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Abstract

Deep models, while being extremely flexible and accurate, are surprisingly vulnerable
to “small, imperceptible” perturbations known as adversarial attacks. While the major-
ity of existing attacks focus on measuring perturbations under the `p metric, Wasserstein
distance, which takes geometry in pixel space into account, has long been known to be a
suitable metric for measuring image quality and has recently risen as a compelling alter-
native to the `p metric in adversarial attacks. However, constructing an effective attack
under the Wasserstein metric is computationally much more challenging and calls for bet-
ter optimization algorithms. We address this gap in two ways: (a) we develop an exact
yet efficient projection operator to enable a stronger projected gradient attack; (b) we
show that the Frank-Wolfe method equipped with a suitable linear minimization oracle
works extremely fast under Wasserstein constraints. Our algorithms not only converge
faster but also generate much stronger attacks. For instance, we decrease the accuracy of
a residual network on CIFAR-10 to 3.4% within a Wasserstein perturbation ball of radius
0.005, in contrast to 65.6% using the previous Wasserstein attack based on an approximate
projection operator. Furthermore, employing our stronger attacks in adversarial train-
ing significantly improves the robustness of adversarially trained models. Our algorithms
are applicable to general Wasserstein constrained optimization problems in other domains
beyond adversarial robustness.

iii



Acknowledgements

My graduate study at Waterloo is the first time when I start learning to do research
in machine learning. As a junior researcher, I am extremely grateful to my supervisor,
Yaoliang Yu, for the training that I received. Along the way, Yaoliang provides me with
careful guidance and gives me the freedom to choose my own research topics. Yaoliang is
always diligent, knowledgeable and willing to offer help. Through out my graduate study,
I have learned a lot from him: I dived into multiple areas, developed research skills and
cultivated my own research taste. Everything that I learned from him will serve as the
basis of my future research.

I also would like to thank Pascal Poupart and Gautam Kamath for reading my thesis
and providing valuable comments. Thanks Pascal for always being encouraging.

A special thanks to Gavin and Ruitong for the help during my internship at Borealis
AI. Although the internship does not contribute directly to the thesis, it does produce
my first conference paper. That really means a lot to me, especially at a time when I
accomplished nothing but four rejections after the entire first year. I start to realize I can
still achieve something by working hard, which leads to the thesis work.

The machine learning group at Waterloo has created an excellent learning and research
environment, which makes the thesis possible. Allen contributed partially to the imple-
mentation of this work and pointed out a critical issue in the initial experimental setting.
To Jingjing, thanks for the “teapot” gift. I do love The Office. Chatting with you always
makes me feel better mentally during such a hard time of pandemic.

Finally, I thank my parents for their unconditional love. I attribute all of my achieve-
ments now, if any, to their encouragement and support.

iv



Dedication

To my family.

v



Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Wasserstein Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Wasserstein Adversarial Robustness . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Algorithms for Wasserstein Adversarial Robustness 7

2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Projected Gradient with Dual Projection . . . . . . . . . . . . . . . . . . . 8

2.2.1 A First Attempt: Dykstra’s Projection . . . . . . . . . . . . . . . . 9

2.2.2 Dual Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Frank-Wolfe with Dual LMO . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 A First Attempt: Optimizing the Dual . . . . . . . . . . . . . . . . 13

2.3.2 Dual LMO via Entropic Regularization . . . . . . . . . . . . . . . . 14

2.4 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Acceleration via Exploiting Sparsity . . . . . . . . . . . . . . . . . . 16

2.4.2 Gradient Normalization . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Hypercube Constraint in Image Domain . . . . . . . . . . . . . . . 18

vi



3 Evaluation 20

3.1 A Synthetic Convex Problem . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Large Scale Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Convergence Speed of Outer Maximization . . . . . . . . . . . . . . 23

3.2.2 Attack Strength and Dual Convergence Speed . . . . . . . . . . . . 23

3.2.3 Entropic Regularization Reflects Shapes in Images . . . . . . . . . . 25

3.2.4 Improved Adversarial Training . . . . . . . . . . . . . . . . . . . . . 29

4 Conclusion 32

References 33

APPENDICES 38

A Further Analysis and Examples 39

A.1 Projected Sinkhorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.1.1 Analysis of Approximation Error in Projected Sinkhorn . . . . . . . 39

A.1.2 Toy Experiment in Table 3.1 . . . . . . . . . . . . . . . . . . . . . . 40

A.2 Stopping Criterion for Bisection Method . . . . . . . . . . . . . . . . . . . 40

A.3 Toy Experiment for Dykstra’s Algorithm . . . . . . . . . . . . . . . . . . . 42

A.4 Failure of Dual Linear Minimization without Entropic Regularization . . . 42

B Proofs 44

B.1 Dual Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B.2 Dual Linear Minimization Oracle without Entropic Regularization . . . . . 47

B.3 Dual Linear Minimization Oracle with Dual Entropic Regularization . . . . 49

vii



C Further Experimental Details 52

C.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

C.2 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

C.3 Step Sizes of PGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C.4 Further Results on Convergence of Outer Maximization . . . . . . . . . . . 54

C.5 MNIST and CIFAR-10 Adversarial Examples . . . . . . . . . . . . . . . . 56

C.6 ImageNet Adversarial Examples . . . . . . . . . . . . . . . . . . . . . . . . 58

C.7 Analysis of Running Time of Projected Sinkhorn . . . . . . . . . . . . . . . 58

C.8 Case Study: Feasibility of Adversarial Examples . . . . . . . . . . . . . . . 60

viii



List of Tables

1.1 A summary of our proposed algorithms and comparison to projected Sinkhorn.
3rd and 4th column: Computational complexity for a single iteration
of each algorithm (without or with local transportation constraint). n is
the dimension of inputs, and k is the local transportation region size (see
§2.4.1). 5th column: The exact convergence rate of projected Sinkhorn is
not known yet. Last column: Whether the method is an exact or approx-
imate algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 (Exact) Wasserstein distances W(a, p̂) and number of dual iterations in
projected Sinkhorn in the first four columns. γ is the entropic regularization
constant. Projected Sinkhorn encountered numerical issues for small γ =
5 · 10−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Comparison of adversarial accuracy and average number of dual iterations.
γ = 1

1000
on MNIST and γ = 1

3000
on CIFAR-10 are the parameters used by

Wong et al. (2019). “−” indicates numerical issues during computation. . 24

3.3 MNIST model adversarially trained by Frank-Wolfe with dual LMO (ε = 0.3). 30

3.4 MNIST model adversarially trained by PGD with projected Sinkhorn. . . . 30

3.5 CIFAR-10 model adversarially trained by FW with dual LMO (ε = 0.005) . 31

3.6 CIFAR-10 model adversarially trained by PGD with projected Sinkhorn. . 31

ix



C.1 A sanity check of feasibility of Wasserstein adversarial examples generated
by different algorithms on MNIST. 2nd column: The average Wasserstein
distance between adversarial examples and clean images (the higher the bet-
ter). 3rd column: The maximum pixel value in the generated adversarial
examples (the lower the better). 4th column: The percentage of pixel
mass that exceeds 1 (the lower the better). The third and the forth columns
are largest values over a mini-batch, while the second column is the average
over a mini-batch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

x



List of Figures

1.1 `∞, `2 and Wasserstein adversarial examples generated by projected gradient
descent (PGD) with dual projection. While l∞ and l2 norm adversarial
examples tend to perturb the background, Wasserstein adversarial examples
redistribute the pixel mass. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Convergence of Dykstra’s algorithm. The violation of simplex constraint
and halfspace constraint of Π

(t)
h and Π

(t)
s (the iterates produced by Dykstra’s

algorithm) gradually decrease to zero, but at a slow rate. . . . . . . . . . . 10

2.2 An illustration of 5× 5 local transportation. . . . . . . . . . . . . . . . . . 17

3.1 Adversarial accuracy of models w.r.t. different iterations of attacks using
ε = 0.005. Projected Sinkhorn uses γ = 5 · 10−5 on CIFAR-10 and 5 · 10−6

on ImageNet. Dual LMO uses γ = 10−3 and decay schedule 2
t+1

. . . . . . . 22

3.2 Per iteration running time (in milliseconds) of different algorithms measured
on a single P100 GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Wasserstein adversarial examples (ε = 0.005) generated by different algo-
rithms on ImageNet. Perturbations are normalized to [0, 1] for visualization.
Dog faces can be observed after zooming in. . . . . . . . . . . . . . . . . . 27

3.4 Wasserstein adversarial examples (ε = 0.002) generated by different algo-
rithms on CIFAR-10. Perturbations reflect shapes in images only when
using large entropic regularization (the 6th and 8th columns). . . . . . . . 28

C.1 Convergence of outer maximization of different attacks. . . . . . . . . . . . 55

xi



C.2 Comparison of Wasserstein adversarial examples and Wasserstein pertur-
bations generated by different attacks on MNIST (ε = 0.2) and CIFAR-10
(ε = 0.002). Predicted labels are shown on the top of images. Perturbations
are scaled linearly to [0, 1] for visualization. . . . . . . . . . . . . . . . . . . 57

C.3 Comparison of Wasserstein adversarial examples generated by different at-
tacks (ε = 0.005). Notice that adversarial pertubations reflect shapes in the
images only when the entropic regularization is large (bottom two subfigures). 59

xii



Chapter 1

Introduction

Deep models are surprisingly vulnerable to adversarial attacks, namely small or even im-
perceptible perturbations that completely change the prediction (Szegedy et al. 2014). The
existence of adversarial examples has raised a lot of security concerns on deep models, and
a substantial amount of work has devoted to this emerging field (Goodfellow et al. 2018),
including various attacks as well as defences (e.g . Carlini et al. 2017; Goodfellow et al.
2015; Kurakin et al. 2017; Madry et al. 2018; Moosavi-Dezfooli et al. 2016; Papernot et al.
2016). Some empirical defences are shown ineffective later under stronger attacks (Athalye
et al. 2018a), which has motivated a line of research on certified defences with provable
guarantees (e.g . Cohen et al. 2019; Gowal et al. 2019; Raghunathan et al. 2018; Tjeng
et al. 2019; Wong et al. 2018).

The majority of existing work on adversarial robustness focused on the `p threat model
where the perturbation is measured using the `p norm. However, the `p norm, despite
being computationally convenient, is long known to be a poor proxy for measuring image
similarity: two semantically similar images for human perception are not necessarily close
under `p norm, see (e.g . Wang et al. 2009) for some astonishing examples. To this end,
threat models beyond `p norms have been proposed, e.g . Engstrom et al. (2019) explore
geometric transformation to fool deep networks; Laidlaw et al. (2019) use point-wise func-
tions on pixel values to flip predictions; Tramer et al. (2019) study robustness against
multiple (`p) perturbations.

In the same spirit, Wong et al. (2019) recently proposed the Wasserstein threat model,
i.e., adversarial examples are subject to a perturbation budget measured by the Wasser-
stein distance (a.k.a. earth mover’s distance, see e.g . Peyré et al. 2019). The idea is to
redistribute pixel mass instead of adjusting each pixel value as in previous `p threat models.
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Examples of Wasserstein adversarial attacks (generated by our algorithm) and comparison
to `2 and `∞ adversarial attacks are shown in Figure 1.1. A key advantage of the former is
that it explicitly captures geometric information in the image space (i.e. how mass moves
around matters). For example, a slight translation or rotation of an image usually induces
small change in the Wasserstein distance, but may change the lp distance drastically. In
addition, Wasserstein distance has played a pivotal role in generative adversarial networks
(Arjovsky et al. 2017), computer vision (Rubner et al. 1997), and much beyond (Peyré
et al. 2019).

