
Systems for Graph Extraction from
Tabular Data

by

Nafisa Anzum

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

© Nafisa Anzum 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Connections amongst real-world entities provide significant insights for numerous real-
life applications in social networks, semantic web, road maps, finance, among others.
Graphs are perhaps the most natural way to model such connections in application data.
However, in many enterprises, an application data is still primarily stored in an RDBMS
in a tabular format and users extract graphs out of an RDBMS and store them in special-
ized graph processing systems. As a result, many users face two major challenges before
conducting any graph analysis. First, extracting graphs from an RDBMS requires build-
ing an ETL pipeline, which can require a significant amount of time. Second, keeping
the extracted graph in the graph processing system, such as a graph database manage-
ment system (GDBMS), in sync with the original data in the RDBMS requires developing
additional non-trivial synchronization code. In this thesis, we study and address these
two challenges and present two software systems, GraphWrangler and R2GSync, that we
have developed to solve these challenges. GraphWrangler is an interactive system that
streamlines the ETL pipeline. Users connect to an RDBMS using GraphWrangler and
with several simple interactions, such as dragging and dropping of rows and columns and
drawing edges on the screen, they describe table-to-graph mappings. This way, users can
describe the graphs they would like to extract without writing any custom scripts. In
addition, GraphWrangler allows user to immediately visualize their tables in the form of
a graph. Our second system, R2GSync, uses the mappings of an extracted graph and
maintains a consistent, i.e., in sync, copy of this graph in a GDBMS as updates happen to
the original RDBMS from which the graph was extracted. Querying the extracted graph
inside the GDBMS requires a new querying functionality inside the GDBMS that we call
edge views. We describe our implementation of edge views and several optimizations to
make queries that contain edge views more efficient.

iii

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor, Professor Semih
Salihoglu, for his constant support and guidance, especially during a very difficult time of
my life. This thesis would not have been possible without his relentless motivation and
inspiration. Semih introduced me to the world of data systems and has been consistently
present every step of the way in my learning process. He has taught me everything I know
about good research work, presentation, and academic writing. His research group has a
collaborative learning environment and he ensures a good vibe among his students. I am
blessed to be a part of his research group and to have the opportunity to continue my
learning under his care for my Ph.D.

I want to thank my friend and colleague, Amine Mhedhbi, who selflessly helped me
whenever I needed and taught me a lot of things about good research and academic writing.
His valuable insights and feedback played a big part in bringing my thesis to fruition.
Furthermore, I want to thank my friend, Aida Sheshbolouki for all the help and support
she provided in the last two years.

I also want to express my appreciation to my thesis readers, Professor Daniel Vogel and
Professor Xi He, for taking out valuable time from their busy schedules to read my thesis
and provide their valuable feedback.

I would like to thank my parents, Nazmum Nahar and Matiur Rahman, for their uncon-
ditional love and support. I am eternally grateful to them for teaching me the importance
of good education, for putting me through the best schools throughout my life, and al-
ways believing in me to go further in life. Furthermore, I want to thank my soul sister,
Johra Moosa, for giving me constant emotional support and making my life at Uwaterloo
comforting.

Last but not least, I would like to thank my husband, Mohammad Rashidujjaman Rifat,
for always being there for me and loving me unconditionally. His constant support and
motivation kept me going and helped me to have a positive mindset in every circumstance.
He has been the biggest source of happiness in my life, which motivates me every day to
work harder to achieve my goals.

iv

Dedication

This is dedicated to my parents and my husband.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 GraphWrangler: Streamlining Graph Visualization and ETL 2

1.2 R2GSync: RDBMS-GDBMS Synchronization 3

1.3 Thesis Outline . 4

2 GraphWrangler 5

2.1 System Functionalities . 5

2.1.1 Wrangling Nodes . 6

2.1.2 Wrangling Edges . 8

2.1.3 Wrangling Properties . 9

2.1.4 Other Interactions . 11

2.2 Predictive Interaction and Ranking . 11

2.2.1 Searching of Edge Types . 12

2.2.2 Ranking of Edge Type Definitions 12

2.3 Achieving Interaction Speed for Large Datasets 13

2.3.1 In-Memory Cache . 14

2.3.2 Searching for edge types using the In-Memory Cache 17

2.4 Implementations . 17

vi

3 R2GSync 20

3.1 Design Space for Automatic RDBMS-GDBMS Synchronization 20

3.2 R2GSync and Edge Views . 24

3.2.1 Direct Mapping of Relational Tables into a Graph 24

3.2.2 Mapping Each Update in the RDBMS to the Corresponding Update
in the GDBMS . 26

3.2.3 Edge Views . 27

3.3 Optimizations for EdgeViewExtend/Intersect 30

3.3.1 Early Distinct . 30

3.3.2 Early Intersect . 33

3.4 Evaluation of Query Processing With Edge Views 35

3.4.1 Setup . 35

3.4.2 Comparative Performance Analysis 37

4 Related Work 43

4.1 Extracting Graphs from RDBMS . 43

4.2 RDBMS-GDBMS Synchronization . 45

5 Conclusions and Future Work 46

References 48

vii

List of Figures

2.1 Main interface of GraphWrangler . 6

2.2 GraphWrangler overview . 7

2.3 Edge type predictions. 8

2.4 Interface for selecting an edge property . 10

2.5 Neighborhood of the ‘Waterloo’ node. 15

2.6 Bi-directional BFS steps . 16

2.7 GraphWrangler System Architecture . 18

3.1 Design spaces for automatic synchronization. 22

3.2 The final query execution plans that replace the Extend operator for edge
views with EdgeViewExtend operator having sub-plans for query QT . . . 29

3.3 A Query plan for query QT with an EVE/I-ED operator that computes an
early distinct on the product node . 31

3.4 Implementation of Early Intersect Optimization in EVE/I operator 32

3.5 Query run time comparison between Default and Early Distinct. This is a
histogram of number of queries with different amount of speed-ups or slow
downs. Each bar is associated with an improvement range (l,r) and the
height of the bar is the number of queries on which early distinct improves
the default implementation within a factor k, such that l≤k<r. 40

3.6 Query run time comparison between Early Distinct and Early Intersect.
This is a histogram of number of queries with different amount of speed-
ups or slow downs. Each bar is associated with an improvement range (l,r)
and the height of the bar is the number of queries on which early intersect
improves the early distinct implementation within a factor k, such that l≤k<r. 41

viii

List of Tables

3.1 A design space for automatic synchronization 21

3.2 Dataset Description . 36

3.3 Geometric mean of the execution time (in ms) for different edge view queries 38

3.4 Execution details of the default, early distinct, and early intersect optimiza-
tions for selected query instances. Here P1’=(P1-P), P2’=(P2-P), and the
columns with header ‘r’ denotes runtime. Q1-Q5 are type Qco−actor, Q6-Q10
are type Qsame−genre, Q11-Q15 are type Qsame−director, and Q16-Q20 are type
Qco−purchaser, . 39

ix

Chapter 1

Introduction

Graphs are perhaps the most natural data structure to represent interconnections among
entities in app data from many domains such as social networks, road networks, semantic
webs, and communication networks. In graph database management systems (GDBMSs),
application data is modeled by nodes representing the entities and by directed edges repre-
senting the relationships between entities. GDBMSs manage data for a very wide range of
analytical applications [33]. For example, Twitter searches for diamonds in their follower
network for recommendations [14], clique-like structures in social networks indicate com-
munities [30], and cyclic patterns in transaction networks indicate fraudulent activity [32].
For such applications, users rely on GDBMSs that are optimized for detecting complex
subgraph patterns [26].

Despite the popularity of graph data analytics among users, GDBMSs are rarely the
main system of record in enterprises. In a user survey, Sahu et. al., [33] revealed that
enterprises usually maintain two separate databases, one for transactional purpose, which
is the main system of record, and another for analytical applications, which is read-only.
GDBMSs are typically secondary systems supporting read-heavy analytical applications
such as fraud detection or recommendations, whereas RDBMSs maintain the transactional
data. Therefore, the graph data stored in GDBMSs are often replicated and extracted
from RDBMSs [33].

Keeping replicas of relational data in a graph format has two challenges for enter-
prises that motivate the research in this thesis. First, since data is not readily available
in the graph format, most graph users go through a cumbersome extraction, transforma-
tion, load (ETL) pipeline. Second, maintaining the GDBMS alongside the primary data
storage requires keeping two concurrent systems in sync. In this thesis, we study and

1

address these two challenges. Specially we develop two software artifacts: (i) GraphWran-
gler that streamlines the ETL pipeline by allowing users interactively extract graphs out
of relational tables, and (ii) R2GSync that keeps the transformed graph in the GDBMS
synchronized with the source RDBMS. We also propose several modifications and opti-
mizations to GDBMSs to support queries over the graphs extracted from RDBMS through
R2GSync.

In the rest of this introductory chapter, we first give an overview of the functionalities
of our GraphWrangler system in Section 1.1. Next, we briefly discuss the RDBMS to
GDBMS synchronization problem and give an overview of our R2GSync system . Finally,
we outline the rest of the thesis in Section 1.3.

1.1 GraphWrangler: Streamlining Graph Visualiza-

tion and ETL

A recent survey [33] of users of graph technologies [33] revealed two interesting aspects of
how graph technology is situated in the software stack of enterprises:

1. The primary copy of the data stored in graph-processing software, such as a GDBMS,
an RDF system, or a graph visualization software, is often stored in an RDBMS. To
get the data into the GDBMS, users first extract the graph data from relational
tables, transform the data into a graph structure, and finally, load the transformed
data into the graph software. Developing this ETL pipeline is a time-consuming,
resource-intensive, and costly task. Usually, users write scripts to extract the desired
records to represent the set of entities and relationships for their applications from
relational tables. These records are then transformed into a graph structure, before
being loaded into a graph software. Often users go through a cycle of writing script
to extract a specific graph, manual debugging to ensure the correctness of the script,
visualizing a sample of the extracted graph to ensure the graph structure that is most
appropriate for their application. This whole process may take several iterations,
making it troublesome and time-consuming.

2. Many users visualize their graphs, i.e., graphs are a form of visualization for relational
data.

To streamline this ETL process and allow users to get a graph view of the tabular
data they store in the RDBMS, we developed an interactive system named GraphWrangler

2

(GW). GW lets users directly connect to their RDBMS and provide a tabular view of their
data. Through visual interactions, such as dragging and dropping of rows or columns, users
transform the tables into a set of nodes and edges. Users’ actions are internally expressed
as rules that transform tabular data into a node, edge, or a property on a node or an
edge. These rules are expressed in the system’s data transformation language which is a
subset of SQL that consists of select, join, and aggregation queries. Within GW’s data
transformation language, users can express different types of node and edges. Each node
and edge type correspond to the result of an SQL query.

Actions that create nodes and properties map to a single transformation rule that cor-
respond to aggregations from a single table. For creating edges, GW adopts the Predictive
Interaction framework [15]: users draw an edge between two nodes on the UI and the
system makes predictions about the rule connecting the nodes. For example, two nodes
representing customers Alice and Bob could be connected because they bought the same
item or they live in the same city. Internally, these rules correspond to different ways to
join the tuples that Alice and Bob were created from. These rules are presented to the
user in a human-readable format and the user selects one of the rules.

After defining the nodes and edges through the interactive system, GW auto-generates a
script that extracts the whole graph from the RDBMS. GW currently supports wrangling
graphs out of MySQL and generates scripts to import graphs to GraphflowDB [21], a
prototype in-memory graph database that is developed at the University of Waterloo.
Thus GW solves the problem of complex ETL pipeline providing two main objectives: (i)
immediate graph view on tabular data; and (ii) easy and streamlined way of transforming
data into GDBMS for advanced analytics.

