
React++: A Lightweight Actor
Framework in C++

by

Md Navid Alvee Khan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c©Md Navid Alvee Khan 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/344915757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Distributed software remains susceptible to data races and poor scalability because
of the widespread use of locks and other low-level synchronization primitives. Fur-
thermore, using this programming approach is known to break encapsulation offered
by object-oriented programming. Actors present an alternative model of concurrent
computation by serving as building blocks with a higher level of abstraction. They en-
capsulate concurrent logic in their behaviors and rely only on asynchronous exchange
of messages for synchronization, preventing a broad range of concurrent issues by es-
chewing locks. Existing actor frameworks often seem to focus on CPU-bound work-
loads and lack an actor-oriented I/O infrastructure. The purpose of this thesis is to
investigate the scalability of user-space I/O operations carried out by actors. It presents
an experimental actor framework named React++, with an M:N runtime for coopera-
tive scheduling of actors and an integrated I/O subsystem. Load distribution is policy-
driven and uses a variant of the randomized work-stealing algorithm. The evaluation
of the framework is carried out in three stages. First, the efficiency of message delivery,
scheduling and load balancing is assessed by a set of micro-benchmarks, where React++
retains a competitive score against several well-known actor frameworks. Next, a web
server built on React++ is shown to be on par with its fastest event-driven counterparts
in the TechEmpower plaintext benchmark. Finally, the runtime of an existing messaging
library (ZeroMQ) is augmented with React++, replacing the backend and delegating all
network I/O to actors without incurring any substantial overhead.

iii

Acknowledgements

I extend my earnest gratitude to my supervisor, Professor Martin Karsten, for his
counsel and advice throughout my research. I would also like to thank the readers,
Professors Peter Buhr and Gregor Richards, for providing their valuable feedbacks on
my work. This research has been supported in part by the University of Waterloo, the
Natural Sciences and Engineering Research Council of Canada (NSERC) and Huawei
Technologies.

iv

Dedication

To my parents

v

Table of Contents

List of Figures x

List of Tables xii

1 The Actor Model 1

1.1 Introduction . 1

1.2 Properties of an Actor System . 3

1.3 Semantics . 4

1.4 Usage Patterns . 5

1.5 Related Work . 5

1.6 Implementation . 6

1.6.1 Design Considerations . 7

1.6.2 Existing Frameworks . 9

1.7 React++ . 12

1.7.1 Scheduling . 14

1.7.2 I/O in the Actor Context . 14

2 The Messaging Layer 16

2.1 Mailboxes and Channels . 17

2.2 Behaviors and Contexts . 19

2.3 Initialization . 20

vi

2.4 Creating an Actor . 21

2.5 Messaging Semantics: Send . 23

2.6 Assuming a Behavior . 24

2.7 Messaging Semantics: Receive . 27

2.8 Actor Termination . 29

2.9 Promise, Future and Barrier . 30

2.10 Selection Tags . 33

2.11 Message Trail . 35

2.11.1 Semantics . 36

2.11.2 Implementation . 37

2.12 User-space Blocking . 39

2.13 The Message Dispatcher . 40

2.14 Usage Scenario: Counting Actor . 42

3 Scheduling 45

3.1 Actor Clusters . 47

3.2 Dispatchers . 47

3.3 State Transition . 49

3.4 Priority Assignment . 50

3.5 Load Distribution . 50

3.6 Implementation of RWS in React++ . 52

3.7 Actor Placement . 58

4 The I/O Subsystem 60

4.1 Related Work . 61

4.2 Event Notification . 63

4.3 The I/O Subsystem . 66

4.3.1 Event Classification . 66

vii

4.3.2 Rearming L0 Generators . 69

4.4 The Default I/O Policy . 70

4.5 Extending the I/O Policy . 72

4.6 The Plaintext Experiment . 74

4.6.1 Actors as Event Handlers . 74

4.6.2 Control Flow . 76

4.6.3 Implementation . 77

5 Evaluation 79

5.1 Micro-Benchmarks . 80

5.1.1 Ping Pong and Thread Ring . 81

5.1.2 Fork Join: Throughput . 83

5.1.3 Producer-Consumer . 84

5.1.4 Counting Actor . 85

5.1.5 Actor Creation . 87

5.1.6 Big . 88

5.1.7 Parallel Quicksort . 91

5.1.8 Cofactor Expansion . 92

5.2 I/O Benchmarks . 93

5.3 Application Performance . 95

5.4 Discussion . 97

6 Future Work 99

7 Conclusion 101

References 103

APPENDICES 110

viii

A Scheduling Efficiency 111

A.1 Cycles per Operation . 111

B The React++ API 114

B.1 The Actor Class . 114

B.2 The System Class . 123

B.3 I/O Policy . 126

ix

List of Figures

2.1 Association between actors and tags. 33

2.2 A message trail from actor a0 to actor an. The forwarded trail is shown in
green as each message is linked to it, while the rewind path is shown in
red. 36

2.3 Two distinct message trails with a shared history. 38

3.1 An actor’s transition between states in response to events. 49

3.2 Uniprocessor scheduling by the actor dispatcher. 55

3.3 Using role reversal between LQ/OQ to allow multiple thefts in a single
attempt. 57

4.1 Relationship between L0 and L1 event generators. 68

4.2 I/O readiness of descriptors in L1 interest sets affecting SFDs as observed
by the master poller. The green descriptors are ready for I/O. 68

4.3 Polling under the default I/O policy. 73

4.4 An application-defined I/O policy where actors are designated as both
the generators and handlers of L1 events. 73

5.1 The Ping Pong benchmark with message count = 10M. 82

5.2 The Thread Ring benchmark with 1K actors and initial value = 10M. 82

5.3 The Fork-Join: Throughput benchmark with 1K actors and 10K messages
per actor. 83

5.4 The Producer-Consumer benchmark with 32 producers, each producer
sending 1M messages to single consumer. 84

x

5.5 The Counting Actor benchmark with message count = 10M. 85

5.6 The Actor Creation benchmark with 1M actors. 87

5.7 The memory profile of the Actor Creation benchmark with 1M actors. . . . 88

5.8 The Big benchmark with 500 actors and 50K pings from each. 89

5.9 List-based Parallel Quicksort benchmark with 10M integers. Items-per-
actor threshold is set to 100K. 90

5.10 Array-based Parallel Quicksort benchmark with 500M integers. Maximum
tree depth is set to 5. 90

5.11 The Cofactor Expansion benchmark with a 12x12 matrix. The maximum
height of the actor tree is set to 4. 92

5.12 Comparison of plaintext throughput: wrk (left) and weighttp (right). 94

5.13 Comparision between native and actor-driven ZeroMQ performance for
different message sizes: request per second (left) and data throughput in
Gbps (right). 96

xi

List of Tables

3.1 Swap and Balance Triggers . 56

4.1 The Runtime Events . 71

xii

Chapter 1

The Actor Model

An actor is an autonomous unit of computation with an encapsulated state that may
only be altered by consuming messages [40]. While responding to a message, an actor
is allowed to asynchronously create a finite number of new actors, send a finite number
of messages to existing actors, or adopt a new behavior characterizing the way the next
message is to be processed. A sender is not required to block until the sent message is
consumed by the receiving actor. Messages yet to be processed are queued in the re-
ceiver’s mailbox. Each actor is assigned a unique and immutable address used by the
messaging layer to identify the actor and direct messages to its mailbox. A group of ac-
tors with addresses visible to each other form an actor system, which may be equipped
with facilities to communicate with non-actor entities external to the system.

1.1 Introduction

Encapsulation of data in object-oriented programming (OOP) prevents a caller from
directly altering the state of an object, where access is granted only through a public in-
terface that safeguards against broken invariants. While encapsulation is a fundamental
concept in OOP, the mechanism is often less than adequate in a multithreaded environ-
ment [25]. Declaring fields as private does not prevent parallel invocations of a method
by another thread, thus leading to corruption of the internal state of an object. Solutions
to data races are often improvised, unstructured, and involve an assortment of locks
guarding critical sections with various levels of granularity. Incorrect usage of locks
may introduce deadlock, starvation, and priority inversion, while debugging tasks be-
comes more challenging in the presence of error conditions that are nondeterministic

1

and difficult to reproduce. Besides, coarse-grained locks serialize access to concurrent
data structures, greatly limiting the potential for parallel execution and thus the scal-
ability of an application. Another pitfall inherent in concurrent programming is the
possibility of false sharing [62], which occurs when different threads write to unrelated
data fields that share a cache line. False sharing frequently stalls the involved CPUs and
saps system bandwidth as the shared line is shuttled back and forth between caches.

The actor paradigm is a concurrent model of computation that conforms to the fol-
lowing semantic properties: encapsulation of state, atomic update of state from the per-
spective of other actors, and location transparency. The actor model does not specify
the path taken by a message in transit or impose any ordering constraint on the arrival
of messages. Multiple actors may execute in parallel and the local state of each actor is
immune to race conditions. Data races are prevented because an actor’s state is affected
only if it consumes messages, which are dispatched sequentially from its mailbox. The
absence of locks or any other synchronization primitives tends to simplify concurrent
logic and helps avoid hazardous data races resulting in deadlocks, livelocks and starva-
tion.

The actor model complements OOP in enforcing lock-free encapsulation in that it
confines the state of an object along with the execution entity that is allowed to operate
on that state. A key distinction between message-based signaling and direct method in-
vocation on an object (also known as message passing in OOP literature) is that sending
an asynchronous message does not require the sender to transfer control to the receiver.
Another difference is that the receiving actor is not required to produce a synchronous
reply when a message is sent to it. In the actor model, the sender delegates work to the
receiver and continues executing the remainder of its message loop, while the receiver
processes its message and appends the reply to the sender’s mailbox. This is analogous
to making an asynchronous call that returns a future. At any point in time, at most
one behavior is active per actor responding to at most one message dispatched from its
mailbox. This design allows data races to be avoided without employing locks.

2

1.2 Properties of an Actor System

After removing a message from an actor’s mailbox, the message dispatcher attempts
to locate a suitable handler defined in the current behavior of the actor depending on
the message type and contents. If no such handler is found, the message may be dis-
carded or buffered until the actor assumes a different behavior that defines a handler
for the skipped message. Once a matching handler is executed, it may alter the actor’s
private state or adopt a new behavior defining how the next message dispatched from
the mailbox is processed.

An actor-oriented application may consist of separate modules, some of which har-
bor enclosed actor systems while the others remain agnostic to the actor paradigm. The
following concepts are introduced to better comprehend the composition and interoper-
ability of such components that adhere to different models of concurrency. A reception-
ist [3] is an actor allowed to communicate with external entities that are not necessarily
actors. The initial set of receptionists are defined by the programmer and may undergo
different stages of evolution over an application’s lifetime. For example, an actor whose
address is sent to an external actor in a message or forwarded to an external thread may
now receive messages from those senders. Thus it becomes a receptionist for the actor
system. A related concept is an external actor that serves as a placeholder for an actor
system and its initial behavior is just buffering messages. When the component hosting
the target actor system is loaded, the placeholder is resolved to the mailbox address of
a real actor and the buffered messages are forwarded to this recipient. An actor system
with neither receptionists nor external actors has no side effects on its environment and
is therefore of little use.

The fairness property mandates that every message sent to a live actor be eventually
delivered [40], allowing each actor to make progress unless it goes idle on account of
an empty mailbox. Furthermore, in applications that are composed of multiple distinct
actor systems, actors residing on one system may not starve actors from another. Loca-
tion transparency is another property of the actor model, which requires that an actor’s
physical location not be revealed by its identifier. Decoupling location from behavior
creates a higher level of abstraction for implementing distributed logic, allowing the
runtime to seamlessly migrate actors between nodes for load balancing or crash recov-
ery. Ideal distribution schemes depend on the types of workload as well as constraints
on resources, which may evolve throughout various stages of computation. Location
transparency enables the runtime to migrate compute entities on demand, which may
lead to better scalability.

3

1.3 Semantics

The spawn command in the form spawn(β, expr1, expr2, ...) accepts a parameterized be-
havior definition β followed by a list of expressions. An actor is spawned with its be-
havior instantiated from the definition β and arguments obtained from evaluating the
supplied expressions. Finally, the command returns the mailbox address of the new ac-
tor. An address can be bound to a unique identifier or any number of aliases and used
by senders to designate the receiving mailbox. The send command in the form send(a, m)
makes the promise of eventually delivering the message m to the target mailbox with
address a. The operation is asynchronous, as it does not block during the reception of
the message or even its delivery to the mailbox. Messages may arrive at the destina-
tion out of order, because of the asynchrony in the send operation as well as network
delay. It is possible to implement a synchronous request-reply pattern on top of the
asynchronous layer by explicitly blocking on the future linked to the promise made by
the messaging layer. If an M:N model is used to map M user-space actors to a pool of
N kernel threads where M >> N, care must be taken to ensure that no actor executes an
operation that blocks the underlying executor thread in kernel space. Only the sending
actor should be suspended, without affecting the other actors that are mapped to the
same system thread.

An actor may send messages to another actor only if the address of the recipient is
known to the sender. Following the arrival of any message m, if a mail address s is
known to actor a then exactly one of the following conditions must hold:

• The owner of s has already been an acquaintance before m arrived.

• s is delivered by m.

• The owner of s is spawned by actor a as a consequence of receiving m.

The behavior of a live actor, denoted B(m), is a function of message m instantiated
from the behavior definition β. The function B(m) defines actions taken by an actor when
m is received, such as create new actors, send messages or compute a new behavior to
replace the current one. If an actor does not specify a replacement behavior, the current
behavior remains active when accepting the next message. Assume two actors a1 and
a2 have corresponding mailbox addresses s1 and s2. The command become(a1, a2) is
semantically equivalent to a1 trivially forwarding all of the inbound messages at address
s1 to the mailbox with address s2. Thus the replacement behavior of a1 processing the

4

message m is identical to a2 processing the same message, as observed by the sender. As
an optimization effort, an actor framework may not require that the two actors a1 and
a2 be necessarily distinct and can implement this conceptual forwarding semantics by
switching between different state machines, each of which models a different behavior
an actor can assume.

1.4 Usage Patterns

Parallel processing using actors often employs pipelines where the workflow is prear-
ranged into a sequence of stages and the output from each stage is fed to the next as
input. Each stage may be handled by a different actor. Alternatively, the same actor
can be programmed to handle all stages by assuming a new behavior at the end of
each stage and forwarding the output to itself. Divide-and-conquer schemes are also
common where the original receiver of a message, denoted master M, spawns a set of
workers W and splits the compute workload amongst the workers. Each worker in W
processes its share of work in parallel and reports back to M, which collects and merges
the results into the final output.

Remote Procedure Calls (RPC) use blocking semantics for the send operation, where
the sender must block waiting for an acknowledgment once a message is sent. This
pattern is useful in cases requiring strict ordering of message sequence, because the
sender is unable to proceed without a reply from the receiver. Enforcing ordering con-
straints on a message stream reduces parallelism, as the sender must wait until a sent
message is received before sending the next message. Each send operation also triggers
a context-switch for the sending actor as it transitions to a blocked state, which may
contribute to performance degradation. Moreover, a lost acknowledgment can easily
lead to deadlocks, as the sender keeps waiting for a reply while the receiver awaits the
next message.

1.5 Related Work

The earliest reference to actors appears in Carl Hewitt’s influential work on Planner
[35], a precursor to Prolog where the term actor is used to denote objects capable of trig-
gering actions while matching patterns. The contemporary model of actor computation
inherits its operational semantics from the pioneering work of G. Agha [3]. Communi-
cating Sequential Processes (CSP), first introduced by C. A. R. Hoare [36], adheres to a

5

concurrency model similar to actors in that both rely on exchanging messages between
sequential units of computation. A CSP process accepts input, performs a series of
consecutive transformations on states while mapping locations to values and produces
output. Each transformation is synchronous because the process is sequential, although
distinct sequential processes may proceed in parallel. A key difference between a CSP
process and an actor is the usage of rendezvous channels by the former, which does not
permit the sender to proceed without the receiver accepting the message. In contrast,
communication between two actors is inherently asynchronous and non-blocking.

Dataflow architectures using a functional paradigm adopt a computational model
where a sequence of functions map one or more inputs to a single output without us-
ing store. Such transformations rely on call-by-value semantics and concurrent evalua-
tion of function arguments. Functional programming shares some traits with the actor
paradigm, with the latter being more adept at managing shared objects that are sensitive
to history. Since a function produces the same output given the same inputs, it has no
notion of history [11]. This poses a challenge while applying functions to model com-
putational entities that undergo behavioral changes over time, which may be addressed
by adding a feedback loop [34].

1.6 Implementation

A correct implementation of the actor model must enforce all necessary constraints re-
quired to conform to the following semantic properties [40]. State variables are private
to each actor and actors may not alter each other’s state by any means other than the
exchange of messages. This property is known as the encapsulation of state. Another
property is the atomic update of state [5], accomplished by the sequential dispatch of
messages from the mailbox. While processing a message, an actor is never interrupted
by the arrival of another message that might leave the actor in an inconsistent state.

Since the communication between actors is essential and frequent, a practical imple-
mentation has to prioritize optimizing the performance of the messaging layer. Other
design issues include implementing cost-effective load balancing schemes to maximize
concurrency and exploiting locality of reference to reduce communication overhead
between actors. Efficient implementations of the actor model are known to exploit
compile-time transformations in addition to runtime optimizations, such as the THAL
[43, 44] language project.

6

1.6.1 Design Considerations

Frameworks that adhere to the traditional actor model are known to be highly imprac-
tical due to their inefficiency [41]. For instance, modeling each actor as a system process
guarantees the encapsulation of state. However, allowing each actor to have its own
address space drives up the cost for actor creation beyond reasonable limits. Assign-
ing a new kernel thread to execute each actor in shared memory improves the creation
time, yet suffers from various limitations affecting scalability. For example, the maxi-
mum number of actors that may exist at the same time becomes subject to constraints
enforced by the kernel. In massively parallel applications where the number of actors
far exceeds the number of available processors, CPU oversubscription leads to frequent
context switches in kernel space, incurring a disproportionate overhead. Hence an ac-
tor runtime may consider employing a user-space scheduler, so that switching context
between actors is rendered trivial. For large messages, forwarding by reference is an
order of magnitude faster than copying the contents to the receiver’s mailbox. In some
cases, copying has no alternative as a message reference is meaningless to a remote actor
residing in a different address space. However, the messaging layer should be capable
of identifying the local recipients and include support for zero-copy delivery as well as
copy-on-write semantics for those actors.

Delegation of a task (i.e., a closure representing a sequential unit of work) across
threads typically involves queuing of the task in shared memory by the requesting
thread, which then signals a worker thread waiting in an event loop. Exception han-
dling is left to the worker, which may notify the delegating thread by placing error
codes in shared memory. Notifications could go missing in cases where the worker has
crashed due to internal fault and must be restarted. In contrast, actors are equipped
with the inherent ability to report errors as ordinary messages. Furthermore, an actor
cluster exhibits a tree-like structure similar to the UNIX process hierarchy, where an ac-
tor can be monitored by another. A parent actor can supervise its children and restart a
child in case it exits without a normal cause. The actor model thus naturally provides a
more robust and intuitive mechanism for responding to exceptional events.

An actor runtime may employ a message loop per actor to drain its mailbox, dis-
patching each message to the active behavior of the recipient actor. An empty mailbox
removes the actor from the scheduler’s ready queue, causing it to be suspended until
a message arrives. Instead of draining the mailbox, a dispatcher may be configured to
return control to the scheduler after processing at most N messages, which is denoted
as the dispatch size. The scheduler then chooses another actor to run, while the first actor
remains on the ready queue. Either way, a context switch between actors occurs as the

7

first actor is blocked or transitions from running to ready state and the scheduler grants
control to the next actor. Sending messages to a ready actor has no effect on its execution
state.

The dispatch size may be statically assigned or dynamically adjusted by policies en-
forced under a particular workload. This parameter may be useful in facilitating cooper-
ative scheduling in some cases. If the message complexity is uniform and the dispatch
size is allowed to vary on a per-actor basis, it also denotes the relative priority of an
actor. In the general case where these assumptions no longer hold, processing a fixed-
size but otherwise arbitrary sequence of messages incurs a non-deterministic workload
per actor and the dispatch size does not meaningfully contribute to ensuring fairness.
A limitation inherent in cooperative scheduling is that the yield frequencies required
for maximizing the message throughput and achieving fairness may be different. The
tradeoff is often left to the application programmer to decide. For a set of actors each
with an indefinite supply of uniform messages, throughput is maximized if all context-
switches between actors are eliminated and each CPU provisioned to the runtime keeps
executing the actor initially assigned to it forever, which in turn adversely affects fair-
ness and leads to perpetual starvation for the remaining actors on each ready queue.

Actor runtimes should conform to the concept of locality as mandated by the tradi-
tional actor model. It is the property that ensures that an actor may not send message
to another without knowing the address of the receiver. This property makes it possible
for a receiving actor to enumerate and reason about all possible communications from
its finite set of senders and apply ordering constraints on message processing. However,
this approach may prove to be inflexible and impractical in a distributed environment
with frequent migrations of actors. Consider a client-server interaction between two
actors S and C residing on some node N. S is a service provider and C is a subscribing
client that receives the address of S at initialization. C is migrated by the load balancer
to a different node N’. On node N’, there is another service provider S’ that renders
the same service but C is unaware of its existence. As a result, C continues to commu-
nicate with the original server S despite the increased latency resulting from shuttling
messages between N and N’. If the runtime provides a facility to discover addresses
of actors based-on pattern matching, migrating actors can direct their requests to local
service providers and thus improve the round-trip latency. The ActorSpace model [4] al-
lows a sender to specify recipients by their properties rather than addresses. A message
with such specifications is delivered to each actor with the target properties. Besides
discovering identities of actors, pattern-directed communication can also be applied to
filter messages. In this case, receivers express interest by subscribing to specific mes-
sage patterns and senders publish messages to a tuple space [21], which are delivered

8

only to the subscribers. The ActorSpace solution can be augmented as follows, allowing
a programmer to declare similar actors as part of the same functional group with sup-
port for anycast addressing. Messages sent to any member of the group are routed to
the member closest to the sender rather than the original target. In the above example,
assume service providers S and S’ resident on nodes N and N’ respectively are placed in
the same functional group G. When C resides on N’, any request sent from C to S is au-
tomatically intercepted by the runtime and routed to the local provider S’. If C migrates
back to N, requests from C are received by S since both of them now reside on the same
node.

Forwarding messages asynchronously often leads to the sender being agnostic to
whether the receiver is capable of processing the communication. For example, a con-
sumer C may request an item from a buffer manager B when the buffer is empty. Also,
a producer P may send an item to B when the buffer is full. If B chooses to discard
messages that cannot be processed given its current state, the senders C and P must
retransmit their messages on timeout or resort to polling the readiness of B to process
the respective requests from C and P. Alternatively, B can employ additional data struc-
tures [38] to queue the consumers that try to remove items from an empty buffer, as
well as the producers attempting to push items when the buffer is full. Requests from a
consumer are not granted until the active behavior allows removal from the buffer. In a
similar way, requests from a producer are postponed until the active behavior enables
insertion into the buffer.

1.6.2 Existing Frameworks

One of the earliest implementations of actor model is Erlang/OTP [9], still in widespread
use for telecommunications. Since then, the platform has been employed by numerous
frameworks and messaging libraries (for example, RabbitMQ [53]) with various adap-
tations to solve challenges in diverse problem domains. Erlang is an actor-oriented
functional programming language with a managed runtime. Actors in Erlang are mod-
eled as processes running on a virtual machine (BEAM) that do not share resources
and interact only by exchanging messages. The runtime allows processes to be created
locally or on a remote server. Since Erlang employs weakly-typed interfaces, ensuring
proper messaging semantics between the sender and receiver is left to the application
programmer. The runtime relies on the link operation for exception propagation, which
allows the creation of bidirectional links between processes. When a process dies, the
cause of termination is broadcast to all peers linked to it.

9

ActorFoundry [1] is an extensible framework that implements the actor model on the
Java Virtual Machine (JVM) using an M:N architecture. It supports message forwarding
by copy and reference, enforcement of message ordering by local synchronization con-
straints, fair-scheduling, pattern-matching and location transparency. Join expressions,
implemented in ActorFoundy as well as the Scala actor library, are a mechanism to al-
low actors combine multiple messages into a single message [33]. ActorNet [2] presents
a high-level and location-independent abstraction of actors using Scheme-based syntax
and also has support for garbage collection. It includes a lightweight interpreter and is
optimized for deployment in scenarios subject to resource constraints, such as wireless
sensor networks. SOTER [58], included in ActorFoundry and Scala actor framework,
carries out static analysis of actor programs by employing the WALA analysis toolkit
from IBM. It is used to perform safety inspections while forwarding references by infer-
ring the transfer of ownership of message contents. Actor frameworks written for the
JVM that opt to send messages by copying may employ SOTER to optimize message
delivery. SALSA [54] is a general-purpose programming language well-suited for de-
signing distributed applications subject to dynamic reconfigurations. SALSA transpiles
to Java source code allowing seamless integration with the Java standard API. It adopts
a universal naming convention to facilitate location-transparent message delivery and
actor migration. SALSA defines additional continuation semantics [41] for message syn-
chronization. Partial ordering constraint can be enforced on message processing using
token-passing continuations. Join blocks serve to establish synchronization barrier en-
suring that a set of asynchronous actions run to completion before processing the next
message. Compute tasks may be delegated to external agents by first-class continua-
tions with support for dynamic replacement and message expansion.

A channel is a point-to-point connection used to establish bidirectional communi-
cation between a pair of actors [40]. Stateful channel contracts are used to mandate a
messaging protocol and impose ordering constraints on messages exchanged between
the endpoints. Kilim [59] offers single-receiver channels for actor communication im-
plemented as typed mailboxes. Channels in Jetlang [39] use a publish-subscribe model
allowing actors subscribe to multiple channels and process several messages in parallel,
breaking state encapsulation of actors required by the actor model. Kilim supports sus-
pension and resumption of actors by applying continuation-passing-style transform after
compilation and introduces type systems for improved reliability and performance.

