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Abstract 

The Athabasca Oil Sands Region (AOSR), located within the Western Boreal Plains (WBP) 

is characterized by a mosaic of boreal uplands and peatlands that dominate the terrain. These 

landscapes are underlain by oil-bearing formations (bituminous sands) and are disturbed or 

completely removed during resource exploration and extraction. Oil companies operating in the 

AOSR are mandated by the Government of Alberta to return their leased lands to an equivalent land 

capability. In doing so, new landscapes are constructed using materials salvaged from the pre-mined 

landscape and by-products from the mining process itself. Successful reclamation rests on an 

understanding of the soil physical properties that characterize these materials and how they impact 

intended function, both at the time of placement and in later years of reclamation. This research 

specifically focuses on the use of LFH mineral mix (hereafter referred to as LFH) as a cover soil in 

reclaimed landscapes and how its properties impact functionality. 

The temporal evolution of LFH was assessed using six reclamation study sites of six distinct 

ages (4 years post reclamation – 11 years post reclamation). A series of soil physical properties were 

analyzed in the top 10 cm of the LFH profile and while certain properties did follow a trend with 

time, other properties were likely an intrinsic property of the LFH upon placement. The dynamic 

nature of LFH captured within the time frame of this study contributes to an improvement in 

hydrological response with time (increasing α and maximum infiltration rates). Properties such as soil 

organic matter and bulk density, that would less readily change under biotic and abiotic forces impact 

the initial quality of LFH upon placement. And, while higher initial quality does improve the 

likelihood of success in early years of reclamation, sites of lower initial quality still performed as 

intended. Considering the entire soil profile, LFH over subsoil (glacial till or tailings sand) is likely to 

form a percolation barrier. The presence of these barriers (hydraulic or capillary) can be detected 

using easily obtained soil physical properties and they should be considered along with the intended 

function of a reclaimed landscape. Both types of barriers can benefit vegetation as water is held above 

the interface of the two materials, increasing field capacity and thus available water holding capacity. 

However, their behaviour in relation to increasing soil moisture conditions differs. While a hydraulic 

barrier is weakened, allowing more water to steadily move beyond the interface, a capillary barrier is 

broken through, and the two materials remain hydraulically connected until the barrier is restored. 

The behaviour of a capillary barrier could benefit landscapes where percolation into the subsurface is 

crucial to success.  



 

iv 

Acknowledgements 

Many people from the last three years deserve recognition as I could not have gotten here 

without them – but there are a few in particular I would like to point out.  

First – thank you to my supervisor Dr. Jonathan Price for providing such a valuable 

opportunity and wonderful space to learn. I have gained so, so much along the way. Thank you! 

Next, I would like to thank my fellow students and colleagues in the Wetlands Hydrology and 

Hydrometeorology Labs at Waterloo. Thanks to James Sherwood, Eric Kessel and Owen Sutton for 

all the advice, assistance and support in the field and lab – and understanding what all those results 

meant. Nataša Popović - your presence in Fort McMurray kept me sane and fed. And to all those that 

lent a helping hand with field work – especially Tyler Prentice and Gabriel Dubé.  

Thank you to my wonderful friends and family. Mom, you have stood behind all my 

decisions with unwavering support – I am proud to be your daughter.  

And finally, my husband Tom. You are one of a kind and it would be impossible to put into 

words how much your endless love and support mean to me. I can’t wait for whatever is next. 



 

v 

Dedication  

To my Dad, Stephen. I have carried with me the spirit and positivity you left in this world and 

will continue to do so wherever I go. I am lucky to have known you. Cheers to you.   



 

vi 

Table of Contents 

AUTHOR'S DECLARATION ............................................................................................................... ii 

Abstract ................................................................................................................................................. iii 

Acknowledgements ............................................................................................................................... iv 

Dedication .............................................................................................................................................. v 

List of Figures ..................................................................................................................................... viii 

List of Tables .......................................................................................................................................... x 

Chapter 1 Introduction ............................................................................................................................ 1 

1.1 Land reclamation in the AOSR .................................................................................................... 1 

1.2 Objectives ..................................................................................................................................... 3 

1.3 Thesis format and project role ...................................................................................................... 4 

Chapter 2 The hydrophysical evolution of LFH-mineral mix in the post-mined landscape .................. 5 

2.1 Introduction .................................................................................................................................. 5 

2.2 Study sites ..................................................................................................................................... 7 

2.3 Methods ........................................................................................................................................ 9 

2.3.1 Statistical methods ............................................................................................................... 11 

2.4 Results ........................................................................................................................................ 11 

2.4.1 Hydrophysical properties ..................................................................................................... 11 

2.4.2 Soil water retention and hydraulic parameter estimation .................................................... 14 

2.4.3 Site vegetation and soil biological properties ...................................................................... 19 

2.5 Discussion .................................................................................................................................. 20 

2.5.1 ROSETTA vs RET-C .......................................................................................................... 20 

2.5.2 Evolution of soil properties ................................................................................................. 21 

2.5.3 Initial quality ....................................................................................................................... 25 

2.5.4 Limitations ........................................................................................................................... 26 

2.6 Conclusion .................................................................................................................................. 27 

Chapter 3 Implications of LFH mineral mix in a layered soil profile .................................................. 29 

3.1 Introduction ................................................................................................................................ 29 

3.2 Study sites ................................................................................................................................... 31 

3.3 Methods ...................................................................................................................................... 32 

3.3.1 Laboratory column experiments .......................................................................................... 32 

3.3.2 Soil physical properties ....................................................................................................... 34 



 

vii 

3.3.3 Issues ................................................................................................................................... 35 

3.4 Results ........................................................................................................................................ 35 

3.4.1 Soil properties ...................................................................................................................... 35 

3.4.2 Van Genuchten soil water retention and hydraulic conductivity curves ............................. 38 

 ...................................................................................................................................................... 39 

3.4.3 Laboratory column experiments .......................................................................................... 40 

3.5 Discussion .................................................................................................................................. 44 

3.5.1 Expected vs. actual performance of layered soil profiles .................................................... 44 

3.5.2 Implications for reclamation ................................................................................................ 46 

3.5.3 Errors and limitations .......................................................................................................... 47 

3.6 Conclusion .................................................................................................................................. 48 

Chapter 4 Conclusion ........................................................................................................................... 49 

References ............................................................................................................................................ 51 

 



 

viii 

List of Figures 

Figure 2-1 – Location of study sites and indication of landform type. ................................................... 7 

Figure 2-2 - boxplots of infiltration rates and saturated hydraulic conductivity (Ksat) for LFH for all 

sites. Log scale used on y-axis to clarify trends in data. # of samples of samples = 9 for Ksat, and 

varies for infiltration rates - indicated in Table 2-1. ............................................................................. 13 

Figure 2-3 - boxplots of bulk density and θs  of LFH for all sites.  # of samples = 9 for each boxplot. 

θs is the values estimated using ROSETTA. ......................................................................................... 13 

Figure 2-4-Fit of measured retention data with continuous SWRC’s generated using α, n, θr and θs 

estimated using ROSETTA (a) and RET-C (b). Each curve represents the average of 9 samples. ..... 17 

Figure 2-5 - boxplots of van Genucthen α (alpha) and n parameters estimated using ROSETTA. # of 

samples = 9 for all boxplots ................................................................................................................. 18 

Figure 2-6- boxplots of field capacity, permanent wilting point and available water holding capacity 

of LFH for all sites calculated using equations 2-3, 2-4 and 2-5, respectively. Values for α and n were 

estimated using ROSETTA. # of samples = 9 for all boxplots. ........................................................... 18 

Figure 2-7 - boxplots of soil organic matter and fine root biomass for LFH from all sites. # of samples 

= 9 for all boxplots. .............................................................................................................................. 19 

Figure 2-8 - correlation matrix generated using R illustrating relationships between all variables. Red 

indicates a positive correlation and blue indicates a negative correlation. Strength of relationship 

indicated by size and shade of symbol (e.g. smaller and lighter denotes a weaker relationship). The 

table to the right clarifies discrepancies in how variables were named in the figure and throughout the 

text. ....................................................................................................................................................... 22 

Figure 3-1 - Schematic diagram of laboratory column experiments. ................................................... 33 

Figure 3-2 – Comparison of VGM SWRC’s and measured SWRC’s. a) presents results for LFH from 

all three sites and b) presents results for subsoil. VGM curves were generated using equations 3-1 and 

3-2 and the van Genuchten parameters α, n, 𝜽s and 𝜽r that were estimated using ROSETTA. # of 

sample for curves that represent LFH = 9, and 1 for subsoil. The x-axis has been presented on a log 

scale to allow for easier comparison between the two data sets. Measured retention data were not 

available for the 6-year subsoil. ............................................................................................................ 37 

Figure 3-3 - Soil water retention and hydraulic conductivity curves generated using the estimated 

VGM parameters and equations 3-1 and 3-2. The blue dot on the 6-year subsoil curves indicates the 

position of the breakthrough head (0.2 m), determined by locating the tailings sand SWRC’s 

https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929242
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929242
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929242
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929243
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929243
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929244
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929244
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929245
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929245
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929246
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929246
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929246
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929247
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929247
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929251
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929251
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929251


 

ix 

inflection point. The triangles on the 6-year LFH curves indicate 0.2 m and the corresponding values 

for VWC and K(ψ) (indicated in box). .................................................................................................. 39 

Figure 3-4 - Results from 11-year site laboratory column experiment. Solid lines represent soil 

moisture probes in LFH and dotted lines represent probes in subsoil. ................................................. 42 

Figure 3-5 - Results from 8-year site laboratory column experiment. Solid lines represent soil 

moisture probes in LFH and dotted lines represent probes in subsoil. ................................................. 43 

Figure 3-6 - Results from 6-year site laboratory column experiment. Solid lines represent soil 

moisture probes in LFH and dotted lines represent probes in subsoil. ................................................. 44 

https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929251
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929251
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929253
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929253
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929254
https://d.docs.live.net/1e9b26e187cf419a/Documents/LFH/Writing%20and%20research/Hilary%20Irving_MSc%20Thesis_September%2025_jon.docx#_Toc51929254


 

x 

List of Tables 

 

Table 2-1 - Average values for LFH properties and vegetation at each site. # of samples = 9 unless 

otherwise stated. Statistical tests used indicated by: * = Kruskal Wallis and Wilcoxan Rank Sum post-

hoc test, ** = one way ANOVA and Tukey HSD post-hoc test. ......................................................... 12 

Table 2-2 - Comparison of Van Genuchten parameters and obtained using the ROSETTA PTF and 

RET C computer code; and θfc , θpwp , and AWHC that were calculated using equations 2-3, 2-4 and 2-

5, respectively. ROSETTA parameters were obtained by using the average input parameters (SSC, 

bulk density, VWC at 3.3 m) for each site, RET-C parameters were obtained by using the average 

measured soil water retention curves, number of samples = 9 for each method. Statistical tests used 

indicated by: * = Kruskal Wallis and Wilcoxan Rank Sum post-hoc test, ** = one way ANOVA and 

Tukey HSD post-hoc test. No statistical analysis was performed on the RET-C data. ........................ 16 

Table 2-3- Comparison of results from Nikanotee Fen Watershed. Infiltration capacity, bulk density 

and porosity are from Ketcheson (2015) and SOM is unpublished data (Ketcheson, 2013). θr, θs, α and 

n were estimated using ROSETTA and those results were used to calculate θfc, θpwp and AWHC. ..... 25 

Table 3-1- Average soil physical properties for LFH and subsoil at all study sites. # of samples = 9 for 

LFH and 1 for subsoil. *Values for 6-year subsoil SSC, bulk density and porosity are from Ketcheson 

(2015). 6-year LFH and subsoil Ksat was estimated using the ROSETTA pedotransfer function. ....... 36 

Table 3-2- Changes to soil water storage during laboratory column experiments. .............................. 40 



1 

Chapter 1 

Introduction 

1.1 Land reclamation in the AOSR 

The Athabasca Oil Sands Region (AOSR), located within the Western Boreal Plains (WBP) is 

characterized by a mosaic of boreal uplands and peatlands that dominate the terrain (Zoltai et al., 

1988). These landscapes are underlain by oil-bearing formations (bituminous sands) and are disturbed 

or completely removed during resource exploration and extraction (Government of Alberta, 2019). As 

of 2016, open pit mining activities, which are employed to extract shallower (< 75 m bgs) oil sands, 

have resulted in the complete removal of 901 km2 of the landscape and associated ecosystem services 

(Alberta Environment, 2019). Oil companies operating in the AOSR are mandated by the 

Government of Alberta to return their leased lands to an equivalent land capability (Alberta 

Environment, 2010). This involves reconstructing entire landscapes that support land uses with 

similar functions to those that existed prior to disturbance, but that are not necessarily identical 

(Alberta Environment, 2010). Several decades of research dedicated to the development of techniques 

to re-build landscapes that meet these regulatory requirements have resulted in a post-disturbance 

landscape that incorporates materials from the pre-disturbed landscape and by-products from the 

mining process itself.  After placement, these materials (e.g. cover soils) develop over time as a result 

of biotic and abiotic forces that alter their physical, chemical and biological properties (Karlen et al., 

2003). This can have an important influence on the functionality of a reclaimed system over time, yet 

the rates and character of these changes have not been sufficiently established for the range of 

materials used for reclamation.  