1.2 R2GSync: RDBMS-GDBMS Synchronization

The script that is generated by GW is useful for bulk extraction and loading of a graph
database from a relational database. One-time data loading may be enough for applica-
tions that need to process snapshots of the database in relatively infrequently intervals.
Many applications, however, require keeping a fresh copy of the relational data in a graph
processing system. A straightforward technique for keeping two systems in sync is to pe-
riodically repeat the ETL process and load fresh snapshots of the graph into the GDBMS.
However this is not adequate for many applications that require a snapshot after every
transaction. This is especially the case for applications in fraud detection where detect-
ing fraudulent patterns immediately as transactions occur is critical. For example, an
e-commerce website’s fraud detection application could require searching for a clique of

3

users buying similar items immediately after the last transaction forming the clique is
committed, to ensure that these transactions are aborted quickly.

In the next part of this thesis, we study the problem of keeping an RDBMS, which is
the main transactional data source, in sync with a GDBMS that stores and serves a graph
data that is extracted from the RDBMS in a setting where the graph copy needs to be fresh
very frequently, e.g., upon each update to the RDBMS. We first describe three possible
designs for a system that keeps an RDBMS and GDBMS in sync, the pros and cons of
each design, and the node and edge types each design can support. We then describe our
implementation of one of these designs that we call R2GSync.

R2GSync supports a subset of, but perhaps the most commonly used, node types
that GW supports. These are aggregation-free node types where each row of a table
corresponds to a node. For edges that are results of multi-hop joins between two nodes,
R2GSync supports a set of “raw” nodes and edges that may not be visible to the application
developers but are maintained to avoid incrementally maintaining results of these joins as
edges in the GDBMS. Instead of querying raw edges, the application developer queries
edge views, which are virtual edges that correspond to the edge type expressed in the data
transformation language of GW. We then describe our implementation of edge views inside
GraphflowDB and two optimization opportunities that GDBMSs have when evaluating
queries over edge views: (i) pushing down distinct aggregation operations; and (ii) pushing
down early intersection operators for cyclic queries that involve the intersections of two edge
views. We experimentally demonstrate that query performance can improve significantly
through these two optimizations.

1.3 Thesis Outline

The outline of this thesis is as follows:

• In chapter 2, we investigate the graph ETL pipeline and describe our proposed in-
teractive tool, GraphWrangler, which aims to streamline this cumbersome process.

• Chapter 3 discusses the different approaches for incremental maintenance of the
GDBMS and presents the implementation details of the R2GSync system for this
purpose.

• In chapters 4, we discuss the related work.

• Chapters 5 discusses conclusion and future work.

4

Chapter 2

GraphWrangler

In this chapter, we explain the functionalities and technical details of our interactive
data transformation tool, GraphWrangler (GW). We start in Section 2.1 by providing
an overview of the main functionalities of GW. We describe GW’s predictive interaction
framework in Section 2.2. GW adopts several strategies to optimize the interaction speed,
while interacting with large dataset, which is explained in Section 2.3. Finally, in Section
2.4, we describe the implementation of the GW system in detail.

Throughout, we assume a database consisting of relations R1, ..., Rn, and cols(Ri) are
the columns in Ri’s schema. Our running examples use a database of three relations
with the following schemas: Product(PID, PName), Customer(CID, CName, City), and
Order(OID, CID, PID, Amount). The Product relation contains all the products of the
system, where each product is uniquely identified by the primary key, PID. The information
of each customer is stored in the Customer relation having CID as the primary key of the
relation, CName expressing the name of the customer, and City indicating a place, where
the customer lives in. Finally, the Order relation holds every purchase information made
by each customer. Here, PID and CID in the Order table are foreign keys of Product and
Customer tables respectively.

2.1 System Functionalities

GW helps users interactively extract graphs out of the relational tables. Adopting the
terminology of “wrangling” [20], used for extracting tables from other sources, we refer
to this ETL processes as graph wrangling. Figure 2.1 shows the main interface of GW.

5

Figure 2.1: Main interface of GraphWrangler

Wrangled graphs in GW consist of a set of nodes, edges, and key-value properties on nodes
and edges. The user starts interacting with the system by providing the authentication
information of their RDBMS and a specific database name from which the user is interested
in extracting graphs. GW then connects to that database and collects information about
existing tables, their column names, data types of each column, the primary key of each
table, and all of the foreign key relations. This information later used to guide users
throughout the wrangling process.

GW provides three major functionalities: 1) wrangling nodes, 2) wrangling edges, and
3) wrangling node and edge properties, which in combination let users define a graph from
the relational tables. Each functionality is associated with a set of interactions, which
maps to GW’s data transformation language. Figure 2.2 shows the functional overview of
GW. GW also lets users visualize and explore a portion of their defined graphs on top of
relational tables as shown in Figure 2.1. Finally, GW auto-generates a script that extracts
the entire graph from the relational tables and transforms them into a graph structure.

2.1.1 Wrangling Nodes

Users can create a node by highlighting one or more cells of a single row (possibly the
entire row) in a single table and dragging and dropping the cells on GW’s node-link panel.

6

Figure 2.2: GraphWrangler overview

This action draws a single node v on the panel, which is internally associated with three
pieces of information:

• Node Type: Each node v is of a particular node typeNTk, which is a pair (Ri, cols(NTk)
⊆ cols(Ri)) indicating the Ri and Ri’s columns that v was wrangled from. We use
v.rel and v.cols to refer to Ri and cols(NTk), respectively.

• Values: This is a tuple v.vals = (val1, ..., valt), where t = |v.cols|, indicating the
values of v.cols identifying v.

• Lineage: v’s lineage v.lin is the set of tuples from Ri with the same values as v for
v.cols, i.e., v.lin=σv.cols=v.valsRi.

Example 2.1: Suppose the user drag and drops an entire Customer row t5=(C5, Alice,
Waterloo) to the panel. GW interprets this as the entire row of the Customer table repre-
senting a node v, so v’s type is NT1=(Customer, {CID, CName, City}), v.vals= (C5, Alice,
Waterloo), and v.lin={t5}.

Example 2.2: If the user drag and drops only the Waterloo cell in t5, this is inter-
preted as each unique City value being a node. So v’s type is NT2=(Customer,{City}),

7

Figure 2.3: Edge type predictions.

v.vals=(Waterloo), and v.lin=σCity=WaterlooCustomer, which includes t5 as well as the
other tuples whose City values equal Waterloo.

Node types are given a human readable name by the users, e.g., “Customer” or “City”
as shown in Figure 2.1. If the number of nodes of a particular type are small, users can click
a button and extract all nodes of this type and display them in the panel. For example,
creating all NT2 City nodes could add Kitchener, Toronto, and Guelph nodes to the panel
assuming only those cities appearing in the table.

2.1.2 Wrangling Edges

Users can create edges that connect nodes by defining an edge type which expresses a way
to join the tuples in the lineages of the nodes. Users define edge types through a predictive
interaction with GW (explained momentarily). Formally, an edge type ETk is an equi-join
query Q and connects two nodes v1 and v2 if the output of Q is non-empty. Q is formally
expressed as follows (jc stands for join column, and in jcxL and jcxR , L and R stand for
Left and Right):

v1.lin ./
jcv1=jc1L

Ri1 ./
jc1R=jc2L

Ri2 · · ·Rit ./
jctR=jcv2

v2.lin (2.1)

8

Above: (i) jcv1 ∈ cols(v1.rel), jcv2 ∈ cols(v2.rel), and jcxL , jcxR ∈ cols(Rij); (ii) t can
be 0, meaning a direct join between the tuples in v1.lin and v2.lin on columns jcv1 and
jcv2 ; and (iii) Rij are not necessarily distinct relations. In our implementation, edges are
undirected but a direction to edges can easily be given e.g., the left node v1 in Equation 2.1
could be the source.

Example 2.3: Suppose a user has created a node v1 representing customer Alice, with lineage
t5=(C5, Alice, Waterloo), and a v2 representing customer Bob, with lineage t7=(C7, Bob,
Waterloo). If the user wants to add an edge between v1 and v2 because Alice and Bob are
from the same city, the formal edge type would be ETSameCity=v1.lin ./

City=City
v2.lin, where

both jcv1 and jcv2 are City and there is no other relation involved in the join (so t is 0 in
Equation 2.1).

Example 2.4: Consider now adding an edge between Alice and Bob because they have ordered
the same product. This can be represented by an edge type ETCopurchase (below Cu, Or, and
Pr are respectively the Customer, Order, and Product tables):

v1.lin ./
Cu.CID=Or.CID

Or ./
Or.PID=Pr.PID

Pr ./
Pr.PID=Or.PID

Or ./
Pr.CID=Cu.CID

v2.lin (2.2)

Predictive Interaction: Users define edge types interactively by drawing an edge between
two existing nodes v1 and v2, and GW starts searching for different queries that can join
v1.lin and v2.lin. The valid edge type definitions GW finds are ranked and presented to
the user in a human readable way, as shown in Figure 2.3. The user then selects one of
these predictions to indicate the correct definition. We explain more about the prediction
mechanisms in Section 2.2.

2.1.3 Wrangling Properties

GW supports two node property types and one edge property type. Users define properties
through an interface by selecting a column from a drop-down list. For node aggregation
and edge aggregation properties an aggregation function is also selected (explained mo-
mentarily). Figure 2.4 shows the interface for wrangling an edge property.

Node Column Properties

Any column value in v.cols can be added as a property, e.g., in our first running example,
we can give Alice the properties City=Waterloo or CName=Alice. Internally we keep the

9

Figure 2.4: Interface for selecting an edge property

column name on which the property is defined.

Node Aggregation Properties:

These properties are the results of aggregation queries on the lineages of a node: v.lin. Node
aggregation properties are internally expressed as a pair (key, γA, fn), where key is the
string of the property, γA is an optional numeric-valued column to aggregate, and fn is an
aggregation function. The value of the property corresponds to the result of the relational
algebra expression γv.cols,fn(γA)v.lin (so we group by all columns). GW supports count,
sum, max, and min functions. The simplest example counts the size of each node’s lineage
(so translates to a count star query). For other aggregations, γA must be a numeric-valued
column. Consider our example where we wrangled City nodes from the Customer table.
Suppose the table had a Salary column. We could add a node property for the total salaries
of customers in each city with a node aggregation property (Total Salary, Salary, sum).

10

Edge Aggregation Properties

These are expressed the same way as node aggregation properties but the values are ag-
gregations on the results of the joins defining the edge types. Edge aggregation properties
are internally expressed as a set (key, γR, γA, fn), where key is the string of the property,
γR is an optional relation that has aggregated column, γA is an optional numeric-valued
column from relation γR to aggregate, and fn is an aggregation function. The value of the
property corresponds to the result of the relational algebra expression:

γfn(γR,γA)(v1.lin ./
jcv1=jc1L

Ri1 ./
jc1R=jc2L

Ri2 · · ·Rit ./
jctR=jcv2

v2.lin) (2.3)

Similar to the node aggregation properties, the function fn can be count, sum, max, or
min. Consider our example where we wrangled ETCopurchase edge between two customers
Alice and Bob. We can set a “count” property on the ETCopurchase edge, which shows the
number of times both customers bought the same product.