Akka [6] is a set of libraries that implements the actor model on the JVM, with lan-
guage binding available for Java and Scala. Akka enforces state encapsulation and FIFO
ordering on message delivery between any pair of actors. The runtime relies on strict
actor hierarchies and supervision trees for error propagation and handling, using path

10

expressions to identify actors. Orleans is a .NET actor runtime [13] with garbage collec-
tion, dynamic load-balancing and migration. It introduces the concept of virtual actors
that exist in perpetuity even without any assigned physical locations. A virtual actor is
logically addressed by its primary key comprising its type and a GUID. When a mes-
sage is sent to its address, the actor is said to be activated as the runtime instantiates the
object encapsulating the actor’s state and behavioral logic. The runtime supports two
modes of activation. Single activation conforms to the traditional definition of actors
and prevents concurrent execution the same actor. Actors that have no mutable state
do not suffer from data races while processing messages in parallel. Therefore, these
actors may be activated multiple times on-demand for improving message throughput.
In case a server fails, the runtime automatically restarts all of its actors on a different
server.

Proto.Actor [52] is a cross-platform actor framework for Go and C# that relies on
Protocol Buffers for message serialization. Similar to Orleans, it leverages automatic
placement of virtual actors and creation hierarchies for supervision and error handling.
Depending on the implementation, Proto.Actor runtime executes message dispatchers
by either mapping them to goroutines (Go) or submitting as tasks to a thread pool (.NET
Framework).

The C++ Actor Framework (CAF) [20] is a general-purpose actor library in C++,
designed for building concurrent applications in the native programming domain. CAF
allows static and dynamic typing of actors. Static typing is safer, more verbose, and
less prone to runtime errors as message types are statically checked against interfaces
defined by programmers. Dynamic actors in CAF are similar to Erlang actors as they
require no messaging interfaces and are allowed to receive messages of arbitrary types.
Actors in CAF are reference-counted entities. Such references may be associated with
logical addresses, actor handles, or smart pointers. CAF supports actor supervision by
enabling actor monitoring and having supervisors receive notifications from monitored
actors on termination. A pair of actors may also establish a bidirectional link so that in
case one fails the other is automatically terminated, a mechanism useful for restarting
an actor cluster during error recovery.

11

1.7 React++

React++ is a lightweight actor runtime written in C++ with automatic memory manage-
ment and lock-free message queues. Messages in React++ are modeled as user-defined
structs of arbitrary types in addition to primitives. Message contents may either be
copied or forwarded using C++ move semantics. Atoms are special types of immutable
messages that are statically allocated and reused throughout an application’s lifetime.
Semantics of the send command is asynchronous by default, however a synchronous
send is possible both within and outside an actor context. An actor may opt to be sus-
pended in user space until a specific message is received from another actor. Messages
that arrive meanwhile are buffered in the mailbox and dispatched only after the un-
blocking message arrives, which is processed immediately before any other message.

In React++, each actor is assigned a unique identifier that is mapped to a thread-
safe handle by a concurrent hashtable. A handle can be obtained directly by the spawn
command or querying the hashtable. It serves as the actor’s logical address and may
be used to communicate with the actor. It may also be forwarded to other actors in a
message. Handles are reference-counted entities. As soon as all handles referencing an
actor go out of scope, its memory is reclaimed by the runtime.

Actor behaviors are defined as classes or a set of lambda expressions with support
for pattern matching. The become command allows actors to assume a replacement be-
havior after processing the current message. The messaging layer uses a lock-free MPSC
(Multiple-Producer Single-Consumer) queue as the mailbox of an actor. Each actor em-
ploys a message dispatcher that runs a message loop, popping messages from the front
of the mailbox and invoking a matching handler if one is present. The runtime also
lends support to the assignment of relative priorities among actors by adjusting the dis-
patch size, which designates the maximum number of messages to be processed before
returning control to the scheduler. The scheduler may regain control early if an actor
yields or its mailbox is drained empty before the specified number of messages are dis-
patched.

12

To facilitate synchronous communication between an actor and a non-actor en-
tity such as a thread or fiber (i.e., user-space thread), the messaging layer extends
std::promise and delivers it to the actor context as a message. At the same time, it
returns a linked future to the non-actor entity. A promise message may include an
arbitrary number of inputs as payloads. Upon receiving a promise message (and thus
making a promise), an actor extracts the input arguments, computes the output, and
returns it via the future. Non-actor entities can block on futures linked to promises
made by actors, thus implementing a synchronous request-reply pattern.

Actors in React++ are allowed to yield the CPU to the scheduler, which is a trivial
operation with several use cases. Yielding saves the current message and re-dispatches
it to the yielding actor when it is scheduled again, which helps enforce some ordering
constraints on message processing. If an actor is unable to process a message because
the current behavior prohibits it, the actor can switch to another behavior and yield
to the scheduler so that the same message is re-dispatched while the new behavior is
active. Furthermore, the I/O subsystem requires that all non-blocking I/O specific to a
connection be done in a loop running in the actor context until no more data is available
from that connection. Yielding once per I/O operation results in better cooperation by
interleaving executions of other actors in this loop, leading to improved latency. The
same effect can also be achieved by an actor that sends notifications to itself, although
yielding is faster as it requires fewer instructions.

React++ features an integrated I/O subsystem to facilitate non-blocking I/O per-
formed by actors in shared memory. The main contribution of this thesis is to analyze
and improve the scalability of actor-driven I/O workloads. The source is publicly avail-
able at https://git.uwaterloo.ca/mnakhan/ReactPlusPlus.

13

https://git.uwaterloo.ca/mnakhan/ReactPlusPlus

1.7.1 Scheduling

To map an arbitrary number of actors to a thread pool with a fixed number of work-
ers, the scheduler assigns one ready queue per worker that holds references to runnable
actors. React++ adopts a work-stealing scheme to balance workloads amongst work-
ers, where idle workers become thieves and steal runnable items from other workers’
ready queues. If an actor’s behavior involves executing any operation that may block
in kernel space, such as waiting on a file descriptor until it becomes ready for I/O, the
executing worker thread itself is blocked. As the scheduler spawns a fixed number of
worker threads matching the number of physical CPUs available to the runtime, block-
ing worker threads leads to the underutilization of processing units. Actors placed on
the ready queue of the same worker are also effectively blocked as the actor at the front
cannot proceed. Although load-balancing schemes may partially mitigate this problem
by shuttling runnable actors to other ready queues, it invariably delays execution and
rapidly deteriorates performance because of worker threads becoming inaccessible. Co-
operative scheduling of actors thus mandates a non-blocking requirement for all forms
of behavioral logic. The runtime leaves it to the programmer to ensure conformance to
this requirement as it has no way of preventing an arbitrary behavior from executing
blocking system calls.

1.7.2 I/O in the Actor Context

As discussed previously, an actor is not allowed to execute a system call that may block
in kernel space. This imposes a semantic constraint on any I/O operation in the actor
context. Non-blocking I/O operations on file descriptors require polling for I/O readi-
ness of each descriptor. Busy-waiting schemes that poll for I/O readiness experience a
number of disadvantages. Continuous polling steals CPU cycles from compute actors
and inhibits message throughput. It also raises the power consumption and accompa-
nies the possibility of starvation.

Consider an actor system with a single worker W and two actors a1 and a2, both
I/O bound and currently blocked awaiting inputs from network sockets s1 and s2. The
system is in idle state and poller P is monitoring s1 and s2 by spinning on worker W with
a sleep interval. When s1 becomes ready, a1 is notified, which starts processing incoming
requests at s1. Assume a1 is kept busy indefinitely because of a large volume of requests
arriving at s1. a1 yields CPU to the scheduler after processing each request so that a2 may
run. However, a2 can only be placed on the ready queue by a notification from poller
P and the poller can run only if the system is idle. While a1 is on the ready queue, the

14

system is not considered idle and a2 is not unblocked by P even if there is data waiting
for a2 at s2. As a result, a2 does not get scheduled at all until a1 goes idle. If actors a1
and a2 are processing requests sent by clients c1 and c2 respectively, latency measured
by c2 grows without bound while c1 is active. The polling infrastructure in React++
addresses these issues by modelling pollers themselves as actors that check readiness
of file descriptors and unblock I/O actors. A polling actor is an ordinary actor that
executes non-blocking polling logic on a set of file descriptors without requiring that
the system be idle. However, they do not stay indefinitely on the ready queue and are
blocked themselves when polling returns no I/O events.

To unblock a polling actor without resorting to busy-waiting, React++ employs a
multi-tier event-polling scheme. The Linux kernel (version 2.5.44 and later) implements
a mechanism called epoll() to facilitate event polling on a large number of descriptors
in constant time. Unlike select(), the system call epoll_create1() constructs an epoll
object with a file descriptor of its own, which is used for polling and managing the set
of file descriptors being monitored. The file descriptor associated with an epoll object
may itself be monitored.

Suppose the descriptor set S = { s1, s2, ... , sn } is being monitored by an epoll object
with descriptor e1. e1 in turn is being monitored by another epoll object with descriptor
e2. Polling entities P1 and P2 are awaiting events by polling on e1 and e2 respectively,
with P2 denoted as the master poller and P1 as its slave. Changes in the I/O readiness
of any member of S cause P2 to receive a direct notification from the kernel, which
forwards the notification to P1.

In React++, the slave poller P1 is represented by the non-blocking event-polling tier
comprising of a set of polling actors, each monitoring a disjoint set of file descriptors.
The master poller P2 is not an actor and implemented as a system thread separate from
those owned by the scheduler. When the system is idle, the master poller blocks in
kernel space while awaiting events on a second-tier epoll object. Once awakened by
the kernel, it notifies the polling actors in turn to execute non-blocking event polling on
the first-tier epoll objects. To reduce the overhead resulting from spurious messages
generated by the master poller, second-tier polling delivers edge-triggered one-shot no-
tifications, to be discussed in further details in Chapter 4.

15

Chapter 2

The Messaging Layer

A React++ actor can be spawned in one of the following scheduling domains: native,
kernel and inert. Native actors are executed under a work-stealing scheduler that imple-
ments an M:N threading model in user space. When the scheduling domain is set to
kernel, each actor is assigned a new system thread as its executor. As a consequence, the
message dispatcher bypasses the runtime and all scheduling decisions are effectively
delegated to the OS. Such actors are said to be running in a detached context. Detached
actors prove useful in cases where the behavioral logic mandates blocking in kernel
space, an action otherwise prohibited for actors. Despite having support for natural
blocking semantics, detached actors are not recommended for typical use cases. Giv-
ing each actor a dedicated system thread greatly limits the scalability of an application,
in addition to delaying spawn events and context switches. Finally, the inert domain
allows the creation of inert actors that do not own any thread and are ignored by the
user-space scheduler as well. These actors may be polled for incoming messages and are
meant to act as secondary mailboxes. Additionally, they help accommodate third-party
schedulers implemented in threading libraries. Behavioral definitions are agnostic to
scheduling domains, which implies that two actors with the same behavior definition
can be executed in different domains. Furthermore, messaging semantics are identical
within and across scheduling domains, allowing actors from different domains trans-
parently communicate with each other.

The native domain can be partitioned into multiple logical sub-domains called clus-
ters [18, 19], where each cluster is given its own scheduler and a pool of threads. By
default, an actor system creates just one cluster and sets the size of its thread pool equal
to the number of physical processors detected at runtime. Configuration files are used
to assign any number of physical CPUs from any number of NUMA nodes to a given

16

cluster. Actors within that cluster are allowed to run only on the specified processing
units, although migration of actors across clusters is possible. Scheduling decisions are
subject to actors properties as well as cluster configurations. Actor properties are at-
tributes specific to each actor, such as processor affinity, sender affinity and message
dispatch size. In contrast, cluster-wide configurations affect all actors that belong to a
particular cluster, which include frequency of work-stealing and active I/O policies. In
addition, NUMA latency plays a role in victim selection [70] during theft attempts made
by idle CPUs, thus affecting the placement of actors.

An external agent is defined as any computational logic that executes outside the
native scheduling domain but directly communicates with native actors. Examples in-
clude detached actors and non-actor entities such as external threads and fibers that
interact with native actor handles and channel endpoints. Moreover, the timer interface
can bind handlers to alarm events, allowing a designated actor to receive recurring or
one-shot messages of any type when the corresponding alarm is raised. A handler that
notifies an actor in response to alarms is treated as an external agent.

When a native actor sends a message to another actor, the message is said to have
originated in an actor context. In contrast, if an external agent sends a message to an
actor, it is sent from an external context. Although messages sent from either context have
much in common, kernel-space blocking is semantically prohibited in an actor context.
Furthermore, messages sent from an external context may not have valid sender IDs, as
some external agents are not actors.

2.1 Mailboxes and Channels

Each actor has exactly one primary mailbox. The address of this mailbox is an intrinsic
property of the actor and cannot be altered throughout its lifetime. Primary mailboxes
are characterized by the following three invariants.

• Sending a message to an empty primary mailbox immediately schedules the actor
that owns it, provided that the actor resides in the native or kernel domain. In case
of inert actors, the scheduling decision can be arbitrary.

• A scheduled actor remains on some ready queue until its primary mailbox is
drained.

• Delivering a message to a non-empty primary mailbox has no effect on scheduling.

17

Messages that employ the synchronous request-reply pattern, described in Section
2.12, emulate user-space blocking using a special mechanism where the receiving mail-
boxes do not conform to any of these invariants.

Recall that inert actors are not assigned to a pool of executors and can be run any-
where, even from within another actor’s behavior. A native or detached actor can thus
employ one or more secondary mailboxes by creating inert actors and running a polling
loop on their mailboxes. Secondary mailboxes are also called channels, as they can be
dedicated to facilitating one-to-one communication between a pair of actors.

Channels extend the actor model by allowing actors to own multiple mailboxes. An
actor may utilize channels to enforce flow control, ameliorate lock contention and stash
messages for later processing. The next example illustrates a simple use case of chan-
nels. Suppose an actor R receives messages from sending actors S1 and S2. A clock
generator C emits a pulse at a given frequency, also received as a message by R. The
application requires that R process no more than X messages from S1 and Y messages
from S2 for each pulse generated by C. To enforce this requirement, R is created with
two channels. This leads to three distinct addresses being associated with this actor,
its primary address A and addresses of the two channels a1 and a2. The addresses are
distributed as follows: the clock generator C receives the primary address A and the
senders S1 and S2 are given a1 and a2 respectively, so that each has its own channel to
communicate with R. For each pulse received from C, the behavior of R executes X mes-
sages (if available) from the first channel and Y messages (if available) from the second.
Then it returns control to the scheduler. If the primary mailbox is empty, R blocks await-
ing more pulses from C. Otherwise it removes the next pulse from the primary mailbox
and repeats the behavior.

Observe that this is analogous to an actor stashing messages for future use. How-
ever, the primary mailbox cannot be used for stashing purposes because of the second
invariant — an actor will never block if its primary mailbox has contents, requiring the
actor to busy-wait until a pulse arrives from the clock generator. An alternative to using
channels is receiving all messages only through the primary mailbox and then copying
messages from senders S1 and S2 to separate internal lists. Then R can try to remove the
required number of messages from these lists each time a pulse is received. However,
channels offer three major advantages over such improvised stashing locations:

• Sending messages through a channel has no scheduling cost. The runtime uses
only the primary mailbox of an actor to make scheduling decisions.

• In the producer-consumer pattern, multiple senders simultaneously streaming

18

large volumes of messages to a single recipient hurt scalability due to lock con-
tention amongst the senders. If the recipient creates one channel per sender, each
channel acts as an SPSC (Single-Producer/Single-Consumer) queue, effectively
eliminating all contention on the sender side.

• Since channels are implemented as actors themselves (although in the inert do-
main), they are treated the same way by the message dispatcher. This approach
implies that the actions triggered by messages received through a channel can
conveniently be encapsulated in reusable behaviors associated with that channel.
Invoking the process command on a channel transparently removes the next in-
bound message, which is dispatched to the currently active behavior associated
with it.

To summarize, an actor has exactly one primary address and can have an arbitrary
number of secondary addresses, each associated with a different channel it uses. Chan-
nels are more than just additional mailboxes as they are equipped with their own set of
behaviors, distinct from those of the owning actors.

2.2 Behaviors and Contexts

A behavior is a set of typed message handlers, each responsible for triggering some ac-
tion when a message with a matching type is dispatched. Although an actor may have
multiple behaviors, only one behavior is active for each actor at any time. After remov-
ing a message from the primary mailbox, the message dispatcher locates the currently
active behavior for the actor and attempts to select an appropriate handler based on the
type of the message. Content-based filtering may also be applied during the selection
process. If no such handler is found, the message is discarded unless a generic handler
is present in the active behavior. Generic handlers match any type and allow application
logic to address the scenario where the dispatched message does not match any typed
handler. Both typed and generic handlers may run arbitrary CPU-bound workloads or
non-blocking I/O operations, update the actor’s state, terminate it, spawn new actors,
send messages to known actors or adopt a completely different behavior. Switching
behavior unbinds all existing message handlers, replacing them with handlers from the
new behavior for each message type. The previous behavior can also be re-assigned in
a similar way.

19

Variables that capture the internal state of an actor are classified according to the
scope under which they can be accessed. A variable is said to be in a context scope if it
can be accessed regardless of which behavior is active for an actor. In contrast, a variable
is in a behavior scope if it can be accessed only after an actor has assumed some particular
behavior. In other words, a context scope is shared amongst the behaviors of the same
actor, while each behavior is allowed to define its own private state visible if and only
if that behavior is active.

Behaviors are defined by extending the behavior_t type, while contexts are derived
from typed_context_t<behavior_types...>. Separation of behavior and context allows bet-
ter encapsulation and promotes reusability. Although an actor can assume an arbitrary
number of behaviors, the list of behavior types for a particular actor is finite and must
be declared when the actor is spawned. This list is known as the behavior set of an actor.
The actor may adopt any of the behaviors stipulated by its behavior set. All behavior
switches are statically checked, therefore any actor attempting to assume a behavior
that is not part of its behavior set leads to a compile-time error.

2.3 Initialization

An application must initialize the global actor registry before spawning any actor, which
requires creating the process-wide system_t object using the single-instance pattern. The
number of clusters and CPU assignments for each cluster can be specified directly or via
a configuration file (listing 2.1).

1 using namespace rpp;
2 using namespace io;
3 rpp::system_t& sys = GLOBAL(rpp::system_t);
4 // create 3 clusters without any I/O policy
5 // first cluster has 2 CPUs, second has 4, third has 1
6 sys.restart(nullptr, 2, 4, 1);
7 // restart the system with an I/O policy and a configuration file
8 io_policy_t *policy = new server_io_policy_t;
9 environment::configPath = "config.ini";

10 sys.restartWithConfiguration(policy);

Listing 2.1: Initializing the React++ runtime.

20

The command waitForAll blocks the current thread and does not return until all ac-
tors are terminated. This is useful if an application requires a top-level thread to wait
until the actor system has properly shut down.

Examples in this chapter use a built-in printer object (io::scout) for directing a thread-
safe character stream to the standard output, as shown in listing 2.2.

1 // NOTE: endl is necessary for flushing the stream
2 io::scout << 1 << 2.0 << "3" << endl;
3 // alternative syntax for the same printer, similar to printf
4 auto& printer = GLOBAL(generic_ext:printer_t);
5 printer.println(1, 2.0, "3");

Listing 2.2: Using a thread-safe character stream.

2.4 Creating an Actor

The props_t type is responsible for encapsulating individual actor properties. It serves
as a template for spawning groups of identical or similar actors. A props_t instance
can designate an existing cluster as the spawn location for a new actor, specifying its
scheduling domain, processor affinity, sender affinity, mailbox type and relative priority.
Some properties can be set using global policies that apply to all actors, which may be
overridden by those set by props_t instances.

The messaging layer has three scalable implementations for the lock-free mailbox,
which may be given a primary or secondary role. The mailbox type assumed as default
by the props_t class is based on the DV-MPSC queue [28], the other two adapted from
the cached stack approach in the C++ Actor Framework [24] and inter-thread channels
in ZeroMQ [73] respectively. Certain workloads may favor one implementation over
another. Mailbox type, being a member of the props_t class, can be set on a per-actor
basis.

The spawn command, actor_t<domain>::spawn<typed_context_t<behavior_types...>>,
creates a new actor in the specified scheduling domain based on the given properties.
Then it returns a strong reference to the actor’s context, which is called an actor handle.
Although the same actor can have multiple handles, its numeric ID is unique across
the system. When printed, it is shown using the decimal-dotted notation in the form
cluster_id.local_id. For example, the ID 0.3 refers to the fourth actor (local ID 3) spawned
on cluster 0. If an actor is running in a detached context, the cluster ID is replaced

21

by the letter ’X’ (for example, X.3). All non-actor entities communicating with actors
are assigned a special ID that appears as _._ to actors. Actor IDs can be converted to
handles and vice versa, as shown in listing 2.3 (line 16 and 18). Both employ thread-safe
indirection mechanisms, serving as the logical address of an actor. Therefore either can
be used to reach its primary mailbox, although a handle provides a faster access path
by storing a reference instead of querying the actor registry. Caution is advised while
caching handles under a context or behavior scope because incorrect usage of strong
references may inadvertently lead to reference cycles.

1 /**
2 set message dispatch size to 1 and enable work-stealing with

↪→ normal frequency
3 any actor unblocked by a message is scheduled at the sender’s

↪→ location with 20% chance
4 **/
5 policy_t::enable<dispatch_size::single>()
6 .enableWith<work_stealing>(steal_frequency_t::NORMAL)
7 .enableWith<schedule_at_sender::probability>(0.2);
8 /**
9 spawn an actor with default (empty) behavior, override message

↪→ dispatch size and sender affinity
10 generate a location on cluster 0 for initial placement
11 **/
12 actor_t<> a1 =

↪→ actor_t<>::spawn<>(props_t::with<mailbox_type_t::DV>()
13 .withDispatchSize(2).withSenderAffinity(0.5)
14 .at(location_t::generate<RoundRobin>::on(CLUSTER<0>{}));
15 // get actor ID from actor handle
16 actor_id_t id = a1.getID();
17 // get a new handle from actor ID
18 actor_t<> a2 = actor_t<>::map(id);

Listing 2.3: Spawning an actor using a props_t instance.

It is possible to discover the ID of a new actor by means of selection tags (discussed in
Section 2.10), even before its parent publishes it to the senders. This is why immediately
after creation, an actor’s context is placed in a disabled state. While this state is active,
the actor cannot be scheduled. Any message sent to its mailbox is quietly discarded.
This allows the parent, which could be an actor or an external agent, to directly access

22

the actor’s state and initialize it as necessary using behavior and context initialization
templates provided by the runtime. Initialization templates are optional and present
a concise way to define an actor’s initial state and behavior by its parent, suitable for
scenarios that require some initialization steps not available in the constructor. One such
use case arises while setting up a group of actors where each actor has the addresses
of all others. Note that using an initialization template does not introduce data races
because the mailbox of a disabled actor is not yet reachable by its peers, although its
ID may be visible to them. Communication via messages becomes possible after the
context is enabled, which happens only once during an actor’s lifetime. This event also
simultaneously removes the parent’s ability to directly access the actor’s state.

2.5 Messaging Semantics: Send

A message of arbitrary type can be sent to any actor using the send operator (|), shown
in listing 2.4. The sender does not have to be an actor itself. Messages are delivered
as long as the following two conditions are met: i) the recipient is alive and its context
is enabled, ii) the sender has obtained the unique ID of the recipient or a handle to its
context, either of which can be used to locate its primary mailbox. If the sender prefers
to use a channel instead, it must acquire the channel’s unique ID or a handle to its
context.

1 struct MyMessage { int x, int y };
2 actor | MyMessage { 1, 2 };

Listing 2.4: Sending a message using the | operator.

If the contents of a message are immutable, the message may be defined as an atom.
Atoms can be of arbitrary type. However, they use the single-instance pattern so there
is only one application-wide instance for each type of atom. Since atoms are allocated
just once at first reference, they are delivered faster than ordinary messages of the same
type. The sender must use a special operator to send atoms (<<), as shown in line 6 from
listing 2.5.

23

1 // contents cannot be changed afterwards
2 struct Immutable { string contents; Immutable() :

↪→ contents("constant") {} };
3 namespace atom {
4 DECLARE_ATOM_TYPE(Immutable) myAtom;
5 };
6 actor << atom::myAtom;

Listing 2.5: Sending an atom using the << operator.

2.6 Assuming a Behavior

The default behavior of an actor is implemented using a hashtable that maps each mes-
sage type to a closure serving as a handler for that type. The closure is executed when
a message of the same type is dispatched from the mailbox. The hashtable, initially as-
signed by the parent, can be updated by the actor. Handlers for new types of messages
can be attached while existing handlers can be replaced or removed. Default behavior
can be accessed using actor_t<scheduler_type>::defaultBehavior, which takes an optional
flag allowing the caller to remove all existing handlers. Recall from Section 2.4 that a
parent is not allowed change its child’s behavior after its context is enabled. Listing 2.6
demonstrates a usage scenario for the default behavior.

1 struct Switch { int i; string s; };
2 actor.defaultBehavior(true).on<int>([&] {
3 return [&](context_t *ctx, int message, actor_id_t const&

↪→ senderID) {
4 scout << "received int: " << message << endl;
5 };
6 }).on<Switch>([&] {
7 return [&](context_t *ctx, Switch const& message, ...) {
8 scout << "received Switch: " << message.i << ’ ’ << message.s

↪→ << endl;
9 // switch behavior

10 ctx->defaultBehavior().on<float>([&] {
11 return [&](context_t *current, float message, ...) {
12 scout << "received float: " << message << endl;
13 };

24

14 }).off<int>(); // no longer accepts int
15 };
16 });
17
18 // enable actor context and assume default behavior
19 actor.enableContext().withDefault();
20 actor | 42 | Switch { 42, "fourty-two" } | 42.0f | 100;

Listing 2.6: Defining typed message handlers in the default behavior.

