] investigated the vulnerability of real hardware

and software to DoS.

• Rogue Devices: If an attacker gains physical access to field devices such as sensors

or Phasor Measurement Units (PMUs), they can replace the device with a rogue

that sends corrupted signals or falsely acknowledges the performance of a specific

operation [35,43].

• False Data Injection (FDI): FDI attacks result from injecting (corrupting) mea-

surements data, with the goal of initiating wrong control actions. A well-known FDI

model attacks areas that target the State Estimation (SE) process and bypasses the

Bad Data Detection (BDD), as first introduced by Liu et al. [44]. Several assump-

tions, conditions and scenarios have been studied to launch successful attacks, such

as the usage of AC power flow model [45], attacks on Power Distribution Systems

(PDS) [46], attacks with incomplete information [47], and attacks targeting electric-

ity markets [48]. Counter-measure techniques for attack detection and mitigation

have been investigated in [49–51].

In the present work, we will elaborate more on FDI attacks, as these represent some of

the most common types of cyber attacks on smart grids that target grid integrity. In these

attacks, the adversary targets different signals on the communication system and injects

false data, which then leads to wrong decisions. The result is often significant damage

to power system components as well as power disruption to a large number of customers.

The stages, range, and threats of FDI attacks against critical information infrastructures

are investigated in [52]. Different templates for FDI attacks that are used mainly to test

false data detection approaches are mentioned in the literature [53]. A general expression

of these attacks can be written as:

xa = a1(t)x+ a2(t) (2.1)
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where xa is the attacked signal that the control center operator sees, x is the original signal

that the attacker needs to manipulate, a1(t) is the scaling attack value, and a2(t) is the

additive attack value. Let’s assume that an attack starts at time t1 and ends at t2, the

attack value varies based on the used template as follows.

1. Scaling Attack : This type of attack modifies the communication signal so that

the new value becomes higher or lower, depending on the scaling attack parameter.

Mathematically, it is a multiplication process of the true signal by the scaling attack

parameter.

a1(t) =

{
c t1 < t < t2

0 otherwise
(2.2)

a2(t) = 0 (2.3)

2. Ramp Attack : This type of attack can be applied by gradually modifying the true

signal through the addition of an increasing or decreasing attack signal.

a1(t) = 0 (2.4)

a2(t) =

{
c.(t− t1) t1 < t < t2

0 otherwise
(2.5)

3. Step Attack : This attack technique involves adding a positive or negative value to

the signal at the moment of disturbance, prompting a transition from zero to the

step magnitude (rising or falling edges).

a1(t) = 0 (2.6)

a2(t) =

{
c t1 < t <∞
0 otherwise

(2.7)

4. Pulse Attack : This attack form represents a special case of the step attack, where

the attacker implements the attack over a specified time.

a1(t) = 0 (2.8)

a2(t) =

{
c t1 < t < t2

0 otherwise
(2.9)
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5. Random Attack : This attack mode takes place by the addition of a random value

to the true signal.

a1(t) = 0 (2.10)

a2(t) =

{
random t1 < t < t2

0 otherwise
(2.11)

where c is constant and t represents the time.

In [54], the authors studied the performance of a Kalman filter under false data injection

attacks and proved a necessary and sufficient condition under which the attacker could

make the estimation error unbounded without being detected. The authors in [55–57]

also used a Kalman filter, this time to detect false data injection and DoS attacks. They

fed both the Kalman filter estimates and system measurements into an χ2-detector to

detect faults and cyber attacks. However, the detection technique using an χ2-detector

was unable to detect statistically derived FDI attacks. Therefore, the authors in [55, 56]

employed Euclidean distance metrics, which are able to identify such sophisticated injection

attacks. The authors in [57] used the cosine similarity approach instead.

A sequential detector based on a likelihood ratio to detect malicious data and FDI

against state estimation was proposed in [58]. Another real-time detector which detects

FDI on the smart grid through state estimation was presented in [59], where the detector

aimed at detecting the FDI as quickly as possible. The authors analyzed their proposed

scheme using a constructed Markov chain-based model that allowed them to configure the

system parameters for guaranteed performance in terms of some predefined metrics.

2.2 Wide-Area Monitoring, Protection and Control

WAMPAC is the concept of using system-wide information and sending selected data

to specific remote locations that are in need of the data. The utilization of system-wide

information makes it easier to monitor the entire system and make better control and
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protection decisions by the energy management system (control center). Figure 2.1 shows

a high-level schematic of the WAMPAC.

Figure 2.1: High-level schematic of WAMPAC

One of the WAMS is PSSE, which is utilized as a well-established mechanism for mon-

itoring the variables of a system’s state. By relying on power measurements as inputs to

the PSSE process, system operators are able to estimate the states and achieve system

observability. As measurements are not free of error or noise, a major component of the

PSSE algorithm is error minimization between the estimated and actual states, such as

the Weight Least Squares (WLS) algorithm [60].

Recently, the integration of PMUs has facilitated obtaining more accurate measure-

ments at a higher resolution, managed by the GPS. As a consequence, instantaneous system

monitoring has become easier and more frequent. PMUs enable real-time synchrophasor
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measurements for voltage and current phasors over the grid. They can also be used to

measure frequency in the power grid.

In addition, phasor measurements provide visibility to the dynamics of the power system

in real time, complementing traditional SCADA measurements that generate one measure-

ment every 2 to 4 seconds. This is mainly because of the low sampling rates and the lack

of time synchronization in SCADA measurements. Therefore, standalone SCADA systems

are unable to provide real-time assessment of the power system. [4].

On the other hand, significant advantages can be obtained from synchrophasor net-

works, as they provide accurate measurements that are deliverable at high rates of up to

60 times per second [3]. Even with the great advantages offered by PMUs, economic con-

straints are still limiting the wide-spread use of PMUs in practice [61]. Several approaches

have been proposed on how to improve monitoring by optimally augmenting SCADA mea-

surements with the more reliable PMU phasor measurements in the PSSE process [62,63].

To protect against possible errors or cyber attacks during the PSSE process, defense mech-

anisms, such as BDD, have been implemented to detect measurements with high error

levels [64].

2.3 Cyber Security of WAMPAC

Generally speaking, an attacker can access WAMPAC schemes through the communica-

tion system, as shown in Fig. 2.2. The problem of cyber attacks is general in all WAMPAC

schemes. However, as mentioned previously, these schemes are so varied in their purpose

and implementation, there is probably no general analysis to illustrate the potential im-

pact of a cyber attack on all such schemes. Nevertheless, we can generalize some types of

system responses. In the following subsections, a review of each type of these schemes is

given. It is important to mention here that many publications have studied the effect of

cyber attacks on AGC systems. However, the effect of cyber attacks on RAS schemes has

not yet been investigated, except for some publications that propose general architecture

for cyber security in smart grids.
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Figure 2.2: Cyber attacks on WAMPAC systems

2.3.1 Automatic Generation Control

Automatic Generation Control is a control scheme which maintains grid frequency and

minimizes tie-line power deviations by adjusting the output power of generators according

to the measurements collected from the distributed sensors in the grid [53, 65, 66]. The

AGC algorithm uses frequency deviation as well as tie-line power flow provided by the

SCADA telemetry system to determine the Area Control Error (ACE), which is the needed

correction that is used to calculate the new Operating Point (OP). The new OP is then

sent to each area. In a system with n areas, the area control error of Area i is
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ACEi =
n∑
j=1

aij∆Ptie,ij + βi∆fi (2.12)

where ∆fi is the frequency deviation of Area i and ∆Ptie,ij is the tie-line power between

areas i and j.

A cyber attack on AGC systems not only has a direct effect on the system frequency

but can also impact the stability and economical operation of the power grid [11]. This is

because frequency changes can trigger some protection actions that may lead to equipment

damage and blackouts [53]. Figure 2.3 shows the data communication links in a two-area

AGC system.

Figure 2.3: Data communication in a simple two-area AGC system

The impact of cyber attacks, including FDI attacks, on AGC systems has been inves-

tigated [66–74]. As well, several approaches have been proposed in the literature to detect

FDI in AGC systems [68, 75–82]. However, approaches to mitigating cyber attacks on

AGC systems are discussed in only a few publications [53,80–82].
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Using reachability analysis, the authors in [69] showed that the attacker can craft a

controlled attack against a two-area AGC system to drive the system frequency away from

its allowable range. They also showed a case of violating the power exchange constraint

between the two areas that might directly or indirectly lead to a swing in the exchange

power. In [70], the authors added more constraints by assuming that the attacker has

limited access to system parameters. They proposed two methods using Markov Chain

Monte Carlo (MCMC) optimization and a linearized AGC model to show the impact of

cyber attacks on AGC.

In [66, 71], the impact of time-delay attacks on the operation of the AGC systems was

investigated. The impact of FDI attacks on AGC systems were also examined in [67]

through feasibility analysis. Additionally, [72] investigated AGC system vulnerability to

FDI attacks experimentally through testing a system in Iowa, USA, showing FDI attacks

to be potential sources of under-frequency conditions that could result in unnecessary load

shedding.

Different attack scenarios and a detection strategy were proposed in [75]. The detection

scheme is based on a Multi-Layer Perception (MLP) classifier that is used to extract the

differences of ACE under attack and in normal situations, thus distinguishing compromised

signals from normal ones. A universal unknown input and state estimator [79] was proposed

to estimate the values of system states. The obtained system states are then used to

calculate different measurements and compare them with received ones. The obtained

error is used to detect the FDI on AGC systems, if it exceeds a pre-defined threshold.

In [53, 68], the authors used the DC State Estimation (SE) to calculate the values of

the tie-line powers, which they employed to calculate the ACE. A model was developed for

an optimal FDI attack, assuming the attackers’ knowledge of the flow measurements that

are fed to the SE algorithm. They then proposed a method to detect and mitigate the

attacks where the compromised sensors are isolated and only the healthy measurements

are fed to the SE algorithm to calculate the ACE. This was based on the fact that the SE

is an over-determined problem, and therefore removing several compromised elements in

the measurement vector may not affect the estimation much. The authors evaluated the
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impact of a number of compromised sensors on the accuracy of attack-mitigating SE and

concluded that if the number of compromised signals is larger than a specific threshold, the

attack-mitigating SE becomes under-determined and the approach fails to mitigate against

the FDI.

In [80], different attack templates on AGC systems were developed. These attacks

modified the frequency and tie-line power flow measurements to drive the frequency out

of the allowable range. Real-time load forecasts were calculated, after which the anomaly

detection algorithm used this real-time load forecast to predict AGC operations over a

given time period. During operations, the performance of the AGC is compared to this

prediction to identify anomalies. If an attack is detected, the mitigation strategy utilizes

the forecast load to calculate and forecast the ACE instead of using the received data to

calculate it. The effect of the noise was only considered in the ACE forecasting, but the

process and measurement noise were not explicitly modeled.

Law et al. [81] presented security games for risk minimization in AGC. In particular, the

authors provided a model for the attacker-defender interactions using stochastic (Markov)

security games to analyze the best defensive actions under resource constraints. Neverthe-

less, the paper did not focus on the design of attacks, defenses or the controller, but on

the game-theoretic modeling of system risk dynamics under the actions of the attacker and

defender for any given system.

More recently, in [82], the authors proposed a mitigation scheme for FDI attacks against

Load Frequency Control (LFC) systems. The technique described in this reference is

not very practical, since the authors assumed the existence of a number of redundant

communication channels that cannot be simultaneously controlled by the attacker. The

FDI attack detection is performed using a neural network algorithm. When an attack is

detected against the active communication channel, a command is issued to the transmitter

to request a new channel.
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2.3.2 Power System State Estimation

Power System State Estimation (PSSE) is employed as a well-established mechanism

for monitoring the variables of system states. Relying on power measurements as inputs

to the SE process, system operators are able to estimate the states and achieve system

observability. As measurements are not free of error or noise, and the number of measure-

ments is more than the unknown states, a major component of the SE algorithm is error

minimization between the estimated and actual states, such as the WLS algorithm [60].

The most serious type of cyber attack against PSSE is an FDI attack, as it is able

to bypass the BDD to corrupt measurements. There has been a massive research effort

to formulate detection and mitigation techniques against these types of attacks, with [83]

surveying recent work in this area.

In [84, 85], the authors proposed online deep learning techniques to detect attacks

based on temporal and spatial measurement variations caused by the attacks. A non-

linear interval observer is proposed in [86] for attack detection and isolation of targeted

sensors. The technique is based on estimating the interval state of the internal physical

system and is used both as a reference and to raise an alarm when the interval residual does

not include the zero value. The authors in [87] compare four algorithms based on a matrix

separation technique to detect FDI attacks with higher efficiency and faster computation

performance in large-scale systems.

Bobba et al. [88] explored how to detect FDI attacks: One way is to secure basic

measurements which are selected strategically, while another way is to verify state variables

independently, after selecting them strategically. Specifically, the authors showed that

protecting basic measurements is sufficient and necessary for the detection of FDI attacks.

The protection of meter measurements includes both physical and software methods, such

as guard patrolling, video monitoring, tamper-proof communication systems, sophisticated

authentication protocols, asymmetric encryption mechanisms, etc.

In their work, Dan and Sandberg [89] proposed greedy algorithms for perfect and partial

countermeasures against FDI attacks. Perfect defense means that no FDI attacks can occur.
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Due to so many meters in power systems, to make all devices encrypted overnight is not

possible. Since the defense budget might not be sufficient for perfect countermeasures,

the control center would consider protecting a subset of meters to maximize the increased

system security. The authors also investigated the protection metric of maximizing the

minimal attack cost among all meters.

Kosut et al. [90] considered two regimes of FDI attacks on state estimation in smart

grids, where for the weak attack regime, the number of meters that the attacker manipulates

is smaller than that in the strong attack regime. The problem is addressed by the adversary

from a decision theoretic point of view [91, 92]. For the system operator, a generalized

likelihood ratio test (GLRT) detector is devised with incorporation of historical data. The

Bayesian formulation can take advantage of priori information to preserve and trace the

likely state of the system.

Kim and Poor [93] proposed strategic countermeasures against FDI attacks on the

power grid based on linearized measurement models. They first suggested devising a new

low-complexity attacking strategy, after which they designed a greedy approach to protect

a number of meter measurements for defense. Finally, they developed another greedy

approach to promote the PMU deployment to defend against such attacks.

Giani et al. [94,95] investigated unobservable data integrity attacks on power systems.

First, an efficient approach was presented to obtain all the sparse attacks where a modest

number of meter measurements are compromised. Known-secure PMUs were used as coun-

termeasures against such cyber attacks. Finding a way to ascertain the minimum number

of necessary PMUs at carefully chosen buses was finally analyzed for defense.

Bi and Zhang [96] proposed countermeasures against FDI attacks by protecting crit-

ical state variables. To this end, the authors carefully selected a minimum number of

meter measurements to be protected. Both optimal and complexity-reduced suboptimal

approaches were provided to obtain the defense objective at the minimum cost. After

characterizing the problem into a Steiner tree in graph theory, the researchers leveraged

graphical methods to select the minimum number of meter measurements [49]. In addi-

tion, by jointly considering the conventional protecting meter measurements and the covert
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topological information, they further proposed a mixed protection strategy, in case either

of them failed to obtain the defense objective [50, 97].

2.3.3 Wide-Area Under-Frequency Load Shedding Protection

There has been massive number of publications in the literature that discussed the topic

of cyber attacks on AGC and PSSE as explained in the previous sections. Nevertheless, the

cyber security of Wide-Area Protection Schemes (including WAUFLS schemes) have been

barely touched or just been visited quickly in the papers that discusses the cyber security

of WAMPAC in general like [98]. To the best knowledge of the authors, only one reference

has discussed the data integrity attacks to load shedding schemes in power systems [99],

not to under-frequency load shedding specifically. In this subsection, the recent trends in

UFLS protection schemes are discussed.

Generally speaking, Wide-Area Protection (WAP) is a new centralized kind of protec-

tion system that is based on wide-area measurements. It can also coordinate with conven-

tional protections to protect critical loads, rapidly isolate faulty electrical components, reli-

ably and accurately perform online security analysis for the post-fault or post-disturbance

system, and take appropriate measures when necessary to prevent the power system from

cascading or outages or even blackouts from occurring [100]. WAUFLS protection schemes

have recently been replacing conventional under-frequency protection relays.