 The process of open pit mining results in large piles of overburden, the material originally 

between the uppermost organic and mineral horizons and the underlying oil-bearing sands that are 

collected for processing, and tailings sand resulting from that processing. Both overburden and 

tailings sand are used in the construction of new landscapes. Overburden is formed into upland 

formations know as overburden dumps, and tailings sand is used to construct dikes, which surround 

tailings ponds. These landscapes are capped with an arrangement of cover soils intended to support 

the establishment and growth of upland boreal vegetation, and aid in the containment of naturally 

occurring solutes, such as sodium, associated with the overburden and tailings sand (Elshorbagy et al. 

2005; Huang et al., 2013; Kelln et al, 2007). Two materials commonly used as a cover soil in the 

AOSR are peat-mineral mix (hereafter called PMM) and LFH-mineral mix (hereafter called LFH). 
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PMM is salvaged from low-lying areas where fens and bogs are found and includes the organic peat 

layer and varying proportions of the underlying mineral horizons (Mackenzie, 2011). Once trees have 

been cleared, LFH is salvaged from upland areas and contains the intact, partially decomposed and 

decomposed organic layers (litter, fibric and humic, respectively) and variable proportions of the 

underlying A and B mineral horizons (Naeth et al., 2013). Materials placed between toxic (saline-

sodic) overburden and the final capping layer include glacial and lacustrine till (Mackenzie, 2011). 

These materials, referred to as subsoils, protect the rooting zone from upward diffusion of 

contaminants from below (Kessler et al., 2010) while also acting as a barrier to mitigate downward 

percolation (Meiers et al., 2011b).  

 Upland cover soils play a key role in the functionality of a reclaimed landscape; success in 

reclamation rests on an understanding of how their properties influence intended outcomes. PMM and 

LFH vary considerably in their physical, chemical and biological properties, however some general 

assumptions can be made when comparing the two. For instance, PMM typically has greater soil 

organic matter (SOM), which confers higher soil water retention (Naeth et al., 2013). In a study that 

estimated percolation as a percentage of precipitation, Barber et al. (2015) found that on average, 

experimental plots capped with PMM had net percolation rates of 14% compared to those capped 

with LFH at 23%. Nevertheless, LFH has been consistently shown to be a more effective substrate for 

revegetation, despite its weaker soil-water retention. Sites capped with LFH have a more diverse 

vegetation community compared to PMM (Dhar et al., 2018), as well as lower seedling mortality 

rates (Barber et al., 2015). Salvaged LFH consists of a propagule bank that assists in natural recovery 

(Mackenzie & Naeth, 2010) and has more favourable soil nutrient regimes (Jamro et al., 2014). In 

addition, the interaction between a cover soil and its underlying subsoil influences the way a 

reclaimed landscape functions. Capillary barriers, which are created when a finer soil is layered over 

a coarser soil, have been noted in landscapes capped with both LFH and PMM (Leatherdale et al., 

2012; Naeth et al., 2011; Sutton & Price, 2019). In the presence of a capillary barrier, field capacity in 

the cover soil may be higher than in a homogenous profile (Huang et al., 2013). This contributes to a 

higher available water holding capacity (AWHC), which represents the amount of water available to 

plants and is the difference between field capacity and permanent wilting point.  

Though PMM and LFH are both suitable upland cover soils, a greater understanding of their 

variability, and the impact this has on intended functionality, is needed. Some of this variability lies in 

quality upon salvage or placement. A soil’s quality is largely dependent on its ability to perform in 

the way it was intended (e.g. support upland vegetation and restrict percolation) (Karlen et al., 2003). 



 

3 

Although suitable levels of quality have been defined for materials used in reclamation (Alberta 

Environment, 2006), they do not consider how a soil may change post-placement. Studies that have 

tracked the hydrophysical evolution of PMM have noted changes to properties such as an increase in 

infiltration capacity, which alters its hydrological response (Kelln et al., 2007; Meiers et al., 2011). In 

reclamation landscapes built with the intention of restricting percolation, this could potentially pose a 

problem as the landscape ages. Conversely, more novel landscapes could benefit from the same 

result. For example, in 2012 an upland-fen watershed, known as the Nikanotee Fen Watershed 

(NFW), was constructed to test the feasibility of fen reclamation in the post-mined landscape. Since 

fens rely on groundwater inputs from their adjacent uplands, the upland portion of the landscape must 

support the establishment and growth of vegetation while also promoting groundwater recharge 

(Ketcheson et al., 2017).  

1.2 Objectives 

The use of appropriate soil prescriptions is essential in achieving the intended functionality of a 

reclaimed landscape. The performance of soil prescriptions used in typical reclamation landscapes 

(e.g. overburden dumps) have been well documented (e.g. Huang at al., 2015; Meiers et al., 2011; 

Naeth et al., 2011); however, these often intentionally limit the movement of water below their cover 

soils. With recent research efforts focused on the construction of upland-fen watersheds it is 

necessary to understand how upland cover soils (e.g. LFH mineral mix) may impact the functionality 

of a landscape where hydrological connectivity between its units (upland surface, aquifer, fen) is 

crucial to its success. Although LFH has been shown to be an effective substrate for re-vegetation 

(e.g. Naeth et al., 2013), a greater understanding of its hydrophysical properties and how they may 

impact reclamation landscapes is necessary. Therefore, the primary objectives of this thesis are to:  

1) Track the evolution of LFH in the context of its hydrophysical properties; 

2) Evaluate the movement of water through LFH into its underlying subsoil, focusing 

on the interface between the two materials and discuss the implications on 

groundwater recharge; 

3)  Assess whether LFH has the capacity to function successfully as the upland cover 

soil in an upland-fen watershed. 
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1.3 Thesis format and project role 

This thesis includes two manuscript style chapters entitled Chapter 2: The hydrophysical evolution of 

LFH-mineral mix in the post-mined landscape; and Chapter 3: Implications of LFH-mineral mix in a 

layered soil profile. Chapter 2 used six study sites that differed in age to characterize the changes 

LFH undergoes post-placement and includes a mix of both field and laboratory data. Chapter 3 used 

laboratory column experiments to assess the movement of water through LFH and into its underlying 

material (tailings sand, overburden). My role for this project included research design in collaboration 

with my supervisor, field data collection, laboratory analysis, data analysis and writing the first draft 

of all chapters, after which feedback and revisions from my supervisor and committee were 

incorporated prior to submitting a finalized copy.   
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Chapter 2 

The hydrophysical evolution of LFH-mineral mix in the post-mined 

landscape 

2.1 Introduction  

In the Athabasca Oil Sands Region (AOSR) lands disturbed by mining activities must be returned to 

an equivalent land capability through land reclamation activities (Alberta Environment, 2010). 

Reclamation landscapes employ a variety of materials from the pre-disturbed landscape and by-

products of the mining process itself. Use and placement of the appropriate materials is essential to 

successful reclamation, and these differ depending on the intended functionality of the reclaimed 

landscape. For instance, typical upland reclamation landscapes where sustainable re-vegetation is the 

primary goal, are designed to limit percolation to mitigate the movement of contaminants contained 

within the underlying overburden (Kelln et al., 2007). This is achieved by layering soils in a manner 

that ensures soil water is held near the surface and thus available for vegetation (Huang et al., 2013). 

More recent efforts in reclamation include the construction of an upland-fen watershed, known as the 

Nikanotee Fen Watershed (NFW). Since fens rely on groundwater inputs from their adjacent uplands, 

the NFW’s upland cover soil must be able to support vegetation growth while also promoting 

recharge into its underlying aquifer (Ketcheson et al., 2017).  Choosing an appropriate cover soil to 

support vegetation, prevent percolation or promote recharge rests on an understanding of how soil 

properties impact the intended functionality of a reclaimed landscape.   

Soil can be broken down into physical, biological and chemical properties that are either 

inherent to the soil or dynamic in nature. Inherent properties (e.g. soil texture) remain relatively 

stagnant with time, while dynamic properties (e.g. infiltration capacity) change under the influence of 

biotic and abiotic forces (Karlen et al., 2003). Successfully achieving the intended functionality of an 

upland in a constructed upland-fen watershed will in part depend on the temporal trajectory of the 

cover soil’s hydrophysical properties. In reclamation, salvaged soils that are placed to act as a 

growing substrate, such as LFH mineral mix (hereafter called LFH), can initially be of poor quality 

due to the salvaging process that alters its physical properties (structure, bulk density, available 

nutrients, etc.). Poor physical quality in early years of reclamation can result in low infiltration and 

high runoff rates (Ketcheson, 2015); however, with time, quality has been shown to improve. Benson 

et al. (2007) found that the hydraulic conductivity of cover soils used in waste containment systems 
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with initially very low values (10-9 m s-1) increased between one and four orders of magnitude within 

two years. Guebert & Gardner (2001) found that within four years of reclamation, infiltration rates of 

reclaimed mine soils in Pennsylvania increased from 5.5 x 10-6 m s-1 to pre-disturbance rates of 2.2 x 

10-5 m s-1. In the AOSR the hydraulic conductivity of a peat-mineral mix (PMM) substrate increased 

by one order of magnitude (8 x 10-6 m s-1 to 7 x 10-5 m s-1) within two years of reclamation, and 

plateaued or decreased slightly thereafter (Meiers et al., 2011). Using numerical modelling, Sutton & 

Price (2019) suggest that weathered LFH (due to freeze-thaw cycling) had a hydraulic conductivity 

one order of magnitude higher than in its un-weathered state. 

 In contrast to the studies mentioned above that tracked the development of one soil over the 

course of several years, others have used space for time, or a chronosequence, to study the evolution 

of reclaimed landscapes over time. Sorenson et al. (2011) studied the influence of stand type on forest 

floor development and soil microbial communities and what, if any, the influence of time since 

reclamation had on these relationships. Their findings revealed that time was a significant variable for 

certain stand types, but overall, canopy coverage (independent of time) had the greatest impact on 

forest floor development and thus the biological functioning of the soil.  McAdams et al. (2018) 

tracked the abundance of a bioindicator in reclaimed soils to determine the influence of time since 

reclamation on their presence; however, their findings determined that the accumulation of forest 

floor material was a better predictor than time.  

The soil physical properties that control hydrological processes can be expected to follow 

certain temporal patterns as soils react to abiotic processes, in the form of freeze-thaw and wet-dry 

cycling (Benson, 1992), and biotic processes, in the form of root proliferation and bioturbation from 

soil macrofauna (Weiler & Naef, 2003). For example, freeze-thaw cycling has been linked to an 

increase in hydraulic conductivity in compacted clays (Benson, 1992). Water held within soil expands 

as it freezes, forcing soil particles to move and thus altering the soil’s structure. Upon thaw, voids 

remain where frozen water was, contributing to an increase in hydraulic conductivity. Similarly, the 

advancement of roots and filaments of mycorrhizal fungi drives aggregation, and thus an 

improvement in soil structure (Rillig & Mummey, 2006). These changes may be reflected in the van 

Genuchten soil water retention curve (Benson et al., 2007; Sutton & Price, 2019), modeled as (van 

Genuchten, 1980): 

𝝍(𝜽) =  𝜽𝒓+ (𝜽𝒔 − 𝜽𝒓)[𝟏 + (𝜶𝝍)𝒏]𝒎         Equation 2-1 

where 𝜓 is matric pressure (in this form expressed as a positive value representing stronger tension),  

𝜃r is residual water, 𝜃s is saturated water content, α approximates the inverse of air entry pressure (L-
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1), n is a fitting parameter related to the pore-size distribution and m = 1-1/n. With time, α should 

increase, indicating lower air entry pressures due to development of larger pores. Simultaneously, n 

should decrease as the pore-size distribution broadens (Benson et al., 2007; Sutton & Price, 2019).  

While the effectiveness of LFH as a substrate for re-vegetation has been very well documented 

(e.g. Mackenzie & Naeth, 2010), studies that track its hydrophysical evolution, similar to those that 

have tracked PMM (e.g. Meiers et al., 2011), are lacking. Understanding the evolution of LFH soils is 

important to the design of systems relying on groundwater recharge, such as in an upland-fen 

watershed. Therefore, the objectives of this study are to 1) track the temporal evolution of LFH 

upland cover soils in the context of their hydrophysical properties and 2) assess whether LFH’s 

physical and hydrophysical properties can support the intended functionality of a cover soil in an 

upland-fen watershed. The temporal evolution of LFH will be evaluated using space-for-time with a 

selection of study sites of six distinct ages, capturing the time frame of 4 – 11 years post reclamation.  

2.2 Study sites 

 

Figure 2-1 – Location of study sites and indication of landform type. 

Six reclamation sites located approximately 30 km north of Fort McMurray, Alberta (56°55’52”N, 

111°24’59”W) were investigated between May and August of 2018 (Figure 2-1). All sites had been 
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capped with a layer of LFH the year their respective reclamation began (2014, 2012, 2011, 2010, 

2009 and 2007). Thus, for the purposes of this study, these sites were identified as being of six 

distinct ages (4, 6, 7, 8, 9 and 11-year post reclamation), chosen in an attempt to capture the influence 

of time on their evolution. The 8, 9 and 11-year sites were overburden dumps constructed using 

saline-sodic overburden that had been covered with 100 cm of subsoil prior to being capped with 

LFH. The 4 and 7 – year sites were tailings sand dikes, and the 6-year site was the upland of a 

constructed fen watershed where the LFH was underlain by a tailings sand aquifer. LFH thickness 

was approximately 20 cm at the 4, 7, 8, 9, and 11-year sites and approximately 30 cm thick at the 6-

year site. LFH placed at the 6-year site originated from a stockpiled source; all other sites received 

directly-placed LFH. 