Initially the actor is assigned a behavior accepting messages that are either integers
or Switch instances. Then it receives the following ordered stream of messages: 42,
Switch {42, "forty-two"}, 42.0f and 100. The first message, an integer, is accepted and
printed (line 4). The second message alters the behavior by installing a new handler
(lines 10-13) for float data type and discards an existing handler (line 14). The third
message (42.0f) is now accepted since a matching handler was installed by the preceding
message, while the last one (100) is dropped because the target handler is no longer
present.

The default behavior allows fast prototyping of simple actors but prohibits storage
of behavior-specific state variables. Such state information may be placed in named
behaviors, which are defined as classes deriving from behavior_t. Each behavior type
from an actor’s behavior set is instantiated by the spawn command and the instances
are maintained by the runtime until the actor is terminated. The actor can assume
any of the behaviors included in its behavior set by invoking the become command,
typed_context_t<behavior_types...>::become<behavior_type>. The only exception is the de-
fault behavior, where a different command is used (context_type::becomeDefault). Since
this behavior is anonymous and does not extend behavior_t, it is automatically included
in all user-defined behavior sets.

Listing 2.7 focuses on the usage of the become command, ignoring typed handlers as
shown previously. Initially, behavior X is active (assumed in line 30) which accepts a
message of any type and adopts behavior Y (line 11). While behavior Y is active, the
actor switches to the default behavior (line 18) upon receiving any message. Finally, be-
havior X is resumed (line 26) if the actor receives a message while the default behavior
is active. Instance variables placed in X or Y are not visible to each other and hence cap-
ture behavior-specific states. However, any instance variables from MyContext class can
be accessed from either behavior (requiring a downcast on the current context) and may
be used to model actor-specific state information that is shared amongst its behaviors.

25

1 struct X; struct Y;
2 template<typename... BehaviorTypes>
3 struct MyContext : public typed_context_t<BehaviorTypes...> {
4 };
5
6 using ContextType = MyContext<X, Y>;
7
8 struct X : public behavior_t {
9 void receive(message_t *message, actor_id_t const& senderID)

↪→ override {
10 scout << "active bahavior is X, switching to Y" << endl;
11 ContextType::become<Y>(this);
12 }
13 };
14
15 struct Y : public behavior_t {
16 void receive(message_t *message, actor_id_t const& senderID)

↪→ override {
17 scout << "active bahavior is Y, switching to default" << endl;
18 ContextType::becomeDefault(this);
19 }
20 };
21
22 actor_t<> actor = actor_t<>::spawn<ContextType>(props);
23 actor.defaultBehavior().any([&] {
24 return [&](context_t *ctx, message_t *message, ...) {
25 scout << "active behavior is default, switching to X" << endl;
26 ContextType::become<X>(ctx);
27 };
28 });
29 // choose X as the initial behavior
30 actor.enableContext<ContextType>().withBehavior<X>();

Listing 2.7: Defining multiple named behaviors for an actor.

26

2.7 Messaging Semantics: Receive

Upon receiving a message, a behavior can search a list of typed handlers or ignore the
message altogether. To apply content-based filtering, an optional predicate may be sup-
plied. Listing 2.8 shows a behavior that receives only even integers, as well as strings
that start with the letter a. The catch-all generic handler any, if defined, applies to all
other types that do not have an associated handler.

1 actor.defaultBehavior().on<int>([&] {
2 return [&](context_t *ctx, int x, ...) {
3 scout << "received int: " << x << endl;
4 };
5 }, [](int x) {
6 return x % 2 == 0; // only receive even integers
7 }).on<string>([&] {
8 return [&](context_t *ctx, string const& x, ...) {
9 scout << "received string: " << x << endl;

10 };
11 }, [](string const& x) {
12 return x.find("a") == 0; // only receive strings that start

↪→ with "a"
13 }).any([&] { // default handler, deals with all other types
14 return [&](context_t *ctx, message_t *message, ...) {
15 vector<float> lst;
16 if(message->extract(lst)) scout << "received list: " << lst

↪→ << endl;
17 // unexpected message for this behavior, switch and yield
18 else {
19 ContextType::become<Geometry>(ctx);
20 ctx->yield();
21 }
22 };
23 }, [](const message_t *message) {
24 return true;
25 });

Listing 2.8: Content-based message filtering in the default behavior.

27

A behavior may install a chain of named or anonymous typed handlers. Alterna-
tively, it can opt to extract and examine the message contents directly in its receiver
for in-place handling of messages. Unlike the default behavior which uses a hashtable,
typed handlers defined as a forwardIf<message_type> or on<message_type> chain are in-
voked in linear succession while attempting to match the type of the dispatched mes-
sage, much like an if-else construct. As a result, handlers that are invoked frequently
should precede those used on rare occasions.

It is possible that the correct handler for a message exists, but not in the active be-
havior. If this is the case, an actor can switch behavior using the become command and
yield to the scheduler. The same message is re-dispatched because of the yield, to be
processed by the new behavior. For example, the generic any handler in listing 2.8 (line
13) attempts to extract a vector<float> object from the message. Suppose the message ac-
tually contains the endpoints of a straight line and the generic handler fails, switching
to a named behavior (Geometry) with the following chain of handlers in its receiver:

1 void Geometry::receive(message_t *message, actor_id_t const&
↪→ senderID) {

2 message->forwardIf<Line>(this, &Geometry::calculateLength)
3 || message->forwardIf<Square>(this,

↪→ &Geometry::calculateArea<Square>)
4 || message->forwardIf<Circle>(this,

↪→ &Geometry::calculateArea<Circle>)
5 || [&] {
6 // yield to another behavior...
7 ContextType::become<SomethingElse>(this);
8 ctx.yield();
9 return true;

10 }();
11 }

Listing 2.9: A chain of named handlers in the receiver of a named behavior.

Since the message now matches the first handler defined in this behavior, a Line
object is automatically extracted and forwarded to Geometry::calculateLength. In listing
2.10, the receiver from the same behavior has been rewritten using a chain of anony-
mous handlers.

28

1 void Geometry::receive(message_t *message, actor_id_t const&
↪→ senderID) {

2 message->on<Line>([this](Line const& line) {
3 // calculate the length of the line
4 }).on<Square>([this](Square const& square) {
5 // calculate the area of square
6 }).on<Circle>([this](Circle const& circle) {
7 // calculate the area of circle
8 }).any([this, message]() {
9 ContextType::become<SomethingElse>(this);

10 ctx.yield();
11 });
12 }

Listing 2.10: A chain of anonymous handlers in the receiver of a named
behavior.

2.8 Actor Termination

The context of an actor, which manages its primary mailbox and behavior set, is a
reference-counted storage. References to an actor’s context may be held by native actors
as well as external agents. The context class provides an exit command (context_t::quit).
Actors are usually killed by termination messages that cause their active behaviors to
invoke this command on their own contexts. However, the exit command only removes
the reference from the actor registry so that a subsequent search for a "terminated" ac-
tor fails, rendering the actor invisible to those that do not already hold a reference to
its context. Reclamation of storage is deferred until all references are dropped, extend-
ing the actor’s lifetime until all of its senders forget about its existence. The class that
encapsulates a context reference, actor_t, employs the RAII pattern and decrements the
reference count by one in its destructor. For a detached actor, the executor thread is
joined with the thread that drops the last reference. To prevent the possibility of a self-
join, a detached actor that terminates itself is reclaimed by a system-wide reaper thread.

29

2.9 Promise, Future and Barrier

To facilitate communication between the native actors and external agents, three addi-
tional constructs are introduced by the messaging layer: promise, future and barrier. A
promise is a message which, upon delivery, synchronously returns a future construct
to the sender. The future represents a result that may or may not be available at that
time. The plus operator (+) is used to link a promise to a future. Inputs of any type
required to compute the result can be packed within the promise. The sender can then
wait on the linked future by invoking future_t<result_type>::block until the actor fulfills
the promise (promise_t::deliver<result_type>) and the result becomes available. This com-
munication pattern requires that the sender be an external agent in order to conform to
the non-blocking requirement, while the receiver can be a native or detached actor. In
case the actor fails to deliver a result (i.e., the promise is discarded or the actor is killed),
the future returns a default value, which can be preset by the sender to indicate failure.

In listing 2.11, an actor makes a pair of promises to compute the product and quo-
tient of two numbers. The first future blocks the sender thread until the result 150 is
returned (delivered by the actor in line 12 and received by the sender in line 29). The
second promise contains an invalid operand (divisor is set to 0) and therefore is never
fulfilled. As soon as the actor discards the promise, the sender thread is unblocked and
0 is returned via the future (line 34), which is the preset value for this example.

1 struct Multiply{};
2 struct Divide{};
3 using ResultType = double; using OperandType = double;
4 using ProductPromise = Promise<ResultType, Multiply, OperandType,

↪→ OperandType>;
5 using QuotientPromise = Promise<ResultType, Divide, OperandType,

↪→ OperandType>;
6
7 actor.defaultBehavior()
8 // handler for first promise
9 .on<ProductPromise>([&] {

10 return [&](context_t *ctx, ProductPromise p, ...) {
11 OperandType multiplicand = get<0>(p.data), multiplier =

↪→ get<1>(p.data);
12 p.deliver(multiplicand * multiplier);
13 };
14 })

30

15 // handler for second promise
16 .on<QuotientPromise>([&] {
17 return [&](context_t *ctx, QuotientPromise q, ...) {
18 OperandType dividend = get<0>(q.data), divisor =

↪→ get<1>(q.data);
19 // conditional delivery
20 if (divisor != 0.0) p.deliver(dividend / divisor);
21 };
22 });
23 actor.enableContext().withDefault();
24
25 ProductPromise p;
26 p.pack(10.0, 15.0); // result = 10 * 15 = 150
27 // link promise to a future
28 future_t<ResultType> productFuture = actor + p;
29 ResultType result = productFuture.block(0.0); // return 0 on failure
30
31 QuotientPromise q;
32 q.pack(10.0, 0.0);
33 future_t<ResultType> quotientFuture = actor + q;
34 result = quotientFuture.block(0.0); // return 0 on failure

Listing 2.11: Using promise and future to communicate with external agents.

31

1 int nActors = 2;
2 vector<actor_t<>> actors(nActors);
3 for(int a = 0; a < nActors; a++) {
4 actors[a] = actor_t<>::spawn<>(props):
5 actors[a].defaultBehavior()
6 .on<int>([&] {
7 return [&](context_t *ctx, int x, ...) {
8 // consume message stream
9 };

10 }).on<synchronize_t>([&] { // sent by the runtime
11 return [&](context_t *ctx, synchronize_t const& token, ...) {
12 token(); // acknowledge the token by executing it
13 };
14 });
15 actors[a].enableContext().withDefault();
16 }
17
18 int nMessages = 1000;
19 {
20 barrier_t scope(-1, actors[0], actors[1]); // no timeout
21 for(int a = 0; a < nActors; a++)
22 for(int m = 0; m < nMessages; m++)
23 actors[a] | m;
24 }; // blocks here until both actors are done
25
26 scout << "all done" << endl;

Listing 2.12: Synchronizing an external agent with multiple actors using a
barrier.

Suppose an external agent has streamed a batch of messages to an actor and wants
some form of acknowledgment before streaming the next batch. The barrier construct
creates a scope with any number of actors and blocks the sender until such an acknowl-
edgment is received from each of the designated actors. This feature is implemented by
sending a special token at the end of the stream, which is guaranteed to be delivered last
because of the ordering constraint acting on a stream of messages from the same sender.
Acknowledging the token is the same as acknowledging all preceding messages for in-
order reliable delivery. In listing 2.12, a pair of actors are sent 1K messages after which

32

the sender waits on a barrier before reaching line 26. The first argument to the barrier
(line 20) is the duration in milliseconds after which a timeout occurs and the sender
is automatically unblocked. Timeouts are disabled if the duration is a negative value.
Each actor being waited on must execute the synchronization token (line 12) delivered
by the runtime to acknowledge it.

2.10 Selection Tags

Selection tags are used to select groups of actors. A tag can be bound to any number
of actors. Conversely, the same actor can be bound to any number of tags. Figure 2.1
shows association between 3 actors and 2 tags. Tag x is associated with both a and b,
while tag y is associated with both b and c. Actor b has multiple tags (x and y). This
allows formation of any logical groups of actors, where the same actor may be part of
multiple groups.

Tags are bound by the function system_t::bind(actor_id, tag). Several queries appear
in Listing 2.13 that exemplify group selection by means of tags. Once a group is se-
lected, any message can be broadcast to that group using system_t::broadcast<is_atom,
message_type>.

a

x y

b c

Figure 2.1: Association between actors and tags.

33

1 // select all actors from the native domain such that each is from
↪→ cluster 7 and is associated with tag ’x’ or ’y’

2 vector<actor_id_t> actor_group
3 = tag_registry_t::select<actor_id_t>::from<native>::where(
4 [](actor_id_t const& id) {
5 return id.clusterID == CLUSTER<7>{}; // ID filter
6 }, [](tag_t const& tag) {
7 return tag.compare("x") == 0 || tag.compare("y") == 0; // tag

↪→ filters
8 });
9

10 // select all tags associated with a particular native actor (ID =
↪→ 0.42)

11 vector<tag_t> all_tags_of_the_actor
12 = tag_registry_t::select<tag_t>::from<native>::where(
13 [](actor_id_t const& id) {
14 return id == "0.42"; // ID filter
15 }, [](tag_t const& tag) {
16 return true; // no filter for tags
17 });
18
19 // select all actor-tag associations from all domains
20 vector<pair<actor_id_t, tag_t>> all_mappings
21 = tag_registry_t::select<pair<actor_id_t, tag_t>>::from<native,

↪→ detached, channel>::where(
22 [](actor_id_t const& id) {
23 return true; // no ID filter
24 }, [](tag_t const& tag) {
25 return true; // no tag filter
26 });

Listing 2.13: Selecting groups of actors using tags.

Suppose a group of actors each provide the same service and are associated with
a common tag. According to the actor model, a newly spawned client that wishes to
subscribe to this service must explicitly receive the ID of a service provider from some
supervising actor. With a selection query, however, it can retrieve the IDs of all servers
using their common tag. Tags thus enable automatic discovery of service providers,
offering greater flexibility at the expense of violating the actor model.

34

2.11 Message Trail

A message trail is a tracing artifact designed to provide assistance in handling excep-
tional circumstances encountered by actors. A message of any type can be turned into
a trail, which causes the runtime to store complete path information in the trail as it
is forwarded through an arbitrary chain of actors. Each actor along the path is free to
modify the contents before sending it to the next recipient, which is why a snapshot is
taken each time a trail grows by one. In essence, the trail always carries its complete
path and content history with it, which can be inspected by any actor along the path.
An actor receiving a message trail has the following choices:

• Drop the trail by ignoring it.

• Forward the trail to another actor. Message contents may be modified before for-
warding. The updated version is appended to the message history.

• Fork the trail one or more times and forward these clones to different recipients,
creating a divergent history with each clone.

• Throw the trail as an exception. A typical use case is having an actor notify its
supervisor if the message contents are not expected or incomplete.

• Resume a trail thrown by another actor. This feature is equivalent to handling an
exception in an actor context, after which the control is returned to the actor that
originally raised the exception.

When an exception is raised on a trail, the trail is said to be rewinding. The exception
is caught by the message dispatcher, which examines the path information and returns
the trail to its immediate sender. This actor may take corrective actions, update message
contents and resume the trail. In case it ignores the rewinding trail, the exception is
automatically re-raised and cascades back to previous senders by the same mechanism.
This pattern continues until some actor along the rewinding path resumes the trail.
Otherwise, the exception is eventually raised by the very first actor that began the trail
(termed the origin), at which point it is discarded by the runtime.

A resumption simply unsets the rewind flag and sends the trail back to the source
of the exception without modifying history. Following a resumption, the message path
appears identical from the perspective of the source actor, although any update applied
to the message contents by the resumer is made visible. Consequently, the same trail
can be thrown again by the same or a different source, rewinding it back along the path
from the source to the origin.

35

2.11.1 Semantics

Suppose 0tn denotes a trail from actor a0 to actor an, which is formally defined as an
ordered sequence of messages exchanged between each pair of actors between a0 and
an. Therefore, 0tn = (0m1, 1m2, ..., imi+1, ..., n−2mn−1, n−1mn) where imi+1 is a message
from actor ai to actor ai+1 (see Figure 2.2). Application logic interacts with message
trails by invoking any of the following operations:

• LINK(0ti, imi+1), invoked by actor ai, appends a new message imi+1 in transit
from ai to ai+1 to an existing trail 0ti.

• FORK(0ti, imi+1), invoked by actor ai, appends a new message imi+1 to a clone of
0ti and produces a new trail 0t′i+1.

• RAISE(0ti), invoked by actor ai, starts rewinding the trail back to its origin a0. ai
is marked as the source of the exception. In Figure 2.2, each exception is shown in
the form rxh, where r designates the actor throwing the exception and h is the next
receiver of the rewinding trail selected by the runtime.

• RERAISE(0ti), invoked by any actor ap between a0 and ai, continues rewinding
the trail.

• RESUME(0ti), invoked by any actor aq between a0 and ai, stops a rewinding trail
and forwards it to the exception source ai that originally raised the exception.

a0 a1 a2 an-2 an-1 an
0m1

1m2

1x0

2m3 n-3mn-2 n-2mn-1

n-2xn-3

n-1mn

2x1

3x2

nxn-1

n-1xn-2

Figure 2.2: A message trail from actor a0 to actor an. The forwarded trail is shown in
green as each message is linked to it, while the rewind path is shown in red.

36

2.11.2 Implementation

LINK and FORK are both implemented by the link operator (||). The operator ac-
cepts a function that specifies if the trail should be cloned and applies updates to the
message contents. RAISE and RERAISE are invoked simply by throwing the trail
as an exception. If an actor ignores a rewinding trail, the action is implicitly treated
as a RERAISE. Since the dispatcher executes all active behaviors in a guarded block,
the raised exception is eventually caught by the runtime, which extracts the path
information before commencing a rewind. Finally, RESUME is implemented by re-
sumeTrail<message_type>(trail) and resumeTrailWith<message_type>(trail, update), both of
which return the trail to the source with the latter applying an update to the contents.

Listing 2.14 depicts a generic handler for message trails placed in the receiver of a
named behavior. Assume each actor adopting this behavior is differentiated to execute a
particular operation on some trail (line 3). The case statements show how each operation
is carried out using the messaging API.

1 enum class operation_type { LINK, FORK, RAISE, RERAISE, RESUME };
2 void example_behavior::receive(message_t *message, actor_id_t

↪→ const& senderID) {
3 operation_type operation = state.operation;
4 MessageType updatedContents;
5 // extract and modify message contents, then store them into

↪→ updatedContents
6 ...
7 trail.any([this, trail] {
8 switch(operation) {
9 case LINK:

10 receiver || [&] {
11 return trail->link<MessageType>(updatedContents); };
12 break;
13 case FORK:
14 receiver || [&] {
15 return trail->fork<MessageType>(updatedContents); };
16 break;
17 case RAISE:
18 case RERAISE: throw trail;
19 case RESUME:
20 ctx.resumeTrailWith<MessageType>(trail, updatedContents);

37

21 break;
22 default: break;
23 }
24 }
25 }

Listing 2.14: A simplified handler for a message trail.

a0

a1

a2 a3

a4

0m1	(link)

3m4	(link)

1x0	(raise)

1m2	(fork) 1m3	(fork)

2x1	(raise) 3x1	(raise)

4x3	(raise)

Figure 2.3: Two distinct message trails with a shared history.

The next example presents a scenario with trails that share a common history, illus-
trated in Figure 2.3. Initially, a0 forwards a trail (0m1) to a1 that forks it into (0m1, 1m2)
and (0m1, 1m3). The trails are received by actors a2 and a3 respectively. Then, a3 links
a new message 3m4 to the second fork and produces (0m1, 1m3, 3m4), which is received

38

by a4. Suppose both a2 and a4 throw exceptions on the trails they received and none
of the intermediate actors between the sources and the origin attempts a resumption.
Rewinding (0m1, 1m2) first sends it back from a2 to a1 (caused by the exception 2x1) and
eventually to the root actor a0 because of 1x0. The other trail (0m1, 1m3, 3m4) is first re-
sent to a3 because of exception 4x3, then to a1 due to 3x1. Finally it bubbles up to a0 on
account of 1x0. Observe that in both cases, the rewind path is the exact opposite of the
path taken from the origin to the source. Hence, trails with a shared history (bold green)
also share the rewind path (bold red) to the same extent.

The rationale for this behavior is to prioritize potential exception handlers in de-
scending order of proximity. In case an actor encounters an error condition owing to
the contents of a message, the immediate sender of that message is regarded as the
most qualified candidate for applying a correction. Should it fail, this sender must
delegate the handling of this error to the previous sender of the message (if present)
and so on. Although it is possible to emulate a similar error response in application
logic, maintaining message history for each message between any arbitrary pair of ac-
tors quickly becomes a challenging task. The messaging API thus ameliorates error
handling in actor-driven applications by recording the message path and content his-
tory for all messages declared as trails. It can also be used as a debugging instrument to
identify causal relationship in a sequence of events.

Trails are expensive to maintain because the space requirement for each trail grows
with its length. Therefore, the runtime does not track history for normal messages ex-
changed between actors. A message must explicitly be declared as a trail using the
beginTrail command to enable recording. The actor or external agent invoking the com-
mand becomes the origin of the trail.

2.12 User-space Blocking

The synchronous request-reply pattern allows a native actor to suspend execution
in user space without stalling the underlying kernel thread. The command behav-
ior_t::waitForReply(M, A) sends a message M of any type to actor A and waits until
a reply is received. The messaging layer emulates conditional blocking in the native
domain using a token-based approach, similar to unique request identifiers used in
the C++ Actor Framework [25]. Each synchronous message generates a unique token
which is registered in the actor’s context before the message is sent. While an actor is
awaiting a reply, it is removed from the ready queue even when it has a non-empty

39

primary mailbox. While the actor is in this state, sending any message other than the
expected reply only queues it in the mailbox but does not unblock the actor. The reply
is tagged by the runtime with the same token, which resumes the actor and is delivered
first even if other messages have arrived in the meantime.

2.13 The Message Dispatcher

A ready actor transitions to the executing state when the scheduler invokes its message
dispatcher. The dispatcher is responsible for forwarding the next message to the active
behavior. The algorithm used by the message dispatcher and behavior-specific handlers
appears next (Algorithm 1) as pseudocode. Assume M denotes a message just removed
from the mailbox. The handler H<T> is typed so that it automatically extracts contents
of type T from M. In contrast, H is a type-agnostic handler that is optional to specify in
the default behavior but required in named behaviors. H itself may invoke a chain of
handlers (see listings 2.9 and 2.10) if present and forward message M to it, which in turn
attempts to match and extract the typed contents. Mechanisms that implement yield,
priority assignment, behavior switch, trail operations and user-space blocking are not
shown here for simplicity.

40

Algorithm 1: SIMPLIFIED MESSAGE DISPATCHER

Function MessageDispatcher(a):
Input: An actor a in ready state

1 Q← a.context.mailbox
2 B← a.context.currentBehavior
3 while true do
4 M← Q.next()
5 // mailbox is empty
6 if ¬M then break
7 if B.isDefault then
8 if H<T>← B.exists<T>() then
9 P<T>← H<T>.predicate

10 // apply predicate from typed handler
11 if P<T> then
12 success← M.apply(P<T>)
13 if success then H<T>.forward(M)
14 else drop(M)
15 // no predicate found
16 else H<T>.forward(M)
17 else if H ← B.exists() then
18 P← H.predicate
19 // apply predicate from type-agnostic handler
20 if P then
21 success← M.apply(P)
22 if success then H.forward(M)
23 else drop(M)
24 // no predicate found
25 else H.forward(M)
26 // no handler is present
27 else drop(M)
28 else
29 // a named behavior is active
30 H ← B.receive
31 H.forward(M)

41

2.14 Usage Scenario: Counting Actor

This section presents a complete example [38, 61] illustrating the messaging semantics
introduced in the previous sections. In listing 2.15, two actors are created termed the
producer and the counter. One uses the default behavior (line 44) while the other employs
a named behavior (line 46). The producer issues a stream of increment messages to the
counter (line 57) that counts these messages, updating its internal state (line 26) each
time such a message is received. Finally, the producer interrogates the counter (line
58), which replies with the total number of messages (line 31) it has received from the
former. The output from the program is shown in listing 2.16.

1 #include "precompiled.hpp"
2 #include "actor.hpp"
3 using namespace rpp;
4 using namespace io;
5
6 // message types
7 struct Increment {};
8 struct QueryCounter {};
9 struct Trigger {};

10
11 // atom types
12 namespace atom {
13 DECLARE_ATOM_TYPE(Increment) increment;
14 DECLARE_ATOM_TYPE(QueryCounter) queryCounter;
15 DECLARE_ATOM_TYPE(Trigger) trigger;
16 };
17
18 // behavior type
19 class Counter : public behavior_t {
20 private:
21 uint32_t currentValue;
22 public:
23 Counter(context_t& ctx_) : behavior_t(ctx_), currentValue(0) {}
24 void receive(message_t *message, actor_id_t const& senderID)

↪→ override {
25 if (atom_t<True>::type<Increment>(message)) {
26 currentValue++;

42

27 scout << "increment " << currentValue << endl;
28 }
29 else if (atom_t<True>::type<QueryCounter>(message)) {
30 actor_t<native> producer = actor_t<native>::map(senderID);
31 producer | currentValue;
32 ctx.quit();
33 }
34 }
35 };
36
37 int main(int argc, char **argv) {
38 // initialize system with 2 clusters and allocate a worker thread

↪→ to each
39 auto& sys = GLOBAL(rpp::system_t);
40 sys.restart<uint32_t>(nullptr, 1, 1);
41 using CContext = typed_context_t<Counter>;
42
43 // spawn actor
44 actor_t<native> producer =

↪→ actor_t<native>::spawn<>(props_t::with<mailbox_type_t::DV>()
45 .at(location_t::generate<RoundRobin>::on(CLUSTER<0>{})));
46 actor_t<native> counter =

↪→ actor_t<native>::spawn<CContext>(props_t::with<mailbox_type_t::DV>()
47 .at(location_t::generate<RoundRobin>::on(CLUSTER<1>{})));
48 counter.sign(producer.getID());
49
50 uint32_t nMessages = 1000;
51 // define producer’s default behavior
52 producer.defaultBehavior()
53
54 // send increment messages to the counting actor
55 .on<Trigger>([&] {
56 return[&](context_t *ctx, ...) {
57 for (uint32_t i = 0; i < nMessages; i++) counter <<

↪→ atom::increment;
58 counter << atom::queryCounter;
59 };
60 })

43

61
62 // handle reply from counter
63 .on<uint32_t>([&] {
64 return[&](context_t *ctx, uint32_t currentValue, ...) {
65 scout << "current value = " << currentValue << endl;
66 ctx->quit();
67 };
68 });
69
70 // enable contexts for both actors
71 producer.enableContext().withDefault();
72 counter.enableContext<CContext>().withBehavior<Counter>();
73
74 // trigger producer
75 producer << atom::trigger;
76
77 // block top-level thread until all actors are done
78 sys.waitForAll();
79 }

Listing 2.15: Implementation of the producer and the counter.