2.1.4 Other Interactions

Users can interact with GW in three other ways. First, users can type keywords or pred-
icates, e.g., “name = Alice”, into the search boxes above the tables to get specific rows
(shown in Figure 2.1). Second, users can click on a node v1 and an “Expand” button,
which will wrangle all 1st degree neighbors of v1 based on the existing node and edge
types; further clicks expand the graph to higher degree neighbors. This enables users to
quickly put a graph view on their relational data, and visualize and explore their tabular
data as a graph. Third, users can automatically obtain a script to import all nodes and
edges from the RDBMS to GraphflowDB [21], for more advanced graph querying. This
streamlines the ETL pipeline of transforming data from relational tables into graphs that
can be imported to a graph-specific software [33].

2.2 Predictive Interaction and Ranking

GW’s predictive interaction framework discovers possible connections between two nodes
and uses a ranking algorithm to show the strongest connections at the top. The predictive
interaction framework is triggered when the user draws an edge drawn between two nodes.
This action indicates the system that there might be a join connecting these two node

11

lineages. GW then searches for all possible relations between these two nodes that exist
in the RDBMS and present them in the human-readable format as suggestions. The
suggestions are presented based on a ranking algorithm, which is described in Section 2.2.2.

2.2.1 Searching of Edge Types

GW inspects the schemas of the tables in the database and generates a set of SQL queries
that fit the join template in Equation 2.1. This process involves enumerating different
column combinations that can join (e.g., have the same data type) in v1.rel, v2.rel and
other tables checking whether the output of the corresponding SQL query is empty or not
issued with a LIMIT 1 clause.

For databases with a large number of tables or columns, this search can be very expen-
sive. To present predictions at interactive speeds, GW initially takes two steps: (1) GW
issues the queries in increasing order of t and presents them as they are found. This guar-
antees that if there are edge definitions with small values of t, say t=0, the user always sees
some initial suggestions. (2) When the lineages are small in size, GW keeps the lineages in
its frontend and performs the search for t = 0, i.e., direct joins between v1.lin and v2.lin,
without querying the RDBMS. This is a common case, e.g., in our first running example
both Alice and Bob have single-tuple lineages.

GW also converts joins to selections when performing the search for t = 1. Suppose our
database has a Friend(CID1, CID2) table indicating the friendships between customers.
Consider checking whether or not Alice and Bob can be connected because they are friends.
This edge type involves 1 intermediate relation but can be checked with the query: Select *
FROM Friends WHERE CID1=C5 AND CID2=C7, avoiding any joins. These steps allow
GW to operate at interactive speeds on large tables, with millions of rows. Finally, GW
currently limits the search to joins involving at most two tables. Users manually specify
more complex edge definitions through a separate interface (by clicking the “Not Found?”
button in Figure 2.3).

2.2.2 Ranking of Edge Type Definitions

Two nodes can be connected through multiple relations. Edge type definitions are ranked
using three heuristics in this order:

1. Definitions with smaller t values rank higher.

2. Definitions with foreign key relations rank higher.

12

3. Definitions, whose join queries have more outputs rank higher, interpreted as stronger
links between nodes.

The ranked edge type definitions are then presented before users showing the higher-ranked
definitions at the top. A higher ranked edge definition indicates a stronger and shorter
connection.

2.3 Achieving Interaction Speed for Large Datasets

For large datasets, GW’s predictive interaction fails to generate suggestions within the
user’s interactive speed. Recall in Section 2.1.2 while defining an edge between two nodes,
the predictive interaction framework generates a set of queries to the RDBMS to find all
possible join between the nodes, from where users select the desired edge type. Searching
for possible edge types from an interaction is a costly process. The strategies described in
Section 2.2.1 keep the process within the interaction speed for small datasets. However, for
datasets with large relations, executing a single join query having two relations can take
several seconds. While searching for edge type, the system executes multiple of join-queries
having different parameters and having multiple lengths of joins following the join template
in Equation 2.1. Hence, the whole process of predicting edge definitions may take up to
several minutes, making the interaction challenging for users.

To keep the predicting process within the interaction speed, we search for ways to avoid
executing queries to the RDBMS after the user draws an edge between two nodes. While
exploring with different datasets, we make two observations:

1. While defining an edge, the user interacts with a significantly smaller portion of the
database, regardless of the database size. For example, while searching for possible
connections between two Customers, Alice and Bob, GW explores the tuples related
to these two customers only. The number of tuples in the Order table related to Alice
and Bob is much smaller than the size of the Order table.

2. The interaction for defining an edge happens after the user draws the nodes between
which the edge will be created. Therefore, the system can pre-compute the possible
joins between available nodes before the user initiates the edge definition interaction.

These observations indicate that after a node creation, one of the next possible action
is creating an edge involving the node. Therefore, as soon as a node is created, the system
can query the database regarding the related tuples of the node and cache the data in

13

memory. This allows the system to search for possible edge definitions between nodes
without executing any query to the database.

2.3.1 In-Memory Cache

GW maintains an in-memory cache to store related information regarding nodes. To
efficiently use the available memory, we find out the minimum data that needs to be stored
get from the RDBMS and store in the cache. Recall that, at the first step GW extracts
information regarding available tables in the database, table columns, and primary key and
foreign key relations. Now, this stored information is used to find out joinable columns
between tables. For example, two table columns cannot be joinable if their data type is
different. Primary key and foreign key relations are obvious joinable columns.

In the beginning, as soon as the user provides the database authentication informa-
tion, GW collects the necessary information from the database and calculates the joinable
columns among available tables. For instance, in our running example, the Customer table
can be joined with the Order table using the respective CID columns. The Order table
can further join with the Product table using the respective PID columns.

Next, when a node is created, the system detects which relation the node is drawn from
and gets the joinable columns with other relations. First GW queries the database to get
all the lineages of the node. These lineage tuples will be stored in the cache. This is the first
degree neighbor of the node. For each tuple in the lineage, the system detects the joinable
column values. For each join relations, the system executes a query to the database to
get the joinable tuples in the join-table. Since the system already has the join values from
the lineages of the node, it transforms the join query into a select query having an ”IN”
operator. For example, suppose we have a city node ”Waterloo” from the Customer table.
Waterloo node has 2 lineages (C1, Alice, Waterloo), (C2, John, Waterloo). To find out the
joinable tuples in the Order table relating to the node ”Waterloo”, the system executes
the following select query: “SELECT * From Orders WHERE CID In C1, C2”.

When we have the second-degree neighborhood of the node, we can follow a similar
process to extend it to the third-degree neighborhood. For example, suppose, the above
query gets the following three tuples from the order table (O1, C1, P1),(O2, C2, P1),(O3,
C2, P2). Now, to extend the third-degree neighborhood, the system executes the following
query: ”SELECT * From Product WHERE PID In P1, P2”. Thus GW avoids JOIN
queries, which makes the query execution much faster. GW stores up to the third-degree
neighborhood of a node in the cache for edge prediction. Figure 2.5a shows the neighboring
tuples of the ‘Waterloo’ node.

14

(a) Getting neighboring tuples from joinable tables.

(b) Graph Structure to store the neighborhood in GW’s in-memory cache.

Figure 2.5: Neighborhood of the ‘Waterloo’ node.

Figure 2.5b shows how the data is stored in GW’s in-memory cache data storage. We
choose the graph structure for the in-memory data storage to easily traverse the neighbor-
hood of a node. The graph structure contains the following three categories of nodes:

i. Wrangling node (WN): WN refers to the nodes wrangled by the user.
ii. Tuple node (TN): For each tuple in a table, a TN category node is created.

iii. Value node (VN) The values of each tuple are represented by the VNs.

In Figure 2.5b, the red color denotes the WNs, yellow denotes the TNs, and the greens
are the VNs. As we can see in the figure, a WN is connected to multiple TN category
nodes. These TNs represent the lineages of the WN. Every value in the graph appears only
once. We can see, the VN ‘C1’ has two arrows indicating a TN in the Customer table and
a TN in the Order table. Thus the neighborhood of the WNs creates a connected graph.

15

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5

Figure 2.6: Bi-directional BFS steps

16

2.3.2 Searching for edge types using the In-Memory Cache

When a user draws an edge between two nodes, GW traverses the neighborhood of the
nodes to find out all the possible connections available between them. The neighborhood is
created as soon as the nodes were created. Therefore, no new queries need to be executed
after the user draws an edge. To make the traversal faster to find all possible paths between
two nodes, we adopt the bidirectional breadth-first search (BDBFS) algorithm.

We start with the source and destination nodes (two ends of the edge) and start ex-
panding the neighborhood from both nodes. First, we expand the source and destination
WNs to their first-degree neighborhoods and see if any of the neighboring nodes inter-
sect. If any intersection is non-empty, GW adds the edge definition generated from this
intersection to the possible edge suggestion list along with the tuple that intersected. GW
continues this process and keeps adding edge definitions for intersecting nodes until it tra-
verses the fifth-degree neighborhood. Figure 2.6 shows the steps of BDBFS when a user
draws an edge between two Customer nodes: Alice and Bob. In the first step, Figure 2.6a,
GW expands the WNs (showed in blue and red color) to their corresponding first degree
neighborhood, which indicates their lineage tuples (TNs). In this figure, we see that both
Alice and Bob have single lineages. Then we intersect the first degree neighborhood. No
common node is found in this example. Next, the TNs from step 1 expand to their corre-
sponding value nodes (VNs): Figure 2.6b. Here, we find a non-empty intersection, showing
both WNs have same city = “Waterloo”. We record this finding as a possible edge def-
inition in the suggestion list. The VNs from step 2 then further expands to TNs, which
indicates a non-empty join with the Order table. No intersection found in this step as
shown in Figure 2.6c. Figure 2.6d shows the next stage of the search, where the graph
expands to the VNs, showing the attributes of each tuple. Here, the paths from both WN
intersect with same product IDs. This relation is also added to the suggestion list. Finally,
in Figure 2.6e, the VNs from step 4 expand to TNs, showing another join between order
and product tables. Here, we find another possible edge relation with product table. The
graph further expands to the corresponding VNs. However, we stop the search here.

2.4 Implementations

GW runs as a web application and interacts with the user’s MySQL database through a
backend application. The backend application has an in-memory cache to hold the custom
graph described in Section 2.3.1. Figure 2.7 shows the system architecture of GW.

The web application is built on the AngularJS framework. As shown in Figure 2.1, GW

17

Figure 2.7: GraphWrangler System Architecture

user interface has a graph node-link panel and a table panel. The node-link panel shows the
graph and supports all the graph-related interactions, such as, drawing an edge between
two nodes to define an edge type, exploring the first and second-degree neighborhood
of a node, adding properties on nodes and edges. For smooth graph visualization and
user interactions, we integrated the D3.js [4] library. The D3.js library provides different
functionalities to show data using SVG, CSS, and HTML. We integrated some of the
built-in functionalities from the D3.js library into our code to customize the diverse user
interactions that GW supports.

The table panel shows the available tables from the user’s RDBMS. A search button
on every table lets the users search specific tuples or values in the RDBMS. GW supports
drag and drop actions from table panel to the node-link panel. We use interact.js [18]
library to capture drag and drop actions.

The front end application captures the user-interaction and communicates with the
system’s backend application through REST APIs to perform the operations intended by
the user-interaction. The backend application also communicates with the user’s RDBMS
using the user-provided authentication information on the web application. We adopt the
Node.js framework to implement GW’s backend application. The Node.js application uses
a MySQL connector plugin [8] to directly interact with MySQL. The application memory

18

is used as the in-memory cache data store as explained in Section 2.3.1. Finally, we use a
standard implementation of the BDBFS algorithm.

