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Abstract

Dual manipulator systems are capable of accomplishing a variety of tasks, such as ma-
nipulating large and heavy objects and assembling parts, that might be impossible for
single manipulators. These collaborative tasks require dual manipulators to be driven by
a controller that can coordinate and synchronize the motions of the individual manipula-
tors. Furthermore, many domestic and industrial applications involve the manipulation of
objects with unknown properties. For instance, a cooking robot would have to deal with
many ingredients of different sizes and weights. In this thesis, an adaptive synchronous
controller for dual manipulator systems, that is capable of motion synchronization while
manipulating objects of unknown properties, is presented. This controller only utilizes
position information, hence does not require extra instrumentation, such as force sensors,
often not found in industrial manipulators. The performance of the controller is validated
through simulations which showed that the inclusion of motion synchronization errors in
controller design is critical in accomplishing collaborative tasks. The real-life implementa-
tion details are also discussed.
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Chapter 1

Introduction

1.1 Problem Domain and Motivation

Robots are becoming more and more prevalent both in domestic and industrial settings
such as manufacturing, medical robotics, and humanoid robotics. Articulated manipulators
are required to perform many complex tasks, such as assembly and welding. Some of these
tasks may involve heavy or big objects which are hard to manipulate with a single arm.
Moreover, most of the industrial manipulators are not mobile due to their high speed of
operation, limiting their workspace. Dual or multiple arm systems can help resolve the
aforementioned issues at the cost of increased computational and system complexity.

One of the reasons for the increased complexity stems from the fact that for any mean-
ingful collaborative task involving more than one manipulator, synchronization of motion
of manipulators must be taken into account. This means that the control methodologies
for trajectory tracking for single manipulator systems do not straightforwardly scale over
to multi-manipulator ones. As such, new control strategies need to be developed to better
utilize the advantages of multi-manipulator systems.

In this thesis, an adaptive synchronous position control design for dual manipulator
systems is presented and validated. Most of the existing industrial manipulators lack the
extra instrumentation required for non-position based synchronization control methods
such as force sensors. Hence, the focus on position control design allows for practical im-
plementation on a much wider range of manipulators whose functionalities can be extended
for use in collaborative tasks.
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1.2 The Control Problem and The Approach

In this thesis, we propose and validate a control scheme capable of coordinating the motion
of two manipulators with uncertain dynamics through their desired trajectories, while
simultaneously satisfying certain relative position and orientation constraints between their
end effectors. Such a controller is necessary in following common situations in industrial
settings:

1. Two manipulators moving an object with an unknown mass together.

2. Two manipulators moving separate objects with unknown masses that need to be
kept apart at a certain distance and / or orientation during their movement.

When the object to be manipulated is of unknown mass, it adds uncertainty to the
dynamics model of the manipulator. Once the object is grasped, it can be seen as a part of
the last link of the manipulator. Hence, the last link will have unknown centre of mass and
inertia. This uncertainty can be dealt with using an adaptive and/or robust controllers to
maintain end effector positioning accuracy.

Position tracking errors when following a trajectory are unavoidable since no controller
is perfect. In both aforementioned scenarios, the individual motion controller of each
manipulator needs to take into account the other’s tracking error. In the first scenario,
as the error difference between the manipulators increases, the reaction force on one of
the end effectors might increase greatly or one of the manipulators might lose grasp of the
object. In the second situation with two separate objects to move, the constraints on the
relative position and orientation of the objects directly relates to the position errors of the
manipulators. Therefore, synchronization must be incorporated to the overall controller
design to achieve a successful trajectory tracking in collaborative tasks.

The derivation of this controller design is introduced gradually, by starting from the
simplest case of joint-space trajectory tracking of a single manipulator to more involved
task-space trajectory tracking, and ending with simultaneous synchronization and trajec-
tory tracking of a dual manipulator system.