The main reason for under-frequency in a power system is the unbalance between

generation and load. This takes place when a large generator is tripped, a sudden load

is connected, or a large interconnection line is disconnected. Load shedding is a process

used to relieve this mismatch by regaining the balance between load and generation [101].

Under-frequency load shedding schemes must have the following four characteristics [102]:

1. Their action should be quick so that the frequency drop is halted before more catas-

trophic events can occur.

2. Unnecessary actions must be avoided.
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3. The protection system should be liable and redundant, as a malfunction of it would

surely lead to power system cascading.

4. The amount of load to be shed should always be the minimum possible but still

sufficient to restore the security of the grid and to avoid the minimum allowable

frequency being overcome.

Traditionally, UFLS schemes were local and depended only on the absolute value of

the frequency [102, 103]. These techniques basically shed a certain amount of the load

under relief when the system frequency falls below a certain threshold. If the frequency

keeps on falling after the first shed, further sheds are performed when lower thresholds

are passed. The values of the thresholds and the relative amounts of load to be shed are

decided off-line, on the basis of experience and simulations. Some of these techniques are

based on measuring the Rate of Change of Frequency (ROCOF) when a certain frequency

threshold is reached. These strategies are called semi-adaptive techniques [102].

Many centralized WAUFLS schemes have recently been proposed [104–109] that utilize

the ROCOF and depend on the system frequency response. The value of ROCOF at the

moment of disturbance is proportional to the size of the disturbance through the inertia

constant H. Thus, given the value of the system inertia, the value of ROCOF at the moment

of the disturbance provides an indication of the size of the disturbance, thereby enabling

the activation of load shedding. One disadvantage of this method is that if generators or

large synchronous motors are disconnected during the disturbance, the inertia of the system

needs to be adapted accordingly. It has been proven that this method works efficiently with

large systems characterized by high inertia. [102]. In the following paragraphs, schemes

that are considered for testing in this work are reviewed.

In [104], a UFLS scheme based on the voltage stability of the system was proposed.

Following a disturbance, a voltage stability risk index (VSRI) is calculated at all load

buses. This index is then used to suggest a dynamic voltage stability criterion by which

suitable locations for load shedding can be chosen. Another approach of adaptive UFLS

was presented in [105], where the authors used the non-recursive Newton-type algorithm to
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locally estimate the frequency of the system as well as the ROCOF. These values are sent

to the control center and used to calculate the amount of disturbance, if any. Accordingly,

a control action was then derived and distributed throughout the power system.

In [106], an approach for obtaining a few-seconds-in-advance frequency prediction was

tested. This technique makes decisions about the amount of load to be shed, while at

the same time being aware that inaccuracies in the procedure are inevitable. The scheme

depends on calculating the frequency of the wide area by calculating the average of PMUs

measurements. It then tries to approximate the deviation of the frequency to a second-

order polynomial or a straight line based on the frequency declination. Accordingly, it can

predict the time or frequency at which the system frequency violates the allowable values

and, depending on the predicted values, it can calculate the amount of load to be shed.

This process continues until reaching the nominal value of the frequency again.

In [108], a centralized adaptive under-frequency load shedding controller (CAULSC)

based on UFLS and Distribution State Estimation (DSE) was proposed for microgrids with

distributed resources when they are operated as isolated islands. The proposed controller

calculates the amount of disturbance in two different ways according to the nature of the

disturbance. If the microgrid is islanded from the grid or if one of the generators in the

microgrid is disconnected and the microgrid has already been islanded, the power flow

model of the system is used to calculate the magnitude of disturbance. If the disturbance

is a sudden change in the load demand, the frequency at the center of inertia of the system

and the ROCOF are utilized, using the swing equation to calculate the magnitude of

disturbance. Finally, the DSE estimates the load demand at each bus and distributes the

load shedding between different buses accordingly.

Two centralised adaptive load shedding algorithms are proposed in [109]. The first algo-

rithm is response-based and the second one is a combination of event-based and response-

based methods. The proposed methods are capable of preserving power system instability

even for large disturbances and combinational events. They use both frequency and voltage

variables to select appropriate amounts of load shedding.
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2.4 Discussion and List of Gaps

There are numerous existing applications of wide-area protection and control systems,

with some examples described and discussed above. Existing implementations use simple

measurements, and sometimes the measurements are local only. In most cases, however,

the measurements and actions use wide-area information and communications systems.

Therefore, more attention must be paid towards the security of these applications, as

otherwise, catastrophic disasters may occur.

Based on the literature survey conducted above, the following list of gaps has been

extracted:

1. The impact of FDI attacks on AGC systems has been investigated using different

methodologies. Nevertheless, the mitigation against the effect of FDI on AGC sys-

tems has barely been touched [53,80–82].

2. The above-mentioned papers provided their solutions and some case studies where

their solutions apply. None of them provides formal proofs for the stability of the

system after incorporating the attack mitigation scheme nor the unbiasedness of the

estimated signals.

3. All the above works considered a linear model of the AGC system. In other words,

none of these works considered the different sources of AGC nonlinearities, which

include dead-band of speed governor, transmission delay, and Generation Rate Con-

straints (GRC). Consequently, the derived FDI attack detection schemes proposed

in the preceding studies may fail when the underlying AGC system is nonlinear.

4. Despite the fact that the problem of cyber attacks against wide-area control and mon-

itoring schemes (for example AGC and PSSE) is considered in many publications, the

impact on all other schemes, including RAS schemes, has barely been acknowledged.

5. Despite the above-mentioned advancements in wide-area monitoring using PSSE

based on PMU measurements, the current WAUFLS protection schemes still de-

pend on older techniques to evaluate system disturbances. These techniques rely
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only on the characteristics of system frequency measurements, which are prone to

cyber attacks. An attacker can drag the system to blackout if access to any of these

frequency measurements is gained.
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Chapter 3

Problem Formulation

This chapter investigates the problem of cyber-physical attacks on AGC systems, PSSE,

and WAUFLS protection schemes. As well, attacker capabilities and possible damage

that can be caused to the power system as a result of an attack are also given, along

with the mathematical formulation of each attack scenario. To support the formulations,

various attack scenarios are simulated in MATLAB/Simulink and PSCAD/EMTDC, using

practical systems.

3.1 False Data Injection (FDI) Attack Model

WAMPAC schemes use IEC 61850 communication protocols. These protocols use dif-

ferent communication media i.e., wireless, fiber optics and Microwave, and support in-

creased communication between both local and remote substation devices. However, this

increases the exposure of the remote substations to cyber attacks because these substa-

tions are geographically dispersed and often maintain limited physical network protec-

tions [8, 41, 98, 110–112]. Therefore, it is assumed that the attacker has access to a subset

of system measurements through the communication system. This subset includes both

frequency and power flow measurements. It is also assumed that these measurements are
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sent through a wireless medium that the attacker can access, but that the attacker cannot

physically access the system at any point. In addition, the attacker cannot access/tamper

with control decisions of the control center/EMS decisions [81]. Without this constraint, it

is a trivial exercise for any attacker that has successfully penetrated the protected network

to trigger cascading failures across the power grid. It is therefore conceivable that an en-

ergy provider would make protecting its EMS its foremost priority. Protecting every other

single communication link in the power system is extremely expensive, especially in large

power systems that mainly depend on the communication network that carries hundreds

of signals.

Table 3.1 summarizes the objectives, capabilities and limitations of the attacker as well

as the assumptions that this work is based on. The attack model mentioned in Table 3.1

is used throughout the work.

Table 3.1: Attack Model

A
tt

a
ck

e
r

Objective(s)
- cause system-wide blackout

- cause equipment damage

- cause power disruption

Capabilities - has access to any or all frequency measurements

- has access to power flow measurements

Limitation(s) - cannot access the system physically

- has no access to the control decision signals

Assumption(s) - system measurements are sent through wireless communication

3.2 FDI Attacks on AGC Systems

3.2.1 State-Space Model of the AGC System

The control block diagram of the utilized two-area AGC system used throughout the

first part of this study is described in [65]. A modified version of this block diagram is
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shown in Fig. 3.1, where three additional inputs, labeled d1, d2 and d3, are added to model

the effect of FDI attacks on the frequency deviation in Area 1, ∆f1, frequency deviation in

Area 2, ∆f2, and tie-line power ∆Ptie, respectively. Table A.1 shows the assumed numerical

values for the system parameters.

Figure 3.1: Block diagram of the two-area AGC system, where d1, d2, d3 denote the FDI attack

signals and d̂1, d̂2, d̂3 denote the corresponding estimates

The system is modeled using the following state-space equation:

ẋ(t) = Acx(t) +Bcu(t) + ω(t) (3.1)
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where the system state vector x(t) includes changes in the frequency ∆f , the mechanical

turbine power ∆Pm, the steam valve position (governor power) ∆PV , the AGC integrator

output for both areas, and the tie-line power. More precisely,

x = [∆f1,∆PT1,∆Pg1,∆f2,∆PT2,∆Pg2,∆Ptie, ACE1, ACE2]> (3.2)

The load disturbances in Area 1 and Area 2 are denoted by u(t) = [u1(t), u2(t)]>, and ω(t)

indicates the process noise. Following [71, 113], the state-space matrices for the two-area

AGC system considered throughout our investigation are obtained as explained below.

Area 1 includes three system state variables, namely the frequency deviation at Area 1,

∆f1, the turbine output power ∆PT1, and the governor output power ∆Pg1. These state

variables can be calculated as follows:

∆̇f 1 =
−D1

2H1

∆f1 +
1

2H1

∆PT1 −
1

2H1

∆Ptie −
1

2H1

u1 (3.3)

∆̇P T1 =
−1

TT1

∆PT1 +
1

TT1

∆Pg1 (3.4)

∆̇P g1 =
−1

R1Tg1
∆f1 −

1

Tg1
∆Pg1 +

1

Tg1
ACE1 (3.5)

Similar to Area 1, the state variables related to Area 2 can be calculated as follows:

∆̇f 2 =
−D2

2H2

∆f2 +
1

2H2

∆PT2 +
1

2H2

∆Ptie −
1

2H2

u2 (3.6)

∆̇P T2 =
−1

TT1

∆PT2 +
1

TT1

∆Pg2 (3.7)

∆̇P g2 =
−1

R2Tg2
∆f2 −

1

Tg2
∆Pg2 +

1

Tg1
ACE2 (3.8)

The tie-line power is related to the frequency deviation in both areas, as follows:

∆̇P tie = Ps∆f1 − Ps∆f2 (3.9)
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The ACE for each area is defined as:

˙ACE1 = −KI1B1∆f1 −KI1∆Ptie −KI1B1d1 −KI1d3 (3.10)

˙ACE2 = −KI2B2∆f2 +KI2∆Ptie −KI2B2d2 −KI2d3 (3.11)

where

B1 =
1

R1

+D1, B2 =
1

R2

+D2

Therefore, the state-space matrices for the system are given by:

Ac =



−D1

2H1

1
2H1

0 0 0 0 −1
2H1

0 0

0 −1
TT1

1
TT1

0 0 0 0 0 0
−1

R1Tg1
0 −1

Tg1
0 0 0 0 1

Tg1
0

0 0 0 −D2

2H2

1
2H2

0 −1
2H2

0 0

0 0 0 0 −1
TT2

1
TT2

0 0 0

0 0 0 −1
R2Tg2

0 −1
Tg2

0 0 1
Tg2

Ps 0 0 −Ps 0 0 0 0 0

−K1B1 0 0 0 0 0 −K1 0 0

0 0 0 −K2B2 0 0 K2 0 0



Bc =



−1
2H1

0

0 0

0 0

0 −1
2H2

0 0

0 0

0 0

0 0

0 0
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Cc =

0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0


To make (3.1) suitable for numerical simulations, it has to be discretized. The sampled

discrete-time model of the Ac and Bc matrices is given by:

A = eAc×Ts (3.12)

B =

∫ Ts

τ=0

eAc×τBcdτ (3.13)

where Ts is the sampling period. Therefore, the discretized state-space model of the con-

sidered two-area power system is:

xk+1 = Axk +Buk + ωk (3.14)

where xk and uk are the state and input vectors at time step k, respectively. The sampling

rate is considered to be 10 ms in this work.

3.2.2 Stealthy FDI Attacks on AGC Systems

The attacker can manipulate the frequency signals of different areas, the tie-line power

signals, or both. When these falsified data are reported to the control center, the control

center operator calculates a false value for the ACE of different areas, and false generator

correction values are sent to different generators. For an n area system, the new value of

the area control error in Area i due to the attack is:

ACEia =
n∑
j=1

aij(∆Ptie,ij + AP ) + βi(∆fi + Af ) (3.15)

where Af and AP are the FDI attack signals in frequency measurements and tie-line power,

respectively.
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For an FDI attack to be stealthy, it needs to bypass the bad data detection algorithms

implemented within the control center. Moreover, the grid operator may apply other data

quality checks on the received measurements. For instance, the measurements should not

change significantly over a short period. Intuitively, if each element of the FDI attack

vector is bounded around zero, these data quality checks, designed to be insensitive to

natural random noises in the measurements, will not be alerted [53]. Thus, for the attack

to be effective, the selection of attack parameters (e.g., magnitude and rate of change)

is critical from the attacker’s perspective. The parameters have to be selected such that

the attack creates the desired impact but does not trigger any data quality alarms in the

control center. For example, in AGC systems, abrupt changes and excessive values for the

ACE would be avoided by attackers to evade detection. For Area i, this can be formulated

mathematically using the following expression:

|ACEi,t − ACEi,t+T
T

| < ψ (3.16)

where ACEi,t is the ACE signal at time t for Area i, T is the time interval where two

successive ACE samples are measured, and ψ is the maximum ACE signal curve slope [80].

In this work, detection and mitigation of slowly varying attack signals are considered

because they satisfy the above conditions and allow for stealthy attacks. Nevertheless, the

proposed approach, in this chapter, is not restricted to this class of attacks and can detect

and mitigate other types of FDI attacks.

A stealthy attack scenario is carried out to show the effectiveness of FDI attacks on

the operation of a two-area AGC. A pre-scheduled load reduction of 20% took place in

Area 1. To simulate a gradual increase in the system frequency, the attacker injected a

ramp signal with a slope of 0.001 to the frequency measurement signals of areas 1 and

2. Due to this attack, the control center operator sees that there is an over-frequency

condition in the system. Accordingly, and based on the calculated ACE, the control center

operator decides to reduce the generation to avoid the over-frequency condition. However,

the real situation in the system is the opposite, i.e., the system frequency is dropping and

an under-frequency condition has developed, as shown in Fig. 3.2. This situation might
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force the under-frequency control in the generator to shut down, causing a system-wide

blackout.
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Figure 3.2: AGC performance under attack scenario 1

3.3 FDI Attacks on PSSE

Power System State Estimation (PSSE) is employed to ensure system stability and

observability of state variables, such as voltage magnitudes and phase angles of all buses.

These states are estimated based on available field measurements. In the general formula-

tion of ac PSSE, power flow measurements are related to the system states by:

z = h(x) + e (3.17)
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where z is the power flow measurement vector that includes voltage, active/reactive power

injection, and active/reactive power flows from system meters, x is the system state vector

of voltage magnitudes and angles, h(x) is a nonlinear function that maps the states to

the measurements, and e is the measurement error vector. The optimal estimates of the

system states are obtained by means of a WLS optimization problem:

minimize J(x) = (z − h(x))TW (z − h(x)) (3.18)

where W is the co-variance diagonal matrix of error inverses, representing weights based on

meter accuracy. The standard procedure for solving (3.18) is applying iterative methods

[64], where the first optimal condition is given by:

∂J(x)

∂(x)
|x=x̂ = −2

[
∂h(x̂)

∂(x̂)

]>
W (z − h(x̂)) (3.19)

where x̂ is the estimated state vector, obtained by the iterative process of the resulting

nonlinear equation.

Note that the attacker can manipulate voltage magnitudes, phase angles, or both. In

this work, only voltage magnitudes are considered as target state variables to be manipu-

lated, as per the attack objective. This can be done indirectly by altering the measurements

which are dependent on any given state variable. The Jacobian matrix of h(x), Jh, maps

the relation between the system states and measurements and thus allows it to determine

which measurements to alter in order to affect a specific state variable, as shown below:

Jh =



∂h1
∂x1

∂h1
∂x2

· · · ∂h1
∂xn−1

∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

· · · ∂h2
∂xn−1

∂h2
∂xn

...
...