19

Chapter 3

R2GSync

In this chapter, we describe how we keep a graph in a GDBMS in sync with the updates in
the RDBMS that it was extracted from. At first, we explore a design space for automati-
cally synchronizing an RDBMS and a GDBMS in Section 3.1. Next, Section 3.2 discusses
R2GSync, a system that we developed to synchronize graphs stored in GraphflowDB upon
each update to a source RDBMS. R2GSync is based on edge views, which is a technique
to allow applications to query a graph using virtual edges over some base edges. We then
describe two optimizations for queries that contain edge views in Section 3.3. Finally, Sec-
tion 3.4 illustrates the evaluation of edge views and our proposed optimization strategies
on different datasets and queries.

3.1 Design Space for Automatic RDBMS-GDBMS Syn-

chronization

Consider a graph extracted from a relational database D using the mapping we described
in Chapter 2. Throughout this chapter, we will also use G and D to refer to the GDBMS
and the RDBMS that store G and D, respectively. Let QN be a set of SQL queries such
that qNi

∈ QN extracts from D all the nodes of type NTi in G. Similarly, let QE be a set of
SQL queries such that qEi

∈ QE extracts from D all the edges of type ETi in G. Therefore,
QN and QE are views over the RDBMS. Hence, we have two overall options to keep G
synchronized with D:

1. As QE and QN are views over D, this synchronization problem can be defined as

20

an incremental view maintenance (IVM) problem. We can perform the IVM in two
ways:

1.1 Inside the RDBMS: In this design, we create RDBMS views for each qNi
∈ QN

and qEi
∈ QE and materialize them to capture each update in the views. For

example, RDBMS triggers can be used to update the materialized views upon
each update in the RDBMS.

1.2 Outside the RDBMS: In this design, we maintain the views outside of the
RDBMS, possibly inside of a GDBMS or on an intermediate layer with IVM
capabilities, such as the IVM software developed by Materialize, Inc [25].

2. Node and Edge Views: In this design, we map the base tables that are used in QN

and QE into base node and edges in the GDBMS and support node and edge views
in the GDBMS to give access to the node and edge types in QN and QE without
materializing the actual nodes and edges.

In the rest of this section, we discuss the pros and cons of each of these designs, which
are summarized in Table 3.1 for reference.

Design
Overhead
to RDBMS

Changes to
GDBMS

Synchronization
Speed

Read
Performance

Additional
Storage

IVM inside
RDBMS

New views None Slow Fast 2|G|

Separate
IVM
System

None None Slow Fast |D|+ |G|

Node
and Edge
Views

None
Edge/
Node View
Support

Fast Slow |D|

Table 3.1: A design space for automatic synchronization

Design 1: IVM inside RDBMS. Figure 3.1a shows our first design, where the node
and edge query outputs are incrementally maintained and materialized as views inside the
RDBMS. The GDBMS has no overheads in this design. However, supporting IVM inside
the RDBMS has several drawbacks. First, the additional storage requirement is 2|G|
because the graph G has to be stored in both the RDBMS and the GDBMS. This might
be a significant overhead because the size of the graph G can be much larger than the source

21

(a) IVM inside RDBMS

(b) Intermediate layer for IVM

(c) Node and Edge Views

Figure 3.1: Design spaces for automatic synchronization.

22

database D. For example, the co-purchase edges mentioned in Equation 2.2 in Section 2.1.2,
one customer who bought a single product may generate multiple edges to customers who
also bought the same product. In addition, the RDBMS has to incrementally maintain
each query in QE and QN , which adds additional workload on the RDBMS and slows down
its update performance. If the RDBMS is a critical transactional store in an enterprise,
this design is possibly not a practical option.

Design 2: Separate layer for IVM. Figure 3.1b shows the design of having an in-
termediate layer between RDBMS and GDBMS for IVM. This intermediate layer consists
of a data storage to store the materialized views and a system to incrementally maintain
them upon each update in the RDBMS. An example of such a system is the IVM soft-
ware developed by Materialize, Inc [25]. This design relieves both RDBMS and GDBMS
from any change or overhead for the synchronization process. However, the additional
storage requirement is |D| + |G| because a copy of D has to be stored in the separate
IVM system and G has to be stored in the GDBMS. As long as the extracted graphs
are not prohibitively large, this design is ideal as it puts together three systems without
requiring major modifications to any system. For example, we can use Materialized as the
IVM layer, which incrementally maintains the RDBMS materialized views. However, this
product is only commercially available. We are not aware of any publicly available IVM
system, except of course to use a second RDBMS that supports IVM.

Design 3: Node and Edge Views. Finally, Figure 3.1c shows the node and edge
view design, which stores the data of the participating relations in QE and QN queries
as base nodes and edges directly in the GDBMS. Therefore, each update in the RDBMS
directly maps into a node and/or edge update. Because this design does not perform IVM,
synchronizing the GDBMS is faster than the previous two designs. To query the actual
transformed graph, the GDBMS needs to support views on nodes and edges according to
the node and edge queries in QN and QE, respectively. Similar to Design 2, this design also
has no overheads to the RDBMS. Furthermore, the node and edge view design guarantees
no significant data expansion as the size of the data moved to the GDBMS is equal to the
size of D regardless of the size of G. However, the read performance for the GDBMS gets
slower as we need to execute node and edge views on graph queries.

Although there are settings, when any of these designs can be preferred over others, in
this thesis, we investigate the design option of node and edge views.

23

3.2 R2GSync and Edge Views

In this section, we describe R2GSync, a system that we developed to automatically syn-
chronize a transformed graph in a GDBMS upon each update in the source RDBMS.
R2GSync adopts the node and edge view design described in Section 3.1. Throughout this
section, we will differentiate between a transformed graph G and a base graph GB. G is the
actual graph the user wrangled from D and consists of nodes and edges according to the
node and edge type queries QN and QE, respectively. The base graph will contain the base
nodes and base edges that represent the tables and the joins between the tables in QN and
QE. GB may differ in structure from G. In Design 3, the node and edge view capabilities
inside GB lets users access and query G hiding GB. For simplicity, R2GSync only supports
edge views. That is, we do not support any node definitions that require having a node
view on the stored graph (explain in more detail momentarily).

Throughout this section, our running example includes an RDBMS with the following
schemas: Product(PID, PName, MID), Customer(CID, CName, City), Order(OID, CID,
PID, Amount) and Merchant(MID, MName). Here, PID, CID, OID, and MID are primary
keys of relations Product, Customer, Order, and Merchant respectively. MID in the Prod-
uct table is the foreign key of the Merchant table and PID and CID attributes in the Order
relation are foreign keys of Product and Customer relations respectively. A user wrangles
a graph using GraphWrangler which includes customer node typed having (CID, CName,
City) from the Customer relation. In addition, a co-purchase edge is wrangled between
customers who bought the same products. The edge definition between two customers
v1 and v2 is defined as below (here, Or and Pr represent the Order and Product tables,
respectively):

v1.lin ./
v1.CID=Or.CID

Or ./
Or.PID=Pr.PID

Pr ./
Pr.PID=Or.PID

Or ./
Or.CID=v2.CID

v2.lin

3.2.1 Direct Mapping of Relational Tables into a Graph

In order to avoid implementing node view capability, R2GSync supports node definitions
where each tuple of a relation transforms into a distinct node, i.e., each node has the lineage
count, i.e., |v.lin| = 1. Consider a node type NTk defined by (Ri, cols(NTk) ⊆ cols(Ri)).
Recall from Section 2.1.1 that each distinct value of the projection of Ri into cols(NTk) is
transformed into a node of type NTk in the graph. To ensure each node has |v.lin| = 1
the projected columns cols(NTk) must include a key (primary or a unique key) of Ri.

24

R2GSync stores the attributes in cols(NTk) as node properties in GB to map each tuple
in the table to a distinct node in the graph. Therefore, direct mapping directly follows the
node definition defined by the users.

Example 3.2.1: For customer type nodes, each tuple in the Customer relation maps into a
distinct customer node having three properties: CID, CName, and City. The CID property
of the customer directly maps the node to a distinct tuple in the customer relation.

An edge in GraphWrangler is the result of joins of different lengths connecting the node
lineages. As we restrict node definition to contain a key of the relation, R2GSync supports
joins in our edge definitions, where the equality predicates match the key of one relation
with the key of another. Specifically, given an edge type:

vN1 ./
jcN1

=jc1L

Ri1 · · · ./
jc(m−1)R

=jcmL

Rim ./
jcmR

=jc(m+1)L

· · ·Rir ./
jcrR=jcN2

vN2 (3.1)

jcN1 is a key from the relation RN1 and also a property of node type NT1. jcN2 is key
from the relation RN2 and also a property of node type NT2. Rik are the intermediate
relations participating in the join and jckL and jckR are two attributes of the relation Rik ,
where k = 1, 2,...,r. We map the relations in the edge definition to the following base nodes
and edges:

1. Each unique Rik maps to a base node type NTik = (Rik , cols(NTik)) in the GDBMS
where cols(NTik) includes the attribute jckL and jckR . If neither of the attributes
represent a primary (or unique key) of Rik , cols(NTik) includes the primary key jckp
of Rik .

2. For each (Rij , Rij+1
), there is a base edge type ETj,j+1 between nodes extracted from

relation Rij and Rij+1
. Here, the base edge type ETj,j+1 between two nodes vij and

vij+1
of node type respectively, NTij and NTij+1

, is denoted as follows:

vij ./
jcjR=jc(j+1)L

vij+1

If jc(j+1)L in Rij+1
is a foreign key of attribute jcjR in Rij , the edge ETj,j+1 is directed

from node type NTij to node type NTij+1
. If the opposite is true, ETj,j+1 is directed

from node type NTij+1
to node type NTij .

Example 3.2.2: For the co-purchase edge in our running example, the direct relation map-
ping creates the following base nodes and base edges:

25

• Base node types PRODUCT and ORDER maps the Product and Order relations re-
spectively.

• For Customer, Order relations, there are a base edge types CUST-OR between node
type CUSTOMER and base node type ORDER. Similarly, for Order, Product relation
pair, there is a base edge types PR-OR between base nodes ORDER and PRODUCT.

3.2.2 Mapping Each Update in the RDBMS to the Correspond-
ing Update in the GDBMS

We next explain how R2GSync issues updates to GDBMS upon each update in the
RDBMS. For each insertion, deletion, and update event in the RDBMS, R2GSync exe-
cutes the following changes:

• Insertion: Consider an insertion of a tuple t into a relation Ri with the primary key
jciP . For each QEj

that Ri is part of, R2GSync performs the following: consider the
left and right join attributes of Ri in QEj

be jciL and jciR , respectively.

1. Insert a base node ni of type NTi with jciP , jciL , and jciR as properties of the
node.

2. Insert a base edge of type ETi−1,i between ni and nodes of type NTi−1 having
the same property value as jciL (If Ri is not the leftmost relation in QEj

).

3. Insert another base edge of type ETi,i+1 between ni and nodes of type NTi+1

having the same property value as jciR (If Ri is not the rightmost relation in
QEj

).

• Deletion: Suppose t in now deleted from Ri:

1. Delete all the base edges linked with the base node ni.

2. Delete the base node ni.

• Update: An update in tuple t into t́ is handled by simply deleting t and inserting t́.