We note that in the last column in Figure 1.1, all adversarial examples seem to change
the semantic meaning of the image. Indeed, large perturbation budgets may change the
semantic of the inputs, no matter what threat models. There are definitions of adversarial
examples that try to mitigate the issue by introducing an “oracle classifier” (e.g ., the Bayes
classifier) (Suggala et al. 2019). Under the modified definition, perturbations that change
the prediction of the “oracle classifier” are not considered as adversarial examples. But
this is beyond the scope of this thesis. We focus on solving the computational challenges
in constructing Wasserstein adversarial examples. The techniques that we develop may be
of independent interest in different settings involving Wasserstein constraints.

1.1 Wasserstein Distance

Wasserstein distance (a.k.a. earth mover’s distance) is a metric defined on the space of
finite measures with equal total mass (Peyré et al. 2019). To define Wasserstein distance for
images, we view them as discrete measures supported on pixel locations. Let x, z ∈ [0, 1]n

be two vectorized images such that 1>x = 1>z, i.e. they have the same total pixel mass.1

Their Wasserstein distance is defined as:

W(x, z) = min
Π≥0

〈Π, C〉 subject to Π1 = x,Π>1 = z, (1.1)

where C ∈ Rn×n is a cost matrix, with Cij representing the cost of transportation from
the i-th to the j-th pixel; and Π ∈ Rn×n is a transportation or coupling matrix, with Πij

representing the amount of mass transported from the i-th to the j-th pixel. Intuitively,
Wasserstein distance measures the minimum cost to move mass from x to z. Unlike usual

1We enforce the equal mass restriction such that z can be transported from x by redistributing the
pixel mass, otherwise the Wasserstein distance is undefined. Wasserstein distance with unbalanced mass
has been developed recently, but is not the focus of this thesis.
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`∞

`2

Wasserstein

PGD + Dual Proj.

predict: 4 predict: 9

Figure 1.1: `∞, `2 and Wasserstein adversarial examples generated by projected gradient
descent (PGD) with dual projection. While l∞ and l2 norm adversarial examples tend to
perturb the background, Wasserstein adversarial examples redistribute the pixel mass.

statistical divergences (e.g . KL divergence), Wasserstein distance takes the distance be-
tween pixels into account hence able to capture the underlying geometry. It has been
widely used in statistics, image processing, graphics, machine learning, etc., see the excel-
lent monograph (Peyré et al. 2019).

It not hard to see that (1.1) is a linear program, whose size is quadratic w.r.t. the
input dimension. For small or medium scale problems, network simplex and interior point
methods can handle it well. However, for large scale problems where the linear program
involves millions of variables, it is more efficient to solve it approximately. A popular
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approximation is through an entropic regularization on the coupling matrix:

minimize 〈Π, C〉 − λH(Π)

subject to Π ≥ 0, Π1 = x, Π>1 = z,
(1.2)

where H(Π) = −∑m
i=1

∑n
j=1 Πij (log Πij − 1) is the entropy of the coupling matrix Π and

γ > 0 is a constant. The entropic regularized formulation (1.2) can be solved iteratively
by the celebrated Sinkhorn’s fixed point iteration (Cuturi 2013; Sinkhorn 1967). The
approximation error introduced by the entropic regularization decays exponentially w.r.t.
the inverse of the regularization constant (Cominetti et al. 1994; Weed 2018).

1.2 Wasserstein Adversarial Robustness

Given a deep model that already minimizes some training loss E`(X, Y ;θ), we fix (hence
also suppress in notation) the model parameter θ and aim to generate adversarial exam-
ples by maximizing the loss ` subject to some perturbation budget on an input image x.
Following Wong et al. (2019), we use the Wasserstein distance to measure perturbations:

maximize
z∈[0,1]n

`(z, y)

subject to W(x, z) ≤ δ = ε1>x,
(1.3)

where the perturbation budget δ is proportional to the total mass in the input image x
and ε indicates the “proportion”. We focus on untargeted attack throughout, where y is
the true label of the input image x. All techniques in this thesis can be easily adapted for
targeted attacks as well.

In order to optimize (1.3), Wong et al. (2019) develop an approximate projection op-
erator called projected Sinkhorn, and then apply projected gradient ascent to solve (1.3).
Here, we give a brief description of the approximate projection method proposed by Wong
et al. (2019). The (Euclidean) projection of a vector w to the Wasserstein ball centered at
x of radius of ε = δ is

minimize
z

1

2
‖w − z‖2

subject to W(x, z) ≤ δ,

which is equivalent to the following quadratic program:

minimize
z,Π≥0

1

2
‖w − z‖2

subject to Π1 = x, Π>1 = z, 〈Π, C〉 ≤ δ.

4



Table 1.1: A summary of our proposed algorithms and comparison to projected Sinkhorn.
3rd and 4th column: Computational complexity for a single iteration of each algorithm
(without or with local transportation constraint). n is the dimension of inputs, and k is
the local transportation region size (see §2.4.1). 5th column: The exact convergence rate
of projected Sinkhorn is not known yet. Last column: Whether the method is an exact
or approximate algorithm.

method optimization space cost/iter cost/iter (local) convergence rate exact?

projected Sinkhorn (Wong et al. 2019) image space O(n2) O(nk2) ? 7
dual projection (ours) coupling matrix O(n2 logn) O(nk2 log k) linear 3

dual linear minimization oracle (ours) coupling matrix O(n2) O(nk2) linear 7

For large scale problems, generic quadratic program solvers (e.g . interior point methods)
are prohibitively expensive especially the projection operator is called in each iteration of
projected gradient ascent. Thus, Wong et al. (2019) propose solving the following entropic
regularized approximation:

minimize
z,Π≥0

1

2
‖w − z‖2 + γ

n∑
i=1

n∑
j=1

Πij log Πij

subject to Π1 = x, Π>1 = z, 〈Π, C〉 ≤ δ.

(1.4)

The parameter γ > 0 is the entropic regularization constant. Projected Sinkhorn solves
(1.4) through block-coordinate maximization on the dual problem of (1.4).

1.3 Contributions

We end this chapter by summarizing the contributions made by this thesis. Generating
Wasserstein adversarial examples requires solving a Wasserstein constrained optimization
problem. Wong et al. (2019) developed a projected gradient attack using approximate pro-
jection (projected Sinkhorn), which we find sometimes too crude and generating suboptimal
attacks. In this work, we develop two stronger and faster attacks, based on reformulat-
ing the optimization problem (§2.1) and applying projected gradient descent (PGD) and
Frank-Wolfe (FW), respectively. For the PGD attack, we design a specialized algorithm
to compute the projection exactly, which significantly improves the attack quality (§2.2).
For FW, we develop a faster algorithm to solve the linear minimization step with en-
tropic smoothing (§2.3). Both subroutines enjoy fast linear convergence rates. Synthetic
experiments on simple convex functions (Table 3.1) show that both algorithms are able to
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converge to high precision solutions. Extensive experiments on large scale datasets (§3.2)
confirm the improved quality and speed of our attacks. In particular, for the first time
we successfully construct Wasserstein adversarial examples on the ImageNet dataset. A
quick comparison of projected Sinkhorn and our algorithms is shown in Table 1.1. Finally,
we show that employing our stronger and faster attacks in adversarial training can sig-
nificantly improve the robustness of adversarially trained models. Our implementation is
available at https://github.com/watml/fast-wasserstein-adversarial.

This thesis is an extended version of my published work (Wu et al. 2020) at ICML
2020.
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Chapter 2

Algorithms for Wasserstein
Adversarial Robustness

In this chapter, we present algorithms for solving the Wasserstein constrained problem
(1.3). In §2.1, we propose an alternative formulation for it, which is computationally more
appealing . In §2.2 and §2.3, we design efficient projection operator and linear minimization
oracle for this new formulation, enabling the usage of projected gradient and Frank-Wolfe
methods. In §2.4, we discuss acceleration by exploiting the structured sparsity in the
transportation matrix and a method to stabilize the algorithms. In the end, we point out
some issues of generated Wasserstein adversarial examples in the prior work and provide
an method to fix them.

2.1 Formulation

The difficulty of solving (1.3) lies in the constraint. Even checking the feasibility of z
requires solving a large linear program. Thus, our first step is slightly reformulating (1.3)
to simplify the constraint. We expand the constraint in (1.3), and jointly maximize the
objective over z and Π:

maximize
z,Π≥0

`(z, y)

subject to Π1 = x, Π>1 = z, 〈Π, C〉 ≤ δ.

7



Note that we have dropped the domain constraint z ∈ [0, 1]n, which we will revisit in §2.4.3.
We plug in the constraint Π>1 = z into the objective to eliminate z:

maximize
Π≥0

`(Π>1, y)

subject to Π1 = x, 〈Π, C〉 ≤ δ,
(2.1)

arriving at a constrained optimization problem w.r.t. Π alone with two linear constraints on
it. Yet, problem (1.3) and (2.1) are clearly equivalent. Moreover, problem (2.1) has its own
interpretation: instead of maximizing the loss in the image space, it maximizes the loss in
the transportation space, searching for a feasible transportation plan Π with cost no greater
than δ, to transport x to an adversarial example. Given a solution Π to (2.1), we generate
adversarial examples by summing over the columns of Π, i.e., xadv = Π>1. We note that
∇Π` = 1(∇xadv

`)>, where ∇xadv
` can be computed efficiently using backpropagation.

We propose PGD and FW to optimize (2.1). While both PGD and FW have been
previously used to generate adversarial examples (Chen et al. 2020; Madry et al. 2018),
they are based on the `p threat model that measures image perturbations under the `p
distance. Instead, for the Wasserstein problem in (2.1), applying PGD and FW requires
specialized algorithms for the projection operator and the linear minimization oracle, which
are the main goals of §2.2 and §2.3.

Throughout the paper, w.l.o.g. we assume that all entries in the cost matrix C are
nonnegative and Cij = 0⇔ i = j. All common cost matrices satisfy this assumption.

2.2 Projected Gradient with Dual Projection

We apply PGD to maximize (2.1) for generating Wasserstein adversarial examples, and
arrive at the following update rule on the coupling matrix Π:

Π(t+1) = ProjC (G) ,

where

G = Π(t) + ηt∇Π`
(
(Π(t))>1, y

)
and ProjC (·) denotes the (Euclidean) projection operator onto the convex set C, represented
by the constraints in (2.1). Namely, we take a gradient step and then project it back to

8



Algorithm 1: Dykstra’s Projection Algorithm

Input: G ∈ Rn×n, two convex sets Cs and Ch
Output: The projection of G to Cs ∩ Ch

1 Π
(0)
h = G

2 I
(0)
s = I

(0)
h = O

3 for t = 0, 1, . . . ,maxiter do

4 Π
(t+1)
s = ProjCs

(
Π

(t)
h − I

(t)
s

)
5 I

(t+1)
s = Π

(t+1)
s − Π

(t)
h + I

(t)
s

6 Π
(t+1)
h = ProjCh

(
Π

(t+1)
s − I(t)

h

)
7 I

(t+1)
h = Π

(t+1)
h − Π

(t+1)
s + I

(t)
h

8 return Π
(t+1)
s

the feasible set. The projection operator ProjC (G) is given by the following quadratic
program:

minimize
Π≥0

1
2
‖Π−G‖2

F

subject to Π1 = x, 〈Π, C〉 ≤ δ.
(2.2)

While any quadratic programming solver (e.g . interior point method) could be used to
solve (2.2), they do not scale well in high dimensions. For high resolution images, (2.2)
could involve millions of variables. Since this projection is called in each iteration of PGD,
it needs to be solved by a highly efficient algorithm. Below, we exploit the structure of
this problem to design a fast specialized projection operator.