. . .
...

...
∂hm−1

∂x1

∂hm−1

∂x2
· · · ∂hm−1

∂xn−1

∂hm−1

∂xn
∂hm
∂x1

∂hm
∂x2

· · · ∂hm
∂xn−1

∂hm
∂xn


(3.20)

The Jh rows correspond to m measurements and the columns correspond to n state vari-

ables. For any measurement that is directly dependent on the a specific state variable, the

corresponding element in row and column must be non-zero.
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To find the set of measurements needed to alter a specific state variable, the attacker

considers the rows of measurements for which the column of the targeted state has non-

zero elements. This analysis yields the upper bound on the number of measurements to

be attacked. In order to determine the value of manipulation of these measurements, the

attacker then considers the power flow equations:

Pij =V
′2
i · gij − V ′i Vj · gij cos (θi − θj)
− V ′i Vj · bij sin (θi − θj) (3.21)

Qij =− V ′2i ·
(
bij + bshij

)
+ V ′i Vj · bij cos (θi − θj)

− V ′i Vj · gij sin (θi − θj) (3.22)

where V ′i is the voltage magnitude to be altered at bus i, θi is the voltage angle at bus i,

and gij, bij, and bshij are the conductance, susceptance, and shunt susceptance of the line

between node i and j, respectively. Active and reactive power injection at node i are

represented by:

Pi =
∑
j∈Ω

Pij (3.23)

Qi =
∑
j∈Ω

Qij (3.24)

where Ω is the system bus’s set. It follows that in order to change the voltage magnitude

at bus i, power flow equations (3.21)-(3.24) are solved to determine the required changes

in measurements. Let vector ~c represent the vector of values to be added to the state

variables. Based on this attack formulation, the condition for a stealthy FDI attack has

been outlined for ac systems, as follows:

‖za − h(x̂bad)‖ = ‖z + a− h(x̂+ c)‖
= ‖z − hx̂‖ ≤ τ (3.25)
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where ~a is the attack vector and ~za is the resulting manipulated measurements vector.

Therefore, the criteria for a stealthy hidden attack are given by:

a = h(x̂+ c)− h(x̂) (3.26)

This attack vector manipulates state variables without raising the BDD alarm. The algo-

rithm is grounded in the following assumptions [45]: 1) All measurements in the sub-graph

surrounding a power injecting bus are to be changed; 2) power injection change summa-

tions must be kept at zero; and 3) attack vector sparsity depends on system topology. It

is worth mentioning that the attack strategy must also adhere to the electrical laws of the

power networks (e.g., current and power nodal balances).

3.4 FDI Attacks on UFLS Schemes

3.4.1 Operation of WAUFLS

According to the literature, and as depicted in Fig. 3.3, the general procedure of

WAUFLS schemes [114] can be summarized as follows:

i. The control center receives frequency measurements for different areas from the PMUs

installed in the system. The ROCOF is calculated either by the PMUs or locally at

the control center in the grid.

ii. The frequency measurement and ROCOF values are used to evaluate system dis-

turbance. Currently, the magnitude of disturbance is calculated by swing equations

for all generators [104–107, 109, 115]. For the i-th generator in a system with N

generators, it can be written as:

∆Pi = Pmi − Pei =
2Hi

fn

dfi
dt

(3.27)
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Figure 3.3: Schematic of WAUFLS protection schemes

where ∆Pi is the imbalance between generation and load(s) in pu, Pmi is the pu input

mechanical power, Pei is the pu output electrical power, Hi is the inertia constant in

sec, fi is the frequency in Hz, and fn is the system nominal frequency in Hz. The

total resulting magnitude of disturbance can be obtained by summing the individual

disturbances from each generator, as follows:

∆P =
N∑
i=1

∆Pi =
2
∑N

i=1Hi

fn

dfc
dt

(3.28)

fc =

∑N
i=1 Hifi∑N
i=1Hi

(3.29)

where fc is the frequency of the equivalent center of inertia.

iii. The control center determines the amount of load to be shed (power mismatch) based

on the amount of the disturbance and system spinning reserve as [104,107]:
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Pshed = 1.05× (∆P − Pth) (3.30)

where Pth is the the threshold value of power mismatch (available spinning reserve),

and 1.05 is introduced for compensating the simplifying hypotheses adopted to de-

velop the reduced SFR model.

iv. Finally, a shedding control action is sent by the control center to an area or shared

between different areas based on disturbance information, which includes the nature

of the disturbance, the location of the disturbance, and a load sensitivity analysis.

To achieve load shedding, a combination of loads is selected such that the sum of

their total active powers is as close as possible to Pshed. There are different criteria by

which load shedding locations can be selected. However, the most common criteria

used in wide-area applications is the voltage collapse-based load shedding, as the

voltage collapses rapidly after a disturbance [104,107,109,116–118].

The shedding locations are mainly selected based on the location of disturbance [104].

In other words, the load shedding is distributed between the buses that are close to the

disturbance according to their voltage dip during the disturbance. All area buses are

ranked based on voltage dips. Accordingly, the load shedding at bus i is proportional

to the bus rank, as follows

Pshed,i =
∆Vi∑Nv
i ∆Vi

× Pshed (3.31)

where ∆Vi is the voltage dip at bus i immediately after the disturbance, and Nv is

the set of buses that have the highest voltage dip. Once the load to be shed is known

for all buses, the shedding process takes place in steps.

3.4.2 Attack Strategies

The following subsections explain in detail three different scenarios by which the at-

tacker can target the operation of the WAUFLS schemes in the power systems. Depending
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Figure 3.4: Frequency values at different buses

on what data are available for the attacker (attacker’s access level), the attacker can launch

an attack. The first scenario explains how can the attacker launch an attack if they have

access to one or more frequency signals. It is shown that the attacker will have a full con-

trol over the amount of load to be shed. The second scenario explains the case where the

attacker has access to PFMs. In this case, the attacker cannot manipulate the amount of

load to be shed, but they can force the control center operator to shed load from incorrect

locations. Finally, if the attacker has access to both PFMs and frequency measurements,

they can fake a disturbance and cause unnecessary load shedding by the control center.

A. Targeting the magnitude of disturbance

Power system frequency is usually dealt with as a global parameter. However, many

results in the literature indicate that the frequency slightly differs from one neighboring

area to another during system transients [119]. This is also shown in the simulation results

of Fig. 3.4 for the IEEE 39 bus system, where small deviations between frequency values

at different buses can be seen clearly. The deviations give attackers an opportunity to

manipulate each frequency measurement value separately. In some systems, point-to-point

secure communication links are used for frequency measurements, but due to the cost of

the links, not all control systems implement them to secure frequency measurements.

As mentioned above, control centers make use of the values of a frequency and its
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derivative to evaluate system-wide disturbances using swing equations to calculate the

amount of load required to be shed. Equation (3.28) also shows that the magnitude of

disturbance given by the swing equation (∆P ) depends more on the ROCOF than on the

frequency value itself. This allows the attacker to construct an FDI attack that does not

change the magnitude of the frequency significantly, though it does change the slope of

the frequency signal to affect the calculated magnitude of disturbance. In other words,

the attacker works on manipulating the ROCOF, not the frequency magnitude, in order to

have the maximum effect on the swing equation output. Hence, the attacker can control

the output of the swing equation (∆P ) to force the control center operator to make a

wrong action, either by shedding a lower load amount (leading to system blackout) or

shedding a higher load amount (causing damage to system equipment due to over-frequency

conditions). To launch such an attack, the attacker does not need to access the system

physically. However, he or she does need to access one or more frequency measurement

signals, which can occur if that signal is sent through wireless communication.

To formulate the attack mathematically, it is assumed that the attacker injects a linear

varying signal to one or more frequency measurements. Without loss of generality, it is

assumed that the FDI takes place on all frequency values. The frequency value of generator

i after manipulation is:

fia = fi ±mit (3.32)

where mi is the slope of the attack signal. Substituting the new frequency values into

(3.29), the center of inertia frequency is:

fca =

∑N
i=1Hifi ±

∑N
i=1 Himit∑N

i=1Hi

= fc ±
∑N

i=1Himit∑N
i=0Hi

(3.33)

The new magnitude of disturbance can be calculated by substituting into (3.28), as follows:
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∆Pa =
2
∑N

i=1 Hi

fn

dfca
dt

=
2
∑N

i=1 Hi

fn

d

dt

[
fc ±

∑N
i=1Himit∑N
i=0Hi

]
= ∆P ± 2

∑N
i=1Himi

fn
= ∆P ±∆Pattack (3.34)

Hence, the attacker needs only to calculate the slopes of the injected signal to change

the magnitude of disturbance, which then changes the total amount of load to be shed.

The above model of the attack is generic, i.e., the attacker can manipulate only one or

two frequency values. In this case, the value of the injected signals into other frequency

measurements is zero.

B. Targeting Load Shedding Distribution

As aforementioned, system operators utilize bus voltage magnitudes in order to ac-

curately perform load shedding, using (3.31), from buses with the highest voltage dips.

Therefore, an attacker needs to manipulate the voltage magnitudes on target buses in

order to compromise the load shedding process. In this section, the stealthy FDI attack

formulation that allows manipulation of specific bus voltages is presented. This formu-

lation serves as a basis for the attack scenario that involves compromising the shedding

distribution.

Equipped with the ability to target specific buses and manipulate voltage magnitudes,

the attacker can easily compromise the load shedding distribution process. This is ac-

complished by changing the load shedding amount on a given bus and/or inducing load

shedding on a bus outside of the initial load shedding setting. In other words, voltage

disturbances at target locations (i.e., those which have a high voltage dip) are shown if

they have a negligible voltage dip. At the same time, voltages of targeted buses (i.e., those

which have a low voltage dip) are shown if they have the highest voltage dip. The attack

can be formulated as follows:
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i. Let set Ψ represent the initial set of buses on which load shedding is to be performed,

with a load shedding amount of Pshedψ , where ψ ∈ Ψ. Also, let set Φ represent the set

of buses the attacker is targeting to shed power from, with a load shedding amount of

P ′shedφ , where φ ∈ Φ. The selection of set Φ can be based on a sensitivity analysis of

the system to power shedding, buses with lowest voltage dips, or buses with critical

loads.

ii. The attacker then aims to change the voltage magnitudes to

V ′φ = Vφ + cφ, ∀φ ∈ Φ (3.35)

V ′ψ = Vψ + cψ, ∀ψ ∈ Ψ (3.36)

where V ′φ (V ′ψ) is the new voltage magnitude for bus φ (ψ) after adding the attack

value cφ (cψ), as per (3.25) and (3.26). For set Φ, the attacker increases the voltage

dip to incur more load shedding using (3.35) while decreasing the voltage dip of set

Ψ to reduce the load shedding using (3.35).

iii. Due to the variation in voltage magnitude, the amount of shedding power for each

bus Pshedψ changes. However, the total shedding amount must remain constant, as

follows: ∑
ψ∈Ψ

Pshedψ =
∑
ψ∈Ψ

P ′shedψ (3.37)

Note that sets Φ and Ψ are independent and may overlap in certain buses. A special

case of this attack will occur if the attacker chooses to have Φ = Ψ and only change

the load distribution within the set.

C. Faking Underfrequency Conditions

In the previous subsections, we saw that the attacker has to synchronize the attack

launch with a system disturbance. However, in the scenario considered here, the attacker’s

objective is to trick the system into responding as if it were experiencing under-frequency

conditions that require activation of WAUFLS. In essence, the attacker fakes a disturbance
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condition that misguides the system operator to launching an unnecessary load shedding

process.

In this attack scenario, the attacker manipulates both the frequency measurements

and the power flow measurements z. This gives the attacker access to a higher number

of meters, depending on the disturbance size, type and location. For example, if the

attacker needs to fake a disturbance that includes the tripping of a specific generator, the

attacker has to manipulate both the system frequency measurements and the power flow

measurements of the meters that are close to this generator to reflect the disturbance on the

state estimation results. This subsection explains how the attacker can fake disturbance

conditions by considering different access levels to the system.

In disturbances that affect system frequency, it is expected that the voltage magnitudes

would strongly deviate from the steady-state voltage profile. The FDI attack formulation

given by (3.26) indicates that the attacker manipulates the power flow measurement to

change the voltage profile to resemble a post-disturbance one. Undoubtedly, there is always

a limitation on the number of measurement nodes the attacker is able to compromise. Thus,

the objective of the attack is to manipulate the minimum number of measurements while

simultaneously attempting to generate a voltage profile that matches as much as possible

an actual post-disturbance voltage profile for all the buses.

Keep in mind that the attacker prioritizes stealth in the attacks, which limits the avail-

able techniques. Nonetheless, there are several approaches for targeting the manipulated

states, such as minimizing the number of attacked measurements, constraining the attacks

to a subset of states, and minimizing the probability of detection [45]. In this scenario,

the attacks are launched based on the formulation in the previous section, in addition to

selecting a subset of buses based on a threshold criterion.

The first step is to analyze variations between voltage magnitudes for each bus in the

system at steady-state and post-disturbance. As expected, there is an inverse relation

between the number of buses and the magnitude of ∆V . We devise the FDI strategy based

on the ∆V threshold, as follows:

i. Simulate a disturbance scenario and determine the deviation index Di, between
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steady-state (Vss) and post-disturbance voltage magnitude (Vd) for each bus i ∈ Ω

at time step t in the simulation period T :

Di = max
{

abs(V (t)di − V (t)ssi)
}
, ∀t ∈ T,∀i ∈ Ω (3.38)

Note that max operator ensures that the threshold is based on the entirety of the

simulation period T , and the absolute value is considered to account for positive and

negative voltage deviations. The purpose of this step is to determine the maximum

deviation of voltages during the disturbance for all buses.

ii. Classify each bus i according to whether it belongs to the attack set Ωa, if it exceeds

the pre-defined threshold γ, i.e., Bus i ∈ Ωa if Di ≥ γ. The threshold represents

the maximum allowable tolerance for voltage deviation between the disturbance and

steady-state cases. A higher threshold γ implicates a smaller attack subset Ωa, while

at the same time giving a higher probability for raising suspicion with the system

operator, as more buses would have a steady-state voltage profile rather than a

disturbance profile. In effect, in this step, the attacker makes a compromise between

the size of the attack vector and the probability of being detected. The threshold is

determined by analyzing the voltage profile and normal deviations in voltages during

steady-state operation.

iii. Launch a constrained FDI attack on power flow measurements that only targets

buses belonging to the subset Ωa. An indispensable condition for the success of such

an attack is the ability to target specific state variables, as outlined in the attack

formulation. It is intended to leave the remaining buses voltages unchanged from the

state estimation process, as the variation between the state estimation voltages and

the disturbances voltages would be of lesser magnitude and importance, respectively,

based on the chosen case threshold. The index i determines the value of the attack

element ci to be added to the system state estimate x̂i , as per (3.26), as follows:

x̂att,i =

x̂i + ci, if i ∈ Ωa

x̂i, otherwise
(3.39)
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where x̂att,i is the attacked state estimate. For this scenario, the attacker launches the

attacks based on the pre-determined threshold γ. A compromise is made between the

number of attacked measurements and the allowed deviation between perceived and ex-

pected voltage profiles.

3.4.3 Simulation Results

The attack scenarios discussed above are implemented on the IEEE 14 and IEEE 39

bus systems- shown in Fig. 3.5 and Fig. 3.6, respectively- to assess their impact on the

power network. Detailed models of both systems are simulated in PSCAD and used for

the study. Different attack scenarios are applied to simulate healthy system conditions,

normal system disturbances, and transient conditions.

A. Targeting the magnitude of disturbance

The following scenarios show the system frequency (i.e., frequency of center of inertia) as

well as the magnitude of disturbance with and without an attack. They also show how the

attacker can target higher or lower amounts of load to be shed. The first two scenarios show

the effect of the attack on the calculated magnitude of disturbance. However, scenarios

3 and 4 show how this attack can affect the whole system if the control center operator

makes load shedding decisions based on manipulated measurements.

