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ABSTRACT

Quantum computing is in a critical phase where theoretical schemes and protocols are now

being implemented in the real world for the first time. Experimental implementations can

help us solidfy ideas, and can also complicate them. In the case of quantum communication

protocols, we present the first experimental implementations of two entanglement-based

schemes using IBM’s superconducting transmon qubit based technology. We find that the

schemes are experimentally feasible with current technology, and give an idea of how much

room for improvement there is before quantum technology can meet the highest theoretical

expectations. These communication schemes may be fundamental components of the future

quantum internet. We also present an overview of the emerging field of quantum blockchain

protocols that could form a part of the quantum / classical communication structures of the

future. Interaction between classical and quantum technologies can impair purely quantum

designs, but can also be harnessed to enhance hybrid quantum / classical approaches. Finally,

we suggest a path towards the hybridization of arbitrary code execution and verification in

the hybrid quantum / classical networks of the future.
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Chapter One

Introduction

Motivation and Background.
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1.1 Motivation for Hybrid Computing

Hybrid quantum / classical computing (or "Quassical" computing [CCD15]) is by its nature a

field that focusses on practical applications. Rapid progress in the Noisy Intermediate-Scale

Quantum (NISQ) era of quantum computing has led to a situation where researchers and

programmers have access to quantum computers that are not yet capable of demonstrating

useful quantum speedups in most applications on their own, but in combination with useful

classical algorithms are close to real advantage.

One of the key observations that leads to an interest in quantum / classical hybrid

algorithms (QCH) is that most quantum algorithms require classical counterparts, at a

fundamental level. This means that some non-trivial classical processing is necessary to

make use of the quantum algorithm. For example, this may be a pre-processing step which

prepares data for a quantum algorithm or a post-processing step which handles data coming

from a quantum algorithm. Classical processing of this kind is often required because a

quantum algorithm requires a unique quantum state to be prepared. Preparing such a state

can be more work than preparing the same input data for a computationally equivalent

classical algorithm would require. An example of this is found in Grover’s search [Gro96].

Grover’s search allows for a search of n entries in an unsorted database in O(
√
n) time, which

is less than the linear time required by classical computers which have to check each record

individually. This is possible because a quantum computer can operate on superpositions

of data. Once a database is described in its entirety by a quantum superposition, then

the desired record’s amplitude can be tagged and amplified by a quantum process called

inversion about the mean.

To build a quantum description of a classical database requires that we both have the

classical database on hand and that we transform each classical record to a "quantum record"

that is represented as an amplitude in a quantum superposition as a pre-processing step.

Creating this superposition is not trivial. This also requires O(n) storage space, and it has
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been argued that properly considering the pre-processing step leads to an understanding that

a linear time classical search is actually more efficient than what Grover proposed [LU05].

In this case, not properly considering the hybrid nature of the Grover’s search algorithm led

to an inefficient design.

There are several approaches to QCH algorithm design, and all of them involve quantum

and classical processing steps that interact through some interface. This interface can take

the form of a classical parameter space for a quantum operator, a quantum-assisted training

procedure for a classical neural network, a truly random quantum seed for a classical hash

function, or a quantum search of a classical database, to give a few examples.

Various promising QCH algorithms have been proposed and demonstrated, including

applications in correlated electron systems simulations [Yao+20], open quantum systems

simulations [LSH19], machine learning [BRP18; Vin+19], image processing [SPS19],

optimization [Neu+17], graph partitioning [UNM17] and more. A hybridized Grover’s search

has also been proposed that is an improvement on the classical search, even when considered

in the hybrid regime [LU05]. In each case, these algorithms introduce the relatively new

advantages of quantum computing to old computing problems.

1.2 Computing with Qubits

The qubit model is the most commonly used in quantum computing. A qubit is a two-level

quantum system, meaning that it is described by its association with two unique quantum

basis states [Mer07]. The state of a qubit in terms of the standard computational basis states

|0〉 , |1〉 is generally given by a 2-dimensional vector |ψ〉, a complex-weighted sum of the basis

states.
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|ψ〉 = α0 |0〉+ α1 |1〉 =

α0

α1

 (1.1)

The complex amplitudes α0 and α1 are normalized so that any valid pure quantum state

lies graphically on a sphere, the "Bloch sphere".

|α0|2 + |α1|2 = 1 (1.2)

Figure 1.1 The Bloch Sphere

This generalizes in theory to pure states of arbitrarily many qubits Ψ, the state space of

which can be visualized as a set of hyperspheres.

|Ψ >=
N∑
i=0

αi|i > (1.3)

N∑
i=1

|αi|2 = 1 (1.4)

Quantum computing involves intentionally evolving such quantum states using

predictable evolution operators. Since a quantum state is given by a vector, an operator may

be represented by a matrix. An operator is applied to a state simply by matrix multiplication.
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Valid operators are unitary matrices. A unitary matrix U satisfies the property that

U †U = UU † = I. Here † denotes the conjugate transpose of the matrix U and I is the

identity. Unitary matrices are surjective isometries, meaning that they do not change the

distance between elements of the state space and preserve its topology (i.e. the topology of

the Bloch sphere).

These unitary operators used for quantum computing are not capable of describing all

possible evolutions of quantum systems. Rather, they describe the evolutions that we find

useful for universal quantum computing. Decoherence from interaction with the environment

and physical implementation imperfections can cause non-unitary evolution, which generally

makes computation difficult [Zeh70].

Operators are often constructed from a set of basic operators, the Pauli gates σx, σy, σz,

which form the set of reflections across each axis x, y, z of the Bloch sphere.

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 (1.5)

An arbitrary single-qubit operator U can be constructed from a weighted sum of the

Pauli gates. Such an operator is characterized by a "Bloch vector" v.

U = xσx + yσy + zσz (1.6)

v =


x

y

z

 (1.7)

The overall states |Φ〉 of some groups of subsystems |φ0〉 , |φ1〉 , . . . , |φn〉 can be described
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succinctly as the tensor product of the individual subsystems.

|Φ〉 = |φ0〉 ⊗ |φ1〉 ⊗ · · · ⊗ |φn〉 (1.8)

However, not all states have a simple tensor product structure. Local configurations can

yield more complex states. For example, we discuss what is required to construct quantum

states involving entanglement at the end of this chapter. For another example, the energy

states of D-Wave’s quantum annealers are described by a more complex Hamiltonian with

orthogonal parts that do not commute [H18].

1.3 Quantum Annealing

D-Wave’s approach to quantum computing is an instance of adiabatic quantum computing

[McG]. Adiabatic quantum computing is polynomially equivalent to the gate model approach

to quantum computing, but the method of encoding problems into the system Hamiltonian

in each approach is very different. In both cases there is an initial Hamiltonian HI , a final

Hamiltonian HF , and a change of state characterized by a Hermitian matrix Ht. In the case

of the gate model, Ht describes a number of discrete operators that change the state of the

system from its initial state to its final state. These operators together form a quantum

circuit that executes a quantum algorithm. In the case of adiabatic quantum computing, on

the other hand, Ht describes a gradual adiabatic evolution path from HI to HF .

Ht = s(t)HI + (1− s(t))HF (1.9)

Here s(t) decreases linearly in time from 1 to 0, which causes Ht to evolve from HI to HF .
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HI and HF may describe systems of multiple qubits, as we will see in the case of D-Wave’s

Hamiltonian. The goal of a programmer is to design a Hamiltonian which will settle to a

valid solution to a particular problem as s(t)→ 0.

In the model used by D-Wave [Cho08], a strong transverse field σ̂x is applied to all

qubits at the beginning of an experiment. This causes the first term in the Hamiltonian to

dominate. Fields σ̂z are then applied locally to the individually indexed qubits according to

the qubit biases hi. Here i indexes the qubits. These may also be applied to pairs of qubits,

establishing a coupling between them according to coupling strengths Ji,j. Here i, j index

the pairs of interacting qubits.

Hising =
A(s)

2
(
∑
i

σ̂(i)
x ) +

B(s)

2
(
∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,jσ̂
(i)
z σ̂

(j)
z ) (1.10)

The transverse field is weakened gradually according to the energy scaling functions A(s)

and B(s) so that by the end of the experiment the second term dominates and will finally

settle to a classically observable state. Programming such a quantum annealer is equivalent

to encoding a problem into the second term such that the system settles into a final state

that solves the embedded problem with high probability. This model allows for a quantum

speedup over classical annealing methods since in order to settle to stable states a quantum

system may use quantum tunneling to take a "shortcut" to a solution.

1.4 Quantum Computing in the Gate Model

Most universal quantum computers follow the gate model of quantum computing. Quantum

circuits in this model are easier to visualize due to their being discrete. Operators can be

represented pictorially in circuit diagrams. The operators are depicted as being applied to

quantum channels, visually horizontal lines, which each depict the evolution of a qubit qi as

7



time flows from left to right.

q[1] X U

q[2] Y Z

Figure 1.2 Example circuit diagram

A notable operator is the Hadamard gate since it maps the basis states |0〉 , |1〉 each to a

perfect superposition of basis states |0〉+|1〉√
2

, |0〉−|1〉√
2

.

q H

Figure 1.3 Pictorial Hadamard

H =
1√
2

1 1

1 −1

 (1.11)

Another notable operator is the Toffoli (or CCNOT) gate, since it facilitates interaction

between qubits.

q[1] •

q[2] •

q[3]

Figure 1.4 Pictorial Toffoli (CCNOT)
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CCNOT =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



(1.12)

The π
4
rotation operator called the T-gate is also interesting, since the Toffoli, Hadamard

and T-gate together form a gateset that is complete for universal computing [Kit97].

q T

Figure 1.5 Pictorial T-gate

T =

1 0

0 e
iπ
4

 (1.13)

There are many universal gatesets, but each generally involves operators that facilitate

each of the key ingredients for quantum computing: superposition, interaction and rotation.

One such gateset is the set of all single-qubit gates, generally captured by the three-parameter

operator U3, and the two-qubit CNOT gate [Bar+95]. Here, U3 includes all single-qubit

rotations, as well as maps involving superimposed states. CNOT facilitates interaction

between a pair of qubits. This is more than enough for universal computation.
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U3(θ, φ, λ) =

 cos( θ
2
) −eλisin( θ

2
)

eφisin( θ
2
) eλi+φicos( θ

2
)

 (1.14)

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(1.15)

q[1] •

q[2]

Figure 1.6 Pictorial CNOT

Since a qubit is defined by complex association with the classical Boolean basis states |0〉

and |1〉, it may be considered a higher dimensional unit of information than the Boolean bit.

The space of functions that are computable using a number of qubits is larger than than the

space of computable functions using the same number of bits, since qubits are simply more

general.

The last element of any quantum computing algorithm is measurement. Computational

measurement causes an evolution of a quantum state that results in its being rotated to

one of the computational basis states. Generally, the likelihood of a measurement to cause

the state to resolve to a particular basis |i〉 is the same as the square of the corresponding

complex coefficient’s magnitude |αi|2.

A quantum effect that is central to the protocols studied in this thesis is quantum

entanglement. In any communication protocol, the communication channels and the units

10



q

Figure 1.7 Pictorial measurement

of information shared may be considered resources. In quantum communication protocols,

entanglement may also be used as a resource. Entanglement can be used to enable

multi-party communication and high-density information encodings as in the controlled

teleportation and dense coding protocols [LD08; HLG01].

Entanglement may be prepared by the application of CX12H1 to two basis-state qubits.

This causes the two qubits to have correlated measurement outcome probability amplitudes.

CX12H1 |00〉 =
|00〉+ |11〉√

2
= |φ+〉 (1.16)

|0〉 H •

|0〉

Figure 1.8 Example Entanglement Protocol

Applying the entanglement protocol to each of the four unique initial basis state

combinations yields what are known as the four Bell states.

|ψ± >=
|01 > ±|10 >√

2
(1.17)

|φ± >=
|00 > ±|11 >√

2
(1.18)

Entanglement is useful for quantum communication since the entangled particles retain
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their correlation regardless of physical separation, until they are measured. This is the

basis of all entanglement-based quantum communication algorithms, which are expected to

play a foundational role in the future quantum internet. If the quantum internet is ever

going to support useful communication networks and data structures like grid, cloud or

blockchain networks then it is likely that the quantum technology employed will need to

support entanglement-based communication.

12



Chapter Two

Quantum Control for Networked

Communication

An Experimental Study of the Implementation of Controlled
Algorithms using Modern Quantum Computers.
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2.1 Chapter Overview

We experimentally implement two quantum communication protocols with controlling

parties for the first time in the superconducting quantum computing setting, using the

IBMQX4 quantum computer. Controlled teleportation and controlled dense coding are

two controlled communication schemes that will be fundamental elements of quantum

networking and the quantum internet. The ability for a controller to affect the quantum

communication processes in these protocols relies on the details of the underlying quantum

computing technology and infrastructure. We demonstrate that using current quantum

computing technology, the effectiveness of control is quantifiable despite challenges including

decoherence and noise.

2.2 Introduction

The practical usability of any communication technology relies on its operator’s ability to

control its behaviour. For a digital electrical communication system to work, it is necessary

that digital signals can be routed between corrected transmitting and receiving devices,

for example. Data compression can also be an important part of signal transmission. In

quantum information science efforts, control is of particular importance. While quantum

communication promises to vastly improve the efficiency and security of communication

through protocols like BB84 quantum key distribution [BB20], these benefits do not come

without proportional challenges.

IBM has delivered a superconducting quantum computing system that uses Transmon

qubits to achieve an early approximation of general quantum computing with five qubits.

While this isn’t enough for a user to achieve powerful quantum computing algorithms, it

is enough to implement many fundamental quantum information experiments. We are

particularly interested in experimentally testing quantum control schemes that relate to
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quantum communication. Two quantum algorithms that will enable the communication of

quantum states between transmitter and receiver with sufficient fidelity and data density

are the Controlled Teleportation [KB] and Controlled Dense Coding [HLG01] schemes. We

experimentally implement both of these protocols in this study. Controlled teleportation has

recently been demonstrated in the linear optical setting [BČL19], but we believe that this is

the first formal implementation of these control schemes in the superconducting setting.

Teleportation promises to enable the transport of state information between two locations

with excellent fidelity, while dense coding ensures data density in a transmission. The ability

to control the behaviour of a system implementing either protocol will be essential if a

practical implementation of a quantum communication system is to be achieved. The first

proposal of a controlled teleportation scheme was made by Karlsson and Bourennane in 1998

[KB]. Controlled teleportation can be used in the same way as a quantum state sharing

scheme to share a quantum secret among several receivers [GR23].

In 2001, a controlled dense coding scheme was also proposed [HLG01] by Hao, Li and

Guo. These two controlled algorithms show how the destination and content of a quantum

communication might be influenced by controlling logic. The ability to effectively implement

these will be a prerequisite for further practical implementations of quantum communication

system elements including quantum channel switches, routers and networks. A quantum

network built on these elements would be "ultimately secure", as was shown in 1997 by Biham

and Mor [BM97]. This means that secret communications over a correctly implemented

quantum network will be impossible for malicious parties to take advantage of; a huge step

beyond the security of the modern web.

This chapter explores the effectiveness of controlling parties in controlled teleportation

and dense coding algorithms run on the most advanced and cutting-edge quantum computing

systems available today. Each algorithm is tested on the IBMQX4 quantum computer and

the results compared to theoretical ideals.

We analyze each protocol’s resistance to unauthorized message transport and fidelity in
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conveying allowed messages. We compare computed results to simulated results obtained

using IBM’s quantum computing simulation platform. IBM’s quantum computing platform

is an ideal tool for this experiment since it provides simulation and quantum computation

services, the later of which is difficult to find elsewhere. IBM’s is the first commercialized

cloud quantum computing service [Edi17].

2.3 Teleportation

Quantum teleportation takes advantage of entanglement to achieve the secure sharing of

unknown quantum state information between separate sending and receiving locations. One

method of performing quantum teleportation is to prepare an entangled state of two qubits

and then split the participating qubits up, one to each of the locations. Then the sender, say

Alice, performs a Bell measurement involving a qubit with the state she wishes to teleport,

and the entangled qubit at her location. Alice performs basis measurements of these same

two qubits, and classically transmits the results of these measurements to Bob. Bob may

then use this information and his entangled qubit to reconstruct the "teleported" state.

Quantum teleportation has been tested and verified to perform within statistically

significant bounds on IBM’s quantum computer [Fed08]. An extension of quantum

teleportation is controlled teleportation, which introduces a third party, say Charlie.

Charlie’s role is to allow or disallow Alice and Bob to perform a teleportation successfully.

The successful implementation of controlled teleportation allows the introduction of logical

control over teleportation operations such that a transmitted state cannot be derived by the

receiving location when the operation is not allowed. When a teleportation is allowed, the

procedure should perform the same as a simple teleportation procedure without a controller.

This chapter will focus on the validity and extent of Charlie’s control over the success of

a teleportation operation in a known controlled teleportation procedure [LD08].
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2.4 The Controlled Teleportation Procedure

The controlled teleportation procedure used in this study uses one additional qubit on top of

the three used in the simple teleportation circuit. Instead of beginning the procedure with

a pair of entangled qubits, the procedure begins with the preparation of an entangled state

of three qubits, called a Greenberger-Horne-Zelinger state. By performing this preparation,

the following GHZ state is created.

|ψGHZ >ABC=
|000 >ABC +|111 >ABC√

2
(2.1)

Similar to the simple teleportation procedure, the next component of controlled

teleportation is for Alice to perform a CNOT from a qubit with the state to be teleported

onto the entangled qubit at her location. The unknown state to be teleported will be the

state of a fourth qubit.

|x >x= α|0 >x +β|1 >x (2.2)

Next, Alice applies a Hadamard gate to the qubit with the arbitrary state to be

transmitted, x. This achieves a Bell measurement of A and x. A Bell measurement of

two qubits is an entangling operation that puts the pair of qubits into one of four states

known as the Bell states.

|ψ± >=
1√
2

(|0 >x |1 >A ±|1 >x |0 >A) (2.3)

|φ± >=
1√
2

(|0 >x |0 >A ±|1 >x |1 >A) (2.4)
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The overall state of the four qubits then takes the following general form.

|x >x |ψGHZ >ABC=

1

2
[|φ+ >xA ⊗(α|00 > +β|11 >)BC

+|φ− >xA ⊗(α|00 > −β|11 >)BC

+|ψ+ >xA ⊗(α|11 > +β|00 >)BC

+ |ψ− >xA ⊗(α|11 > −β|00 >)BC ] (2.5)

When Alice performs the Bell measurement, x and A will assume one of the four Bell

states and qubits B and C will collapse from this general form to a corresponding state with

two outcomes of equal likelihood. For example, in the case of the Bell State |φ+ >xA, qubits

B and C would collapse into the following state.

|ψ >BC= (α|00 > +β|11 >)BC =

1√
2

[(α|0 > +β|11 >)B|+ x >C

+ (α|0 > −β|11 >)B| − x >C ] (2.6)

In this collapsed state, |±x > are the eigenvectors of the x basis. The |±x > components

make it possible for Charlie to determine which of the two outcomes of equal likelihood

has taken place by performing a measurement in the x basis basis of the C qubit. Alice

can also measure x and A in order to determine which Bell state has been assumed. If

both Charlie and Alice classically transmit the results of these measurements to Bob, it

is then possible for Bob to determine what gates need to be applied to qubit B in order

for its state to be equal to the transmitted state. Without being informed of the result

from Charlie’s measurement, Bob cannot know which gate operations to apply; therein lies
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Charlie’s control of the teleportation operation. Without knowing which operation to apply,

Bob must guess, which means his results will not always match what Alice intended. In

practice, this introduces a loss of fidelity that can be seen both in computer simulations and

in experimental demonstrations of the protocol on the IBMQX4.

The possible operations that Bob may be required to perform are shown in relation to

the corresponding measurement results below.

Bell State Charlie’s Result Bob’s Operation

|φ+ >xA |+ x > I

|φ+ >xA | − x > Z

|φ− >xA |+ x > Z

|φ− >xA | − x > I

|ψ+ >xA |+ x > X

|ψ+ >xA | − x > XZ

|ψ− >xA |+ x > XZ

|ψ− >xA | − x > X

Table 2.1 Decoding operations

The implementation of this protocol can be represented by a quantum circuit with the

gate labelled B representing the relevant of the four possible operations for Bob to apply,

q[0] as qubit B, q[1] as C, q[2] as A and q[3] as x.
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q[0] H • B

q[1] • H

q[2]

q[3] U1 • H

Figure 2.1 Theoretical controlled teleportation circuit

2.5 Implementation on the IBMQX4

In order to demonstrate the true efficacy of Charlie’s control in the protocol, the protocol

was implemented and tests of effectiveness automated to run on IBM’s quantum computing

platform. To achieve a true test of the protocol, several limitations of the platform had to

be considered. The first obstacle to implementing the protocol was the fact that quantum

circuits to be run on the IBM platform must be completely predefined in IBM’s own definition

language, Open QASM. This means that measurements taken during a circuit execution

cannot affect the gates that are applied as a part of the circuit. This clearly conflicts with

Bob’s need to use the measurement results from Alice and Charlie to inform his final gate

operations.

Secondly, the platform API returns a probability distribution of measurement results over

a number of executions. This introduces complexity because in the controlled teleportation

protocol, each run will involve a different Bell state and collapsed state that define the context

for Bob’s final operation. Since the result of a run on the IBMQX4 or IBM simulator provides

no insight into these contexts and cannot discriminate between them, the overall probability

of measuring qubit B as either 1 or 0 over a number of executions is meaningless.

The approach that was taken to get around these limitations was to predefine each of the

four possible circuits. Then each time a circuit was executed, the operation done by Bob

would be known. A post-selection algorithm was implemented that determined from each

set of measurement results whether the measurements made by Charlie and Alice matched
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with the operations applied by Bob.

For each of the four Bell states and both of Charlie’s possible measurement results, each

of the four circuits was run in a batch of 1000 executions each. After these 8000 executions,

the post-selection algorithm reported on the relevant probabilities of Bob’s outcomes. Then

each of the four circuits was run 1000 more times, and the post-selection algorithm was not

given Charlie’s expectation, instead only filtering out results where Alice’s measurement did

not correspond with Bob’s decoding operations. In order to fully test the functionality of

the process, five input states were prepared and the procedure involving a total of 12000

executions was repeated for each one.

As a calibration step preceding these experiments, the full set of executions was performed

with a basis state input. These execution results yielded an average fidelity of 90%. We

can consider this fidelity to be a baseline that reflects the performance of the circuit itself

since these executions involved trivial state preparation and fidelity measurement operations

that should not introduce the same gate-level noise as the state preparation and fidelity

measurement gates used in the experiments.

In tabular and graphic presentations of data, the following enumeration of the input

states will be used.