2.2.1 A First Attempt: Dykstra’s Projection

A simple observation is that the constraint in (2.2) is precisely the intersection of the
following two convex sets:

Cs =
{

Π ∈ Rn×n : Π ≥ 0, Π1 = x
}

and

Ch =
{

Π ∈ Rn×n : 〈Π, C〉 ≤ δ
}
,

9
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num of iterations
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‖Π(t)
h 1− x‖1

0 1000 2000

num of iterations
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halfspace constraint

〈Π(t)
s , C〉 − δ

Figure 2.1: Convergence of Dykstra’s algorithm. The violation of simplex constraint and
halfspace constraint of Π

(t)
h and Π

(t)
s (the iterates produced by Dykstra’s algorithm) grad-

ually decrease to zero, but at a slow rate.

where each row of Cs is a simplex constraint, requiring Wassserstein adversarial examples to
preserve total mass; and Ch is a half space constraint, restricting the perturbation budget
of Wasserstein adversarial examples. It is known that projection to the intersection of
convex sets can be computed by Dykstra’s algorithm (Boyle et al. 1986; Dykstra 1983),
provided that the projection to each convex set can be computed easily. Hence, our first
attempt is to apply Dykstra’s algorithm to solve (2.2)

Dykstra’s algorithm, applying to these two convex sets, is presented in Algorithm 1.
Intuitively, Dykstra’s algorithm projects G alternatively to Cs and Ch in each iteration.
Notice that before projecting to Cs (or Ch), the increment of the last iteration I

(t)
s (or I

(t)
h )

is subtracted from Π
(t)
h (or Π

(t+1)
s ). These increments play a crucial role in the convergence

of Dykstra’s algorithm. It has been shown that both Π
(t)
s and Π

(t)
h converge to the projection

of G onto Cs ∩ Ch (Boyle et al. 1986; Dykstra 1983).

To implement Dykstra’s algorithm, we need two subroutines to compute the projection
onto Cs and Ch respectively. The projection onto Ch admits a closed form expression:

ProjCh (Π) = Π− max{〈Π, C〉 − δ, 0}
‖C‖2

F

C.

The projection onto Cs has an algorithm running in O(n2 log n) time, by projecting each
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row of G to a simplex. For the simplex projection algorithm, we direct readers to (Duchi
et al. 2008).

The convergence rate of Dykstra’s algorithm highly relies on the geometry of these two
convex sets Cs and Ch (Deutsch et al. 1994). In fact, we observe that Dykstra’s algorithm
converges slowly in some cases. In Figure 2.1, we plot the convergence curves of Dykstra’s
algorithm for a matrix G of size 100× 100. The algorithm seems to converge linearly, but
it takes a few hundred iterations before the linear convergence rate kicks in. Besides, the
linear rate does not seem to be fast. See Appendix A.3 for more details of this experiment.

2.2.2 Dual Projection

Instead, we develop a dual projection method which converges much faster than Dykstra’s
algorithm. By the method of Lagrange multipliers, we derive the dual problem:

Proposition 1 The dual of (2.2) is

maximize
λ≥0

g(λ), (2.3)

where

g(λ) = min
Π1=x,Π≥0

1
2
‖Π−G‖2

F + λ (〈Π, C〉 − δ) . (2.4)

In addition, the derivative of g(λ) at a point λ = λ̃ is

g′(λ̃) = 〈Π̃, C〉 − δ, (2.5)

where

Π̃ = argmin
Π1=x,Π≥0

‖Π−G+ λ̃C‖2
F. (2.6)

Both g(λ) and g′(λ) can be evaluated in O(n2 log n) time deterministically for any given λ.

The derivation of Proposition 1 is based on the observation that (2.4) is equivalent to
computing a projection operator ProjCs (G− λC). Since the constraint Cs is independent
for each row, it can be further reduced to projecting each row of G−λC to a simplex. The
well-known simplex projection algorithm (e.g . Duchi et al. 2008) takes O(n log n) time,
thus the projection to Cs takes O(n2 log n) time.
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Although this dual problem does not have a closed form expression, Proposition 1
provides a method to evaluate its objective and gradient, which is sufficient to use first
order optimization algorithms. Here, we choose a simple algorithm with linear convergence
rate, by exploiting the fact that the dual objective (2.4) is a univariate function. First, we
derive an upper bound of the dual solution.

Proposition 2 The dual solution λ? of (2.3) satisfies

0 ≤ λ? ≤ 2 ‖vec(G)‖∞ + ‖x‖∞
mini 6=j{Cij}

. (2.7)

Since g(λ) is concave and differentiable, we make the following simple observation: (a)
any point l > 0 with positive derivative is a lower bound of λ?; (b) any point u > 0 with
negative derivative is an upper bound of λ?. Thus, we start with the lower bound and
upper bound in Proposition 2, and use bisection method to search for λ?, by iteratively
testing the sign of the derivative. Eventually, the bisection method converges to either a
stationary point or the boundary λ = 0, which are exactly maximizers in both cases. Since
the bisection method halves the gap between lower and upper bounds in each iteration,
it converges linearly. Once we solve the dual, we can recover the primal solution by the
following.

Proposition 3 The primal solution Π? and the dual solution λ? satisfies

Π? = argmin
Π1=x,Π≥0

‖Π−G+ λ?C‖2
F,

thus Π? can be computed in O(n2 log n) time given λ?.

The full dual projection is presented in Algorithm 2, where u is initialized as the upper
bound (2.7). A discussion of the stopping criterion in Line 2 is deferred to Appendix A.2.

Finally, when the loss ` is convex (concave) in x, it is also convex (concave) in Π after
the reformulation in §2.1. In this case, projected gradient with dual projection is guaranteed
to converge to a global optimum. When ` is nonconvex, projected gradient still converges
to a stationary point.
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Algorithm 2: Dual Projection

Input: G,C ∈ Rn×n, x ∈ Rn, δ > 0, l = 0, u > 0
Output: Π̃ ∈ Rn×n

1 while not converged do

2 λ̃ = 1
2

(l + u)

3 Π̃ = argminΠ1=x,Π≥0 ‖Π−G+ λ̃C‖2
F

4 if 〈Π̃, C〉 > δ then l = λ̃

5 else u = λ̃

2.3 Frank-Wolfe with Dual LMO

In this section, we apply the Frank-Wolfe algorithm (Frank et al. 1956) to maximize (2.1).
During each iteration, FW first solves the following linear minimization problem:

Π̂ = argmin
Π∈C

〈Π, H〉 , (2.8)

where

H = −∇Π`
(
(Π(t))>1, y

)
and C is the convex set represented by constraints in (2.1). Then, we take a convex
combination of Π(t) and Π̂:

Π(t+1) = (1− ηt)Π(t) + ηtΠ̂.

Step (2.8) is referred as the linear minimization oracle (LMO) in the literature, and is
reduced to solving the following linear program in each iteration:

minimize
Π≥0

〈Π, H〉

subject to Π1 = x, 〈Π, C〉 ≤ δ.
(2.9)

Standard linear programming solvers do not scale well in high dimensions. Instead, we
exploit the problem structure again to design a fast, specialized algorithm for (2.9).

2.3.1 A First Attempt: Optimizing the Dual

Our fist attempt is to extend the idea in §2.2 to the linear minimization step. We first
derive an equivalent dual problem via the method of Lagrange multipliers:
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Proposition 4 The dual problem of (2.9) is

maximize
λ≥0

− λδ +
n∑
i=1

xi min
1≤j≤n

(
Hij + λCij

)
. (2.10)

In addition, we provide an upper bound of the maximizer.

Proposition 5 The dual solution λ? of (2.10) satisfies

0 ≤ λ? ≤ 2 ‖vec(H)‖∞
mini 6=j {Cij}

. (2.11)

Unlike dual projection, the dual objective (2.10) here is not differentiable. In fact, it is
piecewise linear. Nevertheless, one can still solve it using derivative-free methods such as
bisection method on the supergradient, or golden section search on the objective, both of
which converge linearly.

However, after obtaining the dual solution, one cannot recover the primal solution
easily. Consider the following recovery rule by minimizing the Lagrangian:

Π? ∈ argmin
Π≥0,Π1=x

〈Π, H + λ?C〉 − λ?δ, (2.12)

where Π? and λ? are primal and dual solutions respectively. There are two issues: (a) there
might be infinitely many solutions to (2.12) and it is not easy to determine Π? among them;
(b) even if the solution to (2.12) is unique, a slight numerical perturbation could change
the minimizer drastically. In practice, such instability may even result in an infeasible Π,
generating invalid adversarial examples outside the Wasserstein perturbation budget. We
direct readers to Appendix A.4 for a concrete example and further discussions.

2.3.2 Dual LMO via Entropic Regularization

To address the above issues, we instead solve an entropic regularized version of (2.9) as an
approximation:

minimize
Π≥0

〈Π, H〉+ γ

n∑
i=1

n∑
j=1

Πij log Πij

subject to Π1 = x, 〈Π, C〉 ≤ δ,

(2.13)
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where γ is a regularization parameter. The difference between (2.10) and (2.13) is that
the objective is strongly convex with the entropic regularization. For any dual variable,
the corresponding primal variable by minimizing the Lagrangian is always unique, which
allow us to recover the primal solution from dual easily.

Proposition 6 The dual problem of (2.13) is

maximize
λ≥0

− λδ + γ
∑
i:xi>0

xi log xi − γ
n∑
i=1

xi log
n∑
j=1

exp

(
−Hij + λCij

γ

)
. (2.14)

The third term in (2.14) is essentially a softmin operator along each row of H + λC,
by observing that

lim
γ→0
−γ log

n∑
j=1

exp
(
−Hij+λCij

γ

)
= min

1≤j≤n

(
Hij + λCij

)
.

Thus, from the point view of dual, (2.14) is a smooth approximation of (2.10), recovering
(2.10) precisely as γ → 0. In our implementation, we use the usual log-sum-exp trick to
enhance the numerical stability of the softmin operator.

With entropic regularization, we have the following recovery rule for primal solution
and upper bound on dual solution.

Proposition 7 The primal solution Π? and the dual solution λ? satisfy

Π?
ij = xi ·

exp
(
−Hij+λ?Cij

γ

)
∑n

j=1 exp
(
−Hij+λ?Cij

γ

) . (2.15)

Proposition 8 The dual solution λ? of (2.14) satisfies

0 ≤ λ? ≤
[
2 ‖vec(H)‖∞ + γ log 1

δ
x>C1

]
+

mini 6=j {Cij}
. (2.16)

Note that the recovery rule (2.15) is essentially applying the softmin activation along
each row of H + λ?C. With the upper bound (2.16), we can apply the same technique in
§2.2 to solve the dual. In particular, the bisection method on the dual objective results in
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an algorithm almost identical to Algorithm 2 with only two exceptions: (a) we replace the
upper bound in (2.7) with (2.16) and (b) we replace Line 2 with the primal recover rule
(2.15).

Unlike dual projection, the second order derivative of (2.14) can be computed in a closed
form, which allows the usage of second order optimization algorithms such as Newton’s
method for further acceleration. However, we observed that Newton’s method fails to
converge in some cases. This might because the smooth dual (2.14), as an approximation
of (2.10), still behaves similar to a piecewise linear function even after the regularization.
Pure Newton’s method might easily overshoot in this case. Thus, we choose bisection
method due to its simplicity, stability and relatively fast convergence rate. In application
domains where the convergence speed of the dual is a concern, it is possible to consider
second order methods for potentially faster convergence.

Although both projected Sinkhorn (Wong et al. 2019) and dual LMO use entropic ap-
proximation, we emphasize that there are two fundamental differences. First, the entropic
regularization in dual LMO does not affect the convergence rate. In contrast, the conver-
gence rate of projected Sinkhorn highly depends on γ. In particular, small γ often slows
down the convergence rate empirically. Second, unlike the entropic regularized quadratic
program used in projected Sinkhorn, entropic regularized linear program like (2.13) has
been well studied. Applications in optimal transport (Cuturi 2013) have demonstrated its
empirical success; theoretical guarantees on the exponential decay of approximation error
have been established (Cominetti et al. 1994; Weed 2018).

For a thorough discussion on the convergence properties of FW on convex or nonconvex
functions and beyond, we direct readers to (Yu et al. 2017).

2.4 Practical Considerations

In this section, we comment on some practical considerations for implementations of algo-
rithms in §2.2 and §2.3.