1.3 Thesis Contributions

Some works in the literature developed robust and adaptive methods for coordinated mo-
tion planning of dual arm industrial manipulators. However, these methods lack validation
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of their performance in realistic scenarios, and practical implementation details. They are
often hard to recreate due to either assumed background knowledge or lack of application
discussions. The main goal of this thesis is to present and analyze such an adaptive control
method using minimal sensors feedback and validate its performance through simulations
while discussing real-life practical considerations.

1.4 Thesis Outline

The thesis is structured in the following way. In Chapter 2, relevant background is pre-
sented together with a literature review. In Chapter 3, the design and analysis of the
individual adaptive tracking control scheme for each of the manipulators, in the joint and
the task space, are presented. The design and analysis of the synchronous adaptive con-
troller, which builds on the previous controllers and provides synchronization of motion
between the dual arm manipulators with individual trajectory tracking, is provided in
Chapter 4. The implementation considerations along with a realistic case study are pre-
sented in Chapter 5 to highlight the application and effectiveness of the control scheme
developed throughout this thesis. The conclusions are presented in Chapter 6.
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Chapter 2

Background and Literature Review

2.1 Background

2.1.1 Dynamics

There are two main methods to derive the dynamics equations of multibody systems in-
cluding robotic manipulators: Euler-Lagrange and Newton-Euler. Both methods produce
the same equations. However, the Euler-Lagrange formulation is more concise and straight-
forward since the internal forces need not be considered. Dynamics of manipulators are
explained in all fundamental robotics textbooks such as [2], [3], [4], [5]. The formulation
presented in [2] is repeated here for completeness. The Lagrangian is defined as:

L = K − P (2.1)

where K is the kinetic energy and P is the potential energy of the system. For a generalized
coordinate x and generalized force f , the following relationship holds:

d

dt

∂L
∂ẋ
− ∂L
∂x

= f (2.2)

For a manipulator, the generalized coordinates are the Denavit–Hartenberg (DH) pa-
rameters qi and the generalized forces are the torques in each joint τi where i is the joint
number. Therefore equation (2.2) becomes:
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d

dt

∂L
∂q̇i
− ∂L
∂qi

= τi where i = 1, .., n. (2.3)

Kinetic energy of the system can be calculated by summing the kinetic energies of the
links due to linear and angular velocities:

K =
1

2
mvTv +

1

2
ωTIω , (2.4)

where m is the total mass, v and ω are the linear and angular velocity vectors respectively
and I is the inertia tensor. All these terms are expressed in the inertial frame. The inertia
tensor in the body attached frame is a constant matrix whereas in the inertial frame, it
changes with time. The inertia tensor in the inertial frame (I) is related to body attached
frame inertial tensor (I) with the following equation:

I = RIRT , (2.5)

where R is the orientation transformation from the body attached frame and the inertial
frame. The linear and angular velocities can be calculated using the Jacobians correspond-
ing to each term.

vi = Jvi(q)q̇ , ωi = Jωi
(q)q̇ . (2.6)

Hence the kinetic energy of the system can be expressed as

K =
1

2
q̇T

[
n∑
i=1

miJ
T
vi
Jvi + JTωi

RiIR
T
i J

T
wi

]
q̇ (2.7)

=
1

2
q̇TD(q)q̇ .

D is called the inertia matrix and it is an n × n, symmetric and positive definite
matrix. Equation (2.7) can also be rewritten by expressing the matrix multiplication as a
summation

K =
n∑
i,j

dij(q)q̇iq̇j ,
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where dij represents the i, j-th element of the D matrix. Potential energy of each link i is
given by

Pi = mig
T rci , (2.8)

where mi is the mass of the link, g is the gravity force vector expressed in the inertial
frame and rci is the coordinate of the centre of mass of link i. Therefore, the Lagrangian
of an n-link robotic arm is

L = K − P

=
1

2

n∑
i,j

di,(q)q̇iq̇j − P (q) . (2.9)