α β Input State

0.71 0.71 |ψ1 >

0.5 0.87 |ψ2 >

0.3 0.95 |ψ3 >

0.37 0.93 |ψ4 >

0.17 0.98 |ψ5 >

Table 2.2 Teleportation input states
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To provide a metric for the success of the procedure, the dagger of the input state was

applied to qubit B at the end of the procedure, and the qubit then measured. This meant that

if working properly, the entire process should have guaranteed that Bob’s qubit was always

measured to be a 0. This metric is used as the measure of the controlled teleportation

protocol’s fidelity.

q[0] H • B U1†

q[1] • H

q[2]

q[3] U1 • H

Figure 2.2 Controlled teleportation fidelity measurement circuit

As mentioned, the quantum computing platform API returns a probability distribution

of measurement results after a batch of executions. An IBMQX4 API response contains a

list of the outcomes that were measured as well as the number of executions in the batch

that yielded each listed outcome as a percentage. The fidelity of a transmitted state was

derived from an API response by summing the probabilities of all the measured outcomes

in which both the observed Bell State and Charlie’s result matched what was expected by

the post-selection algorithm. This gave us the total probability of all the outcomes relevant

to the post-selection. A second sum of the probabilities of the relevant outcomes in which

Bob’s resulting qubit also had a state of 0 indicated the fidelity of the transmission protocol.

A ratio of this second sum over the total probability of the relevant outcomes provided the

final, adjusted fidelity of the transmission being tested in a batch of executions. This process

was first verified on IBM’s simulator and was shown to have perfect fidelity when simulated.

A subset of our data will provided in the data tables following. To make comparisons

meaningful, the same subset will be presented in each tabular dataset. Therefore, we will
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only show results for the input state |ψ2 > in these tables. However, the complete datasets

will be represented in more compact graphs.

Result Fidelity Bell State Input State

1 |φ+ >xA |ψ2 >

1 |φ− >xA |ψ2 >

1 |ψ+ >xA |ψ2 >

1 |ψ− >xA |ψ2 >

Table 2.3 Simulated results subset, allowed teleportation

To demonstrate the efficacy of Charlie’s influence over the protocol, the procedure was

done again, but the post-selection algorithm adjusted to not discriminate between Charlie’s

results. This yielded the following results.

Figure 2.3 Fidelity of protocol across all simulated cases, disallowed teleportation

This test was successful as Charlie’s influence on the protocol’s fidelity was statistically

significant. The protocol succeeded with 100 percent fidelity when Charlie allowed the
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teleportation. In contrast, the disallowed teleportation fidelity had a mean of 71 percent

and a mode of 76 percent.

Figure 2.4 Distribution of fidelity across all simulated cases, disallowed
teleportation

The next step was to implement the same procedures and tests that had been simulated

on the quantum computer. These results show the protocol’s performance in the real world.

Result Fidelity Bell State Input State

0.88 |φ+ >xA |ψ2 >

0.92 |φ− >xA |ψ2 >

0.85 |ψ+ >xA |ψ2 >

0.86 |ψ− >xA |ψ2 >

Table 2.4 Computed results subset, allowed teleportation

The procedure was done on the computer again with the post-selection algorithm adjusted

to not discriminate between Charlie’s results. This demonstrated that Charlie did not have

the same level of control over the protocol as had been shown on the simulator.
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Figure 2.5 Fidelity of protocol across all computed cases where Charlie measures
0, allowed teleportation

Figure 2.6 Fidelity of protocol across all computed cases where Charlie measures
1, allowed teleportation

Result Fidelity Bell State Input State

0.73 |φ+ >xA |ψ2 >

0.63 |φ− >xA |ψ2 >

0.54 |ψ+ >xA |ψ2 >

0.65 |ψ− >xA |ψ2 >

Table 2.5 Computed results subset, disallowed teleportation
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Figure 2.7 Fidelity of protocol across all computed cases, disallowed teleportation

On the computer, Charlie’s influence on the protocol’s fidelity was still evident, but less

significant than in the simulated results. The protocol performed with a mean of 87 percent

and a mode of 88 percent fidelity when Charlie allowed the teleportation. The disallowed

teleportation fidelity had a mean of 71 percent and a mode of 74 percent.

Figure 2.8 Distribution of fidelity across all computed cases, disallowed
teleportation

A measure of statistical significance between two distributions is the difference between

their medians, divided by the maximum range of the 1st and 3rd quartiles of both. Using
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Figure 2.9 Distribution of fidelity across all computed cases, allowed teleportation

this measure, it can be shown that the influence of Charlie on the computed protocol has

some significance. This is shown in the equation below with F representing fidelity, Q3 as

the 3rd quartile and Q1 as the 1st quartile.

F allowed − F disallowed

max(Q3allowed)−min(Q1disallowed)
=

0.87− 0.71

0.92− 0.62
= 57% (2.7)

2.6 Superdense Coding

Superdense coding is a technique that leverages entanglement to achieve the communication

of more information than would be classically possible with a number of bits physically

transmitted between two parties.

This method is demonstrated in the quantum circuit diagram below with q[1] representing

Alice’s entangled qubit and q[0] representing Bob’s entangled qubit.

q[0]

q[1] H • X Z • H

Figure 2.10 A simple superdense coding circuit
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Initially, Alice entangles both qubits and gives one to Bob. This must occur before

superdense communication takes place. Once Alice has a message to transmit to Bob, she

then performs a combination of the X and Z gates to the qubit she still has in order to

encode her message.

Message Gates

00 I

01 Z

10 X

11 XZ

Table 2.6 Alice’s superdense encoding operations

After performing these gates, Alice sends her qubit to Bob who will perform a and

Hadamard to the qubits as shown in the circuit before measuring both. The result of his

measurement will yield the message corresponding to Alice’s encoding operation.

2.7 Controlled Dense Coding

A controlled dense coding scheme [HLG01] introduces a controlling party to the protocol,

providing a similar mechanism of control to that which was seen in the controlled

teleportation protocol. The implementation of this protocol can be represented by a

quantum circuit with the gate labelled A representing Alice’s encoding operation, q[0] as

the controller’s qubit C, q[1] as B and q[2] as A.

The protocol begins with the preparation of a GHZ state. Each of Alice, Bob and Charlie

then receive one of the entangled qubits. Charlie then performs a measurement in the x basis
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q[0] H

q[1] •

q[2] H • A • H

Figure 2.11 A controlled superdense coding circuit

of the C qubit. If Charlie measures a result of |0 > this represents the | −x > eigenvector of

the x basis and indicates that a transmission may be successful. Charlie may then classically

communicate to Bob that the conditions for success are met and he can safely decode Alice’s

message. Charlie may also choose to disallow the operation by refraining from reporting the

result of his message. To encode her message, Alice will perform one of the following gate

operations.

Message Gates

00 I

01 Z

10 X

11 Y

Table 2.7 Alice’s controlled superdense encoding operations

The operation used to encode the message “11” is different from that used in the simple

superdense coding algorithm because in this scheme, the two bits of information are encoded

differently. Bob decodes Alice’s message by determining the parity and phase of Alice’s

encoding operation.

To determine the parity of Alice’s operation, Bob performs and measures qubit CNOTAB.

The result indicates whether Alice’s message was of even parity or odd.

There are two possible odd parity and two possible even parity operators for Alice to
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use. Therefore, once Bob has determined the parity of Alice’s operation he can still decode

another bit of information by determining the exact operation that Alice performed. Bob

does this by measuring qubit B in the x basis, yielding either | − x > or |+ x >.

and narrowing down exactly what operation Alice performed. The results of these

measurements correspond directly to the message encoded by Alice as shown. If Bob

attempts to decode a message without knowledge of Charlie’s result, his decoding operation

will not necessarily indicate the correct phase and parity of Alice’s operation and will not

be reliable.

2.8 Implementation on the IBMQX4

In order to demonstrate the efficacy of Charlie’s control in the controlled dense coding

protocol defined in section 6, the protocol was implemented and tests of effectiveness

automated to run on IBM’s quantum computing platform. The protocol was first verified

on IBM’s simulator and was shown to have perfect fidelity when simulated. Each message

was encoded and decoded 1000 times for allowed transmissions and 1000 times for disallowed

transmissions. “Charlie’s relevance” represents the percentage of a batch of 1000 executions

for which the result of his measurement was | − x > in an allowed transmission or falsely

reported to be |−x > in a disallowed transmission. The fidelity of a batch of 1000 executions

is represented by the percentage of executions in which Bob decoded the correct message

prepared by Alice.

The same protocol was repeated on the IBMQX4 to show the extent of Charlie’s control

in the real world.
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Result Fidelity Allowed Message

1 YES 00

1 YES 01

1 YES 10

1 YES 11

0.49 NO 00

0.50 NO 01

0.52 NO 10

0.51 NO 11

Table 2.8 Simulated results, superdense coding

Result Fidelity Allowed Message

0.83 YES 00

0.84 YES 01

0.78 YES 10

0.78 YES 11

0.52 NO 00

0.49 NO 01

0.46 NO 10

0.46 NO 11

Table 2.9 Computed results, superdense coding

When the protocol was performed on the IBMQX4 it did not perform with perfect fidelity,

but had an allowed success rate of 80.75 percent and a disallowed success rate of 48.25 percent.
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Figure 2.12 Fidelity of allowed messages

Figure 2.13 Fidelity of disallowed messages

2.9 Discussion and Summary

Quantum communication carries incredible implications for the future of information

technology and security. A perfectly functioning communication system built on the

principles on quantum teleportation could introduce the world to completely secure

communication. As the possibility of such systems is being considered and working models

are being demonstrated in simulations, it is important for us to plan ahead and to know

the measure of control we will be able to exercise over communications. In this chapter it

has been shown that models for a quantum communication channel with a remote controller

who can allow or disallow communication is theoretically sound and performs perfectly when

simulated.

Furthermore, it has been shown that the same models perform with decreased fidelity

when executed on an actual quantum computer, the IBMQX4. The effectiveness of the

remote controller has been shown to be recognizable overall. Despite decoherence effects

due to gate and qubit errors which caused the experimental circuits to have an average
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output fidelity of only 90%, the difference between the fidelities of allowed versus disallowed

communications was shown to be statistically significant.

Some interesting results considered in isolation also tell their own stories. For example,

the fidelity of the disallowed teleportation of the |φ+〉xA state is higher on the IBMQX4

than in simulations. It seems counterintuitive that a protocol may yield higher fidelity in an

experimental setting than in a simulation. However, it is important to remember that the

fidelity measured is that of the state that Alice is attempting to teleport. It is the intended

outcome of the disallowed teleportation that the fidelity of this is low, which demonstrates

Charlie’s control. Therefore, the disallowed teleportation protocol is actually performing

better in simulations, as expected. The success of the controlled protocols on the IBMQX4

are demonstrated by the statistical differences between the fidelities of disallowed versus

allowed cases. To contrast the simulated and computed cases, we should compare these

statistical differences.

We can calculate the statistical significance of the separation between the allowed and

disallowed simulations in a similar way to how we calculated the same for the experimental

computations in equation 2.7. The box-and-whisker graph for the disallowed teleportation

distribution is provided. There is no distribution for the allowed case since the fidelities are

all simply 1.

F allowed − F disallowed

max(Q3allowed)−min(Q1disallowed)
=

1− 0.77

1− 0.64
= 64% (2.8)

Since 64% > 57%, the difference in allowed and disallowed distributions is much more

significant in the simulations than in the experimental computations. This shows that there

is still significant room for improvement of the experimental controlled teleportation protocol

realization.
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Figure 2.14 Distribution of fidelity across all simulated cases, disallowed
teleportation

Box-and-whisker graphs are not as appealing to show for the controlled dense coding

protocol since the allowed and disallowed fidelity distributions do not overlap at all in

this protocol. However, we can still calculate the statistical significance of the simulated

distributions’ separation.

F allowed − F disallowed

max(Q3allowed)−min(Q1disallowed)
=

1− 0.505

1− 0.49
= 97% (2.9)

We can show that the statistical significance of the controller is less in the computed

case.

F allowed − F disallowed

max(Q3allowed)−min(Q1disallowed)
=

0.81− 0.48

0.84− 0.46
= 87% (2.10)

In both the controlled teleportation and controlled dense coding protocols, the controller

has higher statistical significance in simulations than in experimental computations.

This shows that the experimental implementations of quantum computers for networked

communication still have room for improvement, but that the protocols can also be

demonstrated now with significant results.
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This study has not considered how the communication protocols behave when the sending

and receiving parties do not participate, since the purpose of this study was to determine the

effectiveness of control. This could be an interesting topic for a future work. It would also be

interesting for a future work to examine how and if the security of quantum communication

protocols are affected by the participation of a controller in a networked communication

setting.
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Chapter Three

Quantum Blockchain

A Review of Quantum Blockchain Technology.
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3.1 Chapter Overview

Blockchain technology is facing critical issues of scalability, efficiency and sustainability.

These problems are necessary to solve if blockchain is to become a technology that can be

used responsibly. Useful quantum computers could potentially be developed by the time

that blockchain will be widely implemented for mission-critical work at financial and other

institutions. Quantum computing will not only cause challenges for blockchain, but can also

be harnessed to better implement parts of blockchain technologies including cryptocurrencies.

We review the work that has been done in the area of quantum blockchain and hybrid

quantum-classical blockchain technology and discuss open questions that remain.

3.2 Introduction

Quantum blockchain technology is one of the areas of research in the rapidly growing field

of quantum cryptography [Feh10]. Quantum cryptographic schemes make use of quantum

mechanics in their designs. This enables such schemes to rely on presumably unbreakable

laws of physics for their security. Many quantum cryptography schemes are information-

theoretically secure, meaning that their security is not based on any non-fundamental

assumptions. In the design of blockchain systems, information-theoretic security is not

proven. Rather, classical blockchain technology typically relies on security arguments that

make assumptions about the limitations of attackers’ resources.

Blockchain and distributed ledger technologies have applications in many industries, most

notably in the financial industry. The financial applications of blockchain technologies

include cryptocurrencies, insurance and securities issuance, trading and selling. Non-

financial applications of blockchain technology have been identified for the music industry,

decentralized IoT, anti-counterfeit solutions, internet applications and decentralized storage,

to name a few. In recent years, blockchain projects have attracted massive attention in these
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industries [Nof+17].

Despite being a relatively new technology, blockchain has made significant waves in a

number of important industries in a very short time. The two most known instances of

blockchain technologies are Bitcoin [Nak] and Ethereum [But13], which are the core of

modern cryptocurrencies. Ethereum’s focus on smart contracts has made it a valuable tool

for decentralizing numerous industries.

The philosophical implications of decentralized consensus technologies are far-reaching.

Atzori suggested in 2015 that all of society might be restructured by the blockchain, and that

"the decentralization of government services through permissioned blockchains is possible

and desirable" [Atz15].

In this chapter we review work that introduces quantum cryptographic methods to

blockchain technology. We discuss the potential impact and risk associated with blockchain

technology and how the proposed quantum cryptographic methods attempt to address these

risks.

3.3 Blockchain Background

Before delving into quantum and hybrid quantum-classical blockchain cryptography schemes,

we will provide a brief summary of the core mechanisms in blockchain technology. The

National Institute for Standards and Technology (NIST) describes blockchain technology in

the following way:

Blockchains are tamper-evident and tamper-resistant digital ledgers implemented

in a distributed fashion (i.e., without a central repository) and usually without

a central authority (i.e., a bank, company, or government). [Yag+18]

We will focus primarily on Ethereum’s blockchain implementation in the following

sections since Ethereum’s smart contracts have inspired interesting work in theoretical
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quantum blockchain design. Ethereum was introduced by Vitalik Buterin in 2013 [But13].

The most important feature of Ethereum is arguably its Turing-complete scripting language

for smart contracts. Ethereum shares many basics with other blockchain implementations.

Here, we will summarize the elements of Ethereum that are most relevant to the work that

we review [But13]. We begin with the basics that are shared by Ethereum and Bitcoin.

3.3.1 The Ledger

The distributed ledger of a blockchain cryptocurrency maintains the ownership and status

of all existing coins. The ledger is made up of a chain of blocks. The chain is composed of

the blocks’ references to one another. Any valid block’s header contains a hash of the header

of the previous block in the chain. Each block typically also contains a timestamp, nonce,

and list of transactions.

Figure 3.1 Chain of Blocks

When a transaction occurs, the current ledger state is mutated by a function that takes

the original state S0 and the transaction TX, and outputs the next state S1 or an error

E. Here, and throughout this chapter, ← represents a transition of a state. Note that in

this case, the state is a purely classical data structure. However, in later sections the same

notation will be used to denote transitions between quantum states.

S1orE ← Apply(S0, TX) (3.1)
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In Bitcoin, a ledger’s state is composed of all Unspent Transaction Outputs (UTXO),

or simply all of the coins that have been mined but not spent. Each coin has a 20-byte

cryptographic public key which contains information about its owner and its denomination.

A transaction requires references to each UTXO involved and the cryptographic

signatures produced by the UTXO owners’ private keys.

3.3.2 Proof of Work

To achieve the decentralization of the ledger, a consensus system must be introduced.

The goal of the consensus system is to ensure that everyone agrees on the validity of the

transactions that have led to the ledger’s state and their order. There are several consensus

systems that are in use today, including proof-of-work, proof-of-stake, proof-of-burn and

more. The most ubiquitous is proof-of-work.

Bitcoin’s proof-of-work based system requires that users attempt to publish transactions

constantly. These transactions are published in packaged groups of a fixed size (1 MB in

the case of Bitcoin) called blocks. In addition to a list of transactions, a block contains a

timestamp, one-time use block id or nonce, and a hash of the header of the last most-recent

block that contributed to the ledger. Hence each block maintains a reference to the block

that came before it, and the blocks form a chain as they are published which reflects the

order of their publications in time.

In order for a block to be accepted, its proof of work must be valid. The validity condition

for Bitcoin block is that its double-SHA256 hash is less than a dynamically adjusted cutoff

when interpreted as an integer. A SHA256 hash is a completely unpredictable result of a

pseudorandom function. So, in order to create a valid block the hash function must be run

an arbitrary number of times until a valid output randomly occurs. Therein lies the work

that must be done to generate a proof-of-work, and the incredible overhead in computational

resources that is encouraged by proof-of-work blockchains.

40



The time required to generate a valid hash is fundamental to the consensus system that is

employed. If an attacker attempts to move money in a way that conflicts with the ownership

of coins as a result of a transaction record already accepted by the ledger, the attack is

simply rejected. However, an attacker can try to fabricate a block which points to a valid

block that was published before the block containing the transaction which changed the

ownership of the desired coins. In this case, the attacker will be required to generate a new

valid proof-of-work. While the attacker is occupied doing this, it is assumed that many other

miners are continuing to publish blocks that point to the latest legitimate block. The rule

that is applied to weed out these attacks is simply that the longest valid chain is taken to be

the truth. An attacker would therefore need to have more computing power than the rest of

the network combined in order to outpace the speed of the network’s publications and make

his/her chain the longest. This is called a 51% attack and would theoretically be successful.

3.3.3 Proof of Stake

Proof-of-stake schemes were introduced to address some of the issues with proof-of-work

[Fra20]. Ethereum is currently in the process of switching to a proof-of-stake scheme. The

mining power available to a miner in a proof-of-stake scheme is proportional to the number

of coins owned by the miner. Hence, they are limited to mining a number of blocks that

is proportional to their stake in the cryptocurrency ecosystem. This offloads the miners’

consumption of electrical energy resources to currency resources that are more internal to

the blockchain.

A driving force behind the creation of proof-of-stake was the dynamic created by miners

selling their coins to pay off their electrical bills. This movement of cryptocurrency out of

the ecosystem has led to drops in cryptocurrency value.

Proof-of-stake schemes have less inherent risk than proof-of-work schemes. This is clearly

illustrated by the proof-of-stake version of the 51% attack. In a proof-of-stake blockchain, an
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attacker would need to have 51% of the cryptocurrency in the ecosystem to make a successful

51% attack. This would make it unappealing to attack the ecosystem, since destroying the

security and validity of the system would risk invalidating the attacker’s virtual fortune.

This is a natural deterrent that does not exist in proof-of-work schemes, where any attacker

with 51% of the network’s computing power can make a successful 51% attack regardless of

their stake in the ecosystem.

There are cons to any consensus algorithm. In the case of proof-of-stake, one problem

is the explicit association of wealth with the power to influence events. While the scheme

improves on proof-of-work in some ways, it still incentivizes competition and, similarly to

evolutionary systems, rewards the "fittest" competitor. In this case, fitness is quantified by

units of currency rather than computational capabilities.

3.3.4 Smart Contracts

One of Ethereum’s most significant contributions to blockchain technology is the concept

of autonomous smart contracts. The addition of smart contracts differentiates so-called

"Blockchain 2.0" technology like Ethereum from "Blockchain 1.0" technology like Bitcoin

[Edi19]. Blockchain 2.0 technologies enable programmers to use autonomous agents,

the smart contracts, as elements of distributed software applications called Distributed

Applications (DApps).

The top-level data structures in Ethereum’s ledger are accounts, rather than coins. The

ledger maintains each account’s 20-byte public-key address, nonce, balance, contract code

and storage.

There are two types of accounts. The first is Externally Owned Accounts, which are

controlled by private keys. The second is Contract Accounts which are controlled by their

contract codes. Externally owned accounts are similar to those used by Bitcoin, and can be

used in transactions as described previously. Contract accounts are much more interesting.
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Contract accounts act as autonomous agents which execute their contract code when sent

messages. A contract account can be programmed to automatically read and write to its

storage, send additional messages to other contract accounts, or create transactions. To

cause a contract account to execute its code exacts a monetary price on the sender of the

original message. This price is known as "gas" and is proportional to the complexity of the

contract code. The money (Ether) provided in the original message is used as gas to "fuel"

all contract code executions that result from the first contract’s activation.

Contract code is written in a low-level stack machine-based bytecode language called

Ethereum Virtual Machine (EVM) code. The language makes use of a stack, linear memory

array and long term storage. The language is composed of a small instruction set that

includes blockchain application-specific instructions like CALL which sends a message to a

contract and CREATE which creates a new contract.

The blocks used by Ethereum are very similar to those used by Bitcoin. Ethereum blocks

contain all the information that a Bitcoin block does, with the addition of a copy of the most

recent ledger state, the block number and a record of the mining difficulty for that block.

Ethereum does not fundamentally deviate from the typical proof-of-work consensus scheme.

3.4 Quantum Coins

A straightforward way to introduce quantum technology to the blockchain at the

cryptocurrency level is to simply reference the many schemes for quantum money that

have been defined since 1960 [Wie83]. Bitcoin and Ether were described in section 3 as

the representations of monetary value that are traded between parties through transactions.