Following landform construction and LFH placement, each site received several treatments 

intended to improve the likelihood of success in reclamation. These included fertilizer applications, a 

nurse crop and surface amendments in addition to planted trees and shrubs. With the exception of 

fertilizer application, specifics for each treatment varied from site to site. Fertilizer (N-P-K blend of 

23.5-35-8) was applied at a rate of 300 kg ha-1 the same summer as seedlings were planted. Each site 

was planted with a mix of native tree species the summer following soil placement, including aspen 

(Populus tremulaides), balsam poplar (Populus balsamifera), black spruce (Picea mariana), white 

spruce (Picea glauca), jack pine (Pinus banksiana) as well as an assortment of shrubs, including 

beaked hazelnut (Corylus cornuta), choke cherry (Prunus virginiana) and green alder (Aldus crispa). 

The least diverse site at initial planting was the 11-year site, which was planted with only two tree 

species and five shrub species; the most diverse site was the 8-year site, which was planted with five 

species of trees and 10 unique shrub species. Initial tree planting densities ranged from 933 – 2797 

stems per hectare (SPH) and shrub planting densities ranged from 240-628 SPH. Nurse crops were 

planted to improve conditions for seedlings by increasing moisture availability during the growing 

season, and to provide protection from harsh (freezing, snow) conditions during the winter months 

(Mackenzie, 2011). The 11 and 9-year sites were seeded with a nurse crop of barley, and the 

remaining (younger) sites were seeded with a mixture of oats and native grasses (e.g. slender 

wheatgrass, Rocky Mountain fescue and tufted hairgrass). Coarse woody debris (CWD) was placed at 

the 8 and 11-year sites with intended benefits similar to a nurse crop (Brown & Naeth, 2014).    
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2.3 Methods 

To measure soil hydrophysical properties, intact soil samples (10 cm I.D x 10 cm height) were 

collected from random locations using PVC pipe driven carefully into the ground. Recovered samples 

(n = 9, all sites) were then wrapped tightly with plastic film and were refrigerated until laboratory 

analysis could take place. An additional five samples (10 cm I.D x 20 cm height) were collected from 

five randomly selected locations at each site to determine fine root biomass. In-situ infiltration rates 

were measured at the surface using randomly placed single-ring infiltrometers (# of samples ≈ 35, all 

sites). Tree height and density surveys were also completed using five randomly placed 10 m x 10 m 

plots at each site. All trees located within each plot were assessed for height, diameter at breast height 

(DBH) and species type. 

The intact soil samples were sub-sampled in the laboratory using stainless steel rings to 

produce smaller intact cores (8 cm I.D x 5 cm height), with the leftover sample stored separately. The 

smaller intact cores were used to measure saturated hydraulic conductivity (Ksat), soil-water retention, 

bulk density and porosity. Ksat was measured using the KSAT System (Meter Group) using the falling 

head method, derived from Darcy’s law, 

 𝒒 =
𝑸

𝑨 
= −𝑲𝒔𝒂𝒕

𝒅𝒉

𝒅𝒍
                             Equation 2-2 

 

where q is the specific discharge (L T-1), Q is the volumetric discharge (L T-3), A, is the cross-

sectional area of the flow face (L2), and dh/dl is the hydraulic gradient (dimensionless). Following 

Ksat, soil water retention was measured by placing saturated samples in a pressure plate extractor (Soil 

Moisture Corp. model #1600) on saturated ceramic plates with a 5-bar air entry pressure.  Pressure 

(|ψ|) inside the chamber was raised incrementally using the steps 0.1, 1, 5, 10, 20 and 40 m; samples 

were kept in the chamber at each pressure step for 7 days so mass could stabilize. Between each step, 

samples were weighed to calculate water content volumetrically (VWC). After the 40 m pressure step, 

samples were dried in a 105°C oven for 48 hours then weighed to facilitate determination of dry bulk 

density and porosity. 

Soil texture and soil organic matter content (SOM) were determined using the offcuts that 

remained after subsampling. Clay, silt and sand fractions were measured using a laser scattering 

particle size distribution analyzer (Horiba Partica LA-950V2) in which the samples were dispersed in 

a 0.1% sodium hexametaphosphate solution. SOM was determined using the loss on ignition (LOI) 

method. Before burning, approximately 10 g of each sample was weighed out (in triplicates) and 
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picked through to remove any twigs or leaves and pulverized to break up any clumps. Samples were 

left in the muffle furnace for 4 hours at 550°C and re-weighed the following day to determine SOM. 

Fine root biomass (FRB) (root diameter < 2 mm) was determined with the core method 

(Addo-Danso et al., 2016). Each sample was carefully washed through a 2 mm sieve to remove as 

much soil as possible while minimizing the loss of fine roots. Once washing was complete, the 

samples were left to air dry and any roots that were easily removed from the remaining soil were 

separated by hand and set aside. What remained of the samples were then submerged and soaked in a 

1% sodium hexametaphosphate solution for four hours. Lastly, roots that were released during the 

soak were carefully extracted and left to air dry before being combined with roots that had previously 

been set aside; roots were then weighed to determine FRB (g m-2).   

 The van Genuchten parameters α, n, 𝜃r and 𝜃s were estimated using ROSETTA and the 

RET-C computer code. ROSETTA a computer program that uses five hierarchical pedotransfer 

functions (PTFs) based on neural network analyses (Schaap et al., 2001). The five PTFs rely on easily 

obtained soil properties: 1 - soil textural class, 2 - sand, silt and clay fraction (SSC), 3 – SSC plus 

bulk density (BD), 4 – SSCBD plus water content at field capacity (33 kPa) and 5 – SSCBD33kpa 

plus water content at permanent wilting point (1,500 kPa). Given the data available, the fourth PTF 

was used for this analysis. Since VWC at 33 kPa was not directly measured during retention 

experiments, it was estimated using linear interpolation between measured VWC values at 10 and 50 

kPa.  

 With the estimated values for α and n, field capacity (𝜃fc) and permanent wilting point (𝜃pwp) 

were calculated using equations 2-3 and 2-4:  

𝜽𝒇𝒄 = 𝒏−𝟎.𝟔𝟎∙[𝟐+𝒍𝒐𝒈𝟏𝟎(𝑲𝒔𝒂𝒕)] ≡  
𝜽𝒇𝒄 −𝜽𝒓

𝜽𝒗𝑮 −𝜽𝒓
      Equation 2-3 

 

𝜽𝒑𝒘𝒑 =  𝜽𝒓 +
𝜽𝒗𝑮−𝜽𝒓

[𝟏+(𝜶∙𝟏𝟓𝟎𝟎)𝒏]𝒎                     Equation 2-4 

 

where field capacity is defined as the water content corresponding to a drainage rate of 0.1 mm d-1 

(Twarakavi et al., 2009) and permanent wilting point is defined as water content at 1,500 kPa 

(Dingman, 2015). With the estimated values for 𝜃fc and 𝜃pwp, available water holding capacity 

(AWHC) could be calculated as: 
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𝑨𝑾𝑯𝑪 =  𝜽𝒇𝒄 −  𝜽𝒑𝒘𝒑           Equation 2-5 

2.3.1 Statistical methods  

All data were tested for normality using a Shapiro-Wilk test; if the test is significant (p < 0.05), the 

null hypothesis that the data is normally distributed can be rejected (Dytham, 2011). For non-normal 

distributions, a Kruskal-Wallis test followed by a Wilcoxan rank sum post-hoc test was used to 

determine where, if any, statistically significant (p < 0.05) differences occurred between sites. A one-

way ANOVA test followed by a Tukey HSD post-hoc test was used for data that were normally 

distributed. All statistical analyses were conducted using the R Stats Package, version 3.6.1 (R Core 

Team, 2019).  

2.4 Results 

2.4.1 Hydrophysical properties  

Based on the average sand, silt and clay fractions, soil textural class for each site ranged from sandy 

loam to clay loam (Table 2-1). Average infiltration rates were lowest at the 6-year site (geometric 

mean = 93 mm hr-1) and highest at the 9-year site (geometric mean = 857 mm hr-1). Across sites, 

average infiltration rates initially followed a slight upward trend with time (4 to 8-year), after which 

values plateaued (Figure 2-2). Significant differences in infiltration rates were detected between the 

4-year site and the 6, 8 and 9-year site, and also between the 6-year site and the 8, 9 and-11-year sites. 

No significant differences were detected between the 7, 8, 9 or 11-year sites. Saturated hydraulic 

conductivity values were similar to infiltration rates with the largest discrepancy in their geometric 

means observed at the 6-year site (infiltration rate = 4.2 x 10-5 m s-1; Ksat
 = 8.3 x 10-5 m s-1). A similar 

pattern was also observed in Ksat values compared to infiltration rates, with a general increase over 

time; however, there were no significant differences detected between any of the sites (Figure 2-2). 

Bulk density followed no apparent trend with time (Figure 2-2). Bulk density of the 7-year 

site was lowest (0.82 g cm-3) and significantly different than the 4 and 9-year site, while the 6-year 

site (1.31 g cm-3) was highest and significantly different than the 7, 8 and 11-year sites. There were 

significant differences detected between values for porosity (𝜃s) 



12 

Table 2-1 - Average values for LFH properties and vegetation at each site. # of samples = 9 unless otherwise stated. Statistical tests used 

indicated by: * = Kruskal Wallis and Wilcoxan Rank Sum post-hoc test, ** = one way ANOVA and Tukey HSD post-hoc test. 

 

Property 
Years After Reclamation 

4 ±SD 6 ±SD 7 ±SD 8 ±SD 9 ±SD 11 ±SD 

Infiltration 

capacity  

(mm hr-1)* 

(# of 

samples) 

410 (36)  277  93 (106)  432  454 (35)  146  810 (39)  628  857 (41)  864  803 (34)  620  

Ksat (m s-1)* 1.2 x 10-4 4.5 x 10-4 8.3 x 10-5 3.4 x 10-4 1.6 x 10-4 5.6 x 10-4 2.4 x 10-4 1.2 x 10-3 2.9 x 10-4 4.5 x 10-4 2.6 x 10-4 7.1 x 10-4 

ρb 

 (g cm-3)** 
1.14 0.17 1.31 0.23 0.82 0.07 0.88 0.19 1.15 0.28 0.93 0.27 

LOI (%)* 8.05 0.02 3.80 0.01 22.86 0.07 9.65 0.04 6.41 0.04 5.31 0.02 

Sand (%)** 33 9 51 4 47 6 51 8 34 16 36 9 

Silt (%)** 45 6 41 3 40 7 41 8 42 6 39 6 

Clay (%)* 21 6 8 2 13 9 7 3 23 14 25 5 

Planting 

Density 

(SPH) 

2431 N/A 1707 N/A 2000 N/A 2471 N/A 2054 N/A 3990 N/A 

2018 Density 

(SPH) 
13600 N/A 14400 N/A 47000 N/A 31400 N/A 40400 N/A 17800 N/A 

% Increase 

in Density 
459 N/A 472 N/A 1580 N/A 1170 N/A 1866 N/A 346 N/A 

Fine Root 

Biomass  

(g m-2)**  

(n = 5) 

28 25  197 56 139 111 251 147 424 243 258 90 
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Figure 2-3 - boxplots of bulk density and θs  of LFH for all sites.  # of samples = 9 for each boxplot. θs is 

the values estimated using ROSETTA. 

Figure 2-2 - boxplots of infiltration rates and saturated hydraulic conductivity (Ksat) for LFH for 

all sites. Log scale used on y-axis to clarify trends in data. # of samples of samples = 9 for Ksat, and 

varies for infiltration rates - indicated in Table 2-1. 
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2.4.2 Soil water retention and hydraulic parameter estimation  

Table 2-2 presents a comparison of the Van Genuchten parameters α, n, 𝜃s and 𝜃r, estimated using 

ROSETTA and RET-C, and Figure 2-4 provides the fit between measured retention data and the 

continuous SWRC’s generated using both sets of parameters. The fit of the measured retention data 

with RET-C was favourable compared to ROSETTA, which underestimated saturated and residual 

water content, yet over estimated VWC at the 1 m pressure step. Despite the poorer fit using 

ROSETTA, it provided reasonable α values, and captured the expected increasing trend with time 

(Benson et al., 2007), that RET-C was unable to do given the absence of data in the critical region 

governing air-entry (see below), however it is difficult to account for the lack of pattern in RET-C 

and presence of one with ROSETTA.  Differences in VWC within the measured soil water retention 

curves (Figure 2-4) were most pronounced at the 0.1 m pressure step with significant differences 

detected between the 6 and 11-year sites, and between the 7-year site (VWC = 0.65) and all other sites 

(VWC ≤ 0.60). As pressure increased, values for VWC remained consistently higher for the 7-year site 

than all other sites and significant differences were detected between the 7-year site and the 9 and 11-

year sites at all pressure steps, and between the 7-year site and the 6-year site at all but the 5 m 

pressure step.  No significant differences were detected between the 4, 6, 8, 9 or 11-year sites.   