1 increment 1
2 increment 2
3 increment 3
4 increment 4
5 increment 5
6 ...
7 increment 1000
8 current value = 1000

Listing 2.16: Output from the previous example.

44

Chapter 3

Scheduling

Concurrent applications scale by reducing complex tasks into simpler and independent
sub-tasks that may proceed at the same time, exploiting the parallel architecture of mul-
ticore hardware [7]. In the actor model, tasks are encapsulated as stateful or stateless ac-
tors, representing the minimum sequential unit of work that may execute concurrently
with other such units while relying only on message exchanges for synchronization. As-
signing each actor to a new executor thread lends a trivial solution to the problem of fair
scheduling, as the executors are preempted in kernel space. This approach, however,
leads to poor scalability. The over-decomposition of tasks in actor-driven applications
naturally leads to the creation of numerous short-lived actors [25], making it impractical
to map each actor to a separate executor. Actor frameworks solve this problem by em-
ploying a user-space scheduler that multiplexes all runnable actors to a pool of kernel
threads.

Scheduling requirements are known to vary widely across applications. For exam-
ple, an interactive user interface needs to stay responsive and thus benefits from fair
scheduling, while batch processing jobs exploit scheduling policies that try to maximize
the instruction throughput. Policies are often strongly influenced by characteristics of
the underlying hardware. To compensate for the declining growth of single core per-
formance [16], an ever increasing number of independent cores are packaged on the
same chip with several tiers of CPU caches to hide the access latency of main memory.
Cores on the same chip share [45] an interconnect for memory access that manifests as
a point of contention [29] when multiple threads attempt to write to the same region
of memory, which may also be exacerbated by false sharing [62]. In the NUMA archi-
tecture [30], several nodes with separate memory controllers are linked together with
interconnects. Processors on each chip have uniform access to local memory bank but

45

may transparently access remote locations (local to other processors) with varying la-
tencies. Building scalable actor applications for a NUMA machine requires scheduling
policies that are aware of the memory hierarchy [12, 27, 70]. Such policies must consider
the memory footprint and messaging patterns of an actor to decide its placement and
migration.

Designing a scheduler for an actor runtime that is provably competent under dif-
ferent types of workloads presents a unique set of challenges. Obtaining a multipro-
cessor schedule that minimizes the total time for execution (also known as makespan)
is NP-hard while offline [70]. An actor runtime, in contrast, must employ an online
solution that warrants an acceptable level of fairness, efficiency, load distribution and
resource utilization, thus requiring a delicate balancing act among conflicting require-
ments. Scheduling techniques used to enable task parallelism in dataflow programming
exhibit little in common with actor scheduling. Interactions among concurrent tasks
are deterministic because the model assumed here relies on a priori knowledge about
task dependencies. In contrast, an actor’s behavioral logic is non-deterministic [37] and
cannot be modeled by a directed acyclic graph (DAG) [23] because actors respond to
messages arriving out of order and without reliable delivery. Moreover, minimizing the
makespan is the primary objective in task parallelism. During batch processing, one
may ignore the concept of fairness as long as one or more tasks are making progress
and resource utilization is optimal. The same approach may not be viable for all classes
of actors, especially those involved in I/O. Response latency of I/O-bound actors is
sensitive to the degree of fairness in their scheduling, where policy-driven starvation is
known to contribute to worsening tail latencies [12].

An actor’s performance can also be swayed by its type and memory access patterns,
i.e., location of the actor’s state relative to the code in its executing behavior. On a
system equipped with multiple NUMA nodes, migrating an actor away from the node
where its state is allocated adversely affects its performance if the actor makes frequent
remote accesses to its own state. Other hardware aspects linked to performance deteri-
oration include multiple hops between NUMA nodes as well as memory striping, i.e.,
having an actor’s state scattered across several NUMA nodes. In addition, since inter-
actor dependencies and dynamic messaging frequencies are opaque to the runtime the
scheduler may be prone to misplacing tightly coupled actors on different cores, which
worsens message latency due to the communication overhead among processors.

46

3.1 Actor Clusters

The runtime defines a cluster as a logical scheduling domain that owns a configurable
set of virtual processors. Each virtual processor is modeled by pinning a separate kernel
thread to a physical processor and assigning it a ready queue. For systems employing
symmetric multiprocessing, the number of physical processors is equal to S × C × N,
where S is the number of sockets on the motherboard (or NUMA nodes), C is the num-
ber of cores per die and N designates the degree of simultaneous multithreading (SMT).
A superscalar processing unit with N-way SMT can concurrently run N threads by ex-
ecuting N instructions per cycle, one from each thread. The total number of virtual
processors in any cluster should be set equal to or less than the number of physical
processors assigned to that cluster to prevent CPU oversubscription. Unless otherwise
specified, the unqualified term "processor" implies a virtual processor in the following
sections.

A virtual processor is said to be in active state if it has a non-empty ready queue,
otherwise it is designated as idle. Idle processors are responsible for activities related
to load balancing and polling for I/O events, while active processors execute actor dis-
patchers. Load balancing within the same cluster relies on spontaneous work-stealing
carried out by idle processors, while migration across cluster requires an explicit com-
mand, actor_t<domain>::migrate(cluster_id). Inter-cluster migration takes place once the
actor assumes an idle state and remains in effect until the actor is returned to its origin.
An actor may spawn another actor on a cluster different from its own. Moreover, there
is no restriction on exchanging messages across clusters. The runtime may be config-
ured to have multiple clusters, each with an independent scheduler and a set of virtual
processors backed by a pool of kernel threads.

3.2 Dispatchers

Elements of a ready queue carry references to actors in the ready state and mandate a
single invocation of the respective actor’s message dispatcher during each cycle. Actors
in the blocked state do not appear on any ready queue. The execution schedule S(CT, P)
for a cluster C establishes a mapping between T runnable actors and P virtual processors
owned by that cluster. At any time, a processor may have at most one actor in the
running state. Actors that are mapped to the same processor belong to the same ready
queue and therefore run sequentially relative to each other. However, two actors from
different ready queues may execute in parallel.

47

The term dispatcher may refer to either of the following entities. An actor dispatcher
owns a ready queue from which the next actor is selected for execution. Then the actor
dispatcher decides if the same actor should be rescheduled by examining its state. The
runtime adheres to a decentralized approach and creates an actor dispatcher for each
virtual processor at startup. A message dispatcher (see Section 2.13 for details) is respon-
sible for removing the next message from the mailbox and applying behavior-specific
logic on the message contents. Each actor has its own message dispatcher, which is
invoked when an actor dispatcher selects the next actor from its ready queue for execu-
tion. The message dispatcher is allowed to dispatch a maximum number of messages,
known as the dispatch size. Next, the message dispatcher returns the number of mes-
sages it actually dispatched (subject to the dispatch size and message availability) to the
actor dispatcher, which is used by the latter to infer the execution state of an actor.

The actor dispatcher for a virtual processor encapsulates uniprocessor scheduling
logic that complies with the following requirements:

• No actor may be scheduled to run on multiple virtual processors at the same time.
The actor model mandates that each message be received sequentially by the actor.
If a cluster is allocated multiple physical processors, an actor from that cluster
scheduled on multiple virtual processors may lead to the same actor processing
messages in parallel, potentially introducing data races.

• Placement policies must allow closely related actors to be mapped to the same
processor to ameliorate performance degradation from communication overhead
among processors.

• Each message must eventually be delivered. In practice, messages may be lost or
indefinitely delayed when sent over the network or dropped by the runtime on
account of insufficient memory. Therefore, the delivery requirement is amended
as a promise that the scheduler may not indefinitely starve a ready actor which
has pending messages.

48

3.3 State Transition

Initially an actor is placed in a disabled state after creation for reasons explained in Sec-
tion 2.4. No message reaches the mailbox until the actor’s context is explicitly enabled
by the spawner. When an idle actor transitions to the ready state by means of receiving
a message, a reference to the actor’s context is placed on some ready queue. This event
is known as a scheduler activation. The sender of the message, which may be another
actor or an external agent, synchronously pushes the message to the receiving actor’s
mailbox and activates the scheduler if it detects that the receiver is in a blocked state.
Criteria for actor placement are discussed in detail in Section 3.7. Sending message to a
ready actor only delivers the message contents to its mailbox but otherwise has no effect
on its execution state. When the last message from the mailbox is processed, the actor
is stalled and its reference is dropped from the ready queue. If the message dispatcher
returns control to the actor dispatcher while the mailbox still has outstanding messages,
the same actor is rescheduled. A ready-queue reference, similar to a handle (see Section
2.4), increments the reference count for an actor. Recall that actors that are not part of
any ready queue are blocked, while actors without any handles are unreachable from
all scopes. An actor that has no ready-queue reference and no handle is blocked and un-
reachable. When these two conditions are met, the reference count for that actor drops
to zero and its destructor is executed. However, as C++ is a native language, reference
counting by the runtime does not safeguard against memory leaks introduced by ap-
plication logic. Figure 3.1 illustrates all possible execution states of an actor and events
leading to transitions between these states.

DISABLED BLOCKED

READYRUNNING

enable context

message arrives
in empty mailbox

(scheduler activation)

waiting in some ready queue
(new message arrivals have

no effect on state)

message dispatcher loops
(new message arrivals have

no effect on state)

incoming messages
are discarded

absent from
all ready queues

message dispatcher yields
with non-empty mailbox

message
dispatcher yields

with empty mailbox

worker invocation

Figure 3.1: An actor’s transition between states in response to events.

49

3.4 Priority Assignment

The dispatch size can be independently configured for each actor and has several uses.
It weakly designates an actor’s relative priority in cooperative scheduling. A higher
dispatch size implies more CPU time if message complexity remains uniform. Suppose
two actors a1 and a2 are assigned dispatch sizes d1 and d2 where d1 = 2× d2. If each
actor has an indefinite supply of messages and executes on the same processor, then
a1 is given twice as much CPU time as a2. The dispatch size may also be used to ad-
just granularity and improve fairness. Since actors are not allowed to be preempted,
the minimum work the message dispatcher must accomplish before returning to the
actor dispatcher is consuming a single message. As the scheduling requirements differ
extensively across applications, it is left to the application logic to adjust the dispatch
size on a per-actor basis. By default, the dispatch size for each actor is unrestricted
which is suitable for compute workloads. An unrestricted dispatch size maximizes the
instruction throughput by minimizing context switches among actors. The enhanced
throughput comes at the expense of reduced fairness. If message complexity does not
vary widely, setting the dispatch size to 1 for all actors guarantees equal CPU time at the
highest granularity (one message per dispatch) and may improve latency distribution
for I/O-bound actors.

3.5 Load Distribution

Load distribution schemes used by user-space schedulers can be classified into two cat-
egories: work-sharing and work-stealing. Other approaches include statistical assess-
ment of load disparity and applying rebalancing countermeasures that form a hierarchy
[72]. A work-sharing scheduler distributes work by creating a centralized ready queue
[70] accessible to all processors. Tasks arrive at the back and removed from the front by
workers for execution, creating multiple points of contention and thus limiting scalabil-
ity. Randomized work-pushing [56] uses one ready queue per processor and allows a
busy processor to proactively reduce excess load. Once a threshold is crossed, the busy
processor randomly selects a peer and pushes the extra tasks to its ready queue. Despite
ensuring a fair distribution of work, this strategy becomes unstable under stress. If all
processors are overwhelmed at the same time, they continuously attempt to push their
excess load on each other, failing repeatedly and degrading performance.

50

Randomized work-stealing (RWS) [15, 47] is a distributed load balancing algorithm
particularly well-suited for message-driven applications [66] and adopted by several
existing frameworks, namely Erlang [8, 63], Akka[6, 46], Cilk [14], Intel’s TBB [50],
OpenMP [48], the Pony language [26] and CAF [22, 23]. Being a decentralized approach,
RWS does not suffer from scalability issues prevalent in work-sharing schedulers with
a centralized dispatch. Each processor is given its own ready queue from which it ex-
ecutes tasks. An empty ready queue turns the owning processor into a thief, which
randomly selects a victim processor and attempts to steal tasks from the victim’s ready
queue. Scheduling overhead in RWS arises from lock contention generated by thieves
searching for victims. However, RWS performs well under heavy workloads as no theft
takes place when all processors are busy. A variant of work-stealing [67] assigns two
queues per processor for the purpose of classification, preventing theft of certain tasks.
Tasks with large memory footprints are added to a dedicated queue private to each
processor, while the rest are added to its shared ready queue from which they may be
stolen.

The expected time for executing a fully strict multithreaded computation C on P
processors by the randomized work-stealing algorithm is T1/P + O(T∞) where T1 is
the minimum time required if C is executed sequentially and T∞ is the minimum time
for completion with infinite processors [15]. The upper bound of the space requirement
is S1 × P, where S1 is the minimum space required by C during sequential execution.

The following section outlines the behavior of a simple work-stealing scheduler [15]
adapted to the actor runtime. References to ready actors are arranged in a ready deque
that allows insertion at the back and removal at both ends. Suppose the ready deque
Q is owned by processor P, which is currently executing the message dispatcher in the
context of actor X. The actor’s behavioral logic may lead to one of the following out-
comes:

1. X spawns a new actor Y. A newly spawned actor has an empty mailbox so it is not
immediately placed on any ready deque.

2. X unblocks another actor Z by sending it a message. A reference to Z is inserted
at the front of the same deque Q where the sender resides.

3. X blocks either by removing the last message from its mailbox or explicitly re-
questing for a reply from a specific actor. P chooses the next actor from the front
of Q. The same rule applies if X is terminated.

51

4. If Q is empty, P becomes a thief and randomly selects another processor P’ with
ready deque Q’ as victim. If Q’ is also empty, P repeats the attempt. Otherwise,
the actor at the back of Q’ is stolen by P.

Each processor treats its own ready deque as a stack and those owned by others as
queues. Such an arrangement is particularly well-suited for divide-and-conquer algo-
rithm, where an actor tends to reduce a complex problem into smaller tasks and dele-
gates them to new actors to be carried out asynchronously. By selecting actors from the
front, processors prioritize simpler tasks and improve the turnaround time. Actors at
the back of the queue are likely to run complex behavioral logic and may keep a thief
busy for a while, lowering lock contention caused by unsuccessful thefts.

3.6 Implementation of RWS in React++

To mitigate lock contention amongst scheduling entities and actor dispatchers in the
presence of thieves, the runtime combines class-based scheduling [67] with passive
load-sharing. It implements each ready queue as a pair of queues with different roles.
A queue has a local role if accessing that queue requires zero synchronization effort (i.e.,
no locks and/or atomic primitives). A queue in this role is visible only to the actor dis-
patcher that owns it. The other queue is assigned the role of orchestration where new
arrivals are first staged. Enqueue and dequeue operations on this queue require acqui-
sition of the same lock. Both queues, hereby designated as the Local Queue (LQ) and the
Orchestration Queue (OQ) use the same underlying doubly-linked list. The only differ-
ence lies in their access semantics and the runtime allows their roles to be reversed. All
actors scheduled on a processor arrive on its OQ, while the actual execution is carried
out by traversing its LQ.

At the beginning of each cycle, the actor dispatcher swaps the roles of the LQ and
the OQ (line 3 from Algorithm 2). The current LQ becomes the next OQ and vice versa.
Swapping roles is a trivial constant-time operation that involves acquiring a lock on the
current OQ and exchanging the queue headers (line 17 from Algorithm 3). Once the OQ
becomes the LQ, the actor dispatcher may freely traverse it using an iterator without any
lock and execute each actor in FIFO order. Since the dispatcher uses an iterator on the
LQ, execution and rescheduling does not involve any enqueue or dequeue operation.
If an actor is blocked, the corresponding reference is simply dropped before moving
on to the next actor. When the iterator reaches the last actor in the LQ, it restarts the
cycle by reversing the roles again to prevent starvation of the actors that have arrived

52

meanwhile in the OQ. The current OQ becomes the new LQ and actors that are staged
here are pulled in for the dispatcher to execute. At the same time the ready actors in the
current LQ are released to the new OQ where they wait until the next cycle.

Algorithm 2: A SIMPLIFIED ACTOR DISPATCHER

Function ActorDispatcher(p):
Input: A virtual processor p

1 while true do
2 initialLQState← p.LQ.IsEmpty()
3 success← SwapRoles(p.LQ, p.OQ)
4 if p.LQ.IsEmpty() then
5 execute idle policy for p
6 success← SwapRoles(p.LQ, p.OQ)
7 if ¬p.LQ.IsEmpty() then
8 if ¬initialLQState ∧ success then
9 raise a sleeping processor if any

10 Traverse(p.LQ)
11 else
12 if nProcessors > 1 then
13 while maximum theft attempts is not reached do
14 v← SelectVictim()
15 SwapRoles(p.LQ, v.OQ)
16 if p.LQ.GetSize() > 0 then
17 break // theft successful
18 else execute idle policy for p

19 if ¬p.LQ.IsEmpty() then Traverse(p.LQ)
20 else Block(p) // block in kernel space
21

22 else Block(p)

Since each processor’s LQ is private, actors in the LQ cannot be stolen until the queue
roles are reversed. A theft involves stealing an entire queue of ready actors from another
processor by swapping the victim’s OQ with the thief’s empty LQ. These stolen actors
are eventually swapped out to the thief’s own OQ if the thief has received legitimate
work in its OQ during its execution of the stolen actors. A stolen actor may eventually
return to the original processor if the placement criteria for that actor specify a pro-

53

Algorithm 3: SWAPPING ROLES BETWEEN QUEUES

Function SwapRoles(LQ, OQ):
Input: Two queues with different roles. These queues may be

owned by the same or different processors.
Output: A flag indicating whether the new OQ is non-empty.

1

2 if LQ.IsEmpty() ∧OQ.IsEmpty() then return false // no work
3

4 if LQ.IsEmpty() ∧ ¬OQ.IsEmpty() then
5 if OQ.GetSize() > 2 then
6 Balance(LQ, OQ) // pull in half of the work
7 return true
8 Swap(LQ.header, OQ.header) // claim single actor
9 return false

10

11 if ¬LQ.IsEmpty() ∧OQ.IsEmpty() then
12 if LQ.GetSize() > 2 then
13 Balance(LQ, OQ) // push half of the work to OQ
14 return true
15 return false // keep single actor
16

17 Swap(LQ.header, OQ.header) // prevent starvation
18 return true

cessor affinity. However, this homecoming requires a scheduler activation. The actor
needs to block and at the next scheduler activation it is placed in the OQ of its preferred
processor.

The above scheme prohibits active load-shedding because a processor that has actors
to execute never wastes CPU cycles trying to push extra load on another processor’s OQ.
Rather, the overloaded processor releases them on its own OQ enabling a potential thief
to steal all of them at once. Under heavy workload, lock contention is virtually non-
existent between the actor dispatcher and staging/stealing logic because the dispatcher
needs the lock only during the role-swapping and balancing operations. Swapping
frequency is inversely proportional to the sum of LQ and OQ which grows indefinitely
as more actors arrive in the OQ. Balancing LQ/OQ (push/pull), which is a relatively

54

P

P

P

P

T1 T2 T3 T4

T3 T4T2 T1

T4

T3

PT5 T2 T1 T4

BALANCE	(PULL)

P T3 T4T2 T1

P T3 T4T2 T11

2

3

4

5

6

7
EXECUTE

SWAP	ROLE

PT5 T2 T1 T48

READY RUNNING DROPPED LOCAL	ROLE ORCHETRATION	ROLE

EXECUTE

EXECUTE

PLACE

DROP

T5 T2 T1

OQLQ

LQ OQ

LQ OQ

LQ

OQ

LQ

LQ

LQ

OQ

OQ

OQ

LQ

OQ

SWAP	ROLE

Figure 3.2: Uniprocessor scheduling by the actor dispatcher.

expensive linear operation, only takes place when either queue is empty, which is a rare
event if the cluster has enough actors. Table 3.1 lists the conditions triggering the swap
and balance operations.

Figure 3.2 illustrates a typical workflow for an actor dispatcher with various queue
states during the balance and swap operations as actor references are placed in the OQ,
executed in the LQ and eventually dropped. Initially, both LQ and OQ are empty and
processor P is idle (stage 1). Assume actors T1-T4 have arrived in the OQ when the first
cycle in the actor dispatcher begins on P. OQ is split and T1 and T2 are pulled into LQ
(stages 2-3). P executes T1 and T2 and neither of them are blocked so they remain in
LQ. Next the roles are reversed so the new LQ has T3 and T4, while both T1 and T2 are
ejected into the new OQ in constant time (stage 5). Following the execution of T3 and T4
on P, T3 is dropped because the actor has blocked (stage 6). The LQ has a solitary actor
T4 before the swap happens again in stage 7. The new LQ now has T1, T2 and T5 (a new
arrival placed in OQ in stage 6 before the swap) which are executed in that order while
T4 waits in the new OQ (stage 8). Observe that although the queues are unequal in size,
no balancing operation takes place until at least one queue is empty.

55

Table 3.1: Swap and Balance Triggers

Condition Action

The LQ and the
OQ are both
empty.

No work for this processor. Section 4.4 elaborates on
the default policy assigned to execute when a
processor goes idle.

The LQ is
empty and the
OQ has a single
actor.

Swap roles. The LQ now has a single actor and the
OQ is empty.

The OQ is
empty and the
LQ has a single
actor.

No need to swap roles and release the solitary actor
to the OQ. Instead the actor in the LQ should
immediately be resumed.

The LQ is
empty and the
OQ has at least
two actors.

If a direct swap occurs here, the current processor
will execute both of these actors. It is possible that
there may be a spare processor in the same cluster
that can steal one of these actors. Therefore, only half
of the actors are pulled into the LQ (a linear
operation). Afterwards, this processor actively
signals an idle processor (if any) to become a thief.

The OQ is
empty and the
LQ has at least
two actors.

Similar to the previous case, it may be possible to
share work with another processor. Half of the actors
in the LQ are pushed out to the OQ, followed by the
victim signaling a thief.

The second example (Figure 3.3) depicts load balancing involving two processors P1
and P2. In stage 1, P1 has 4 actors T1-T4 in LQ(P1), which it has just executed in the
previous cycle. Despite having operations like pull, such an imbalanced state can be
reached where the LQ of a processor has more than two actors and OQ is empty. This
is an effect of queue theft, which becomes evident shortly. First P1 pushes half of the
work (T1 and T2) out to OQ(P1) and signals idle processor P2 (stage 2). Then P1 is free
to execute T3 and T4 without contending for any lock while P2 steals P1’s extra load in
OQ(P1) by swapping it with its own empty local queue LQ(P2) in stage 3. A successful

56

P2

P1T4 T3 T2 T1 P1 T1 T2T4 T3

P2

P1 T1 T2T4 T3

P2

LQ (P1) OQ (P1)

LQ (P2) OQ (P2) LQ (P2) OQ (P2)

LQ (P1) OQ (P1)

LQ (P1)

OQ (P2)

LQ (P2)

OQ (P1)

P1T4

T3

P2
OQ (P2) LQ (P2)

LQ (P1) OQ (P1)

T2
T1

EXECUTE

EXECUTEQUEUE	THEFT

BALANCE	(PUSH)

SIGNAL

IDLE

VICTIM

THIEF

EXECUTE

1 2

3 4

DROP

P1

P2
OQ (P2) LQ (P2)

LQ (P1) OQ (P1)

5

T5T6T7T8

BALANCE	(PULL)

P1

T8 T7 P2

OQ (P1)

LQ (P2)

OQ (P2)

LQ (P1)

QUEUE	THEFT

THIEF

VICTIM

6

T5 T6

EXECUTE

PROWLING

DROP

T5

T6
T7

T8
NEW	ARRIVALS

Figure 3.3: Using role reversal between LQ/OQ to allow multiple thefts in a single
attempt.

theft is just a role-reversal involving LQ and OQ from different processors and happens
in constant time. In stage 4, P1 executes and drops T3 and T4 because these actors have

57

blocked. Meanwhile, the original thief P2 receives a large workload (T5-T8) in OQ(P2)
while executing T1 and T2, which P2 subsequently drops. In stage 5, both LQ(P1) and
OQ(P1) are empty and P1 is actively searching for victims, so no signal is required from
P2 as it balances its queues by pulling T5 and T6 into LQ(P2) while leaving T7 and T8 in
OQ(P2). In stage 6, the original victim P1 steals T7 and T8 from P2 by exchanging OQ(P2)
and LQ(P1).

3.7 Actor Placement

React++ is agnostic to an actor’s behavioral logic. Therefore, the designation of report-
ing relationship among actors is left to the application logic to decide. Unlike Akka,
there is no inherent spawn hierarchy present in the runtime and an actor may be termi-
nated without affecting any of its children. Furthermore, the programmer is given full
control over actor placement. Spawn properties of an actor allow application logic to
specify an abstract staging location L(C, P) for that actor parameterized by cluster C and
virtual processor P. If the location is valid, the runtime assigns the virtual processor P
within cluster C as the preferred location of the newly spawned actor.