These coins have monetary value and cryptographically protected ownership records. Coins

are one of the primitive data structures required to formulate a cryptocurrency blockchain.
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3.4.1 Public-Key Quantum Money

In the case of public-key quantum money, the scheme takes advantage of superposition to

ensure that when a quantum state is used as a coin no bad actor can duplicate the coin. An

attacker cannot know which basis to measure each qubit of the quantum state in without

knowing the secret key which was originally used to create the state. The attacker cannot

learn the state without performing the correct measurement due to the no-cloning restriction.

The procedure to generate public-key quantum money is very straightforward, and was

originally introduced in 1960 by Stephen Wiesner [Wie83]. This paper arguably kicked off

the field of quantum cryptography and directly inspired the design of BB84 quantum key

distribution [BB87].

An algorithm for public-key quantum money generation is simply the following:

1. Generate two random bit strings M and N of length l

2. Prepare a quantum state |$ >= |0 >⊗l

3. For each bit i < l:

– If Mi = 0 and Ni = 0, do nothing to the ith qubit

– If Mi = 0 and Ni = 1, rotate the ith qubit state to |1 >

– If Mi = 1 and Ni = 0, rotate the ith qubit state to |+ >

– If Mi = 1 and Ni = 1, rotate the ith qubit state to |− >

Mi and Ni are kept secret by the mint, and |$ > is published as the quantum public key.

In this case, only the mint has enough knowledge to verify the public key and no one can

duplicate it.
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3.4.2 Binding Commitments

Some of the mechanisms that were taken for granted in the description of classical blockchain

technology are non-trivial to implement using quantum algorithms. For example, we

described in section 3.1 that a transaction requires references to each UTXO involved and

the cryptographic signatures produced by the UTXO owners’ private keys. This information

is necessary to validate the ownership of the coins involved in the transaction. Using his/her

private key, the owner of the coins creates a digital signature so that other parties can verify

that the transaction was indeed authorized by the owner of the private key and was not

modified since. Using the corresponding public key and the signature, any party can verify

the validity of the transaction without learning the private key. This is the basic premise of

public-key cryptography.

A blockchain transaction using quantum money will still require references to each UTXO

involved and the cryptographic signatures produced by the UTXO owners’ private keys in

order to verify ownership. It makes sense to also require that a user who has committed

coins to a transaction in good faith must produce his/her signature when it is time for the

transaction to be approved. This would make the creation of a transaction using quantum

public-key money as coins a type of binding commitment.

Computationally binding commitment schemes between two parties are composed of two

phases. The Commitment Phase allows one party to send the other party some information

c related to a message m which does not give the receiver any information about m itself.

However, the act of sending c binds the sender to provide the message m in the second stage,

the Open Phase. In the Open Phase, the sender transmits m to the receiver and proves to

the receiver that m does indeed correspond to c by providing a signature that "opens c to

m".

A classical definition of a computationally binding is the following from Unruh [Unr16b].

Definition 1 (Classical-style binding) No algorithm A can output a commitment c
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and two signatures s, s’ that open c to two different messages m and m’.

Computationally binding commitment schemes have been studied and defined in the

quantum setting [Unr16b; ARU14; Feh18; Unr16a]. Interestingly, when the algorithm A

is allowed to be a quantum polynomial-time algorithm, this definition was shown to be

inadequate. While definition 1 holds for a particular classical-style binding commitment,

Ambainis, Rosmanis, and Unruh showed that for this particular binding a quantum

polynomial-time algorithm A employed by an adversary could open c to any message that

the adversary wished [ARU14]. Therefore Unruh was motivated to define a different type of

binding that was useful in the quantum case. The new binding property is demonstrated by

a pair of quantum games.

Let A, B be algorithms and S, M , U be quantum registers. Vc is a measurement which

verifies that that U opens M . Mok measures m in the computational basis if ok = 1.

The first game Game1 consists of four steps:

(S,M,U, c)← A(1γ) (3.2)

ok ← Vc(M,U) (3.3)

m←Mok(M) (3.4)

b← B(1γ, S,M,U) (3.5)

The second game Game2 omits the measurement in step three but is otherwise the same:

(S,M,U, c)← A(1γ) (3.6)

ok ← Vc(M,U) (3.7)

b← B(1γ, S,M,U) (3.8)
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A commitment scheme is "collapse-binding" iff for any quantum polynomial time valid

adversary, cAdv = |Pr[b = 1 : Game1]− Pr[b = 1 : Game2]| is negligible.

This essentially expresses that if an adversary (A,B) provides a classical commitment c,

there must be only one message they can open c to. A outputs a superposition of messagesM

and a superposition of corresponding opening signatures U . S is the adversary’s state. The

assertion that |Pr[b = 1 : Game1] − Pr[b = 1 : Game2]| is negligible limits the value of M

to computational basis vectors for collapse-binding commitments. No quantum polynomial-

time algorithm B should be able to distinguish between the value of M whether M is

measured in the computational basis or not.

3.4.3 Collapsing Hash Functions

The games used to define the collapse-binding property of commitment schemes can also be

applied to classify hash functions that are collapsing [Unr16b]. Assume H is a one-to-one

hash function.

Definition 2 (Collapsing hash function - informal) H is a collapsing hash function

iff no quantum polynomial time algorithm B can distinguish between Game1 and Game2. An

adversary is valid if A outputs a classical value c and a register M where H(m) = c.

This game-based definition was clarified and made mathematical by Fehr in 2018 [Feh18].

Definition 3 (Collapsing hash function - formal) A function H X → Y is ∈(q)-

collapsing if

cAdv[H](q) := sup
SMCU

δq(M,M |CU) ≤∈ (q) (3.9)

for all q. The supremum is over all states SMCU = S H(M) CU with complexity ≤ q.
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The collapsing property of a hash function is a counterpart of collision resistance. Unruh

shows that the random quantum oracle is a collapsing hash [Unr16b] and so some hash

function based commitment schemes are collapsing in the random oracle model. Unruh also

showed that Merkle-Damgard hash functions are collapsing if their underlying compression

algorithms are, which implies that SHA-2 is collapsing [Unr16a]. Czajkowski, et al. showed

the same for Sponge hashes with certain conditions [Ber+08]. Sponge hash construction

underlies SHA-3.

3.4.4 Collision Free Quantum Money

Collision free quantum money is a concept that was introduced by Lutomirski, et al.

[Lut+09]. The premise is that a mint can not efficiently produce two coins with the same

verification circuit, and so each coin made is unique. This is a step towards remedying the

problem with Wiesner’s public-key quantum money. In Wiesner’s scheme, only the mint can

verify the quantum public keys of minted coins. This is an important issue specifically in

the context of blockchain, since the intention is specifically not to have a centralized signing

authority in a distributed system.

Let L be a classical function that assigns a unique label to each exponentially small

subset of a superset of elements. L should also be as obscure and unstructured as possible.

The procedure for generating collision-free quantum money is the following.

• Begin with an equal superposition over all n-bit strings.

• Compute L into an ancilla register and measure that register to obtain a value l.

This procedure would have to be repeated exponentially many times to produce the same

value l twice. The quantum state will then be |$l >, an equal superposition of exponentially

many terms with no clear relationship to one another.
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|$l >=
1√
Nl

∑
xs.t.L(x)=l

|x > (3.10)

Verification can be done using rapidly mixing Markov chains. Verification requires

knowledge of a Markov matrixM that will rapidly mix from any distribution over bit strings

with the same l to the uniform distribution of those same strings. No string with a different l

can be present in that final uniform distribution. Each update consists of a uniform random

choice over N update rules Pi. Each update rule is deterministic and invertible. Then any

valid quantum money state will be a +1 eigenstate of M .

M r=̇
∑
l

|$l >< $l| (3.11)

M =
1

N

N∑
i=1

Pi (3.12)

The verification procedure makes use of a unitary U .

U =
∑
i

Pi ⊗ |i >< i| (3.13)

The verification procedure itself is the following:

• Introduce an ancilla in uniform superposition over all i.

• apply U .

• Measure the projector of the ancilla onto the uniform superposition.

• discard the ancilla.

The outcome 1 has a corresponding Kraus operator sum element:
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(I ⊗ 1√
N

N∑
i=1

< i|)U(I ⊗ 1√
N

N∑
i=1

|i >)

=
1

N

N∑
i=1

Pi

= M (3.14)

Repeating the procedure r times brings the Kraus operator to M r, and achieves an

approximation of a measurement of
∑

l |$l >< $l|.

3.4.5 Quantum Lightning

A recent construction of quantum money is Quantum Lightning, which was proposed by

Zhandry in 2017 [Zha19]. Quantum Lightning is a formalization of collision-free quantum

money [Lut+09].

Quantum Lightning makes use of non-collapsing collision-resistant hash functions. These

hash functions are defined by a random set of degree-2 polynomials over F2. Quantum

Lightning defines the "Lightning Bolt" state |� >. The verification procedure Ver for bolts

is another polynomial-time quantum algorithm that either outputs the serial number of a

valid bolt, or ⊥ for invalid bolts. The serial number of a bolt is a deterministic function

of the bolt itself, and verification does not perturb the bolt. Bolts are created by quantum

algorithms called "Storms" and denoted ,.

A bolt is generated by the following procedure.

1. Randomly choose n random upper-triangular matrices Ai ∈ {0, 1}m×m, and set

A = {Ai}i. A is the public key. Let the hash function fA : {0, 1}m → {0, 1}n be

fA(x) = (xT ·Ai ·x)i. If we let operations be taken mod 2, this captures general degree

2 functions over F2.
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2. Begin with a state |φ0 >.

|φ0 >=

1

2kn/2

∑
∆1,...,∆k

|∆1, ...,∆k > (3.15)

3. ∆ is defined such that we can run a computation which maps ∆ = (∆1, ...,∆k) to

an affine space S∆ s.t. ∀x ∈ S, fA(x) = fA(x + ∆j)∀j. Then we construct a uniform

superposition of elements in S∆ to yield:

|φ1 >= (3.16)∑
∆

∑
x∈S∆

1

2kn/2
√
|S∆|
|∆, x > (3.17)

4. Compute fA in superposition and measure the resulting serial number y.

|φy >∝∑
∆,x∈S∆:fA(x)=y

1

|S∆|
|x,∆ > (3.18)

5. Compute the maps (x,∆1, ...,∆k) to (x, x−∆1, ..., x−∆k) in superposition. The final

state is a bolt:

|�y >∝∑
∆,x∈S∆:fA(x)=y

1

|S∆|

|x, x−∆1, ..., x−∆k >
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=̇
∑

x0,...,xk:fA(xi)=y∀i

|x0, ..., xk >

= (
∑

x:fA(x)=y

|x >)⊗(k+1)

= |�′y >⊗(k+1) (3.19)

To verify a bolt, each of k + 1 sets of the m registers is verified individually. Each of

these "mini verifications" yields either an element in {0, 1}n or ⊥. Each mini verification

must agree, and have the same output for the bolt to be valid.

We assume the mini verification is given |φ >= |�′y > that corresponds to some serial

number y. The first step of mini verification is to check if the input state |φ > is in the space

spanned by |�′z > as z varies. The second step is to evaluate fA in superposition in order

to learn which of the orthogonal |�′z > states we have. Then, we can measure the result to

obtain y. For the correct |φ >= |�′y > this does not perturb the state. This a useful property

since it means that a bolt can theoretically be re-used.

Quantum Lightning ensures that any bolt generated by an honest mint is accepted with

probability negligibly close to 1. It also ensures that no adversarial bolt generator can

generate two coins with the same serial number which would both pass verification. Zhandry

shows in [Zha19] that Quantum Lightning is secure under some assumptions of the multi-

collision resistance of a degree-2 hash function. Zhandry also proved that any non-collapsing

hash function can be used to construct Quantum Lightning, though there are currently no

such known hash functions that are proven to be non-collapsing [Zha19].

3.5 A Hybrid Payment System

In February 2019, Coladangelo proposed a payment system based on Quantum Lightning

[Col19]. Quantum Lightning guarantees that no generation procedure can easily create

two coins with the same serial number, and no one can clone existing coins. However, the

Quantum Lightning scheme itself does not include a mechanism for regulating the generation
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of valid coins. This mechanism is introduced as a part of Coladangelo’s hybrid blockchain

payment system.

This payment system is the first use of smart contracts in a quantum setting. Any party

can deposit a coin to a smart contract, setting that contract’s serial number to match the

coin’s. The classical certificate that can be found by measuring a valid bolt can also be

submitted to a smart contract. If a certificate submitted by a user corresponds to the serial

number stored in the smart contract, this means that the user owns bolt. The contract

releases all of its coins to the user.

Coladangelo’s payment system also considers one of the challenges with practical quantum

computing: state decoherence. The downside of using quantum states as coins are that these

coins can’t be reliably stored for any significant period of time. The payment system makes

use of smart contracts to implement a mechanism for lost coin recovery. A user can send a

message to a smart contract with a coin whose serial number is the serial number of a coin

they have lost. Other users have a time window in which they can challenge this claim by

demonstrating that they in fact own the coin with the submitted serial number. If a claim

is not challenged, then the coins submitted to the smart contract are returned to the sender

of the message, and the serial number of the contract is updated to that of the lost coin.

3.5.1 Classical Blockchain

The Global Ledger

The payment system is primarily a classical blockchain, but uses Quantum Lightning as

its coins. The classical serial numbers and certificates of the quantum coins are the interface

between the quantum and classical elements of the system. The classical blockchain uses a

global ledger. The global ledger maintains three sets and the current time:

53



parties = {}

contracts = {}

allTransactions = {}

t = 0

Ledger State

The messages that the global ledger can handle are the following. These are each slightly

modified from those given by Coladangelo for clarity and consistency of notation.

Register (id, num_coins) → (pid) allows a user to set their id and retrieve their pid,

which addresses their data in the system. This constitutes the registration of a user with the

system. This message can also include a number of coins, which will be set on the registered

party’s data structure.

Retrieve Party (pid) → (id, num_coins) can be used to request a registered party’s

information.

Pay (pid, pid’, num_coins) → (trid) allows user pid to send coins to user pid’. If pid

or pid’ are not valid, simply return ⊥. If pid’, pid ∈ parties and *pid.coins > num_coins,

then:

∗ pid′.coins← ∗pid′.coins+ num_coins (3.20)

∗ pid.coins← ∗pid.coins− num_coins (3.21)

trid← |allT ransactions|+ 1 (3.22)

allT ransactions[trid]← (pid, pid′, num_coins, time) (3.23)
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Retrieve Transaction (trid) → (allTransactions[trid]) allows users to retrieve

transaction details.

Smart Contract (pids, {(pid,num_coinspid) : pid ∈ pids}, circuit, st0)→ (cid) allows

a user to create a contract. {(pid, num_coinspid) : pid ∈ pids} are initial deposits for each

user pid. If pids ⊆ parties, then a new contract can be created.

Retrieve Smart Contract (cid) → (params, coins) allows a user to retrieve the details

of a contract if cid ∈ contracts. Otherwise, returns ⊥.

Smart Contracts

The global ledger handles contract creation through the Smart Contract message.

However, the contracts themselves handle the most functional contract-related messages.

The contract creation procedure is the following.

cid← |contracts|+ 1 (3.24)

∗ cid.params← (pids, {(pid, num_coinspid) : pid ∈ pids}, circuit, st0) (3.25)

∗ cid.num_coins← 0 (3.26)

contracts[cid]← ∗cid (3.27)

Once created, the contract waits for an Initialize with Coins message to come from each

user pid ∈ ∗cid.params.pids. If ∗pid.coins ≥ num_coinspid ∀ pid ∈ ∗cid.params.pids, then

the following occurs.

∗ pid.coins← ∗pid.coins− num_coinspid ∀ pid ∈ ∗cid.params.pids (3.28)

∗ cid.coins← ∗cid.coins+ num_coinspid ∀ pid ∈ ∗cid.params.pids (3.29)

st← st0 (3.30)
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The smart contract then enters the "execution phase": a loop which repeats

until termination. The contract waits for a Trigger message from any user pid ∈

parties. This message will provide variables (pid, witness, time, st, num_coins). If

circuit(pid, witness, time, st, num_coins) 6= ⊥, then the following occurs.

∗ pid.coins← ∗pid.coins− num_coins (3.31)

∗ cid.coins← ∗cid.coins+ num_coins (3.32)

(st, result)← circuit(pid, witness, time, st, num_coins) (3.33)

The result will indicate how many coins the smart contract should release to user pid.

∗ pid.coins← ∗pid.coins+ num_coins (3.34)

∗ cid.coins← ∗cid.coins− num_coins (3.35)

Initialize with Coins (pid, cid, num_coins) → () allows a user to deposit coins into a

contract. This is necessary for a contract to enter its execution phase. If cid /∈ contracts or

pid /∈ ∗cid.params.pids, returns ⊥. Otherwise, the following occurs.

∗ cid.coins← num_coins (3.36)

∗ pid.coins← num_coins (3.37)

Trigger (pid, cid, witness, time, st, num_coins) → (result) allows a user to run the

circuit associated with a contract with the given parameters. If cid /∈ contracts, returns ⊥.

pid may be any element of parties.
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3.5.2 Quantum Lightning Payments

In this hybrid blockchain scheme, we have not yet mentioned any use of quantum physics.

Indeed, the ledger and contracts in Coladangelo’s scheme are completely classical. The

only element of the system which makes use of quantum effects is the payments system,

which is uses Quantum Lightning as a primitive. Coladangelo’s payment system defines five

procedures:

• generate valid quantum coins

• make a payment

• file a claim for lost coins

• prevent malicious attempts at filing claims

• trade valid quantum coins for classical coins

Generating Valid Quantum Coins

The procedure uses the Quantum Lightning Bolt generation procedure , and bolt

verification procedure Ver both defined by Zhandry [Zha19], which are included in section

4.5.

|� >←, (3.38)

serial← Ver(|� >) (3.39)

Then to use created coins with the blockchain, the Smart Contract message may be sent

to the global ledger to create a contract. Once this message has been processed, an Initialize

with Coins message is also sent to the ledger with the cid matching the contract created by

the Smart Contract message.

57



Making a Payment

A payment involves two parties, the payer P and payee P ′. The payment procedure

involves the following steps.

• P sends |� >, cid, serial and num_coins to P ′.

• P ′ sends a Retrieve Contract message to the ledger, retrieving the contract cid.

• P ′ accepts the payment if cid ∈ contracts and Ver(|� >) = serial.

Recovering Lost Coins

In order to recover lost coins, a user P uses the Trigger message to cause a smart contract

to execute a circuit BanknoteLost. This circuit records a request at the current time to

∗cid.state, indicating that a BanknoteLost message began to be processed at this time.

With the Trigger message, user P also provides the serial number serial of the lost coin,

and deposits a number of coins num_coins into the contract cid.

During the time ttr that follows, another user P ′ has the chance to challenge the claim

made by P by demonstrating true ownership of the coin with the serial number serial. Recall

that a bolt of Quantum Lightning is generated using degree-2 polynomial hash function H.

If P ′ has access to the bolt, they can verify it through a verification procedure A which will

identify only their one, unique bolt and yield some m ∈ {0, 1}λ such that H(m) = serial.

To challenge the claim made by P , P ′ can perform the following new bolt generation and

verification:

m← A(|� >) (3.40)

|� >←, (3.41)

serial′ ← Ver(|� >) (3.42)
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Then, P ′ sends a Trigger message to the contract with m and serial′, running a circuit

ChallengeClaim which causes the lost coin recovery record to be erased from the contract’s

state and the coins deposited by P to be returned.

If a claim made by P goes unchallenged for time ttr, P can perform the bolt generation and

verification procedure and send a Trigger message to the contract with the new coin’s serial

number serial′, which will run a circuit ClaimUnchallenged. This circuit simply updates the

contract’s serial number to be the new bolt’s and removes the record of the recovery request.

Trading a Valid Quantum Coin for a Classical Coin

If a user P owns a quantum coin and wishes to redeem it for classical coins, they can

demonstrate ownership by performing m ← A(|� >), and then sending a Trigger message

which contains m and runs a circuit RecoverCoins. The RecoverCoins circuit releases the

coins which were originally deposited in the contract by P back to P .

3.6 A Quantum Blockchain Voting Protocol

Sun, Xin, et al. presented a protocol for voting on a quantum blockchain in January 2019

[Sun+18]. Voting can be a suitable application of blockchain technology since the blockchain

makes it difficult for participants to falsify claims. Sun, Xin, et al. make use of quantum

commitments to design a self-tallying voting protocol.

3.6.1 Voting Using Binding Commitments

The protocol is very simple. Like the other commitment schemes discussed in this chapter,

the voting protocol involves two phases. These phases are called the "ballot commitment"

and "ballot tallying" phases.

The steps to the ballot commitment phase are the following.
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1. For each i ∈ {1, ..., n} voter Vi generates the ith row of an n × n matrix of integers

ri,1, ..., ri,n such that
∑

j rio,j = 0(mod n+ 1).

2. For each i, j voter Vi sends ri,j to voter Vj via a quantum secure communication.

3. Then each voter Vi knows the ith column r1,i, ..., rn,i. Vi computes his/her masked

ballot v̂i = vi +
∑

j rj,i(mod n+ 1). Vi commits v̂i to every tallier of the blockchain via

a quantum commitment protocol.

Ballots are tallied by the following decommitment procedure. vi = 0 is considered a

disagreement with the proposal being voted on, vi = 1 is considered an agreement.

1. Each voter Vi reveals v̂i to every tallier of the blockchain by opening his/her

commitment.

2. The talliers each run the Quantum Honest Success Byzantine Agreement Protocol to

reach a consensus on the value of the masked ballot v̂1, ..., v̂n.

3. The result of the vote is
∑

i v̂i =
∑

i vi(mod n+ 1).

3.6.2 Handling Dishonest Ballot Talliers

A Quantum Honest Success Byzantine Agreement Protocol (QHBA) is used in their voting

scheme to identify dishonest ballot talliers.

Definition 5 (Honest success Byzantine agreement protocol (HBA)) An honest

success Byzantine agreement protocol involves n agents. One of the agents is the sender S,

and holds an input value xs ∈ D, where D is a finite domain. A protocol achieves honest

success Byzantine agreement if the protocol guarantees the following:

1. If the sender is honest, then all honest agents agree on the same output value y = xs.
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2. If the sender is dishonest, then either all honest receivers abort the protocol, or all

honest receivers decide on the same output value y ∈ D.

The protocol is p-resilient if the protocol works when less than a fraction of p receivers are

dishonest.

The QHBA is m−2
m

-resilient. m is the number of receivers, and is more efficient than a

classical HBA protocol when there are many dishonest receivers [Sun+18].

Distribution of Correlated Lists

The first phase of the QHBA protocol is for correlated lists to be distributed among the

agents using quantum secure direct communication.

Let the sender be S = P1. Each agent Pi ∈ {Pn
2

+1, ..., Pn} is tasked with distributing a

list of numbers Lik to agent Pk ∈ {P1, ..., Pn
2
} such that:

1. |Lik| = l ∀ k ∈ {1, ..., n/2}, where l is a multiple of 6.