The van Genuchten parameter α, the inverse of air entry pressure, showed no discernable 

pattern based on the RET-C analysis (see discussion for explanation), but increased over time 

according to the ROSETTA approach (Figure 2-5), which produced significant differences between 

the 11-year site (α = 2.78; lowest air entry pressure) and all others (α ≤ 1.84) except for the 9-year site 

(α = 2.08). The trend for α was similar to those observed in infiltration rates and Ksat (Figure 2-2). 

Values for n, the fitting parameter related to the pore-size distribution, were relatively consistent 

between sites, regardless of the approach. However, with the exception of the 6-year site, the RET-C 

values were marginally higher, averaging 1.47, compared to the ROSETTA values that averaged 

1.41. Considering the fact that the 6 and 8-year sites had nearly identical sand, silt, clay fractions, yet 

followed the opposite trends in regards to ROSETTA and RET-C (8-year – ROSETTA was lower 

than RET-C, 6-year ROSETTA was higher than RET-C), these values are all in a narrow enough 

range to accept as reasonable.  

Values for 𝜃fc, 𝜃pwp and AWHC followed no apparent trend with time and 𝜃fc was relatively 

consistent between ROSETTA and RET-C, however, 𝜃pwp and AWHC were consistently lower and 

higher when estimated using ROSETTA, respectively (Table 2-2). Values for AWHC estimated using 
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ROSETTA were significantly different between the 11-year site and the 6 and 8-year sites and 

between the 4 and 8-year sites. The only significant differences detected between values for 𝜃pwp were 

between the 6-year site and all other sites, while values for 𝜃fc revealed significant differences 

between the 11-year site and the 6 and 8-year sites and between the 6-year site and the 7-year site. 

Statistical analysis was not performed for the RET-C data.  

.  
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Table 2-2 - Comparison of Van Genuchten parameters and obtained using the ROSETTA PTF and RET C computer code; and θfc , θpwp , 

and AWHC that were calculated using equations 2-3, 2-4 and 2-5, respectively. ROSETTA parameters were obtained by using the 

average input parameters (SSC, bulk density, VWC at 3.3 m) for each site, RET-C parameters were obtained by using the average 

measured soil water retention curves, number of samples = 9 for each method. Statistical tests used indicated by: * = Kruskal Wallis and 

Wilcoxan Rank Sum post-hoc test, ** = one way ANOVA and Tukey HSD post-hoc test. No statistical analysis was performed on the 

RET-C data.  

 Parameter 
Years After Reclamation 

 
4 ±SD 6 ±SD 7 ±SD 8 ±SD 9 ±SD 11 ±SD 

ROSETTA 

θr** 0.06 0.01 0.04 0.01 0.06 0.02 0.04 0.01 0.06 0.02 0.06 0.01 

θs* 0.47 0.04 0.40 0.04 0.54 0.02 0.50 0.06 0.47 0.07 0.52 0.08 

α** 1.59 0.83 0.42 0.90 1.29 1.20 1.84 0.72 2.08 0.70 2.78 1.75 

n* 1.41 0.09 1.49 0.13 1.42 0.14 1.34 0.10 1.42 0.22 1.36 0.11 

θfc* 0.44 0.03 0.38 0.06 0.44 0.03 0.42 0.04 0.44 0.05 0.47 0.05 

θpwp* 0.11 0.02 0.08 0.01 0.12 0.03 0.12 0.04 0.12 0.04 0.13 0.04 

AWHC* 0.33 0.01 0.30 0.05 0.32 0.03 0.30 0.01 0.32 0.03 0.35 0.04 

RMSE 0.06 N/A 0.06 N/A 0.09 N/A 0.05 N/A 0.06 N/A 0.04 N/A 

R2 0.91 N/A 0.91 N/A 0.90 N/A 0.92 N/A 0.93 N/A 0.97 N/A 

RET-C 

θr 0.18 N/A 0.06 N/A 0.23 N/A 0.16 N/A 0.16 N/A 0.20 N/A 

θs 0.56 N/A 0.59 N/A 0.69 N/A 0.61 N/A 0.57 N/A 0.62 N/A 

α 8.10 N/A 9.00 N/A 5.33 N/A 8.47 N/A 8.99 N/A 6.27 N/A 

n 1.46 N/A 1.30 N/A 1.57 N/A 1.42 N/A 1.51 N/A 1.56 N/A 

θfc 0.44 N/A 0.34 N/A 0.45 N/A 0.46 N/A 0.41 N/A 0.45 N/A 

θpwp 0.19 N/A 0.10 N/A 0.24 N/A 0.18 N/A 0.17 N/A 0.21 N/A 

AWHC 0.25 N/A 0.24 N/A 0.21 N/A 0.28 N/A 0.24 N/A 0.24 N/A 

RMSE 0.01 N/A 0.00 N/A 0.00 N/A 0.01 N/A 0.00 N/A 0.01 N/A 

R2 0.99 N/A 0.98 N/A 0.99 N/A 0.99 N/A 0.99 N/A 0.99 N/A 

 



17 

 

Figure 2-4-Fit of measured retention data with continuous SWRC’s generated using α, n, θr and 

θs estimated using ROSETTA (a) and RET-C (b). Each curve represents the average of 9 

samples. 
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Figure 2-5 - boxplots of van Genucthen α (alpha) and n parameters estimated using ROSETTA. 

# of samples = 9 for all boxplots 

Figure 2-6- boxplots of field capacity, permanent wilting point and available water holding capacity of 

LFH for all sites calculated using equations 2-3, 2-4 and 2-5, respectively. Values for α and n were 

estimated using ROSETTA. # of samples = 9 for all boxplots. 
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2.4.3 Site vegetation and soil biological properties 

Initial tree planting density varied between sites (Table 2-1), with the lowest initial SPH at the 11-

year site (933 SPH) and the highest at the 7-year site (2,797 SPH). Based on the percent increase in 

density from initial planting to the density measured in 2018 all sites displayed evidence of natural 

regeneration. The 7-year site had the highest measured 2018 density at 41,600 SPH and the second 

highest percent increase in density at 1387%. The 9-year site demonstrated the largest percent 

increase in density from an initial SPH of 2,054 to 36,000 in 2018, which equates to a 1652% increase 

in density. The 11-year site increased the least (346%) from an initial density of 3990 SPH to a 2018 

density of 17,888 SPH. 

Soil organic matter content was <10% for all sites except for the 7-year site (~23%), which 

was significantly higher than all other sites (Figure 2-7). Fine root biomass (FRB) demonstrated an 

upward trend over time (Figure 2-7) from the 4-year site (28 g m-2) to the 9-year site (424 g m-2); 

however, the 11-year site diverged from this trend with average values similar to the 7-year site. 

Statistical analysis reflects the trend with age as significant differences were detected between the 

older (9-year) site and younger (4 and 6-year) sites.  

 

 

 

 

Figure 2-7 - boxplots of soil organic matter and fine root biomass for LFH from all sites. # of samples = 9 

for all boxplots. 
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2.5 Discussion  

2.5.1 ROSETTA vs RET-C 

Discrepancies were noted between α, 𝜃r and 𝜃s estimated using ROSETTA and RET-C (Table 2-2). 

In particular, α was consistently higher with RET-C than with ROSETTA. This may be due to the fact 

that the measured retention data (input for RET-C) was lacking pressure steps at the “wetter” end of 

the SWRC and thus the actual air entry pressure, which is approximated by α, was likely missed. The 

higher values for α estimated using RET-C (5.3 – 8.9 1 m-1) would equate to higher values (less 

negative) for air-entry pressure than the lower values for α provided by ROSETTA (0.94 – 3.54 1 m-

1). Considering the gap in data for the portion of the measured retention curve that would capture air 

entry, RET-C likely estimated air-entry based on the first pressure step (-0.1 m), while ROSETTA 

was able to consider a wider range of pressures. The fact that ROSETTA values for α followed the 

expected increasing trend with time, while those estimated using RET-C did not, is more difficult to 

account for. Since the input data used for ROSETTA revealed no trend with time as individual 

properties (SSC, bulk density, VWC at field capacity), the differences in patterns may be attributed to 

the way ROSETTA works. ROSETTA uses artificial neural network analysis that uses the optimal 

and variable relations that link input data to output data (Schaap et al., 2001); unlike other 

pedotransfer functions that apply a series of linear or non-linear regression equations to input data 

(Minasny et al., 1999) and are thus more readily available to the user for inspection. 

 Values for 𝜃s estimated using ROSETTA were consistently lower than those estimated using 

RET-C, and align well with typical values for loam (predominant soil type in this study) (Dingman, 

2015), however ROSETTA is unable to account for soil structure (e.g. larger pores). This could cause 

a discrepancy in values since 𝜃s estimated using RET-C is provided by the input value of saturated 

water content that in this case was measured in the laboratory, and thus captures the presence of 

larger pores that are filled with water at saturation, yet may not impact bulk density to the degree that 

it would alter a result from ROSETTA. The poor match between values for 𝜃r, which was 

consistently much lower for ROSETTA than it was for RET-C, may be attributed to the insufficiently 

low pressures in the input data to obtain a true value for 𝜃r with RET-C.  Residual water content is 

often defined as VWC at -150 m, the lowest pressure that can typically be measured in the laboratory 

(van Genuchten, 1980), however the input data for RET-C did not include values for VWC at 
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pressures lower than -40 m. The 𝜃r  values provided by RET-C are a close match to measured VWC 

values at -40 m (Figure 3-2, Table 2-2), suggesting that the range of pressures in the input data was 

too narrow and RET-C was unable to extrapolate to lower pressures associated with residual water 

content (similar to the lack of data in the air-entry range). The lower values for 𝜃r estimated using 

ROSETTA can be attributed to the fact that ROSETTA employs a database of measured retention 

data, and can thus link known input parameters (SSC, bulk density, VWC at -3.3 m) to similar soils 

that have known values for VWC at -150 m (Schaap et al., 2001).   

 The relatively good match between ROSETTA and RET-C for 𝜃fc (Table 2-2) can also be 

attributed to the input data used for each method. ROSETTA used VWC at -3.3 m, which was 

estimated by linear interpolation between the values for VWC measured at -1 m and -5 m. This 

suggests that, despite the lack of data at -3.3 m for the RET-C input, it was able to capture this 

missing portion of the SWRC, unlike more critical portions, such as air-entry pressure. Since 𝜃pwp is 

also defined as VWC at -150 m (van Genuchten, 1980), the poor match between ROSETTA and RET-

C can be linked to the poor match between values for 𝜃r. Finally, the differences between AWHC 

estimated using each method are a result of 𝜃pwp since AWHC = 𝜃fc - 𝜃pwp.  

2.5.2 Evolution of soil properties 

The goal of this study was to determine the extent to which LFH mineral mix cover soil evolves post-

placement. Given that all sites’ average soil textural classification was loam, a space-for-time analogy 

was used to make comparisons between sites and comment on trends over time. The assumption is 

that similar textural classifications should react similarly over time to biotic and abiotic forces that 

influence a soil’s development. While there were some general trends, such as increasing infiltration 

rate with age (Figure 2-1) and a similar pattern for α, distinct differences in structural properties, such 

as bulk density or texture had a strong influence that superseded an age effect. For example, the 6-

year site had the highest bulk density (Figure 2-2) and lowest SOM of all sites (Table 2-1), and its 

infiltration rate (Figure 2-1) was lowest, even though its clay content (Table 2-1) was amongst the 

least. By comparison, at the 4-year site, the bulk density and SOM were relatively high, and was 

associated with higher infiltration rates than the older 6-year site, even though the former had much 

higher clay content. The complexity of the interrelationships between soil properties, irrespective of 



 

22 

time, are highlighted in the correlation matrix (Figure 2-8), which will be referenced throughout the 

discussion. 

 

Figure 2-8 - correlation matrix generated using R illustrating relationships between all 

variables. Red indicates a positive correlation and blue indicates a negative correlation. 

Strength of relationship indicated by size and shade of symbol (e.g. smaller and lighter denotes 

a weaker relationship). The table to the right clarifies discrepancies in how variables were 

named in the figure and throughout the text. 

With respect to infiltration rates, the presence of a slight upward trend with time (4 - 9-year), 

suggests that while biotic processes continue to condition the soil, it is likely that infiltration rates had 

already begun to plateau, even at the 4-year site. This supports findings by others that in reclamation 

soils, hydraulic conductivity and infiltration rates plateaued 2-4 years following placement (Benson et 

al., 2007; Kelln et al., 2007; Guebert  Gardner, 2001; Meiers et al., 2011). Changes to infiltration rates 

in reclaimed soils have been attributed to freeze-thaw cycling (Benson et al., 2007) and laboratory 

experiments on compacted clays demonstrated a reduction in the effect of freeze-thaw cycling (FTC) 

on hydraulic conductivity after 2-4 FTCs (Benson, 1992). In this study, the weak trend of increasing 
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infiltration capacity with time, is for the period after which most change is normally anticipated 

(Benson et al., 2007; Kelln et al., 2007; Guebert and Gardner, 2001; Meiers et al., 2011).  Further, 

Sutton and Price (2019) demonstrated that freeze-thaw cycling of LFH in the first few years following 

placement at the Nikanotee Fen Watershed (6-year site) weakened the capillary barrier that restricted 

recharge from LFH to tailings sand. Average infiltration rates at the 8, 9 and 11-year sites are 

approaching those measured in 2015 at a nearby natural site (Elmes and Price, 2019), where average 

infiltration rates were 1011 mm hr-1 and soil textural classifications (sandy loam, loam and clay loam) 

were similar to those found in this study.  