Recall from Section 2.4 that processor affinity may be specified as a spawn property
using the props_t class. Suppose cluster 0 is created with 4 virtual CPUs, namely C0/P0,
C0/P1, C0/P2 and C0/P3 and an actor is spawned with the following properties.

1 auto props = props_t::with<mailbox_type_t::DV>()
2 .at(location_t::map(true, CLUSTER<0>{}, CPU<2>{}));
3 actor_t<> actor = actor_t<>::spawn<typed_context_t<BehaviorTypes...

↪→ >>(props);

Setting the processor affinity guarantees the initial and subsequent placements of
this actor at the ready queue (more specifically, the OQ) of C0/P2. If no specific location
is given or the supplied location is invalid, then the location is assumed to be random.
This configuration spawns the actor on a random cluster and schedules it at a random
processor within the same cluster each time. Alternatively, if the first parameter to loca-
tion_t::map is set to true, a processor is selected at random and set as the actor’s preferred
location for all subsequent placements. Note that these affinity-guided placements do
not guarantee the actual location where an actor is executed each time because of work-
stealing. A thief does not respect any actor’s preference for a certain processor.

58

Actors that frequently communicate with each other should be spawned at the same
location for improving communication locality. If a pair of such actors run on differ-
ent processors, a large volume of inter-processor traffic is exchanged between them,
inexorably leading to severe performance degradation. However, a messaging pattern
between actors may dynamically evolve over the lifetime of an application, compro-
mising the viability of having spawn locations statically assigned at compile time. As
a workaround, the scheduler allows enabling a policy that causes a sender to automat-
ically pull the receiver to its location. Under this policy, the processor affinity of the
receiver is overridden by the location of the current sender if the receiver is unblocked
by the delivered message. Suppose the receiver R first processes a stream of n1 mes-
sages from sender S1 running on processor P1, blocks on an empty mailbox and later
processes n2 messages from sender S2 running on processor P2. If the policy is enabled,
the first message from S1 pulls R to P1 where it is likely to process n1 messages. The
first message from S2 again pulls R to P2 where n2 messages sent by S2 are likely to
be processed. Since the above policy relies on processor affinity, it only guarantees the
staging location but not the place of execution.

59

Chapter 4

The I/O Subsystem

I/O-bound applications that implement a request-reply pattern, such as a web server,
often require server-side management of stateful sessions to identify the context of a re-
quest. To conceal service latency arising from asynchronous network I/O, the runtime
must efficiently and transparently perform context switches between sessions in user
space based on system-level I/O events. Existing programming models in this domain
are broadly classified into two categories: event-driven programming and multithread-
ing, each having their advantages and shortcomings. The first model drives an event
loop per system thread, raising event handlers in response to I/O events reported by OS
facilities. Defining session-aware I/O event handlers is left to the application. Control
flow in such an application tends to become opaque [64] with the growth of complexity
in handling logic such as the introduction of nested callbacks. This approach is further
exacerbated by synchronization requirements as the application creates multiple con-
current event loops to exploit multicore hardware. The second model, multithreading,
addresses this problem by assigning a thread to each session, using the thread’s stack for
the purpose of state capture. With a one-to-one mapping between session and thread,
context switches between sessions can be transparently carried out by the runtime’s
scheduler. If a system thread is assigned per session, all context switches occur in ker-
nel space whenever blocking I/O operations are attempted. Consequently, giving each
session its own system thread becomes unsustainable [49] as the number of sessions
grows. Fibers may be used as an alternative because context switches in user space are
inherently faster, requiring fewer instructions than their in-kernel counterparts.

60

An M:N fiber runtime transparently multiplexes M fibers to N kernel threads where
M � N. Furthermore, the runtime is expected to provide support for performing I/O
operations that can be suspended and resumed in user space, ideally mirroring the
same I/O interface available to system threads. This chapter presents a discourse on
the requirements a user-space runtime must satisfy to allow resumable I/O, as well as
a reference implementation of an I/O subsystem as part of the React++ runtime. The
solution shares some traits with I/O multiplexing schemes encountered in existing fiber
runtimes. Recall that each actor can be programmed to encapsulate state as part of its
behavior. But unlike fibers, actors do not use stacks for capturing state. I/O in the actor
context is therefore structurally more similar to event-driven programming. However,
transitions between an actor’s states are guided by well-defined behaviors rather than
callbacks, hence using actor-driven I/O lends an opportunity to evade the inherent ob-
scurity afflicting non-trivial event-driven applications.

4.1 Related Work

Earlier investigations on I/O multiplexing in user space include the Staged Event-
Driven Architecture (SEDA) [69] and the Capriccio [65] fiber runtime. SEDA attempts to
reduce the complexity of event-driven applications by introducing a pipeline-oriented
server architecture with support for dynamic resource control. The Capriccio run-
time implements space-efficient non-contiguous stacks and resource-aware scheduling.
Contemporary actor runtimes are largely event-driven in nature but share many sim-
ilarities with user-space threading libraries. To facilitate event-driven I/O, an actor
runtime implements one or more event loops running on dedicated or shared threads.
Although actors are typically run by a pool of executor threads managed by a user-
space scheduler, in some cases the executors may be replaced by fibers. Proto.Actor [52]
is an example of this hybrid approach that executes actors on fibers managed by the Go
[31] runtime. The Go scheduler runs these fibers (termed goroutines) using a dynamic
pool of system threads and allows the creation of bidirectional channels between them.
Channels have support for blocking I/O semantics and act as a means for inter-fiber
communication and synchronization. The Go scheduler is invoked on well-defined
user-space events, such as creation of new goroutines, garbage collection, system calls
and blocking operations involving synchronization primitives. A goroutine attempt-
ing network I/O via system call is intercepted by the scheduler and transparently
remapped to the network poller, a runtime artifact running an event loop in a dedicated
kernel thread. As the network poller begins the asynchronous I/O operation, the sched-

61

uler resumes the next goroutine from the local run queue. The suspended goroutine is
reinserted into the same queue once the network poller successfully carries out the I/O
operation.

The C++ Actor Framework introduces a special type of event-based actor (termed
broker) [20] for multiplexing socket I/O. However, these special actors are executed on
a thread borrowed from the I/O middleman and as a result the CAF runtime mandates
that all message handlers in a broker’s behavior be trivial. Consequently, these actors
have to delegate most of their compute-bound workloads to other actors. In Akka [6],
sockets for each transport-layer protocol (TCP/UDP) require creation of a special actor
called the manager that serves as a global entry point into the I/O subsystem. Managers
spawn worker actors in response to I/O command messages, after which the worker
actors announce themselves by notifying the original senders. All I/O operations are
carried out by interacting with these workers. A worker actor may also raise events,
in which case it requires a listening actor. If the listener quits, all corresponding work-
ers automatically release their resources. TCP connections in Akka are represented by
channel actors. These leaf-level actors are created and supervised by mid-level selector
actors that receive their assignments from the top-level manager, which is responsible
for distributing new channels across selectors. Channel actors opt to receive notifica-
tions on the I/O readiness of their respective channels by sending registration requests
to their supervising selectors. A selector manages and interrogates an interest set by per-
forming the select operation, while the channel actors perform the actual I/O on ready
channels.

Libfibre [42] is a threading library that uses hierarchical event polling provided by
OS-level I/O notification facilities and presents a user-space blocking interface to enable
interaction between application logic and the runtime’s I/O subsystem. Several of the
concepts introduced by libfibre have been adapted to the actor context by the React++
runtime. In libfibre, polling for I/O events is carried out by a background fiber (denoted
as a poller fred) that interrogates a set of descriptors using non-blocking system interface
to determine the I/O readiness. Any I/O operation that blocks a fiber in user space
is restarted after receiving a signal from the poller fred, delivered using semaphores.
By default, the libfibre runtime resorts to polling whenever a kernel thread assumes an
idle state. It also allows the creation of multiple poller freds per cluster, splitting the
interest set into mutually disjoint subsets and assigning each poller fred to a different
subset. Furthermore, libfibre introduces the concept of event scope that explores in-
kernel partitioning of the file descriptor table, which is shown to favor workloads that
consist of servicing large volumes of short-lived connections.

62

4.2 Event Notification

The I/O readiness of a set of file descriptors can be queried using various event noti-
fication facilities implemented by operating systems. The I/O subsystem of React++
uses a Linux-specific variant, epoll, that allows monitoring a large set of descriptors
efficiently. The system call epoll_wait supports two triggering modes: deliver a sin-
gle notification per event (edge-triggered) or generate repeated notifications until I/O
readiness has changed (level-triggered). In the event-driven architecture, a synchronous
event loop, switching between querying an interest set and invoking I/O handlers for
ready descriptors, may employ level-triggered event polling without generating exces-
sive spurious notifications for the same event. The same model can be extended to
actors if the event loop and the set of event handlers are placed in different behaviors
of the same actor, which assumes these behaviors in turn and as a result polling activity
occurs synchronously with the execution of event handlers. In contrast, if the behaviors
are assumed by different actors, which may potentially run in parallel, level-triggered
event polling rapidly degrades performance because the asynchronous polling actor
generates a large volume of spurious event notifications, eventually flooding the mail-
box of the actor in charge of running the corresponding event handlers. Consequently,
the I/O subsystem should eschew repeated notifications in favor of the edge-triggered
mode when the I/O readiness of a descriptor changes.

Unlike its level-triggered counterpart, edge-triggered event polling suffers from a
common pitfall because exactly one notification is delivered per event. Event han-
dlers should therefore be designed based on the principle that successive invocations
of epoll_wait on a file descriptor do not generate a new notification if the I/O readiness
of the descriptor has not changed in the meantime. Event handlers that use synchronous
level-triggered epoll may rely on spurious notifications and could inadvertently lead to
starvation or deadlock if they were switched to the edge-triggered mode. Consider a lis-
tening TCP socket that has two pending connections that have arrived simultaneously
and are now waiting in the backlog to be accepted. The event handler for this socket
is programmed to accept and process a single connection before returning control to
the polling loop. While it works as expected with level-triggered notifications, the sec-
ond connection is starved if the edge-triggered mode is used with the same handler
because only one notification is delivered for both of the connections. Eventually the
second connection may get serviced if a third connection arrives, as this arrival may be
treated as a new event. However, the number of connections waiting in the backlog
keeps growing over time. Deadlock ensues as soon as the backlog reaches its maximum
capacity. The event handler waits for a notification from epoll that never arrives because

63

new connections cannot be placed in a full backlog. No new notification is delivered for
the pending connections either, because I/O readiness of the listening socket has not
changed since the last time the handler has been notified.

The simplest event loop involves querying an interest set for I/O readiness, obtain-
ing a list of events, and calling the associated event handlers to carry out I/O oper-
ations on their respective file descriptors. Typical event-driven applications run this
loop synchronously in a kernel thread which blocks during the query if no events are to
be reported. To exploit hardware parallelism, an application may create several kernel
threads along with disjoint sets of file descriptors. This allows running an independent
event loop in each thread that interrogates only its own interest set. A static load bal-
ancer associates each descriptor with a thread when registering it in the corresponding
interest set. This type of distribution tends to be persistent and inflexible, leaving no
opportunity for dynamic load balancing as all events originating at a specific descriptor
are processed by the initially assigned thread until the descriptor is dropped from its
interest set.

Execution of an event loop in the behavior of an actor presents two challenges. First,
actors are not allowed to make blocking system calls because doing so stalls the under-
lying kernel thread from the scheduler’s thread pool, effectively suspending all other
actors sharing the same ready queue. Second, synchronous polling only allows event
handlers to be implemented as different behaviors of the same actor. If event han-
dlers are executed as independent actors separate from those responsible for polling,
the pollers may execute in parallel with the event-handlers and overwhelm them with
spurious notifications. A workaround is to allow polling only during the idle state i.e.,
when a ready queue is drained empty. This, however, leads to starvation under heavy
workload. To demonstrate this scenario, consider an actor-based server that has a sin-
gle worker thread with a ready queue. Currently there are n ready actors that are to be
executed until all of them block by leaving the ready queue. The actors are not allowed
to execute any blocking system call or infinite loop in their behaviors. Furthermore, any
actor may process at most one message before returning control to the scheduler. The
worker thread is configured to poll only if the ready queue is empty (i.e., all actors have
blocked) and therefore receives new I/O notifications from the kernel only if the system
is in idle state. Suppose an I/O event occurs while processing these actors in the ready
queue. It can be shown that even if n is finite and no new actors arrive at the ready
queue, it is possible for the runtime to never resume idle state and forever ignore the
pending I/O event. This happens when each ready actor simply yields to the scheduler
upon receiving a message. The yield operation does not change the ready state of an
actor and therefore is not allowed to consume the message that has been dispatched

64

to its active behavior. Rather, the message is saved for a re-dispatch and the scheduler
moves on to the next ready actor in the queue. Once the scheduler reaches the end of the
ready queue, the cycle begins again with the first yielding actor. Notice that the yield
operation is simply a runtime optimization of self-triggering and does not violate any
constraints enforced by the actor model. A yielding actor can trivially be substituted by
another actor that sends a message to itself upon receiving each message, with the first
message originating from an external source.

Although the previous example illustrates a scenario that is essentially an infinite
loop in the runtime, similar situations may arise even when actors consume messages
instead of yielding. Despite the number of actors being finite, each actor has a mailbox
with a capacity limited only by the size of the main memory. Therefore it is capable of
receiving any number of messages from any sender, which may be the actor itself, an-
other actor or an external agent. Since the capacity of a mailbox is unrestricted, the time
required to drain it (the required condition for blocking the actor) also grows without
bound as more incoming messages arrive. Even if the message complexity is known and
the dispatch size is adjusted to ensure fairness amongst actors, external agents (such as
the I/O event handler in the example, possibly a non-actor entity) remain susceptible
to starvation. If the I/O event handler is supposed to unblock an actor but cannot do so
because polling happens only during the idle state, the actor to be unblocked is also pas-
sively starved. Passive starvation occurs when a mechanism or policy prevents a blocked
actor from becoming ready while being unrelated to the actual conditions blocking that
actor, as opposed to active starvation that deprives ready actors of available processing
units. Such a phenomenon merits little attention in processing compute-bound work-
loads where fairness comes secondary to maximizing the throughput, which is not usu-
ally affected even with a growing queue of waiting actors. For this type of workload, no
CPU cycles are wasted as long as some actor is making progress. In contrast, I/O-bound
applications where actors are differentiated to carry out stages in a pipeline or involved
directly in network communication may suffer a detrimental effect on response latency
arising from a lack of fairness. For instance, if a web server running client sessions as
actors allows some form of starvation due to inadequate frequency of polling or context
switches, it would appear as unresponsive to many users.

65

4.3 The I/O Subsystem

The I/O subsystem in React++ relies on a hierarchical polling scheme to check the I/O
readiness of file descriptors, conforming to the behavioral requirements for actors by
executing non-blocking event polls in the actor context while delegating blocking polls
to a dedicated kernel thread. A set of runtime events are introduced, the handlers for
which are expressed as an extensible I/O policy supplied to the runtime during system
initialization. The default implementation of the policy establishes the polling infras-
tructure responsible for mapping native I/O events to the runtime events. This policy
is to be extended by application logic, which in turn maps the runtime events to any
number of actors of any type, thus designating them as the last-level event handlers.
Each runtime event has a cluster-wide scope, meaning that each actor cluster fires its
own independent set of events, which are expected to be handled by actors from the
same cluster. Actors attempting to respond to events from a different cluster may lead
to unpredictable behavior for reasons explained in Section 4.4. This is why automatic
migration of actors across clusters is not supported by the runtime. Explicit migration,
however, is still possible and caution is advised while defining policies that attempt to
migrate I/O actors to a cluster different from their places of origin.

4.3.1 Event Classification

An event generator, also known as a poller, is a runtime object that encapsulates an inter-
est set of file descriptors along with querying logic. It provides an interface to register
or remove descriptors from the interest set and bind runtime events to synchronous or
asynchronous event handlers. A synchronous event handler is a function or closure di-
rectly executed by the event generator when the associated event occurs. If the handler
is asynchronous, the event generator merely notifies it before moving on to the next
event and does not further concern itself with the execution of the handler. All events
are categorized according to their source, which is usually one of the two levels of event
generators employed by the I/O subsystem, henceforth denoted as L0 (level 0) and L1
(level 1) generators. There is exactly one L0 event generator per cluster (called the master
poller), while the number of L1 event generators (termed slave pollers) is configurable.
An event generator may or may not be given an internal thread of execution depending
on its level. Slave pollers monitor ordinary file descriptors for I/O readiness and must
borrow a thread from the scheduler’s thread pool to run. In contrast, the master poller
is given its own thread and observes the I/O readiness of the L0 interest set (see Figure
4.1). When one or more descriptors in this set becomes ready, the master poller raises

66

L0 events ({A, B, ...}) to which L0 event handlers respond. These handlers in turn raise
L1 events ({a1, a2, ..., an}, {b1, b2, ..., bm}, ...) by querying their respective L1 interest sets.
Both L0 and L1 event handlers can be defined as either synchronous or asynchronous.
The default I/O policy binds slave pollers as synchronous L0 event handlers while L1
events are left unbound. The policy can be augmented by application logic that may
override existing handlers with designated actors, allowing any L0 or L1 event to be
handled asynchronously in the actors’ behaviors.

The I/O subsystem relies on epoll for receiving I/O event notifications from the ker-
nel, feeding the L0 event generator. The polling facility allows each interest set to have
its own descriptor, henceforth denoted as a Set File Descriptor (SFD). This SFD can itself
be part of a different interest set, which makes it possible to construct multi-tier event
generators and handlers. Assume four ordinary file descriptors a, b, c and d are placed
in two L1 interest sets L1.S0 and L1.S1. The SFDs of these sets are x and y respectively,
which are placed in an L0 interest set L0.S0. I/O readiness of an SFD is affected when
any of the descriptors in the associated interest set becomes ready. For example, if de-
scriptor a has a pending I/O event, SFD of the owning interest set L1.S0, x is marked
ready as well (Figure 4.2). Suppose descriptors c and d from the second L1 set (L1.S1)
also become ready updating the I/O readiness of SFD y. The L0 event generator is re-
sponsible for interrogating the interest set L0.S0 in a loop and blocking in the kernel
when no I/O events are pending. Querying L0.S0 now returns two L0 events Ex and Ey,
one each for L1.S0 and L1.S1. Their respective L0 event handlers are notified, which sub-
sequently interrogate L1.S0 and L1.S1. This second-tier polling reveals ready descriptors
a, c and d, raising three L1 events and notifying L1 handlers that perform I/O on those
descriptors. Defining these asynchronous handlers as behaviors enables actors to carry
out non-blocking I/O activity on any file descriptor using only native system calls. An
actor that wishes to receive a notification about the readiness of a particular descriptor
must ensure that the descriptor is placed in an L1 interest set while designating itself to
the runtime as an L1 event handler. Details on specifying these assignments by extend-
ing the default I/O policy are discussed in Section 4.6.1.

67

A B

a1 a2 an b1 b2 bm

Level	0

Level	1

Figure 4.1: Relationship between L0 and L1 event generators.

x y

a b c d

x y

a b c d

x y

a b c d

L1.S0 L1.S1

L0.S0 L0.S0

L0.S0

L1.S0

L1.S0 L1.S1

L1.S1
1 2

3

Figure 4.2: I/O readiness of descriptors in L1 interest sets affecting SFDs as observed by
the master poller. The green descriptors are ready for I/O.

68

4.3.2 Rearming L0 Generators

Despite using edge-triggered event polling, it is possible to receive spurious notifica-
tions for the same event due to the implementation quirks [42] of epoll. Since the master
poller runs in a dedicated thread, an unrestricted stream of spurious events causes this
event loop to compete against the scheduler’s own thread pool for processor time, lead-
ing to CPU oversubscription and performance degradation. In case L1 event generators
are implemented as actor behaviors rather than idle policies, the actors become suscep-
tible to having their mailboxes spammed by the master poller, which in turn flood the
mailboxes of actors in the role of L1 event handlers.

One approach towards reducing spurious messages is to configure the master poller
to send exactly one notification for a monitored descriptor in the L0 interest set to its
respective L1 generator, after which that descriptor is permanently disabled. No new
notification is generated regardless of the I/O readiness of that descriptor. L1 genera-
tors now execute polling loops and keep yielding to the scheduler. Once all L1 events are
exhausted (i.e., non-blocking epoll_wait returns no I/O events) L1 polling entities even-
tually block. If the L1 poller is an actor, the runtime removes it from the ready queue
and the actor remains in blocked state until it receives a message from the master poller.
If the L1 poller is an idle policy, some worker thread executes it after assuming the idle
state. After several unsuccessful attempts it eventually blocks in the kernel, again await-
ing a wakeup signal from the master poller. To prevent an imminent deadlock in either
case, each L1 event generator implemented as a policy or an actor must rearm the mas-
ter poller before blocking. The rearm operation resumes the monitoring of the disabled
descriptors and raise L0 events as they become ready for I/O, thus unblocking the L1
generators once again by means of one-shot notifications.

69

4.4 The Default I/O Policy

A set of I/O event handlers are known as an I/O policy. On initialization, the I/O
subsystem automatically sets up event generators and attaches simple event handlers
to these events. This is known as the default policy, which may be extended to alter
the behavior of event generators and define new handlers according to the application
requirements. Table 4.1 lists all events fired by the runtime and the respective signatures
of their handlers, along with the conditions for triggering these events. Event source (L0
or L1) and other details, such as the descriptor associated with an event, may be obtained
by examining the I/O event construct io_event_t.

Following the PreLaunch event, the default policy registers L1 pollers with the master
poller. It can also optionally partition the kernel descriptor table at this stage, allowing
each cluster to have its own private descriptor table. Such a partitioning scheme pro-
hibits actor migration across clusters. Events raised by one cluster cannot be handled
by actors with a different origin, because each I/O event references some unique ready
descriptor that carries no meaning to actors from another cluster. However, partition-
ing the descriptor table at the cluster-level may reduce contention while modifying an
L1 interest set. After the scheduler has been initialized, the default policy responds to
the PostLaunch runtime event by activating the L0 event generator. If a worker thread
encounters an empty ready queue, the OnIdle event is raised. The built-in handler to
this event runs L1 event generator in a loop, where the number of iterations and maxi-
mum number of events processed per iteration are both configurable parameters. The
OnBlock event is raised immediately before any worker thread blocks in kernel space,
leading to automatic rearming of L0 event generator for that worker. This behavior can
be disabled if actors are more involved in handling L0 events themselves instead of leav-
ing it to the runtime, in which case they should directly rearm the master poller before
they are suspended.

70

Table 4.1: The Runtime Events

Name of
Event Signature of Handler Triggering Conditions

PreLaunch bool(cluster_id_t C)
The system is about to launch a
cluster-specific scheduler with
C identifying the cluster.

Post-
Launch bool(cluster_id_t C)

The system has just launched a
cluster-specific scheduler with
C identifying the cluster.

OnEvent
bool(cluster_id_t C,
worker_id_t W, io_event_t
const& E)

A descriptor registered in a
cluster-specific interest set has
become ready for I/O with E
providing the event details. W
is only relevant in distributed
polling.

OnIdle bool(cluster_id_t C,
worker_id_t W)

Worker thread W on Cluster C
has resumed idle state because
its ready queue is empty. If W is
a thief the event is fired before
every swap between its LQ and
OQ.

OnBlock bool(cluster_id_t C,
worker_id_t W)

Worker thread W on Cluster C
is about to block in kernel
space.

71

4.5 Extending the I/O Policy

L1 event generators, as mentioned earlier, do not have their own threads and hence
are executed by the same thread pool that runs scheduled actors. The runtime pro-
vides two options to facilitate background polling with different degrees of granularity.
By default, L1 generators run on idle workers before they resort to work-stealing. The
built-in handler for OnIdle event runs a specified L1 generator. Figure 4.3 illustrates
this scenario where both L0 and L1 pollers are part of the runtime that eventually no-
tify interested actors (sessions) by sending the ready file descriptors as messages (a, b
and c). In this case, x and y are not messages but rather inter-thread signals internal to
the runtime delivered to raise the workers responsible for executing slave pollers L1.P0
and L1.P1. In Figure 4.4, the built-in policy is overridden so that the master poller L0.P0
now directly notifies actors. Here, x and y are ordinary messages instead of signals and
the receiving actors execute the polling logic in their behavior. The L1 event generator
presents a non-blocking interface and internally executes a polling loop for a specified
number of times before returning, therefore the polling logic itself can be embedded in
an actor’s behavior. In applications where idle polling alone is not sufficient to satisfy
latency requirements, embedding polling logic in actors (termed signalers) interleaves
polling with the execution of other actors, thus eliminating passive starvation even in
the case where the worker threads never go idle. As long as no actor executes an infi-
nite loop in its behavior, the scheduler eventually executes the signaler actor. Multiple
signalers that query the same interest set may be spawned to increase the frequency of
polling. However, such redundant signaler actors associated with an interest set should
be pinned to the same worker so that they execute synchronously with each other. This
is because parallel invocation of epoll on the same interest set has an unfavorable effect
on performance, detailed in Section 4.6.1 which also includes a relevant discussion on
distributed and centralized event polling.

72

session

session

session

L0.P0

L1.P0

L1.P1

x

y

a

b

c

REACT++	RUNTIME

master

slaves

ACTOR	SPACE

return	from
epoll_wait()

KERNEL	SPACE

Figure 4.3: Polling under the default I/O policy.

session

session

session

L0.P0 x

y

a

b

c

REACT++
RUNTIME

master

signalers

ACTOR	SPACE

L1.P1

L1.P0return	from
epoll_wait()

KERNEL	SPACE

Figure 4.4: An application-defined I/O policy where actors are designated as both the
generators and handlers of L1 events.