2. Li1 ∈ {0, 1, 2}l. l
3
numbers on Li1 are 0. l

3
are 1. l

3
are 2.

3. Lik ∈ {0, 1}l ∀ k ∈ {2, ..., n/2}

4. ∀ j ∈ {1, ..., l}, if Li1[j] = 0, then Li2[j] = ... = Lin/2[j] = 0

5. ∀ j ∈ {1, ..., l}, if Li1[j] = 1, then Li2[j] = ... = Lin/2[j] = 1

6. ∀ j ∈ {1, ..., l}, if Li1[j] = 2, then ∀ k ∈ {2, ...,m} the probability that Lik[j] = 0 and

that Lik[j] = 1 are equal.

If the number of receivers that report non-compliant lists from a distributor passes a

threshold, then that distributor is classified as dishonest.

Sequential Composition List Formation
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Let the number of honest distributors be h. Then the agents perform the following

sequential composition.

L1 = L
n/2+1
1 , ..., L

n/2+h
1 (3.43)

L2 = L
n/2+1
2 , ..., L

n/2+h
2 (3.44)

... (3.45)

Ln/2 = L
n/2+1
n/2 , ..., L

n/2+h
n/2 (3.46)

The constructed sequential composition of correlated lists is then L.

L = (L1, ..., Ln/2) (3.47)

Consensus

Assuming h > n
2
, the following procedure can be used to reach a consensus.

First, the sender S sends a binary number b1,k and a list of numbers ID1,k to each receiver

Pk. ID1,k should indicate all the positions on L1 where b1,k appears to Pk. An honest sender

will send the same list to all receivers.

Each Pk will compare the b1,k and ID1,k to their list Lk. If any honest Pk finds information

that is not consistent, then Pk sends ⊥ to the other receivers. Otherwise, Pk sends b1,k and

ID1,k to the other receivers.

After all these messages have been received, each honest Pk checks the following:

1. If there were more than two agents who sent binary numbers and lists that were

consistent with Lk but some had different binary numbers, Pk outputs ⊥.

2. If more than two agents sent the same binary numbers and lists which were consistent

with Lk, these agents are considered to be honest. Pk outputs the binary number

provided by these honest agents.
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3. If more than two agents sent the same binary numbers and lists which were consistent

with Lk, any other agents are considered dishonest. If all of the dishonest agents sent

⊥ to Pk, then Pk sets vk to the binary value provided by the honest agents.

4. In all other cases, Pk outputs ⊥.

Consensus is achieved if at least n
4
agents output the same bit value.

Suppose Pj were a dishonest receiver, and j ≥ 2. Pj would want to send a binary number

bj,k and list of numbers IDj,k which was consistent with Lk.On Lj, there are l
2
appearances

of bj,k. On L1 there are only l
3
appearances of bj,k. So, there are l

6
positions of discord x,

where L1[x] = 2. If Pj selects a discord position x then with probability 1
2
, Lk[x] 6= bj,k. Pj

has to avoid all discord positions in order to avoid being identified as dishonest. This has a

(2
3
)
l
3 probability of success which is very small when l is large. This is rationale behind the

checks made by Pk listed above.

3.7 Quantum Blockchain Using Entanglement in Time

Rajan, Del, and Matt Visser published a quantum system design that uses time entanglement

to replace the data structure component of blockchain technology [RV19]. Their approach

uses the nonseparability of entangled photons to simulate the links between blocks of data.

The approach addresses the issue of blockchain scalability using quantum effects.

Multipartite states like the GHZ entangled state are used to create a chained data

structure. In the most trivial example of the approach, the contents of a block might be

represented by a pair of bits r1r2. These contents are encoded into a temporal Bell state i.e.

|βr1r2 >0,τ=
1√
2

(|00 > |rτ2 > +(−1)r1|10 > |r̄2
τ >) (3.48)

As records are created, they are encoded as blocks into temporal Bell states. These

photons are created and absorbed at their respective times.

63



|β00 >
0,τ , |β10 >

τ,2τ , |β11 >
2τ,3τ , etc. (3.49)

The bit strings of the Bell states are then effectively "chained" together using

entanglement in time. This is accomplished using a fusion process: Bell states are recursively

projected into a growing temporal GHZ state. This can be accomplished using an entangled

photon-pair production source, a delay line and a Polarizing Beam Splitter (PBS). For

example, two Bell states could be fused into the four photon GHZ state:

|ψ+ >0,0
a,b ⊗|ψ+ >τ,τ

a,b

delay−−−→ |ψ+ >0,τ
a,b ⊗|ψ+ >τ,2τ

a,b =
1

2
(|h0

av
τ
b > +|v0

ah
τ
b >)⊗ (|hτav2τ

b > +|vτah2τ
b >)

PBS−−→ 1

2
(|h0

av
τ
b v

τ
ah

2τ
b > +|v0

ah
τ
bh

τ
av

2τ
b >) = |GHZ >0,τ,τ,2τ (3.50)

The four photons propagate in their own spatial modes and exist at different times, but

are time entangled. The state of the blockchain at a given time t = nτ is:

|GHZr1r2...r2n >0,τ,τ,2τ,2τ,...,(n−1)τ,(n−1)τ,nτ)

=
1√
2

(|00rτ2r
τ
3 ...r

nτ
2n > +(−1)r1|10r̄2

τ r̄3
τ ... ¯r2n

nτ >) (3.51)

This state contains the classical information r1r2...r2n. This information can be decoded

without measuring the full photon statistics or detecting the photons [Meg+13b]. The

scalability issue is addressed since "any number of photons can be generated with the

same setup, solving the scalability problem caused by the previous need for extra resources.

Consequently, entangled photon states of larger numbers than before are practically

realizable" [Meg+13a].
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3.8 Discussion

Ever since Wiesner’s proposal of public-key quantum money in 1960 [250], quantum

cryptography has been an active area of research. However, the topic of quantum blockchain

is still relatively new. This is clear from a simple search for papers using the keywords

"Quantum" and "Blockchain". There has been a steep, almost exponential, increase in

publications over the last three years. There are still many open questions in the area.

Ongoing research has identified and introduced new unanswered questions.

We are now beginning to see blockchain technology being adopted and trusted for critical

government processes. For example, a prominent blockchain company ConsenSys Systems

[Con19] has partnered with an initiative created by His Highness Sheikh Mohammad bin

Rashid Al Maktoum, Vice President and Prime Minister of the UAE and Ruler of Dubai to

use blockchain widely in Dubai [Con]. They released a whitepaper at the World Government

Summit of 2017 entitled "Building the Hyperconnected Future on Blockchains" [New17].

Some companies that believe in the fundamental potential of decentralized governance like

ConsenSys have endeavored to bring blockchain technology to areas of society that could

be improved in some way by decentralization, with some success. ConsenSys has supported

projects in decentralized journalism [Ile18], law [WR], digital asset economy [OM17], supply

chains [Tre19] and more.

The longevity of technology that will impact our most important societal structures

is worth questioning. There are critical issues with the scaling properties and efficiency of

these blockchain technologies which require solutions if any significant distributed ledgers are

going to be sustainably implemented. The scaling properties of the immutable distributed

data structures used in blockchain networks have been shown to cause demands on memory

that are hard to justify. Blockchains that are based on proof-of-work consensus schemes

like Bitcoin also encourage massively wasteful resource consumption. Competition in

Bitcoin’s computationally-intensive scheme coupled with the limitations of the blockchain
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data structure implementation by Bitcoin also causes issues with throughput of the system

as a practical trading platform. The number of transactions that can be processed by Bitcoin

is less than seven per second. This is far from the reported 47,000 per second achieved by

VISA [VJR18].

These issues have motivated some pushback against the spread of blockchain. China

is seeking to stop Bitcoin mining in the country, for example [Goh19]. From a business

perspective, blockchain technology is not expected to be viable for full adoption and practical

use by mainstream banks for around another ten years [Sch16]. Even so, banks are beginning

to implement prototypes and blockchain applications of limited scale now. An IBM survey

of 200 global banks [Mac17] showed that 65% of these banks intended to roll out blockchain-

based products between 2016 and 2019.

The majority of blockchain applications that are being developed do not have solutions

to the scalability and efficiency issues of their underlying cybersecurity schemes. They are

also not prepared to face the challenges of attackers equipped with the quantum computers

we expect to see developed within the next ten to twenty years. Companies are laying the

groundwork now for technology that will become fundamentally tied to our most important

societal structures, and this technology must be poised for viability in the quantum age.

This is what has motivated efforts by companies like NXM Labs to introduce autonomous

security protocols which can adapt and be securely updated to accommodate new challenges

in the future [Inc19]. This is also what has motivated the Quantum Resistant Ledger project

[MW].

In this review, we have focused on work that attempts to harness quantum computing

to improve blockchain technology. These efforts are currently theoretical frameworks, but

future quantum computing infrastructure may enable their realization. Their attempts to

address the security and efficiency of blockchain cryptocurrencies [Wie83; BB87; Lut+09;

Zha19], security primitives [Unr16b; ARU14; Feh18; Unr16a], smart contracts [Col19],

consensus algorithms [Sun+18], and data structures [RV19] will inform and direct the future
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implementations of quantum blockchain technologies.

Quantum money was arguably one of the first ideas that kickstarted the entire field

of quantum cryptography in 1960 [Wie83]. The inherent security of information stored

in quantum states using conjugate coding [Wie83] brings clear benefit to cryptocurrencies.

Wiesner’s basic scheme inspired the notable work of Bennett and Brassard’s BB84 quantum

key distribution protocol [BB87], among many other foundational works in the field.

However, the conjugate coding scheme is not perfect for every use. Hence, improvements have

been made such as the idea of collision-resistant quantum money introduced by Lutomirski,

Andrew, et al [Lut+09] and Zhandry’s Quantum Lightning framework [Zha19]. Despite

its long history, quantum money still comes with some unanswered questions. Zhandry

proved that any non-collapsing hash function can be used to construct Quantum Lightning.

However, there are currently no known hash functions that are proven to be non-collapsing

[Zha19]. It is an open question whether suitable hash functions could be constructed from

better-known assumptions, such as the hardness of lattice problems.

Secure communication primitives have been relevant for work in quantum blockchain

technology research. We have summarized the key points of foundational work on binding

quantum commitment schemes [Unr16b; ARU14; Feh18; Unr16a]. Binding commitments

underlie collision-resistant quantum money, Quantum Lightning. In turn, these are the

primitives used by Coledangelo’s hybrid quantum blockchain design [Col19]. Coledangelo’s is

one of the first hybrid quantum/classical blockchain designs, and notably addresses the issue

of decohering quantum money by introducing a novel method for a blockchain participant to

prove that they once owned a quantum coin. The design also includes a concept of arbitrary

smart contracts much like Ethereum’s. Open questions that remain for hybrid blockchain

designers include the problem of ensuring the trustworthiness of arbitrary smart contract

code and the hardness of the classical blockchain security elements against quantum attacks,

among others.

The consensus algorithm presented by Sun, Xin, et al. [Sun+18] is a simple approach to

67



consensus which is adapted for use in a quantum blockchain. Their work demonstrates that

consensus can be elegantly simple. Comparing the scaling characteristics of their scheme to

those of other consensus algorithms may be useful for future works. Rajan, Del, and Matt

Visser’s blockchain data structure using entanglement in time [RV19] is an interesting, new

perspective on quantum blockchain. Using a partially quantum mechanical data structure

for blockchain may enable hybrid blockchain technologies to take advantage of effects such

as entanglement swapping using photons [Meg+13a], and many violations of local realism.

Whether it will become practical from an engineering or economic point of view to harness

these effects on a large scale is yet to be determined.

The goal of this review was to provide a summary of current quantum blockchain

research that can help to guide future work. There is huge potential for combining quantum

resources with blockchain technology for applications in a variety of sectors including finance,

healthcare, manufacturing and other areas where data security in a distributed network is

of importance. We hope that this review will provide a resource to researchers from these

different fields and enable further research and development.
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Chapter Four

Arbitrary Quantum Code Execution

Streaming Web Code Execution and Verification on Quantum
Annealers.
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4.1 Chapter Overview

We suggest an approach to delegating the verification of arbitrary code to classical and

quantum resources within a network. We look at the possibilities provided by WebAssembly

(WASM) since it is an interoperable compilation target for other languages, meaning it can

act as a "gateway" to executing code in a variety of languages. We present a methodology

based on quantum annealing. Executing a simulation of a WASM function on a quantum

annealer enables probabilistic edge-case detection which can be used to verify the correctness

of the function. The method may benefit from a speedup due to quantum tunneling in

the annealer. This suggests a possible efficiency improvement over the analogous classical

sampling techniques being adopted by web software companies. Our approach however does

not guarantee such a speedup. It is our hope that the methodology will enable further

research to identify if and where quantum annealing may provide an edge over analogous

classical methods.

4.2 Introduction

A fundamental barrier to using quantum technology in applied, commercial settings is the

impracticality of interfacing with today’s quantum backends which are complex to maintain

and relatively unreliable in this early stage of their development. Quantum computers can

now be accessed through the cloud programmatically by anyone. However, challenges with

using the platform in any production environment include long wait times for experiments

to be queued for the execution on a quantum device, high levels of noise and decoherence,

as well as the fact that none of these computers can yet perform a computation that isn’t

simulatable using a high-end classical computer. On the other hand, D-Wave has made

notable progress in building quantum annealing devices. While these are not general-purpose

quantum computing devices, they are a much more scalable technology. The largest annealer
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at the moment is D-Wave’s 2000Q annealer with 2048 qubits [DWac]. D-Wave has also

announced a new annealer with a 5000 qubit topology [DWaa]. These "qubits" are limited

to a 2-local Ising model Hamiltonian which can be used to find a set of Boolean values that

minimize a quadratic pseudo-Boolean function. In April 2019, a mapping of arbitrary Verilog

code to a 2-local Ising model Hamiltonian form equivalent was published by Scott Pakin of

Los Alamos National Laboratory [Pak19]. While Verilog is a domain-specific programming

language used only in low-level hardware description projects, the published approach raises

the question of what classical software could be useful to execute on a quantum annealer.

We argue that a specific domain of continuous test automation tasks that is immediately

relevant to the verification of the correctness and security of large-scale commercial software

development projects could benefit from improvements by delegating a particular class of

tests to execution on a quantum annealer, using our method. We introduce a compilation

technology that enables the execution of algorithms written in practical programming

languages including Rust, C/C++, PHP, Python, Ruby, TypeScript and JavaScript on D-

Wave’s quantum annealer systems to this end. A logical next step for future work would be

to provide a language-agnostic test automation framework for the validation of web-based

software.

The contribution of this work is to automate the parallelization of arbitrary WASM code

and the collapse of all of the dependencies in the stack machine-based assembly language

to a set of simple feed-forward data dependency trees. This is done in order to identify the

largest possible set of quadratic pseudo-Boolean function minimization problems that can

be used to represent the segments of the original WASM code which can be made equivalent

to Boolean expressions of combinational logic. This results in a set of QUBOs which can

be simulated by a quantum annealer and ensures that the amount of the original WASM

code that is made simulatable is maximized and can be source-mapped to the original code.

The resulting simulations are combinational in nature and so are reversible. We explain how

the reversibility of these simulations can be used to simplify security of correctness related
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edge-cases detection, which could be automated in a web code testing framework.

4.3 Continuous Testing

Some understanding of continuous testing methodologies and quantum annealers will be

required as we intend to bridge the gap between these two areas with our work. Continuous

testing is the process of validating software before it is released through the execution of

automated tests that are a part of the software delivery pipeline. The output of continuous

testing is not simply a set of pass or fail data points, but an evaluation of the business risks

associated with a software release. Continuous testing is a dev-ops practice which is typical

in agile teams since agile is fundamentally about enabling teams to continuously deliver

software rather than have large, spaced deadlines. 97% of organizations have adopted agile

and 71% practice dev-ops according to Sauce Labs [PP18]. The demand for continuous

testing automation tools has grown with this trend.

The main challenges that face companies who use current continuous test automation

tools are the following according to Wolfgang Platz [PP18]: time/resources, complexity and

results.

To define the time and resources required for continuous test automation, one must

consider the time required for developers to write and maintain test scripts as well as the

time and resources required to actually execute the test suite.

In production software, the complexity of test automation does not simply rely on

the complexity of the algorithms under test. The predictable statefulness of test data,

orchestration of numerous third-party technologies, and cost-effectiveness of running all of

the necessary processes must be considered. It is a typical practice for companies to maintain

an entire separately running instance of each of their software products for testing and

validation purposes only, which can easily double the daily cost of dev-ops related spending.

In the continuous delivery pipeline, the candidate code for release will be loaded into this
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test environment to be automatically run against a test suite. Only if the test suite passes

will the release be successful, and typically escalated for human approval.

Results of continuous testing processes are intended to enable informed decisions about

the business risk of approving a release, and provide information that developers can use to

diagnose and quickly solve technical problems. The diagnosis information relies on the tests

that are included in the automated suite.

Types of tests that are used widely include: end-to-end tests, integration tests and unit

tests. Each of these types of tests address a particular part of the software stack. End to end

tests and integration tests involve testing that the pieces of a software solution developed

individually work in a production environment when they are deployed together. Quantum

annealers cannot help us with this unless they were both able to simulate the full complexity

of the combined software system (which is beyond the reach of today’s annealers) and if

they were able to understand the diverse set of languages and environments that are used

throughout a modern software product.

Unit tests are written by the developers of the functional code in an application to

validate the behaviour of modular elements of the system. These require the developers to

setup the relevant state of the application, provide input data to the module under test,

execute the module under test, and write pass / fail conditions for the test. This is where

developers must anticipate edge cases and manually specify the set of input data to provide

to the module under test. Ideally, a module has constraints on its inputs that confine the

space of possible inputs to reasonable values but this is most often not the case, especially

in truly functional programming scenarios. It would also be ideal for all possible inputs to

tested. This is never the case since that would require a large commitment of time from the

developer writing each test and would require hugely inconvenient computational resources

during the continuous testing step of the delivery pipeline.

There is a constant tug-of-war between the coverage of test cases and the practicality

of implementing large numbers of tests. At the end of the day, the goal is to meaningfully
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diagnose the problems with a release. This is often done efficiently by limiting the tests

that are implemented to be the most meaningful tests. A meaningful test catches an edge

condition that could plausibly occur, or validates the core functionality of a software module

with a few instances of data; enough data points to be convincing.

Some companies have begun taking a sampling approach to testing and monitoring.

One such company is Honeycomb. Honeycomb’s founder describes the need for qualitative

sampling techniques in an interview [YSS19]:

“I need a tool that will work with that uncertainty and work with that flexibility

rather than hemming me into the questions that I thought to ask ahead of time...

Logs are no longer human scale, they’re machine scale, and as a result, we can

start to do things like sample intelligently and capture just enough to gain a

sketch of what’s happening in our system in real-time. ” - Christine Yen (co-

founder and CEO Honeycomb)

To address this tug-of-war, a few companies have also begun looking at introducing

machine learning. Ubisoft is one of the companies that has introduced AI solutions to this

problem [Led19]. Clever-commit is an AI system that analyzes incoming code and infers

whether it is likely to cause software bugs by comparing it to a database of past commits

that either passed or failed continuous testing. Clever-commit is accompanied by a handful

of other similar AI-based solutions. Clever-commit is notable due to having been adopted

by high-profile customers like Mozilla. Mozilla uses Clever-commit to ensure the quality of

Firefox. The success of this type of project demonstrates that an informed suggestion about

what code might cause problems can be more valuable to companies than a finite set of tests

written by a developer who hopes to anticipate the possible problems with their own code.

The introduction of an unbiased, automated approver that uses a more general evaluation

technique can lead more directly and efficiently to a meaningful diagnosis.
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4.4 Simulating Classical Software Using Quantum An-

nealers

Efforts have been made to generalize the classical logic systems that can be optimized on

D-Wave’s annealers. Most programming tools deal with very low-level logic systems. For

example, macro assemblers called QMASM [Pak16] and qbsolv [DWa20] have syntax similar

to assembly languages and essentially just directly specify the linear and quadratic coefficients

of problems intended for D-Wave. ThreeQ.jl enables the construction of QUBOs within the

Julia programming language [OV16]. In April 2019, Scott Pakin tackled a formidable task

and introduced a method of compiling arbitrary Verilog code through a number of steps to

QMASM that can be executed on a D-Wave system [Pak19]. This is the state-of-the-art in

quantum annealer based simulation of classical programs written in traditional programming

languages.

D-Wave also provides their own Python library for programming their annealers [DWad].

This library has recently introduced some higher-level methods that provide developers

the ability to easily compose Hamiltonians that correspond to simulations of slightly more

complex digital constructs. For example, library methods exist for creating simulations of

combinational half and full adders.

4.5 WebAssembly

WebAssembly [Haa+17] is a low-level language that addresses the safety, speed and

portability of code on the Web. The language is inherently safe and fast to execute. It is also

language, hardware and platform-independent. the language has an efficient representation

which is compact and easy to decode, validate and compile. It is also streamable and

parallelizable.

The appeal of WebAssembly is largely that it has been designed so that it can be executed
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directly in the browser. So, it is enabling more efficient and portable execution of code

targetted at the web. This inherently platform-agnostic language is capable of enabling safer

and more efficient execution of code in progressive web-based mobile applications on Android

and iOS phones, web apps in any evergreen browser, Electron-based desktop applications for

Windows, Mac, Linux operating systems, and more. Languages that can compile to WASM

include Rust, C/C++, PHP, Python, Ruby, TypeScript and JavaScript, thanks to projects

like Wasmer [Inc20].

The computational model of WASM is a stack machine. WASM code consists of lists of

instructions that are executed in order. These instructions manipulate values on an implicit

operand stack. Simple instructions perform basic operations on data found on the stack.

Another type of instruction is control instructions. Control instructions introduces structure

to a script using constructs like blocks, loops, and conditionals. Branches can only target

such constructs.

WebAssembly would be an appealing language to compile to QMASM due to its

compatibility with the technology and environments that are typically found to be used

in projects that make use of deployment pipelines.