2.4.1 Acceleration via Exploiting Sparsity

Both algorithms in §2.2 and §2.3 require computation on a full transportation matrix
Π ∈ Rn×n, which is computationally expensive and memory consuming, especially in high
dimensional spaces. For example, for ImageNet where n = 224×224×3, the transportation
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Figure 2.2: An illustration of 5× 5 local transportation.

matrix Π has billions of variables and the memory storage (roughly 28.1 GB using single
precision floating point numbers) for it exceeds the limit of most GPUs.

To accelerate computation and reduce memory usage, we use the same local trans-
portation technique as introduced by Wong et al. (2019), to impose a structured sparsity
in Π. Specifically, we only allow moving pixels in a k × k neighborhood (see Figure 2.2).
For images with multiple channels, we only allow transportation within each channel.
Adversarial examples generated with these restrictions are still valid under the original
Wasserstein threat models.

With local transportation, each pixel can be only transported to at most k2 possible
locations, thus Π is a highly sparse matrix with at most k2 nonzero entries in each row. Such
sparsity reduces the per iteration cost of dual projection from O(n2 log n) to O(nk2 log k),
and reduces that of dual LMO from O(n2) to O(nk2), both of which are linear w.r.t. n,
treating k (typically much smaller than n) as a constant.

Implementing sparse matrices computation on GPUs is not trivial, as operations on
sparse matrices, in general, are not easy to parallelize on GPUs. As such, current deep
learning packages (PyTorch, TensorFlow) do not support general sparse matrices well.
Nevertheless, for dual projection and dual LMO, we do have simple customized strategies
to support the sparse operations by exploiting the sparsity pattern. Notice that each row of
Π has at most k2 nonzero entries. We store Π as a n×k2 dense matrix, with some possible
dummy entries. The advantage is that now Π is a dense matrix. Any row operations on
Π (e.g . softmin along each row, sorting along each row) can be parallelized easily. The
downside, however, is that column operations (e.g . summation over each column) might
take extra efforts. Nevertheless, this is not a bottleneck of the speed of dual projection
and dual LMO, since they only require efficient row operations.
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2.4.2 Gradient Normalization

In both PGD and FW, we normalize the gradient in each iteration by its largest absolute
value of entries. For PGD, gradient normalization is a standard practice, yielding con-
sistent scale of gradient and easing step size tuning for nonsmooth objectives. For FW,
normalization in the linear minimization step (2.9) does not change the minimizer, but it
does affect the scale of the entropic regularization γ in (2.13). In this case, normalization
keeps the scale of entropic regularization consistent. In addition, gradient normalization
leads to more consistent upper bounds on the dual solutions in (2.7) and (2.16).

2.4.3 Hypercube Constraint in Image Domain

For image domain adversarial examples, there is an additional hypercube constraint, e.g .,
xadv ∈ [0, 1]n if pixels are represented using real numbers in [0, 1]. In practice, we observe
that solving problem (2.1) often generates adversarial examples that violate the hypercube
constraint, e.g ., some pixels of adversarial images exceed 1. Although simply clipping
pixels can enforce the hypercube constraint, certain amount of pixel mass is lost during
clipping, which leads to undefined Wasserstein distance. This is in sharp contrast to `p
threat models, where clipping is the typical practice that still retains feasibility hence
validness of generated adversarial examples.

To address this issue, we develop another specialized quadratic programming solver to
project a transportation matrix Π to the intersection of both constraints. Suppose that
pixel values of input images are represented by real numbers in [0, 1]n. We need to add one
additional constraint Π>1 ≤ 1, arriving at the following Euclidean projection problem:

minimize
Π≥0

1

2
‖Π−G‖2

F

subject to Π1 = x, Π>1 ≤ 1, 〈Π, C〉 ≤ δ.

We call this problem a capacity constrained projection, since the additional constraint
essentially specifies the maximum mass that a pixel location can receive. We introduce the
partial Lagrangian to derive the following dual problem:

maximize
λ≥0,µ≥0

g(λ,µ),
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where

g(λ,µ) = min
Π≥0,Π1=x

1

2
‖Π−G‖2

F + λ (〈Π, C〉 − δ) + µ>
(
Π>1− 1

)
= min

Π≥0,Π1=x

1

2
‖Π−G‖2

F + λ (〈Π, C〉 − δ) + 〈Π,1µ>〉 − µ>1

= min
Π≥0,Π1=x

1

2
‖Π−G+λC+1µ>‖2

F − 〈G, λC+1µ>〉+ 1

2
‖λC+1µ>‖2

F−λδ−µ>1

We optimize g(λ,µ) by alternating maximization on λ and µ respectively: fixing µ, we
maximize λ via bisection method; fixing λ, we maximize µ via k steps gradient ascent
with nesterov acceleration, where k is a hyperparameter. Evaluating the gradient of µ
in bisection method, as well as evaluating the gradient of µ, can be reduced to simplex
projections following similar derivations in dual projection (§2.2).

Due to sublinear convergence rate of gradient ascent, it may be slow to obtain a high
precision solution. However, empirical evidences show that it is possible to converge to
a reasonably accurate solution (e.g . satisfying hypercube constraint up to the third digit
after the decimal point) with a few hundred iterations of alternating maximization (with
k around 10 or 20). Convergence to these modest precision solutions is already sufficient
for generating valid Wasserstein adversarial examples (see Appendix C.8).

To the best of our knowledge, the hypercube constraint has not been addressed in
previous study of Wasserstein adversarial attacks. For instance, Wong et al. (2019) in
their implementation simply applied clipping regardless. This new algorithm, however, is
not as efficient as dual projection nor dual LMO. Thus, we recommend using it as a post-
processing procedure on Π? after solving the problem (2.1). Adversarial attacks tend to be
weaker after the post-processing. However, it ensures that the generated adversarial images
satisfy both the Wasserstein constraint and the hypercube constraint simultaneously hence
are genuinely valid. See Appendix C.8 for a case study.
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Chapter 3

Evaluation

In this chapter, we present experiments to demonstrate the effectiveness of our algorithms.
In §3.1, we present a sanity check on a simple convex problem, where our algorithms are
able to converge to high precision solutions. In §3.2, we apply our algorithms to generate
adversarial examples on large scale datasets. Extensive experiments demonstrates that our
algorithms are able to solve large scale problems more accurately and much faster. In the
end, we demonstrate the usage of our algorithms in adversarial training to improve the
Wasserstein adversarial robustness of deep models.

3.1 A Synthetic Convex Problem

We start with a simple convex minimization problem as a sanity check of our algorithms.
Consider the following (Euclidean) projection of b onto a Wasserstein ball centered at a
with radius ε:

minimize
x

1

2
‖x− b‖2

subject to W(x, a) ≤ ε,
(3.1)

which can be solved approximately by projected Sinkhorn. On the other hand, we can
reparametrize (3.1) into the following equivalent minimization problem as in §2.1:

minimize
Π

1

2
‖Π>1− b‖2

subject to Π ≥ 0,Π1 = a, 〈Π, C〉 ≤ ε.
(3.2)
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Table 3.1: (Exact) Wasserstein distances W(a, p̂) and number of dual iterations in pro-
jected Sinkhorn in the first four columns. γ is the entropic regularization constant. Pro-
jected Sinkhorn encountered numerical issues for small γ = 5 · 10−5.

γ
10−3 2 · 10−4 10−4 5 · 10−5 ours

ground truthW iter W iter W iter W iter PGD FW

ε = 0.5 0.267 28 0.402 44 0.437 205 − − 0.500 0.500 0.500
ε = 1.0 0.356 21 0.498 111 0.555 197 − − 0.797 0.797 0.797

We use projected gradient descent and Frank-Wolfe to solve (3.2) and recover the solution
of (3.1) by (Π?)>1.

To compare the above methods, we randomly generate two vectors a,b ∈ [0, 1]400 with
unit total mass. The initial Wasserstein distance between a and b is 0.797. Next, we
project b using projected Sinkhorn onto Wasserstein balls centered at a for two different
radii ε = 0.5 and ε = 1.0 respectively, by projected Sinkhorn solving (3.1). In comparison,
we solve (3.2) iteratively by PGD with dual projection (§2.2) and by Frank-Wolfe with
dual LMO (§2.3).

We report in Table 3.1 the number of iterations for projected Sinkhorn to output an
approximate projection p̂, and we compute the (exact) Wasserstein distance between a
and p̂ using a linear programming solver for (1.1). In the first row of Table 3.1, we
expect W(a, p̂) = 0.5, since for an exterior point the exact projection should be at the
boundary of the Wasserstein ball. In the second row, we expect W(a, p̂) = 0.797, since an
exact projection of an interior point should be itself. However, in both cases, the actual
Wasserstein distances of projected Sinkhorn are always much smaller than the ground
truth. Although W(a, p̂) gets closer to the ground truth as γ (the entropic regularization
constant) decreases, non-negligible gaps remain. Further decreasing γ may potentially
reduce the approximation error, but (a) overly small γ causes numerical issues easily and
(b) the number of iterations increases as γ decreases. As we will confirm in §3.2, this
approximation error in projected Sinkhorn leads to a substantially suboptimal attack.
Their outputs are exact in the first three digits after the decimal point, which serves as a
simple sanity check of our algorithms in the convex setting.
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(b) ImageNet

Figure 3.1: Adversarial accuracy of models w.r.t. different iterations of attacks using ε =
0.005. Projected Sinkhorn uses γ = 5 · 10−5 on CIFAR-10 and 5 · 10−6 on ImageNet. Dual
LMO uses γ = 10−3 and decay schedule 2

t+1
.

3.2 Large Scale Experiments

Datasets and models We conduct experiments on MNIST (LeCun 1998), CIFAR-10
(Krizhevsky 2009) and ImageNet (Deng et al. 2009). On MNIST and CIFAR-10, we
attack two deep networks used by Wong et al. (2019). On ImageNet, we attack a 50-layer
residual network (He et al. 2016). ImageNet experiments are run on the first 100 samples
in the validation set. See model details in Appendix C.

Choice of cost Throughout the experiment, the cost matrix C is defined as C(i1,j1)(i2,j2) =√
(i1 − i2)2 + (j1 − j2)2, namely, the Euclidean distance between pixel indices. We use 5×5

local transportation plan (see §2.4.1) to accelerate computation of all algorithms.

Choice of γ We follow all parameter settings reported by Wong et al. (2019) for
projected Sinkhorn, except that we try a few more γ. For dual LMO, we use a fixed
γ = 10−3, which we find to work well across different datasets.

Optimization parameters Stopping criteria of projected Sinkhorn, dual projection
and dual LMO, as well as the choice of step sizes of PGD, are deferred to Appendix C. FW
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uses a fixed decay schedule ηt = 2
t+1

. Step sizes of PGD are tuned in {1, 10−1, 10−2, 10−3}.
Some experiments for different step sizes are presented in §3.2.1.

3.2.1 Convergence Speed of Outer Maximization

Our method depends on a different but equivalent formulation (2.1) that simplifies the
constraint. It is reasonble to ask: could the reformulation make the outer maximization
in PGD and FW harder? Intuitively, it does not, since the formulation simply embeds
a linear transformation before the input layer (summation over columns of Π). To verify
this, we plot adversarial accuracy of models w.r.t. number of iterations for different attack
algorithms in Figure 3.1 to compare their convergence rate of outer maximization. More
thorough results are deferred to Appendix C.4. 1

We observe that FW with the default decay schedule converges very fast, especially
at the initial stage. Meanwhile, PGD with dual projection converges slightly faster than
FW with carefully tuned step sizes. In contrast, PGD with projected Sinkhorn barely
decreases the accuracy when using small step sizes. The output of projected Sinkhorn is
only a feasible point in the Wasserstein ball, rather than an accurate projection, due to the
crude approximation. If using small step sizes, projected Sinkhorn brings the iterates of
PGD closer to the center of Wasserstein ball in every iteration. Thus, the iterates always
stay around the center of Wasserstein ball during the optimization, hence cannot decrease
the accuracy. To make progress in optimization, it is required to use aggressively large
step sizes (e.g . η = 1.0 and η = 0.1).