Scenario 1: With the outage of generator G3 in the IEEE 14 bus system, which

is connected to bus 2, the transmission line connecting buses 2 and 5 is tripped due to

overloading at t = 20 sec. At this moment, the attacker starts increasing the measurement

of f2 using a false signal of slope m = 0.02. The control center operator, in response,

decides to shed a lower amount of load because the magnitude of calculated disturbance

becomes lower (i.e., 0.55 pu instead of 1.05 pu) at the instant of disturbance, as shown in

Fig. 3.7b. Figure 3.7 shows the center of inertia frequency as well as the magnitude of

disturbance based on real and manipulated frequency values.
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Figure 3.5: IEEE 14 bus system

Scenario 2: During an overload condition, e.g., when the IEEE 14 bus system has

20% additional load, the line connecting buses 1 and 5 is tripped at t = 20 sec. At this

moment, the attacker decreases the measurement corresponding to the frequency of G5

using a signal that has a slope m = −0.05, as shown in Fig. 3.8a, aiming to increase the

amount of load shedding. This results in a higher magnitude of disturbance (i.e., 2 pu

instead of 1 pu), as shown in Fig. 3.8b.

It can be shown from the previous scenarios that injecting FDI into frequency mea-

surements has a direct effect on the calculated magnitude of disturbance. Moreover, if the

control center uses the falsified measurements to make load shedding decisions, disaster

events might take place, as discussed in the following scenarios.

A large system disturbance takes place at t = 16 sec in the IEEE 39 bus system. The

accepted variation in the value of fc, where load shedding is not needed, is set at ±1% of
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Figure 3.6: Schematic of IEEE 39 New England system

the nominal frequency values (59.4− 60.6 Hz for the used 60 Hz system). The shedding

process starts when the frequency of the center of inertia falls below 59.3 Hz. Scenarios

1 and 2 show how an attacker can manipulate system frequency signals to either increase

or decrease the amount of load shedding and how this affects system frequency. In these

scenarios, the values of the FDI on the frequency signal of generator i, given by mit, are

chosen arbitrarily just to show the effect of the attack.

Scenario 3: Using the IEEE 39 bus New England system, the attacker manipulates

the measurement corresponding to the frequency of generator G8 by increasing it, using

an FDI signal that has a slope m8 = 0.02. The center of inertia frequency fc is then

calculated to be higher than the system’s actual center of inertia frequency. This causes
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Figure 3.7: Targeting lower amount of load shedding

the calculated magnitude of disturbance ∆P to be 0.3 pu, which is lower than the actual

disturbance in the system (∆Pa < ∆P ), as shown in Fig. 3.9a. Consequently, as seen from

Fig. 3.9b, the control center operator will perform only one shedding step with a lower

amount of load, whereas two shedding steps are needed. The highlighted shedding step is

the one prompted by the attack. As can be seen, the attack causes the system frequency

to keep falling, thus forcing the under-frequency control in the generators to shut down

and cause a system-wide blackout.

Scenario 4: In this scenario, it is assumed that the attacker is able to manipulate

the generator G6 frequency by adding a signal that has a slope m6 = −0.05. This causes

the calculated magnitude of disturbance ∆P to be 0.7 pu, which is higher than the actual

disturbance in the system (∆Pa > ∆P ), as shown in Fig. 3.10a. Hence, the decision of the

control center is to shed an amount of load that is higher than necessary. The highlighted
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Figure 3.8: Targeting higher amount of load shedding

shedding steps in Fig. 3.10b are executed due to the attack. Consequently, as shown in the

same figure, over-frequency occurs for a long period of time, which might cause damage to

system equipment.

In the scenarios described above, the attacker injects a small attack signal, which does

not affect the magnitude of the frequency (i.e., it bypasses the bad data detection) but

does affect the ROCOF. In other words, the attacker can control how the frequency signals

change. As a result, the attacker can control the slope of the frequency signal as well as

the magnitude of disturbance. Ultimately, the attacker has full control of the amount of

load to be shed.
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Figure 3.9: Targeting lower amounts of load shedding

B. Targeting Load Shedding Distribution

Following a disturbance that requires load shedding of 1000 MW in the IEEE 39 bus

system, the subset of buses that have the highest voltage dips are: {39, 9, 8, 7, 1}. As

bus 9 and 1 have no load to shed, the distribution process can only take place on buses

39, 8, and 7, following (3.31), as shown in Table 3.2, where i is the bus number, Vpd,i

is the pre-disturbance voltage magnitude at bus i, and Vd,i is the disturbance voltage

magnitude at bus i. In the following two scenarios, the attacker has nothing to do with

the magnitude of frequency disturbance, i.e., the attacker does not attack the frequency

measurements. Instead, FDI attacks take place on the power flow measurements to alter

voltage magnitudes, as they represent the main variable in the load shedding process.

Scenario 5: This scenario features an attack scenario of maliciously changing the

52



15.5 16 16.5 17 17.5 18

Time (sec)

58.5

59

59.5

60

60.5

f c
 (

H
z
)

Without attack

With attack

15.5 16 16.5 17 17.5 18

Time (sec)

-1

-0.5

0

0.5

P
 (

p
u
)

Without attack

With attack

(a) Real and manipulated system frequency and magnitude of disturbance

20 30 40 50 60 70 80 90 100 110 120

Time (sec)

59

60

61

62

f c
 (

H
z
)

Without attack

With attack

First shedding step

Second shedding step

Third shedding step (due to attack)

Second shedding step (due to attack)

(b) UFLS with and without attack

Figure 3.10: Targeting higher amounts of load shedding

amount of load shedding Pshed,i, calculated from (3.31) on bus j, by varying the distur-

bance voltage values of the shedding buses. Figure 3.11 depicts the effects of an FDI

attack on shedding distribution, while Table 3.3 demonstrates the change of load shedding

distribution following the attack.

Scenario 6: An alternative scenario aims to deceive the system operator in order to

shed loads from healthy sensitive locations. The attacker targets the disturbance voltage

at a specific bus to give the appearance of negligible voltage dips. Meanwhile, the attacker

misleadingly shows a different subset of buses that have high voltage dips. In response,

the control system operator applies the load shedding at the new subset of buses.

This scenario can be demonstrated in two parallel steps: (1) The attacker manipulates

the power flow measurements to increase the voltages at bus subsets {39, 8, 7}, as shown

in Table 3.4. (2) The attacker manipulates the measurements such that the control system
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Table 3.2: No attack load shedding distribution

Bus i Vpd,i (pu) Vd,i (pu) ∆Vi (pu) Pshed,i (MW)

39 1.004328 0.858811 0.145517 500

8 0.983386 0.895909 0.087477 276

7 0.984816 0.900548 0.084268 233

Table 3.3: Attacks targeting load shedding distribution

Bus i Vpd,i (pu) Vd,i (pu) ∆Vi (pu) Pshed,i (MW)

39 1.004328 0.804011 0.200317 545

8 0.983386 0.899909 0.083477 227

7 0.984816 0.900548 0.084268 229
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Figure 3.11: Changing the shedding order

operator sees the voltages at bus subsets {23, 25, 26, 28, 29} as if they have the highest

voltage dip, as shown in Fig. 3.12. As a result, the control center operator sheds the total

load of the latter (step 2) set of buses instead of the former (step 1). Consequently, by

applying this attack scenario, the attacker is able to misguide the control system operator

to shed some sensitive loads that may cause substantial financial losses.

In the above scenarios, even though the attacker has no access to the frequency mea-

surements, they are still able to manipulate power flow measurements and control shedding

distribution by changing the buses’ voltage values.
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Table 3.4: Targeting shedding locations

Bus i Vpd,i (pu) Vd,i (pu) ∆Vi (pu) Pshed,i (MW)

39 1.004328 1.003001 0.001327 Zero

8 0.983386 0.970087 0.013298 Zero

7 0.984816 0.982816 0.002 Zero
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Figure 3.12: Changing the shedding buses locations

C. Faking Underfrequency Conditions

Scenario 7: In this scenario, the attacker’s objective is to falsify the voltage profile

perceived by the system operator in order to match the expected behaviour of voltage

variations. First, the attacker simulates a disturbance and considers the voltage deviations

across all buses. Second, the attacker calculates the deviation index Di from (3.38) and

compares it with the pre-determined threshold γ in order to define the attack bus’s subset

Ωa. Figure 3.13 shows the number of buses which have a specific voltage variation threshold

γ for three test cases of 0.05, 0.08, and 0.125 p.u. For each γ, bus i ∈ Ωa if Di ≥ ∆V .

Table C.2 shows three cases of defined thresholds γ in p.u. voltages. For a threshold of

0.05 p.u., bus 34 exceeds the threshold in voltage variation, while only three buses exceed

the threshold for 0.125 p.u. For each case, a bus i is selected that belongs to the subset

Ωa and a bus j if it doesn’t belong. Figure 3.14 depicts case 3. The first graph shows

bus 18, which belongs to subset Ωa, as D18 exceeds the threshold of 0.125. On the other
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Figure 3.13: Number of buses ∈ Ωa as function of threshold variation

Table 3.5: γ in p.u voltages

Case

#
γ (p.u) size Ωa Bus i Bus j

max ∆V

bus i (p.u)

max ∆V

bus j (p.u)

1 0.05 34 18 34 0.0627 0.0389

2 0.08 13 6 17 0.1148 0.0586

3 0.125 3 9 13 0.1464 0.0985

side, D34 does not exceed the threshold, therefore the received voltage of that bus matches

the results from the state estimation process. Similarly, Fig. 3.15 and Fig.3.16 show the

difference in voltage profile for the buses pairs 6,17 and 9,13 to compare the voltage profile

for a bus that belongs to Ωa (6,9), and buses that do not (17,13).

Scenario 8: Following the same approach of manipulating both frequency and power

flow measurements, the attacker can mask a real disturbance that occurs in the system.

In this scenario, individual frequency values are falsified by adding (60 − fi) to the fre-

quency signals, such that the control center perceives all frequency values closely around

the corresponding optimal value. This is demonstrated in Fig. 3.18, where the faked fre-
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Figure 3.14: Voltage profile for Buses in attack subset

quency measurements show the system frequency to be around 60 Hz, whereas in reality

the frequency is dropping.

3.5 Summary

FDI attacks represent a real challenge to the cyber-physical security of modern WAMPAC

schemes. In this chapter, it was shown that an attacker can launch a cyber attack on a

power system during its steady-state and/or small/large disturbance conditions. The at-

tacker can target the operation of the AGC during small dynamics in the power system

or the operation of WAUFLS schemes during large disturbances. Simulations on practical

systems were done to prove the severity of this problem. In the following chapters, de-

tection and mitigation techniques are proposed to address these serious issues and fill the
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(b) Un-attacked bus 17 voltage profile matches state estimation

Figure 3.15: Voltage profile for Buses in attack subset

gaps in the literature that were mentioned in Chapter 2.
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Figure 3.16: Voltage profile for Buses in attack subset
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Figure 3.17: System frequency response after faking the disturbance
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Figure 3.18: Hiding the actual status of the system
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Chapter 4

Detection and Mitigation of False

Data Injection (FDI) in AGC

Systems Considering a Linear Model

The ability to maintain the system frequency within its specified operating limits is

crucial for the stability and proper operation of power systems. Any deviation out of the

permissible frequency range must be well-mitigated by the AGC system, as otherwise it may

result in disruption of operations and/or damage to the power grid equipment. The data

required by the AGC control system are sent to the control center through communication

links, which are susceptible to cyber attacks. Therefore, such AGC systems have to be

well-protected against FDI attacks.

Since mitigation against FDI attacks on AGC systems has been barely touched in the

literature, and the existing techniques do not provide formal proof of system stability

after incorporating the attack mitigation, this chapter focuses on these concerns. In the

chapter, a Kalman filter-based method is used to detect FDI attacks on AGC systems. In

addition, the use of a simultaneous input and state estimation-based algorithm to detect

and concurrently compensate for FDI attacks against AGC systems is investigated. Formal

proofs for the stability of the system after incorporating the attack mitigation scheme and
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the unbiasedness of the estimated signals are discussed in detail. Note that this chapter

considers the linear model of the AGC system, while the nonlinearities are considered in

Chapter 5.

4.1 Detection of FDI Attacks Using a Kalman Filter

One method for detecting attacks in a system is to compare the behavior of that system

with another identical one that is not under attack. Naturally, this approach is not feasible

in power systems. An alternative method is to analyze the behavior of the system over

time using a mathematical model which predicts how the system is supposed to behave

under no attack. The estimated observations are then compared with the ones obtained

from the actual sensor readings. A significant deviation between them would indicate the

presence of an attack. This approach is known as analytical redundancy. Kalman filtering

[55, 56, 78] is an algorithm that produces accurate estimates of unknown variables using a

series of measurements (possibly noisy) observed over time.

4.1.1 Principle of Operation

In order to estimate the states of the system, the following observation equation is

considered: [120,121]

yk = Cxk + vk, (4.1)

where vk denotes the measurement’s noise. The iterations of the Kalman filter can be

written as:
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x̂k+1|k = Ax̂k +Buk (4.2)

Pk|k−1 = APk−1A
T +Q (4.3)

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +R)−1 (4.4)

Pk|k = Pk|k−1 −KkCkPk|k−1 (4.5)

x̂k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1) (4.6)

The Kalman gain converges in few steps, where the Kalman filter equation can be

updated as:

x̂k+1 = Ax̂k +Buk +K[yk+1 − C(Ax̂k +Buk)] (4.7)

where P , limk→∞ Pk|k−1 and K = PC>(CPC> + R)−1. Then, the residual rk+1 at time

k + 1 is defined as:

rk+1 , yk+1 − C(Ax̂k +Buk) (4.8)

One way to detect the attacks is to calculate the Mahalanobis norm of the residual

vector gk as:

gk = rk × Φ× r>k (4.9)

where Φ denotes the covariance matrix of rk. Then, the detector compares gk with a

predefined threshold which is chosen based on the historical values of gk without an attack.

In a stateful test, an additional statistic Sk, which keeps track of the historical changes

of rk (no matter how small it is), is calculated. An alert is generated if Sk ≥ τ , i.e., if

there is a persistent deviation across multiple time-steps. Many tests can keep track of the

historical behavior of the residual rk, such as taking an average over a time window, an

exponential weighted moving average Exponential Weighted Moving Average (EWMA),
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or using change detection statistics like the non-parametric CUmulative SUM (CUSUM)

statistic.

In this work, the applicability of these stateful approaches is illustrated by using a non-

parametric CUSUM, which is basically a sum of the residuals. In this case, the CUSUM

statistic is defined recursively as S0 = 0 and Sk+1 = (Sk + |rk| − δ)+, where |x|+ represents

max(0, x) and δ is selected so that the expected value of |rk − δ| < 0 when there is no

attack. An alert is generated whenever the statistic is greater than a previously defined

threshold Skτ and the test is restarted with Sk+1 = 0 [122, 123]. In other words, in each

iteration, the most recent m values of the residual is used to calculate the moving average

of the accumulating residual. Compared to other approaches that use the value of the

residual itself, this approach improves the speed of attack detection, especially for cases

where the effect of the attack takes place gradually, e.g., for (small slope) ramp attacks.

4.1.2 Simulation Results

In practice, the covariance matrices for the process noise and the measurement noise

can be determined by performing some actual field measurements from the power system

itself. However, for the purpose of our simulations, the components of wk and vk are

assumed to be independent and identically distributed Gaussian random variables with a

zero mean and a standard deviation of σ = 10−5.

The utilized Kalman filter is tested without any attack to confirm its ability to estimate

different state variables accurately. To perform this, a load disturbance of 0.1785 pu at

t = 0 is applied to Area 1. A sample of the Kalman filter output is depicted in Fig. 4.1,

which shows the measured versus estimated values of the frequency deviation in Area 1 as

well as the tie-line power flow. The solid lines show the estimated values, while the dashed

ones indicate the actual measured ones.

Figure 4.2 shows the Mahalanobis norm gk and the CUSUM Sk samples of the system

with no attacks. As can be seen, the threshold, which is chosen based on the historical
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Figure 4.1: State estimation under normal operation (no attack)

behavior of the residual values, is higher than the maximum value of these residuals in a

case of no attack. In our simulations, it is chosen to be 10−5.
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Figure 4.2: Residual of the output with no attack
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To confirm the detection capabilities of the proposed solution, different attacks are

constructed and applied to the AGC system. These attacks target both measurements and

control signals of the AGC system, e.g., frequency deviation signals, tie-line power signals,

and ACE signal. A normal load disturbance of 0.1785 pu is applied in Area 1 at t = 0 sec.