73

4.6 The Plaintext Experiment

This section exemplifies how the default I/O policy can be extended by application
logic to implement an actor-driven plaintext web server [60] that responds with "Hello,
World!" to HTTP GET requests. The first request from a client creates a session on the
server side. Session variables may be used for various purposes, such as adding the
ability to reply with customized response for each client (i.e., "Welcome back client X!"
instead of "Hello, World!"). In a pure event-driven approach, session maintenance can
further obscure the bewildering callback-oriented control flow, making diagnostics and
maintenance of such applications a daunting task. In contrast, using actors to represent
a client session is trivial because actors are by definition stateful entities free from data
races and confusing locking semantics.

4.6.1 Actors as Event Handlers

The first step toward enabling actors as event handlers is to create a pool of actors
(henceforth referred to as the garage) and specify a mapping function from the event
space to this pool. The I/O subsystem then translates each I/O event to a message that
is delivered to a responding actor from the garage as designated by the application-
specific mapping function. It may be preferable, although not required, to have each
descriptor associated with an I/O event map to a unique actor. In this case, since each
actor responds only to events associated with a specific file descriptor known at spawn
time, it is possible to eliminate the payload from notification messages and reduce the
space requirement. In contrast, if I/O events are translated using a many-to-one func-
tion where each actor is capable of responding to events associated with different de-
scriptors (and possibly switching behaviors to become a different state machine), the
descriptor itself must be identified by attaching it in the message sent to the generic
actor. In the plaintext web server, the former approach is taken where a unique actor is
assigned for each connection. Any POSIX-compliant implementation of the BSD socket
interface uses integer descriptors to identify TCP connections, selecting the smallest de-
scriptor available [51] on new arrival. The simplest garage is just an array of actors
with the connection descriptor used an index to locate the handler. For better scalabil-
ity, the web server may create multiple actor clusters to reduce contention over shared
resources such as the listening socket and L0/L1 interest sets, both of which are differ-
ent across clusters. Hence the cluster ID C is prefixed to the connection descriptor D
forming the garage identifier C:D, which is distinct from an actor’s ID that is assigned
by the runtime. A garage ID is used to select an actor from the shared garage, which

74

responds to a specific connection registered in one of the L1 interest sets from a spe-
cific cluster. The maximum number of concurrent connections is statically configurable
and translates to the maximum number of actors pooled in the garage. Each slot in the
array is initially filled with an empty handle. A client session uses lazy initialization
and is spawned on demand only when an incoming connection is mapped to an empty
handle. If a connection is lost, the associated session actor is suspended. When a new
connection is assigned the same descriptor by the kernel, it is mapped to the same actor.
This time the connection is serviced faster because an existing session is reused.

Unlike session actors, signaler actors are created immediately after server initializa-
tion as each cluster has only a few of them. By default, the number of signaler actors is
matched with the number of workers in the cluster’s thread pool to maximize the de-
gree of concurrent polling. They schedule the session actors by taking the role of an L1
event generator, while the session actors do the actual I/O and capture state informa-
tion for received requests. Signalers are also responsible for accepting new connections,
mapping their descriptors to garage IDs and spawning new sessions if necessary.

While an L0 interest set is always owned by a cluster, an L1 interest set may be owned
by a worker or a cluster. These two types of ownership are respectively termed dis-
tributed and centralized polling. In distributed polling, each worker thread is given a pri-
vate interest set. A worker exclusively runs only those sessions that are associated with
some descriptor in its own set, subject to occasional adjustments by the work-stealing
scheduler. This reduces polling contention even further, especially when the size of the
interest set is large.

If polling is left to the runtime, L1 polling on the interest set of worker W is executed
whenever W is idle. On the other hand, if signalers are used, the same signaler may
query different interest sets but not at the same time. This is because a signaler only
interrogates the interest set of the worker that it is currently running on, which may be
different each time it is scheduled. A hybrid approach is possible where L1 polling is
executed as an idle policy while remaining embedded in signalers to be carried out in an
interleaved fashion with the session actors. If the idle policy successfully generates one
or more I/O events during L1 poll, it may be configured to delegate its task (generation
of L1 events) to signaler actors after triggering the first round of sessions. If no events are
generated, the idle policy rearms the master poller before the worker thread is blocked.

75

While the system call epoll_wait itself is thread-safe, parallel invocation of epoll on the
same interest set is known to have a detrimental effect on performance. Mutual exclu-
sion is thus a requirement when executing a centralized L1 event generator, as multiple
worker threads share an interest set within the same cluster. However, acquiring a
lock must be carried out without making it a blocking operation, i.e., by attempting to
lock a mutex guarding the L1 event generator exactly once using try_lock. If successful,
the signaler or the idle policy is free to execute L1 polling. If locking fails because an-
other polling entity is active, the unsuccessful signaler or idle policy must yield to the
scheduler and try again when it is invoked the next time. If distributed polling is used,
rearming must occur for each L1 interest set by the respective L1 poller before it blocks.
With centralized polling, the single cluster-wide L1 interest set may be rearmed by any
polling actor or policy.

4.6.2 Control Flow

A simplified overview of the event sequence for a single request-reply cycle is given
next, highlighting the interactions among the scheduler, polling entities and user-
defined actors. Suppose the primary task carried out by the web server involves
receiving an HTTP request through an established TCP connection, parsing it and re-
turning a reply to the client. The connection socket is assigned the descriptor X by the
kernel. Moreover, the actor runtime is initialized with an L0 event generator (the master
poller) M and a policy S that generates L1 events when executed. M begins observing
the L1 interest set automatically at system startup. Additionally, a signaler actor P and a
session actor R are spawned by user-defined logic. P is made aware of the policy S and
at the same time declared as a polling actor to the I/O subsystem. Socket X is registered
in L1 interest set, along with a closure H that is supposed to send a notification message
to R when X is ready for I/O. Assume the scheduler’s thread pool has a single worker
thread W, responsible for running all scheduled actors. For simplicity, rearming logic is
left out of this discussion.

76

• Initially the system is idle and all threads are blocked in kernel space with no
busy-waiting. A request arrives at X. The master poller M, running on a dedi-
cated thread, returns from blocking epoll_wait, examines the L0 event and directly
schedules P by sending it a message, as the polling actor is designated as an L0
event handler to the I/O subsystem. M blocks again on epoll_wait.

• The worker thread W from the scheduler’s thread pool wakes up and runs the soli-
tary actor P on the ready queue. In the message handler, P runs the non-blocking
L1 event loop embedded in the policy S. A policy does not have its own thread
of execution and hence must be executed by actors or directly by the runtime.
Since X is now ready for I/O, the associated handler H is invoked in P’s behavior.
Consequently, a message is sent to the session actor R.

• P receives no further events from epoll_wait, returns to the scheduler and is sus-
pended in user space. The scheduler removes P from the ready queue of W.

• R is scheduled to run next. The session actor reads an HTTP request from the
socket X, parses it and sends its reply. After consuming the message sent by P,
the mailbox of R is now empty. Therefore, R is suspended. Recall that the pair (X,
R) is a user-defined actor designation that associates a connection with a session,
meaning that all requests arriving at the socket X must be processed by the actor R.
Consequently, the same actor is responsible for buffering and assembling requests
that are partially received.

• W blocks in kernel space as the ready queue is now empty. The system resumes
its idle state.

4.6.3 Implementation

This section presents the implementation of the OnEvent handler (see Table 4.1) for the
plaintext experiment, which demonstrates how actors receive notifications from the
event generators. Recall that the associated runtime event is fired when one or more
descriptors registered in either L0 and L1 interest set become ready. When the event
source is the L0 generator (line 4), a signaler actor is notified. If distributed polling is
used (line 6) where each worker is given a private L1 interest set, the worker ID is spec-
ified (line 8) to select the associated signaler actor. Otherwise, a cluster-wide signaler
is chosen (line 11). The signaler actor executes non-blocking epoll in its behavior and
generates L1 events. Each L1 event triggers a designated session actor (lines 18-20) that
reads an HTTP request, parses it and replies to the client.

77

1 bool webserver::server_io_policy_t::onEvent(cluster_id_t clusterID,
↪→ worker_id_t workerID, io_event_t const& event) {

2 epoll_event& e = *event.details;
3 switch (event.poller_type) {
4 case poller_type_t::MASTER: {
5 if (e.events & EPOLLIN) {
6 if (enableDistributedPolling) {
7 // notify a signaler actor to execute L1 polling
8 actor_id_t garageID(clusterID, (worker_id_t) e.data.u64);
9 garage.select<io_actor_type_t::signaler>(garageID)

10 << atom::trigger;
11 } else selectL0Signaler(clusterID) << atom::trigger;
12 }
13 }
14 break;
15 case poller_type_t::SLAVE: {
16 if (e.events & (EPOLLIN | EPOLLRDHUP | EPOLLERR | EPOLLHUP)) {
17 // notify last-level event-handlers, which are session

↪→ actors
18 actor_id_t garageID(clusterID, (descriptor_t) e.data.fd);
19 garage.select<io_actor_type_t::session>(garageID)
20 << atom::trigger;
21 }
22 }
23 break;
24 default:
25 break;
26 }
27 return true;
28 }

Listing 4.1: The OnEvent handler for the plaintext experiment.

78

Chapter 5

Evaluation

This chapter presents a comprehensive evaluation of the React++ actor framework, in-
cluding its messaging layer, scheduling policies and I/O subsystem. The results are
organized in three sections: micro-benchmarks, I/O experiments and application per-
formance. The micro-benchmarks are designed to examine specific aspects of the run-
time. They generate various compute workloads to help investigate the effects of mail-
box contention and the role of load distribution policies. The I/O benchmarks conduct
stress-tests on the I/O subsystem, comparing the scalability of user-space blocking in
actor-driven web servers against their event-driven counterparts. Finally, the applica-
tion benchmark evaluates the performance of React++ actors in a typical usage scenario
by integrating them with a brokerless messaging library. The micro-benchmarks are
conducted on an x86 machine equipped with 4-socket, 32-core 2xHT Xeon(R) E5-4610
v2 and 256GB of memory, while the I/O and application benchmarks are carried out
on another 4-socket machine with 64-core AMD Opteron 6380 and 512GB of memory.
Simultaneous multithreading is disabled if available. All benchmarks are run under
Ubuntu 18.04.1 with Linux kernel in version 4.15.0-48-generic.

79

5.1 Micro-Benchmarks

Most of the micro-benchmarks introduced in this section are taken from the Savina
Benchmark Suite [38]. The actor runtimes under evaluation appear in the following
list, along with their version information:

• React++ 0.1.0

• C++ Actor Framework 0.16.0

• Proto.Actor 0.2.0 with Go in version 1.12.5

• Akka 2.5.25 with Scala in version 2.13.1

Both C++ frameworks (React++ and CAF) are compiled by GNU C++ compiler 8.3.0
with optimization level O3. JVM heap size is set to 64GB for all Akka benchmarks.

The actor runtimes mentioned earlier each maintain some fixed or dynamically re-
sizable thread pool for the purpose of user-space scheduling. Before launching a bench-
mark, N CPUs are made available to the scheduler via the taskset utility as well as
resource configuration files if necessary with N ranging from 1 to 32. Twenty sam-
ples are collected under each resource configuration before it is updated. Some micro-
benchmarks are sequential in nature and known to produce the best results with single-
threaded execution. Multicore performance of these benchmarks are shown nonethe-
less to help demonstrate the role of locality-aware and actor-specific scheduling poli-
cies. Since an application may use a wide array of actors undergoing different phases
in their respective lifecycles, it is ill-advised to force sequential execution by resizing
the thread pool in order to benefit a certain group of actors at the expense of others.
Therefore, the scheduler is always given full access to all the cores available for a given
resource configuration and then guided with affinity hints where applicable.

80

5.1.1 Ping Pong and Thread Ring

The Ping Pong benchmark [55] measures the exchange overhead incurred by the mes-
saging layer, which affects the average round-trip latency in actor communication. It
accepts a single parameter T, serving as the initial value for a positive integer token that
ricochets between a pair of actors. Each actor decrements it by 1 before forwarding to
its peer and both actors are killed when the token reaches 0. The behaviors of differ-
ent actor runtimes are visualized in Figure 5.1, where the initial value of the token is
set to 10M. Elapsed time is reported along the Y-axis on the left, which can be divided
by T/2 to obtain the average round-trip latency. The accompanying figure on the right
shows the CPU utilization during the benchmark. Unless each peer is given a dedicated
processing unit, average latency rapidly deteriorates if the pair is executed on different
CPUs either by scheduler placement or as a consequence of theft. This is because each
actor alternates between send and receive phases, where following a send phase an
actor must wait until a reply from the peer is received. Given the actors run on dif-
ferent CPUs, each actor is the solitary work item on the ready queue of their respective
processor. So when an actor awaiting a reply is suspended from its ready queue, the un-
derlying worker thread is also likely to block in kernel space. This leads to worsening
latency for each message, possibly exacerbated by cache misses as the token bounces
between the two cores. Locality-guided scheduling [70] in CAF prevents this pattern,
while React++ enforces an optimization policy that ensures that the receiver of a mes-
sage is always scheduled on the same CPU where the sender has last been executed.
The Go scheduler does something similar by performing a context switch between gor-
outines without stalling the underlying worker, while Akka actors are configured with
a single-core dispatcher for this benchmark. The CPU utilization curves reported by the
runtimes confirm that the benchmark remains essentially sequential regardless of the
number of available cores. As a result, the elapsed time remains constant for all con-
figurations. In the absence of affinity hints or similar policies, message latency between
peers is expected to gradually worsen with increasing number of CPUs since the peers
become more likely to be scheduled on different processors.

A more general version of the same messaging pattern appears in the Thread Ring
benchmark [38, 61], which measures the runtime overhead incurred by context switches.
Instead of a pair of actors, N actors are arranged in a ring which pass around a positive
integer token with initial value T. Each actor in the ring places its idle peer on some
ready queue before blocking. So there are N context switches every time the token re-
turns to the first actor in the ring. Since the benchmark terminates when the token
reaches zero, T context switches occur in total and the average time required for a con-

81

0 4 8 12 16 20 24 28 32
0

5

10

15

Core Count

El
ap

se
d

Ti
m

e
[s

]

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

50

100

150

200

Core Count

C
PU

U
ti

liz
at

io
n

[%
]

React++ CAF Proto.Actor Akka

Figure 5.1: The Ping Pong benchmark with message count = 10M.

0 4 8 12 16 20 24 28 32
0

5

10

15

20

Core Count

El
ap

se
d

Ti
m

e
[s

]

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

100

200

300

Core Count

C
PU

U
ti

liz
at

io
n

[%
]

React++ CAF Proto.Actor Akka

Figure 5.2: The Thread Ring benchmark with 1K actors and initial value = 10M.

82

0 4 8 12 16 20 24 28 32
0

5

10

15

20

25

30

Core Count

El
ap

se
d

Ti
m

e
[s

]

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

300

600

900

1200

Core Count
C

PU
U

ti
liz

at
io

n
[%

]

React++ CAF Proto.Actor Akka

Figure 5.3: The Fork-Join: Throughput benchmark with 1K actors and 10K messages per
actor.

text switch is obtained by dividing the elapsed time by T. In Figure 5.2, where N = 1K
and T = 10M, all frameworks show a constant overhead for context switching under
all configurations. Similar to Ping Pong, there is at most one sender and one receiver
at any given time with the sender blocking immediately after forwarding the token.
Unsurprisingly, this benchmark is also confirmed to be mostly sequential by the CPU
utilization diagram on the right.

5.1.2 Fork Join: Throughput

This benchmark [38, 57] takes two parameters K and N and stresses the messaging layer
by dispersing K × N messages from the same source to K actors in a round-robin fash-
ion so that each actor receives N messages. As each actor does minimal amount of work
before blocking, concurrent execution of N actors adversely affects performance for the
same reasons explained before, albeit to a lesser extent. In Figure 5.3, K and N are set
to 1K and 10K respectively, so that the total number of messages sent is 10M. At any
point in time there is exactly one sender, so this benchmark does not assess lock con-
tention on the mailbox caused by concurrent senders. Similar to the previous sequential
benchmarks, React++ and Akka actors are scheduled at the origin of the message by
optimization policies, which is why their corresponding performance and utilization

83

0 4 8 12 16 20 24 28 32
0

15

30

45

60

75

Core Count

El
ap

se
d

Ti
m

e
[s

]

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

500

1000

1500

2000

2500

Core Count
C

PU
U

ti
liz

at
io

n
[%

]

React++ CAF Proto.Actor Akka

Figure 5.4: The Producer-Consumer benchmark with 32 producers, each producer send-
ing 1M messages to single consumer.

curves report constant elapsed time and constant overhead for all configurations. Other
frameworks exhibit an increasing trend both in elapsed time and CPU utilization, pos-
sibly due to wasteful context switches between the underlying worker threads.

5.1.3 Producer-Consumer

The Producer-Consumer benchmark [24] is designed to assess the impact of mailbox con-
tention on the scalability of workloads involving an N:1 messaging pattern. The bench-
mark is parameterized by N and M, where N senders each stream M messages to a single
recipient. The degree of concurrency amongst the senders is decided by the scheduler
and available processing units. Figure 5.4 illustrates the runtime behaviors of React++,
CAF, Proto.Actor and Akka when N and M are set to 32 and 1M respectively. With
additional CPUs, more producers can run in parallel. Therefore, the ideal behavior for
elapsed time is a decreasing curve as more CPUs are added to the benchmark config-
uration until it reaches the lower bound, which is the time required to process M× N
messages by the recipient. In practice, lock contention exerts a substantial effect on per-
formance, which is proportional to the number of concurrent senders. This is the likely
cause for Akka’s worsening performance. For the remaining frameworks, the elapsed
time initially decreases up to 8 cores and then reveals a negative correlation between

84

0 4 8 12 16 20 24 28 32
0

5

10

15

Core Count

El
ap

se
d

Ti
m

e
[s

]

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

100

200

300

Core Count
C

PU
U

ti
liz

at
io

n
[%

]

React++ CAF Proto.Actor Akka

Figure 5.5: The Counting Actor benchmark with message count = 10M.

performance and hardware concurrency on the sender-side, possibly due to NUMA la-
tency. Recall from Section 2.4 that the messaging layer in React++ uses a lock-free queue
to implement the mailbox of an actor. Its high CPU utilization during this benchmark
is attributed to concurrent producers spinning on account of repeated failures while at-
tempting the compare-and-swap operations required for inserting new messages into
the consumer’s mailbox. A modest utilization may occur in several scenarios, such as a
decline in the degree of parallelism due to load distribution policies as well as the effects
of contention with lock-based queues.

5.1.4 Counting Actor

The Counting Actor benchmark, originally adapted from Theron [38, 61], aims to ex-
pose the delivery overhead for a unidirectional message stream that requires no con-
text switches in the presence of hardware concurrency. The problem involves two ac-
tors with designated roles, a producer and a counter. The producer sends N increment
messages to the counting actor, which advances an internal counter each time such a
message is received. The producer interrogates the counter at the end of this message
stream, which replies with the total number of messages received from the producer.
Unlike Ping Pong, which uses a request-reply pattern and forces a context switch after
each send operation, the optimal throughput for this benchmark is correlated with the

85

concurrent execution of the producer and the counter. Figure 5.5 depicts relative perfor-
mance of different actor frameworks when N = 10M. For most configurations, React++
is slightly outperformed by Proto.Actor. CAF’s performance suddenly plunges going
from 8 to 10 cores and it stays that way with some variations, with the same CPU uti-
lization. Recall that the testbed is equipped with 4 NUMA nodes with 8 cores per node
and this particular transition coincides with crossing a NUMA boundary. Upon fur-
ther investigation, it becomes evident that CAF scheduler tries to distribute the actors
evenly across the available NUMA nodes, i.e., each of the two actors in this benchmark
ends up on different NUMA nodes if available. There are no similar anomalies when
the third and fourth NUMA nodes are added to the configuration (i.e., core count in-
creasing from 16 to 18 or 24 to 26) because there are just two actors for this benchmark.
The worst-case NUMA latency comes into effect as soon as the second node is added to
the configuration. Due to the scheduler’s load distribution policy, each actor runs on a
different NUMA node starting from 10 cores, at which point CPUs from an additional
NUMA node first become accessible. A similar pattern emerges for Akka, albeit with a
higher variance for each configuration possibly because of frequent migrations. Akka’s
utilization of CPU cycles grows proportionally with the number of cores even though
only two actors are ever created, which can only be attributed to idle spins of standby
workers.

86

0 4 8 12 16 20 24 28 32
0

5

10

15

20

25

30

Core Count

El
ap

se
d

Ti
m

e
[s

]

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

500

1000

1500

2000

Core Count
C

PU
U

ti
liz

at
io

n
[%

]

React++ CAF Proto.Actor Akka

Figure 5.6: The Actor Creation benchmark with 1M actors.

5.1.5 Actor Creation

Actor applications often spawn numerous short-lived actors, leveraging their light-
weight nature while decomposing a complex task into smaller and potentially parallel
sub-tasks. Hence a practical implementation of the actor model must strive to minimize
the allocation overhead for new arrivals while optimizing context switches among the
existing actors. The Actor Creation benchmark [38] tests this aspect of the runtime by
creating a large number of actors, which are subsequently destroyed. It takes a single
parameter N, which is the total number of actors to spawn. Relative performance of
the actor frameworks is visualized in Figure 5.6, where N is set to 1M. To guard against
the possibility of demand-based allocations, the benchmark ensures that N actors are
alive at the same time. The first message received by each actor is processed but does
not terminate the actor. Instead, a second round of messages from the same sender
are dispatched to perform the cleanup. Furthermore, to demonstrate scalability, N ac-
tors are spawned in parallel by a fixed number of spawner actors, set by the number of
CPUs available for a given configuration (i.e., with 32 cores, 32 spawners each create
31250 actors and a total of 1M). All curves exhibit a downward trend with occasional
drifts for CAF and Akka until they reveal the constant overhead due to context switches
and various updates to global data structures during the allocation and reclamation of
resources. CAF’s behavior is highly erratic for the dual-core configuration possibly be-
cause of a livelock, hence the corresponding data point has been removed.

87

0 1 2 3 4

Akka

Proto.Actor

CAF

React++

Resident Set (GB)

Figure 5.7: The memory profile of the Actor Creation benchmark with 1M actors.

The memory profile of the same experiment appears as a boxplot in Figure 5.7,
which illustrates the distribution of resident set size for each runtime with 32 con-
current spawners. Since the actors in this experiment are almost stateless, it reveals
the minimum space requirement per actor by the runtime. Akka’s memory footprint
is significantly larger in comparison to the compiled frameworks (React++, CAF and
Proto.Actor). A possible explanation is the heap managed by the JVM being sufficiently
large (64GB), rendering any garbage collection unnecessary.

5.1.6 Big

The bencherl [10] suite presents this benchmark that recreates the worst-case mailbox
contention arising in actor-driven applications employing M:N messaging pattern. It is
parameterized by N and P, where a group of N actors are spawned and each actor is
tasked with sending P rounds of ping message to other actors from the same group. The
sender randomly chooses the recipient at the beginning of each round, which replies
with a pong upon receiving the ping. Multiple recipients are likely to receive pings
from concurrent senders during this benchmark, potentially leading to lock contention
afflicting a large number of mailboxes. After an actor has sent the maximum number
of pings, it reports to a sink actor and goes idle. During this phase it only responds to

88

0 4 8 12 16 20 24 28 32
0

10

20

30

40

50

60

Core Count

El
ap

se
d

Ti
m

e
[s

]

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

500

1000

1500

2000

2500

Core Count
C

PU
U

ti
liz

at
io

n
[%

]

React++ CAF Proto.Actor Akka

Figure 5.8: The Big benchmark with 500 actors and 50K pings from each.

pings it receives from other actors that still have not reached that limit. The sink actor
is responsible for coordinating termination, which occurs when it receives confirmation
from all N actors. In Figure 5.8, N and P are set to 500 and 50K respectively. React++
and CAF are shown to scale better than Proto.Actor and Akka, both of which report
worsening performance beyond 8 cores.

The next three benchmarks introduce compute workloads that employ divide-and-
conquer strategies with some level of non-determinism, resulting in the formation of
actor trees where each node receives a non-uniform share of work. In some cases, an ac-
tor is required to return the results from a computation to its parent as it awaits replies
from all of its children before proceeding to the next stage. For each of the compute
benchmarks, there is a threshold parameter that controls the maximum number of ac-
tors in the tree, usually by fixing its height. Alternatively, an actor can be prevented from
creating sub-tasks once the complexity reaches a designated minimum. Thresholds val-
ues are chosen such that splitting sequential portions of the workload even further into
potentially parallel sub-tasks does not necessarily improve performance, which is ex-
plained in the next section.

89

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

Core Count

El
ap

se
d

Ti
m

e
[s

]

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

300

600

900

1200

1500

Core Count

C
PU

U
ti

liz
at

io
n

[%
]

React++ CAF Proto.Actor Akka

Figure 5.9: List-based Parallel Quicksort benchmark with 10M integers. Items-per-actor
threshold is set to 100K.

0 4 8 12 16 20 24 28 32
0

10

20

30

40

Core Count

El
ap

se
d

Ti
m

e
[s

]

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

300

600

900

1200

1500

Core Count

C
PU

U
ti

liz
at

io
n

[%
]

React++ CAF Proto.Actor Akka

Figure 5.10: Array-based Parallel Quicksort benchmark with 500M integers. Maximum
tree depth is set to 5.

90

5.1.7 Parallel Quicksort

This is a list-based workload adapted from the Savina suite [38] which creates a binary
tree of actors each recursively splitting a partition of integers into left and right sub-
partitions and assigning them to their respective children to be sorted and returned.
After an actor receives both sorted partitions as replies from its children, it merges them
around the pivot into a larger partition and sends it back to its own parent. Computation
terminates when the root actor finishes merging the last pair of sorted partitions into the
final sorted list. The benchmark is parameterized by N and T where N is the size of the
list and T serves as a threshold to limit the total number of actors. If the size of an
unsorted partition falls below this threshold, its sub-partitions are no longer delegated
to new actors. Instead, the actor receiving the partition sequentially carries out the
sorting. Figure 5.9 shows the comparative performance of the actor runtimes with N =
10M and T = 100K.