Since the kinetic and potential energy of the system is now defined, the partial deriva-
tives in (2.3) can be calculated. First, the partial derivative with respect to the velocity of
each joint i is given by

d

dt

∂L

∂q̇i
=

d

dt

n∑
j

dij q̇j

=
n∑
j

dij q̈j +
n∑
j

d

dt
dij q̇j

=
n∑
j

dij q̈j +
n∑
j,k

∂dij
∂qk

q̇kq̇j . (2.10)

The partial derivative with respect to the position of joint i is

∂L

∂qi
=

1

2

n∑
j,k

∂dj,k
∂qi

q̇j q̇k −
∂P

∂qi
. (2.11)

Finally, (2.3) can be written for each joint k as

n∑
j

dkj q̈j +
n∑
i,j

[
∂dkj
∂qi
− 1

2

∂dij
∂qk

]
q̇iq̇j +

∂P

∂qk
= τk . (2.12)
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By exploiting the symmetry of the inertia matrix, it can be shown that

n∑
i,j

[
∂dkj
∂qi

]
q̇iq̇j =

1

2

n∑
i,j

[
∂dkj
∂qi

+
∂dki
∂qj

]
q̇iq̇j . (2.13)

Therefore, ∑
i,j

[
∂dkj
∂qi
− 1

2

∂dij
∂qk

]
q̇iq̇j =

∑
i,j

1

2

[
∂dkj
∂qi

+
∂dki
∂qj
− ∂dij
∂qk

]
q̇iq̇j

=
n∑
i,j

cijkq̇iq̇j . (2.14)

The terms cijk are Christoffel symbols of the first kind. By defining the partial derivative
of the potential energy with respect to position of generalized coordinates as

gk =
∂P

∂qk
, (2.15)

the Euler-Lagrange equation becomes

n∑
j=1

dkj(q)q̈j +
n∑
i=1

n∑
j=1

cijk(q)q̇iq̇j + gk(q) = τk , k = 1, ..., n . (2.16)

or, in the matrix form,

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ . (2.17)

Three important properties of the dynamics equation (2.17) are used when designing
controllers. These properties are given in the following remarks [2].

Remark 1. In (2.17), C(q, q̇) can be selected as such that the matrix N(q, q̇) = Ḋ(q) −
2C(q, q̇) is skew symmetric (i.e. njk = −nkj).

Remark 2. The inertia matrix (D(q)) is bounded and positive definite with the eigenvalues
0 < λ1 ≤ ... ≤ λn <∞.

Remark 3. The dynamics equation (2.17) is linear in inertial parameters, i.e., there exists
a function Y (q, q̇, q̈) such that

D(q)q̈ + C(q, q̇)q̇ + g(q) = Y (q, q̇, q̈)Θ , (2.18)

where Θ consists of inertial parameters such as link masses, length, and moments of inertia.

7



2.1.2 Sliding Mode Control

Sliding mode control is a nonlinear control method in which an n dimensional system
tracking or regulation problem can be reduced to a 1st order regulation problem. First a
sliding surface s(t) = 0 is defined and the control input is selected such that the system
dynamics tends to this sliding surface and “slides” on it, i.e. converges to the equilibrium
set defined by s(t) = 0 (as illustrated in Figure 2.1). The main controller task is performed
on the reduced order system hence it is a type of model order reduction [6].

s(t)

Figure 2.1: In sliding mode control, the states move to the sliding surface and slide on it
towards the origin.

The main control objective for manipulators is trajectory tracking which can be ex-
pressed as convergence of x to xd, where x and xd are actual and desired states, respec-
tively. The state x is the same dimension as the degrees of freedom for a non-redundant
manipulator. Sliding mode control allows capturing the trajectory tracking sufficiently
with the surface which is a scalar. The surface (s) can be defined as

s(x; t) =

(
d

dt
+ λ

)n−1

x̃ , (2.19)

where n is the dimension of the system (i.e. 6 for a 6 degrees of freedom non-redundant
manipulator), x̃ is the tracking error and λ is a positive-definite matrix, a design parameter.
Given the initial condition xd(0) = x(0), the surface s is representative of the true measure
of tracking performance [7] and as such the bounds on s translates to bounds on tracking
error, x̃.