The attacks target both measurements and control signals. In the presented two scenarios,

the attacks are applied at t = 5 sec.

Scenario 1: A scaling attack with a scaling parameter of 1.25 is applied to the reading

of the frequency deviation in Area 1, ∆f1, as shown in Fig. 4.3a. An alarm trigger signal

appears at the moment of the attack, as shown in Fig. 4.3b.
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Figure 4.3: Scaling attack on ∆f1

Scenario 2: In this scenario, a ramp signal with a slope of 0.005 is used to manipulate

the signal ∆Ptie. Figure 4.4a, which also includes the true signal, shows the effect of the

attack. As illustrated in Fig. 4.4b, the error residual increases gradually until it hits the
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predetermined threshold as an indication of the attack. In this case, the attack is applied

at t = 5 sec, and the residual norm detector detects it later when the residual value exceeds

the threshold value. This is due to the nature of the ramp attack whose effect increases

gradually; a ramp attack with a higher slope will be detected faster. The figure also shows

how the use of the CUSUM stateful approach improves the detection time in this case.
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Figure 4.4: Ramp attack on ∆Ptie

4.2 Mitigation Using Joint Input and State Estima-

tion Algorithm

Despite the simplicity of the Kalman Filter solution presented above, in practice, it is

not enough to detect the occurrence of FDI attacks. In other words, the attacked sensors
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cannot be isolated because the AGC system needs these readings in order to perform its

required real-time control operation accurately. To address this deficiency, an input/state

estimation-based algorithm [124,125] is utilized to detect and simultaneously compensate

for FDI attacks on AGC systems. The discrete-time linear system with the attack signals

can be represented as:

xk+1 = Axk +Buk +Gdk + ωk (4.10)

yk = Cxk +Duk +Hdk + vk (4.11)

where xk ∈ Rn is the state vector at time k, uk ∈ Rm is the natural system disturbance,

dk ∈ Rp is the FDI vector, and yk ∈ Rl is the measurement vector. For the two-area AGC

system under consideration, the values of Gc and Hc are:

Gc =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

−K1B1 0 −K1

0 −K2B2 K2


,

Hc =

0 0 1

1 0 0

0 1 0


In this model, the FDI vector is treated as the unknown input. In other words, dk is

fed to the algorithm as an unknown input in order to estimate it. The process noise ωk

and the measurement noise vk are assumed to be mutually uncorrelated, zero-mean, white

Gaussian noise with known covariance matrices, Qk and Rk, respectively.
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4.2.1 Algorithm Description

A three-step recursive filter is used, as shown in Algorithm 1. The three steps are time

update, measurement update, and the estimation of the unknown input. In the first step,

measurements up to time k−1 are given, the next state is predicted using Equation (4.12),

and the error in the propagated state estimation and its covariance matrix is calculated.

In the second step, the propagated estimate x̂k|k−1 is updated using the measurement yk,

as in Equation (4.13), and the covariance matrix P x
k|k of the updated state estimate error is

obtained. Finally, in the last step, the unknown input is estimated, as shown in Equation

(4.14).

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 +Gd̂k−1 (4.12)

x̂k|k = x̂k|k−1 + Lk(yk − Cx̂k|k−1)−Duk) (4.13)

d̂k = Mk(yk − Cx̂k|k −Duk) (4.14)

After estimating the FDI, the value of the estimated signal d̂k is subtracted from the

received one to compensate for the attack and estimate the system state at time k, as shown

in Fig. 3.1. This algorithm can be thought of as a generalization of the Kalman filter [125]

and can be utilized to simultaneously perform detection, estimation, and compensation in

FDI attacks.

4.2.2 Simulation Results

The above algorithm is tested under different attack scenarios. In each of the following

scenarios, an attack in the form of a false data injection is applied to one of the communi-

cation signals of ∆f1, ∆f2 or ∆Ptie. The figures show the actual versus estimated attacks.
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Algorithm 1 Unknown Input and State Estimation [124,125]

1: Initialize: x̂0|0 = E[x0]; d̂0 = H†(y0 − Cx̂0|0 −Du0); P x
0|0 = Px0 ;P xd

0 = Pxd0 ;P d
0 = Pd0 ;

2: for k = 1 to N do

. Time update

3: x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 +Gd̂k−1;

4: P x
k|k−1 = AP x

k−1|k−1A
> +GP xd>

k−1A
> +AP xd

k−1G
> +GP d

k−1G
> +Qk−1;

5: R̃k = CP x
k|k−1C

> +Rk;

. Measurement update

6: Kk = P x
k|k−1C

>R̃−1;

7: Lk = Kk(I −H(H>R̃−1
k H)−1H>R̃−1

k );

8: x̂k|k = x̂k|k−1 + Lk(yk − Cx̂k|k−1)−Duk);
9: P x

k|k = (I − CLk)P x
k|k−1(I − CLk)> + LkRkL

>
k ;

. Estimation of unknown inputs

10: R̃?
k = (I − CLk)R̃k(I − CLk)>;

11: P d
k = (H>R̃?−1

k H)−1;

12: Mk = P d
kH

>R̃?−1
k ;

13: d̂k = Mk(yk − Cx̂k|k −Duk);
14: P xd

k = −P x
k|kC

>M>
k + LkRkM

>
k ;

15: end for

They also show the true, the manipulated, and the compensated communication sensor

readings. The simulation start time is the time of occurrence of the physical disturbance

of the system (e.g., load increase/decrease or generator tripping). The duration of the

attack is chosen by the attacker in order to drive the AGC system out of control or de-

ceive the control center into making the wrong decision (e.g., trigger under-/over-frequency

protection devices without a need to do so).

Recall that the AGC regulates grid frequency by adjusting the set-points of a power

plant’s governors. To calculate these set-points, the control center receives sensor readings,
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i.e., frequency and tie-line power measurements from different areas. It is impossible to

exhaust all FDI injection patterns. Throughout our work, the FDI attack signal is modeled

as an additive signal which is added to the sensor readings. While this additive signal

can be of any value, throughout the literature, ramp, pulse and step attack signals are

usually used [80] to test different attack scenarios, as they model slowly varying attacks,

attacks of short duration, and attacks that aim to cause a sudden variation in the system.

Furthermore, stealthy attacks also have to satisfy the constraints imposed by equations (1)

and (2).

Scenario 1: In this scenario, under steady-state conditions, i.e., with no system load

disturbance, a pulse signal that has a magnitude of 0.002 is used to manipulate the fre-

quency deviation in Area 1, ∆f1, as shown in Fig. 4.5. Figure 4.5a shows the actual and

estimated attacks. Figures 4.5b, 4.5c and 4.5d show the true, attacked, and compensated

signals for ∆f1, ∆f2 and ∆Ptie, respectively. As depicted in Fig. 4.5c, the system operator

sees the frequency at Area 2 lower than its actual value. This may drive the system oper-

ator to use the UFLS schemes, if the frequency comes below a specific value, which may

result in shedding loads when there is no need to do so.

Scenario 2: Under a system disturbance of 0.2 pu at Area 1, a step attack is applied

to the signal ∆f1 starting at t = 10 sec. The magnitude of the step is 0.003. Figure 4.6a

shows that the attack is well-estimated with reasonable accuracy. The other sub-figures of

Fig. 4.6 show the true, attacked, and mitigated system signals.

Scenario 3: A system disturbance of 0.2 pu is applied to Area 1 at t = 0 sec. At

the same time, a ramp attack with a slope of 0.0001 is applied to the signal ∆f2. Fig-

ure 4.7 shows the attack estimation as well as the system performance with and without

compensated measurements.

Scenario 4: At t = 0 sec, a system disturbance of 0.15 pu takes place at Area 2. At

t = 10 sec, a step signal with a magnitude of -0.02 is used to manipulate the value of

∆Ptie. Figure 4.8 shows the attack estimation as well as the system performance with and

without compensated measurements.

Scenario 5: In this scenario, a case where the attacker targets more than one signal
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in the communication system is considered. At t = 0 sec, a system disturbance of -0.2 pu

takes place at Area 2. At the same time, a ramp attack with a slope of 0.0001 is applied

to ∆f1. At t = 10 sec, a pulse signal with a magnitude of 0.01 is used to manipulate the

value of ∆Ptie. Figure 4.9 shows the simulation results corresponding to this scenario.

To address the applicability of the proposed approach to real-world scenarios, the pro-

posed algorithm is also simulated under different types of attacks in a 12-bus, four-area

system with multi-generator units in each area. The 12-bus model utilized in this study

is practical and comes from North America, representing the Manitoba Chicago network.

(See Fig. 4.10). The data for this system is taken from [126, 127] and is summarized in

Table A.2.

Scenario 6: To show the effect of FDI injections at transient conditions, a pulse attack

with a magnitude of 0.003 is injected to the signal of the frequency deviation in Area 4,

∆f4 at t = 15 sec, when the system is under a natural system disturbance of 0.2 pu at

Area 2. Figure 4.11 shows the attack estimation and mitigation as well as its effect on the

attacked signal.

Scenario 7: Figure 4.12 shows a scenario where a ramp attack that starts at t = 15

sec with a rising slope of 0.0005 is used to manipulate the signal ∆Ptie13. The FDI takes

place under a system disturbance of 0.15 pu at Area 3.

Scenario 8: In this scenario, the attacker manipulates both ∆f1 and ∆Ptie34. The

attacker injects a ramp signal with a slope of 0.0002 at t = 0 sec to ∆f1. Then, at t = 15

sec, the attacker injects a step signal with a magnitude of 0.03 to ∆Ptie34. Figure 4.13

shows the attack’s estimation and mitigation in different system signals.

All of the above-presented simulation results confirm the effectiveness of the proposed

approach in estimating the value of the injected attack signals under different operating

conditions and attack scenarios and successfully compensating for it so that the AGC

system can continue its normal operation.
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4.3 Sensitivity Analysis of the Mitigation Technique

4.3.1 Impact of Noise

To illustrate the impact of the sensor noise, Fig. 4.14 shows Scenario 7 with a higher

value for the sensor noise, σ = 10−2.5. As can be seen, the proposed algorithm is capable

of mitigating the attack even in the presence of this relatively high sensor noise.

4.3.2 Estimation Accuracy

The accuracy of the estimation is guaranteed through the use of the utilized optimal

filter (see Theorems 2, 3 below). On the other hand, if the estimation accuracy is im-

pacted because of any unforeseen reason in practice, this inaccuracy would then lead to

some degradation in the system performance. To illustrate this, a hypothetical form of

Scenario 7 is simulated (see Fig. 4.15) to show the behavior of the system under an inaccu-

rate estimation process. The inaccuracy is modeled by adding independent and identically

distributed Gaussian random noise with zero mean and a standard deviation of 10−5 and

10−3.5 to each component of the estimated state x̂ and estimated attack signal d̂, respec-

tively.

Another scenario that shows how the controller may make a wrong decision is the

case where the model used in the state/attack estimation algorithm (Algorithm 1) is not

accurate. This inaccuracy was simulated by uniformly perturbing the elements of the

matrices Ac and Bc. We do so by multiplying each element of these matrices by 1+r, where

r ∈ [−ε,+ε] is a uniformly distributed random variable and ε denotes the perturbation

percentage. In practice, this might occur if there is an error in the process modeling or in

the linearizion of the original model. Figure 4.16 shows the system response under a ramp

attack for a model perturbation ε = 20%. As illustrated by the figure, there is a deviation

between the actual attack signal and the estimated one. This affects the mitigation process,

in that the control center may initiate the UFLS protection scheme at t = 205 sec when

the estimated value for the mitigated frequency f4 reaches 59.7 Hz.
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4.4 Features of Proposed Mitigation Technique

It should be noted that the sufficient conditions required for the boundedness of the

error covariance of the used input and state estimator and its exponential stability are

satisfied for the systems considered throughout our work. By invoking the separation

principle [128], this also implies the stability of the overall system. More precisely, the

following properties have been verified for the considered two-area and four-area AGC

system models.

4.4.1 Strong Detectability

A linear time-invariant discrete-time system is strongly detectable if and only if:

rankP (z) := rank

[
zI − A −G
C H

]
= n+ p,∀z ∈ C, |z| ≥ 1 (4.15)

The exponential stability of the filter is directly related to the strong detectability of the

time-varying system, without which unbiased state and input estimates cannot be obtained,

even in the absence of stochastic noise [125]. The considered AGC models are confirmed

to be strongly detectable by verifying that the above condition holds. Note that the above

condition is equivalent to the system being minimum-phase (i.e., the invariant zeros of P(z)

are stable).

4.4.2 Exponential Stability

Algorithm 1 can be considered as a special case of the algorithm presented in [125].

In the general case considered in [125], no assumption is made on H to be either a zero

matrix (no direct feedthrough) or to have full column rank when there is direct feedthrough.

Consequently, when rank(H) = pH ≤ p, using singular value decomposition, H can be

written as:
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H =
[
U1 U2

] [Σ 0

0 0

][
V >1

V >2

]
(4.16)

where Σ ∈ RPH×PH is a diagonal matrix of full rank, U1 ∈ Rl×PH , U2 ∈ Rl×(l−PH), V1 ∈
RP×PH and V2 ∈ RP×(P−PH). In that case, the following theorem applies.

Theorem 1 [125]: For a linear time-invariant system, if (Ã, Q̃0.5) is stabilizable, Algo-

rithm 1 in [125] is exponentially stable, i.e., the expected estimate errors decay exponen-

tially.

In the above theorem, Ã and Q̃ are defined (using the notation introduced in [125]) as:

Ã = (I −G2M̃2C2)Â+G2M̃2C2

Q̃ = (I −G2M̃2C2)Q̂+G2M̃2C2

(4.17)

where

Â = A−G1M1C1

Q̂ = Q+G1Σ−1R1Σ−1>G>1

G1 = GV1

C1 = [Ip − U>1 RU2(U>1 RU2)−1]C

M1 = Σ−1

G2 = GV2

C2 = I(l−PH)U
>
2 C

M̃2 = (C2G2)†

(4.18)

In our case, the direct feedback matrix H is a full-rank matrix. Thus, H can be

rewritten as:

H = UΣV > (4.19)

where Σ ∈ Rp×p. In other words, the matrices U2 and V2 vanish, and consequently all the

corresponding matrices C2, G2, and M̃2 also vanish, i.e., these matrices will correspond to
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empty matrices (an empty matrix is one in which the number of rows or columns [or both]

is zero). By substituting into (4.17), it follows that:

Ã = Â

Q̃ = Q̂
(4.20)

Thus, for the particular case where rank(H) = p, which corresponds to our case, the

following corollary applies:

Corollary 1 If (Â, Q̂0.5) is stabilizable, Algorithm 1 is exponentially stable, i.e., the ex-

pected estimate errors decay exponentially.

4.4.3 Unbiasedness

Using the notation in Algorithm 1, the following theorems, from [124], show the con-

dition for Algorithm 1 to provide the unbiased estimation of both the state and the input

of the system.

Theorem 2 [124]: The minimum-variance unbiased state estimator is obtained with the

gain matrix Lk given by:

Lk = P x
k|k−1C

>R̃−1(I −H(H>R̃−1
k H)−1H>R̃−1

k (4.21)

where R̃k := CP x
k|k−1C

>+Rk, if and only if (H>R̃−1
k H) is nonsingular, i.e. rank(H) = p.

Theorem 3 [124]: Let x̂k|k be unbiased, then the input estimate given by line 13 in

Algorithm 1, is unbiased if and only if MkH = I, and consequently, rank(H) = p.