3.2.2 Attack Strength and Dual Convergence Speed

In Table 3.2, we compare (a) strength of different attacks by adversarial accuracy, i.e.
model accuracy under attacks and (b) the running speed by the average number of dual
iterations. We observe that PGD with dual projection attack and FW with dual LMO
attack are generally stronger than PGD with projected Sinkhorn, since the latter is only
an approximate projection hence it does not solve (1.3) adequately. As γ decreases, PGD
with projected Sinkhorn gradually becomes stronger due to better approximation, but at
a cost of an increasing number of iterations to converge. However, projected Sinkhorn is
still weaker than PGD with dual projection and FW with dual LMO, even after tuning

1The numbers in Figure 3.1 are meant for comparison of convergence speed of Wasserstein constrained
optimization problem. Thus they are shown without the post-processing algorithm discussed in §2.4.3 and
may differ slightly from those in Table 3.2.
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Table 3.2: Comparison of adversarial accuracy and average number of dual iterations.
γ = 1

1000
on MNIST and γ = 1

3000
on CIFAR-10 are the parameters used by Wong et al.

(2019). “−” indicates numerical issues during computation.

method
ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5

acc iter acc iter acc iter acc iter acc iter

M
N

IS
T

PGD + Proj. Sink. (γ = 1/1000) 96.5 92 91.2 88 78.0 85 59.1 82 40.1 80
PGD + Proj. Sink. (γ = 1/1500) 95.2 110 82.3 116 58.2 112 − − − −
PGD + Proj. Sink. (γ = 1/2000) − − − − − − − − − −
PGD + Dual Proj. 63.4 15 13.3 15 1.4 15 0.1 15 0.0 15
FW + Dual LMO (γ = 10−3) 67.5 15 16.9 15 2.2 15 0.4 15 0.1 15

PGD + Dual Proj. (w/o post-processing) 42.6 15 4.2 15 0.4 15 0.0 15 0.0 15
FW + Dual LMO (w/o post-processing) 48.3 15 6.7 15 1.0 15 0.3 15 0.1 15

method
ε = 0.001 ε = 0.002 ε = 0.003 ε = 0.004 ε = 0.005
acc iter acc iter acc iter acc iter acc iter

C
IF

A
R

-1
0

PGD + Proj. Sink. (γ = 1/3000) 93.0 33 91.3 33 89.5 33 87.6 33 85.7 33
PGD + Proj. Sink. (γ = 1/10000) 89.9 79 84.5 79 78.3 79 71.9 79 65.6 79
PGD + Proj. Sink. (γ = 1/20000) − − − − − − − − − −
PGD + Dual Proj. 30.3 15 10.5 15 5.6 15 4.0 15 3.4 15
FW + Dual LMO (γ = 10−3) 33.5 15 13.6 15 7.2 15 4.7 15 3.7 15

PGD + Dual Proj. (w/o post-processing) 25.9 15 6.0 15 1.7 15 0.5 15 0.2 15
FW + Dual LMO (w/o post-processing) 29.6 15 9.1 15 3.2 15 1.1 15 0.6 15

method
ε = 0.001 ε = 0.002 ε = 0.003 ε = 0.004 ε = 0.005
acc iter acc iter acc iter acc iter acc iter

Im
a
g
eN

et

PGD + Proj. Sink. (γ = 1/100000) 68.0 42 61.2 43 59.2 43 55.8 43 52.4 43
PGD + Proj. Sink. (γ = 1/200000) 61.2 72 56.5 72 48.3 72 42.9 71 38.1 71
PGD + Proj. Sink. (γ = 1/1000000) − − − − − − − − − −
PGD + Dual Proj. 9.0 15 9.0 15 8.0 15 8.0 15 7.0 15
FW + Dual LMO 10.0 15 9.0 15 8.0 15 8.0 15 7.0 15

PGD + Dual Proj. (w/o post-processing) 0.0 15 0.0 15 0.0 15 0.0 15 0.0 15
FW + Dual LMO (w/o post-processing) 1.0 15 0.0 15 0.0 15 0.0 15 0.0 15

γ. Unfortunately, further decreasing γ runs into numerical overflow. We notice that PGD
with dual projection is often slightly stronger than FW with dual LMO for two possible
reasons: the projection step is solved exactly without any approximation error; we use
the default decay schedule in FW. Tuning the decay schedule for specific problems might
improve the attack strength and convergence speed of FW.

For completeness, we also report the results of dual projection and dual LMO without
post-processing in Table 3.2. After post-processing (see §2.4.3), the adversarial accuracy
is increased, sometimes by a lot. This is especially the case on MNIST (e.g ., ε = 0.1)
where there are many white pixels, thus it is very easy to violate the hypercube constraint.
Note that PGD with projected Sinkhorn might be even weaker than what is indicated by
the statistics in Table 3.2, if we post-process its adversarial examples appropriately so that
they are genuinely valid. However, we do not have an efficient algorithm for post-processing
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Figure 3.2: Per iteration running time (in milliseconds) of different algorithms measured
on a single P100 GPU.

projected Sinkhorn, thus we simply let it ignore the hypercube constraint. Even so, our
attacks are still much stronger than it.

Thanks to the bisection method and the tight upper bounds (2.7) and (2.16), dual
projection and dual LMO converge very fast to high precision solutions. In practice, they
often terminate exactly in 15 iterations due to the consistent scales of the upper bounds (see
Appendix C.2 for a discussion). On the other hand, projected Sinkhorn typically requires
more dual iterations. Besides convergence speed, we also compare the real running time
of a single dual iteration of all three methods in Figure 3.2. On MNIST and CIFAR-10,
dual projection is 5 ∼ 7 times faster than projected Sinkhorn; while on ImageNet, dual
projection is roughly twice faster than projected Sinkhorn. Meanwhile, dual LMO is 2 ∼ 3
times faster than dual projection due to the absence of the extra logarithm factor. See
Appendix C.7 for more details.

3.2.3 Entropic Regularization Reflects Shapes in Images

Wong et al. (2019) noted that Wasserstein perturbations reflect shapes in original images.
Instead, we argue that it is the large entropic regularization that causes the phenomenon.
We visualize adversarial examples and perturbations generated by different attacks in Fig-
ure 3.3 and Figure 3.4. Perturbations generated by PGD with dual projection and FW
with dual LMO using small γ tend to be very sparse, i.e., only moving a few pixels in
the images. In comparison, we gradually increase the entropic regularization in dual LMO
and eventually are able to reproduce the shape reflection phenomenon observed by Wong
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et al. (2019). The fact that projected Sinkhorn generates adversarial perturbations reflect-
ing shapes in clean images could be another evidence that the entropic regularization is
too large. Notice that large entropic regularization causes large approximation error, thus
potentially requires larger ε in order to successfully generate adversarial examples.

A large entropic regularization term in the optimization objective (of projected Sinkhorn
and dual LMO) encourages the transportation to be uniform, thus each pixel tends to
spread its mass evenly to its nearby pixels. In the region where pixel intensities do not
change much, the transportations cancel out; while in the region where pixel intensities
change drastically (e.g ., edges in an image), pixel mass flows from the high pixel region to
low pixel region. As a result, it reflects the edges in the original image.
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Figure 3.3: Wasserstein adversarial examples (ε = 0.005) generated by different algorithms
on ImageNet. Perturbations are normalized to [0, 1] for visualization. Dog faces can be
observed after zooming in.
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Figure 3.4: Wasserstein adversarial examples (ε = 0.002) generated by different algorithms
on CIFAR-10. Perturbations reflect shapes in images only when using large entropic reg-
ularization (the 6th and 8th columns).
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3.2.4 Improved Adversarial Training

In this section, we show how to use our stronger attacks in adversarial training (Madry
et al. 2018) to improve the robustness of deep models. Adversarial training is one of the
most effective empirical defense. Instead of minimizing empirical loss over the training
data, adversarial training minimizes the worst case loss:

minimize
θ

E(x,y)∼pdata

[
max
W(x,z)≤δ

`(fθ(z), y)

]
, (3.3)

where for each x the loss is maximized over a small neighbourhood around x. During
training, we use projected gradient ascent to approximate the inner maximization, i.e.
generating an adversarial example xadv, and then minimize training loss at xadv Due to
its simplicity and effectiveness, adversarial training is particularly popular as an empirical
defense. In fact, Rice et al. (2020) show that it is the strongest defense without additional
unlabeled data.

Since we have developed stronger attacks, it is natural that applying them in the
inner maximization step of Equation (3.3) will improve the robustness of adversarially
trained models. Indeed, models adversarially trained by our stronger attack have much
higher adversarial accuracy compared with models trained by projected Sinkhorn. We
apply FW with dual LMO in adversarial training due to its fast convergence speed and
fast per iteration running speed. On MNIST, we produce a robust model with 59.7%
accuracy against all three attacks with perturbation budget ε = 0.5, compared with 0.6%
using projected Sinkhorn. On CIFAR-10, we produce a robust model with 56.8% accuracy
against all three attacks with perturbation budget ε = 0.005, compared with 41.2% using
projected Sinkhorn. We present a thorough evaluation of adversarially trained models in
the following two sections,

MNIST

We adversarially train a robust model using Frank-Wolfe with dual LMO and a fixed
perturbation budget ε = 0.3. The inner maximization is approximated with 40 iterations
of Frank-Wolfe.2 This model achieves 95.83% clean accuracy. The adversarial accuracy of
this model is shown in Table 3.3.

For comparison, we also present results on attacking an adversarially trained model by
PGD with projected Sinkhorn. We use a pretrained model released by Wong et al. (2019),

2We also have tried larger perturbation budgets ε = 0.4 and ε = 0.5, but the training collapses.
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Table 3.3: MNIST model adversarially trained by Frank-Wolfe with dual LMO (ε = 0.3).

method ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5

PGD + Proj. Sink. (γ = 1/1000) 94.9 94.0 93.0 91.9 90.5
PGD + Proj. Sink. (γ = 1/1500) 94.5 93.2 91.5 89.3 86.8
PGD + Proj. Sink. (γ = 1/2000) − − − − −
PGD + Dual Proj. 92.6 87.8 80.2 70.7 59.7
FW + Dual LMO 92.5 88.1 82.1 75.3 66.8

PGD + Dual Proj. (w/o post-processing) 91.1 82.9 71.3 58.4 44.6
FW + Dual LMO (w/o post-processing) 91.1 83.9 73.9 63.0 50.9

Table 3.4: MNIST model adversarially trained by PGD with projected Sinkhorn.

method ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5

PGD + Proj. Sink. (γ = 1/1000) 95.0 92.4 90.5 88.5 86.5
PGD + Proj. Sink. (γ = 1/1500) 93.8 90.0 82.7 85.2 90.5
PGD + Proj. Sink. (γ = 1/2000) − − − − −
PGD + Dual Proj. 1.1 0.8 0.6 0.6 0.6
FW + Dual LMO 4.8 21.6 34.5 39.2 39.6

PGD + Dual Proj. (w/o post-processing) 1.0 0.4 0.3 0.3 0.3
FW + Dual LMO (w/o post-processing) 0.8 0.3 0.2 0.1 0.0

which is adversarially trained using an adaptive perturbation budget ε ∈ [0.1, 2.1]. This
model achieves 97.28% clean accuracy.

We notice that the model adversarially trained by PGD with projected Sinkhorn seems
to overfit to the same attack. Compared with the standard trained model in Table 3.2,
the adversarially trained model has higher adversarial accuracy under projected Sinkhorn,
but has lower adversarial accuracy under our stronger attacks.