CPU-bound workloads such as this benchmark often display a similar trend with the
elapsed time decreasing as more compute units become available, until the curve flat-
tens out to reveal the constant overhead originating from the largest sequential portions
of the task. A lower threshold value allows more actors to be spawned, making a larger
number of smaller sub-tasks viable for parallel execution. On the other hand, it also
drives up the space requirement and increases the total number of messages exchanged
between the supervising and subordinate actors. The additional latency introduced by
the messaging layer contributes to performance degradation.

Next, a variant of the previous benchmark is presented that differs in two aspects:
the integers are stored in an array and all messages are rendered trivial. Each actor is
initialized with offsets designating its partition, after which it is signaled by its parent
to begin sorting. Furthermore, an actor no longer requires to return sorted partitions
to its parent in the form of replies. The threshold value for this benchmark T does not
specify a partition size but instead refers to the maximum height of the actor tree. Each
actor delegates the right partition to a new actor and recursively sorts the left partition
itself, which may or may not be sequential depending on the height parameter. More
actors are spawned to sort the left partition using a divide-and-conquer scheme until
the height reaches the maximum, at which point the actor receiving the partition does
the sorting sequentially. Figure 5.10 shows the scalability of this benchmark up to 32
cores with 500M integers and the maximum tree height set to 5.

91

0 4 8 12 16 20 24 28 32
0

20

40

60

80

Core Count

El
ap

se
d

Ti
m

e
[s

]

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

800

1600

2400

3200

Core Count
C

PU
U

ti
liz

at
io

n
[%

]

React++ CAF Proto.Actor Akka

Figure 5.11: The Cofactor Expansion benchmark with a 12x12 matrix. The maximum
height of the actor tree is set to 4.

5.1.8 Cofactor Expansion

The final micro-benchmark creates an actor tree that calculates the determinant of an
N × N square matrix by cofactor expansion, which has a sequential time complexity of
O(N!). The actor at the root gathers N minors of the original N × N matrix and the

final result is given by the weighted sum
N

∑
j=1

aij(−1)i+jMij for any i ∈ {1, 2, ..., N}where

aij is the i, j element and Mij is the i, j minor. Each minor is produced by generating
smaller square matrices of dimension N− 1 and spawning new actors which recursively
compute their determinants. The total number of actors spawned is 1+ N + N(N− 1)+
N(N − 1)(N − 2) + ... + N(N − 1)(N − 2)...(T + 1) where T is the maximum height of
the actor tree, set as a threshold parameter. Once any branch reaches this height, the
actor receiving a sub-matrix becomes a leaf node and no longer delegates tasks to new
actors. Figure 5.11 shows the performance of the actor runtimes up to 32 cores with
N = 12 and T = 4 i.e., a 12× 12 matrix is given to the root actor which gets subdivided
until 8× 8 sub-matrices are produced. The determinants of these matrices are computed
sequentially.

92

5.2 I/O Benchmarks

This section elaborates on the plaintext experiment introduced in Section 4.6. The
benchmark constitutes the implementation of a simple HTTP request-reply pattern
without pipelining, adapted from the TechEmpower Benchmark [60] Suite and de-
signed to examine the scalability of actor-driven user-space I/O under substantial load.
The server is run locally on the same machine with the clients, where the available
CPUs are partitioned into two sets. The number of CPUs allocated to the server ranges
from 4 to 32, while the client-side is always given 32 CPUs. Each client forwards HTTP
requests over persistent and short-lived connections across the loopback interface. In
response, the server generates simple HTTP replies ("Hello, World!") which require no
disk access.

Two of the contenders in this experiment are web servers built on the React++ run-
time, each using a different polling mechanism. Recall from Section 4.4 that an applica-
tion may opt to use the default I/O policy supplied by the runtime or define its own.
The distributed variant splits each L1 interest set into worker-specific partitions, creat-
ing one L1 poller per worker. The centralized variant shares the same L1 poller across all
workers from the same cluster. Note that these partitioning schemes only affect where
polling activities occur. Actual I/O operations on network sockets are performed by
session actors which do not have affinity to any particular worker and may be executed
anywhere.

The experiment compares the request throughput of actor-driven servers against
that of ULib (version 1.4.2), an event-driven web server that boasts a leading score on
the TechEmpower benchmark. An actorless prototype is also included, designed to
stress-test the scalability of the Linux event notification facility in isolation. All web
servers clone the listening socket using SO_REUSEPORT and partition socket descrip-
tors into multiple kernel tables in order to mitigate a Linux-specific limitation [42]. For
ULib, this occurs N times as the server is configured to spawn N child processes while
running on N CPUs, disallowing session migration across processors after a connection
is accepted. The remaining web servers each employ a fixed number of kernel-space
FD tables (set to 4 for this experiment) regardless of the number of available CPUs, as
additional partitions prove to be of little use in improving the request throughput. For
actor-driven servers, this translates to creating 4 actor clusters, encapsulating the par-
titioning scheme in the handler to the PreLaunch event, which is raised just before a
cluster is initialized.

93

4 8 12 16 20 24 28 32
0

300

600

900

1200

Core Count

R
eq

ue
st

s/
se

c
x

10
00

React++ (distributed)

React++ (centralized)

ULIB

Event-driven Prototype

4 8 12 16 20 24 28 32
0

50

100

150

200

250

300

350

Core Count
R

eq
ue

st
s/

se
c

x
10

00

React++ (distributed)

React++ (centralized)

ULIB

Event-driven Prototype

Figure 5.12: Comparison of plaintext throughput: wrk (left) and weighttp (right).

The plaintext experiment has two variants: the first establishes persistent TCP con-
nections for all communications while the second exclusively uses short-lived connec-
tions. The client-side workload for the first experiment is generated by the benchmark-
ing utility wrk (version 4.1.0) [71] which streams HTTP requests over 15K persistent
TCP connections using 32 concurrent threads for 1 minute. The average throughput
per second is reported in Figure 5.12 (left). Actors with distributed polling outperform
ULib for most configurations. Actors with centralized polling perform slightly worse,
which is attributed to the heightened contention over the same L1 interest set within
each cluster.

The second experiment runs weighttp (version 0.4) [68] on 32 cores to generate a
churning workload. It emulates 5000 concurrent clients and issues a total of 5M requests,
each over a new TCP connection. Both of the actor-driven web servers outperform ULib
by a wide margin for all configurations as shown in Figure 5.12 (right), with the actorless
prototype converging to the same throughput with increasing number of CPUs.

94

5.3 Application Performance

ZeroMQ [73] is an asynchronous messaging library that has seen widespread use in
stock exchange, embedded systems and distributed applications. It offers a lightweight
and fault-tolerant brokerless communication facility. The frontend facilitates effortless
integration with existing networking applications by mimicking the API defined by BSD
stream sockets. These socket constructs are nonetheless different from stream sockets in
several ways. Unlike TCP, communication is message-orientated where each message
consists of a series of frames. Also, the frontend has no notion of connection and does
not have support an accept operation. Once a ZeroMQ socket is bound to an IP address,
incoming connections are automatically accepted and managed by an asynchronous
backend, which is also responsible for load balancing and flow control. Similarly, the
connect-side frontend attempts to reconnect on its own if the peer is lost. Several trans-
port options are available, namely TCP, IPC (interprocess communication over UNIX
domain sockets), and PGM (Pragmatic General Multicast). The same frontend socket
may be linked to multiple incoming and outgoing connections at the backend, each
being managed by a different session. The actual network communication for a con-
nection is performed by a transport-specific engine associated with a particular session.
A frontend socket communicates with its backend sessions over bidirectional channels,
implemented as a pair of lock-free queues. ZeroMQ sockets are differentiated to sup-
port various messaging patterns such as request-reply, publisher-subscriber and task
distribution.

The runtime manages a pool of system threads to carry out backend I/O, allocat-
ing one mailbox per thread and relying on asynchronous messaging for inter-thread
communication. The rationale for this implementation is to avoid various scalability is-
sues tied to coarse-grained locks. Although inspired by the actor model, asynchronous
objects created by the runtime lack sufficient encapsulation to be treated as actors. Be-
sides, the mailbox is specialized to support only a handful of predefined message types,
eschewing a more generic implementation in favor of performance and simplicity. To
assess the performance cost of applying a stricter version of the actor model, ZeroMQ
runtime is augmented with React++ actors to carry out all forms of network commu-
nication at the backend. The TCP engine, closely linked to its corresponding session
in the original runtime, is isolated and given its own mailbox supporting generic mes-
sage types with all I/O operations expressed as the behavior of a React++ actor. The
wire protocols are unaffected by this transformation, allowing sockets created by the
modified runtime to communicate seamlessly with their original (or native) peers.

95

4 8 12 16 20 24 28 32
0

100

200

300

400

500

Core Count

R
eq

ue
st

/s
ec

(x
10

00
)

ZMQ (native), 1K ZMQ (React++), 1K

ZMQ (native), 8K ZMQ (React++), 8K

ZMQ (native), 64K ZMQ (React++), 64K

4 8 12 16 20 24 28 32
0

5

10

15

20

25

30

Core Count
G

bp
s

ZMQ (native), 1K ZMQ (React++), 1K

ZMQ (native), 8K ZMQ (React++), 8K

ZMQ (native), 64K ZMQ (React++), 64K

Figure 5.13: Comparision between native and actor-driven ZeroMQ performance for
different message sizes: request per second (left) and data throughput in Gbps (right).

A ZeroMQ socket pair can be given several roles depending on the message pattern
being used. The REQ-REP socket pair repeats the request-reply messaging pattern in
lockstep, with the owning peers respectively assuming the roles of client and server. Af-
ter sending a request, the client must await a synchronous reply before sending the next
request. The server can reply to any number of clients at the same time, with the back-
end managing all the connections and network I/O. Recall that application code is not
allowed to directly interact with the TCP sockets but instead must communicate with
the backend through a frontend socket construct. Having a single frontend socket for
this experiment manifests as a bottleneck with increasing processors. To work around
this limitation, the server can be configured to use multiple frontend sockets if neces-
sary, evenly distributing incoming connections amongst the available sockets.

Similar to the plaintext experiment, the client-side is given a fixed count of 32 cores
which spawns 1024 parallel contexts to emulate the same number of ZeroMQ peers.
Server performance is measured under various CPU assignments, starting from 4 cores
up to a maximum of 32. The server is configured to use 8 REP sockets in total, as
adding additional frontends does not seem to contribute further to increasing the re-
quest throughput. Each request consists of a payload of size N, which also designates
the size of the reply generated by the server. For example, a 1KB request from a client
is answered with a 1KB reply from the server. Figure 5.13 (left) compares the request
throughput of the native (version 4.0.4) and modified ZeroMQ runtimes with the pay-

96

load size set to 1KB, 8KB and 64KB respectively. The corresponding rate of data transfer
from the server to the clients is illustrated on the right. In terms of request through-
put, the native runtime slightly outperforms the modified version with 1KB payloads.
With larger messages, the difference in relative performance becomes non-existent for
all configurations.

5.4 Discussion

The sequential micro-benchmarks reveal the cost for switching context between actors,
as well as the round-trip latency. These benchmarks assess the efficiency of the mes-
saging layer, where React++ ranks first, followed by Akka, Proto.Actor and CAF re-
spectively. Moreover, they also highlight the necessity of having policies that apply to
specific actors. Such policies enable application logic to leave a hint to the scheduler
on the messaging patterns employed by a particular actor. Global policies that affect
the system as a whole are coarse-grained and unlikely to equally benefit all messaging
patterns used in an actor-driven application. In contrast, tightly-coupled actors can be
tagged under actor-specific policies without compromising the location transparency.
This prevents unnecessary migration of actors, while also discouraging the scheduler
from splitting an effectively synchronous request-reply pattern across multiple cores.

The concurrent micro-benchmarks examine several aspects of a scheduler, including
the scalability of different workloads, lock contention, degree of parallelism and cycles
wasted in idle spins. With respect to the elapsed time, React++ scores at the top for all
concurrent benchmarks except the Counting Actor experiment, where it is outperformed
by Proto.Actor by a narrow margin. The cycles-per-operation diagrams in Appendix A
show that the unit cost for message delivery is also the lowest for React++ for most
benchmarks.

The plaintext experiment verifies the scalability of actor-driven non-blocking I/O.
Actors are shown to perform better or on par with one of the fastest event-driven web
server, both with a distributed and centralized polling scheme. The ever-growing com-
plexity of per-client state maintenance often renders conventional event-driven imple-
mentations impractical, leaving the actor model as one of the few viable solutions to the
C10M problem [32], rivaled only by user-space threading libraries in performance and
scalability [42].

The results from the application benchmark demonstrate that there is no substantial
penalty for using actors to carry out network I/O at the backend of ZeroMQ. The slight

97

difference in request throughput is found to be negatively correlated to the request size,
accentuating the relatively higher cost for encapsulation and type-erased messages as
the request size becomes smaller.

98

Chapter 6

Future Work

This chapter briefly addresses the known limitations of React++ and outlines several
possibilities that merit further exploration. Throughout the various stages of an ac-
tor’s lifetime, if the active behavior is unable to process a message it can opt to stash it
away. React++ runtime supports channels to accommodate stashing in well-organized
secondary mailboxes. Each time the actor assumes a new behavior, these messages can
be re-dispatched as the updated behavior may accept some of them. The current ap-
proach is inelegant and attracts a large penalty with each behavior switch, which can be
avoided if messages are tagged and the mailbox permits search operations. At present,
all mailboxes are built on lock-free queues. It would be useful to add support for a mail-
box that exploits a scalable implementation of lock-free binary search tree, accelerated
by hardware transactions [17].

While React++ presents a modular infrastructure allowing third-party schedulers to
run inert actors, the proper integration of a fiber runtime with the actor runtime may
still require some effort. This augmentation would grant actors the ability to suspend
and resume anywhere in their behavioral logic, as opposed to being forced to run until
the dispatched message is consumed before attempting a context switch. Addition-
ally, having actors equipped with stacks in addition to their mailboxes would permit
more natural semantics for synchronous messaging and continuations. Other useful ex-
tensions include adding support for heterogeneous computing (GPGPU) and applying
runtime optimizations for mobile and embedded platforms.

The scope of this thesis deliberately excludes distributed actors, limiting its fo-
cus only on actors residing in shared memory. Transparent distribution of workload
amongst a group of networked actors requires an RPC layer. Although most of the work

99

done by this layer can be delegated to a messaging library like ZeroMQ, differences in
runtime architecture make it difficult to accommodate all messaging patterns. With
support from an integrated RPC layer, the plaintext experiment from Section 4.6 can be
extended beyond the current limits by distributing the server instances across multiple
nodes. This would present an opportunity to further examine the scalability of the I/O
subsystem.

An issue frequently encountered by I/O actors is having their mailboxes flooded by
spurious notifications. In addition to slowing the down the receivers, these notifications
steal CPU cycles on the sender side with wasteful allocations. The present solution
largely consists of improvised workarounds. Although the runtime supports applying
hard limits on throughput specific to each sender, a more structured implementation of
flow control in the messaging layer may prove valuable.

The I/O subsystem of React++ is specialized only for asynchronous network I/O.
Disk operations have yet not been addressed. Furthermore, the subsystem is non-
portable as it heavily relies on a Linux-specific event polling facility. Future releases
will consider re-implementation of L0/L1 event generators using kqueue from FreeBSD
and IOCP (Input/Output Completion Port) from Windows NT.

100

Chapter 7

Conclusion

Actors have historically served as the building blocks of highly fault-tolerant telecom-
munication systems. In addition to encapsulation of concurrent logic, actors allow the
separation of control flow from the behaviors of the participating objects, making them
suitable for modeling scalable distributed computation. React++ is an actor framework
that features a cooperative scheduler with extensive support for load-balancing and
non-blocking I/O in the actor context. The runtime uses a variant of the work-stealing
algorithm to carry out load distribution. To reduce lock contention between thieves and
busy workers, each ready queue is split into a pair of sub-queues with different roles.
Thieves are allowed to steal only from a sub-queue with the role of orchestration, de-
noted as an Orchestration Queue (OQ). The other sub-queue, known as a Local Queue
(LQ), is private to each worker. Before execution, a worker pulls in items from its OQ
to its LQ either by a swap or balance operation. Busy workers may occasionally de-
posit items to their respective OQs before signaling sleeping workers, thus exploiting
an indirect form of work-shedding.

A broad category of I/O applications use some form of request-reply pattern. The
most notable example is a web server, which has to manage numerous client sessions.
The implementation of a web server typically follows one of two distinct approaches.
Multithreading creates one system thread per session, while event-driven programming
maintains a fixed-size threadpool and drives an event-loop per thread. The former so-
lution exhibits poor scalability due to OS limitations, while the latter heavily relies on
callbacks leading to an obscured flow of control. In recent years, fibers have been used
to address the shortcomings of multithreaded web servers. This thesis presents actor-
driven non-blocking I/O as a refinement of the event-driven approach, providing a
higher abstraction for the callback-oriented control flow. The plaintext experiment con-

101

firms that the I/O subsystem of React++ enables actors to rapidly scale up in large num-
bers on many-core NUMA architectures. Finally, an investigation is carried out to help
demonstrate the feasibility of using actors in message-driven applications. The actor
runtime is incorporated with a messaging library without compromising the perfor-
mance, replacing the existing backend with actors that enforce proper encapsulation.

102

References

[1] ActorFoundry. http://osl.cs.illinois.edu/software/actor-foundry/index.
html. Accessed: 2019-12-08.

[2] ActorNet. http://osl.cs.illinois.edu/software/actor-net/index.html. Ac-
cessed: 2019-12-08.

[3] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, USA, 1986.

[4] Gul Agha and Christian J. Callsen. ActorSpace: An Open Distributed Program-
ming Paradigm. SIGPLAN Not., 28(7):23–32, July 1993.

[5] Gul A. Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A Foundation
for Actor Computation. J. Funct. Program., 7(1):1–72, January 1997.

[6] Akka. https://akka.io/docs/. Accessed: 2019-12-08.

[7] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. In Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, AFIPS ’67 (Spring), page 483–485, New York, NY, USA, 1967.
Association for Computing Machinery.

[8] Joe Armstrong. The Development of Erlang. SIGPLAN Not., 32(8):196–203, August
1997.

[9] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

[10] Stavros Aronis, Nikolaos Papaspyrou, Katerina Roukounaki, Konstantinos Sag-
onas, Yiannis Tsiouris, and Ioannis E. Venetis. A Scalability Benchmark Suite for

103

http://osl.cs.illinois.edu/software/actor-foundry/index.html
http://osl.cs.illinois.edu/software/actor-foundry/index.html
http://osl.cs.illinois.edu/software/actor-net/index.html
https://akka.io/docs/

Erlang/OTP. In Proceedings of the Eleventh ACM SIGPLAN Workshop on Erlang Work-
shop, Erlang ’12, page 33–42, New York, NY, USA, 2012. Association for Computing
Machinery.

[11] John Backus. Can Programming Be Liberated from the Von Neumann Style?: A
Functional Style and Its Algebra of Programs. Commun. ACM, 21(8):613–641, Au-
gust 1978.

[12] S. Barghi and M. Karsten. Work-Stealing, Locality-Aware Actor Scheduling. In
2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
484–494, Los Alamitos, CA, USA, May 2018. IEEE Computer Society.

[13] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin. Or-
leans: Distributed Virtual Actors for Programmability and Scalability. Technical
Report MSR-TR-2014-41, March 2014.

[14] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiser-
son, Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime
System. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPOPP ’95, page 207–216, New York, NY, USA, 1995.
Association for Computing Machinery.

[15] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computa-
tions by Work Stealing. J. ACM, 46(5):720–748, September 1999.

[16] M. Bohr. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper. IEEE
Solid-State Circuits Society Newsletter, 12(1):11–13, Winter 2007.

[17] Trevor Brown. A Template for Implementing Fast Lock-Free Trees Using HTM. In
Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC ’17,
page 293–302, New York, NY, USA, 2017. Association for Computing Machinery.

[18] P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke.
µC++: Concurrency in the object-oriented language C++. Software: Practice and
Experience, pages 137–172, 1992.

[19] Peter A. Buhr and Richard A. Stroobosscher. The µsystem: Providing Light-weight
Concurrency on Shared-memory Multiprocessor Computers Running UNIX. Soft-
ware: Practice and Experience, 20(9):929–963, 1990.

104

[20] C++ Actor Framework. https://actor-framework.readthedocs.io/en/latest/
Introduction.html. Accessed: 2019-12-08.

[21] Nicholas Carriero and David Gelernter. Linda in context. Commun. ACM,
32(4):444–458, April 1989.

[22] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. CAF - the C++
Actor Framework for Scalable and Resource-Efficient Applications. In Proceedings
of the 4th International Workshop on Programming Based on Actors Agents & Decentral-
ized Control, AGERE! ’14, page 15–28, New York, NY, USA, 2014. Association for
Computing Machinery.

[23] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. Revisiting Actor
Programming in C++. CoRR, abs/1505.07368, 2015.

[24] Dominik Charousset and Thomas C. Schmidt. libcppa - Designing an Actor Se-
mantic for C++11, 2013.

[25] Dominik Charousset, Thomas C. Schmidt, Raphael Hiesgen, and Matthias Wäh-
lisch. Native Actors: A Scalable Software Platform for Distributed, Heterogeneous
Environments. In Proceedings of the 2013 Workshop on Programming Based on Actors,
Agents, and Decentralized Control, AGERE! 2013, page 87–96, New York, NY, USA,
2013. Association for Computing Machinery.

[26] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil.
Deny Capabilities for Safe, Fast Actors. In Proceedings of the 5th International Work-
shop on Programming Based on Actors, Agents, and Decentralized Control, AGERE!
2015, page 1–12, New York, NY, USA, 2015. Association for Computing Machin-
ery.

[27] Peter J. Denning. The Locality Principle. Commun. ACM, 48(7):19–24, July 2005.

[28] Intrusive MPSC Node-based Queue. http://www.1024cores.net/home/
lock-free-algorithms/queues/intrusive-mpsc-node-based-queue. Accessed:
2020-07-08.

[29] Cynthia Dwork, Maurice Herlihy, and Orli Waarts. Contention in Shared Memory
Algorithms. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory
of Computing, STOC ’93, page 174–183, New York, NY, USA, 1993. Association for
Computing Machinery.

105

https://actor-framework.readthedocs.io/en/latest/Introduction.html
https://actor-framework.readthedocs.io/en/latest/Introduction.html
http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue
http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue

[30] Fabien Gaud, Baptiste Lepers, Justin Funston, Mohammad Dashti, Alexandra Fe-
dorova, Vivien Quéma, Renaud Lachaize, and Mark Roth. Challenges of Memory
Management on Modern NUMA Systems. Commun. ACM, 58(12):59–66, Novem-
ber 2015.

[31] The Go Programming Language. https://golang.org/. Accessed: 2020-05-09.

[32] Robert Graham. The C10M Problem. http://c10m.robertgraham.com/p/
manifesto.html. Accessed: 2020-02-19.

[33] Philipp Haller and Tom Van Cutsem. Implementing Joins Using Extensible Pattern
Matching. In Proceedings of the 10th International Conference on Coordination Mod-
els and Languages, COORDINATION’08, pages 135–152, Berlin, Heidelberg, 2008.
Springer-Verlag.

[34] Peter Henderson. Functional Programming. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1980.

[35] Carl Hewitt. PLANNER: A Language for Proving Theorems in Robots. In Proceed-
ings of the 1st International Joint Conference on Artificial Intelligence, IJCAI’69, pages
295–301, San Francisco, CA, USA, 1969. Morgan Kaufmann Publishers Inc.

[36] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1985.

[37] Shams M. Imam and Vivek Sarkar. Integrating Task Parallelism with Actors. SIG-
PLAN Not., 47(10):753–772, October 2012.

[38] Shams M. Imam and Vivek Sarkar. Savina - An Actor Benchmark Suite: Enabling
Empirical Evaluation of Actor Libraries. In Proceedings of the 4th International Work-
shop on Programming Based on Actors Agents & Decentralized Control, AGERE! ’14,
page 67–80, New York, NY, USA, 2014. Association for Computing Machinery.

[39] Jetlang. https://github.com/jetlang. Accessed: 2019-12-08.

[40] Rajesh K. Karmani and Gul Agha. Actors. In David A. Padua, editor, Encyclopedia
of Parallel Computing, pages 1–11. 2011.

[41] Rajesh K. Karmani, Amin Shali, and Gul Agha. Actor Frameworks for the JVM
Platform: A Comparative Analysis. In Proceedings of the 7th International Conference
on Principles and Practice of Programming in Java, PPPJ ’09, pages 11–20, New York,
NY, USA, 2009. ACM.

106

https://golang.org/
http://c10m.robertgraham.com/p/manifesto.html
http://c10m.robertgraham.com/p/manifesto.html
https://github.com/jetlang

[42] Martin Karsten and Saman Barghi. User-Level Threading: Have Your Cake and
Eat It Too. Proc. ACM Meas. Anal. Comput. Syst., 4(1), May 2020.

[43] Wooyoung Kim. THAL: An Actor System For Efficient and Scalable Concurrent
Computing. Technical report, USA, 1997.

[44] WooYoung Kim and Gul Agha. Efficient Support of Location Transparency in
Concurrent Object-oriented Programming Languages. In Proceedings of the 1995
ACM/IEEE Conference on Supercomputing, Supercomputing ’95, New York, NY,
USA, 1995. ACM.

[45] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections in
Multi-Core Architectures: Understanding Mechanisms, Overheads and Scaling.
SIGARCH Comput. Archit. News, 33(2):408–419, May 2005.

[46] Doug Lea. A Java Fork/Join Framework. In Proceedings of the ACM 2000 Conference
on Java Grande, JAVA ’00, page 36–43, New York, NY, USA, 2000. Association for
Computing Machinery.