Design of a controller such that

1

2

d

dt
s2 ≤ −η|s| , (2.20)
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where η is a positive constant makes sure that the states converge to the sliding surface
s(t) = 0. The design can be extended to MIMO (multiple input, multiple output) ma-
nipulator system cases, defining s as a vector of sliding mode variables instead of a scalar
variable and replacing (2.20) with

1

2

d

dt
sT s ≤ −η(sT s)1/2 . (2.21)

2.2 Literature Review

2.2.1 Single Arm Controllers

The dynamics of manipulators are nonlinear due to the coupling between links. Control
designs considering this nonlinear dynamics without modeling simplification lead to sophis-
ticated nonlinear control structures. Most of the more practical and effective approaches
model the coupling and other nonlinear dynamic effects as disturbances and treat the sys-
tem as multiple SISO (single input, single output) systems, one system for each joint. This
approach, called independent joint control [2], allows use of various well developed linear
control structures to be used such as proportional-integral-derivative (PID) and Linear
Quadratic Regulation (LQR) controllers. However, to reduce the coupling effects (hence,
the disturbances) the gear ratio between the motors and links need to be increased. This
results in slower action response of the links, defeating the purpose of using robotic arms
in high throughput environments.

Ineffectiveness of independent joint control prompted researchers to look into different
methods that exploit some of the properties of robot dynamics. One of these methods
called computed torque control, first explained in [8] and [9], takes advantage of the fact
that the inertia matrix D is invertible. By choosing the input torque τ in the form

τ = Daq + Cq̇ + g , (2.22)

(2.17) becomes equivalent to the simple double integrator dynamics

q̈ = aq . (2.23)

At this point, the input for the system is transformed from torque to acceleration
and the equivalent closed-loop system is linear. Various linear control methods can be
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used to obtain the desired performance for (2.23). However, exact knowledge of D and C
matrices are required to implement the control law (2.22). This drawback can be addressed
with the use of adaptive and/or robust control schemes. To make the computed torque
control law (2.22) to be robust to uncertainties and time variations, another term is added.
This additional term is designed according to the bounds described in Remark 2. Robust
computed torque methods were introduced in [10] and [11]. These methods are similar
to the sliding mode control, and have been applied to manipulators in [12]. In adaptive
control, the control parameters are tuned on-line as opposed to non-adaptive controllers
with constant parameters. The on-line tuning of the control parameters is done using
an adaptive law, that is typically defined to minimize a model matching cost function
via gradient descent or least-squares (LS). For defining such an adaptive law, first, the
system model is written in parametric form where the vector of parameters that need to be
estimated are separated from the measurable system variables, that are typically collected
in a single matrix or vector, called the regressor. For robotic arms such parameterization
exists based on Remark 3. In this case, Y is the regressor and Θ is the vector of parameters.
The adaptive law is constructed such that the parameter estimates tend to their true values
with time. A key example of adaptive computed torque control can be seen in [13]. Several
other control strategies are developed for robotic arms other than the computed torque
approach using different properties of robot dynamics such as passivity [14] where robust
and adaptive control techniques are also employed.

2.2.2 Dual Arm Controllers

To take advantage of multiple manipulator systems, the movement of the manipulators
must be coordinated. Coordination is achieved by constraining the kinematic and dynamic
relationship between individual arms. Carrying the same load, an assembly task where
one arm holds the piece while the other arm assembles a component onto it are some
examples of coordinated motions. Most of the robot manipulator control literature, as
also mentioned in Subsection 2.2.1, is focused on single manipulator systems; controller
design for multiple arm systems still has unsolved challenges. The traditional approaches
to multiple arm system control are master-slave control [15] and cooperative control [16].
The downside of the designs in [15], [16] is the need for force measurements which require
extra hardware (i.e. force sensors). Also, the estimation of internal forces may not be
reliable in real life problems [17]. Position synchronized control addresses this problem
by using only the kinematic properties in controller design [18]. Next, an overview of the
existing literature for position synchronized control will be given since this is the method
employed in this thesis.