The data provides evidence that other processes continue to alter the structure of LFH in later 

years of reclamation. The upward trend with time noted in the van Genucthen parameter α (1.79 – 

3.54; Figure 2-4) indicates a decrease in air-entry pressures and thus the presence of larger pores. 

Benson et al. (2007) noted an increase in α by up to a factor of 10 for soils with very small as-built 

values (very high air entry pressure), 2-4 years post-placement. The magnitude of change diminished 

with higher as-built values for α. Similarly, Sutton and Price (2019) noted an increase in α from 1.3 to 

5.8  between unweathered and weathered LFH, respectively, at the NFW (6-year site). Further 

indication of the continual development of larger pores in LFH is evidenced by the upward trend with 

time noted in maximum infiltration rates (i.e. outliers on Figure 2-2). Mechanisms that may be 

responsible for the development of larger pores in the timeframe of this study (4 - 11-years) include 

soil macrofauna (Weiler and Naef, 2003) and the proliferation of plant roots that drive soil 

aggregation and thus improve structure (Scholl et al., 2014). Improved soil structure results in larger 

pores as soil particles are either pushed together by the force of roots or are held together by the 

mycelium of mycorrhizal fungi, creating voids between the newly formed aggregates (Rillig and 

Mummey, 2006).  The increased presence of fine roots can be seen in the upward trend with time 

noted in fine root biomass (FRB) as well as its relationship with site age (R2 = 0.78; Figure 2-8). The 

continued development of larger pores suggests that LFH’s hydrologic response will improve with 

time. In a comparison of two slopes reclaimed using PMM in 2007 and 2011, Ketcheson and Price 

(2016) found that the younger slope produced surface runoff far more frequently than the older slope, 

attributing the differences in hydrologic response between slope to differences in their hydrophysical 

properties.  

Other properties presented did not follow any distinct trends over time or remained consistent 

between sites. For instance, the highest and lowest values for bulk density were detected at the 6 and 

7-year sites, respectively.  Bulk density did, however, present strong negative relationships with 
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certain soil water retention parameters (Figure 2-8). The relationship between bulk density and the 

van Genuchten parameter 𝜃s and the measured change in storage between the 0.1 m and 40 m 

pressure steps have an R2 of -0.96 and -0.94, respectively. Given that the measured and van 

Genuchten soil-water retention curves (Figure 2-3) follow no obvious trend with time, it is likely that 

bulk density has a strong control on soil-water retention in LFH. Further, since bulk density was not 

correlated with years since reclamation; it is likely an intrinsic property of the soil at placement. 

Conversely, AWHC and bulk density have a weak relationship (R2 = -0.17; Figure 3-1), illustrating 

the differences between soil-water retention and AWHC. Soil-water retention is a measure of how 

much water a soil will physically hold onto  under varying pressure heads, while AWHC is a 

parameter that estimates the amount of water available to plants, between two distinct points on the 

soil-water retention curve (Equation 2-5). AWHC is controlled by soil texture as demonstrated by the 

relationship between AWHC and clay fraction (R2 = 0.93) and sand fraction (R2 = -0.87).  

In addition to following no trend with time, bulk density measured in this study differs 

substantially from bulk density measured at natural sites. The soil at the natural site previously 

mentioned had an average bulk density of 0.37 g cm-3 (Elmes and Price, 2018), less than half of the 

lowest bulk density in this study, measured at the 7-year site (0.82 g cm-3). Despite this, average bulk 

density values for all study sites do not exceed the range at which bulk density may restrict root 

growth (1.6 g m-3; Houlbrooke et al., 2010), including the 6-year site which was the only site to 

receive stockpiled LFH.  

Comparison of results from the Nikanotee Fen Watershed 

A set of samples were collected from the 6-year site (Nikanotee Fen Watershed) in 2013 (equivalent 

to year 1) and similar soil physical properties were previously measured. Table 2-3 presents a 

comparison of results between 2013 and 2018. While there were no significant differences detected 

between any of the properties (sample numbers were low, but many properties had similar values), 

some did exhibit patterns worth noting. Infiltration capacity more than doubled from 41 mm hr-1 to 93 

mm hr-1 (p = 0.14), while α increased from 0.50 to 0.94 (p = 0.2) and n decreased from 1.61 to 1.52 (p 

= 0.2). The patterns in α and n point to a greater presence of larger pores and a broadening of the 

pore-size distribution (Benson et al., 2007; Sutton and Price, 2019). These results further support the 

idea that the mechanisms that contribute to a soil’s evolution change with time since placement (short 

term, abiotic; long term, biotic). Over a longer time-frame, changes to bulk density and SOM may 

occur that could influence soil-water retention. Additionally, the 6-year site was the only one to 
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receive stockpiled LFH (i.e. presumed to be of lower quality), and although there was a substantial 

increase in infiltration capacity since 2013 (Table 2-2), the 2018 average infiltration rate was still 

significantly lower (p < 0.001) than the youngest site in this study (4-year), and its bulk density was 

highest (Table 2-1). These data are consistent with the current best-management practices for 

reclamation that favour directly placed LFH over stockpiled LFH (Mackenzie, 2011; Naeth et al., 

2013).  

Table 2-3- Comparison of results from Nikanotee Fen Watershed. Infiltration capacity, bulk 

density and porosity are from Ketcheson (2015) and SOM is unpublished data (Ketcheson, 

2013). θr, θs, α and n were estimated using ROSETTA and those results were used to calculate 

θfc, θpwp and AWHC. 

 

2.5.3 Initial quality  

SOM may be used as an indicator of quality for reclamation soils given its role in soil fertility and 

ecosystem functioning (Turcotte et al., 2009). Based on SOM, there is evidence that initial quality of 

LFH at time of placement differed between sites, as illustrated by the 7-year site. SOM at the 7-year 

site (23%) was more than 2 x greater than all other sites. Since natural changes to SOM typically take 

place over longer periods of time than this study covers (Bradshaw, 1997), it is reasonable to attribute 

this substantial difference in SOM to the LFH’s place of origin or salvage depth, which can result in a 

salvaged material with an inherently different fraction of organic matter. In support of this, Macyk 

(2006) found natural layers of LFH in the AOSR to range from 2– 25 cm, depending on location. 

Higher SOM is linked to lower bulk density (Dexter, 2004) and higher soil water retention (Yang et 

al., 2014), which is reflected by the 7-year site where bulk density was the lowest and measured soil-

water retention the highest. Additionally, the 7-year site displayed the second highest level of natural 

canopy regeneration based on percent increase in density from time of planting to 2018.  

 Despite evidence that higher initial quality seems to instigate “quicker” success in 

reclamation, sites with lower quality LFH still display signs of successful reclamation, as 

Year  

Infiltration 

capacity 

(mm hr-1) 

ρb 

(g cm-

3) 

Porosity 

(cm3/cm3) 
θr θs α n θfc θpwp AWHC 

SOM 

(%) 

2013 

n = 7 
41 1.30 0.45 0.05 0.40 0.50 1.61 0.38 0.07 0.30 4.56 

2018 

n = 9 
93 1.31 0.51 0.05 0.41 0.94 1.52 0.40 0.08 0.32 4.40 
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demonstrated by the 6 and 11-year sites. The 6-year site had the lowest average infiltration rate (92 

mm hr-1), highest bulk density (1.3 g m-3), and lowest SOM (3.8%). The 11-year site had the second 

lowest SOM (5.3%) and lowest amount of natural regeneration (346%). These were also the only two 

sites that required additional fill-in planting one or two years after initial planting due to seedling 

mortality. Additionally, the 6-year site was the only one to receive stockpiled LFH rather than direct 

placement, the preferred method, as propagules in stockpiled LFH have been shown to lose viability 

(Naeth et al., 2013). Although both sites exhibit poorer individual properties relative to the other 

study sites, they have both developed into functional uplands that support the continued establishment 

and growth of vegetation.  

2.5.4 Limitations 

Although this study used relatively simple methods to obtain a set of well understood soil 

hydrophysical properties, limitations of the study design and approach should be noted. For instance, 

the use of space-for-time to characterize the evolution of a landscape must be considered in the 

application of these results. While each study site employed similar techniques in reclamation (e.g. 

cover crop, fertilizer application, time of placement and planting), and were all similar in texture, 

variability in their places of origin impacted certain properties. As a result, it is difficult to obtain a 

baseline from which those properties can be tracked without carrying out a multi-year study on the 

same study site. Additionally, the time frame of the study (4 – 11 years post reclamation), is relatively 

narrow and thus any longer-term changes to soil structure and quality could not be captured.  

Another limitation of a study that uses space for time, is that the assumption of similarity in 

materials does not account for differences in outside forces such as soil placement depth, weather 

conditions from year to year, or soil properties that are especially sensitive to abiotic forces. For 

instance, the differences in clay content in each LFH could have an impact on the way LFH reacts to 

freeze-thaw cycling; soils with a high clay content would be more readily altered as a result of FTC. 

Additionally, since each site was constructed in a different year, they were exposed to different 

weather patterns, so even if they were similar in regards to materials used, the forces acting on those 

materials differ. Finally, since the ROSETTA PTF relies on some input properties that will not 

change with time (sand, silt, clay fractions), its ability to capture a trend in α, n, 𝜃r and 𝜃s rests on a 

change in VWC at 3.3 m and bulk density (and 150 m if applicable); and thus this method may be 

insufficient for studies that use space for time to assess the evolution of soils.  
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2.6 Conclusion  

The use of six spatially and temporally distinct study sites captured the variability in LFH mineral 

mix and highlighted the complexity of relationships between soil physical properties. Despite its 

variability, the current study revealed LFH used at the respective study sites can support the intended 

cover-soil function, including recharge in the upland of an upland-fen watershed. Although most of 

the study sites investigated were built in a manner that could restrict percolation (e.g. overburden 

dump and tailings sand dikes), the properties presented were measured in the upper 10 cm of soil and 

can therefore be considered under a different context where percolation is not restricted.  

LFH can support the establishment and growth of vegetation and perform hydrologically in a 

way that promotes recharge. The continued growth and establishment of vegetation with time, as 

evidenced by tree height, FRB, and percent increase in density, contributes to the alteration of the 

soil’s structure once the effect of abiotic forces, such as freeze-thaw cycling, has diminished. Further, 

AWHC measured at all sites (0.3 – 0.35), which represents water available to plants, exceeds AWHC 

measured in natural soils in the AOSR (~0.1) (Macyk, 2006). The increasing trend with time noted in 

α and maximum infiltration rates points to the continual development of larger pores within the soil 

matrix, contributing to an improved hydrologic response and thus a greater ability to transmit water 

into the subsurface via macropore flow (Beven and Germann, 1982; Weiler and Naef, 2003).  

Since properties such as bulk density and SOM followed no trend with time it is likely that they 

are an intrinsic property of LFH upon placement and contribute to its initial quality. Higher initial 

quality does seem to contribute to quicker success in reclamation, as evidenced by the 7-year site 

where SOM was significantly higher than all other sites and demonstrated the second highest amount 

of natural regeneration. However, sites that received LFH of lower initial quality (6 and 11-year), still 

functioned as intended, despite issues with seedling mortality in the earliest years of reclamation. A 

comparison of year 1 data to year 6 data from the NFW (6-year site) reinforces the idea that 

properties such as bulk density are an intrinsic property upon placement. While it is possible that 

changes to bulk density may take place over longer time frames as biotic forces continue to alter a 

soil’s structure, this was not captured by the timeframe this study. 

The dynamic nature of certain properties in LFH mineral mix (e.g. infiltration capacity and α) 

support the use of LFH of lower quality at time of placement, including LFH that was stockpiled. If 

care is taken through the use of industry established best practices, the hydrophysical quality of LFH 

should improve with time and the continued establishment and growth of vegetation, once the 

influence of abiotic forces such as freeze-thaw cycling has diminished. These changes will contribute 
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to an upland cover soil that is able to support vegetation and promote recharge into the subsurface, 

two qualities that are necessary for success in the upland of an upland-fen watershed.  

 Considering the comparison of results obtained using RET-C and ROSETTA for the van 

Genuchten parameters α, n, 𝜃r and 𝜃s as well as 𝜃fc and 𝜃pwp and AWHC, a more robust analysis of 

ROSETTA to analyze soils used in reclamation is warranted. While there were discrepancies between 

methods, a more in-depth study could provide greater clarity to those differences and potentially 

support the use of ROSETTA in the future, allowing for the quick analysis of spatially robust data to 

characterize materials used in land reclamation in the AOSR.  
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Chapter 3 

Implications of LFH mineral mix in a layered soil profile 

3.1 Introduction  

Resource extraction activities in the Athabasca Oil Sands Region (AOSR) results in the complete 

removal of the uplands and peatlands, which are characteristic of the region (Rooney et al., 2012). 