4.6 Approach

While WASM is more hardware-agnostic than other assembly languages like x86 and we

don’t have to deal with assumptions in the language about execution hardware, compiling

arbitrary WASM code in its entirety to QMASM is still not a reasonable endeavor. Instead,

we classify types of code blocks that can be simulated either in one shot, or as a part of a

multi-step validation process. A fundamental difficulty in translating WASM to QMASM

is the sequential nature of WASM code. We are limited to 2048 qubits for code and data,

so this defines the boundary between what WASM modules will be simulatable and what

modules need to be broken up further before being simulated.
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Cell Logic Quadratic pseudo-Boolean function representation

NOT Y = ¬A H¬(σγ, σA) = σAσγ

AND Y = A ∧B H∧(σγ, σA, σB) = −1
2
σA − 1

2
σB + σγ + 1

2
σAσB − σAσγ − σBσγ

OR Y = A ∨B H∨(σγ, σA, σB) = −1
2
σA − 1

2
σB − σγ + 1

2
σAσB − σAσγ − σBσγ

NAND Y = A ↑ B H↑(σγ, σA, σB) = −1
2
σA − 1

2
σB − σγ + 1

2
σAσB + σAσγ + σBσγ

NOR Y = A ↓ B H↓(σγ, σA, σB) = 1
2
σA + 1

2
σB + σγ + 1

2
σAσB + σAσγ + σBσγ

XOR Y = A⊕B
H⊕(σγ, σA, σB, σa) =

1

2
σA −

1

2
σB −

1

2
σγ + σa −

1

2
σAσB

−1

2
σAσγ + σAσa +

1

2
σBσγ − σBσa − σγσa

XNOR Y = A⇔ B
H⇔(σγ, σA, σB, σa) =

1

2
σA −

1

2
σB +

1

2
σγ + σa −

1

2
σAσB

+
1

2
σAσγ + σAσa −

1

2
σBσγ − σBσa + σγσa

2:1 MUX Y = (S ∧B) ∨ (¬S ∧ A)

HMUX(σγ, σS, σA, σB, σa) =
1

2
σS +

1

4
σA −

1

4
σB

+
1

2
σγ + σa +

1

4
σSσA −

1

4
σSσB +

1

2
σSσγ + σSσa

+
1

2
σAσB −

1

2
σAσγ +

1

2
σAσa − σBσγ −

1

2
σBσa + σγσa

Table 4.1 QMASM library combinational quadratic pseudo-Boolean functions

QMASM includes macros for many combinational digital primitives, some important

examples are provided here.

We can enjoy the flexibility of not having our WASM executed on predefined

combinational and sequential hardware. However, this flexibility is bounded by qubit

limitation.
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4.7 WebAssembly Code Analysis

Scott Pakin described a method of converting circuit netlists given in EDIF format [Sta01]

to QMASM in his 2019 paper [Pak19]. The fundamental challenge in compiling WASM to

QMASM may seem to be first expressing the WASM code in a format similar to a circuit’s

netlist. However, both EDIF and WASM’s readable text file format .wat use the same

fundamental S-expression [Riv94] tree-like data structure for their document formats. Like

in EDIF, a WASM module in text format is represented by a single S-expression [Doc].

This similarity between EDIF and WASM will enable us to design a transformation of

WASM to a netlist-inspired format that can be compiled to QMASM. The discrepancies

between a netlist and a WASM S-expression come from the difference between WASM’s

sequential stack machine model and a netlist’s combinational nature.

The ability to map data dependencies of a circuit netlist onto the Ising model does not

address the full gambit of dependencies that we will find in a sequential language like WASM.

To compile WASM, we have to consider each of the following dependencies:

• Data dependencies

• Name dependencies

• Control dependencies

The two types of name dependencies are anti-dependencies and output dependencies.

Antidependence describes when a value is written to a memory location by an instruction

that follows a previous instruction that used a value read from the same memory location,

creating a WAR hazard. This is a non-issue in all properly implemented execution pipelines.

However, since we are contriving something entirely different from a traditional processor

execution pipeline, we will be careful to consider every possible issue.

The second type of name dependence is output dependence, which describes when two

instructions write to the same memory location and create a WAW hazard.
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Control dependence describes the case when an instruction’s execution is dependent on

the evaluation of a branch condition elsewhere in the code.

Sequential code can theoretically be simulated using QMASM by trading the time

dimension for additional spatial dimensions, simulating every variable’s value at each time-

step individually. However, this is very costly in terms of qubits. Rather than directly

simulating each variable’s value for each time step, we endeavour to collapse all of the

dependencies in a WASM program into a single data dependency tree that is expressible

through the configuration of qubits in the Ising model.

4.8 Data Dependence

RAW data dependencies are expressed in EDIF by the sharing of a netlist node by two cells’

input or output variables. Implementing a data dependency on a quantum annealer can be

done by ensuring that the two variables’ qubits’ states are equal. These variables are the

output from one process to its dependent process, and the dependent process’ corresponding

input variable. By solving for N = 2, we can show that it is straight forward to constrain

two qubits’ states to be equal in the trivial case where this is the only constraint. Setting

Ji,j = −1, hi = hj = 0 we get the following evaluation.

H(σi, σj) = hiσi + hjσj + Ji,jσiσj = −σiσj (4.1)

As Scott Pakin pointed out, it is also easy to express the connection of multiple nodes

using a Hamiltonian like the following, which connects one qubit σa to four others.

H(σa, σb, σc, σd, σe) = −σaσb − σaσc − σaσd − σaσe (4.2)
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In WASM, data dependencies will need to be traced through transactions with the stack

and with linear memory; the stateful elements of a WASM program. All simple WASM

instructions pop arguments from the operand stack and push results back to it. Other

instructions are needed to communicate with linear memory. For example, get_local loads

information from a memory location in linear memory into the stack.

An example of the simple WASM function below shows how a function interacts with the

stack and linear memory to perform a mathematical operation: the calculation of acceleration

from initial velocity, final velocity and the elapsed time.

(func $accel (param $vi i32) (param $vf i32) (param $t i32) (result i32)

(i32.div_u

(i32.sub

(get_local $vf)

(get_local $vi)

)

(get_local $t)

)

)

In JavaScript, this function might have been:

function accel(vi, vf, t){

return (vi - vf)/t;

}

See how in the WASM instance of this function the data dependency of the i8.div_u
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instruction on the output of the i8.sub instruction is made explicit by the nesting of

instructions. In this sense, WASM seems to be an ideal intermediate language to use when

attempting to lower JavaScript or other high level languages to something that can be

encoded into a QUBO.

If we trace the path of each piece of data used by this function, we can see interactions with

linear memory and the stack. Since it is not feasible to use our qubit resources to implement

a stack or linear memory, we can simply collapse the data dependencies that exist through

the stack and linear memory into dependencies directly between the instructions. We can

then see that it is easy to categorize the inputs to functions as those variables that are loaded

from linear memory, and the data dependencies between instructions as those variables that

are passed through the stack between instructions.

When we compile such a function to QMASM, each instruction will become a

combinational element of the simulated system. It will be a necessary step to implement

each integer and floating-point WASM instruction as a QMASM macro, for example. Each

simulated function will be a circuit that contains internal data dependencies between the

macros it uses to define its combinational logic. These internal dependencies will be directly

mapped from WASM’s stack dependencies. The interfaces between simulated circuits will

be directly mapped from WASM’s linear memory dependencies. These are easy to identify

while parsing structured WASM code since stack dependencies are expressed by nesting, and

memory dependencies are expressed by the use of methods like get_local.

4.9 Name Dependence

Name dependencies are expressed in WASM by interactions with linear memory. Hazard-

free name dependencies are relatively trivial to convert to data dependencies since a name

dependency is simply a dependency of a block of code on the location of input data in linear

memory. When two blocks of code interact through linear memory, one is essentially passing
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data to the other. This is slightly more complex to parse than data passed over the stack

since the relationship is not manifested in the nested structure of the code. However, name

dependencies can be removed by replacing transactions over linear memory with transactions

over the stack. In practice, this means moving blocks of code that interact over linear memory

closer together so that they can directly call each other in a nested fashion. This might result

in the duplication of code that might otherwise have appeared once in the source. This is

indirectly a manifestation of the fundamental trade-off relationship between the size of the

code and the complexity of the control structure.

4.10 Control Dependence

Converting control dependencies to data dependencies is not a new problem by any stretch.

In fact, publications from as far back as 1983 [All+83] attempt to address this transformation.

The fundamental approach presented in [All+83] is to replace all flow control instructions in

a program with variable-dependent conditionals. This work addresses this transformation for

each of the flow control instructions available in Fortran. The approach can be adapted for

application to the flow control instructions of WASM. In WASM, the flow control instructions

that are variable-based conditionals are if and br_if. The other flow control instructions

are nop, unreachable, block, loop, br, br_table, return, call and call_indirect. We

will consider br, br_table, return, call_indirect and call to be branching instructions.

As per [All+83], we can replace all branches in a WASM program by branch relocation and

branch removal. The former involves moving each branch that is nested in loops to the same

nesting level as its branch target. The later involves replacing branches that are on the same

level directly with equivalent variable-based conditionals.

This transformation can be algorithmically applied to a program by following these steps:

1. Parse the WASM code
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2. Normalize all loops

3. Perform basic block analysis

4. Convert branches to variable-based conditionals

5. Optimize the resulting conditionals where possible

6. Collapse the resulting data dependencies where possible

7. Generate the parallel code

This is an implementation of an algorithm analogous to PFC [All+82], but specifically

designed to parallelize sequential WASM code. This technology will not only be useful for

executing WASM on quantum processors, but for compiling WASM optimally for execution

on other parallel computing systems, like GPUs since it allows all the possible branches that

can be taken through a program to be explicitly enumerated in variables. There will also

be implications for hybrid quantum / classical computation, as the technology will make

the cross-compilation of different segments of a WASM program for different processors.

Portions of many programs will benefit from being delegated to a quantum processor.

An efficient WASM parser has been written in Rust and was made open source by software

developer Yury Delendik at Mozilla in November 2018 [Del]. Rust is appealing to use for

our work due to its safe, efficient execution and low-level nature. When working with Rust,

we can be certain that we do not mishandle or ignore possible paths. We can also take

advantage of Rust features such as its awareness of stack and heap (linear memory) space,

and variable ownership to catch WAW, RAW or WAR hazards during our transformation

of WASM code. In the transformation of large WASM programs, these factors will become

very important. So, we build on the open-sourced work of Mozilla in our implementation.

WASM currently has an open threading proposal, which would be the first instance

of any parallelization to come to the language. The possibility of implementing a more
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fundamental OpenMP-compatible [Bal15] parallelization algorithm for WASM has also been

discussed [Kir], but categorized as a feature of the language that will not be included in the

first release of any accepted threading proposal, since the scope of threading itself is already

large. Hence, we believe that our work is in the same spirit as the future direction of WASM.

We are also certain that we are the first to implement a compiler like ours for WASM.

4.11 WebAssembly Parallelization

The first step to implementing the parallelization algorithm is to create a workflow for

creating WASM files that our program will be able to accept. In this experiment, we write

‘.wat‘ files, which are WebAssembly text files with the nested format described. These

will need to be compiled to true binary ‘.wasm‘ files. We use ‘wat2wasm‘, which is a

part of the WebAssembly Binary Toolkit [Fou19] to do this compilation. To ensure that

the parallelization algorithm implementation is capable of processing a sufficiently complex

WASM program, we use Conway’s Game of Life in WASM [Log]. In a future work it

would be interesting to use a larger application, like the National Cancer Institute’s open-

sourced WebAssembly based cancer genome viewer which was published in 2018 [FM18] as

a testbench.

The individual instructions of a WASM binary file will need to be read into the

parallelizing compiler. The first task will be be to identify functions. Since the goal is

not for entire WASM programs to simulated on a quantum annealer, it is logical that the

largest possible block type to be simulated will be functions. Starting with functions will

also simplify the amount of source mapping that will be necessary to communicate to users

what segments of their web code are being simulated or delegated.

The Rust parser provided by Yury Delendik of Mozilla provides implementations of a

validating parser and operator parser. The validating parser is responsible for parsing the

instructions that define the structure and flow of WASM code. The operator parser is
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responsible for parsing those instructions which you would find in lines of code that are

meant to be executed during runtime.

So, we may use the validating parser to ensure that our WASM code is valid, and to

deduce where in the code we may find function bodies. We begin by simply sequentially

reading each instruction of the WASM binary code until a function body delimiter is found.

At this point, the parsing of the function body is delegated to the operator parser.

The operator parser allows us to handle each individual instruction’s bytecode uniquely.

In our parallelizing compiler, we categorize all instructions found within a function into these

types:

• Function calls

• Control flow instructions

• Data flow instructions

• Data creation instructions

• Data mutation instructions

Each function is initially transformed into a data structure defined as a Node. A Node

will include all of the information required to delegate its code to a processor that does not

necessarily have any of the context that would be provided by executing the rest of the code.

This means that it will need to have knowledge of its inputs and outputs (data couplings), its

internally instantiated data (constants), calls to other functions, references to other blocks

of code, its full list of instructions, and the same data for each child Node that represents a

function or code block referenced in its instructions.

To expand this data structure beneath each function in a moderately complex WASM

program would bloat the program’s footprint significantly and not scale. Therefore, we

provide an interface for selectively expanding the Node data structure tree by choosing

functions that are delegation candidates.
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The program identifies the combinational elements within each Node, which will be

divided by control flow instructions like conditionals and branching instructions. These

sets of combinational elements will each be transformed into boolean optimization problem

expressions that could be expressed as compositions of QMASM macros.

4.12 Compiling Combinational Elements to QMASM

A few existing tools can be used for the compilation of our combinational elements to

QMASM. The first is an open-source Python package called PyQUBO [Com]. This package

aims to enable the conversion of flexible mathematically expressed constraints to valid

QUBOs or Ising models programmatically. The next tool is qb2qmasm [Pak]. qb2qmasm

is an open-source tool from Los Alamos National Laboratory which accepts the numerical

notation format that D-Wave uses to denote Hamiltonian parameters and outputs equivalent

symbolic QMASM code.

These tools could be used as a part of a compilation toolchain with our WASM

parallelizing compiler to complete the compilation of WASM code to QMASM code. In

this case, our Rust program is responsible for parallelizing the WASM code, selecting

delegation candidate functions, collapsing the dependencies in these functions into a single

data dependency tree, collapsing all reachable code in a selected path from the function

into a single sequential script, and compiling the combinational elements of this script into

mathematical expressions. These expressions could be written to a file as our program’s

output. This file would next serve as the input to a program which uses PyQUBO to

generate the input for the final tool in the chain, which is qb2qmasm. At the end of the

chain, we have a QMASM macro.
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4.13 Software Implementation

Here we provide an explicit walk-through of the important components of the compilation

of a simple WASM module. A black background denotes actual readout from the program

during an interactive session. The module chosen demonstrates the basic function of the

compiler.

The short WASM module in Appendix B.1 provides functions that compute the dot

products of 2- and 3-dimensional vectors. This module was written for the purposes of this

demonstration in the S-expression format.

After compilation to a true WASM binary, the same script becomes that of appendix

B.2. It is the task of our new transpiler to compile this binary to a set of constraints that

PyQUBO can use to create a quadratic unconstrained binary optimization problem. Using

the WebAssembly Foundation’s toolkit for VSCode [TF20], we can view the binary in a

somewhat readable format.

We can compile this example by invoking the compiler using the following terminal

command:

cargo run --example parallelize ./tests/parallelization/math.wasm

The compiler’s entry-point is a file called main.rs, which uses a simple interface to our

new mapper module to compile a given WASM file.

let buf: Vec<u8> = mapper.read_wasm(&args[1]).unwrap();

let nodes = mapper.map(buf);

This mapper module contains data structures that represent the various transformations

of WASM programs throughout parallelization, dependency tree collapse and compilation to
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simulatable transfer functions for D-Wave.

The first task that the mapper performs is to scan the WASM code, and identify the

type and relevance of each instruction. An example of verbose output from our Rust

program identifying instructions that imply data dependencies (blue), function calls (purple),

combinationally simulatable instructions (green) and non-critical code (white) is provided in

appendix B.3.

The command-line program prompts the user is they wish to parallelize each encountered

function. If a user does wish to parallelize a function, then each type of block including

loops, conditionals, branches and calls under it will be found recursively, and normalized.

An interactive parallelization session is shown in appendix B.4.

The simplest example of a flow control dependency normalization algorithm is that which

handles any encountered if/else/end control sequences. These types of dependencies are

normalized in one pass of the WASM code. In the case of an if/else/end sequence, the

program will create a separate Node for each conditionally executable block of instructions.

The program will also convert the control dependency to a data dependency. This is done

by first creating a Spin that represents the truth of the if condition, then creating a flow

control coupling of this Spin to another Spin within each of the conditionally executable

blocks’ Nodes. The flow control coupling made to the if block’s Node will a direct coupling,

while the coupling made the the else block will be an anti-chain (meaning it is inverted).

This is achieved by the code in appendix B.5.

At the end of this process, each Node will have the following data structures populated,

capturing all of the context necessary to execute each individual combinational Node in a

meaningful way without having to execute the entire program at once. This is in keeping with

the philosophy of WASM, which is a streamable language, meaning it can be executed as it

is delivered in chunks of code. It is also helpful for the hybridization of code execution.

Each encountered instruction that is compatible with PyQUBO, and D-Wave’s systems

is transformed into an AbstractExpression which represents its abstract mathematical
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function. The set of AbstractExpressions created during the processing of a block becomes

the contents of the corresponding operations HashMap. The operations HashMap data

structure is provided in appendix B.6.

The lower method may be called on any Node to compile its operations to a Constraint.

The Constraint data structure is provided in appendix B.7. This involves converting each

AbstractExpression to a set of corresponding PhysicalExpressions, which are Boolean

algebraic operators that can be mapped directly to a graph that can be minor-embedded

into the topology of a D-Wave annealer. This transformation is functionally equivalent to

compiling a mathematical statement to a Boolean statement which is equivalent. Currently,

only a few expression elements are supported, which match those currently supported by

PyQUBO. The AbstractExpression and PhysicalExpression data structures are provided

in appendices B.8 and B.9.

Before choosing to compile each Node, the user is presented with the populated Node

tree that represents each function. A simple example of a populated node from our demo

is presented in appendix B.10. When a Node is lowered to a Constraint, the resulting

data structure’s format is equivalent to that of PyQUBO’s Expression data structure. The

constraints for multiplication operations are constructed using a combination of the Baugh-

Wooley algorithm for n-bit multiplication [BW73] and a row adder tree to achieve optimal

time and space complexity [LV84].

For example, consider the set of Constraint expressions that would capture the behaviour

of the eight-bit multiplier that was represented in WASM as the i8.mul instruction. The

formulas for each output bit in terms of the inputs are given in appendix B.11. The

expressions are ordered as the most to least significant output bits’ formulas. Of course,

the expressions listed here only capture one AbstractExpression. A Node may contain any

number of them, and the Nodes our example each contain 7 or 8.

These Constraint expressions are not yet true constraints. In order to actually constrain

the expressions, we have to specify a range of outputs. This is where a software tester would
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specify an output range that constitutes a particular type of business logic error. Once the

constrained expressions are submitted to PyQUBO and then D-Wave, the tester will be able

to see what inputs to the system correspond with the erroneous output range due to the

invertibility of the quantum simulation.

We explicitly demonstrated the compilation of one particular QUBO that would be a

part of simulating our dot product module. The Python script in appendix B.12 constrains

the third bit of an 8-bit multiplication to be 1. The result of this PyQUBO script is a

list of external field and inter-qubit coupling strengths that corresponds almost exactly to

D-Wave’s "Qubist" format. This result is provided in appendix B.13. It is an optional step

to use qb2qmasm to transform this format to a valid QMASM module, which may be used

and re-used in a modular way by QMASM developers in the future. In order to actually

have the code executed on a D-Wave computer, the only remaining mandatory step is to use

D-Wave’s automated minor-embedding tool to have the qubits in our Hamiltonian mapped

onto their 2048 Chimera topology. This automation service is provided as a part of their

Ocean API.

4.14 Discussion

When would this technique be more efficient to use than a set of specific classical tests? It

depends on the project. Like machine learning-based approaches, our approach is not right

for every company. On the other hand, there are team profiles that are a good match for

the technology. For example, in the medical, scientific and financial industries having very

specific, understandable tests of every module is often non-negotiable. In this case, such a

solution would not replace these types of tests, but inform them. It is actually in these types

of companies that adding a machine learning step to a delivery pipeline is not a significant

additional overhead, since pipelines already take a long time to execute. For example, the

test automation step of Xanadu’s pipeline for their Python library StrawberryFields typically
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took 2.5 hours to execute at one point in time, and they only run conventional unit and

integration tests.

Another type of team that could benefit from this type of solution is a team that does

not want to invest a lot of developers’ time manually writing tests and is not producing code

that will directly impact the well being of humans or stock markets (the opposite end of the

spectrum).

The same teams that benefit from AI solutions to code quality assurance would likely

benefit from a quantum code quality auditing process. Quantum annealers are a scalable

technology that are reaching commercial viability, and have been already purchased from

D-Wave by a handful of companies [DWab].

Most users of this technology don’t have their own devices, but access D-Wave’s systems

through the cloud. Several limitations still exist for users of quantum annealing technology,

including the time spent waiting for access to centralized quantum annealer devices, the

probabilistic nature of imperfect experiment outcomes and limitations on data size.

These limitations narrow the practical applications of current quantum annealing

technology to a very small space. A continuous testing automation solution is arguably

in this space because of how these limitations align with the problem being solved:

1. Continuous testing is already a lengthy process and quantum annealing can be run in

parallel with conventional tests without adding additional run time.

2. Qualitative or suggestive data is valuable to software engineers that are trying to make

sense of pieces of a large codebase.

3. If quantum annealing tests were employed to test individual functional modules of

code like conventional unit tests are, the effects of the limitations on the magnitude

of outputs from the annealer could be minimized by choosing appropriate software

modules. In these cases sampling from a continuous range of inputs and outputs can
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provide more value than implementing tests for preconceived edge cases and executing

them sequentially.

Beyond fitting within these limitations, using a quantum annealer for testing automation

of this kind would provide benefits that no other testing solutions can. For example, by

using a quantum annealer to probabilistically sample from the space of input and output

variables, we can be certain that the system will automatically find every edge case after

being run enough times. This is a lot better than the certainty we have about a biased

developer predicting his/her own code’s edge cases. The nature of the sampling is also

ideal for implementing a configurable risk sensitivity on code modules, simply by setting the

number of runs that will be executed on the quantum annealer to simulate each module.

As the risk sensitivity is reduced, the number of runs is reduced, and the edge cases that

are least probable to occur (and therefore have the least associated risk) are the first to be

excluded. Also, since the input and output spaces are simulated together, the system could

be capable of identifying the specific problematic inputs and suggesting test cases or input

validation rules to developers. These are possibilities that are not feasible with any current

testing frameworks.

4.15 Conclusion

The sampling and machine learning-based validation techniques being adopted by web

development companies suggest an opportunity for quantum optimization in the testing

automation space. Quantum annealers like D-Wave’s machines are ideal for this application

due to their availability, scalability and ability to perform code simulation and edge case

detection. To bridge the gap between web code and quantum annealers, we have presented

a novel methodology and software package for executing simulations of WASM functions on

quantum annealers.