[47] Jonathan Lifflander, Sriram Krishnamoorthy, and Laxmikant V. Kale. Work Steal-
ing and Persistence-Based Load Balancers for Iterative Overdecomposed Applica-
tions. In Proceedings of the 21st International Symposium on High-Performance Parallel
and Distributed Computing, HPDC ’12, page 137–148, New York, NY, USA, 2012.
Association for Computing Machinery.

[48] Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, Michael Spiegel, and Jan F
Prins. OpenMP Task Scheduling Strategies for Multicore NUMA Systems. Int. J.
High Perform. Comput. Appl., 26(2):110–124, May 2012.

[49] John Osterhout. Why Threads are a Bad Idea. https://web.stanford.edu/
~ouster/cgi-bin/papers/threads.pdf. Accessed: 2020-02-19.

[50] Chuck Pheatt. Intel R© Threading Building Blocks. J. Comput. Sci. Coll., 23(4):298,
April 2008.

[51] IEEE Standard for Information Technology–Portable Operating System Interface
(POSIX R©) Base Specifications, Issue 7. IEEE Std 1003.1-2017 (Revision of IEEE Std
1003.1-2008), 2018.

[52] Proto.Actor. https://github.com/AsynkronIT/protoactor-go. Accessed: 2020-
05-09.

107

https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf
https://github.com/AsynkronIT/protoactor-go

[53] RabbitMQ. https://www.rabbitmq.com. Accessed: 2020-08-23.

[54] Salsa. https://wcl.cs.rpi.edu/salsa/. Accessed: 2019-12-08.

[55] The Scala Programming Language. https://www.scala-lang.org/old/node/54.
Accessed: 2020-08-11.

[56] Niranjan Shivaratri, Phillip Krueger, and Manish Singhal. Load Distributing in
Locally Distributed Systems. Computer, 25:33 – 44, 01 1993.

[57] L. Smith and Mark Bull. A Multithreaded Java Grande Benchmark Suite. 2001.

[58] SOTER. http://osl.cs.illinois.edu/software/soter/index.html. Accessed:
2019-12-08.

[59] Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-Typed Actors for Java. In
Proceedings of the 22Nd European Conference on Object-Oriented Programming, ECOOP
’08, pages 104–128, Berlin, Heidelberg, 2008. Springer-Verlag.

[60] Techempower Web Framework Benchmarks. https://www.techempower.com/
benchmarks/#section=data-r17&hw=ph&test=plaintext. Accessed: 2020-08-11.

[61] Theron: API Reference. http://ashtonmason.net/docs/6.00/. Accessed: 2020-
08-11.

[62] J. Torrellas, H. S. Lam, and J. L. Hennessy. False Sharing and Spatial Locality in
Multiprocessor Caches. IEEE Transactions on Computers, 43(6):651–663, June 1994.

[63] Robert Virding, Claes Wikström, Mike Williams, and Joe Armstrong. Concurrent
Programming in ERLANG (2nd Ed.). Prentice Hall International (UK) Ltd., GBR,
1996.

[64] Rob von Behren, Jeremy Condit, and Eric Brewer. Why Events Are A Bad Idea (for
High-Concurrency Servers). Accessed: 2020-02-19.

[65] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer.
Capriccio: Scalable Threads for Internet Services. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP ’03, page 268–281, New
York, NY, USA, 2003. Association for Computing Machinery.

108

https://www.rabbitmq.com
https://wcl.cs.rpi.edu/salsa/
https://www.scala-lang.org/old/node/54
http://osl.cs.illinois.edu/software/soter/index.html
https://www.techempower.com/benchmarks/#section=data-r17&hw=ph&test=plaintext
https://www.techempower.com/benchmarks/#section=data-r17&hw=ph&test=plaintext
http://ashtonmason.net/docs/6.00/

[66] Željko Vrba, Håvard Espeland, Pål Halvorsen, and Carsten Griwodz. Limits of
Work-Stealing Scheduling. In Eitan Frachtenberg and Uwe Schwiegelshohn, edi-
tors, Job Scheduling Strategies for Parallel Processing, pages 280–299, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

[67] K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, and I. Raicu. Optimizing Load Bal-
ancing and Data-Locality with Data-Aware Scheduling. In 2014 IEEE International
Conference on Big Data (Big Data), pages 119–128, Oct 2014.

[68] weighttp - A Lightweight and Simple Webserver Benchmarking Tool. https://
github.com/lighttpd/weighttp. Accessed: 2020-08-11.

[69] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services. SIGOPS Oper. Syst. Rev., 35(5):230–243,
October 2001.

[70] Sebastian Wölke, Raphael Hiesgen, Dominik Charousset, and Thomas C. Schmidt.
Locality-Guided Scheduling in CAF. In Proceedings of the 7th ACM SIGPLAN Inter-
national Workshop on Programming Based on Actors, Agents, and Decentralized Control,
AGERE 2017, page 11–20, New York, NY, USA, 2017. Association for Computing
Machinery.

[71] wrk - a HTTP benchmarking tool. https://github.com/wg/wrk. Accessed: 2020-
08-11.

[72] Gengbin Zheng, Abhinav Bhatelé, Esteban Meneses, and Laxmikant V. Kalé. Pe-
riodic Hierarchical Load Balancing for Large Supercomputers. The International
Journal of High Performance Computing Applications, 25(4):371–385, 2011.

[73] ZeroMQ. https://zeromq.org. Accessed: 2020-07-08.

109

https://github.com/lighttpd/weighttp
https://github.com/lighttpd/weighttp
https://github.com/wg/wrk
https://zeromq.org

APPENDICES

110

Appendix A

Scheduling Efficiency

A.1 Cycles per Operation

The unit cost for each benchmark, a derived metric termed cycles per operation, is esti-
mated by dividing the total number of CPU cycles expended on all cores by the total
number of messages delivered. All data is collected using the Linux perf ulility and
reported below for each micro-benchmark to assist in the investigation of scheduling
efficiency on multicore hardware. The compute benchmarks, namely Parallel Quicksort
and Cofactor Expansion, are excluded. For these benchmarks, the number of exchanged
messages is small and the dominant overhead originates from partitioning an array or
a matrix, which stresses the memory allocator rather than the messaging layer. Also,
for the Actor Creation benchmark, the number of cycles per spawn event is measured
instead. A spawn event constitutes creating a new actor and materializing it in mem-
ory (i.e., no on-demand lazy initialization) by having the actor consume a single trivial
message. For frameworks that are not allowed to postpone garbage collection (such as
React++, CAF and Proto.Actor), this also includes the cost for reclaiming resources on
actor termination.

111

0 4 8 12 16 20 24 28 32
0

2

4

6

Core Count

C
PU

C
yc

le
s

(x
10

00
)p

er
M

es
sa

ge

Ping Pong

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

2

4

6

Core Count
C

PU
C

yc
le

s
(x

10
00

)p
er

M
es

sa
ge

Thread Ring

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

10

20

30

40

50

60

Core Count

C
PU

C
yc

le
s

(x
10

00
)p

er
M

es
sa

ge

Fork-Join Throughput

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

5

10

15

20

25

30

35

Core Count

C
PU

C
yc

le
s

(x
10

00
)p

er
M

es
sa

ge

Producer-Consumer

React++ CAF Proto.Actor Akka

112

0 4 8 12 16 20 24 28 32
0

2

4

6

Core Count

C
PU

C
yc

le
s

(x
10

00
)p

er
M

es
sa

ge

Counting Actor

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

50

100

150

200

Core Count
C

PU
C

yc
le

s
(x

10
00

)p
er

Sp
aw

n

Actor Creation

React++ CAF Proto.Actor Akka

0 4 8 12 16 20 24 28 32
0

5

10

15

20

Core Count

C
PU

C
yc

le
s

(x
10

00
)p

er
M

es
sa

ge

Big

React++ CAF Proto.Actor Akka

113

Appendix B

The React++ API

B.1 The Actor Class

1 namespace rpp {
2 template<typename DomainType>
3 class actor_t {
4 public:
5 /*
6 * Default constructor. Creates an empty handle.
7 */
8 actor_t();
9 /*

10 * Copy constructor.
11 * @param actor Source handle. If the underlying context is not

↪→ empty, then increases the reference count for that actor by
↪→ one.

12 */
13 actor_t(actor_t<DomainType> const& actor);
14 /*
15 * Move constructor.
16 * @param actor Source handle. No change to the reference count.
17 */
18 actor_t(actor_t<DomainType>&& actor);
19 /*

114

20 * Allows the default behavior to be updated.
21 * @param reset If true, unbind all existing message handlers

↪→ present in the default behavior.
22 * @return A reference to the default behavior, which can be

↪→ used to bind new handlers or replace existing ones.
23 */
24 type_erased_receiver_t& defaultBehavior(bool reset = false);
25 /*
26 * Broadcasts a message to a group of actors. If IsAtom is

↪→ true, the message is treated as an atom.
27 * @param contents The message itself.
28 * @param receivers A group of recipients.
29 * @param senderID ID of the sender (optional).
30 * @return Number of actors to which the message is broadcast.
31 */
32 template<bool IsAtom = false, typename MessageType>
33 static size_t broadcast(MessageType contents,

↪→ vector<actor_t<DomainType>> const& receivers, actor_id_t
↪→ const& senderID = actor_id_t());

34 /*
35 * Prepares an actor’s context to be enabled.
36 * @return A context wrapper which allows the actor’s initial

↪→ behavior to be set before enabling the context.
37 */
38 template<typename ContextType = typed_context_t<>>
39 context_wrapper_t<ContextType> enableContext() const;
40 /*
41 * Enables the context for each actor specified in a group. The

↪→ initial behavior given by BehaviorType is adopted by all
↪→ actors in that group.

42 * @param actorIDs A group of actors identified by their unique
↪→ IDs.

43 */
44 template<typename ContextType, typename BehaviorType>
45 static void enableContexts(vector<actor_id_t> const& actorIDs);
46 /*
47 * Enables the context for each actor specified in a group. The

↪→ initial behavior given by BehaviorType is adopted by all

115

↪→ actors in that group.
48 * @param actors A group of actors referenced by handles.
49 */
50 template<typename ContextType, typename BehaviorType>
51 static void enableContexts(vector<actor_t<DomainType>> const&

↪→ actors);
52 /*
53 * Enables the context for each actor specified in a group. The

↪→ default behavior is adopted by all actors in that group.
54 * @param actorIDs A group of actors identified by their unique

↪→ IDs.
55 */
56 template<typename ContextType = typed_context_t<>>
57 static void enableContextsWithDefault(vector<actor_id_t> const&

↪→ actorIDs);
58 /*
59 * Enables the context for each actor specified in a group. The

↪→ default behavior is adopted by all actors in that group.
60 * @param actors A group of actors referenced by handles.
61 */
62 template<typename ContextType = typed_context_t<>>
63 static void

↪→ enableContextsWithDefault(vector<actor_t<DomainType>> const&
↪→ actors);

64 /*
65 * Provides access to an actor’s generic context.
66 * @return Address of the actor’s context. NULL if it is an

↪→ empty handle.
67 */
68 context_t *getContext() const;
69 /*
70 * Returns ID of an actor, if the underlying context is not

↪→ empty.
71 * @return Self ID.
72 */
73 actor_id_t getID() const;
74 /*
75 * Checks an actor’s worker affinity.

116

76 * @return The worker ID of the actor’s preferred worker.
↪→ DEFAULT_WORKER_ID is returned if the actor has no such
↪→ affinity.

77 */
78 worker_id_t getWorkerID() const;
79 /*
80 * Initialization template for an actor’s context. Allows

↪→ direct modification of the context if it has not been
↪→ enabled yet.

81 * @param args Parameter pack used to initialize the context.
↪→ The context type must have an initializer that accepts the
↪→ same number of parameters with matching types.

82 */
83 template<typename ContextType, typename... ArgTypes>
84 enable_if_t<is_base_of_v<context_t, ContextType>>

↪→ initialize(ArgTypes... args) const;
85 /*
86 * Initialization template updating context for each actor in a

↪→ group. Allows direct modification of the contexts if they
↪→ have not been enabled yet.

87 * @param actors A group of actors referenced by handles.
88 * @param args Parameter pack used to initialize the contexts.

↪→ The context type must have an initializer that accepts the
↪→ same number of parameters with matching types.

89 */
90 template<typename ContextType, typename... ArgTypes>
91 static enable_if_t<is_base_of_v<context_t, ContextType>>

↪→ initializeEach(vector<actor_t<DomainType>> const& actors,
↪→ ArgTypes... args);

92 /*
93 * Initialization template for a named behavior. Allows direct

↪→ modification of the behavior’s state if the associated
↪→ context has not been enabled yet.

94 * @param args Parameter pack used to initialize the behavior.
↪→ The behavior type must have an initializer that accepts the
↪→ same number of parameters with matching types.

95 */
96 template<typename BehaviorType, typename... ArgTypes>

117

97 enable_if_t<is_base_of_v<behavior_t, BehaviorType>>
↪→ initialize(ArgTypes... args) const;

98 /*
99 * Initialization template updating a named behavior for each

↪→ actor in a group. Allows direct modification of the
↪→ specified behavior for each actor if the associated contexts
↪→ have not been enabled yet.

100 * @param actors A group of actors referenced by handles.
101 * @param args Parameter pack used to initialize the behavior.

↪→ The behavior type must have an initializer that accepts the
↪→ same number of parameters with matching types.

102 */
103 template<typename BehaviorType, typename... ArgTypes>
104 static enable_if_t<is_base_of_v<behavior_t, BehaviorType>>

↪→ initializeEach(vector<actor_t<DomainType>> const& actors,
↪→ ArgTypes... args);

105 /*
106 * Provides access to an actor’s specialized context, the type

↪→ of which is given by ContextType.
107 * @param actor A handle.
108 * @return Address of the actor’s specialized context. NULL if

↪→ the handle is empty or the specialization does not exist for
↪→ the given actor.

109 */
110 template<typename ContextType>
111 static ContextType *map(actor_t<DomainType> const& actor);
112 /*
113 * Maps an actor ID to a new handle. If the underlying context

↪→ is not empty, then increases the reference count for that
↪→ actor by one.

114 * @param actorID The actor’s unique ID.
115 * @return A handle.
116 */
117 static actor_t<DomainType> map(actor_id_t const& actorID);
118 /*
119 * Migrates an actor to a different cluster.
120 * @param clusterID ID of the destination cluster.
121 * @return A flag that indicates if migration was successful.

118

122 */
123 bool migrate(cluster_id_t clusterID);
124 /*
125 * Checks if the underlying context is empty.
126 * @return True if this is not an empty handle.
127 */
128 operator bool() const;
129 /*
130 * Copy assignment.
131 * @param actor Source handle. If the underlying context is not

↪→ empty, then increases the reference count for that actor by
↪→ one.

132 */
133 actor_t<DomainType>& operator=(actor_t<DomainType> const&

↪→ actor);
134 /*
135 * Move assignment.
136 * @param actor Source handle. No change to the reference count.
137 */
138 actor_t<DomainType>& operator=(actor_t<DomainType>&& actor);
139 /*
140 * The send operator for generic messages (i.e., non-atoms).
141 * @param contents The message itself.
142 * @return A self-reference, allowing this operator to be

↪→ chained.
143 */
144 template<typename MessageType>
145 const actor_t<DomainType>& operator|(MessageType contents)

↪→ const;
146 /*
147 * The send operator for atoms.
148 * @param contents The atom itself.
149 * @return A self-reference, allowing this operator to be

↪→ chained.
150 */
151 template<typename MessageType>
152 const actor_t<DomainType>&

↪→ operator<<(typed_si_message_t<MessageType> const& contents)

119

↪→ const;
153 /*
154 * The send operator for promises.
155 * @param p The promise itself.
156 * @return An asynchronous future linked to the promise.
157 */
158 template<typename OutputType, typename... InputType>
159 future_t<OutputType> operator+(Promise<OutputType,

↪→ InputType...>& p);
160 /*
161 * The send operator for trails.
162 * @param generator A function that creates or updates the

↪→ trail.
163 * @return A self-reference, allowing this operator to be

↪→ chained.
164 */
165 template<typename GeneratorType>
166 enable_if_t<is_same_v<result_of_t<GeneratorType()>, trail_t*>,

↪→ actor_t<DomainType> const&>
167 operator||(GeneratorType&& generator) const;
168 /*
169 * Returns a reference to the associated job. Unique for each

↪→ actor.
170 */
171 runnable_t& operator*() const;
172 /*
173 * Returns the address of the associated job. Unique for each

↪→ actor.
174 */
175 runnable_t *operator->() const;
176 /*
177 * Replies to a synchronous request issued by another actor.
178 * @param contents The reply itself.
179 * @param original The request to which this reply is directed.
180 * @param senderID ID of the actor that sends the reply

↪→ (optional).
181 * @return A flag indicating whether delivery was successful.
182 */

120

183 template<typename MessageType>
184 bool reply(MessageType contents, const message_t *original,

↪→ actor_id_t const& senderID = actor_id_t()) const;
185 /*
186 * Resets this handle. If the underlying context is not empty,

↪→ then decreases the reference count for that actor by one.
187 */
188 void reset();
189 /*
190 * Returns a migrated actor to its origin.
191 * @return A flag indicating whether the operation was

↪→ successful.
192 */
193 bool returnToOrigin();
194 /*
195 * Pushes a generic message (i.e., non-atom) to the actor’s

↪→ mailbox, unblocking it if necessary.
196 * @param contents The message itself.
197 * @param senderID ID of the sender.
198 * @return A flag indicating whether the operation was

↪→ successful.
199 */
200 template<typename MessageType>
201 bool send(MessageType contents, actor_id_t const& senderID =

↪→ actor_id_t()) const;
202 /*
203 * Signs a message stream with a sender ID. All messages

↪→ delivered through this handle carries the same sender ID.
204 * @param streamSignature_ ID of the sender.
205 */
206 void sign(actor_id_t const& streamSignature_);
207 /*
208 * Creates a new actor.
209 * @param props An instance of the props_t class which

↪→ specifies the mailbox type and carries location hints.
210 * @param args Parameters to the constructor.
211 * @return A handle to the spawned actor.
212 */

121

213 template<typename ContextType = typed_context_t<>,
↪→ mailbox_type_t MType, typename... ArgTypes>

214 static actor_t<DomainType> spawn(props_t::with<MType> const&
↪→ props, ArgTypes... args);

215 /*
216 * Creates a group of actors, all having the same context type.
217 * @param props An instance of the props_t class which

↪→ specifies the mailbox type and carries location hints.
218 * @param nActors Number of actors in the group.
219 * @param args Parameters to be forwarded to each of the

↪→ constructors.
220 * @return A group of handles referencing the spawned actors.
221 */
222 template<typename ContextType = typed_context_t<>,

↪→ mailbox_type_t MType, typename... ArgTypes>
223 static vector<actor_t<DomainType>>

↪→ spawnGroup(props_t::with<MType> const& props, local_id_t
↪→ nActors, ArgTypes... args);

224 /*
225 * Applies restrictions on message delivery. A restricted

↪→ handle delivers messages only if the number of messages in
↪→ the target mailbox is within the given range.

226 * @param low Cancel delivery if the message count is below
↪→ this threshold.

227 * @param high Cancel delivery if the message count exceeds
↪→ this threshold.

228 * @param handle An unrestricted handle.
229 * @return A restricted handle.
230 */
231 static throughput_t throttle(uint64_t low, uint64_t high,

↪→ actor_t<DomainType> const& handle);
232 };
233 }

Listing B.1: Declaration of the Actor class.

122

B.2 The System Class

1 namespace rpp {
2 class system_t {
3 public:
4 /*
5 * Binds a tag to an ID.
6 * @param id An ID.
7 * @param tag A tag.
8 */
9 void bind(actor_id_t const& id, tag_t const& tag);

10 /*
11 * Clear scheduling statistics.
12 */
13 void clearStats() const;
14 /*
15 * Checks whether an actor exists.
16 * @param actorID The ID of the actor.
17 * @return True if the actor is alive.
18 */
19 bool exists(actor_id_t const& actorID) const;
20 /*
21 * Returns a map that shows how many actors are alive for each

↪→ cluster.
22 */
23 map<cluster_id_t, uint64_t> getActorCount() const;
24 /*
25 * Returns the number of actor clusters in the system.
26 */
27 cluster_id_t getClusterCount() const;
28 /*
29 * Returns a reference to the registry of tags.
30 */
31 tag_registry_t& getTagRegistry();
32 /*
33 * Returns a reference to system timer.
34 */

123

35 timer_t& getTimer();
36 /*
37 * Returns a map that shows how many worker threads are

↪→ assigned to each cluster.
38 */
39 map<cluster_id_t, worker_id_t> getWorkerCount() const;
40 /*
41 * Directly raise a worker thread. May be used for performance

↪→ optimization.
42 * @param clusterID ID of the cluster where the worker thread

↪→ resides.
43 * @param workerID ID of the worker thread.
44 */
45 void raise(cluster_id_t clusterID, worker_id_t workerID);
46 /*
47 * Generates and returns a report on scheduling statistics.
48 */
49 string report() const;
50 /*
51 * Restarts the actor system.
52 * @param policy I/O policy. Specified as NULL when no such

↪→ policy is available.
53 * @param args Parameter pack of positive integers that

↪→ designate worker assignment for each cluster. For example,
↪→ if 3 integers X, Y, Z are specified, then 3 clusters are
↪→ created with X, Y and Z worker threads respectively.

54 */
55 template<typename... ArgTypes>
56 void restart(io_policy_t *policy, ArgTypes... args);
57 /*
58 * Restarts the actor system.
59 * @param policy I/O policy. Specified as NULL when no such

↪→ policy is available.
60 * @param nClusters Number of clusters to be created.
61 * @param nWorkersPerCluster Number of worker threads to be

↪→ assigned to each cluster.
62 */

124

63 void restartWithConfiguration(io_policy_t *policy, cluster_id_t
↪→ nClusters_, worker_id_t nWorkersPerCluster);

64 /*
65 * Restarts the actor system with a configuration file. Path to

↪→ the configuration file should be specified via
↪→ environment::configPath.

66 * @param policy I/O policy. Specified as NULL when no such
↪→ policy is available.

67 */
68 void restartWithConfiguration(io_policy_t *policy);
69 /*
70 * Shuts down the system.
71 */
72 void shutdown();
73 /*
74 * Removes the association between an ID and a tag.
75 * @param id An ID.
76 * @return tag A tag.
77 */
78 void unbind(actor_id_t const& id, tag_t const& tag);
79 /*
80 * Blocks the caller until all actors have quit.
81 */
82 void waitForAll() const;
83 };
84 }

Listing B.2: Declaration of the System class.

125

B.3 I/O Policy

1 namespace io {
2 struct io_policy_t {
3 /*
4 * Executes this handler when a given worker thread on a given

↪→ cluster is about to block in kernel space.
5 * @param clusterID ID of the cluster.
6 * @param workerID ID of the worker.
7 * @return A flag indicating whether the policy was

↪→ successfully applied.
8 */
9 virtual bool onBlock(cluster_id_t clusterID, worker_id_t

↪→ workerID) = 0;
10 /*
11 * Executes this handler when a descriptor registered in

↪→ cluster-specific interest set has become ready for I/O.
12 * @param clusterID ID of the cluster.
13 * @param workerID ID of the worker.
14 * @param events Provides event details.
15 * @return A flag indicating whether the policy was

↪→ successfully applied.
16 */
17 virtual bool onEvent(cluster_id_t clusterID, worker_id_t

↪→ workerID, io_event_t const& event) = 0;
18 /*
19 * Executes this handler when a given worker thread on a given

↪→ cluster has resumed idle state because its ready queue is
↪→ empty.

20 * @param clusterID ID of the cluster.
21 * @param workerID ID of the worker.
22 * @return A flag indicating whether the policy was

↪→ successfully applied.
23 */
24 virtual bool onIdle(cluster_id_t clusterID, worker_id_t

↪→ workerID) = 0;
25 /*

126

26 * Executes this handler when the system has just launched a
↪→ cluster-specific scheduler.

27 * @param clusterID ID of the cluster.
28 * @return A flag indicating whether the policy was

↪→ successfully applied.
29 */
30 virtual bool postLaunch(cluster_id_t clusterID) = 0;
31 /*
32 * Executes this handler when the system is about to launch a

↪→ cluster-specific scheduler.
33 * @param clusterID ID of the cluster.
34 * @return A flag indicating whether the policy was

↪→ successfully applied.
35 */
36 virtual bool preLaunch(cluster_id_t clusterID) = 0;
37 };
38 }

Listing B.3: Declaration of the I/O policy.

127

	List of Figures
	List of Tables
	The Actor Model
	Introduction
	Properties of an Actor System
	Semantics
	Usage Patterns
	Related Work
	Implementation
	Design Considerations
	Existing Frameworks

	React++
	Scheduling
	I/O in the Actor Context

	The Messaging Layer
	Mailboxes and Channels
	Behaviors and Contexts
	Initialization
	Creating an Actor
	Messaging Semantics: Send
	Assuming a Behavior
	Messaging Semantics: Receive
	Actor Termination
	Promise, Future and Barrier
	Selection Tags
	Message Trail
	Semantics
	Implementation

	User-space Blocking
	The Message Dispatcher
	Usage Scenario: Counting Actor

	Scheduling
	Actor Clusters
	Dispatchers
	State Transition
	Priority Assignment
	Load Distribution
	Implementation of RWS in React++
	Actor Placement

	The I/O Subsystem
	Related Work
	Event Notification
	The I/O Subsystem
	Event Classification
	Rearming L0 Generators

	The Default I/O Policy
	Extending the I/O Policy
	The Plaintext Experiment
	Actors as Event Handlers
	Control Flow
	Implementation

	Evaluation
	Micro-Benchmarks
	Ping Pong and Thread Ring
	Fork Join: Throughput
	Producer-Consumer
	Counting Actor
	Actor Creation
	Big
	Parallel Quicksort
	Cofactor Expansion

	I/O Benchmarks
	Application Performance
	Discussion

	Future Work
	Conclusion
	References
	APPENDICES
	Scheduling Efficiency
	Cycles per Operation

	The React++ API
	The Actor Class
	The System Class
	I/O Policy