These landscapes provide essential ecosystem services and are crucial to the hydrological functioning 

of the area (Devito et al., 2012). Through land reclamation, the Government of Alberta requires that 

disturbed lands be returned to an equivalent land capability (Alberta Environment, 2010). Successful 

reclamation requires an understanding of the physical, chemical, and biological properties of salvage 

materials and the impact they have on intended landscape function. Common salvage materials 

incorporated into the reclamation landscape include overburden and tailings sand, used to construct 

upland landforms and dikes, cover soils salvaged from the pre-mined landscape, and subsoils 

typically composed of glacial till, to act as a buffer between the two (Mackenzie, 2011). In addition to 

understanding these materials individually, it is necessary to consider the interactions between soils in 

a layered profile. When layered, barriers to percolation may occur as a result of the contrasting 

hydraulic properties of the materials used, impacting the hydrological functioning of a reclaimed 

landscape  (Huang et al., 2013; Leatherdale et al., 2012; Naeth et al., 2011).  

Reclamation landscapes that are built with the intention of supporting upland boreal vegetation 

and limiting the movement of contaminants in the subsurface (e.g. saline sodic overburden dumps or 

tailings sand dikes) benefit from the presence of a percolation barrier (Kelln et al., 2007). In layered 

profiles, field capacity in the cover soil can be increased, thereby increasing available water holding 

capacity (AWHC), resulting in improved soil water storage in the rooting zone compared to a 

homogeneous profile (Huang et al., 2013). This is beneficial to vegetation in the AOSR where the 

climate is characterized by short, intense precipitation events that are separated by longer periods 

when little to no precipitation occurs and vegetation may become water stressed (Devito et al., 2012). 

More recent efforts in reclamation research include the construction of an upland-fen watershed. In 

contrast to an overburden dump, an upland-fen watershed must maintain hydrological connectivity 

between its upland cover soil and underlying aquifer to promote groundwater recharge, yet still 

maintain soil water storage in the rooting zone sufficient for the establishment and growth of 

vegetation (Sutton and Price, 2020; Ketcheson et al., 2017; Price et al., 2010).  
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The nature of percolation barriers created by layering reclamation materials depends on the 

arrangement in relation to their hydraulic properties. For instance, when a finer soil is placed over a 

coarser soil, a capillary barrier may be formed. Under unsaturated conditions, the coarser underlying 

soil will remain less permeable relative to the overlying finer (hence more saturated) soil, limiting the 

movement of water across the interface (Yang at al., 2004; Sutton and Price, 2019). Water held above 

the interface of the two soils will be removed from the finer soil by evapotranspiration, or 

breakthrough when the capillary barrier is broken, releasing water into the underlying soil (Stormont 

and Anderson, 1999; Yang et al., 2004). Breakthrough occurs when soil-water pressure at the 

interface is increased to the breakthrough head (ψB) of the coarser soil. Breakthrough head is the 

lowest pressure at which larger amounts of water could enter the coarser soil and can be identified by 

the inflection point of the soil water retention curve (SWRC), which corresponds to a rapid increase 

in permeability (Hillel and Baker, 1988; Stormont and Anderson, 1999). Therefore, by determining 

the point of the finer soil’s SWRC that corresponds to the breakthrough head of the coarser soil, it is 

possible to estimate the VWC needed in the finer soil for breakthrough to occur (Khire et al., 2000). In 

the case of a coarse soil placed over a fine soil, a hydraulic barrier may be created by contrasting 

hydraulic conductivities. If the overlying coarser soil has a higher hydraulic conductivity than the 

underlying soil, water moving through it will be slowed down at the interface of the two soils and 

thus be held closer to the surface for a greater duration (Li et al., 2014).  

The impact that percolation barriers have on the hydrological functioning of reclaimed 

landscapes has been discussed in the literature. Naeth et al. (2011) noted a capillary barrier at a 

tailings sand storage facility that had been directly capped with peat-mineral mix (PMM). The 

capillary barrier persisted throughout most of the growing season, as evidenced by water contents in 

the PMM, which remained close to field capacity; when field capacity was surpassed the capillary 

barrier was broken through and an increase in VWC was observed below the PMM – tailings sand 

interface. Similar observations were made by Leatherdale et al. (2012) in reclamation landscapes 

capped with PMM overlying both tailings sand and subsoil (e.g. glacial till). They concluded that the 

presence of the capillary barriers were a benefit to the way the systems functioned as a result of 

enhanced soil-water retention. Conversely, at another site in the same study, Leatherdale et al. (2012) 

noted water contents in PMM overlying tailings sand that consistently fell below permanent wilting 

point throughout the growing season, illustrating the variability in these systems and the materials 

used to construct them. In the upland of an upland-fen watershed, Sutton and Price (2019) identified a 

capillary barrier at the interface of LFH overlying tailings sand. Given the unique goals of an upland-
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fen watershed, the presence of a capillary barrier could negatively impact the functionality of the 

landscape as its adjacent fen relies on groundwater inputs from the tailings sand aquifer (Ketcheson et 

al., 2017). Although reclamation landscapes may differ in intended function, out of necessity they 

employ similar materials in their construction to achieve these different results. A greater 

understanding of the implication that cover soils and their interactions with subsoils have on the 

intended performance of a system is necessary for future design decisions. While field studies, such 

as those discussed above, are necessary for making observations in a natural setting subject to natural 

variability, laboratory studies provide the opportunity to make observations where certain variables 

can be controlled; thus, making comparisons across different sites more reliable. Laboratory column 

experiments are a valuable tool to study the movement of water through a layered soil profile. 

Specifically, monolithic samples offer an opportunity to closely mimic field conditions since soil 

physical properties that influence hydrological processes remain relatively undisturbed (Kosugi, 

2002; Lewis and Sjöstrom, 2010).  

The focus of this research will be the use of LFH-mineral mix in layered soil profiles in 

reclamation landscapes. Laboratory column experiments will be employed to observe the movement 

of water through three temporally and spatially distinct profiles capped with LFH. The specific 

objectives are to 1) assess the implications of a percolation barrier at an LFH-subsoil interface, 

depending on landscape function, and 2) assess the applicability of laboratory based data in 

determining if a barrier exists, and what kind of barrier could be expected.   

3.2 Study sites 

Soil monoliths were extracted from three reclamation study sites, to assess the influence that LFH 

mineral mix (hereafter referred to as LFH) has on groundwater recharge. The sites, located 

approximately 30 km north of Fort McMurray, Alberta (56°55’52”N, 111°24’59”W) were all capped 

with a layer of LFH at the time of reclamation (2007, 2010 and 2012). Years since reclamation at the 

time of sampling (May - August 2018) will be used to refer to each site (11-year, 8-year, 6-year). The 

8 and 11-year sites were overburden dumps constructed using saline sodic overburden, covered with 

100 cm of subsoil (glacial till) prior to being capped with a 20 cm layer of LFH. The 6-year site was 

the upland of a constructed upland – fen watershed (Nikanotee Fen Watershed). Tailings sand used to 

create the aquifer that forms the upland was capped with approximately 30 cm of LFH in the upland 

portion of the landscape.  
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3.3 Methods  

3.3.1 Laboratory column experiments  

One 30 cm I.D x 45 cm length monolith was collected from a random location at each of the three 

study sites. The thickness of 45 cm was chosen to ensure each sample would capture the interface 

between the LFH and its subsoil, therefore each monolith contains a layer of each material.  The 

samples were collected in a manner that caused minimal disturbance and not require further 

manipulation once in the laboratory. To achieve this an access trench approximately 50 cm deep was 

dug adjacent to the location from which the monolith was taken; then, a pre-cut length of PVC 

conduit was placed upright on the ground next to the trench. Using hand trowels the sample was 

carefully extracted by digging downward around the outside of the tube and removing enough 

material along the sides so that the tube could be pushed down yet leave minimal space between it 

and the soil. This was done approximately 5 cm at a time until the top of the tube was flush with the 

ground. To remove the monolith a stiff metal plate was placed on the bottom of the trench and 

carefully wedged beneath the sample, cutting it off at the base. Next, the sample was lifted out of the 

trench and closed on both ends using plastic caps secured using vapor proof tape. Before backfilling 

the extraction site, one intact 10 cm x 10 cm sample of the subsoil was collected at the 8 and 11-year 

sites from the wall of the hole left after extracting the monolith, approximately 5 cm below the LFH-

subsoil interface. A subsoil sample was not collected at the 6-year site, however work on the same 

site (Ketcheson, 2015) provided values for certain properties of the tailings sand, and the ROSETTA 

pedotransfer function (discussed in the following section) was used to estimate saturated hydraulic 

conductivity. The monoliths were stored at room temperature until they could be transported back to 

the University of Waterloo. All samples were secured and wrapped to minimize disturbances caused 

by transport. An additional nine intact LFH samples (10 cm I.D x 10 cm height) were collected from 

random locations at each site to characterize the average LFH properties.  

Laboratory column experiments were employed to observe the movement of water through 

LFH and into its underlying material. To irrigate the monolith, water was applied using TygonTM 

tubing (3/4” I.D), spiraled and affixed to a circular plate that was mounted above the monoliths. Small 

holes were drilled in the tubing every 5 cm for a total of 25 holes through which water could drip. 

Deionized water was supplied to each irrigation apparatus using a peristaltic pump (Longer Pump 

WT600-3J) at a rate of 60 rotations per minute (rpms) resulting in an irrigation rate equivalent to 57.5 

mL minute-1, or 3,450 mL hour-1. Three irrigation events over the course of three days were carried 
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out as follows: irrigation event #1 - 1 hour, 3,450 mL, irrigation event #2 - 2 hours, 6,900 mL, 

irrigation event #3 - 3 hours, 10,350 mL. Between each irrigation event and at the end of the 

experiment the monoliths were covered with a layer of polyethylene film to prevent evaporation. No 

water was applied to the monoliths prior to the beginning of first irrigation event and thus the 

experiment was conducted with the monoliths in the condition they were collected in the field. Soil 

moisture within each monolith was measured using four Campbell Scientific CS605 probes placed 

2.5 cm below ground surface (bgs), 3 cm above and 3 cm below the LFH – subsoil interface and 35 

cm bgs. The probes were connected to a multiplexer (Campbell Scientific SDMX50) and Time 

Domain Reflectometer (Campbell Scientific TDR 100) and data were logged every 15 minutes using 

a Campbell Scientific CR1000 data logger. The monoliths were placed on a 4.5 cm bed of glass beads 

(diameter 75 – 95 µm, Ksat = 5 x 10-5 m s-1) that were kept saturated using a Marriot bottle by setting 

the water table at the interface of the subsoil and glass beads, 4.5 cm above the base (Figure 1-1). 

Outflow was measured using a tipping bucket rain gauge (Texas Electronics TR-525M), placed 

beneath the outlet of each monolith. Data from the tipping buckets were logged every 15 minutes on 

the same data logger as the TDR probes.   

 

Figure 3-1 - Schematic diagram of laboratory column experiments.  



 

34 

3.3.2 Soil physical properties  

Intact cores were sub-sampled in the laboratory using stainless steel rings to produce smaller intact 

cores (8 cm I.D x 5 cm height), with the leftover sample stored separately. The smaller intact cores 

were used to measure saturated hydraulic conductivity (Ksat), soil water retention, bulk density and 

porosity. Ksat was measured using the KSAT System (Meter Group) falling head method. Following 

Ksat, soil water retention was measured by placing saturated samples in a pressure plate extractor (Soil 

Moisture Corp. model #1600) on saturated ceramic plates with a 5-bar air entry pressure.  Pressure 

(|ψ|) inside the chamber was raised incrementally using the steps 0.1, 1, 5, 10, 20 and 40 m; samples 

were kept in the chamber at each pressure step for 7 days so mass could stabilize. Between each step, 

samples were weighed to calculate water content volumetrically (VWC). After the 40 m pressure step, 

samples were dried in a 105°C oven for 48 hours then weighed to facilitate determination of dry bulk 

density and porosity. With the offcuts that remained after subsampling, clay, silt and sand fractions 

were measured using a laser scattering particle size distribution analyzer (Horiba Partica LA-950V2) 

in which the samples were dispersed in a 0.1% sodium hexametaphosphate solution. Since no subsoil 

sample was collected from the 6-year site, values for sand, silt and clay fractions, as well as bulk 

density and porosity were obtained from Ketcheson (2015), in which the 6-year site (Nikanotee Fen 

Watershed) was characterized. Ksat was estimated using the ROSETTA pedotransfer function, 

discussed below.  