The potential quantum speedup due to tunneling in the quantum annealer is not
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guaranteed by our approach, and it is an open question whether arbitrary functions can be

encoded in such a way that they will take advantage of such a quantum speedup. However, we

hope that the methodology presented may enable more exhaustive research into the viability

of quantum annealing as a computational platform.

The approach can be seen as a "hybridization" tool, which takes a purely classical

program and guides a user through its transformation into a set of hierarchically ordered

subroutines, some of which can be simulated on a quantum annealer. The complexity

of transpiling a subroutine for execution on an annealer is not known prior to lowering

the subroutine, first to a circuit-level description and then to a set of constraints.

This uncertainty makes it difficult to know whether the approach will create an overall

improvement in execution time in any particular case. It is also not known whether

quantum annealing is a platform which is yet ready to offer a true quantum speedup in

arbitrary applications. The benefits of the approach presented here are therefore highly

speculative. However, we believe that the approach may make it easier for researchers to

perform hybridization experiments, which may well lead to answers to questions of quantum

advantage.
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Chapter Five

Summary and Outlook
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5.1 Summary of Results

This thesis has touched on a number of areas of importance with regard to the development

of a quantum internet. While the topic of the thesis is theoretical quantum information

science, the chapters have a practical focus which reflects the unique status of the field today.

Due to an availability of remote quantum information processing systems that has never

been enjoyed by researchers before this decade, we were able to experimentally demonstrate

and validate controlled quantum teleportation [KB] and controlled dense coding [HLG01]

protocols for the first time. Our results are a unique contribution to the field that provide

insight both into these protocols themselves and into the viability of quantum control on

a modern superconducting quantum computing platform. There is still a lot of room for

these modern systems to improve. For each experiment on the superconducting quantum

computer, we also ran equivalent simulations on a classical processor. In the case of each

controlled communication protocol, the controller was significantly more effective in the

classical simulation: 7% in the case of controlled teleportation, 10% in the case of controlled

dense coding. This is due to the combination of quantum gate errors, qubit errors and

decoherence effects that currently limit superconducting quantum computers from reaching

their theoretical potential.

Once quantum computing technology is sufficiently reliable for communication protocols,

quantum communication networks will become viable. Already, a number of theoretical

quantum communication network designs have been proposed. An interesting new area at

the interface of quantum communication with quantum cryptography is quantum blockchain.

We provide the first in-depth academic review of this new field. Blockchain technologies are

on track to become a viable option for use in mission-critical network applications at financial

institutions within the next ten years. Within this same timeframe, quantum computers are

expected to reach viability. The benefits of using quantum resources in blockchain network

schemes may become available "just in time", and so the theoretical work of designing

95



quantum and hybrid quantum / classical blockchains is being done now. This has included

a purely quantum blockchain [RV19], a full hybrid quantum / classical blockchain design

[Col19], a quantum consensus algorithm [Sun+18], various quantum cryptocurrencies [Wie83;

Lut+09; Zha19] and security primitives [Unr16b; ARU14; Feh18; Unr16a]. These proposals

range from immediately useful to more speculative. Wiesner’s quantum money for example

is the basis for QKD, which is an information-theoretically secure communication protocol

that has commercially available implementations. The security primitives proposed are

cryptographic commitment schemes, which are frameworks for cryptographic processes. The

frameworks themselves are valid, but their implementation will depend on the underlying

use of classical hash functions with certain properties, and some of the schemes require

properties that have never been found. The voting scheme, consensus algorithm and hybrid

quantum / classical blockchain proposed will rely on the viability of quantum money and

quantum security primitives. Finally, the fully quantum blockchain data structure proposed

using entanglement in time is possibly the most immediately implementatable from an

experimental perspective. However, it has serious flaws as a useful method of information

storage, since it encodes its data in the states of photons which are not easy to store or

maintain.

With the assumption that quantum networks will eventually penetrate the world’s

communcations systems, it is inevitable that communications systems will begin to make

use of both the newer quantum resources and legacy classical resources that are available.

One of the most general tasks that an actor may wish to achieve in a computer network is

to execute an arbitrary function. It’s clearly a very complex task to optimally transpile an

arbitrary function in an arbitrary programming language to execute optimally in a network

with both quantum and classical resources. Instead of trying to tackle this hard prolem,

we proposed a solution to a particular scenario. We proposed and demonstrated a basic

transpilation technology that allows a user to choose whether or not it is desirable to target

each subset of a function to a quatum annealer rather than a classical computer. The
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transpiler is reponsible for identifying blocks of code that could theoretically be executed

on an annealer, and for lowering the selected blocks to a format that a D-Wave quantum

annealer could understand. We chose WebAssembly (WASM) as the input language to use,

since it is a popular transpilation target for other languages. We believe that we were the

first to propose and demonstrate our solution to this particular problem.

5.2 Future Outlook

We have contibuted novel theoretical and experimental work to three different but related

areas within quantum information processing technology. Each area is still relatively

new. Our first contribution established that available quantum technology is sufficient

to demonstrate, but not yet ideal for implementing, controlled quantum communication

protocols. Our next two chapters are even more speculative. In chapter three we provided the

first in-depth outline of quantum blockchain research, a new field in quantum cryptography

which is yet to prove its worth. In chapter four we proposed a potential starting point for

researchers who wish to tackle the hard problems of hybrid quantum / classical computing,

but did not solve these problems ourselves. There is still much work to be done on a variety

of fronts before we can achieve the design of a viable quantum / classical internet. Some open

problems that remain include the design of hybrid quantum / classical blockchain schemes

that do not rely on the security assumptions of underlying security primitives like quantum

lightning, the reduction of trust assumptions in quantum and hybrid quantum / classical

communication networks, hybrid multi-party function evaluation and anonymous quantum

communication channels. These problems will need to be addressed in the coming years if

quantum communication technology is to reach commercialization, adoption and maturity

on a scale similar to that of the classical internet.

97



Bibliography

[All+82] Allen et al. PFC: A Program to Convert Fortran to Parallel Form. Mar. 1982.

url: https://hdl.handle.net/1911/101547.

[All+83] J. R. Allen et al. “Conversion of control dependence to data dependence”. In:

Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages - POPL 83 (1983). doi: 10.1145/567067.567085.

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. “Quantum Attacks

on Classical Proof Systems: The Hardness of Quantum Rewinding”. In: 2014

IEEE 55th Annual Symposium on Foundations of Computer Science (2014).

doi: 10.1109/focs.2014.57.

[Atz15] Marcella Atzori. “Blockchain Technology and Decentralized Governance: Is the

State Still Necessary?” In: SSRN Electronic Journal (2015). doi: 10.2139/ssrn.

2709713.

[Bal15] Pavan Balaji. “OpenMP”. In: Programming Models for Parallel Computing

(2015). doi: 10.7551/mitpress/9486.003.0014.

[Bar+95] Barenco et al. “Elementary gates for quantum computation”. eng. In: Physical

review. A, Atomic, molecular, and optical physics 52.5 (1995), pp. 3457–3467.

issn: 1050-2947.

98

https://hdl.handle.net/1911/101547
https://doi.org/10.1145/567067.567085
https://doi.org/10.1109/focs.2014.57
https://doi.org/10.2139/ssrn.2709713
https://doi.org/10.2139/ssrn.2709713
https://doi.org/10.7551/mitpress/9486.003.0014


[BB20] Charles H. Bennett and Gilles Brassard. “Quantum cryptography: Public key

distribution and coin tossing”. In: arXiv e-prints, arXiv:2003.06557 (Mar. 2020),

arXiv:2003.06557. arXiv: 2003.06557 [quant-ph].

[BB87] Charles Bennett and Gilles Brassard. “Quantum public key distribution

reinvented”. In: ACM SIGACT News 18 (July 1987), pp. 51–53. doi: 10.1145/

36068.36070.

[BČL19] Artur Barasiński, Antonín Černoch, and Karel Lemr. “Demonstration of

Controlled Quantum Teleportation for Discrete Variables on Linear Optical

Devices”. In: Phys. Rev. Lett. 122 (17 Apr. 2019), p. 170501. doi: 10.1103/

PhysRevLett.122.170501. url: https://link.aps.org/doi/10.1103/PhysRevLett.

122.170501.

[Ber+08] Guido Bertoni et al. “On the Indifferentiability of the Sponge Construction”.

In: Advances in Cryptology - EUROCRYPT 2008 Lecture Notes in Computer

Science (2008), pp. 181–197. doi: 10.1007/978-3-540-78967-3_11.

[BM97] Eli Biham and Tal Mor. “Bounds on Information and the Security of Quantum

Cryptography”. In: Physical Review Letters 79.20 (1997), pp. 4034–4037. doi:

10.1103/physrevlett.79.4034.

[BRP18] Marcello Benedetti, John Realpe-Gómez, and Alejandro Perdomo-Ortiz.

“Quantum-assisted Helmholtz machines: A quantum–classical deep learning

framework for industrial datasets in near-term devices”. eng. In: Quantum

Science and Technology 3.3 (2018), pp. 034007–. issn: 2058-9565.

[But13] Vitalik Buterin. Ethereum whitepaper. 2013. url: https : / / whitepaper . io /

document/5/ethereum-whitepaper.

99

https://arxiv.org/abs/2003.06557
https://doi.org/10.1145/36068.36070
https://doi.org/10.1145/36068.36070
https://doi.org/10.1103/PhysRevLett.122.170501
https://doi.org/10.1103/PhysRevLett.122.170501
https://link.aps.org/doi/10.1103/PhysRevLett.122.170501
https://link.aps.org/doi/10.1103/PhysRevLett.122.170501
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1103/physrevlett.79.4034
https://whitepaper.io/document/5/ethereum-whitepaper
https://whitepaper.io/document/5/ethereum-whitepaper


[BW73] C.r. Baugh and B.a. Wooley. “A Twos Complement Parallel Array

Multiplication Algorithm”. In: IEEE Transactions on Computers C-22.12

(1973), pp. 1045–1047. doi: 10.1109/t-c.1973.223648.

[CCD15] Cristian S. Calude, Elena Calude, and Michael J. Dinneen. “Guest Column:

Adiabatic Quantum Computing Challenges”. In: ACM SIGACT News 46.1

(2015), pp. 40–61. doi: 10.1145/2744447.2744459.

[Cho08] Vicky Choi. “Minor-embedding in adiabatic quantum computation: I. The

parameter setting problem”. In: Quantum Information Processing 7.5 (2008),

pp. 193–209. doi: 10.1007/s11128-008-0082-9.

[Col19] Andrea Coladangelo. “Smart contracts meet quantum cryptography”. In: arXiv

e-prints, arXiv:1902.05214 (Feb. 2019), arXiv:1902.05214. arXiv: 1902 .05214

[quant-ph].

[Com] Recruit Communications. PyQUBO. url: https : / / github . com / recruit -

communications/pyqubo.

[Con] ConsenSys. Smart Dubai. url: https://consensys.net/blockchain-use-cases/

government-and-the-public-sector/smart-dubai/.

[Con19] ConsenSys. Get to Know the ConsenSys Mesh. Aug. 2019. url: https://media.

consensys.net/get- to- know- the- 47- projects- that-make-up- the- consensys-

mesh-478b7d3028c1.

[Del] Yury Delendik. yurydelendik/wasmparser.rs. url: https : / / github . com /

yurydelendik/wasmparser.rs.

[Doc] MDN Web Docs. Understanding WebAssembly text format. url: https : / /

developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_

format#S-expressions.

100

https://doi.org/10.1109/t-c.1973.223648
https://doi.org/10.1145/2744447.2744459
https://doi.org/10.1007/s11128-008-0082-9
https://arxiv.org/abs/1902.05214
https://arxiv.org/abs/1902.05214
https://github.com/recruit-communications/pyqubo
https://github.com/recruit-communications/pyqubo
https://consensys.net/blockchain-use-cases/government-and-the-public-sector/smart-dubai/
https://consensys.net/blockchain-use-cases/government-and-the-public-sector/smart-dubai/
https://media.consensys.net/get-to-know-the-47-projects-that-make-up-the-consensys-mesh-478b7d3028c1
https://media.consensys.net/get-to-know-the-47-projects-that-make-up-the-consensys-mesh-478b7d3028c1
https://media.consensys.net/get-to-know-the-47-projects-that-make-up-the-consensys-mesh-478b7d3028c1
https://github.com/yurydelendik/wasmparser.rs
https://github.com/yurydelendik/wasmparser.rs
https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format#S-expressions
https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format#S-expressions
https://developer.mozilla.org/en-US/docs/WebAssembly/Understanding_the_text_format#S-expressions


[DWaa] D-Wave. url: https://www.dwavesys.com/p-ress-releases/d-wave-previ-ews-

next-generation-quantum-computing-platform.

[DWab] D-Wave. D-Wave Customers. url: https://www.dwavesys.com/our-company/

customers.

[DWac] D-Wave. The D-Wave 2000QTM System. url: https://www.dwavesys.com/d-

wave-two-system.

[DWad] D-Wave. Wave Ocean Software Documentation. url: http : / / docs . ocean .

dwavesys.com/.

[DWa20] D-Wave. dwavesystems/qbsolv. Feb. 2020. url: https : / / github . com /

dwavesystems/qbsolv.

[Edi17] AccessScience Editors. Reaching the 50-qubit milestone in quantum computing.

2020/5/11/ 2017. url: https://www.accessscience.com/content/reaching-the-

50-qubit-milestone-in-quantum-computing/BR1120171.

[Edi19] OSTechNix Editor. Blockchain 2.0 - What Is Ethereum [Part 9]. May 2019.

url: https://www.ostechnix.com/blockchain-2-0-what-is-ethereum.

[Fed08] Serguei Fedortchenko. “A quantum teleportation experiment for undergraduate

students”. In: (20160708).

[Feh10] Serge Fehr. “Quantum Cryptography”. eng. In: Foundations of Physics 40.5

(2010), pp. 494–531. issn: 0015-9018.

[Feh18] Serge Fehr. “Classical Proofs for the Quantum Collapsing Property of Classical

Hash Functions”. In: Theory of Cryptography Lecture Notes in Computer

Science (2018), pp. 315–338. doi: 10.1007/978-3-030-03810-6_12.

[FM18] Richard Finney and Daoud Meerzaman. “Chromatic: WebAssembly-Based

Cancer Genome Viewer”. In: Cancer Informatics 17 (2018). doi: 10 . 1177 /

1176935118771972.

101

https://www.dwavesys.com/p-ress-releases/d-wave-previ-ews-next-generation-quantum-computing-platform
https://www.dwavesys.com/p-ress-releases/d-wave-previ-ews-next-generation-quantum-computing-platform
https://www.dwavesys.com/our-company/customers
https://www.dwavesys.com/our-company/customers
https://www.dwavesys.com/d-wave-two-system
https://www.dwavesys.com/d-wave-two-system
http://docs.ocean.dwavesys.com/
http://docs.ocean.dwavesys.com/
https://github.com/dwavesystems/qbsolv
https://github.com/dwavesystems/qbsolv
https://www.accessscience.com/content/reaching-the-50-qubit-milestone-in-quantum-computing/BR1120171
https://www.accessscience.com/content/reaching-the-50-qubit-milestone-in-quantum-computing/BR1120171
https://www.ostechnix.com/blockchain-2-0-what-is-ethereum
https://doi.org/10.1007/978-3-030-03810-6_12
https://doi.org/10.1177/1176935118771972
https://doi.org/10.1177/1176935118771972


[Fou19] WebAssembly Foundation. WebAssembly Binary Toolkit. May 2019. url:

github.com/WebAssembly/wabt.

[Fra20] Jake Frankenfield. Proof of Stake (PoS). Jan. 2020. url: https : / / www .

investopedia.com/terms/p/proof-stake-pos.asp.

[Goh19] Brenda Goh. China wants to ban bitcoin mining. Apr. 2019. url: http://www.

reuters.com/article/us- china- cryptocurrency/china-wants- to-ban-Bitcoin-

mining-idUSKCN1RL0C4.

[GR23] Goren Gordon and Gustavo Rigolin. “Generalized Quantum State Sharing”. In:

73.6 (20060323). issn: 10502947.

[Gro96] Lov K. Grover. “A fast quantum mechanical algorithm for database search”.

In: Proceedings of the twenty-eighth annual ACM symposium on Theory of

computing - STOC 96 (1996). doi: 10.1145/237814.237866.

[H18] Fiona H. What is the Hamiltonian? Apr. 2018. url: https://support.dwavesys.

com/hc/en-us/articles/360003684614-What-is-the-Hamiltonian-.

[Haa+17] Andreas Haas et al. “Bringing the web up to speed with WebAssembly”. In:

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation - PLDI 2017 (2017). doi: 10 . 1145 / 3062341 .

3062363.

[HLG01] Jiu-Cang Hao, Chuan-Feng Li, and Guang-Can Guo. “Controlled dense coding

using the Greenberger-Horne-Zeilinger state”. In: Physical Review A 63.5 (Nov.

2001). doi: 10.1103/physreva.63.054301.

[Ile18] Matthew Iles. The Civil White Paper. Oct. 2018. url: https://blog.joincivil.

com/the-civil-white-paper-3e6c6f72dd9e.

102

github.com/WebAssembly/wabt
https://www.investopedia.com/terms/p/proof-stake-pos.asp
https://www.investopedia.com/terms/p/proof-stake-pos.asp
http://www.reuters.com/article/us-china-cryptocurrency/china-wants-to-ban-Bitcoin-mining-idUSKCN1RL0C4
http://www.reuters.com/article/us-china-cryptocurrency/china-wants-to-ban-Bitcoin-mining-idUSKCN1RL0C4
http://www.reuters.com/article/us-china-cryptocurrency/china-wants-to-ban-Bitcoin-mining-idUSKCN1RL0C4
https://doi.org/10.1145/237814.237866
https://support.dwavesys.com/hc/en-us/articles/360003684614-What-is-the-Hamiltonian-
https://support.dwavesys.com/hc/en-us/articles/360003684614-What-is-the-Hamiltonian-
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1103/physreva.63.054301
https://blog.joincivil.com/the-civil-white-paper-3e6c6f72dd9e
https://blog.joincivil.com/the-civil-white-paper-3e6c6f72dd9e


[Inc19] NXM Labs Inc. NXM Labs Announces Breakthrough in Quantum-Safe Security

for Existing Computers and IoT Devices. Apr. 2019. url: http : / / www .

newswire.ca/news-releases/nxm-labs-announces-breakthrough- in-quantum-

safe-security-for-existing-computers-and-iot-devices-890174168.html.

[Inc20] Wasmer Inc. wasmerio/wasmer. Apr. 2020. url: https : / / github . com /

wasmerio/wasmer.

[KB] A. Karlsson and M. Bourennane. “Quantum Teleportation using Three

Particle Entanglement”. In: Technical Digest. 1998 EQEC. European Quantum

Electronics Conference (Cat. No.98TH8326) (). doi: 10.1109/eqec.1998.714867.

[Kir] J. A. Kirkham. OpenMP . Issue 97 . WebAssembly/threads. url: https : / /

github.com/WebAssembly/threads/issues/97.

[Kit97] A Yu Kitaev. “Quantum computations: algorithms and error correction”. eng.

In: Russian Mathematical Surveys 52.6 (1997), pp. 1191–1249. issn: 0036-0279.

[LD08] Xihan Li and Fuguo Deng. “Controlled teleportation”. In: Frontiers of Computer

Science in China 2.2 (2008), pp. 147–160. doi: 10.1007/s11704-008-0020-0.

[Led19] Sylvestre Ledru. Making the Building of Firefox Faster for You with Clever-

Commit from Ubisoft. Feb. 2019. url: https://blog.mozilla.org/futurereleases/

2019/02/12/making-the-building-of-firefox-faster-for-you-with-clever-commit-

from-ubisoft/.

[Log] Scott Logic. Writing WebAssembly By Hand. url: https://blog.scottlogic.com/

2018/04/26/webassembly-by-hand.html.

[LSH19] Junjie Liu, Dvira Segal, and Gabriel Hanna. “Hybrid quantum-classical

simulation of quantum speed limits in open quantum systems”. eng. In: Journal

of physics. A, Mathematical and theoretical 52.21 (2019), pp. 215301–. issn:

1751-8121.

103

http://www.newswire.ca/news-releases/nxm-labs-announces-breakthrough-in-quantum-safe-security-for-existing-computers-and-iot-devices-890174168.html
http://www.newswire.ca/news-releases/nxm-labs-announces-breakthrough-in-quantum-safe-security-for-existing-computers-and-iot-devices-890174168.html
http://www.newswire.ca/news-releases/nxm-labs-announces-breakthrough-in-quantum-safe-security-for-existing-computers-and-iot-devices-890174168.html
https://github.com/wasmerio/wasmer
https://github.com/wasmerio/wasmer
https://doi.org/10.1109/eqec.1998.714867
https://github.com/WebAssembly/threads/issues/97
https://github.com/WebAssembly/threads/issues/97
https://doi.org/10.1007/s11704-008-0020-0
https://blog.mozilla.org/futurereleases/2019/02/12/making-the-building-of-firefox-faster-for-you-with-clever-commit-from-ubisoft/
https://blog.mozilla.org/futurereleases/2019/02/12/making-the-building-of-firefox-faster-for-you-with-clever-commit-from-ubisoft/
https://blog.mozilla.org/futurereleases/2019/02/12/making-the-building-of-firefox-faster-for-you-with-clever-commit-from-ubisoft/
https://blog.scottlogic.com/2018/04/26/webassembly-by-hand.html
https://blog.scottlogic.com/2018/04/26/webassembly-by-hand.html


[LU05] Marco Lanzagorta and Jeffrey K. Uhlmann. “Hybrid quantum-classical

computing with applications to computer graphics”. In: ACM SIGGRAPH 2005

Courses on - SIGGRAPH 05 (2005). doi: 10.1145/1198555.1198723.

[Lut+09] Andrew Lutomirski et al. “Breaking and making quantum money: toward a

new quantum cryptographic protocol”. In: arXiv e-prints, arXiv:0912.3825 (Dec.

2009), arXiv:0912.3825. arXiv: 0912.3825 [quant-ph].

[LV84] Wing K. Luk and Jean Vuillemin. “Recursive implementation of optimal time

VLSi integer multipliers”. In: 1984.

[Mac17] Tanaya Macheel. Banks Will Start Actually Using Blockchain Next Year: IBM

Report. Jan. 2017. url: https://www.americanbanker.com/news/banks-will-

start-actually-using-blockchain-next-year-ibm-report.

[McG] Catherine C. McGeoch. Adiabatic quantum computation and quantum annealing

theory and practice. Synthesis lectures on quantum computing, 8. Morgan and

Claypool. isbn: 1-68173-212-2.

[Meg+13a] E. Megidish et al. “Entanglement Swapping between Photons that have

Never Coexisted”. In: Physical Review Letters 110.21 (2013). doi: 10 .1103/

physrevlett.110.210403.