In Table 3.4, the post-processing algorithm does not work quite well with Frank-Wolfe.
Normally, increasing the perturbation budget ε should decrease the adversarial accuracy.
Indeed, if we do not post-process the output, the adversarial accuracy decreases monotoni-
cally for Frank-Wolfe. However, after post-processing, the adversarial accuracy increases a
lot, and even increases as the the perturbation budget increases. For this model, our post-
processing algorithm does not seems to be “compatible” with Frank-Wolfe. Doing a better
job on optimizing the Wasserstein constrained problem ignoring the hypercube constraint
does not necessarily give a good solution to the problem with hypercube constraint.
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Table 3.5: CIFAR-10 model adversarially trained by FW with dual LMO (ε = 0.005)

method ε = 0.001 ε = 0.002 ε = 0.003 ε = 0.004 ε = 0.005

PGD + Proj. Sink. (γ = 1/3000) 82.4 82.3 82.1 81.9 81.8
PGD + Proj. Sink. (γ = 1/10000) 82.0 81.5 81.0 80.6 80.1
PGD + Proj. Sink. (γ = 1/20000) − − − − −
PGD + Dual Proj. 76.8 71.8 67.0 62.0 56.8
FW + Dual LMO 77.4 73.7 70.2 66.8 62.6

PGD + Dual Proj. (w/o post-processing) 76.5 71.3 66.4 61.4 56.2
FW + Dual LMO (w/o post-processing) 77.2 73.7 70.4 67.3 63.9

Table 3.6: CIFAR-10 model adversarially trained by PGD with projected Sinkhorn.

method ε = 0.001 ε = 0.002 ε = 0.003 ε = 0.004 ε = 0.005

PGD + Proj. Sink. (γ = 1/3000) 81.7 81.6 81.6 81.6 81.5
PGD + Proj. Sink. (γ = 1/10000) 81.6 81.4 81.3 81.2 81.0
PGD + Proj. Sink. (γ = 1/20000) − − − − −
PGD + Dual Proj. 72.5 64.4 56.3 48.8 42.2
FW + Dual LMO 72.4 64.0 55.5 47.8 41.2

PGD + Dual Proj. (w/o post-processing) 72.0 63.3 54.9 47.2 40.6
FW + Dual LMO (w/o post-processing) 71.7 62.2 52.9 44.7 37.5

CIFAR-10

We adversarially train a robust model using Frank-Wolfe with dual LMO and a fixed
perturbation budget ε = 0.005. The inner maximization is approximated with at most 30
iterations of Frank-Wolfe. This model achieves 82.57% clean accuracy. The adversarial
accuracy of this model is shown in Table 3.5.

For comparison, we also present results on attacking an adversarially trained model by
PGD with projected Sinkhorn. We use a pretrained model released by Wong et al. (2019),
which is adversarially trained using an adaptive perturbation budget ε ∈ [0.01, 0.38]. This
model achieves 81.68% clean accuracy.
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Chapter 4

Conclusion

In this thesis, we have demonstrated that the previous Wasserstein adversarial attack based
on approximate projection is suboptimal due to inaccurate projection. To generate stronger
Wasserstein adversarial attacks, we introduce two faster and more accurate algorithms for
Wasserstein constrained optimization. Each algorithm has its own advantage thus they
complement each other nicely: PGD with dual projection employs exact projection and
generates the strongest attack. On the other hand, with minimal entropic smoothing,
FW with dual LMO is extremely fast in terms of both outer maximization and linear
minimization step without much tuning of hyperparameters. Extensive experiments con-
firm the effectiveness of our algorithms in two ways: (a) properly evaluating Wasserstein
adversarial robustness and (b) improving robustness through adversarial training.

A key ingredient of our methods is that we design partial Lagrangian such that (a)
minimizing the Lagrangian is easy (almost closed form) and (b) solving the dual is easy
(univariate), which allows us to develop fast algorithms with high precision. While we
demonstrate it is possible to do so for Wasserstein constraint by exploring the structure of
the problems, extending this method for additional constraints seems to be nontrivial, as we
already see in §2.4.3 for example. Thus, developing algorithms for variants of Wasserstein
distance (e.g . Korman et al. 2015) might need further careful design to balance the solver
precision and computational efficiency.

Finally, our algorithms impose minimal assumptions on the cost matrix in Wasserstein
distance, thus they can be directly applied to other applications involving Wasserstein
constrained optimization problems on discrete domains (e.g ., Wasserstein distributionally
robust optimization (Kuhn et al. 2019)).
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[34] Gabriel Peyré and Marco Cuturi. Computational Optimal Transport. Foundations
and Trends R© in Machine Learning, 2019.

[35] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. “Semidefinite relaxations
for certifying robustness to adversarial examples”. In: Advances in Neural Informa-
tion Processing Systems 31. 2018, pp. 10877–10887.

[36] Leslie Rice, Eric Wong, and J. Zico Kolter. “Overfitting in Adversarially Robust
Deep Learning”. In: Proceedings of the 37th International Conference on Machine
Learning. 2020.

[37] Yossi Rubner, Leonidas J Guibas, and Carlo Tomasi. “The earth mover’s distance,
multi-dimensional scaling, and color-based image retrieval”. In: Proceedings of the
ARPA image understanding workshop. 1997, pp. 661–668.

[38] Richard Sinkhorn. “Diagonal equivalence to matrices with prescribed row and column
sums”. In: The American Mathematical Monthly 74 (1967), pp. 402–405.

[39] Arun Sai Suggala, Adarsh Prasad, Vaishnavh Nagarajan, and Pradeep Ravikumar.
“Revisiting Adversarial Risk”. In: The 22nd International Conference on Artificial
Intelligence and Statistics. 2019, pp. 2331–2339.

[40] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. “Intriguing properties of neural networks”. In:
International Conference on Learning Representations. 2014.

[41] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. “Evaluating Robustness of Neural
Networks with Mixed Integer Programming”. In: International Conference on Learn-
ing Representations. 2019.

[42] Florian Tramer and Dan Boneh. “Adversarial Training and Robustness for Multiple
Perturbations”. In: Advances in Neural Information Processing Systems 32. 2019,
pp. 5858–5868.

[43] Z. Wang and A. C. Bovik. “Mean squared error: Love it or leave it? A new look at
Signal Fidelity Measures”. In: IEEE Signal Processing Magazine 26 (2009), pp. 98–
117.

[44] Jonathan Weed. “An explicit analysis of the entropic penalty in linear programming”.
In: Proceedings of the 31st Conference On Learning Theory. 2018, pp. 1841–1855.

36

https://ieeexplore.ieee.org/document/7546524
https://www.nowpublishers.com/article/Details/MAL-073
http://papers.nips.cc/paper/8285-semidefinite-relaxations-for-certifying-robustness-to-adversarial-examples.pdf
http://papers.nips.cc/paper/8285-semidefinite-relaxations-for-certifying-robustness-to-adversarial-examples.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.4654&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.4654&rep=rep1&type=pdf
http://proceedings.mlr.press/v89/suggala19a.html
https://openreview.net/forum?id=kklr_MTHMRQjG
https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=HyGIdiRqtm
http://papers.nips.cc/paper/8821-adversarial-training-and-robustness-for-multiple-perturbations.pdf
http://papers.nips.cc/paper/8821-adversarial-training-and-robustness-for-multiple-perturbations.pdf
10.1109/MSP.2008.930649
10.1109/MSP.2008.930649
http://proceedings.mlr.press/v75/weed18a.html


[45] Eric Wong and Zico Kolter. “Provable Defenses against Adversarial Examples via
the Convex Outer Adversarial Polytope”. In: Proceedings of the 35th International
Conference on Machine Learning. 2018, pp. 5286–5295.

[46] Eric Wong, Frank Schmidt, and Zico Kolter. “Wasserstein Adversarial Examples via
Projected Sinkhorn Iterations”. In: Proceedings of the 36th International Conference
on Machine Learning. 2019, pp. 6808–6817.

[47] Kaiwen Wu, Allen Houze Wang, and Yaoliang Yu. “Stronger and Faster Wasser-
stein Adversarial Attacks”. In: Proceedings of the 37th International Conference on
Machine Learning. 2020.

[48] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. “Spa-
tially Transformed Adversarial Examples”. In: International Conference on Learning
Representations. 2018.

[49] Yaoliang Yu, Xinhua Zhang, and Dale Schuurmans. “Generalized Conditional Gra-
dient for Sparse Estimation”. In: Journal of Machine Learning Research 18 (2017),
pp. 1–46.

37

http://proceedings.mlr.press/v80/wong18a.html
http://proceedings.mlr.press/v80/wong18a.html
http://proceedings.mlr.press/v97/wong19a.html
http://proceedings.mlr.press/v97/wong19a.html
https://openreview.net/forum?id=HyydRMZC-
https://openreview.net/forum?id=HyydRMZC-
http://jmlr.org/papers/v18/14-348.html
http://jmlr.org/papers/v18/14-348.html


APPENDICES

38



Appendix A

Further Analysis and Examples

A.1 Projected Sinkhorn

A.1.1 Analysis of Approximation Error in Projected Sinkhorn

To ensure small approximation error in (1.4), the scale of entropic regularization term
should be at least much smaller than the quadratic term:

γ
n∑
i=1

n∑
j=1

Πij log Πij �
1

2
‖w − z‖2

2 .

Otherwise, the objective (1.4) is dominated by the entropic regularization. However, in
practice, it is not always guaranteed, especially when w is an interior point of the constraint
in (1.4).

Consider an simple example where w = x = ( 1
n
, 1
n
, · · · 1

n
)>. In that case, the quadratic

term 1
2
‖x− z‖2

2 should be as small as zero, since we can let z = x. However, if z = w = x,
then Π could be a diagonal matrix diag

(
1
n
, 1
n
, · · · 1

n

)
(or more generally, 1

n
P , where P is a

permutation matrix). Thus, the entropic term becomes

n∑
i=1

n∑
j=1

Πij log Πij = − log n, (A.1)

reaching its maximum. The entropic regularization somewhat conflicts with the the quadratic
term. Notice that the scale of (A.1) is much larger than 1

2
‖w− x‖2

2 (which is supposed to
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be very close to zero), especially when the dimension n is large. Thus, the objective (1.4)
may be dominated by the entropic regularization and solving the projection step accurately
requires very small γ.

We make two additional remarks. First, notice that the scale of (A.1) increases as n
grows, which requires smaller γ to balance the quadratic term and entropic regularization.
This gives the intuition that projected Sinkhorn needs smaller γ in higher dimensional
spaces, which is observed in experiments.

Second, the key aspect of the above argument is that w is relatively close to x, e.g .
W(w,x) ≤ ε, such that the quadratic term is so small hence dominated by the entropic
regularization. In the case where w is very far away from x, this argument does not hold
anymore. We believe this explains why large step sizes strengthen the attack when using
PGD with projected Sinkhorn in experiments. However, PGD with large step sizes tend
to be unstable and may not converge to a good solution.

A.1.2 Toy Experiment in Table 3.1

Entries of a and b are sampled from a uniform distribution in [0, 1]400 independently.
After sampling, both vectors are normalized to ensure that the pixel mass summations are
exactly 1. We reshape a and b to R20×20 and view them as images in order to use the
procedure of Wong et al. (2019). The cost matrix is induced by Euclidean norm between
pixel indices with 5× 5 local transportation plan.

For PGD, we use step size 0.05. For Frank-Wolfe, we use γ = 10−3 and the default
decay schedule 2

t+1
. We let both algorithms run for sufficiently many iterations in order to

converge to high precision solutions.

A.2 Stopping Criterion for Bisection Method

When the derivative of the dual objective approaches zero, i.e., 〈Π, C〉 − δ ≈ 0, the
comparison between 〈Π, C〉−δ and 0 is getting numerically unstable. Thus, we recommend
stopping the bisection method when either the derivative is close to zero, or the gap between
the lower bound l and the upper bound u is relatively small.