Example 3.2.3: Suppose a tuple with values (‘O1’, ‘C1’, ‘P1’, 10.5) is inserted into the
Order table. R2GSync issues the following queries :

CREATE (n:ORDER {OID: ‘O1’}) return n
CREATE (PRODUCT{PID: ‘P1’})<−[:PR−OR]−(n)<−[:CUST−OR]−(CUSTOMER {CID: ‘C1’ })

26

3.2.3 Edge Views

Edge views allow users to access and query G hiding from users GB, which is actually stored
in the GDBMS. For instance, using edge views, in our running example a user can directly
query (C1:CUSTOMER)-[:COPURCHASE]→ (C2:CUSTOMER) even though there is no
edge of type COPURCHASE in GB. Consider an edge type ETk that was defined when G
was wrangled. Recall from Section 2.1.2 that there is an edge of type ETk between two
wrangled nodes u and v if the join, according to ETk, between the lineages of u v is non-
empty. When edges of type ETk are not materialized in GB and access to them is through
edge views, this is equivalent to the conditiona that two nodes u and v have an edge with
the given edge view ETk, if there is at least one path (using base edges) between u and
v that satisfy the ETk’s join. Therefore, computing the edges (forward or backward) of a
node u according to an edge view ETk is the result of the join of ETk over GB with a final
DISTINCT computations.

Example 3.2.4: In our running example, the COPURCHASE edges of a customer node ci
is the result of the following query:

MATCH (C1:CUSTOMER) → (O1:ORDER) → (P:PRODUCT) ← (O2:ORDER) ← (C2:CUSTOMER)
WHERE C1.ID = ci
RETURN DISTINCT c2

Implementation

We implemented edge views on top of a prototype in-memory graph database called Graph-
flowDB. GraphflowDB has a traditional DBMS architecture. The system uses the Cypher
query language [12]. In Cypher, a query consists of 3 parts: i) a MATCH clause that describes
a subgraph query pattern Q(VQ, EQ), where VQ and EQ are the query nodes and edges,
respectively, that the system matches on an input graph; ii) a WHERE clause that contains a
predicate ρ over properties of the edges and nodes that the matched subgraph must satisfy;
and iii) a RETURN statement that returns a projection of the variables in the match query
or performs a group-by and aggregate information. The query plans of GraphflowDB are
linear and consist of standard relational operators: Scan, Extend/Intersect, which is the
join operator, Filter, GroupBy, and OrderBy. The following contain a brief description of
the major operators used for matching a subgraph pattern and evaluating predicates in
the query.

• SCAN: Scans a set of nodes and edges from an input graph.

27

• EXTEND/INTERSECT (E/I): At a high level, the E/I operator matches the subgraph
query pattern Q, one query vertex at a time. The input to the E/I operator is a
partial match t that has already matched k of the query edges in Q. The operator
extends a partial match t with, say, k already matched query vertices with one more
query vertex uq. In order to do this, the operator finds all query vertex and edge
pairs (vq1, eq1), ..., (vqz, , eq1), where vqi have already been matched in t and the other
end of eqi is uq. Note that each of the vqi are already bound to some actual vertex
vi in the input graph and eqi indicates either the forward or backward adjacency list
of vi. The E/I operator takes these adjacency lists and intersects them and extends
t with each result of this intersection. If there is only one adjacency list, then the
operator simply extends t with each of the nodes in that adjacency list.

• FILTER: This is the selection operator in the relational algebra which removes a
partial match t from query results if t does not satisfy a given predicate ρ.

• GROUP-BY-AND-AGGREGATE: This is an implementation of the standard group by and
aggregate relational algebra operator.

In GraphflowDB, a user can define a path query as an edge view ETk between two
nodes. The following query template supports edge view query definition:

CREATE EDGE VIEW 〈EVT 〉 AS
MATCH 〈QP (VQ, EQ)〉
RETURN DISTINCT vN1 , vN2

Above vN1 and vN2 denotes variables designating the source and destination vertices of
an edge view of type ETk. QP (VQ, EQ) is a path query with end variables vN1 and vN2 . For
our edge view definition in 3.1, the path query QP (VQ, EQ) can be expressed as follows:

QP (VQ, EQ) : (vN1 : NT1)− [: ET1,i1]→ (: NTi1) · · · → (vim : NTim)← . . .

. . . (: NTik)← [: ET2,ik]− (vN2 : NT2)
(3.2)

Here, the edge directions are drawn arbitrarily. In our implementation in GraphflowDB,
we manage a separate edge view store SEV . For each edge view ETk, the system stores two
plans, a forward extension plan PF and a backward extension plan PB, to compute the actual
edges of vertices with type ETk during query processing. The version of GraphflowDB does
not contain a full-fledged optimizer, and instead has a plan enumerator from which a user
can manually pick a plan. We use this enumerator to pick plans PF and PB. Specifically,
for PF , we issue the following query:

28

(a) A query execution plan with an Extend operator using the COPURCHASE edge view

(b) The same plan when E/I is replaced with EVE/I

Figure 3.2: The final query execution plans that replace the Extend operator for edge views
with EdgeViewExtend operator having sub-plans for query QT

MATCH 〈QP (VQ, EQ)〉
WHERE vN1 .ID = 1
RETURN DISTINCT vN2

Then from the returned list of plans we pick the plan that starts by scanning and filtering
vN1 as the first operators. Similarly, for PB, we issue a query where vN2 is fixed to a single
vertex and the RETURN clause returns vN1 .

For queries using edge views, we generate the query execution plan in the following two
steps utilizing GraphflowDB’s default plan enumerator.

1. We generate plans using the system’s enumerator which treats edge views as regular
edges. For example, consider the following query that uses a COPURCHASE edge view.

Query 3.2.3

MATCH (C1: CUSTOMER) − [e: COPURCHASE] → (C2 : CUSTOMER)
WHERE C1.CID = 1 AND C2.CID = 5
RETURN C2

29

When generating plans, GraphflowDB treats the COPURCHASE edge view as a regular
edge and uses an Extend (COPURCHASE) operator for each COPURCHASE edge
view as shown in Figure 3.2, which exhibits two different query plans generated by
GraphflowDB’s default enumerator for this query.

2. We replace each Extend operator having an edge view in a plan with a special
EdgeViewExtend/Intersect (EVE/I) operator. EVE/I operator performs exactly the
same computation as the E/I operator, except for each forward (backward) adjacency
list of a vertex that it needs to access, EVE/I first runs the PF (PB) to first generate
the adjacency list. For example, Figure 3.2b presents the final query plan for QT ,
which replaces the Extend operators in Figure 3.2a with EVE/I operator.

3.3 Optimizations for EdgeViewExtend/Intersect

In this section, we explore optimization opportunities for executing queries using edge
views. We start by describing an optimization that pushes the final distinct operator that
EVE/I operator uses to earlier intermediate joins. Next, we propose an optimization on
queries that perform the intersection of two or more edge views in EVE/I operator. We
also explain the implementation details for both of these optimization strategies inside
GraphflowDB.

3.3.1 Early Distinct

Recall from Section 3.2.3 that we compute an edge view between two nodes using an EVE/I
operator by executing a subplan that starts from a specific starting node, vN1 of say type
NT1, and returns the distinct target nodes vN2, of say type NT2, satisfying the edge view
path query. Recall that the edge definition in Equation 3.1, the EVE/I operator executing
a forward plan can be expressed as follows (we draw the edge directions arbitrarily):

Query 3.3.1

ETk : MATCH (vN1 :NT1)−[:ET1,i1]→ (:NTi1) . . . →(vim :NTim) ←. . .(:NTik) ←[:ETik,2]− (vN2 :NT2)
WHERE vN1 .ID =v1
RETURN DISTINCT vN2

Here, the EVE/I operator’s edge view subplan starts from each incoming node vN1 of
type NT1 and returns the distinct values of node vN2 of type NT2. Recall further that we
can express ETk in the relational algebra as follows:

30

Figure 3.3: A Query plan for query QT with an EVE/I-ED operator that computes an
early distinct on the product node

ETk = πvN2
(σID=v1(NT1) ./ NTi1/ NTim/ NTik ./ ./ NT2)

NTp above represents a node table of type NTp. Note that because we are computing
the distinct node values of NT2 through a projection, we can also compute distinct after
any intermediate join in the above query. For example, the following expressions are equiv-
alent to ETk in relational algebra, each computing a distinct operation on different parts
of the query.

ETk = πvN2
(σID=v1(NT1) ./ NTi1/ NTim/ NTik ./ NT2) (3.3)

= πvN2
(πvi1 (σID=v1(NT1) ./ NTi1)/ NTim/ NTik ./ NT2) (3.4)

= πvN2
(πvim (πvi1 (σID=v1(NT1) ./ NTi1)/ NTim)/ NTik ./ NT2) (3.5)

= πvN2
(πvim (σID=v1(NT1) ./ NTi1/ NTim)/ NTik ./ NT2) (3.6)

Therefore, we can compute distinct early after any intermediate join in the query. If one
considers the path query of an edge type as being evaluated through breadth-first-search
traversal, this optimization in graph terms is equivalent to taking a distinct computation at
some intermediate level i in the search and expanding the frontier of level i from each node
in level i. However, computing distinct adds computational overhead and is only beneficial
when the nodes in a level are likely to contain multiple paths arriving to them, e.g., if the
previous extension was an n-to-1 or an n-to-n join. In relational algebraic terms, computing
distinct early on relation NTim should be done if the join σID=v1(NT1) ./ NTi1/ NTim

31

Figure 3.4: Implementation of Early Intersect Optimization in EVE/I operator

can return multiple tuples with the same NTim values. This can happen for example
if the previous join NTim−1 ./ NTim is an n-to-1 or n-to-n join (or some earlier join).
For example, when computing a path from a CUSTOMER node to PRODUCT nodes in
the COPURCHASE edge view, a customer Alice may have bought a single product 10
times, i.e., 10 different orders from Alice (o1, o1, o3,) has product p. Therefore, when
computing co-purchasers of Alice, instead of expanding p 10 times, p can be expanded only
once if we compute an early distinct on the product node. On the other hand, computing
distinct on the order node does not make sense as all the customers have distinct orders.

We perform the early distinct optimization in GraphflowDB by adding a new DIS-
TINCT aggregator operator after some extend in the PF and PB plans that EVE/I uses
to perform extensions using edge views. Currently we manually pick where in PF and PB

32

the distinct computation should be performed. Integrating this choice into the optimizer
of the system is left for future work.

To compute an early distinct on vim , we manually add a distinct operator after the E/I
operator for node vim in the edge view subquery plan (PF or PB). The rest of the plan
stays the same. For example, Figure 3.2b shows the final plan with the default EVE/I
operator for the COPURCHASE edge view stated in Query 3.2.3. We can apply the early
distinct optimization by taking distinct on the product nodes. The optimized query plan
is shown in Figure 3.3, where a distinct operator is placed after getting products from
extending PR-OR edges in the EVE/I operator, which computes an early distinct on the
product nodes.