[Meg+13b] E. Megidish et al. “Quantum tomography of inductively created multiphoton

states”. In: Cleo: 2013 (2013). doi: 10.1364/cleo_qels.2013.qf2b.6.

[Mer07] N. David Mermin. Quantum Computer Science: An Introduction. Cambridge

University Press, 2007. doi: 10.1017/CBO9780511813870.

[MW] Jack Matier and Pete Waterland. Quantum Resistant Ledger (QRL). url:

https : / / raw . githubusercontent . com/theQRL/Whitepaper /master /QRL_

whitepaper.pdf.

104

https://doi.org/10.1145/1198555.1198723
https://arxiv.org/abs/0912.3825
https://www.americanbanker.com/news/banks-will-start-actually-using-blockchain-next-year-ibm-report
https://www.americanbanker.com/news/banks-will-start-actually-using-blockchain-next-year-ibm-report
https://doi.org/10.1103/physrevlett.110.210403
https://doi.org/10.1103/physrevlett.110.210403
https://doi.org/10.1364/cleo_qels.2013.qf2b.6
https://doi.org/10.1017/CBO9780511813870
https://raw.githubusercontent.com/theQRL/Whitepaper/master/QRL_whitepaper.pdf
https://raw.githubusercontent.com/theQRL/Whitepaper/master/QRL_whitepaper.pdf


[Nak] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. url: https:

//bitcoin.org/bitcoin.pdf.

[Neu+17] Florian Neukart et al. “Traffic Flow Optimization Using a Quantum Annealer”.

In: Frontiers in ICT 4 (2017). doi: 10.3389/fict.2017.00029.

[New17] ETH News. ConsenSys Releases Whitepaper At Dubai’s World Government

Summit. Feb. 2017. url: www.ethnews.com/consensys-releases-whitepaper-

at-dubais-world-government-summit.

[Nof+17] Michael Nofer et al. “Blockchain”. In: Business & Information Systems

Engineering 59.3 (2017), pp. 183–187. doi: 10.1007/s12599-017-0467-3.

[OM17] Michael Oved and Don Mosites. Swap Protocol Whitepaper. May 2017. url:

https://swap.tech/whitepaper/.

[OV16] Daniel Omalley and Velimir V. Vesselinov. “ToQ.jl: A high-level programming

language for D-Wave machines based on Julia”. In: 2016 IEEE High

Performance Extreme Computing Conference (HPEC) (2016). doi: 10.1109/

hpec.2016.7761616.

[Pak] Scott Pakin. qb2qmasm. url: https : / / github . com / lanl / qmasm / wiki /

qb2qmasm.

[Pak16] Scott Pakin. “A quantum macro assembler”. In: 2016 IEEE High Performance

Extreme Computing Conference (HPEC) (2016). doi: 10 . 1109 / hpec . 2016 .

7761637.

[Pak19] Scott Pakin. “Targeting Classical Code to a Quantum Annealer”. In: Proceedings

of the Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems (Apr. 2019). doi: 10.1145/

3297858.3304071.

105

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.3389/fict.2017.00029
www.ethnews.com/consensys-releases-whitepaper-at-dubais-world-government-summit
www.ethnews.com/consensys-releases-whitepaper-at-dubais-world-government-summit
https://doi.org/10.1007/s12599-017-0467-3
https://swap.tech/whitepaper/
https://doi.org/10.1109/hpec.2016.7761616
https://doi.org/10.1109/hpec.2016.7761616
https://github.com/lanl/qmasm/wiki/qb2qmasm
https://github.com/lanl/qmasm/wiki/qb2qmasm
https://doi.org/10.1109/hpec.2016.7761637
https://doi.org/10.1109/hpec.2016.7761637
https://doi.org/10.1145/3297858.3304071
https://doi.org/10.1145/3297858.3304071


[PP18] Wolfgang Platz and Wolfgang Platz. 3 biggest roadblocks to continuous testing.

July 2018. url: https : / /www . infoworld . com/article / 3294197/3 - biggest -

roadblocks-to-continuous-testing.html.

[Riv94] Ronald L. Rivest. S-Expressions. May 1994. url: http://people.csail.mit.edu/

rivest/Sexp.txt.

[RV19] Del Rajan and Matt Visser. “Quantum Blockchain Using Entanglement

in Time”. In: Quantum Reports 1.1 (2019), pp. 3–11. doi: 10 . 3390 /

quantum1010002.

[Sch16] Paul Schaus. Blockchain Projects Will Pay Off - 10 Years from Now. Dec. 2016.

url: http://www.americanbanker.com/opinion/blockchain-projects-will-pay-

off-10-years-from-now.

[SPS19] Rohit Singh, Harish Parthasarathy, and Jyotsna Singh. “Quantum image

restoration based on Hudson–Parthasarathy Schrodinger equation”. eng. In:

Quantum Information Processing 18.11 (2019), pp. 1–29. issn: 1570-0755.

[Sta01] British Standards. “electronic design interchange format”. In: (July 2001). doi:

10.3403/bsen61690.

[Sun+18] Xin Sun et al. “A Simple Voting Protocol on Quantum Blockchain”. In:

International Journal of Theoretical Physics 58.1 (2018), pp. 275–281. doi:

10.1007/s10773-018-3929-6.

[TF20] Dmitriy Tsvettsikh and WebAssembly Foundation. wasmerio/vscode-wasm.

Feb. 2020. url: https://github.com/wasmerio/vscode-wasm.

[Tre19] Treum. Verified Organic and ConsenSys-backed Treum launch Ethereum

blockchain solution to track and trace the first commercial hemp crop planted

in Arizona. June 2019. url: https://itsupplychain.com/verified-organic-and-

106

https://www.infoworld.com/article/3294197/3-biggest-roadblocks-to-continuous-testing.html
https://www.infoworld.com/article/3294197/3-biggest-roadblocks-to-continuous-testing.html
http://people.csail.mit.edu/rivest/Sexp.txt
http://people.csail.mit.edu/rivest/Sexp.txt
https://doi.org/10.3390/quantum1010002
https://doi.org/10.3390/quantum1010002
http://www.americanbanker.com/opinion/blockchain-projects-will-pay-off-10-years-from-now
http://www.americanbanker.com/opinion/blockchain-projects-will-pay-off-10-years-from-now
https://doi.org/10.3403/bsen61690
https://doi.org/10.1007/s10773-018-3929-6
https://github.com/wasmerio/vscode-wasm
https://itsupplychain.com/verified-organic-and-consensys-backed-treum-launch-ethereum-blockchain-solution-to-track-and-trace-the-first-commercial-hemp-crop-planted-in-arizona/
https://itsupplychain.com/verified-organic-and-consensys-backed-treum-launch-ethereum-blockchain-solution-to-track-and-trace-the-first-commercial-hemp-crop-planted-in-arizona/


consensys-backed-treum-launch-ethereum-blockchain-solution-to-track-and-

trace-the-first-commercial-hemp-crop-planted-in-arizona/.

[UNM17] Hayato Ushijima-Mwesigwa, Christian F. A. Negre, and Susan M. Mniszewski.

“Graph Partitioning using Quantum Annealing on the D-Wave System”. In:

arXiv e-prints, arXiv:1705.03082 (May 2017), arXiv:1705.03082. arXiv: 1705.

03082 [quant-ph].

[Unr16a] Dominique Unruh. “Collapse-Binding Quantum Commitments Without

Random Oracles”. In: Advances in Cryptology - ASIACRYPT 2016 Lecture

Notes in Computer Science (2016), pp. 166–195. doi: 10 .1007/978- 3 - 662 -

53890-6_6.

[Unr16b] Dominique Unruh. “Computationally Binding Quantum Commitments”. In:

Advances in Cryptology - EUROCRYPT 2016 Lecture Notes in Computer

Science (2016), pp. 497–527. doi: 10.1007/978-3-662-49896-5_18.

[Vin+19] Walter Vinci et al. “A Path Towards Quantum Advantage in Training Deep

Generative Models with Quantum Annealers”. In: arXiv e-prints, arXiv:1912.02119

(Dec. 2019), arXiv:1912.02119. arXiv: 1912.02119 [quant-ph].

[VJR18] Dejan Vujicic, Dijana Jagodic, and Sinisa Randic. “Blockchain technology,

bitcoin, and Ethereum: A brief overview”. In: 2018 17th International

Symposium INFOTEH-JAHORINA (INFOTEH) (2018). doi: 10.1109/infoteh.

2018.8345547.

[Wie83] Stephen Wiesner. “Conjugate coding”. In: ACM SIGACT News 15.1 (1983),

pp. 78–88. doi: 10.1145/1008908.1008920.

[WR] Aaron Wright and David Roon. A free legal repository. url: http : //www.

openlaw.io/.

107

https://itsupplychain.com/verified-organic-and-consensys-backed-treum-launch-ethereum-blockchain-solution-to-track-and-trace-the-first-commercial-hemp-crop-planted-in-arizona/
https://itsupplychain.com/verified-organic-and-consensys-backed-treum-launch-ethereum-blockchain-solution-to-track-and-trace-the-first-commercial-hemp-crop-planted-in-arizona/
https://itsupplychain.com/verified-organic-and-consensys-backed-treum-launch-ethereum-blockchain-solution-to-track-and-trace-the-first-commercial-hemp-crop-planted-in-arizona/
https://arxiv.org/abs/1705.03082
https://arxiv.org/abs/1705.03082
https://doi.org/10.1007/978-3-662-53890-6_6
https://doi.org/10.1007/978-3-662-53890-6_6
https://doi.org/10.1007/978-3-662-49896-5_18
https://arxiv.org/abs/1912.02119
https://doi.org/10.1109/infoteh.2018.8345547
https://doi.org/10.1109/infoteh.2018.8345547
https://doi.org/10.1145/1008908.1008920
http://www.openlaw.io/
http://www.openlaw.io/


[Yag+18] Dylan J. Yaga et al. Blockchain Technology Overview. Nov. 2018. url: https:

//www.nist.gov/publications/blockchain-technology-overview.

[Yao+20] Yongxin Yao et al. “Gutzwiller Hybrid Quantum-Classical Computing

Approach for Correlated Materials”. In: arXiv e-prints, arXiv:2003.04211 (Mar.

2020), arXiv:2003.04211. arXiv: 2003.04211 [cond-mat.str-el].

[YSS19] Christine Yen, Adam Stacoviak, and Jerod Santo. Observability Is for Your

Unknown Unknowns with Christine Yen. Aug. 2019. url: https://changelog.

com/podcast/356.

[Zeh70] H. D. Zeh. “On the interpretation of measurement in quantum theory”. In:

Foundations of Physics 1.1 (1970), pp. 69–76. doi: 10.1007/bf00708656.

[Zha19] Mark Zhandry. “Quantum Lightning Never Strikes the Same State Twice”.

In: Advances in Cryptology - EUROCRYPT 2019 Lecture Notes in Computer

Science (2019), pp. 408–438. doi: 10.1007/978-3-030-17659-4_14.

108

https://www.nist.gov/publications/blockchain-technology-overview
https://www.nist.gov/publications/blockchain-technology-overview
https://arxiv.org/abs/2003.04211
https://changelog.com/podcast/356
https://changelog.com/podcast/356
https://doi.org/10.1007/bf00708656
https://doi.org/10.1007/978-3-030-17659-4_14


APPENDIX

109



Appendix A

Controlled Communication Algorithms

on IBM Quantum

A.1 Controlled Teleportation Protocol

from IBMQuantumExperience import IBMQuantumExperience

import random

API_TOKEN = ’...’

FIDELITY_TEST_GATE = ["0","pi/2","-pi/2"] #params for the daggers of the

teleported states

def

controlled_teleport_sim(shots,bell_state,charlie,tele_theta,tele_phi,tele_lambda):

’’’

Controlled teleportation test on the simulator.

Open QASM:

IBMQASM 2.0;

include "qelib1.inc";
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qreg q[5]; //define 5 quibit register, q[2]=A qubit, q[1]=B

qubit,q[0]=C qubit

creg c[4]; //define 4 bit classical register

//creating a 3-qubit GHZ state

h q[0]; //perform hadamard on q[0]

cx q[0],q[1]; //CNOT on q[1] controlled by q[0]

cx q[1],q[2]; //CNOT on q[2] controlled by q[1]

//prepare state to be transfered. u3 =

[[cos(theta/2),-exp(1i*lambda)*sin(theta/2)],[exp(1i*phi)*sin(theta/2),exp(1i*lambda+1i*phi)*cos(theta/2)]]

u3(tele_theta,tele_phi,tele_lambda) q[3];

//Alice performs Bell state measurement entangling x and A

cx q[3],q[2];

h q[3];

//measure the state of qubit C to obtain Rc

h q[1]; //perform hadamard on q[1]

measure q[1] -> c[0]; //measure q[1] into c[0], 0 corresponds to the

outcome |+> and 1 corresponds to the |->

// Bobs U will be one of 4 gates depending on Rc and the bell

measurement used
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//1st bell state

if(c == 1) z q[0];

if(c == 0) I q[0];

//2nd bell state

if(c == 1) I q[0];

if(c == 0) z q[0];

//3rd bell state

if(c == 0) x q[0];

if(c == 1) z q[0];

if(c == 1) x q[0];

//4th bell state

if(c == 1) x q[0];

if(c == 0) z q[0];

if(c == 0) x q[0];

//measure Alices Bell state

measure q[2] -> c[2];

measure q[3] -> c[3];

//rotate the correct state to zero for fidelity test
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u3(FIDELITY_TEST_GATE[0],FIDELITY_TEST_GATE[1],FIDELITY_TEST_GATE[2])

q[1];

//measure the final transferred result

measure q[0] -> c[1];

’’’

api = IBMQuantumExperience.IBMQuantumExperience(API_TOKEN)

device = ’simulator’

#Experiment setup

qasm = "IBMQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[5];\ncreg c[4];\n"

#create GHZ state

qasm += "h q[0];\ncx q[0],q[1];\ncx q[1],q[2];\n"

#prepare state to be teleported u3 =

[[cos(theta/2),-exp(1i*lambda)*sin(theta/2)],[exp(1i*phi)*sin(theta/2),exp(1i*lambda+1i*phi)*cos(theta/2)]]

qasm += "u3({0},{1},{2}) q[3];\n".format(tele_theta,tele_phi,tele_lambda)

#Alice performs Bell state measurement entangling x and A

qasm += "cx q[3],q[2];\nh q[3];\n"

#Charlie measures the state of C

qasm += "barrier q[1];\n"

qasm += "h q[1];\nmeasure q[1] -> c[0];\n"
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#Bob applies U

qasm += "barrier q[0],q[2],q[3];\n"

if(charlie == -1):

charlie = int(random.getrandbits(1))

if(bell_state == 1):

qasm += "if(c == {0}) z q[0];\n".format(int(not charlie))

elif(bell_state == 2):

qasm += "if(c == {0}) z q[0];\n".format(int(not charlie))

elif(bell_state == 3):

qasm += "if(c == {0}) x q[0];\nif(c == {1}) z q[0];\nif(c == {2}) x

q[0];\n".format(int(charlie), int(not charlie), int(not charlie))

elif(bell_state == 4):

qasm += "if(c == {0}) x q[0];\nif(c == {1}) z q[0];\nif(c == {2}) x

q[0];\n".format(int(charlie), int(not charlie), int(not charlie))

#rotate correct state to zero for fidelity test

qasm += "u3({0},{1},{2})

q[0];\n".format(tele_theta,FIDELITY_TEST_GATE[1],FIDELITY_TEST_GATE[2])

#measure the final result

qasm += "measure q[0] -> c[1];\n"

#measure the bell state

qasm += "measure q[2] -> c[2];\n"

qasm += "measure q[3] -> c[3];\n"
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exp = api.run_experiment(qasm, device, shots)

return exp

def

controlled_teleport_comp(shots,bell_state,charlie,tele_theta,tele_phi,tele_lambda):

’’’

Controlled teleportation test on the quantum computer.

The value for charlies measurement which we are interested in is passed as

a parameter that

is used to set the correct operations for Bob. This must also be taken

into account in filtering

for the relevant results later.

Open QASM:

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5]; //define 5 quibit register, q[2]=A qubit, q[1]=B

qubit,q[0]=C qubit

creg c[4]; //define 4 bit classical register

//creating a 3-qubit GHZ state

h q[0]; //perform hadamard on q[0]

cx q[0],q[1]; //CNOT on q[1] controlled by q[0]

cx q[1],q[2]; //CNOT on q[2] controlled by q[1]
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//prepare state to be transfered. u3 =

[[cos(theta/2),-exp(1i*lambda)*sin(theta/2)],[exp(1i*phi)*sin(theta/2),exp(1i*lambda+1i*phi)*cos(theta/2)]]

u3(tele_theta,tele_phi,tele_lambda) q[3];

//Alice performs Bell state measurement entangling x and A

cx q[3],q[2];

h q[3];

//measure the state of qubit C to obtain Rc

h q[1]; //perform hadamard on q[1]

measure q[1] -> c[0]; //measure q[1] into c[0], 0 corresponds to the

outcome |+> and 1 corresponds to the |->

// Bobs U will be one of 4 gates depending on Rc and the bell

measurement used

//1st bell state

if(charlie == 1) z q[0];

if(charlie == 0) I q[0];

//2nd bell state

if(charlie == 1) I q[0];

if(charlie == 0) z q[0];
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//3rd bell state

if(charlie == 0) x q[0];

if(charlie == 1) z q[0];

if(charlie == 1) x q[0];

//4th bell state

if(charlie == 1) x q[0];

if(charlie == 0) z q[0];

if(charlie == 0) x q[0];

//measure Alices Bell state

measure q[2] -> c[2];

measure q[3] -> c[3];

//rotate the correct state to zero for fidelity test

u3(FIDELITY_TEST_GATE[0],FIDELITY_TEST_GATE[1],FIDELITY_TEST_GATE[2])

q[1];

//measure the final transferred result

measure q[0] -> c[1];

’’’

api = IBMQuantumExperience.IBMQuantumExperience(API_TOKEN)
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device = ’real’

#Experiment setup

qasm = "IBMQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[5];\ncreg c[4];\n"

#create GHZ state

qasm += "h q[0];\ncx q[0],q[1];\ncx q[1],q[2];\n"

#prepare state to be teleported u3 =

[[cos(theta/2),-exp(1i*lambda)*sin(theta/2)],[exp(1i*phi)*sin(theta/2),exp(1i*lambda+1i*phi)*cos(theta/2)]]

qasm += "u3({0},{1},{2}) q[3];\n".format(tele_theta,tele_phi,tele_lambda)

#Alice performs Bell state measurement entangling x and A

qasm += "cx q[3],q[2];\nh q[3];\n"

#Charlie measures the state of C

qasm += "barrier q[1];\n"

qasm += "h q[1];\nmeasure q[1] -> c[0];\n"

if(charlie == -1):

charlie = int(random.getrandbits(1))

#Bob applies U

qasm += "barrier q[0],q[2],q[3];\n"

if(bell_state == 1):

if(not charlie):

qasm += "z q[0];\n"

elif(bell_state == 2):

118



if(charlie):

qasm += "z q[0];\n"

elif(bell_state == 3):

if(not charlie):

qasm += "x q[0];\n"

else:

qasm += "z q[0];\nx q[0];\n"

elif(bell_state == 4):

if(not charlie):

qasm += "x q[0];\n"

else:

qasm += "z q[0];\nx q[0];\n"

#rotate correct state to zero for fidelity test

qasm += "u3({0},{1},{2})

q[0];\n".format(tele_theta,FIDELITY_TEST_GATE[1],FIDELITY_TEST_GATE[2])

#measure the final result

qasm += "measure q[0] -> c[1];\n"

#measure the bell state

qasm += "measure q[2] -> c[2];\n"

qasm += "measure q[3] -> c[3];\n"

exp = api.run_experiment(qasm, device, shots)

return exp
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A.2 Controlled Teleportation Experiment

from IBMQuantumExperience import IBMQuantumExperience

from protocols import *

import csv

API_TOKEN = ’...’

def test_api_auth_token():

’’’

Authentication with Quantum Experience Platform

’’’

api = IBMQuantumExperience.IBMQuantumExperience(API_TOKEN)

credential = api._check_credentials()

return credential

def connect():

’’’

Attempt to connect to the Quantum Experience Platform

’’’

connection_success = test_api_auth_token()

if(connection_success == True):

print("API auth success.")

else:

print("API auth failure.")

exit()

120



def run_cases(bell_states,charlie_expect,case_trials,device,prep_gate):

total_set = 0

total_clear = 0

file_name = ’input_test_’ + str(prep_gate[0].replace(’/’,’over’)) + ’_result_’

+ device + ’_’ + str(case_trials) + ’x_’ + ’c’ + str(charlie_expect)

f = open(file_name, ’w’)

if(device == ’comp’):

csvFile = open(’allCompData.csv’,’a’)

elif(device == ’sim’):

csvFile = open(’allSimData.csv’,’a’)

fieldnames = ["Zero","One","Alice’s Relevance","Alice’s

Irrelevance","Charlie’s Relevance","Charlie’s Irrelevance","Bell

State","Charlie Expect","Data State", "Executions", "Device"]

writer = csv.DictWriter(csvFile, fieldnames=fieldnames)

if(device == ’comp’):

print("Controlled teleportation on the ibmqx2.")

f.write("Controlled teleportation on the ibmqx2.\n")

elif(device == ’sim’):

print("Controlled teleportation on the simulator.")

f.write("Controlled teleportation on the simulator.\n")

for bell_state in bell_states:

if(device == ’comp’): exp =

controlled_teleport_comp(case_trials,bell_state,charlie_expect,prep_gate[0],prep_gate[1],prep_gate[2])

#teleport with Alice measuring ZW Bell state
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if(device == ’sim’): exp =

controlled_teleport_sim(case_trials,bell_state,charlie_expect,prep_gate[0],prep_gate[1],prep_gate[2])

p_set = 0

p_clear = 0

charlie_correct = 0

alice_correct = 0

if(bell_state == 1):

bell_indicator = (0,1)

elif(bell_state == 2):

bell_indicator = (0,0)

elif(bell_state == 3):

bell_indicator = (1,0)

else:

bell_indicator = (1,1)

print(exp)

print("Taking case where Alice measures Bell State {0} and Charlie

measures {1}".format(bell_state,charlie_expect))

f.write("Taking case where Alice measures Bell State {0} and Charlie

measures {1}\n".format(bell_state,charlie_expect))

if ’result’ in exp:

for i in range(len(exp[’result’][’measure’][’labels’])):

if((int(exp[’result’][’measure’][’labels’][i][0]) ==

charlie_expect) or (charlie_expect == -1)): #Charlies
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measurement is correct or he is not allowing this transmission

charlie_correct += exp[’result’][’measure’][’values’][i]

if((int(exp[’result’][’measure’][’labels’][i][2]) ==

bell_indicator[0]) and

(int(exp[’result’][’measure’][’labels’][i][3]) ==

bell_indicator[1])): #Alices measurement is correct!