10



First controllers designed for position synchronized control were in the joint space of
the robots as opposed to the task space since it simplifies the problem. [19] developed an
adaptive synchronized controller for an assembly task using the cross coupling technique
(feeding one manipulators kinematic information to another’s controller). [20] introduced
a velocity observer to estimate the velocity of each joint since this information is not
available in real life systems. Uncertainties in kinematic and dynamic properties of robots
were considered in some of the designs such as the aforementioned adaptive controller in
[19], and the robust adaptive terminal sliding mode synchronized controller in [21].

Aforementioned examples of coordinated motions are done in the task space (i.e. end
effector positions in cartesian coordinates) and as such controllers designed in task space are
more suitable for multiple manipulator systems. Research on task space synchronization
control focuses on different parts of the problem. Namely, uncertainties in kinematics
and/or dynamics and how each robot share information (the properties of the network).
[22] and [23] deal with kinematic and dynamic uncertainties by estimating the Jacobian.
They differ in the topology of the network graph and [22] only considers dual arm systems
whereas others do not have this limitation. However, in this thesis only dual arm systems
are considered and as such the differences in topology or limitation on robot count do not
matter. Another approach is to exploit the passivity property of the manipulator dynamics.
[24] and [25] are examples of adaptive controller design for multiple manipulator systems
based on passivity.

2.2.3 Applications of Dual Manipulator Systems

Many domestic and industrial applications of dual manipulator systems are studied in the
literature. Due to the fact that deformable object manipulation is easier to accomplish
with two manipulators, clothes manipulation is one of the focus areas of domestic appli-
cations. [26] is one of the earliest research on this subject and focuses on the planning of
unfolding clothes that are grasped by two manipulators. Similarly, [27] utilizes two indus-
trial manipulators equipped with inchworm grippers to perform edge tracing to spread a
towel. [28] uses the Willow Garage PR2 robotic platform which is equipped with dual ma-
nipulators to demonstrate the effectiveness of their cloth grasp point detection algorithm.
Cooking is another area of domestic applications that is being explored. [29] accomplishes
several cooking tasks such as peeling vegetables and making a salad with a humanoid
robot. [30] presents an experiment involving two PR2 robots working collaboratively to
make pancakes.

When it comes to industrial applications, the main focus of research is on assembly
tasks in manufacturing environments. [31] is an example of an early concept on how dual
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manipulator systems can be used to assemble a gearbox. [32] demonstrates a common
assembly problem of inserting a peg into a slot with dual manipulators. Another frequent
assembly task of screwing nuts is successfully performed by a dual manipulator system
in [33]. In addition to assembly tasks, flexible beam deforming has important industrial
applications. A control algorithm for a dual manipulator system capable of bending and
manipulating sheet metal is proven with experiments in [34]. Two Puma 560 manipulators
are utilized in [35] to bend a flexible sheet.
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Chapter 3

Adaptive Controller Design

In this chapter, an adaptive controller for a single manipulator is developed to realize a
desired motion when an object with unknown mass is being manipulated. This design
will later be combined with the synchronization and coordination control design to be
presented in Chapter 4. First, the controller is designed for trajectories given in the joint
space and then the task space, which introduces more complexity. The design process is
accompanied by examples from a planar arm with two links. However, the choice of a
manipulator with two degrees of freedom is only to restrict the size of matrices and the
controller is applicable to spatial robot arms with higher degree of freedom as well. This
controller design follows the design steps presented in [36], [7].