3.3.2 Early Intersect

Next, we investigate the intersection operation in EVE/I operator. The EVE/I operator
computes an intersection if it is configured with two or more edge views. Cyclic queries
are examples where the query execution plan needs to compute an intersection of two or
more edges. Suppose an EVE/I operator that takes two adjacency lists of node v1 and v2
and computes an intersection of edge views from v1 and v2 nodes, respectively. Suppose
for simplicity that v1 and v2 are both of type NT1 and their edge views are the same
and of type ETk, which is expressed in Query 3.3.1. The following describes the relational
algebraic operation that the EVE/I operator would performing when intersecting v1 and
v2’s edges of type ETk:

QIntersect = πvN2
(σv1(NT1) ./ NTi11/ NTim/ NTik ./ NT2)

∩ πvN2
(σv2(NT1) ./ NTi12/ NTim/ NTik ./ NT2)

(3.7)

Consier the following three sub-expressions from 3.7:

SE1 : σv1(NT1) ./ NTi11/ NTim
SE2 : σv2(NT1) ./ NTi12/ NTim

SEm : NTim/ NTik ./ NT2

Rewriting the expression in 3.7, we get:

QIntersect = πvN2
(πvm(SE1) ./vm SEm) ∩ πvN2

(πvm(SE2) ./vm SEm) (3.8)

33

Observe that SEm is a common expression both in v1’s edge view query as well as v2’s.
Now consider computing the intersection of πvm(SE1) ∩ πvm(SE2). This “early” intersect
will identify common nodes of type NTim that the edge view from v1 and v2 have both
reached, which implies that the join of this early intersect’s result with SEm are guaranteed
to be in the final intersection. We can turn this observation into the following optimization:
Now let us define the following terms:

πvmSE1 = M1

πvmSE2 = M2

M = M1 ∩M2

Finally, let us rewrite the expression in Equation 3.8 as follows:

QIntersect = πvN2
((M ∪ (M1/M)) ./vm SEm) ∩ πvN2

((M ∪ (M1/M)) ./vm SEm) (3.9)

= (πvN2
(M ./vm SEm) ∪ πvN2

((M1/M) ./vm SEm)) (3.10)

∩ (πvN2
(M ./vm SEm) ∪ πvN2

((M2/M) ./vm SEm)) (3.11)

= (QSm ∪QS1) ∩ (QSm ∪QS2) (3.12)

= QSm ∪ (QS1 ∩QS2) (3.13)

Therefore, the query QIntersect can be computed using three subqueries QS1 , QS2 ,
and QSm , where QS1 = πvN2

(((M1/M) ./vm SEm)), QS2 = πvN2
((M1/M) ./vm

SEm)), and QSm = πvN2
(M ./vm SEm). This can be a faster way to perform QIntersect

because often the sizes of the intermediate results in path queries increase as we perform
more joins (when joins are 1-to-n or n-to-n). Therefore the intersection produced when
computing πvm(SE1) ∩ πvm(SE2) and the following join with Sm to compute QSm) can
be smaller than the original intersection in Equation 3.7. Furthermore, when one of the
(M1/M) or (M2/M) is zero, (QS1 ∩ QS2) will return an empty set. In this case, we can
only execute subquery QSm to get all the final outputs. For example, consider computing
a set of customers (c3) who are co-purchasers of both Alice and Bob, where both of them
are also co-purchasers of each other. Here, an EVE/I operator executes an intersection
of the COPURCHASE edge views from CUSTOMER nodes for Alice and Bob. If Alice
and Bob has a large number of common products, computing an early intersection on the
PRODUCT node in the COPURCHASE path query will expand the common products
only once, which may reduce execution time. Furthermore, suppose, Alice bought 100
products and Bob bought only 2 smart watches, which was also bought by Alice. In this

34

case, as Bob has no products other than the common products with Alice, we can only
expand the PRODUCT nodes for these two smart watches to get all the co-purchasers of
both Alice and Bob. In our evaluations, we will show that the early intersect optimization
can yield significant improvements in the runtimes of some queries.

In order to implement the early intersect operator, we first manually pick the NTim
on which the early intersect should happen and then modify the EVE/I operator to per-
form the rest of the computation in Equation 3.13. For example, Figure 3.4 shows the
implementation of the EVE/I operator for this query.

3.4 Evaluation of Query Processing With Edge Views

In this section, we demonstrate the performance of the early distinct and early intersect
optimizations that we discussed in Section 3.3 over the default implementation of the
EdgeViewE/I operator for different datasets and queries.

3.4.1 Setup

Hardware: For all our experiments, we use a single Macbook Pro machine that has a 2.3
GHz Intel Core i5 processor and 8 GB of RAM. The machine has two physical cores and
four logical cores. We use a single thread for all experiments. We set the maximum size of
the JVM heap to 6 GB and keep JVM’s default minimum size.

Datasets: We use the IMDB [16] and TPC-H [38] (size factor 10) datasets for our exper-
iments; both are converted from a tabular format to a data graph. Table 3.2 provides the
graph characteristics for each datasets.

Queries: In our experiments, we evaluate our query evaluation techniques with edge
views using three queries for IMDB and one query for TPC-H for a total of four queries.
We generate our queries from a very simple query template that can demonstrate the
benefits of our optimizations. Our query template QT is a two hop query, which takes four
parameters: 1) a node type NTk; 2) an edge view ETk; and 3) two vertex ID values IDl

and IDr picked such that a→b ∈ ETk where a.ID = IDl and b.ID = IDr. QT is defined
below:

QT (NTk, ETk, IDl, IDr):
MATCH (a: NTk)−[e1: ETk]→(c: NTk)←[e1: ETk]−(b: NTk)
WHERE a.ID = IDl, b.ID = IDr

RETURN DISTINCT c

35

Graph Nodes Edges

IMDB

Type Count Type Count
ACTOR 817,718 ACTOR-MOVIE 3,431,966
MOVIE 363,575 MOVIE-GENRE 395,119
GENRE 21 MOVIE-DIRECTOR 371,180

DIRECTOR 85,794
Total 1,267,108 Total 4,198,265

TPC-H

Type Count Type Count
CUSTOMER 999,982 CUST-ORDER 15,000,000

ORDER 15,000,000 ORDER-LINEITEM 59,986,052
LINEITEM 2,000,000

Total 17,999,982 Total 74,986,052

Table 3.2: Dataset Description

Our four queries are QT with different parameters passed. The first three are defined
on the IMDB dataset and the fourth is defined on the TPC-H dataset:

• Given two actors a and b who acted in at least a single movie together, Qco−actor
returns the set of actors who acted with each.
Qco−actor(IDl, IDr) = QT (ACTOR, COSTAR, IDl, IDr) where the CO-

ACTOR edge view between two ACTOR nodes is defined using the path query
in 3.2 as follows:

(a: ACTOR)−[:ACTOR−MOVIE]→(m:MOVIE)←[:ACTOR−MOVIE]−(b: ACTOR)

• Given two actors a and b who share at least a single genre in movies they acted in,
Qsame−genre returns the set of actors who share at least a single genre with each.
Qsame−genre(IDl, IDr) = QT (ACTOR, SAME-GENRE, IDl, IDr) where the

SAME-GENRE edge view between two ACTOR nodes is defined by the following
path:

(a: ACTOR)−[:ACTOR−MOVIE]→(m1:MOVIE)−[:MOVIE−GENRE]→(g: GENRE)
←[:MOVIE−GENRE]−(m2:Movie)←[:ACTOR−MOVIE]−(b: ACTOR)

• Given two actors a and b who worked with at least one common director, Qsame−director
returns the set of actors who worked with at least one common director with each.
Qsame−director(IDl, IDr) = QT (ACTOR, SAME-DIRECTOR, IDl, IDr)

36

where SAME-DIRECTOR edge view between two ACTOR nodes is defined by
the following path:

(a: ACTOR)−[:ACTOR−MOVIE]→(m1:MOVIE)−[:MOVIE−DIRECTOR]→(d: DIRECTOR)
←[:MOVIE−DIRECTOR] −(m2:MOVIE)←[:ACTOR−MOVIE]−(b: ACTOR)

• Given two customers a and b who bought at least a single common item, Qco−purchaser
returns the set of customers who bought at least a single common item with each.
Qco−purchaser(IDl, IDr) = QT (CUSTOMER, CO-PURCHASER, IDl, IDr)

where the CO-PURCHASER edge view between two CUSTOMER nodes is defined
by the following path:

(a: CUSTOMER)−[:CUST−ORDER]→(o1:ORDER)−[:ORDER−LINEITEM]→(l: LINEITEM)
←[:ORDER−LINEITEM]−(o2:ORDER)←[:CUST−ORDER]−(b: CUSTOMER)

For Qco−actor, we take an early distinct and an early intersect on the MOVIE (m) node.
Similarly, the early distinct and early intersect is taken on the GENRE (g), DIRECTOR
(d), and LINEITEM (l) nodes for Qsame−genre, Qsame−director, and Qco−purchaser, respectively.

Query Generation: Each query QT in our experiment needs IDs of two nodes a and
b where a and b also have an edge view ETk that connects these two nodes. For our
experiment, we first generate the list of (IDl, IDr) pair which are the IDs of nodes a and
b, respectively. We randomly pick a node a of type NTk from the data graph and then
compute all the nodes that are connected with a through the edge view ETk. We then
randomly pick at most five of these nodes as b and store these (a,b) pairs. For example,
for Qco−actor, our randomly chosen ACTOR node from the IMDB data graph has ID = 1.
Suppose, the node has CO-ACTOR edge to 3 other ACTOR nodes with IDs 2, 4, and 5.
Therefore, we store (1, 2), (1, 4), (1, 5) pairs as (IDl, IDr) pair for our Qco−actor queries.
We do this process for 100 randomly chosen nodes, who has at least one edge view with
another node. Table 3.3 shows the number of instances generated for each query QT . Some
of the randomly chosen nodes have edge view ETk with more than five nodes. Some of
them has less than five.

3.4.2 Comparative Performance Analysis

The query list generated for each query type is executed using three different implementa-
tions, default, early distinct, and early intersect, of our EVE/I operator in GraphflowDB
as explained in Sections 3.2.3 and 3.3. Recall that in the implementation of early intersect,

37

Query # instances
Execution Time (ms)

Default Early Distinct Early Intersect
Qco−actor 375 0.056 0.053 0.019
Qsame−genre 375 583.04 348.21 93.62
Qsame−director 439 0.63 0.46 0.17
Qco−purchaser 497 2.54 2.31 2.54

Table 3.3: Geometric mean of the execution time (in ms) for different edge view queries

we also take an early distinct on the node where we apply early intersect as shown in
Figure 3.4. Therefore, in early intersect, we apply both of these optimizations together.
Table 3.3 shows the geometric mean of the runtime (in ms) for different implementations
of each of these four different queries. We are reporting the geometric mean as reporting
only the mean value can miss the performance of individual queries. Besides, the outliers
with long execution times can dominate the run time leading to erroneous conclusions.
From Table 3.3, we can see that the geometric mean runtime for the early intersect imple-
mentation is the lowest for all three edge views in the IMDB data graph. Early distinct
implementation demonstrates on average 1.37x speed up than the default implementation
for the IMDB data graph. However, none of the implementations show any significant
difference in runtime for the TPC-H data graph.

To further investigate, we list the execution details of some selected queries for default,
early distinct, and early intersect implementations in Table 3.4. Note that, P denotes
the node on which we apply the early distinct and early intersection optimizations, i.e.,
P represents the MOVIE (m), Genre (g), DIRECTOR (g), and LINEITEM (l) nodes for
Qco−actor, Qsame−genre, Qsame−director, and Qco−purchaser queries, respectively. In this table,
we list the number of P nodes starting from a, denoted as P1, and the number of P nodes
starting from b, denoted as P2. Note that, the values of P1 and P2 are distinct for early
distinct. Table 3.4 also reports the number of nodes in P=P1 ∩ P2, P1’=(P1-P), and
P2’=(P2-P). Next, we report the total number of c nodes got from all the nodes in P1
(denoted as c(P1)), P2(denoted as c(P2)), P(denoted as c(P)), P1’(denoted as c(P1’)), and
P2’(denoted as c(P2’)). Lastly, the table include the runtimes for each query.

In the rest of this section, we study the impact and gain of early distinct optimization
and early intersect optimization separately by using factor analysis. Starting from the
default implementation, we first add the early distinct optimization and analyse the gains.
Next, we add the early intersect optimization on top of early distinct and do a similar
analysis.