alice_correct += exp[’result’][’measure’][’values’][i]

if(int(exp[’result’][’measure’][’labels’][i][1]) == 1): #and

the result is a 1

p_set += float(exp[’result’][’measure’][’values’][i])

elif(int(exp[’result’][’measure’][’labels’][i][1]) == 0):

#and the result is a 0

p_clear += float(exp[’result’][’measure’][’values’][i])

print("--------------------------")

print("TRANSFERRED STATE")

print("--------------------------")

print("With respect to full results")

print("--------------------------")

f.write("--------------------------\n")

f.write("TRANSFERRED STATE\n")

f.write("--------------------------\n")

f.write("With respect to full results\n")

f.write("--------------------------\n")

print("state probability")

print("0 {0}".format(p_clear))

print("1 {0}".format(p_set))
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f.write("state probability\n")

f.write("0 {0}\n".format(p_clear))

f.write("1 {0}\n".format(p_set))

print("--------------------------")

print("In post selection subset")

print("--------------------------")

f.write("--------------------------\n")

f.write("In post selection subset\n")

f.write("--------------------------\n")

if((p_set+p_clear) != 0):

p_set = p_set/(p_set+p_clear)

p_clear = 1 - p_set

else:

p_set = 0

p_clear = 0

print("state probability")

print("0 {0:.2f}".format(p_clear))

print("1 {0:.2f}".format(p_set))

f.write("state probability\n")

f.write("0 {0:.2f}\n".format(p_clear))

f.write("1 {0:.2f}\n".format(p_set))

print("--------------------------")

print("Context relevance")

print("--------------------------")
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f.write("--------------------------\n")

f.write("Context relevance\n")

f.write("--------------------------\n")

print("Alice’s Bell Measurement")

print("relevant: {0:.2f}".format(alice_correct))

print("irrelevant: {0:.2f}".format(1 - alice_correct))

f.write("Alice’s Bell Measurement\n")

f.write("relevant: {0:.2f}\n".format(alice_correct))

f.write("irrelevant: {0:.2f}\n".format(1 - alice_correct))

print("Charlie’s Measurement")

print("relevant: {0:.2f}".format(charlie_correct))

print("irrelevant: {0:.2f}".format(1 - charlie_correct))

f.write("Charlie’s Measurement\n")

f.write("relevant: {0:.2f}\n".format(charlie_correct))

f.write("irrelevant: {0:.2f}\n".format(1 - charlie_correct))

else:

print(’BAD API RESPONSE!’)

print(exp)

p_set = 0

p_clear = 0

writer.writerow({

"Zero": "{0:.2f}".format(p_clear),

"One": "{0:.2f}".format(p_set),

"Alice’s Relevance": "{0:.2f}".format(alice_correct),
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"Alice’s Irrelevance": "{0:.2f}".format(1 - alice_correct),

"Charlie’s Relevance": "{0:.2f}".format(charlie_correct),

"Charlie’s Irrelevance": "{0:.2f}".format(1 - charlie_correct),

"Bell State": bell_state,

"Charlie Expect": charlie_expect,

"Data State": str(prep_gate[0].replace(’/’,’over’)),

"Executions": case_trials,

"Device": device

})

total_set += p_set

total_clear += p_clear

if((total_set+total_clear) == 0):

total_set = 0

total_clear = 0

else:

total_set = total_set/(total_set+total_clear)

total_clear = 1 - total_set

print("--------------------------")

print("OVERALL RELEVANT RESULT")

print("--------------------------")

print("state probability")

print("0 {0:.2f}".format(total_clear))

print("1 {0:.2f}".format(total_set))

f.write("--------------------------\n")

f.write("OVERALL RELEVANT RESULT\n")
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f.write("--------------------------\n")

f.write("state probability\n")

f.write("0 {0:.2f}\n".format(total_clear))

f.write("1 {0:.2f}\n".format(total_set))

f.close()

csvFile.close()

return

connect() #connect to IBM Q

teleport_prep_gates = [["pi/6", "-pi/2", "pi/2"],["pi/5", "-pi/2",

"pi/2"],["pi/4", "-pi/2", "pi/2"],["pi/3", "-pi/2", "pi/2"],["pi/2", "-pi/2",

"pi/2"],["pi", "-pi/2", "pi/2"]] #parameters for the states to teleport

case_trial_array = [100] #run each case this many times to estimate resulting qubit

charlie_expect_array = [1] #expect charlie to measure this state for post selection

device_array = [’sim’] #device to run program on

bell_states = [3] #Alices bell states to test

for gate in teleport_prep_gates:

for i in range(len(charlie_expect_array)):

for j in range(len(case_trial_array)):

for k in range(len(device_array)):

charlie_expect = charlie_expect_array[i]

case_trials = case_trial_array[j]
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device = device_array[k]

run_cases(bell_states,charlie_expect,case_trials,device,gate)

A.3 Controlled Dense Coding Protocol

from IBMQuantumExperience import IBMQuantumExperience

import random

API_TOKEN = ’...’

def dense_coding(device,shots,message):

’’’

Dense coding test on the simulator.

Open QASM:

IBMQASM 2.0;

include "qelib1.inc";

qreg q[5]; //define 5 quibit register, q[2]=A qubit, q[1]=B qubit,q[0]=C

qubit

creg c[5]; //define 5 bit classical register

//creating a 3-qubit GHZ state

h q[2]; //perform hadamard on q[2]
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cx q[2],q[1]; //CNOT on q[2] controlled by q[1]

cx q[1],q[0]; //CNOT on q[1] controlled by q[0]

//measure the state of qubit C to obtain Rc

h q[0]; //perform hadamard on q[1]

measure q[0] -> c[0]; //measure q[0] into c[0], 0 corresponds to the

outcome |+> (allowed) and 1 corresponds to the |-> (disallowed)

//Alice performs a Pauli operator corresponding to message

I q[2]; // 00

x q[2]; // 10

y q[2]; // 11

z q[2]; // 01

barrier q[2];

// Bobx performs cx

cx q[2],q[1];

//Bob measures bits

measure q[1] -> c[1]; //parity bit determines whether operation is in

{I,z} or {x,y}
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h q[2]; //other bit, 0 corresponds to the outcome |+> and 1 corresponds to

the |->, giving the exact operation Alice performed

measure q[2] -> c[2];

’’’

api = IBMQuantumExperience(API_TOKEN)

#Experiment setup

qasm = "IBMQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[5];\ncreg c[5];\n"

#create GHZ state

qasm += "h q[2];\ncx q[2],q[1];\ncx q[1],q[0];\n"

#Cliff measures the state of qubit C to obtain Rc

qasm += "barrier q[0];\n"

qasm += "h q[0];\nmeasure q[0] -> c[0];\n"

#Alice encodes message

if(message == ’10’):

qasm += "x q[2];\n"

elif(message == ’11’):

qasm += "y q[2];\n"

elif(message == ’01’):

qasm += "z q[2];\n"

qasm += "barrier q[2];\n"
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#Bob performs cx

qasm += "cx q[2],q[1];\n"

#Bob measures bits

#measure the parity bit

qasm += "measure q[1] -> c[1];\n"

#measure the final bit

qasm += "h q[2];\n"

qasm += "measure q[2] -> c[2];\n"

exp = api.run_experiment(qasm, device, shots)

return exp

A.4 Controlled Dense Coding Experiment

from IBMQuantumExperience import IBMQuantumExperience

from protocols import *

import csv

API_TOKEN = ’...’

def test_api_auth_token():

’’’
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Authentication with Quantum Experience Platform

’’’

api = IBMQuantumExperience(API_TOKEN)

credential = api.check_credentials()

return credential

def connect():

’’’

Attempt to connect to the Quantum Experience Platform

’’’

connection_success = test_api_auth_token()

if(connection_success == True):

print("API auth success.")

else:

print("API auth failure.")

exit()

def run_cases(cliff_expect,case_trials,device,message,f,writer):

total_correct = 0

total_incorrect = 0

if(device == ’ibmqx4’):

print("Controlled dense coding on the ibmqx4.")

f.write("Controlled dense coding on the ibmqx4.\n")

elif(device == ’simulator’):

print("Controlled dense coding on the simulator.")
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f.write("Controlled dense coding on the simulator.\n")

exp = dense_coding(device,case_trials,message)

print(exp)

p_correct = 0

p_incorrect = 0

cliff_correct = 0

print("Taking case where Alice sends {0} and cliff measures

{1}".format(message,cliff_expect))

f.write("Taking case where Alice sends {0} and cliff measures

{1}\n".format(message,cliff_expect))

if ’result’ in exp:

for i in range(len(exp[’result’][’measure’][’labels’])):

parity_bit = str(exp[’result’][’measure’][’labels’][i][2])

phase_bit = str(exp[’result’][’measure’][’labels’][i][3])

print("parity: {0}".format(parity_bit))

print("phase: {0}".format(phase_bit))

if((int(exp[’result’][’measure’][’labels’][i][4]) ==

(not(cliff_expect))) or (cliff_expect == -1)): #cliffs measurement

is correct or he isn’t allowing this transmission

cliff_correct += exp[’result’][’measure’][’values’][i]

if((parity_bit == message[1]) and (phase_bit == message[0])): #and

the result is correct

p_correct += float(exp[’result’][’measure’][’values’][i])
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else:

p_incorrect += float(exp[’result’][’measure’][’values’][i])

print("--------------------------")

print("TRANSFERRED MESSAGE")

print("--------------------------")

print("With respect to full results")

print("--------------------------")

f.write("--------------------------\n")

f.write("TRANSFERRED MESSAGE\n")

f.write("--------------------------\n")

f.write("With respect to full results\n")

f.write("--------------------------\n")

print("message probability")

print("{0} {1}".format(message,p_correct))

f.write("message probability\n")

f.write("{0} {1}\n".format(message,p_correct))

print("--------------------------")

print("In post selection subset")

print("--------------------------")

f.write("--------------------------\n")

f.write("In post selection subset\n")

f.write("--------------------------\n")

if((p_correct+p_incorrect) != 0):

p_correct = p_correct/(p_correct+p_incorrect)
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p_incorrect = 1 - p_correct

else:

p_correct = 0

p_incorrect = 0

print("message probability")

print("{0} {1:.2f}".format(message,p_correct))

f.write("message probability\n")

f.write("{0} {1:.2f}\n".format(message,p_correct))

print("--------------------------")

print("Context relevance")

print("--------------------------")

f.write("--------------------------\n")

f.write("Context relevance\n")

f.write("--------------------------\n")

print("cliff’s Measurement")

print("relevant: {0:.2f}".format(cliff_correct))

print("irrelevant: {0:.2f}".format(1 - cliff_correct))

f.write("cliff’s Measurement\n")

f.write("relevant: {0:.2f}\n".format(cliff_correct))

f.write("irrelevant: {0:.2f}\n".format(1 - cliff_correct))

else:

print(’BAD API RESPONSE!’)

print(exp)

p_correct = 0
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p_incorrect = 0

writer.writerow({

"Success": "{0:.2f}".format(p_correct),

"Cliff’s Relevance": "{0:.2f}".format(cliff_correct),

"Cliff’s Irrelevance": "{0:.2f}".format(1 - cliff_correct),

"Cliff Expect": cliff_expect,

"Executions": case_trials,

"Device": device

})

return

connect() #connect to IBM Q

messages = [’00’,’01’,’10’,’11’] #the messages to encode

case_trial_array = [1000] #run each case this many times to estimate result

device_array = [’ibmqx4’] #devices to run program on

cliff_expect_array = [1,-1] #expect cliff to measure this state for post selection

for k in range(len(device_array)):

device = device_array[k]

if(device == ’ibmqx4’):

csvFile = open(’allibmqx4Data.csv’,’a’)

elif(device == ’simulator’):

csvFile = open(’allSimData.csv’,’a’)
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fieldnames = ["Success","Cliff’s Relevance","Cliff’s Irrelevance","Cliff

Expect","Executions", "Device"]

writer = csv.DictWriter(csvFile, fieldnames=fieldnames)

writer.writeheader()

for i in range(len(cliff_expect_array)):

for j in range(len(case_trial_array)):

for message in messages:

cliff_expect = cliff_expect_array[i]

case_trials = case_trial_array[j]

file_name = ’coding_test_’ + message + ’_result_’ + device + ’_’ +

str(case_trials) + ’x_’ + ’c’ + str(cliff_expect)

f = open(file_name, ’w’)

run_cases(cliff_expect,case_trials,device,message,f,writer)

f.close()

csvFile.close()
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Appendix B

WASM Transpiler

B.1 WAT Dot Product Module

(module

(func $dot_three (param $vx i8) (param $vy i8) (param $vz i8) (param $wx i8)

(param $wy i8) (param $wz i8) (result i8)

(i8.add

(i8.mul

(get_local $vx)

(get_local $wx)

)

(call $dot_two

(get_local $vy)

(get_local $vz)

(get_local $wy)

(get_local $wz)

)

)

)

(func $dot_two (param $vx i8) (param $vy i8) (param $wx i8) (param $wy i8)

(result i8)

(i8.add
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(i8.mul

(get_local $vx)

(get_local $wx)

)

(i8.mul

(get_local $vy)

(get_local $wy)

)

)

)

(export "dot_three" (func $dot_three))

(export "dot_two" (func $dot_two))

)

B.2 WASM Dot Product Module

(module

(type $t0 (func (param i8 i8 i8 i8 i8 i8) (result i8)))

(type $t1 (func (param i8 i8 i8 i8) (result i8)))

(func $dot_three (type $t0) (param $p0 i8) (param $p1 i8) (param $p2 i8)

(param $p3 i8) (param $p4 i8) (param $p5 i8) (result i8)

get_local $p0

get_local $p3

i8.mul

get_local $p1

get_local $p2

get_local $p4
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get_local $p5

call $dot_two

i8.add)

(func $dot_two (type $t1) (param $p0 i8) (param $p1 i8) (param $p2 i8) (param

$p3 i8) (result i8)

get_local $p0

get_local $p2

i8.mul

get_local $p1

get_local $p3

i8.mul

i8.add)

(export "dot_three" (func $dot_three))

(export "dot_two" (func $dot_two)))

)
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B.3 Instruction Categorization
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B.4 Interactive Function Parallelization

B.5 if/else/end Control Sequences Handling

Operator::If { ty } => {

stdout.set_color(ColorSpec::new().set_fg(Some(Color::Yellow)));

print!("==== New If Condition: ");

println!("{}. {:?}", i, op);

// if conditions imply a single data dependency

let mut conditional_node = Node::default();

// create variable to represent the condition

let outer_var_id = node.add_internal_variable(i, *ty);

// create data coupling to simulate flow control

let inner_var_id = conditional_node.add_input_variable(*ty);

conditional_node.add_flow_control_coupling(outer_var_id, inner_var_id,

true);
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// recursively process the conditional code block as a new node

conditional_node = self.map_helper(reader, buf, resources, position, i,

conditional_node);

// register the conditional block

let conditional_id = self.add_block(conditional_node.clone());

node.add_block(i, conditional_id);

// add a spin to each node

node.add_operation(i, AbstractExpression::Spin{ id: outer_var_id });

conditional_node.add_operation(i, AbstractExpression::Spin{ id:

inner_var_id });

stdout.set_color(ColorSpec::new().set_fg(Some(Color::Yellow)));

print!("==== End of: ")

}

Operator::Else => {

stdout.set_color(ColorSpec::new().set_fg(Some(Color::Yellow)));

// else implies a single data anti-dependency

// it needs to be constructed from within the if so we can have easy

access to its coupling parameters

// however, it will be lifted out during the collapse of its top-level

parent function

// we should have most recently registered a conditional node with only

one flow control coupling
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let couplings = node.get_flow_control_couplings();

let coupling_count = couplings.keys().len();

// we should have most recently registered a conditional node with only

one input variable

let input_variables = node.get_input_variables();

let input_variable_count = input_variables.keys().len();

// if we aren’t in a conditional already, don’t process the else

if (coupling_count == 1 && input_variable_count == 1) {

print!("==== New Else Clause: ");

println!("{}. {:?}", i, op);

// get coupling details from the if condition details

let coupled_var_id = node.get_first_flow_control_coupling();

let input_type = node.get_first_input_variable();

let mut else_node = Node::default();

// create data anti-chain coupling to simulate flow control

let inner_var_id = else_node.add_input_variable(input_type);

else_node.add_flow_control_coupling(coupled_var_id, inner_var_id,

false);

// recursively process the conditional code block as a new node

else_node = self.map_helper(reader, buf, resources, position, i,

else_node);
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// the else’s end also terminates the if clause

let if_end = else_node.get_end();

node.set_end(if_end);

// register the else block

let else_id = self.add_block(else_node);

node.add_block(i, else_id);

stdout.set_color(ColorSpec::new().set_fg(Some(Color::Yellow)));

print!("==== End of: ");

println!("{}. {:?}", i, op);

// finish processing the if node

break;

}

}

B.6 Operations HashMap Data Structure

/// A node represents a segment of WASM code

/// These include functions and blocks at first,

/// then are transformed to combinational segments

/// of code after parallelization.

#[derive(Clone, Debug)]

pub struct Node {
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id: usize, // each function and block has an id

instrs: Vec<u8>, // hex instructions of the node

branches: HashMap<usize, usize>, // internal locations and targets of branches

calls: HashMap<usize, usize>, // calls to other functions

start: usize, // where the node’s insturctions start in the WASM source file

end: usize, // where the node’s insturctions end in the WASM source file

children: HashMap<usize, Node>, // calls to other functions, or internal

blocks of code

constants: HashMap<usize, Type>, // constants instantiated within the scope of

the node

chains: HashMap<usize, Type>, // whether the spins at indeces i are coupled

via chaining or anti-chaining

internal_variables: HashMap<usize, Type>, // internal variables that will be

used to simulate flow control

input_variables: HashMap<usize, Type>, // all input variables including

parameters, memory references, global references are given ids

output_variables: HashMap<usize, Type>, // all output varibles including

writes to memory and returns

global_input_data_couplings: HashMap<usize, usize>, // map of global variable

locations to the coupled node’s input variable ids

global_output_data_couplings: HashMap<usize, usize>, // map of global variable

locations to the coupled node’s output variable ids

flow_control_couplings: HashMap<usize, usize>, // map of instruction locations

to coupled flow control variable ids

input_data_couplings: HashMap<usize, usize>, // map of memory locations to the

coupled node’s input variable ids

output_data_couplings: HashMap<usize, usize>, // map of memory locations to

the coupled node’s output variable ids
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blocks: HashMap<usize, usize>, // internal blocks’ locations mapped to their

ids as maintained by the mapper

operations: HashMap<usize, AbstractExpression> // simulatable operations

}

B.7 Constraint Data Structure

/// A Constraint represents a nestable constraint

/// expression.

#[derive(Clone, Debug)]

pub struct Constraint {

id: usize, // maps each Constraint to its node

expression: Option<PhysicalExpression> // low level boolean expressions

}

B.8 AbstractExpression Data Structures

/// The abstract operation enum represents logical operations

/// that can be compiled to simulatable transfer functions

/// for quantum annealers.

#[derive(Clone, Debug)]

pub enum AbstractExpression {

Spin { id: usize },

Num { val: usize },
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Add { ty: Type },

Mul { ty: Type }

}

B.9 PhysicalExpression Data Structures

/// The physical expression enum represents the valid

/// operations and data types that can be understood by PyQUBO.

#[derive(Clone, Debug)]

pub enum PhysicalExpression {

Not{ operand: Box<PhysicalExpression> },

Add{ operand_one: Box<PhysicalExpression>, operand_two:

Box<PhysicalExpression> },

Mul{ operand_one: Box<PhysicalExpression>, operand_two:

Box<PhysicalExpression> },

Spin{ val: bool }, // 0 represents -1

Num{ val: usize },

Binary{ val: bool }

}
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B.10 Simple Populated Node
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B.11 i8.mul Constraints

(Spin("A5") * Spin("B5"))

(Not(Spin("A4") * Spin("B5")) + Not(Spin("A5") * Spin("B4")))

(Not(Spin("A3") * Spin("B5")) + Spin("A4") * Spin("B4") + Not(Spin("A5") *

Spin("B3")))

(Not(Spin("A2") * Spin("B5")) + Spin("A3") * Spin("B4") + Spin("A4") * Spin("B3")

+ Not(Spin("A5") * Spin("B2")))

(Num(1) + Not(Spin("A1") * Spin("B5")) + Spin("A2") * Spin("B4") + Spin("A3") *

Spin("B3") + Spin("A4") * Spin("B2") + Not(Spin("A5") * Spin("B1")))

(Not(Spin("A0") * Spin("B5")) + Spin("A1") * Spin("B4") + Spin("A2") * Spin("B3")

+ Spin("A3") * Spin("B2") + Spin("A4") * Spin("B1") + Not(Spin("A5") *

Spin("B0")))

(Spin("A0") * Spin("B4") + Spin("A1") * Spin("B3") + Spin("A2") * Spin("B2") +

Spin("A3") * Spin("B1") + Spin("A4") * Spin("B0"))

(Spin("A0") * Spin("B4") + Spin("A1") * Spin("B3") + Spin("A2") * Spin("B2") +

Spin("A3") * Spin("B1") + Spin("A4") * Spin("B0"))

(Spin("A0") * Spin("B3") + Spin("A1") * Spin("B2") + Spin("A2") * Spin("B1") +

Spin("A3") * Spin("B0"))

150



(Spin("A0") * Spin("B2") + Spin("A1") * Spin("B1") + Spin("A2") * Spin("B0"))

(Spin("A0") * Spin("B1") + Spin("A1") * Spin("B0"))

(Spin("A0") * Spin("B0"))

B.12 PyQUBO Constraining Third Bit of i8.mul Output

from pyqubo import Constraint, Spin

// Declare qubits

A0, B2, A1, B1, A2, B0 = Spin(’A0’), Spin(’B2’), Spin("A1"), Spin("B1"),

Spin("A2"), Spin("B0")

// Optional strength of the constraint, or importance of the corresponding problem

M = 1.0

// Tell the compiler that (A0*B2+A1*B1+A2*B0-1)**2 is a constraint which should be

zero when the solution is not broken

// This is equivalent to requiring that A0*B2+A1*B1+A2*B0 is one

constraint = Constraint((A0*B2+A1*B1+A2*B0-1)**2, ’error_condition’)

// Define the Hamiltonian in terms of its objective function and constraint

exp = A0*B2+A1*B1+A2*B0 + M * constraint

model = exp.compile()

qubo = model.to_qubo()
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print(qubo)

B.13 Ising Hamiltonian Parameters for Constrained

i8.mul Problem
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