We recommend using an upper bound u to recover the coupling Π. Since an upper
bound u always has a negative derivative, thus the transportation cost constraint 〈Π, C〉 ≤
δ is always satisfied.
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We highlight that the bisection method converges very fast in practice, since it shrinks
the interval by a factor of 2 in every iteration. Thus, it determines the next 3 digits of λ?

after the decimal point after every 10 iterations.

For a concrete stopping criterion in our experiment, please refer to Appendix C.2.
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A.3 Toy Experiment for Dykstra’s Algorithm

We randomly sample a vector x ∈ R100 and a coupling Π ∈ R100×100 (both from a uniform
distribution in a hypercube). We normalize x and Π. We then project Π to Cs ∩ Ch. We
set δ = 1 and the cost matrix C is the same as the one in §3.2 (we reshape x into a 10×10
matrix and view it as an image). The convergence plots are shown in Figure 2.1. Dykstra’s
algorithm does converge, but at a slow rate.

A.4 Failure of Dual Linear Minimization without En-

tropic Regularization

This section presents a simple example to demonstrate the failure of dual LMO without
adding entropic regularization.

Let δ = 0.5, x = (1, 0)>. Let

G =

(
1 −1
0 0

)
, C =

(
0 1
1 0

)
.

Let

Π =

(
Π11 Π12

Π21 Π22

)
.

Then the primal linear program is

minimize
Π11,Π12≥0

Π11 − Π12

subject to Π11 + Π12 = 1,Π12 ≤ 0.5

It is easy to check that the solution is

Π? =

(
0.5 0.5
0 0

)
.

The dual linear program is

maximize
λ≥0

−1

2
λ+ min {1,−1 + λ}
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It is easy to see that the dual problem has a unique solution λ? = 2. Now we try to use
the following condition to recover the primal solution:

Π? ∈ argmin
Π≥0,Π1=x

〈Π, G+ λ?C〉 − λ?δ, (A.2)

which is equivalent to

Π? ∈ argmin
Π≥0,Π1=x

〈
Π,

(
1 1
2 0

)〉
. (A.3)

But it turns out that any Π of the form

Π(α) =

(
α 1− α
0 0

)
,

where 0 ≤ α ≤ 1, is a minimizer. By varying α, Π(α) can be suboptimal (α = 0), optimal
(α = 0.5) or even infeasible (α = 1). Thus, Π? cannot be recovered by only considering
the stationary condition.

Of course it is possible to combine (A.2) with other KKT conditions (specifically, com-
plementary slackness and primal feasibility) to obtain one of the primal solutions. Par-
ticularly, in the above example, (A.2) along with the complementary slackness determines
the unique primal solution Π?. However, there are still two issues. The first issue is that
in more general cases, doing so requires solving a linear system whose variables are from a
subset of Π, which could be GPU unfriendly. More critically, the above solution is numer-
ically unstable. Suppose that there is a slight numerical inaccuracy due to floating point
precision, such that (A.3) becomes

Π? ∈ argmin
Π≥0,Π1=x

〈
Π,

(
1 + ξ 1− ξ

2 0

)〉
. (A.4)

for some small constant ξ > 0. Now solving (A.4) gives

Π(1) =

(
0 1
0 0

)
,

which is infeasible.
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Appendix B

Proofs

This section presents all proofs in the paper. Recall that without loss of generality we
assume that all entries in the cost matrix C are nonnegative and only diagonal entries of
C are zeros. All proofs below assume it implicitly.

B.1 Dual Projection

Proposition 1 The dual of (2.2) is

maximize
λ≥0

g(λ), (2.3)

where

g(λ) = min
Π1=x,Π≥0

1
2
‖Π−G‖2

F + λ (〈Π, C〉 − δ) . (2.4)

In addition, the derivative of g(λ) at a point λ = λ̃ is

g′(λ̃) = 〈Π̃, C〉 − δ, (2.5)

where

Π̃ = argmin
Π1=x,Π≥0

‖Π−G+ λ̃C‖2
F. (2.6)

Both g(λ) and g′(λ) can be evaluated in O(n2 log n) time deterministically for any given λ.
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Proof: Introducing the Lagrange multiplier λ ≥ 0 for the constraint 〈Π, C〉 ≤ δ, we arrive
at the following dual problem

maximize
λ≥0

g(λ),

where

g(λ) = min
Π1=x,Π≥0

1

2
‖Π−G‖2

F + λ (〈Π, C〉 − δ) .

We complete the square in the inner problem, which leads to

g(λ) = min
Π1=x,Π≥0

1

2
‖Π− (G− λC) ‖2

F −
1

2
λ2‖C‖2

F + λ〈G,C〉 − λδ.

Notice that the constraint in the minimization is independent for each row of Π. Thus, it
can be reduced to a simplex projection for each row of G − λC, which can be solved in
O(n2 log n) time.

By Danskin’s theorem, g is differentiable and the derivative is

g′(λ̃) = 〈Π̃, C〉 − δ,

given the solution Π̃ to the minimization problem.

Before proving Proposition 2, we first prove Lemma 1, which characterizes the solution
of simplex projection in a special case. Intuitively, the projection of a vector to a simplex
is very sparse if one of its entries is much larger than the others.

Lemma 1 Consider the following projection of a vector v to a simplex:

minimize
w∈Rn

‖w − v‖2
2

subject to
n∑
i=1

wi = z, wi ≥ 0,

where z > 0. Suppose that there exists i such that vi ≥ vj + z for all j 6= i. Then the
solution is w? = (0, · · · 0, z, 0, · · · , 0)>, where the only nonzero entry is w?i = z.
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Proof: A careful analysis of the simplex projection algorithm (Duchi et al. 2008) would
give a proof. Here, we give an alternative simple proof that does not rely on the algorithm.
Assume to the contrary that there exists j 6= i such that w?j > 0 hence also w?i < z. We
construct another feasible point ŵ by

ŵi = w?i + w?j

ŵj = 0

ŵk = w?k ∀k 6= i, k 6= j.

Comparing the objective value of w? and ŵ, we have

‖w? − v‖2
2 − ‖ŵ − v‖2

2 = (w?i − vi)2 + (w?j − vj)2 − (w?i + w?j − vi)2 − (0− vj)2

= 2w?j (vi − vj − w?i )
> 2w?j (vi − vj − z)

≥ 0.

ŵ has even smaller objective value than w?, contradicting the optimality of w?. Thus all
w?j = 0 for all j 6= i, which finishes the proof.

Proposition 2 The dual solution λ? of (2.3) satisfies

0 ≤ λ? ≤ 2 ‖vec(G)‖∞ + ‖x‖∞
mini 6=j{Cij}

. (2.7)

Proof: By Danskin’s theorem the dual problem (2.3) is differentiable in λ. Moreover, for
any given λ̃, suppose the solution to the minimization is Π̃, then the gradient w.r.t. λ̃ is
〈Π̃, C〉 − δ.

Consider the i-th row of G− λC. Assume on the contrary that

λ >
2 ‖vec(G)‖∞ + ‖x‖∞

mini 6=j{Cij}
.

Then, for all i 6= j we have (recall that Cii = 0)

Gii = Gii − λCii > Gij − λCij + xi.
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The condition in Lemma 1 is satisfied. A projection of G−λC results in a diagonal matrix
Π̃. Thus

g′(λ̃) = 〈Π̃, C〉 − δ
=
∑
i=j

Π̃ijCij +
∑
i 6=j

Π̃ijCij − δ

= −δ.

The derivative is strictly negative, hence λ̃ is suboptimal, which finishes the proof.

Proposition 3 The primal solution Π? and the dual solution λ? satisfies

Π? = argmin
Π1=x,Π≥0

‖Π−G+ λ?C‖2
F,

thus Π? can be computed in O(n2 log n) time given λ?.

Proof: This is a direct implication of KKT conditions.

B.2 Dual Linear Minimization Oracle without Entropic

Regularization

Proposition 4 The dual problem of (2.9) is

maximize
λ≥0

− λδ +
n∑
i=1

xi min
1≤j≤n

(
Hij + λCij

)
. (2.10)

Proof: Introducing the Lagrange multiplier λ ≥ 0 for the constraint 〈Π, C〉 ≤ δ, we arrive
at the following dual problem

maximize
λ≥0

g(λ),
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where

g(λ) = min
Π≥0,Π1=x

〈Π, H〉+ λ (〈Π, C〉 − δ)

= min
Π≥0,Π1=x

〈Π, H + λC〉 − λδ

= −λδ +
n∑
i=1

xi min
1≤j≤n

(
Hij + λCij

)
.

The last equality uses the fact that the constraints are independent for each row, thus the
minimization is separable.

Proposition 5 The dual solution λ? of (2.10) satisfies

0 ≤ λ? ≤ 2 ‖vec(H)‖∞
mini 6=j {Cij}

. (2.11)

Proof: A key observation is that the dual objective is a piece-wise linear function w.r.t.
λ. We can roughly estimate the range of the maximizer, by analyzing the slope of this
function.

Suppose

λ >
2 ‖vec(H)‖∞
mini 6=j {Cij}

. (B.1)

Then for all i 6= j, we have

λCij > Hii −Hij,

which implies Hii + λCii < Hij + λCij for all i 6= j (recall that Cii = 0). Thus

g(λ) = −λδ +
n∑
i=1

xi min
1≤j≤n

(
Hij + λCij

)
= −λδ +

n∑
i=1

xi (Hii + λCii)

= −λδ +
n∑
i=1

xiHii

is a linear function with negative slope. Thus, any λ satisfies (B.1) cannot be a dual solu-
tion, which completes the proof.
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B.3 Dual Linear Minimization Oracle with Dual En-

tropic Regularization

Proposition 6 The dual problem of (2.13) is

maximize
λ≥0

− λδ + γ
∑
i:xi>0

xi log xi − γ
n∑
i=1

xi log
n∑
j=1

exp

(
−Hij + λCij

γ

)
. (2.14)

Proof: Introducing the Lagrange multiplier λ ≥ 0 for the constraint 〈Π, C〉 ≤ δ, we arrive
at the following dual problem

maximize
λ≥0

g(λ),

where

g(λ) = min
Π≥0,Π1=x

〈Π, H〉+ γ
n∑
i=1

n∑
j=1

Πij log Πij + λ(〈Π, C〉 − δ) (B.2)

= min
Π≥0,Π1=x

−λδ + 〈Π, H + λC〉+ γ
n∑
i=1

n∑
j=1

Πij log Πij. (B.3)

Without loss of generality, we assume that xi is strictly positive for all i. Otherwise, xi = 0
implies Πij = 0 for all j, thus the i-th row of Π does not even appear in the minimization.

Notice that the inner minimization in (B.3) is separable, since the constraint on Π is in-
dependent for each row. For each row, the minimization is equivalent to a Kullback–Leibler
projection to a simplex, which admits a closed form. For the sake of completeness, we give
a derivation here. For the i-th row,

n∑
j=1

Πij (Hij + λCij) + γ

n∑
j=1

Πij log Πij = γ

n∑
j=1

Πij log
Πij

exp
(
−Hij+λCij

γ

)
= γ

n∑
j=1

Πij

log
Πij/xi

exp
(
−Hij+λCij

γ

)
/a

+ log xi − log a


= γ

n∑
j=1

Πij log
Πij/xi

exp
(
−Hij+λCij

γ

)
/a

+ γxi (log xi − log a)

≥ γxi (log xi − log a) ,
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where a =
∑n

j=1 exp
(
−Hij+λCij

γ

)
is a normalization constant. The last inequality holds if

and only if

Πij = xi
exp

(
−Hij+λCij

γ

)
∑n

j=1 exp
(
−Hij+λCij

γ

) .
Plugging in the above expression finishes the proof.

Proposition 7 The primal solution Π? and the dual solution λ? satisfy

Π?
ij = xi ·

exp
(
−Hij+λ?Cij

γ

)
∑n

j=1 exp
(
−Hij+λ?Cij

γ

) . (2.15)

Proof: This is a direct implication of KKT conditions. See the KL projection derivation
in the proof of Proposition 6 for a detailed explanation.