It follows that the condition rank(H) = p, which is satisfied in our case, is a necessary

and sufficient condition to guarantee the unbiasedness of the unknown input and state

estimate.
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4.5 Summary

In this chapter, an approach to detect FDI attacks on AGC systems was proposed. Be-

cause detection of FDI only is not enough, another approach that jointly detects, estimates,

and compensates for FDI attacks against AGC systems was presented. The utilized in-

put/state estimation-based algorithm considered the FDI as unknown input and estimated

its value accordingly. The estimated values for the FDI were then used to compensate for

the effect of the attack in real time so that the AGC system could continue its operation un-

der attack until the main reasons for the attack could be eliminated. The simulation results

for two-area and four-area practical systems confirmed the effectiveness of the proposed

approach against different forms of FDI attacks. It should be noted that such an analytical

redundancy solution is not meant to replace cyber-based intrusion detection systems, and

that it should be thought of as a solution which provides another layer of defense against

FDI attacks on AGC systems. One should also note that the proposed approach is generic

enough to be applied to mitigate FDI attacks in other smart grid security applications.
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Figure 4.5: Pulse attack at steady-state condition
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Figure 4.6: Step attack at system disturbance condition
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Figure 4.7: Ramp attack at system disturbance condition

80



0 5 10 15 20 25 30

Time (sec)

-0.03

-0.02

-0.01

0

0.01

A
tt
a
c
k
 m

a
g
n
it
u
d
e Actual

Estimated

(a) Step attack with a magnitude of -0.02

0 5 10 15 20 25 30

Time (sec)

-0.02

0

0.02

0.04

P
ti
e
 (

p
u
)

After mitigation

Attacked signal

True signal

(b) Tie-line power

Figure 4.8: Step attack at system disturbance condition
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(a) Ramp attack with a slope of 0.001 to ∆f1

0 5 10 15 20 25 30

Time (sec)

-5

0

5

10

15

A
tt

a
c
k
 m

a
g

n
it
u

d
e

10
-3

Actual

Estimated

(b) Pulse attack with a magnitude of 0.01 to ∆Ptie
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Figure 4.9: Combined attack 1 at system disturbance condition
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Figure 4.10: 4-Area Manitoba Chicago network
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Figure 4.11: Pulse attack at system disturbance condition

83



0 20 40 60 80 100 120 140 160 180

Time (sec)

-0.05

0

0.05

0.1

A
tt
a
c
k
 m

a
g
n
it
u
d
e

Actual

Estimated

(a) Ramp attack with a slope of 0.0005 against ∆Ptie13
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Figure 4.12: Ramp attack at system disturbance condition
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(b) Step attack with a magnitude of 0.03 against ∆Ptie34
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Figure 4.13: Combined attack 2 at system disturbance condition
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Figure 4.14: Estimation and mitigation of a ramp attack in the presence of large sensor noise

(σ = 10−2.5)

86



0 20 40 60 80 100 120 140 160 180

Time (sec)

-0.05

0

0.05

0.1

A
tt
a
c
k
 m

a
g
n
it
u
d
e

Estimated

Actual

(a) Ramp attack with a slope of 0.0005 against ∆Ptie13

0 20 40 60 80 100 120 140 160 180

Time (sec)

-0.05

0

0.05

0.1

P
ti
e

1
3
 (

p
u
)

Attacked signal

True signal

After mitigation

(b) Tie-line 1-3 power

Figure 4.15: System performance with inaccurate estimation for a ramp attack
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Chapter 5

Detection and Mitigation of False

Data Injection (FDI) in AGC

Systems Considering Nonlinearities

None of the previous works considered the nonlinearity of AGC systems, which means

that the proposed solutions are only effective under the over-simplified assumed linearity

of the AGC model. Because AGC nonlinearities rarely occur, the consequences of such an

attack can be catastrophic, as none of the existing approaches that depend on the linear

model will be able to detect or mitigate it. In this chapter, the work proposed in Chapter

4 is extended to address this deficiency and propose a new approach to detect and identify

FDI attacks on AGC systems by considering three types of AGC nonlinearities.

5.1 AGC Nonlinearities and System Model

The nonlinearities of the AGC systems include but are not limited to the following:

• Dead-band of Speed Governor (GDB): If the absolute difference between gov-

ernor power and disturbance power is lower than the dead band’s value, the dead
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band’s output for the next control cycle remains constant. If it is higher, the dead

band’s output for the next control cycle is equal to the governor power [129,130].

• Generation Rate Constraints (GRC): In power systems with thermal plants,

power generation can be changed only at a specified maximum rate. The generation

rate for reheat turbines is very low. If these constraints are not considered, the

system is likely to chase large momentary disturbances, resulting in undue wear and

tear on the controller. It is thus extremely important to understand the influence of

GRC in the AGC problem. GRCs result in larger deviations in ACEs, as the rate

at which generation can change in the area is constrained by the limits imposed.

Therefore, the duration for which power needs to be imported increases considerably

in comparison to cases where the generation rate is not constrained [131].

• Transportation Delay Time (∆T ): This results from the delay in the communi-

cation system as well as the delay in the response of the mechanical system.

To show the effectiveness of the aforementioned nonlinearities on the response of AGC

system, the previous 2-area AGC system is updated as shown in Fig. 5.1 and tested with

and without including the nonlinearities under similar disturbance conditions. In this work,

the values of ∆T and Dead-band of Speed Governor (GDB) are adopted from [130] as 2

sec and 0.036 Hz, respectively, for both areas. In addition, the GRC is modeled similar

to [130]. The simulated disturbance is a load increase of 0.18 pu in Area 1.

Figure 5.2 shows the differences in the main AGC signals that the control center opera-

tor use to make a decision e.g. frequency deviations and tie-line power. It can be seen that

the response of AGC is completely different if the nonlinearities are considered. In other

words, the control decision that is to be made based on the red signals (with nonlinearities)

is totally different than that made based on the red signals (linear model response). This

appears clearly in Fig. 5.3 in the ACE signals that are used to calculate the new operating

point for each region.
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Figure 5.1: AGC model of a two-area system, including nonlinearities.

5.2 Detecting, Classifying and Identifying FDI At-

tacks on AGC Systems Using Recurrent Neural

Networks

5.2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNN) is a special type of neural network by which a
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Figure 5.2: System response with and without nonlinearities
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Figure 5.3: Area control error with and without nonlinearities
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sequence of features (inputs) is mapped to labels (outputs). The RNN uses previous inputs

and outputs to adjust the weights of the networks, thus creating a memory to improve its

performance [132]. The structure of RNN can be mathematically modeled as [1]:

ht = f(ht−1,xt) (5.1)

where ht is the hidden state, ht−1 is the previous hidden state, xt is the current feature

observed, and f is a nonlinear mapping function from the input features to the output

labels. Equation (5.1) presents the essence of RNN and what differentiates it from regular

neural networks. The hidden state ht is used as a memory to capture sequence information.

Figure 5.4 shows the unfolding of RNN during computation.

Figure 5.4: Left: Recursive Description of RNN. Right: Corresponding Extended RNN model

for time sequence [1]

During the training phase, the RNN inputs a stream of data, which it then analyzes by

relating the different input features (signals) and their corresponding labels (presence of

attack and its type). The network screens the sequential data by creating a time window
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of pre-specified number of time steps, and attempts to discern a temporal pattern across

the features and labels in this window. The window slides over the entire sequence of data

and updates the weights accordingly.

RNN employs a gradient descent technique to minimize the network cumulative error,

namely the Back Propagation Through Time (BPTT) algorithm [133] and [134]. BPTT is

an extension of the back propagation algorithm over a time sequence, where the gradient

at each output depends on calculations of current as well as previous steps.

Starting with the RNN model described in Fig. 5.4, parameters are assumed to be the

same across the whole sequence in each time step. This assumption is used to simplify the

gradient calculations [1]. At time t, we have:

ht = tanh(Whhht−1 +Wxhxt + bh) (5.2)

zt = softmax(Whzht + bz) (5.3)

where bh and bz are the bias terms for the hidden state and prediction at time step t. The

softmax function is the used loss function, which is commonly employed as the final layer

in neural networks architecture for multiple class classification. The maximum likelihood

is used to estimate the model parameters, while the minimization of the objective function

of negative log likelihood is [1]:

L(x, y) = −
∑
t

yt log zt (5.4)

where zt is the prediction at time step t. For simplicity, the notation L will be used as

the objective function. The notation L(t) indicates the output at time t while L(t + 1)

indicates the output at time t+ 1. The derivative of equation (5.4) with respect to zt is:

∂L
∂zt

= −
∑
t

yt
∂logzt
∂ht

= −
∑
t

yt
1

zt

∂zt
∂ht

(5.5)
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Using the chain rule and by deriving the gradient of the softmax function from (5.3),

we get:

∂L
∂zt

= −(yt − zt) (5.6)

The weight Whz between the hidden state h and output z is the same across all time

sequences. Therefore, it can be differentiated at each time step and summed as:

∂L
∂Whz

=
∑
t

∂L
∂zt

∂zt
∂Whz

(5.7)

The gradient with respect to a bias unit bz is obtained similarly as:

∂L
∂bz

=
∑
t

∂L
∂zt

∂zt
∂bz

(5.8)

Considering the time step t→ t+ 1, the gradient is derived with respect to the weight

Whh as:

∂L(t+ 1)

∂Whh

=
∂L(t+ 1)

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂Whh

(5.9)

The above equation only considers the time step t → t + 1. As the RNN model uses

previous states for subsequent state calculations, the hidden state ht+1 depends partially on

hidden state ht. Similar to Whz, the weight Whh is shared across the whole time sequence.

Therefore, we get:

∂L(t+ 1)

∂Whh

=
∂L(t+ 1)

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂ht

∂ht
∂Whh

(5.10)

Then, by aggregating gradients with respect to Whh over the whole sequence and using

the BPTT from time t to 0, we get:
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∂L(t+ 1)

∂Whh

=
∑
t

t+1∑
k=1

∂L(t+ 1)

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂hk

∂hk
∂Whh

(5.11)

The same process applied in (5.7)-(5.11) is also applied to the weights Wxh, by taking

the gradient with respect to Wxh over the whole sequence to obtain:

∂L(t+ 1)

∂Wxh

=
∑
t

t+1∑
k=1

∂L(t+ 1)

∂zt+1

∂zt+1

∂ht+1

∂ht+1

∂hk

∂hk
∂Wxh

(5.12)

5.2.2 Simulation Results

To validate the approach of using RNN for detecting attacks on the AGC system, typical

statistical measures are applied to diagnose the detection classification ability of the RNN

model, such as accuracy, sensitivity, specificity, and precision calculations. First, RNN is

used as a binary classifier to detect the anomaly (attack) present in the signal, without

differentiating the type of the attack. Secondly, RNN is used to detect the different types

of attacks and identify the attacked signal.

The RNN model employed in the simulations is trained using the following parameters:

1) Input dimension of 5. The input (features) are tie-line power and frequency signals. 2)

Output dimension of 1. The output (labels) represents an indication of attack type and

the attacked signal, if any, for each time step. 3) Batch size of 64. This batch size is

chosen as it outputs the best results over multiple iterations of training. 4) Epoch size of

100. The model did not improve results for an epoch number greater than 100. 5) An

RMSprop optimizer is chosen, as it provides superior performance in RNN models with

similar objectives [135]. The model is implemented using the Keras RNN-LSTM stacked

architecture [136].

The predictions of both detection and identification models can be analyzed by consid-

ering the two (four) possibilities for each output label l ∈ L, i.e., attack detection (attack

location), by considering an output l as positive and all others output as negative: (1) True
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Positive (TP) describes a positive prediction of an actual positive case, (2) True Negative

(TP) describes a negative prediction of an actual negative case, (3) False Positive (FP)

describes a positive prediction of an actual negative case, and (4) False Negative (FN) de-

scribes a negative prediction of an actual positive case. Based on these possible outcomes,

the following four statistical metrics are introduced:

Accuracy =
TP + TN

TP + FP + TN + FN
(5.13)

Precision =
TP

TP + FP
(5.14)

Recall =
TP

TP + FN
(5.15)

f1 Score =
2× Precision× Recall

Precision + Recall
(5.16)

where the Accuracy metric measures the probability of classifying fault cases correctly and

is a general indicator of the overall classifier performance; the Precision metric measures

the probability of correct positive classification, and is an indicator of the confidence in

the predicted positive cases; the Recall metric demonstrates the probability of correct

classification in all positive labels, and is an indicator of ability to predict positive cases;

and finally the f1 Score represents the balance between the Precision and Recall.

The training data are generated using the results of 3,000 different scenarios for the

AGC under normal operation (no attacks) as well as under different types of attacks. The

results in tables 5.1 and 5.2 are based on a validation data set composed of 192,000 data

samples taken from the 3,000 simulated scenarios. These data points are presented as one

long stream of data, simulating the data that is gathered by the data center. In both cases,

a threshold window limit kT is implemented to count a detection or the identification of

the attack. For an attack at time step T = T0, the RNN should detect the attack at

T ≤ T0 +KT , in order to count as a valid detection. For our simulations, KT = 10 is used,

which represents one second in real time.

The results confirm the capability of RNN to detect with high statistical measures, in

less than one second of the attack, given a sample time rate of 10 ms. The model achieves

a precision rate of 99.01, 99.22 and 99.43 in the detection, classification and identification
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tasks, respectively. The RNN performance measure is on par with accuracy metrics of other

data-driven machine learning models used in related power system problems [135, 137].

After attack detection, the attacks are identified to be in ∆f1 (Signal ’1’), ∆f2 (Signal ’2’)

or ∆Ptie (Signal ’3’). The following case studies show simulations where our approach is

tested under different types of attacks.

Table 5.1: Performance Table for RNN Detector

Criteria Score

Number of data samples 192000

True Positive (TP) 117429

False Positive (FP) 1174

True Negative (TN) 64425

False Negative (FN) 8972

Accuracy 94.72%

Sensitivity 98.21%

Specificity 92.90%

Precision 99.01%

Table 5.2: Performance Table for RNN identifier

Criteria Score

Number of data samples 192000

True Positive (TP) 117678

False Positive (FP) 925

True Negative (TN) 64425

False Negative (FN) 8972

Accuracy 94.85%

Sensitivity 98.58%

Specificity 92.92%

Precision 99.22%
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In our case studies, the parameters of the previously mentioned attacks (e.g., magni-

tude, and rate of change) are selected carefully such that the attack is hidden and bypasses

the bad data detectors in the control system. To be more precise, the measurements should

not change significantly over a short period. Intuitively, if each element of the FDI attack

vector is bounded around zero, these bad data detectors, designed to be insensitive to

natural random noises in the measurements, will not be changed [53]. The parameters

have to be selected such that the attack creates the desired impact and at the same time

does not trigger any data quality alarms in the control center.

Case 1: Pulse attack to ∆f2 In this case, under a system disturbance of 0.15 pu in

Area 1, the signal ∆f2 is manipulated using a pulse signal with a magnitude of 0.2. The

attack, which started at T = 20sec. Fig. 5.5, shows that the proposed approach detected

the attack in less than 1 sec. Also, the attack is classified as Type ’1’ and is identified to

be in ∆f2. A sample of the tested case studies that show the detection and classification

processes is given below.

Case 2: Ramp attack to ∆Ptie Under a system disturbance of 0.2 pu in Area 2, a

ramp signal with a slope of 0.001 is injected in the signal of ∆Ptie at t = 5sec. Figure 5.6

shows that the attack is detected in Signal ’3’ at t = 5.7sec and classified as a Type ’2’

attack.

5.3 Mitigation Using Load Forecast

In scenarios where an attack is detected while the AGC is working in the nonlinear

region, the attack detection technique based on RNN will be effective to detect, classify

and identify the attack. However, the mitigation technique, described in the previous

chapter can no longer be trusted. The control center will be “flying blind” while trying to

match the load and generation. Therefore, there is a need to use a technique that makes

an educated guess based on system knowledge and appropriately issues ACE commands

to generators without the need for system measurements.

100



0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-0.06

-0.04

-0.02

0

0.02

0.04

f 2
 (

p
u
)

Attack onset T= 20 sec

(a) Frequency deviation in Area 1

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

0

0.5

1

1.5

2

2.5

A
tt

a
c
k
e

d
 S

ig
n

a
l

(b) Attack identification

Figure 5.5: Pulse attack to ∆f2
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Figure 5.6: Ramp attack to ∆Ptie
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In the literature, regression models, neural networks and statistical learning algorithms

are used to calculate real-time load forecasts. Weather forecasts, seasonal effects and other

factors are considered in these approaches to arrive at a load forecast. Generally speaking,

making the decisions based on load forecast might not be accurate, as discussed in section

2.3.1. In addition, the accuracy of the proposed mitigation scheme in the previous chapter

is sufficient in case the AGC is working in the linear region. Therefore, in this work, the

mitigation-based load forecast algorithm mentioned in [80] is suitable to be used if an

attack is detected by the particle filter or RNN, and only if the AGC is working in the

nonlinear region. In this case, only the attacked signal can be calculated using the load

forecast after it has been identified using the RNN identifier.