 The van Genuchten parameters α, n, 𝜃r and 𝜃s were estimated using ROSETTA, a computer 

program that uses five hierarchical pedotransfer functions (PTFs) based on neural network analyses 

(Schaap et al., 2001). The five PTFs rely on easily obtained soil properties: 1 - soil textural class, 2 - 

sand, silt and clay fraction (SSC), 3 – SSC plus bulk density (BD), 4 – SSCBD plus water content at 

field capacity (33 kPa) and 5 – SSCBD33kpa plus water content at permanent wilting point (1,500 

kPa). Given the data available, the fourth PTF was used for this analysis. Since VWC at 33 kPa was 

not directly measured during retention experiments, it was estimated using linear interpolation 

between measured VWC values at 10 and 50 kPa. For the 6-year site tailings sand, the third PTF was 

used since measured retention data were not available to estimate VWC at 33 kPa. With the estimated 

values for α, n, 𝜃r and 𝜃s, soil water retention curves (SWRC) and hydraulic conductivity curves were 

generated using equations 3-1 and 3-2 (van Genuchten, 1980):  

 

𝝍(𝜽) =  𝜽𝒓+ (𝜽𝒔 − 𝜽𝒓)[𝟏 + (𝜶𝝍)𝒏]𝒎               Equation 3-1 
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𝑲(𝜽) = 𝑲𝒔 (
𝜽−𝜽𝒓

𝜽𝒔−𝜽𝒓
)

 
(𝟏 − (𝟏 − (

𝜽−𝜽𝒓

𝜽𝒔−𝜽𝒓
)

𝟏

𝒎
)

𝒎

)

𝟐

                                                                       Equation 3-2 

 

where α approximates the inverse of air entry pressure (L-1), n is a fitting parameter related to the 

pore-size distribution, m = 1-1/n, 𝜃r is residual saturation, 𝜃s is the saturated water content, L is a 

fitting parameter related to tortuosity, and Ks is saturated hydraulic conductivity (L T -1). The curves 

generated using Equations 3-1 and 3-2 will be referred to as VGM SWRC’s and VGM hydraulic 

conductivity curves in the following sections.  

3.3.3 Issues  

Analysis of results collected from the laboratory column experiments revealed issues in the data that 

were difficult to account for. When comparing the assumed irrigation rate to logged outflow, it 

appeared that the tipping buckets were not accurately logging the data and underestimating the actual 

amount of water that was released from each column. Various scenarios were considered, however 

none of them were able to account for the large discrepancies and therefore it was assumed that issues 

with the tipping buckets went unnoticed and thus the data set has not been included in the results. 

3.4 Results  

3.4.1 Soil properties  

Soil textural analysis determined that the LFH at all three study sites could all be classified as loam, 

but their subsoils differed (Table 3-1). Subsoils were classified as silt loam, loam and sand at the 11, 8 

and 6-year sites, respectively. The layering of textures also differed between sites. The 11 and 8-year 

sites were constructed so that a coarser soil (LFH) was placed over a finer soil (subsoil). The 6-year 

site had the opposite arrangement, with LFH being finer than its sandy subsoil. Bulk density of the 11 

and 8-year sites were similar (0.93 and 0.88 g cm-3, respectively), while that of the 6-year site was 

much higher (1.31 g cm-3). Similarly, Ksat at the 11 and 8-year sites matched (2 x 10-4 m s-1), whereas 

at the 6-year site was much lower (6 x 10-6 m s-1).  The depth of LFH at the 6 and 8-year sites (23 and 

12 cm, respectively) was less than the designed soil prescriptions of 30 and 20 cm, respectively. 
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Table 3-1- Average soil physical properties for LFH and subsoil at all study sites. # of samples = 

9 for LFH and 1 for subsoil. *Values for 6-year subsoil SSC, bulk density and porosity are from 

Ketcheson (2015). 6-year LFH and subsoil Ksat was estimated using the ROSETTA pedotransfer 

function.  

Property 

Site 

11-year 8-year 6-year* 

LFH 
Subsoil 

(Till) 
LFH 

Subsoil 

(Till) 
LFH 

Subsoil 

(Tailings 

sand) 

Layer depth (cm) 21 24 12 33 23 22 

Infiltration rate (mm hr-1) 803 N/A 810 N/A 93 N/A 

Ksat (m s-1)  2 x 10-4 5 x 10-7 2 x 10-4 1 x 10-7 6 x 10-6 4 x 10-5 

ρb (g cm-3) 0.93 1.30 0.88 1.5 1.31 1.45 

Porosity (cm3/cm3) 0.59 0.43 0.60 0.43 0.5 0.45 

Sand (%) 42 23 55 45 51 88 

Silt (%) 35 64 37 30 41 11 

Clay (%) 22 12 8 26 8 1 

Soil textural class Loam 
Silt 

Loam 
Loam Loam Loam Sand 

θr 0.06 0.04 0.04 0.05 0.05 0.04 

θs 0.53 0.39 0.50 0.33 0.41 0.40 

α 3.54 1.18 1.84 1.41 0.94 4.07 

n 1.36 1.18 1.34 1.26 1.52 2.48 

  

The measured soil water retention curves and the VGM SWRC’s match relatively well when 

comparing VWC and the patterns observed between sites and materials ( 

Figure 3-2). The greatest discrepancies between the measured and VGM curves were 

observed in the 11-year subsoil, particularly at the 1, 5 and 10 m pressure steps, where there was a 

difference in VWC of approximately 0.09. VWC at all other pressure steps for the other sites and 

materials presented in Figure 3-2 were typically within 0.05 of the measured retention curves for all 

pressure steps.   
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Figure 3-2 – Comparison of VGM SWRC’s and measured SWRC’s. a) presents results for LFH 

from all three sites and b) presents results for subsoil. VGM curves were generated using 

equations 3-1 and 3-2 and the van Genuchten parameters α, n, 𝜽s and 𝜽r that were estimated 

using ROSETTA. # of sample for curves that represent LFH = 9, and 1 for subsoil. The x-axis 

has been presented on a log scale to allow for easier comparison between the two data sets. 

Measured retention data were not available for the 6-year subsoil.  
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3.4.2 Van Genuchten soil water retention and hydraulic conductivity curves  

The VGM SWRC’s and hydraulic conductivity curves for LFH from all study sites (Figure 3-3) are 

all similar in shape as a result of their common textural classifications (Table 3-1). The finer textures 

of the 8 and 11-year sites’ subsoils, relative to LFH are reflected by their shallower SWRC’s (Figure 

3-3, a). In contrast, the SWRC of the 6-year sites’ sandy subsoil is steeper, indicative of its coarser 

texture. Considering the possibility of a capillary barrier at an LFH-tailings sand interface, the 

breakthrough head (ψB) of the 6-year sites tailings sand was determined to be 0.2 m by locating the 

inflection point of its VGM SWRC. The breakthrough head corresponds to the VWC required in the 

LFH (𝜃LFH) and subsoil (𝜃subsoil) to breach the capillary barrier (Khire et al., 2000). 𝜃LFH was 0.44 in 

the 6-year LFH, which is similar to its value for 𝜃s (0.41), estimated using the ROSETTA PTF.  

For both the 8 and 11-year sites, K(ψ) is two to three orders of magnitude higher in the LFH 

compared to the 8 and 11-year subsoils, except for at pressures not expected in the field (> 200 m) 

(Figure 3-3, b). K(ψ) of the 6-year sites’ subsoil is several orders of magnitude lower than its 

overlying LFH until pressure approaches the breakthrough head of 0.2 m. Once the breakthrough 

head has been achieved, K(ψ) of the 6-year subsoil (2 x 10-2 m s-1) surpasses that of the 6-year LFH (7 

x 10-3 m s-1), creating conditions for breakthrough to occur. 
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Figure 3-3 - Soil water retention and hydraulic conductivity curves generated using the estimated VGM 

parameters and equations 3-1 and 3-2. The blue dot on the 6-year subsoil curves indicates the position of the 

breakthrough head (0.2 m), determined by locating the tailings sand SWRC’s inflection point. The triangles on 

the 6-year LFH curves indicate 0.2 m and the corresponding values for VWC and K(ψ) (indicated in box). 
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3.4.3 Laboratory column experiments  

Table 3-2- Changes to soil water storage during laboratory column experiments. 

 

 

Site 

Layer Intervals (cm) 

Change in Storage (mL) 

Irrigation 1 (3450 mL) Irrigation 2 (6900 mL) Irrigation 3 (10350 mL) Cumulative (20700 mL) 

11-year 8-year 6-year 11-year 8-year 6-year 11-year 8-year 6-year 11-year 8-year 6-year 11-year 8-year 
6-

year 

LFH 
0-10 0-5 0-10 707 389 778 0 35 0 0 106 0 707 530 778 

10-21 5-12 10-23 707 445 509 71 49 85 141 0 0 919 495 594 

Total 1414 834 1286 71 85 85 141 106 0 1626 1025 1371 

Subsoil 
12-27 12-22 23-32 198 283 495 247 71 1484 0 0 0 445 353 1979 

27-45 22-45 32-45 763 650 643 509 0 1838 127 0 0 1400 650 2481 

Total 961 933 1138 756 71 3322 127 0 0 1845 1004 4460 

Total Change in Storage 2375 1767 2425 827 156 3407 269 106 0 3471 2029 5832 

Estimated Outflow 1075 1683 1025 6073 6744 3493 10081 10244 10350 17229 18671 14868 

Outflow / Irrigation (%) 31 49 30 88 98 51 97 99 100 83 90 72 
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The following figures (Figure 3-4, Figure 3-5 and Figure 3-6) present the results from the 

laboratory column experiments and Table 3-2 above presents the changes to soil water storage within 

each column. For each layer, change in soil water storage was calculated for the period from 

immediately before the beginning of an irrigation event to immediately before the following irrigation 

event. Change in storage in each layer was determined by multiplying the change in VWC over the 

specified time period by the layer’s depth in centimeters (cm) and the area of the column (707 cm2) to 

obtain a value for change in storage in milliliters (mL). Estimated outflow was determined by 

assuming irrigation minus total change in storage was equal to outflow 

11-year site 

During the first irrigation event, a spike in VWC occurred in the LFH and a smaller spike occurred in 

the subsoil (Figure 3-4). After irrigation stopped, VWC declined in both materials, however the 

decline observed in the subsoil was minimal, particularly at the 24 cm probe. The resulting change in 

soil-water storage attributed to the first irrigation event was 1414 mL and 961 mL in the LFH and 

subsoil, respectively (Table 3-2). Change in soil water storage was calculated for the period from 

immediately before the beginning of an irrigation event to immediately before the following irrigation 

event. During the second and third irrigation events, large spikes in VWC occurred in the subsoil, in 

particular at the 24 cm probe, surpassing VWC measured in the LFH while water was being irrigated. 

In contrast to the first irrigation event, the resulting change in soil water storage attributed to the 

second irrigation event was much larger in the subsoil (756 mL mm) than in the LFH (71 mL). The 

third irrigation event resulted in minimal change in storage in both the LFH (141 mL) and subsoil 

(127 mL). Cumulatively, the majority of the change in soil-water storage in the LFH occurred during 

the first irrigation event and during the first and second event in the subsoil, for a total change in soil 

water storage of 1626 mL in the LFH and 1845 mL in the subsoil.  
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Figure 3-4 - Results from 11-year site laboratory column experiment. Solid lines represent soil 

moisture probes in LFH and dotted lines represent probes in subsoil. 

8-year site 

During the first irrigation event, a spike in VWC was observed in both the LFH and subsoil, however 

the magnitude of change in VWC was greater in the LFH (Figure 3-5). Following irrigation, VWC 

quickly declined at the 2.5 cm, 9 cm and 15 cm probes. At the 35 cm probe the increase in VWC was 

sustained for approximately 330 minutes. The resulting change in soil-water storage attributed to the 

first irrigation event was 834 mL and 933 mL in the LFH and subsoil, respectively (Table 3-2). 

During the second and third irrigation events, similar patterns in VWC were observed at all probes, 

however there was minimal change in soil-water storage in both the LFH and subsoil. Ponding was 

observed on top of the monolith during both the second and third irrigation events. Cumulatively, 

most of the change in storage occurred during the first irrigation event in both the LFH and subsoil.  
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6-year site 

During the first irrigation event, a spike in VWC was observed in the LFH and subsoil, however the 

magnitude of change was much greater in the LFH (Figure 3-6). Shortly after irrigation, VWC at the 

2.5, 19 and 27 cm probes quickly fell while VWC at the 35 cm probe remained at the increased value. 

The resulting change in soil-water storage was 1286 mL in the LFH and 1138 mL in the tailings sand. 

During the second irrigation event, VWC in the LFH peaked to similar values as in the first irrigation 

event, and quickly fell once irrigation stopped, however the change in soil water storage was minimal 

at 85 mL. In contrast to the first event, VWC in the tailings sand increased a substantial amount. VWC 

at the 27 cm probe started to slowly decrease after irrigation was stopped, however, VWC at the 35 

cm probe remained at the increased value. The total change in soil-water storage of the tailings sand 

attributed to the second irrigation event was 3322 mL During the third irrigation event VWC again 

peaked and fell in the LFH, yet remained relatively consistent in the tailings sand, and there was no 

change in soil-water storage in both the LFH and tailings sand. The VWC that corresponds to the 

Figure 3-5 - Results from 8-year site laboratory column experiment. Solid lines represent 

soil moisture probes in LFH and dotted lines represent probes in subsoil. 
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breakthrough head (0.2 m, 0.31) was reached and surpassed in the tailings sand during the second and 

third irrigation event, however it was never achieved in the LFH near the interface where it peaked at 

approximately 0.35.   