Proposition 8 The dual solution λ? of (2.14) satisfies

0 ≤ λ? ≤
[
2 ‖vec(H)‖∞ + γ log 1

δ
x>C1

]
+

mini 6=j {Cij}
. (2.16)

Proof: To begin with, we have the following bound on the derivative:

g′(λ) = −δ +
n∑
i=1

xi

∑n
j=1 exp

(
−Hij+λCij

γ

)
Cij∑n

j=1 exp
(
−Hij+λCij

γ

)
= −δ +

n∑
i=1

xi

∑n
j=1 exp

(
−Hij+λCij−Hii

γ

)
Cij∑n

j=1 exp
(
−Hij+λCij−Hii

γ

)
= −δ +

n∑
i=1

xi

∑
j 6=i exp

(
−Hij+λCij−Hii

γ

)
Cij

1 +
∑

j 6=i exp
(
−Hij+λCij−Hii

γ

)
≤ −δ +

n∑
i=1

∑
j 6=i

xi exp

(
−Hij + λCij −Hii

γ

)
Cij.
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The first equality uses translation invariance property of softmin function. The last in-
equality uses the fact that Cii = 0. Notice that

λ >

[
2 ‖vec(H)‖∞ + γ log

(
1
δ
x>C1

)]
+

mini 6=j {Cij}

implies

λCij > 2 ‖vec(H)‖∞ + γ log

(
1

δ
x>C1

)
≥ Hii −Hij + γ log

(
1

δ
x>C1

)
,

for all i 6= j. Thus, we have

exp

(
−Hij + λCij −Hii

γ

)
<

δ

x>C1

for all i 6= j. Plug it back to g′(λ). We have

g′(λ) < −δ +
δ

x>C1
·

n∑
i=1

n∑
j=1

xiCij

= −δ +
δ

x>C1
· x>C1

= 0.

The derivative is strictly negative hence λ cannot be optimal, which concludes the proof.
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Appendix C

Further Experimental Details

In this section, we present further experimental details as well as some implementation
details.

C.1 Models

Our MNIST and CIFAR-10, models are taken from (Wong et al. 2019). The MNIST model
is a convolutional network with ReLU activations which achieves 98.89% clean accuracy.
The CIFAR-10 model is a residual network with 94.76% clean accuracy. The ImageNet
model is a ResNet-50 pretrained neural network, downloaded from PyTorch models sub-
package, which achieves 72.0% top-1 clean accuracy on the first 100 samples from the
validation set. All experiments are run on a single P100 GPU.

C.2 Stopping Criteria

Stopping criterion of projected Sinkhorn Denote obj(t) as the dual objective value of
projected Sinkhorn in t-th iteration, we stop the algorithm upon the following condition is
satisfied:

|obj(t+1) − obj(t)| ≤ 10−4 + 10−4 · obj(t),

which is also used by Wong et al. (2019).
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Stopping criterion of dual projection and dual LMO Both dual projection and
dual LMO use the bisection method to solve dual problems. Bisection is terminated upon
either

u− l ≤ 10−4 or |g′(λ̃)| ≤ 10−4

This condition lets us determine the 4-th digit after the decimal point of λ?, or the violation
of transportation cost constraint is less than 10−4. Note that a violation of 10−4 is extremely
small, compared with δ = ε

∑n
i=1 xi, which is much (usually at least 105 times) larger than

the tolerance since the pixel sum
∑n

i=1 xi is usually a large number.

In practice, the upper bound (2.7) and (2.16) are often between 2 and 3 thanks to
gradient normalization. Thus, the bisection method satisfies the stopping criterion in at
most 15 iterations (2× 2−15 ≈ 10−4).

C.3 Step Sizes of PGD

PGD with projected Sinkhorn On MNIST, CIFAR-10 and ImageNet, the step sizes
are set to 0.1. Notice that 0.1 is also the step size used by Wong et al. (2019) on MNIST
and CIFAR-10. The gradient is normalized using `∞ norm:

argmax
‖v‖∞≤1

v>∇x`(x, y) = sign (∇x`(x, y)) .

Again, this is the same setting used by Wong et al. (2019). While η = 1.0 achieves lower
adversarial accuracy on the first batch of samples in Appendix C.4, we find this large step
size causes numerical overflow easily on the remaining batches. Thus we choose η = 0.1 to
present the experimental results.

PGD with dual projection On MNIST, the step size is set to 0.1. On CIFAR-10
and ImageNet, the step size is set to 0.01. The gradient is normalized in the following way:

∇Π`(Π
>1, y)

maxi,j |∇Π`(Π>1, y)| .
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C.4 Further Results on Convergence of Outer Maxi-

mization

We plot the loss and adversarial accuracy w.r.t. the number of iterations in Figure C.1
(ε = 0.005 on both CIFAR-10 and ImageNet). Dual LMO uses γ = 10−3. Projected
Sinkhorn uses γ = 5 · 10−5 on CIFAR-10 and γ = 5 · 10−6 on ImageNet.

Frank-Wolfe with dual LMO FW uses the default decay schedule 2
t+1

. We observe
that FW with dual LMO converges very fast especially at the initial stage, even when using
the simple default decay schedule.

PGD with Projected Sinkhorn We observe that when η is small (e.g . η = 0.01, 0.001),
PGD with projected Sinkhorn barely makes progress in the optimization. While aggres-
sively large step sizes (e.g . 1.0 and 0.1) can make progress, the curves are very noisy
indicating the steps sizes are too large, and the loss is still much lower than the other two
attacks.

PGD with Dual Projection In contrast, PGD with dual projection has more mean-
ingful curves: small η (e.g . 0.001) converges very slowly; large η (e.g . 1.0 and 0.1) makes the
curves noisy, while appropriate choice of η (e.g . 0.01) always achieves the highest loss and
also the lowest adversarial accuracy. In these cases, PGD with dual projection converges
comparably and sometimes slightly faster than Frank-Wolfe.
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Figure C.1: Convergence of outer maximization of different attacks.
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C.5 MNIST and CIFAR-10 Adversarial Examples

Wasserstein adversarial perturbations generated by PGD with dual projection and FW
with dual LMO (γ = 10−3) are very sparse. Hence, they do not reflect the shapes in
the clean images. Perturbations reflect the shapes only when the entropic regularization
introduces large approximation error (e.g . FW with dual LMO (γ = 10) and PGD with
projected Sinkhorn).

For the sake of visualization of the approximation error, we let PGD use smaller step
sizes (η = 0.01) and more iterations (1000) when combined with projected Sinkhorn.1 We
observe that using large step size, e.g ., η = 0.1, often generates blurry perturbations (not
necessarily reflecting shapes clearly). But they are still much more dense compared with
adversarial perturbations generated dual projection and dual LMO (γ = 10−3).

1This is the same case for Figure 3.4 in the main paper. Notice that our normalization method is
slightly different from that of Wong et al. (2019), which might account for the slight difference of the
visualization results.
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clean dual proj. dual LMO

(γ = 10−3)

dual LMO

(γ = 10)

proj. Sink.

(γ = 1/1000)

(a) MNIST

clean dual proj. dual LMO

(γ = 10−3)

dual LMO

(γ = 10)

proj. Sink.

(γ = 1/3000)

(b) CIFAR-10

Figure C.2: Comparison of Wasserstein adversarial examples and Wasserstein perturba-
tions generated by different attacks on MNIST (ε = 0.2) and CIFAR-10 (ε = 0.002).
Predicted labels are shown on the top of images. Perturbations are scaled linearly to [0, 1]
for visualization.
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C.6 ImageNet Adversarial Examples

We visualize ImageNet adversarial examples in Figure C.3.

C.7 Analysis of Running Time of Projected Sinkhorn

One possible explanation for slow per iteration running speed of projected Sinkhorn is that,
each iteration of projected Sinkhorn requires solving n nonlinear univariate equations. In
implementation, this step is done by calling Lambert function, which eventually calls Hal-
ley’s method, a root-finding algorithm. While solving each nonlinear equation is counted
as O(1) in analysis, this operation is potentially much more expensive than other basic
arithmetic operations (e.g . addition and multiplication). In contrast, both dual projec-
tion and dual linear minimization only rely on more standard arithmetic operations (e.g .
multiplication, division and comparison, logarithm and exponential functions).

We test the running time of the nonlinear equation solvers in experiments. On a single
RTX 2080 Ti GPU, for a batch of 100 samples on MNIST, we observe that Lambert
function evaluation takes about 26% of the running time during each iteration of projected
Sinkhorn. For a batch of 100 samples on CIFAR-10, Lambert function evaluation takes
about 28% of the running time during each iteration of projected Sinkhorn. For a batch
of 50 samples on ImageNet, Lambert function evaluation takes about 32% of the running
time of one iteration of projected Sinkhorn.

We note that GPU time recording is somewhat inconsistent on different machines. In
our case, all experiments in the main paper are run on a single P100 GPU on a cluster.
However, on a 2080 Ti local GPU, we observe that projected Sinkhorn is slightly faster
than dual projection on ImageNet in terms of per iteration running time (but still at least
twice slower than dual LMO). While on MNIST and CIFAR-10, dual projection and dual
LMO are consistently faster than projected Sinkhorn, both on P100 cluster and 2080 Ti
local machine.
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(a) Dual projection (b) Dual LMO (γ = 10−3)

(c) Dual LMO (γ = 10) (d) Projected Sinkhorn (γ = 10−4)

Figure C.3: Comparison of Wasserstein adversarial examples generated by different attacks
(ε = 0.005). Notice that adversarial pertubations reflect shapes in the images only when
the entropic regularization is large (bottom two subfigures).
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C.8 Case Study: Feasibility of Adversarial Examples

In this section, we present a sanity check of feasibility of adversarial examples generated
by different algorithms on MNIST.

Table C.1: A sanity check of feasibility of Wasserstein adversarial examples generated
by different algorithms on MNIST. 2nd column: The average Wasserstein distance be-
tween adversarial examples and clean images (the higher the better). 3rd column: The
maximum pixel value in the generated adversarial examples (the lower the better). 4th
column: The percentage of pixel mass that exceeds 1 (the lower the better). The third
and the forth columns are largest values over a mini-batch, while the second column is the
average over a mini-batch.

method W(x,xadv) maxi {xi}
∑n

i=1 max{xi−1,0}∑n
i=1 xi

PGD + Proj. Sink. (γ = 1/1000) 0.109965 1.474048 3.646899%
PGD + Dual Proj. (w/o post-processing) 0.493146 4.118621 15.812986%
PGD + Dual Proj. 0.444885 1.000030 0.000034%
FW + Dual LMO (w/o post-processing) 0.428238 3.955514 10.406417%
FW + Dual LMO 0.399014 1.000015 0.000025%

Setup We test all attacks on the first 100 samples on the test set of MNIST with
ε = 0.5. All parameter settings are the same as the table in the main paper. Dual LMO
uses γ = 10−3 and projected Sinkhorn uses γ = 1/1000.

Wasserstein Constraint The (exact) Wasserstein distances presented in Table C.1
are calculated by a linear programming solver. We observe that all adversarial examples
strictly satisfy the the Wasserstein constraint W(x,xadv) ≤ 0.5. We also observe that the
Wasserstein adversarial examples generated by PGD with dual projection and FW with
dual LMO have much larger Wasserstein distance than those of projected Sinkhorn. This
again hightlights that projected Sinkhorn is only an approximate projection operator, thus
PGD cannot fully explore the Wasserstein ball, resulting in a weak attack.

Hypercube Constraint Without post-processing, all attacks generate Wasserstein
adversarial examples that violate the hypercube constraint a lot. However, after applying
our post-processing algorithm, the generated Wasserstein adversarial examples roughly
satisfy the hypercube constraint [0, 1]n up to a reasonable precision.
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