5.4 Summary

In this chapter, the effect of AGC nonlinearities was included. RNN-based method was

proposed for detecting and identifying attacks on AGC systems. Different attack templates

representing different types of data manipulation were discussed and simulated and various

attack scenarios were applied. The proposed detection techniques were able to detect all of

them. The results confirmed the capability of RNN for detecting and identifying different

types of attacks with high statistical measures in less than one second of the attack’s onset.

The first step was developing an RNN detector, and then adapting the model in order to

identify the location of the attack. The RNN model achieved a precision rate of 99.01 and

99.22 in the detection and identification tasks, respectively.
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Chapter 6

Mitigating False Data Injection

(FDI) Attacks on Wide-Area

Under-Frequency Load Shedding

(WAUFLS) Schemes

Relying solely on the value of ROCOF to evaluate system disturbances makes the

current WAUFLS schemes vulnerable to cyber attacks, as shown in section 3.4. They are

also inaccurate in small systems, as system inertia changes if one of the generators is tripped

[102]. In addition, using the swing equation to determine the magnitude of disturbance is

valid only at the moment of disturbance and does not give a real-time monitoring of system

mismatch [105]. In this chapter, a new WAUFLS scheme that overcomes these drawbacks

inherent in the current schemes is proposed. Because it works based on trusted system

states, it is able to evaluate system disturbances accurately, even if there are FDI attacks

on the frequency signals.
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6.1 Description of the Proposed WAUFLS Scheme

The proposed scheme calculates power mismatches using dynamic power flow analysis.

However, the data used to run the dynamic power flow must be obtained from a trusted

source. Therefore, PSSE represents an in-between layer that processes system measure-

ments and provides trusted data, using the proposed measurement classification-based

method explained in Section 6.2, that can be used in the power flow.

The logic of the proposed scheme is depicted in a flowchart in Fig. 6.1. First, the

frequency and power flow measurements are received from various sensors and PMUs in

the system. Then, the frequency of center of inertia (fc) is calculated and compared to

a predefined threshold (Fmin). A value less than the threshold means that there is an

under-frequency condition in the system due to a disturbance. At that point, power flow

measurements are used to run the PSSE, and trusted system states (V and δ at each bus)

are obtained.

The next step is to use these trusted states to run a dynamic power flow that calculates

the power mismatch caused by the disturbance. Based on the calculated mismatch, a load

shedding process is performed. After shedding the needed load amount, fc is calculated

based on the updated values for system frequency measurements and compared with the

nominal value of system frequency (Fn). Finally, if fc < Fn, the updated power flow

measurements are used to repeat the Power System State Estimation-Power Flow (PSSE-

PF) process until the system frequency returns to its nominal value. It is worth mentioning

that the topology of the system should be updated as needed, prior to running both PSSE

and the power flow. In the following subsections, the used models of PSSE as well as

dynamic power flow are described.

6.2 Securing PSSE using Measurement Classification

In order to run the PSSE, the control center operator relies on PFMs that guarantee

system observability. In practice, the system operator has access to redundant PFMs which
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generate a high number of essential sets [60]. The proposed mitigation method depends on

two main steps: i) securing only the subset of critical PFMs, and ii) employing different

PFMs for running the PSSE. By securing only the critical PFMs, we minimize the cost of

securing the power network. Furthermore, by employing a different observable (essential)

PFMs set, the attacker has virtually zero chance of knowing the PFMs to attack. Therefore,

any attempted attack will be easily detected by the PSSE BDD.

For the PSSE operation, as outlined in Section 3.3, the PFM including voltage V ,

phase angles θ, active power injection Pi, and reactive power injection Qi, which can be

obtained from the sensors installed at each bus. This is in addition to active and reactive

power flow values which can be obtained from the sensors installed at the transmission

lines. Therefore, the maximum possible number of PFM that can be obtained in a system

is Nmax = 4N + 2b where N is the number of buses and b is the number of transmission

lines. Since it impractical to install sensors everywhere in the power system, it is assumed

that the installed sensors provide a set of data A where A ⊂ M and M is the set that

includes all the possible measurements in that system. In this work, the available data set

A can be classified into essential E and non-essential W data subsets i.e., A = E ∪W .

Essential data subset is the minimum number of PFM that is required to achieve system

observablity. Essential data subsets are not unique and many subsets can be identified

for a system based on the number of the available data in the set A. The intersection

of all essential data sets gives a critical data subset C i.e., C = E1 ∩ E2 ∩ E3 ... ∩ En
where n is the maximum number of essential subsets. The critical data subset is a unique

subset of data that is required by the PSSE to converge [60]. This classification is shown in

Fig. 6.2. Using the ith essential subset Ei, the critical PFM for a system can be obtained

by ordering the essential measurements first, then partitioning the matrices and rewriting

equation (3.17) as:

[
hE(x)

hW (x)

]
.
[
x
]

=

[
zE

zW

]
(6.1)

where the rows of hE(x), zE and hW (x), zW correspond to the essential and non essential

measurements, respectively. Applying the Peters-Wilkinson decomposition and substitut-
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ing in (6.1)

ZE = L1.U.x (6.2)

ZW = L2.U.x (6.3)

Eliminating U.x, the linear dependency among the essential and non-essential measure-

ments can be given by (6.5). Hence, an element of zE is critical if the corresponding

column of T is null.

zW = L2.L
−1
1 .z1 (6.4)

zW = T.z1 (6.5)

The proposed mitigation scheme in this work is to install secured communication chan-

nels for all the critical PFM such that the attacker cannot access the measurements included

in the subset C. In addition, given the fact that a number of essential PFM sets can be

identified, a second layer of security can be added if the control center operator selects

-randomly- one of these sets at each run. If it is possible for the attacker to identify these

sets, it is impossible for him/her to know which set is used at the current instant. There-

fore, the attacker will never be able to launch a hidden attack. However, the attacker

can manipulate some measurements and this will be detected easily using the BDD in the

PSSE.

6.3 Calculating the Power Mismatch Using a PSSE-

PF Module

After estimating a trusted vector of system states, including voltage magnitude and

phase angle at each bus, these trusted values are used to run a power flow to calculate

total system mismatch. To capture small changes in the power system during transients, a

second-order power flow model [138] is used to calculate the total power mismatch. For a

system with n buses, the power mismatch at bus i can be defined as the sum of the power
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flows in all elements, i.e., generators, loads, transmission lines, etc., connected to this bus.

Using Taylor series expansion, the active power mismatch Pmis,i at bus i can be defined as:

Pmis,i =
N∑
j=1

∂Pi
∂δj

∆δj +
N∑
j=1

∂Pi
∂Vj

∆Vj +
1

2

N∑
j=1

∂2Pi
∂δ2

j

(∆δj)
2

+
1

2

N∑
j=1

∂2Pi
∂V 2

j

(∆Vj)
2 +

N−1∑
j=1

N∑
r=j+1

∂2Pi
∂δj∂δr

∆δj∆δr

+
N∑
j=1

N∑
r=1

∂2Pi
∂δj∂Vr

∆δj∆Vr +
N−1∑
j=1

N∑
r=j+1

∂2Pi
∂Vj∂Vr

∆Vj∆Vr (6.6)

where Pi is the active power injection into bus i, δj and Vj are the phase angle and magni-

tude of voltage at bus j, respectively, N is the number of system buses, and ∆ represents

small changes in the variables. Real power injection into bus i can be mathematically

expressed as:

Pi =
N∑
j=1

|ViVjYij|cos(δi − δj − θij) (6.7)

where Yij = |Yij|∠θij is the admittance of the transmission line connecting buses i and j.

Substituting (6.7) into (6.6) and after simplifications [138]:

Pmis,i =
N∑
j=1

∂Pi
∂δj

∆δj +
N∑
j=1

∂Pi
∂Vj

∆Vj +
∂2Pi
∂V 2

j

(∆Vj)
2+

N∑
j=1,j 6=i

∂2Pi
∂δi∂Vj

∆δi∆Vj +
N∑

j=1,j 6=i

∂2Pi
∂δj∂Vj

∆δj∆Vj+

N∑
j=1

∂2Pi
∂δj∂Vi

∆δj∆Vi (6.8)

Finally, the total system mismatch Pmis, which is also equal to the difference between

the total generation PG and the total load PL, is equal to the summation of the single
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mismatch values at each bus and can be evaluated as (6.9). It is worth mentioning that

while system losses can be neglected in large systems, in this work they are included in PL.

Pmis = PL − PG =
N∑
i=1

Pmis,i (6.9)

6.4 Load Shedding Process

Since the proposed approach performs online monitoring of the amount of power mis-

match, the amount of load to be shed Pshed is the same as the amount of power mismatch

Pmis because the spinning reserve is already embedded in the calculations. This contrasts

with other approaches that require knowledge of the system spinning reserve because they

calculate the magnitude of disturbance, not the actual power mismatch in the system.

To achieve load shedding, a combination of loads is selected such that the sum of their

total active powers is as close as possible to Pshed. There are different criteria by which load

shedding locations can be selected. However, the most common criteria used in wide-area

applications is voltage collapse-based load shedding, as the voltage collapses rapidly after

a disturbance [104,107,109,116–118].

For the sake of subject completeness, the shedding criterion used in the simulations

of this paper will be discussed. The shedding locations are mainly selected based on the

location of disturbance [104]. In other words, the load shedding is distributed between the

buses that are close to the disturbance according to their voltage dip during the disturbance.

All area buses are ranked based on voltage dips. Accordingly, the load shedding at bus i

is proportional to the bus rank, as follows:

Pshed,i =
∆Vi∑Nv
i ∆Vi

× Pshed (6.10)

where ∆Vi is the voltage dip at bus i immediately after the disturbance, and Nv is the

set of buses that have the highest voltage dip. Once the load to be shed is known for all
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buses, the shedding process takes place in steps. It is worth mentioning that the trusted

values of buses voltage are used for this purpose, which means that this process is robust

to cyber attacks.

6.5 Reliability and Accuracy of the Proposed Method

The proposed mitigation approach depends on running the PSSE, which is an essential

operation in the power grid. The approach relies on adding a security layer for the PSSE

process by using secure PFMs. However, this added security layer does not have any sig-

nificant delays in the PSSE scheme. Fig. 6.3 depicts the required number of iterations

for PSSE convergence for different accuracy thresholds, which is the typical number of

iterations for PSSE schemes. In addition, Fig. 6.4 shows the probability of finding an

observable set against employing a specific percentage of available PFMs (with all pos-

sible combinations at this percentage). For example, in the IEEE 39 bus New England

system, of all PFMs sets combination of size 80% of available PFMs, 40% are essential

sets that can be used for PSSE. Therefore, by using different PFMs sets of various sizes,

the probability of the attacker to find the employed essential set drastically diminished,

which highly increases the reliability of the PSSE. As the protection strategy depends on

utilising different observable sets to obtain trusted states from the PSSE, we calculate the

probability of a successful FDI attack (scheme failure probability) for a PFMs subset size

as the inverse of the available number of observable sets times the probability of obtaining

an observable set (as shown in Fig. 6.4). The probability of the mitigation scheme failure

against the PFMs subset size used for the PSSE is depicted in Fig. 6.5. The figure shows

that applying a smaller subset of PFMs reduces the probability of a successful attack, as it

allows a larger number of PFMs combinations to obtain the PSSE. The system operator,

however, does not need to be restricted to a specific PFMs subset size.
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6.6 Simulation Results

In this section, the robustness of the proposed scheme is tested against the shortcom-

ings of traditional approaches, as discussed in the previous section. In so doing, we will

calculate load shedding under disturbance conditions, through the usage of the PSSE-PF

module. The following scenarios are simulated in PSCAD/EMTDC using the IEEE 39 bus

New England system. The measures of system stability after incorporating load shedding

are defined in [116–118, 139]. Accordingly, system voltage at each bus as well as system

frequency are recorded and shown in the following scenarios to make sure they are within

the standard limits that achieve system stability.

6.6.1 Tripping of a Large Generator

In this scenario, the proposed scheme is used to relieve the system after tripping gen-

erator G1. Figure 6.6a shows the variations in system load versus the drop in system

generation due to the disturbance. The value of the initial mismatch is 1 pu, so this is

the amount of load to be shed in the first step when the frequency reaches the minimum

threshold (59.3Hz). Due to the transient which occurred after shedding the load, the

generation power drops slightly, necessitating a smaller second shedding step. The calcu-

lated mismatch value, illustrated in Fig. 6.6b, shows the accuracy of using the PSSE-PF

module to calculate it at different stages of the disturbance. It also shows that the power

mismatch is reduced to zero after the shedding process. As a result, the frequency of

center of inertia reverts to the nominal value, as depicted in Fig. 6.6c, which reflects the

frequency stability of the system after incorporating the proposed shedding scheme. In

addition, Fig. ?? shows the system voltage response at buses 5, 6, 7, 8, 12, 31 and 32

during and after incorporating the load shedding. It can be seen that after incorporating

the proposed scheme, system voltage at each bus returns back to its normal value, which

achieves voltage stability as well.
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6.6.2 Islanding Scenario

This scenario includes a sudden load increase of 0.45 pu at bus 15 at t = 16 sec, resulting

in the disconnection of the transmission lines that connect buses 1-2 and 8-9 at t = 17 sec

due to thermal limits. Because of this disturbance, the system becomes two islands, with

one having an unbalance between load and generation due to being disconnected from the

system’s main supply. The system can be viewed as two areas: Area 1, which includes

buses 1, 9 and 39, and Area 2, which includes the rest of the system. An analysis of each

area is carried out separately below.

A. Analysis of Area 1

Area 1 includes the largest supply G1. However, as seen in Fig. 6.8a, the generation

is less than the load, and the rest of load power is taken from the generators in Area 2.

At the moment of disturbance, G1 is willing to participate in the load increase that occurs

in Area 2, so the output power of this generator increases. Following the disconnection of

the transmission line at t = 17 sec, Area 1 becomes isolated and includes only G1 and a

load of 1.15 pu. The frequency of Area 1 remains stable after the disturbance, as shown

in Fig. 6.8c, because the area power mismatch is zero (see Fig. 6.8b). Therefore, no load

shedding is needed in Area 1.

B. Analysis of Area 2

Area 2 experiences extra generation prior to the load increase that occurs at t = 16 sec.

This extra generation power is supplied to Area 1, as discussed above and as shown in Fig.

6.9a. After the transmission lines are disconnected, a mismatch of 0.15 pu exists in Area

2 (see Fig. 6.9b) because the generators in this area are not able to supply the entire

load demand. Hence, the system frequency begins to drop, as illustrated in Fig. 6.9c, and

reaches the load shedding threshold at t = 24 sec. A load shedding process then takes

place and the frequency of the area returns to its nominal value.
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It can be seen that the frequency in the two areas went back to the nominal value after

incorporating the proposed load shedding. In addition, Fig. 6.10 shows that the voltages at

selected buses recovers after the disturbance as well. Therefore, the values of both system

frequency and voltages achieve system stability.