 

3.5 Discussion  

3.5.1 Expected vs. actual performance of layered soil profiles  

The VGM soil water retention (SWRC) and hydraulic conductivity curves generated using Equations 

3-1 and 3-2 provide some insight to the expected hydrological functioning of each study site and are 

reflective of the way they were constructed (Figure 3-3). The 8 and 11 – year sites, both constructed 

using saline-sodic overburden, were designed to mitigate the movement of contaminants associated 

with the overburden by placing a 100 cm layer of subsoil between it and the LFH. As a result of the 

contrasting textures of the LFH (coarser) and subsoil (finer), and thus their hydraulic properties, the 

Figure 3-6 - Results from 6-year site laboratory column experiment. Solid lines represent 

soil moisture probes in LFH and dotted lines represent probes in subsoil. 
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estimated hydraulic conductivity of the subsoils are two to three orders of magnitude lower than the 

overlying LFH, at any given soil-water pressure that would be expected in the field (Figure 3-3, b). 

This arrangement of hydraulic conductivities (LFH > subsoil) is indicative of a hydraulic barrier that 

limits percolation across the interface of two materials as water moving through the more conductive 

overlying material is restricted by the less conductive underlying material (Li et al., 2014).  

In contrast to the 8 and 11-year sites, the 6-year site was constructed using coarser tailings sand 

overlain by finer LFH.  This arrangement of a finer material over a coarser material can result in a 

capillary barrier that mitigates percolation across an interface due to the lower permeability of the 

coarser material under unsaturated conditions (Yang et al., 2004). Further, the VGM SWRC and 

hydraulic conductivity curves obtained for the 6-year LFH and subsoil, point to the presence of a 

capillary barrier at the 6-year site (Figure 3-3, b). At the breakthrough head (0.2 m), K(ψ) in the 6-

year LFH (7 x 10-3 m s-1) becomes less than in the tailings sand (2 x 10-2 m s-1), theoretically allowing 

water to quickly move across the interface.  

Results collected from the laboratory column experiments partially support the expected 

findings from the VGM soil water retention and hydraulic conductivity curves. And, although the 

high irrigation rate made it difficult to evaluate the true performance of the soil profiles under realistic 

soil moisture conditions, the results collected are useful in evaluating the accuracy of the VGM soil 

water retention and hydraulic conductivity curves. The 11-year site had a somewhat effective barrier 

at the LFH-subsoil interface during the first irrigation event (Figure 3-4). The greater change in soil-

water storage in the LFH compared to subsoil and large difference in VWC between the two materials 

is evidence that irrigated water was held above the interface after the first irrigation event.  The rate of 

decline in VWC in the LFH after irrigation suggests the presence of a hydraulic barrier as opposed to 

a capillary barrier. In the presence of a capillary barrier, VWC in the overlying material would decline 

at a quicker rate due to the rapid increase in permeability in the underlying material associated with 

the breakthrough head (Stormont and Anderson, 1999; Sutton and Price, 2019). During the second 

irrigation event the hydraulic barrier was weakened as evidenced by the spike in VWC in the subsoil 

that surpassed the VWC measured in the LFH. Despite sharing similar soil physical properties to the 

11-year site, the expected hydraulic barrier at the 8-year site was ineffective during all three irrigation 

events. Even under the lowest irrigation amount (Irrigation 1), the expected hydraulic barrier at the 

LFH-subsoil interface in the 8-year monolith did not mitigate a substantial amount of percolation 

across the interface (Figure 3-5). The spike in VWC in the subsoil and comparable change in soil-

water storage in the LFH (834 mL) to the subsoil (933 mL) (Table 3-2) indicate that most of the 
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irrigated water was removed from the LFH and entered the underlying subsoil. In the second and third 

irrigation events smaller changes in soil-water storage further point to an ineffective barrier.  

Column experiment results from the 6-year site did not show evidence of the expected capillary 

barrier at the interface (Figure 3-6). After the first irrigation event there was a large gap in VWC in the 

LFH compared to the subsoil, however, there was a similar change in soil water storage in both 

materials (1286 mL and 1138 mL, respectively), suggesting there was some hydraulic connectivity 

between the two layers and, if there was a capillary barrier, it was weak. This may be an artefact of 

the drying that occurred between sampling and the experiment, or perhaps the small increase was due 

the presence of preferential flow pathways such finger flow (Hillel and Baker, 1988), or small 

fractures that were introduced during monolith extraction the field. Despite this, the VGM SWRC and 

hydraulic conductivity curves are reflective of the 6-year site based on other studies at the same 

location. The presence of a capillary barrier at the 6-year site has been verified by Sutton and Price 

(2019) who determined that the approximate breakthrough head was 0.11 m using soil moisture data 

collected from the field, which corresponds well with the breakthrough head determined in this study 

(0.2 m).  

3.5.2 Implications for reclamation  

Layered soil profiles in a reclaimed landscape have the potential to impact the hydrological function 

of the landscape (Leatherdale et al., 2012; Huang et al., 2013; Naeth et al., 2011). Using easily 

obtained soil physical properties, it is possible to predict whether a barrier is expected as well as its 

type and effectiveness. Even under high irrigation amounts, the expected percolation barriers at both 

the 6 and 11-year sites were reflected in the results collected from the laboratory column experiments. 

The ineffectiveness of the expected hydraulic barrier at the 8-year site is an important consideration 

as well. Given the similar soil physical properties to the 11-year site, it is possible that preferential 

flow pathways within the monolith were responsible for the relatively high connectivity between the 

LFH and subsoil (Bogner et al., 2010), something that would not have been captured by the analysis 

done in this study, emphasizing the spatial variability in soil conditions at the same reclamation site.  

 Different percolation barriers (hydraulic or capillary) have different implications for 

landscape function. In the case of LFH overlying subsoil comprised of glacial till (8 and 11-year 

sites), a common arrangement for overburden dumps, a hydraulic barrier will benefit the landscape as 

water is held above the interface for longer durations. This has been shown to artificially increase 

field capacity in the overlying soil, and thus available water holding capacity, water that is available 
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for plant use (Huang et al., 2013; Zettl et al., 2011). This also supports the goal of an overburden 

dump to reduce net percolation into the subsurface in an effort to mitigate the movement of 

contaminants associated with the saline-sodic overburden used in their construction (Barber et al., 

2015).  The presence of a capillary barrier, such as the one detected at the 6-year site, would have 

similar implications as a hydraulic barrier, specifically during drier periods when the overlying LFH 

remains dry enough so that the breakthrough head is not achieved. However, once a capillary barrier 

is broken through, water is released into the subsurface and the materials remain hydraulically 

connected until soil moisture conditions return to pre-breakthrough levels (Stormont and Anderson, 

1999). Thus, in landscapes where connectivity between the surface cover and subsoil are necessary 

for success, such as the upland of an upland-fen watershed (6-year site), the unique behaviour of a 

capillary barrier could be of benefit to vegetation while also promoting recharge, so long as soil 

moisture conditions to allow breakthrough are periodically achieved.  

 While laboratory data can give insight to the behaviour of a soil profile at a moment in time, 

it is necessary to consider the dynamic nature of soils. Biotic and abiotic forces can alter a soil’s 

structure post-placement and thus alter certain physical properties, such as Ksat and soil-water 

retention (Benson et al., 2007; Meiers et al., 2011).  Expected changes to the van Genuchten 

parameters with time (e.g. increase in α) (Benson et al., 2007) would result in a lower VWC 

associated with the breakthrough head of the underlying tailings sand (Sutton and Price 2019). Since 

the breakthrough VWC in the LFH would become lower as the soil evolves, the capillary barrier 

would be weaker and conditions for percolation into the subsurface would occur more frequently.  

3.5.3 Errors and limitations  

Certain errors and limitations should be taken into consideration along with the results from this 

study. First, only one monolith was used for each site, eliminating the possibility to capture the spatial 

variability in soil properties across a reclamation site. In relation to this, only one subsoil sample was 

taken along with each monolith; and while a total of 9 LFH samples were used to characterize the 

LFH properties, they represented an average of the site, rather than the exact location the monolith 

and subsoil samples were collected. This could lead to errors in comparisons made between the VGM 

SWRC and hydraulic conductivity curves, and results from the laboratory column experiments. 

Finally, since no subsoil sample was collected from the 6-year site its properties had to be estimated 

or retrieved from other sources and thus is not consistent with methods used for the 8 and 11-year 

sites.  



 

48 

The discrepancies between expected function based on the VGM hydraulic conductivity curves 

compared to the laboratory column experiment data further illustrate the spatial variability of a 

reclamation site and highlight the need to evaluate and consider other processes within the soil profile 

that could impact the hydraulic connectivity between two materials. For instance, these column 

experiments did not consider the possibility of preferential flow pathways (e.g. macropore flow or 

finger flow), that may have connected the two materials, contributing to results that were not 

reflective of the VGM hydraulic conductivity curves.  

3.6 Conclusion  

While not necessarily intentional, percolation barriers in a layered soil profile constructed using LFH 

mineral mix are a likely occurrence. Their impact on hydrological functioning depends on the type of 

barrier (hydraulic vs capillary) as well as the intended function of the landscape. In spite of the high 

irrigation rate of the laboratory column experiments, which made it difficult to assess in detail the 

performance of the soil profiles within the monoliths, the data was valuable in confirming the use of 

more easily obtained laboratory data and a pedotransfer function, such as ROSETTA. With the VGM 

soil water retention and hydraulic conductivity curves it was possible to predict the presence of a 

percolation barrier as well as how it may behave in the field (determination of breakthrough head for 

a capillary barrier). However, the possibility of spatially distinct preferential flow pathways across an 

interface as well as the temporal evolution of soils should be considered along with their use.  

  



 

49 

Chapter 4 

Conclusion  

LFH mineral mix is a dynamic material that varies considerably both spatially and temporally. Its use 

for reclamation in the AOSR has been well documented, in particular its suitability as a substrate for 

revegetation. The current study aimed to develop a better understanding of its impact on the 

hydrological functioning of a landscape, both near the surface and in its interactions with underlying 

materials.  

The dynamic nature of LFH of supports the use of LFH of lower initial quality (e.g. low 

infiltration, low soil organic matter, high bulk density), so long as best management practices to 

ensure the establishment and growth of vegetation in the early years of reclamation are employed. 

With the growth of vegetation, certain properties in LFH (e.g. van Genuchten α) should continue to 

improve with time, leading to the continual development of larger pores within LFH, even after the 

effects of abiotic forces such as freeze-thaw cycling have lessened. This will improve hydrologic 

response, benefiting landscapes where groundwater recharge is necessary for success (e.g. upland-fen 

watershed). Although LFH with high values for soil organic matter and lower values for bulk density 

(i.e. higher quality) did seem to instigate “quicker” success in reclamation, based on natural canopy 

regeneration; sites capped with lower quality LFH were still functioning uplands as evidenced by the 

development of vegetation despite issues with seedling mortality in early years of reclamation.  

In landscapes where percolation into the subsurface is not beneficial (e.g. overburden dumps), 

the hydrophysical evolution of LFH is a potential hinderance, however the manner in which these 

landscapes are constructed can counteract this. In these landscapes, coarser LFH placed over finer 

subsoil (e.g. glacial till) is likely to form a hydraulic barrier to percolation as a result of the restrictive 

nature of the subsoil’s low hydraulic conductivity, as long as the differences in hydraulic conductivity 

are great enough. In this study there was a two order of magnitude difference between K(ψ) in the 

LFH (faster) and subsoil (slower) that formed an effective hydraulic barrier at the 11-year site. In the 

opposite arrangement where LFH is placed over a relatively coarser material (e.g. tailings sand), a 

capillary barrier may form, even if the difference between Ksat is only one order of magnitude. Both a 

hydraulic and capillary barrier can be of benefit to vegetation as water is held above the interface of 

the two materials, increasing field capacity and thus available water holding capacity. However, in the 

case of a capillary barrier, when breakthrough soil moisture conditions are met (near saturation), the 

two materials would become hydraulically connected, allowing water to enter the underlying tailings 
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sand until pre-breakthrough conditions are established as the soil dries out. The unique behaviour of a 

capillary barrier could benefit a landscape such as the upland of an upland-fen watershed. During 

drier periods water would be held above the interface and thus more readily available to plants, but 

when conditions allow, percolation events will occur.  

The use of ROSETTA and RET-C in Chapter 2 to estimate the van Genuchten parameters and 

associated properties highlight the differences between the two methods. Although RET-C did 

provide a better fit to the measured retention data, ROSETTA was able to capture the expected 

patterns with time in hydraulic properties (increasing α), that RET-C was unable to. In Chapter 3, 

ROSETTA was able to partially predict the expected function of layered soil profiles, reflected in the 

laboratory column experiment for the 11-year site and the capillary barrier that has been observed in 

the field at the 6-year site. These findings warrant further research into the validity of ROSETTA for 

use in parameter estimation necessary for modelling the behaviour of materials used in land 

reclamation in the AOSR. 

 Future study to enhance the results presented here could identify thresholds for effective 

percolation barriers (minimum difference in hydraulic conductivities) as well as identify the impact 

that changing soil conditions could have on the effectiveness of a barrier. For instance, as vegetation 

becomes more established roots may enter the subsoil, creating preferential flow pathways and thus 

the possibility of enhanced hydraulic connectivity between the two materials. Further, long term 

studies on the evolution of LFH at a particular reclamation site, as has been done with peat-mineral 

mix (PMM), would be beneficial in verifying results presented in Chapter 2 as well as potentially 

capture changes to LFH that may occur over longer periods of time (e.g. intrinsic properties upon 

placement) and their associated impact on site function. 
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