3.1 Joint Space Adaptive Controller

In this section a robust controller for joint space trajectories is developed by utilizing sliding
control. The preliminaries of such controllers are given in Section 2.1.2. The first step is
to define the sliding surface that will capture the states of the system. The states in the
case of a manipulator are represented by q, the vector denoting the joint angles, since the
controller operates in the joint space. The definition of a surface were given in Equation
(2.19). For a manipulator the sliding surface can be defined as

s = ˙̃q + Λq̃ = q̇ − q̇r = 0 . (3.1)

Λ is a positive-definite matrix that can be seen as the analog of proportional control
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in PID systems. q̇r is called the reference velocity which can be thought as a shift in the
desired velocities (q̇d) according to joint position errors (q̃).

q̇r = q̇d − Λq̃ (3.2)

The states of the manipulator (q) following the reference state (qr) means that they
are on the surface defined in Equation (3.1). Then the dynamic equation of the system
becomes

D(q)q̈r + C(q, q̇)q̇r = Yr(q, q̇, q̇r, q̈r)Θ . (3.3)

Example 3-1. Deriving Yr For a Planar Manipulator

q1

q2l1

l2

lc1

lc2

Figure 3.1: Planar manipulator with two revolute joints.

Consider the planar manipulator with two revolute joints, depicted in Figure 3.1, with
link mass mi, link moment of inertia Ii, joint angle qi, link length li and centre of mass
length lci for i = 1, 2. The forward kinematics of the planar arm is formulated using
geometry as [

x1
x2

]
=

[
l1 cos(q1) + l2 cos(q2)
l1 sin(q1) + l2 sin(q2)

]
. (3.4)

x represents the end effector position vector. The Jacobian (J = ∂x
∂q

), its derivative

J̇ and its inverse J−1 are required for the design of the proposed task space adaptive
controller.
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J =

[
−l1 sin(q1)− l2 sin(q1 + q2) −l2 sin(q1 + q2)
l1 cos(q1) + l2 cos(q1 + q2) l2 cos(q1 + q2)

]
(3.5)

J̇ =

[
−l1 cos q1q̇1 − lc2 cos(q1 + q2) (q̇1 + q̇2) −lc2 cos(q1 + q2) (q̇1 + q̇2)
−l1 sin q1q̇1 − lc2 sin(q1 + q2) (q̇1 + q̇2) −lc2 sin(q1 + q2) (q̇1 + q̇2)

]
(3.6)

J−1 =

[
cos(q1+q2)
l1 sin(q1)

sin(q1+q2)
l1 sin(q2)

− cos(q1)
lc2 sin(q2)

− cos(q1+q2)
l1 sin(q2)

− sin(q1)
lc2 sin(q2)

− sin(q1+q2)
l1 sin(q2)

]
(3.7)

The determinant of the Jacobian (3.8) shows that singularities will occur when q2 = 2πk
where k = 0, 1, ..., n.

|J | = l1lc2 sin(q2) (3.8)

The dynamics of the planar arm is given in Equation (3.9). Each term is defined the
same as the dynamics equation for manipulators given in Equation (2.17) in Chapter 2.

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ ,

[
m1l

2
c1 +m2 (l21 + l2c2 + 2l1l

2
c2 + 2l1lc2 cos q2) + I1 + I2 m2 (l2c2 + l1lc2 cos q2) + I2

m2 (l2c2 + l1lc2 cos q2) + I2 m2l
2
c2 + I2

] [
q̈1
q̈2

]
+

(3.9)[
−m2l1lc2 sin q2q̇2 −m2l1lc2 sin q2 (q̇1 + q̇2)
m2l1lc2 sin q2q̇1 0

] [
q̇1
q̇2

]
=

[
τ1
τ2

]
As mentioned before, the purpose of an adaptive controller is to command the manip-

ulator to a certain position in the absence of parameter knowledge. In order to do that,
the parameter terms need to be separated from the rest. This is possible due to Remark 3
in Chapter 2. Let Θ and Yr represent a collection of inertial parameters, and the regressor
matrix containing rest of the terms making up the dynamics equation respectively. For the
two link planar arm case, Θ can be found as
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Θ =

I1 +m1l
2
c1 + I2 +m2l

2
c2 +m2l

2
1

I2 +m2l
2
c2

m2l1lc2

 . (3.10)