6.7 Advantages of the Proposed WAUFLS Scheme

The results from the above analyses indicate that the approach of calculating a power

mismatch during a disturbance has several advantages compared to the swing equation

used in other schemes. These advantages include the following:

i. The calculated value of the power mismatch is trusted, regardless of the existence of

FDI in the power flow measurements, because the proposed approach uses trusted

system states to calculate it. In contrast, the calculated value using the swing equa-

tion could be inaccurate if there is an FDI on frequency measurements. Therefore,

the proposed scheme is more robust against cyber attacks.

ii. The proposed mitigation scheme uses a PSSE-PF module, which gives real-time

monitoring for the value of power mismatch due to the fact that PSSE is used in

almost all recent control centers to provide real-time monitoring of the system based

on the PMUs measurements that are being sent in high resolution. Nevertheless,

because of the dynamic response of governors, turbines, loads and other control

elements, the validity of the swing equation output is limited and considered only at

the moment of disturbance [105].

iii. The proposed mitigation scheme uses only the frequency magnitude to detect distur-

bances, which means it can work with any frequency signal from the system. This is

because the frequency magnitude at different points in the system is the same, with

only the ROCOF changing from point to point, as shown in Fig. 3.4. Afterwards, it

uses the system states, which are continuously available. The swing equation, on the
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other hand, uses both ROCOF and the frequency of center of inertia (fc) to calculate

the mismatch. The accuracy of the fc calculation depends on the number of available

frequency measurements, with higher measurements being more accurate. Therefore,

the proposed scheme is more reliable.

iv. The proposed approach is valid for large and small systems, whereas the approaches

that use the swing equation are valid only for large systems. Following a large

disturbance that includes tripping of the generators or large synchronous motors, the

swing equation does not give accurate results because it depends on the inertia of

the system. This can be approximated in large systems by assuming that most of

the total inertia is still available. However, for small systems, an underestimation of

the actual disturbance might result [102]. Therefore, the proposed scheme is more

accurate for a wider range of system sizes.

v. The proposed scheme calculates the power mismatch, which is the amount of load

to be shed directly, because it monitors the system online and runs power flow at

every time step. On the other hand, the swing equation calculates the magnitude

of disturbance, which still requires the control center operator to find and obtain

information about the available spinning reserve in order for a decision to be made

about the amount of load to be shed.

6.8 Summary

As a mitigation approach, a new WAUFLS scheme that works based on trusted mea-

surements was proposed. A PSSE-PF module was used to calculate the total system

mismatch. This module has two main components: the PSSE, which uses power flow mea-

surements and calculates trusted system states, and the power flow, which utilizes these

trusted states to determine the mismatch and hence the amount of load to be shed. Ac-

cordingly, the load shedding is distributed between the buses based on the proximity to the

disturbance according to their voltage dip during the disturbance. The proposed scheme
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was tested and validated under a range of system conditions. The results show that it is

able to protect the system during under-frequency conditions, regardless of the existence

of an FDI on system measurements. The results thus confirm the accuracy and reliability

of the proposed scheme.
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Figure 6.1: Flowchart of the proposed WAUFLS protection scheme

116



Figure 6.2: Measurements classification into three essential sets
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Figure 6.3: PSSE iterations for required accuracy
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Figure 6.5: Failure probability of the mitigation scheme
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Chapter 7

Conclusions

7.1 Summary and Conclusions

Communication networks in smart grids are bringing increased connectivity to the en-

ergy industry, revolutionizing it in terms of reliability, performance, and manageability.

This is accomplished by providing bidirectional communications to operate, monitor, and

control power flow and measurements. However, communication networks also bring severe

security vulnerabilities. Because of their critical nature and the significant socioeconomic

impact of blackouts, smart grids can be a prime target for cyber terrorism. Cyber attacks

present a real threat to WAMPAC schemes. While cryptographic authentication mecha-

nisms, e.g., through the use of Message Authentication Codes (MAC), may enable us to

detect malicious modifications to sensor measurements, they do not prevent attackers from

modifying these data. Therefore, in smart grid applications that require real-time response,

such as WAMPAC schemes, real-time mitigation for cyber attacks is still required after

attack detection. The main contributions of this thesis can be summarized in the following

points:

• The analysis presented in this work demonstrated that current wide-area frequency-

related schemes are vulnerable to FDI attacks.
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• The effect of FDI attacks on AGC systems as well as WAUFLS protection schemes

was studied in detail. The problem formulation was driven mathematically and

simulations of FDI scenarios on practical systems were tested.

• An approach to detect FDI attacks on AGC using the Kalman filter was proposed.

System measurements were estimated using the filter and then compared with the

received ones. The norm of the residual as well as a CUSUM were used to decide on

the existence of an attack on the measurements. The results indicate that while the

proposed approach can detect FDI instantaneously, it cannot mitigate its effect.

• An approach to jointly detect, estimate and compensate for FDI attacks against

AGC systems was presented. The utilized input/state estimation-based algorithm

considered the FDI as an unknown input and estimated its value accordingly. The

estimated values for the FDI were then used to compensate for the effect of the attack

in real time so that the AGC system could continue its operation under attack until

the main reasons for the attack were eliminated. The simulation results confirm the

effectiveness of the proposed approach against different types of FDI attacks.

• An RNN-based approach for detecting the FDI in AGC systems was also proposed

that considered system nonlinearities. The RNN analyzed the sequential stream of

signals and built a memory of previous system states to detect any anomalies or

attacks on the signals. The results confirm RNN’s ability to detect, classify and

identify different types of attacks with high statistical measures within less than one

second of the attack.

• A new mitigation scheme that works based on trusted measurements was proposed

to mitigate the effect of FDI attacks on WAUFLS. A PSSE-PF module was used to

calculate the total system mismatch. This module has two main components: the

PSSE, which uses power flow measurements and calculates trusted system states,

and the power flow, which utilizes these trusted states to determine the mismatch

and hence the amount of load to be shed. The load-shedding is distributed between

the buses based on the proximity to the disturbance, according to their voltage dip
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during the disturbance. The proposed scheme was tested and validated under a

range of system conditions. The results show that it is able to protect the system

during under-frequency conditions, regardless of the existence of an FDI on system

measurements. The results thus confirm the accuracy, speed, and reliability of the

proposed scheme.

7.2 Directions for Future Work

More work can be done to address several key topics. These include novel methods

for risk assessment that capture cyber attack threats and impacts, and attack detection

and mitigation techniques that leverage cyber and physical properties of the grid without

interfering with its critical energy delivery functions. There are several potential directions

that could be pursued to extend the work discussed in this thesis. The following points

can be considered for future research:

• In general, the effect of cyber attacks on other WAMPAC can be given more con-

sideration. Since there is no general model that can represent the response of all

WAMPAC schemes, each scheme or each group of similar schemes should be dealt

with separately.

• The problem of cyber security of RAS schemes, including UVLS and OOS, should be

investigated in detail. Attack models on these schemes should be studied and defense

mechanisms should be proposed.
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Appendix A

Data of the AGC Systems

A.1 Parameters of the Two-Area System

Table A.1 shows the different parameters of the two-area AGC system used throughout

this work. These data are obtained from [65].

Table A.1: Parameters of the Two-Area System

Parameters Area 1 Area 2

Di (pu/Hz) 0.6 0.3

Hi (sec) 5 4

Ri (Rad/pu) 0.05 0.0625

KIi 0.3 0.3

TT i (sec) 0.5 0.6

Tgi (sec) 0.2 0.3
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A.2 Parameters of the Four-Area System

The 12-bus four-area (Fig 4.10) system used in this study is a practical system from

North America. The parameters for each area are taken from [126] and are summarized in

Table A.2.

Table A.2: Parameters of the Four-Area System

Parameters Area 1 Area 2 Area 3 Area 4

Kpi (rad/puMW) 76 141.7 139.6 114.2

Tpi (sec) 14.4 19.1 9.39 9.12

Ri (Hz/pu) 3 3 3 3

Bi (pu/Hz) 0.416 0.377 0.378 0.388

KIi 0.131 0.131 0.131 0.131

TTGi (sec) 0.38 0.38 0.38 0.38
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Appendix B

Data of the IEEE 14-Bus System
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Table B.1: Bus Data

Bus

Type

(0=P-Q)

(1=P-V)

Volts
Load

P+jQ

Gen

P+jQ

1 1 1.06 0 114.14-j16.9

2 1 1.045 21.7+j12.7 40

3 1 1.01 94.2+j19 0

4 0 – 47.8+j4 0

5 0 – 7.6+j1.6 0

6 1 1.07 11.2+j7.5 0

7 1 1.09 0 0

8 0 – 29.5+j16.6 0

9 0 – 9+j5.8 0

10 0 – 3.5+j1.8 0

11 0 – 6.1+j1.6 0

12 0 – 13.5+j5.8 0

13 0 – 14.9+j5 0
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Table B.2: Line Data

Bus #
R X B

Taps

From To Mag. Ang.

1 2 0.01938 0.05917 0.02640 0 0

1 5 0.05403 0.22304 0.02190 0 0

2 3 0.04699 0.19797 0.01870 0 0

2 4 0.05811 0.17632 0.02460 0 0

2 5 0.05695 0.17388 0.01700 0 0

3 4 0.06701 0.17103 0.01730 0 0

4 5 0.01335 0.04211 0.00640 0 0

4 8 0 0.55618 0 0.969 0

5 6 0 0.25202 0 0.932 0

6 10 0.09498 0.1989 0 0 0

6 11 0.12291 0.25581 0 0 0

6 12 0.06615 0.13027 0 0 0

8 9 0.03181 0.0845 0 0 0

8 13 0.12711 0.27038 0 0 0

9 10 0.08205 0.19207 0 0 0

11 12 0.22092 0.19988 0 0 0

12 13 0.17093 0.34802 0 0 0

Table B.3: Detailed Model Unit Data

Unit # H (sec) Ra x′d x′q xd xq T ′do T ′qo xl

1 10.296 0 0.2995 0.646 0.8979 0.646 7.4 0 0.2396

2 13.08 0.0031 0.185 0.36 1.05 0.98 6.1 0.3 0

3 13.08 0.0031 0.185 0.36 1.05 0.98 6.1 0.3 0

4 10.12 0.0014 0.232 0.715 1.25 1.22 4.75 1.5 0.134

5 10.12 0.0014 0.232 0.715 1.25 1.22 4.75 1.5 0.134
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Table B.4: Detailed Model Unit Excitation System Data

Unit # KA TA VRMIN VRMAX Tr TE KF TF Ae Be

1 300 0.02 0 7.32 0.001 0.2 0.002 1 0.0006 0.9

2 20 0.02 0 4.38 0.001 1.98 0.001 1 0.0006 0.9

3 20 0.02 0 4.38 0.001 1.98 0.001 1 0.0006 0.9

4 20 0.02 1.395 6.81 0.001 0.7 0.001 1 0.0006 0.9

5 20 0.02 1.395 6.81 0.001 0.7 0.001 1 0.0006 0.9
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Appendix C

Data of the IEEE 39-Bus System

The single line diagram, bus data, line, generator and excitation system data are given in

the following pages. Data for the detailed model of the system are taken from [140]

Table C.1: Bus Data

Bus

Type

(0=P-Q)

(1=P-V)

Volts
Load

P+jQ

Gen

P+jQ

1 0 – 0 0

2 0 – 0 0

3 0 – 322+j2.4 0

4 0 – 500+j184 0

5 0 – 0 0

6 0 – 0 0

7 0 – 233.8+j84 0

8 0 – 522+j176 0

9 0 – 0 0

10 0 – 0 0

11 0 – 0 0
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12 0 – 7.5+j88 0

13 0 – 0 0

14 0 – 0 0

15 0 – 320+j153 0

16 0 – 329+j32.3 0

17 0 – 0 0

18 0 – 158+j30 0

19 0 – 0 0

20 0 – 628+j103 0

21 0 – 274+j115 0

22 0 – 0 0

23 0 – 247.5+j84.6 0

24 0 – 308.6-j92.2 0

25 0 – 224+j47.2 0

26 0 – 139+j17 0

27 0 – 281+j75.5 0

28 0 – 206+j27.6 0

29 0 – 283.5+j26.9 0

30 1 1.0475 0 250+j0

31 1 0.982 9.2+j4.6 –

32 1 0.9831 0 650+j0

33 1 0.9972 0 632+j0

34 1 1.0123 0 508+j0

35 1 1.0493 0 650+j0

36 1 1.0635 0 560+j0

37 1 1.0278 0 540+j0

38 1 1.0265 0 830+j0

39 1 1.03 1104+j250 1000+j0
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Table C.2: Line Data

Bus #
R X B

Taps

From To Mag. Ang.

1 2 .0035 .0411 .6987 0 0

1 39 .0010 .0250 .7500 0 0

2 3 .0013 .0151 .2572 0 0

2 25 .0070 .0086 .1460 0 0

3 4 .0013 .0213 .2214 0 0

3 18 .0011 .0133 .2138 0 0

4 5 .0008 .0128 .1342 0 0

4 14 .0008 .0129 .1382 0 0

5 6 .0002 .0026 .0434 0 0

5 8 .0008 .0112 .1476 0 0

6 7 .0006 .0092 .1130 0 0

6 11 .0007 .0082 .1389 0 0

7 8 .0004 .0046 .0780 0 0

8 9 .0023 .0363 .3804 0 0

9 39 .0010 .0250 1.2000 0 0

10 11 .0004 .0043 .0729 0 0

10 13 .0004 .0043 .0729 0 0

13 14 .0009 .0101 .1723 0 0

14 15 .0018 .0217 .3660 0 0

15 16 .0009 .0094 .1710 0 0

16 17 .0007 .0089 .1342 0 0

16 19 .0016 .0195 .3040 0 0

16 21 .0008 .0135 .2548 0 0

16 24 .0003 .0059 .0680 0 0

17 18 .0007 .0082 .1319 0 0

17 27 .0013 .0173 .3216 0 0
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21 22 .0008 .0140 .2565 0 0

22 23 .0006 .0096 .1846 0 0

23 24 .0022 .0350 .3610 0 0

25 26 .0032 .0323 .5130 0 0

26 27 .0014 .0147 .2396 0 0

26 28 .0043 .0474 .7802 0 0

26 29 .0057 .0625 1.029 0 0

28 29 .0014 .0151 .2490 0 0

12 11 .0016 .0435 0 1.006 0

12 13 .0016 .0435 0 1.006 0

6 31 .0000 .0250 0 1.070 0

10 32 .0000 .0200 0 1.070 0

19 33 .0007 .0142 0 1.070 0

20 34 .0009 .0180 0 1.009 0

22 35 .0000 .0143 0 1.025 0

23 36 .0005 .0272 0 1 0

25 37 .0006 .0232 0 1.025 0

2 30 0 .0181 0 1.025 0

29 38 .0008 .0156 0 1.025 0

19 20 .0007 .0138 0 1.060 0

NOTE: The parameters of the block diagram in Fig. C.1 are computed as follows:

EX2 =
VRMAX

KE + C2
(C.1)

EX1 = 0.75EX2 (C.2)

SE = AeBEf (C.3)
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Table C.3: Detailed Model Unit Data

Unit # H (sec) Ra x′d x′q xd xq T ′do T ′qo xl

1 500.0 0 .006 .008 .02 .019 7.0 .7 .003

2 30.3 0 .0697 .170 .295 .282 6.56 1.5 .035

3 35.8 0 .0531 .0876 .2495 .237 5.7 1.5 .0304

4 28.6 0 .0436 .166 .262 .258 5.69 1.5 .0295

5 26.0 0 .132 .166 .67 .62 5.4 .44 .054

6 34.8 0 .05 .0814 .254 .241 7.3 .4 .0224

7 26.4 0 .049 .186 .295 .292 5.66 1.5 .0322

8 24.3 0 .057 .0911 .290 .280 6.7 .41 .028

9 34.5 0 .057 .0587 .2106 .205 4.79 1.96 .0298

10 42.0 0 .031 .008 .1 .069 10.2 .0 .0125

B = ln
C2/C1

EX2 − EX1

(C.4)

A =
C2

eB∗EX2
(C.5)

Unit # 1 has constant excitation.
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Table C.4: Detailed Model Unit Excitation System Data

Unit # KA TA VRMIN VRMAX KE TE KF TF C1 C2

1 0 0 0 0 0 0 0 0 0 0

2 6.2 .05 -1. 1.0 -.633 .405 .057 .5 .66 .88

3 5.0 .06 -1. 1.0 -.0198 .5 .08 1.0 .13 .34

4 5.0 .06 -1. 1.0 -.0525 .5 .08 1.0 .08 .314

5 40.0 .02 -10.0 10.0 1.0 .785 .03 1.0 .07 .91

6 5.0 .02 -1. 1.0 -.0419 .471 .0754 1.246 .064 .251

7 40.0 .02 -6.5 6.5 1.0 .73 .03 1.0 .53 .74

8 5.0 .02 -1.0 1.0 -.047 .528 .0854 1.26 .072 .282

9 40.0 .02 -10.5 10.5 1.0 1.4 .03 1.0 .62 .85

10 5.0 .06 -1. 1.0 -.0485 .25 .04 1 .08 .26

KA

1+sTA

VRmax

VRmin

1
KE+sTE

SE

SKF

1+sTF

VREF
+

VT

KE

−

−

Figure C.1: IEEE Type 1 rotating excitation system model
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