38

#
Default Early Distinct Early Intersect

P1 P2 c(P1) c(P2) r P1 P2 c(P1) c(P2) r P P1’ P2’ c(P) c(P1’) c(P2’) r

Q1 50 1 700 18 0.19 50 1 700 18 0.15 1 49 0 18 0 0 0.03
Q2 20 26 468 629 0.18 20 26 468 679 0.19 2 18 24 68 401 603 0.24
Q3 6 46 96 523 0.09 6 46 96 523 0.01 1 5 45 12 84 511 0.10
Q4 1 2 81 112 0.034 1 2 81 112 0.035 1 0 1 81 0 0 0.10
Q5 2 17 57 472 0.11 2 17 57 472 0.11 2 0 15 57 0 0 0.016

Q6 4 2 3141k 1303k 481.75 3 2 2053k 1303k 344.04 1 2 0 213k 0 0 21.18
Q7 1 2 59k 170k 27.77 1 2 59k 170k 27.86 1 0 1 59k 0 0 5.47
Q8 2 3 1161k 2064k 465.08 2 3 1161k 2064k 478.78 1 1 2 1088k 73532 975k 284.03
Q9 21 46 14442k 19269k 5255.7 7 12 2820k 3304k 986.858 5 2 7 2488k 332k 816k 429.85
Q10 2 3 1288k 2053k 509.14 2 3 1288k 2053k 541.00 1 1 2 1088k 200k 965k 269.27

Q11 2 25 493 13172 1.05 2 23 493 12092 0.82 1 1 22 477 16 11615 1.38
Q12 1 83 526 21934 12.36 1 63 526 15680 1.35 1 0 62 526 0 0 0.10
Q13 1 16 526 3707 0.59 1 15 526 3533 0.37 1 0 14 526 0 0 0.07
Q14 15 1 6220 235 0.57 15 1 6220 235 0.67 1 14 0 235 0 0 0.10
Q15 34 39 33405 17935 2.59 14 14 6510 5397 0.92 4 10 10 3299 3211 2098 1.00

Q16 71 28 2121 892 2.55 71 28 2121 892 1.86 1 70 27 34 2087 858 1.89
Q17 37 84 1100 2681 1.834 37 84 1100 2681 2.58 1 36 83 30 1070 2651 2.254
Q18 78 58 2389 1723 3.94 78 58 2389 1723 3.65 1 77 57 35 2354 1688 3.65
Q19 37 64 1113 1969 3.67 37 64 1113 1969 2.33 1 36 63 21 1092 1948 2.34
Q20 43 62 1325 1972 1.48 43 62 1325 1972 1.84 1 42 61 34 1291 1938 1.69

Table 3.4: Execution details of the default, early distinct, and early intersect optimizations
for selected query instances. Here P1’=(P1-P), P2’=(P2-P), and the columns with header
‘r’ denotes runtime. Q1-Q5 are type Qco−actor, Q6-Q10 are type Qsame−genre, Q11-Q15 are
type Qsame−director, and Q16-Q20 are type Qco−purchaser,

Early Distinct Optimization Analysis

Figure 3.5 shows runtime improvement of the early distinct implementation over the default
implementation. We can see that for majority of the query instances, the improvement is
within 1-1.5x for all four type of queries. For Qsame−genre and Qsame−director, the runtime
has up to 5x improvement. However, we can see a number of queries also has less than 1x
improvement. When there is no repetition in P1 and P2, early distinct does not show any
benefit over the default. For example, in Table 3.4, for queries Q7, Q8, Q10, and Q14, the
number of P1 and the number of P2 are same for both early distinct and default. Therefore,
they both executes the same number of tuples and hence have similar execution time.
However, computing distinct may add a little overhead than the default implementation
when computing distinct does not reduce the number of nodes. For example, early distinct
does not reduce the number of nodes in Q2, Q7, Q8 and Q10. For these queries, early
distinct shows slight increase in runtime than the default. On the other hand, we can see
a lot of reduction in the tuple execution as well as runtime if either P1 or P2 has repetitive

39

Figure 3.5: Query run time comparison between Default and Early Distinct. This is a
histogram of number of queries with different amount of speed-ups or slow downs. Each
bar is associated with an improvement range (l,r) and the height of the bar is the number
of queries on which early distinct improves the default implementation within a factor k,
such that l≤k<r.

values. Even with 1 repeated genre in Q6, we see a 1.4x speed-up for early distinct over the
default. Early distinct exhibits geometric mean speed-up of 1.7x for Qsame−genre, geometric
mean speed-up of 1.4x for Qsame−director.

For Qco−purchaser queries, early distinct performs relatively worse than the other three
type of queries. 184 query instances of Qco−purchaser has 0.9-1.0x improvement for early
distinct implementation over the default. This is because the TPC-H dataset has an
uniform distribution of the lineitems and does not have any repetitive characteristic where
a customer buys same product at least twice. For such datasets, early distinct does not
have any significant effect. Table 3.4 shows similar performance for Qco−purchaser queries.
For all Qco−purchaser queries, Q16-Q20, in Table 3.4, default and early distinct has same

40

Figure 3.6: Query run time comparison between Early Distinct and Early Intersect. This is
a histogram of number of queries with different amount of speed-ups or slow downs. Each
bar is associated with an improvement range (l,r) and the height of the bar is the number
of queries on which early intersect improves the early distinct implementation within a
factor k, such that l≤k<r.

number of tuples executed and the execution time does not show significant difference.
Qco−actor queries also shows a similar characteristics. However, Qco−actor has fewer number
of queries that has less than 1x performance for early distinct than for Qco−purchaser. Early
distinct shows geometric mean speed-up of 1.06x for Qco−actor and geometric mean speed-up
of 1.09x for Qco−purchaser.

Early Intersect Optimization Analysis

The performance improvement of early intersect over early distinct is showed in Figure 3.6.
We can see that, except for the Qco−purchaser queries, the majority number of queries has

41

greater than 1.5x improvement. From the execution details listed in Table 3.4, we see that
for queries when either (P1-P) or (P2-P) has an empty set, the performance improves more
than 3x for early intersect as this strategy discards the expansion of (P1-P) and (P2-P)
completely. For example, Q1, Q4, Q4, Q6, Q12 and Q13 demonstrate such optimizations.
When none of these sets are empty, early intersect still shows significant performance
improvement for queries Qsame−genre, Qsame−director, and Qco−actor. Qco−purchaser does not
shows any significant difference in performance for early intersect over early distinct. This
is because all the Qco−purchaser queries in Table 3.4 has P=1 and larger number of nodes in
P1‘ and P2‘. Hence, early intersect does not have any benefits over early distinct. Q16-Q20
have either equal performance of early distinct and early intersect or a slight decrease in
performance for early intersect over early distinct. Overall, early intersect shows geometric
mean speed-up of 2.7x for Qco−actor, geometric mean speed-up of 3.07x for Qsame−genre,
geometric mean speed-up of 2.7x for Qsame−director, and geometric mean speed-up of 0.9x
for Qco−purchaser.

42

Chapter 4

Related Work

In this chapter, we review the related work for extracting graphs from relational tables and
explore the literature related to the RDBMS-GDBMS synchronization process.

4.1 Extracting Graphs from RDBMS

Extracting and querying graph data that primarily resides in relational databases has re-
cently gained popularity among enterprise users to perform various sophisticated tasks, no-
tably among others, fraud and threat detection in e-commerce and financial applications
(Alibaba [32]), social network search (LinkedIn’s economic graph [6], Facebook’s graph
search [5]), and recommendations and promotions (such as in eBay [13] and Walmart [13]).
Supporting the existing interest in graph analytics, researchers proposed and built several
techniques [10, 36] and systems [40, 19, 11, 39] to access graphs in relational databases.
Many systems (e.g., GraphGen [40], Vertexica [19], GRAIL [11]) perform graph analytics
using relational databases by defining a layer above the database to convert the graph
queries into SQL. In Vertexica and GRAIL, the graph queries are mapped into relational
operators and the graph is stored in the relational table, whereas GraphGen stores a graph
representation in-memory and lets users extract the hidden graph from relational tables
using a Datalog-like DSL. However, the goal of GraphWrangler is fundamentally different
from these three systems as GraphWrangler aims to generate graphs from relational ta-
bles so that the graphs can be inserted into any graph system later for performing graph
analytics rather than converting graph queries into relational operators.

Existing GDBMSs [27, 31] provide mechanisms to import graph data from RDBMSs.
For example, Neo4J developed an ETL Tool that allows users to directly import graphs

43

from RDBMSs using a JDBC connection and an interface to interactively define a rela-
tional to graph transformation [28]. The interface lets users define nodes and edges by
selecting the relations from which the nodes and edges to be extracted. The ETL tool
assumes that edges of a specific type are extracted from a single relation in the RDBMS.
Another system, GraphBuilder [39], supports the graph extractions from unstructured
data using a MapReduce framework. However, the users still need to write Java codes
to specify the graphs to be extracted in GraphBuilder. Neither Neo4j nor GraphBuilder
provide any information about the underlying data interconnection in the RDBMS and
visualize the snippet of the transformed graph before actually extracting the graph from
the entire RDBMS. Furthermore, GW’s data transformation language supports edge types
that are extracted by joining multiple relations, unlike the graph import services provided
by existing GDBMSs.

Several works also focus on streamlining the ETL pipeline that requires users to write
scripts to extract a specific graph [36, 10, 22]. Sequeda et. al. provides a formal solution
in [36] to direct map RDBMS into RDF and OWL using the relational schema and integrity
constraints. The RDF database can be directly mapped to property graph databases [1].
The authors in [10] propose an automatic approach to migrate RDBMS into general graph
data, which also supports query translation. While these approaches relieve the users from
writing scripts, these methods also restrict users from exploring different graph structures
from a single RDBMS. For example, from a set of product, customer, and order relations,
one may extract a graph having only customer type nodes and an edge between two
customers shows both customers living in the same city. Another graph may contain
product and customer nodes showing the purchase history. Direct mapping only supports
a single type of graph depending on the mapping language. Table2Graph system provides
a solution to this problem by allowing graph extraction from an XML mapping, which
is configurable for reuse [22]. However, unlike GW, none of these systems support any
interactive capability to give users the freedom to explore and extract a particular graph
out of relational tables. Ploceus provides an interactive framework for users to define
graphs from tabular data (e.g., RDBMS, CSV files), giving a visual analysis approach of
tabular data exploiting the underlying network connection [23]. However, Ploceus does not
support edge types that require join among three or more relations and any node or edge
properties that require aggregation. The main motivation of Ploceus is visual exploration,
not data transformation. Besides supporting a wide range of edge types and aggregation
properties, GW helps users to define graphs using a predictive interaction framework and
generate an automated script to extract and transform the entire graph from the source
RDBMS into a GDBMS.

44

4.2 RDBMS-GDBMS Synchronization

Several systems have been proposed to support synchronization of extracted graphs with
the updates in the source database [17, 29]. A recent system, SQL2RDF, incrementally
update an RDF store on RDBMS changes using the R2Rml [17]. Neo4j Streaming Data
allows users to integrate updates in RDBMS and other databases using a Kafka broker [29].
The users publish all the changes of their RDBMS to a Kafka, which is subscribed to the
Neo4j streaming plugin. However, the users need to manage the Kafka system, and this
system relies on getting node and edge data coming from specific relations. Therefore, edge
definitions that use join among multiple relations are not supported using this method. To
the best of our knowledge, there is no automated system to support the continuous syn-
chronization of graphs that involves node and edge extractions using joins among multiple
relations. R2GSync is different than these existing approaches as it automates the contin-
uous synchronization process of diverse extracted graphs from an RDBMS that involves
node and edge extractions using joins among multiple relations. Furthermore, R2GSync
relieves the users from managing any intermediate systems like Kafka.

Keeping a graph in a GDBMS in sync with the updates in an RDBMS from where
the graph is extracted is a process analogous to incremental maintenance of materialized
views [7], which integrates updates of database changes incrementally in the materialized
views [3]. Several studies focus on IVM for materialized views in RDBMS [34, 35, 24] and
in GDBMS [37, 41]. The views in our system are node and edge definitions supported by
GW that are specific projection queries in set semantics where we compute distinct end
nodes of a path query. We keep views from an RDBMS materialized in a GDBMS. A
recent study developed a solution to optimize query execution for graph analytics using
graph views [9]. Graph views are similar to our node and edge views as a graph view stores
the nodes and the multi-hop path relation connecting two nodes as edges. In this thesis,
we propose a node and edge view-based approach to support the incremental changes in
node and edge definition queries to a property graph database.

45

Chapter 5

Conclusions and Future Work

GDBMSs gained popularity due to their performance benefits and ease of use in analyzing
highly connected application datasets which, in many enterprises, are primarily stored as
relational tables in an RDBMS. In this thesis, we studied the challenges of extracting graphs
out of relational tables and keeping a transformed graph in a GDBMS in sync with a source
RDBMS. First, we described the GW system that we developed to interactively extract
graphs from an RDBMS. In addition to streamlining the ETL pipeline, GW allows users
to get a graph view on their relational tables before transforming the entire database. We
also explained GW’s predictive interaction framework and a set of techniques to maintain
interactive speed.

Next, we explored three possible designs for RDBMS to GDBMS synchronization and
developed a system, R2GSync, adopting the node and edge view design. R2GSync keeps
graphs in a GDBMS synchronized with an RDBMS, from which the graphs are initially
extracted. We described the concept of edge views, our edge view implementation in-
side GraphflowDB, and proposed two optimizations over the default implemention of
EdgeViewE/I operator. We showed that for datasets where an entity is connected to
another through multiple paths, both early distinct and early intersect optimizations per-
form significantly better than the default implementation. For example, for the IMDB
dataset, early distinct has on average 1.37x speed up over the default and early intersect
has on average 3.1x speed up over the early distinct implementation.

Noticeably missing from R2GSync is the support of the node and edge aggregation
properties and node definitions that require node views for continuous synchronization.
Currently, R2GSync’s support for node properties is limited to the attribute values of a
node relation. In the future, we want to support a wide range of node and edge types and

46

properties on node and edge views. Another future work is to extend the functionalities
of GW and R2GSync systems for non-property graph stores such as RDF triple stores. In
addition to an RDBMS database, we also plan to support extracting graphs from CSV files
and non-relational data stores such as NoSQL databases.

47

References

[1] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. Directly mapping rdf
databases to property graph databases. arXiv, pages arXiv–1912, 2019.

[2] Nafisa Anzum, Semih Salihoglu, and Daniel Vogel. Graphwrangler: An interactive
graph view on relational data. In Proceedings of the 2019 International Conference
on Management of Data, pages 1865–1868, 2019.

[3] Jose A Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently updating mate-
rialized views. ACM SIGMOD Record, 15(2):61–71, 1986.

[4] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-driven Documents.
TVCG, 17(12), 2011.

[5] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui
Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. {TAO}:
Facebook’s distributed data store for the social graph. In 2013 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 13), pages 49–60, 2013.

[6] Xi Chen, Yiqun Liu, Liang Zhang, and Krishnaram Kenthapadi. How linkedin eco-
nomic graph bonds information and product: applications in linkedin salary. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 120–129, 2018.

[7] Rada Chirkova and Jun Yang. Materialized views. Databases, 4(4):295–405, 2011.

[8] MySQL Connector/Node.js. https://dev.mysql.com/downloads/connector/

nodejs/8.0.html.

[9] Joana MF da Trindade, Konstantinos Karanasos, Carlo Curino, Samuel Madden, and
Julian Shun. Kaskade: Graph views for efficient graph analytics. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE), pages 193–204. IEEE, 2020.

48

https://dev.mysql.com/downloads/connector/nodejs/8.0.html
https://dev.mysql.com/downloads/connector/nodejs/8.0.html

[10] Roberto De Virgilio, Antonio Maccioni, and Riccardo Torlone. Converting relational
to graph databases. In First International Workshop on Graph Data Management
Experiences and Systems, pages 1–6, 2013.

[11] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M Patel. The case against spe-
cialized graph analytics engines. In CIDR, 2015.

[12] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor.
Cypher: An evolving query language for property graphs. In Proceedings of the 2018
International Conference on Management of Data, pages 1433–1445, 2018.

[13] José Guia, Valéria Gonçalves Soares, and Jorge Bernardino. Graph databases: Neo4j
analysis. In ICEIS (1), pages 351–356, 2017.

[14] Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva Gurumurthy, Volodymyr Zhabiuk,
Quannan Li, and Jimmy Lin. Real-time twitter recommendation: Online motif detec-
tion in large dynamic graphs. Proceedings of the VLDB Endowment, 7(13):1379–1380,
2014.

[15] Jeffrey Heer, Joseph M. Hellerstein, and Sean Kandel. Predictive Interaction for Data
Transformation. In CIDR, 2015.

[16] Imdb datasets. https://www.imdb.com/interfaces/.

[17] Sql2rdf: pump sql dml immediately to rdf triplestore. http://inova8.com/bg_

inova8.com/sql2rdf-pump-sql-dml-immediately-to-rdf-triplestore/, 2018.

[18] interact.js. http://interactjs.io/.

[19] Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden, Amol Deshpande, and
Mike Stonebraker. Vertexica: your relational friend for graph analytics! Proceedings
of the VLDB Endowment, 7(13):1669–1672, 2014.

[20] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler: In-
teractive Visual Specification of Data Transformation Scripts. In CHI, 2011.

[21] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and Semih
Salihoglu. Graphflow: An Active Graph Database. In SIGMOD, 2017.

49

https://www.imdb.com/interfaces/
http://inova8.com/bg_inova8.com/sql2rdf-pump-sql-dml-immediately-to-rdf-triplestore/
http://inova8.com/bg_inova8.com/sql2rdf-pump-sql-dml-immediately-to-rdf-triplestore/
http://interactjs.io/

[22] Sangkeun Lee, Byung H Park, Seung-Hwan Lim, and Mallikarjun Shankar. Ta-
ble2graph: A scalable graph construction from relational tables using map-reduce.
In 2015 IEEE First International Conference on Big Data Computing Service and
Applications, pages 294–301. IEEE, 2015.

[23] Zhicheng Liu, Shamkant B Navathe, and John T Stasko. Network-based visual analysis
of tabular data. In 2011 IEEE Conference on Visual Analytics Science and Technology
(VAST), pages 41–50. IEEE, 2011.

[24] Gang Luo, Jeffrey F Naughton, Curt J Ellmann, and Michael W Watzke. A compari-
son of three methods for join view maintenance in parallel rdbms. In Proceedings 19th
International Conference on Data Engineering (Cat. No. 03CH37405), pages 177–188.
IEEE, 2003.

[25] Materialized. https://materialize.io/.

[26] Justin J Miller. Graph database applications and concepts with neo4j. In Proceedings
of the Southern Association for Information Systems Conference, Atlanta, GA, USA,
volume 2324, page 36, 2013.

[27] Neo4j graph platform. https://neo4j.com/.

[28] Neo4j etl tool 1.3.1 release: White winter. https://medium.com/neo4j/

neo4j-etl-tool-1-3-1-release-white-winter-2fc3c794d6a5, 2019.

[29] Streaming graphs: Combining kafka and neo4j. https://neo4j.com/blog/

streaming-graphs-combining-kafka-neo4j/, 2019.

[30] Mark EJ Newman. Detecting community structure in networks. The European physical
journal B, 38(2):321–330, 2004.

[31] Orientdb. https://www.orientdb.org/, 2019.

[32] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and
Jingren Zhou. Real-time constrained cycle detection in large dynamic graphs. Pro-
ceedings of the VLDB Endowment, 11(12):1876–1888, 2018.

[33] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer
Özsu. The Ubiquity of Large Graphs and Surprising Challenges of Graph
Processing: Extended Survey. https://cs.uwaterloo.ca/~ssalihog/papers/

graph-survey-extended.pdf, 2019.

50

https://materialize.io/
https://medium.com/neo4j/neo4j-etl-tool-1-3-1-release-white-winter-2fc3c794d6a5
https://medium.com/neo4j/neo4j-etl-tool-1-3-1-release-white-winter-2fc3c794d6a5
https://neo4j.com/blog/streaming-graphs-combining-kafka-neo4j/
https://neo4j.com/blog/streaming-graphs-combining-kafka-neo4j/
https://www.orientdb.org/
https://cs.uwaterloo.ca/~ssalihog/papers/graph-survey-extended.pdf
https://cs.uwaterloo.ca/~ssalihog/papers/graph-survey-extended.pdf

[34] Kenneth Salem, Kevin Beyer, Bruce Lindsay, and Roberta Cochrane. How to roll a
join: Asynchronous incremental view maintenance. ACM SIGMOD Record, 29(2):129–
140, 2000.

[35] Abderrazak Sebaa and Abdelkamel Tari. Materialized view maintenance: issues, clas-
sification, and open challenges. International Journal of Cooperative Information Sys-
tems, 28(01):1930001, 2019.

[36] Juan F Sequeda, Marcelo Arenas, and Daniel P Miranker. On directly mapping
relational databases to rdf and owl. In Proceedings of the 21st international conference
on World Wide Web, pages 649–658, 2012.

[37] Gábor Szárnyas. Incremental view maintenance for property graph queries. In Proceed-
ings of the 2018 International Conference on Management of Data, pages 1843–1845,
2018.

[38] The tpc benchmark h. http://www.tpc.org/tpch/.

[39] Theodore L Willke, Nilesh Jain, and Haijie Gu. Graphbuilder–a scalable graph con-
struction library for apache™ hadoop™. Big Learning WS at NIPS, 2012.

[40] Konstantinos Xirogiannopoulos, Udayan Khurana, and Amol Deshpande. Graphgen:
Exploring interesting graphs in relational data. Proceedings of the VLDB Endowment,
8(12):2032–2035, 2015.

[41] Yue Zhuge and Hector Garcia-Molina. Graph structured views and their incremental
maintenance. In Proceedings 14th International Conference on Data Engineering,
pages 116–125. IEEE, 1998.

51

http://www.tpc.org/tpch/

	List of Figures
	List of Tables
	Introduction
	GraphWrangler: Streamlining Graph Visualization and ETL
	R2GSync: RDBMS-GDBMS Synchronization
	Thesis Outline

	GraphWrangler
	System Functionalities
	Wrangling Nodes
	Wrangling Edges
	Wrangling Properties
	Other Interactions

	Predictive Interaction and Ranking
	Searching of Edge Types
	Ranking of Edge Type Definitions

	Achieving Interaction Speed for Large Datasets
	In-Memory Cache
	Searching for edge types using the In-Memory Cache

	Implementations

	R2GSync
	Design Space for Automatic RDBMS-GDBMS Synchronization
	R2GSync and Edge Views
	Direct Mapping of Relational Tables into a Graph
	Mapping Each Update in the RDBMS to the Corresponding Update in the GDBMS
	Edge Views

	Optimizations for EdgeViewExtend/Intersect
	Early Distinct
	Early Intersect

	Evaluation of Query Processing With Edge Views
	Setup
	Comparative Performance Analysis

	Related Work
	Extracting Graphs from RDBMS
	RDBMS-GDBMS Synchronization

	Conclusions and Future Work
	References