In order to find the regressor matrix, D and C matrices need to be expressed in terms
of Θ,

D =

[
Θ1 + 2Θ3 cos(q2) Θ2 + Θ3 cos(q2)
Θ2 + Θ3 cos(q2) Θ2

]
, (3.11)

C =

[
−Θ3 sin(q2)q̇2 −Θ3 sin(q2) (q̇1 + q̇2)
Θ3 sin(q2)q̇1 0

]
. (3.12)

Yr can be calculated by plugging in D and C matrices from Equations (3.11) and (3.12)
respectively into (3.3).

Yr =

[
q̈r1 q̈r2 2q̈r1 cos(q2) + q̈r2 cos(q2)− q̇2q̇r1 sin(q2)− (q̇1 + q̇2) q̇r2 sin(q2)
0 q̈r1 + q̈r2 q̈r1 cos(q2) + q̇1q̇r1 sin(q2)

]
(3.13)

In order to generate the torque τ to drive the system states to the sliding surface,
a constructive Lyapunov analysis is carried out. Note that, the matrix D(q) is always
positive definite per mark 2, consider the positive definite (Lyapunov) function,

V0(t) =
1

2
(sTDs) . (3.14)

The time derivative of V0 is calculated, using (3.1), as

V̇0(t) = sT (Dq̈ −Dq̈r) +
1

2
sT Ḋs ,

= sT (Dq̈ −Dq̈r) + sTCs . (3.15)

noting that Ḋ − 2C is skew symmetric per Remark 1. (2.17) is substituted to rewrite
(3.15) in terms of the input torque τ , leading to
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V̇0(t) = sT (τ − g −Dq̈r − Cq̇r) . (3.16)

Now the input can be selected in such a way to make sure V̇0 < 0,

τ = τ̂ − k � sgn(s) , (3.17)

where the sgn() operator applies element-wise to the vector s, and τ̂ = D̂q̈r+ Ĉq̇r+g is the
control input that would make V̇0 equal to zero if the system dynamics were known exactly.
The superscript hat represents an estimated value of a parameter (e.g. τ̂ is the estimated
value of the torque) whereas the superscript tilde represent the difference between the
estimated (or desired) and actual value of a parameter (e.g. D̃ = D̂ −D).

V̇0 = sT (D̂(q)q̈r + Ĉ(q, q̇)q̇r −
n∑
n=1

ki|si| , (3.18)

where s = [s1, . . . , sn]T , and k = [k1, . . . , kn]T is a constant vector that must be selected ac-

cording to the known bounds of the dynamics of the system ki ≥
∣∣∣D̃q̈r + C̃(q, q̇)q̇r + G̃(q)

∣∣∣
i
+

ηi for certain positive design constants ηi, for i = 1, . . . , n. Choosing k in such a fashion
results in the following inequality which represents the sliding condition:

V̇0 ≤ −
n∑
n=1

ηi|si| . (3.19)

The sliding condition (3.19) ensures that the trajectories reach the sliding surface s =
0 and remain there. To incorporate parameter estimation into Lyapunov analysis, the
Lyapunov function V0 is replaced, to capsulate the parameter estimation error Θ̃ = Θ̂−Θ,
with the Lyapunov-like function:

V (t) =
1

2
[sTDs+ Θ̃TΓ−1Θ̃] . (3.20)

Using (3.16), the time derivative of (3.20) is calculated as

V̇ (t) = sT (τ − g −Dq̈r − Cq̇r) +
˙̂
ΘTΓ−1Θ̃ . (3.21)

Based on (3.21), the control law (3.17) is modified as

τ = YrΘ̂−Kds , (3.22)
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the term YrΘ̂ replaces the non-adaptive term τ̂ in (3.17), written in the form that allows
the separation of parameters from system dynamics, and Kds term is a simple derivative
term , with Kd being a positive definite gain matrix, which replaces k� sgn(s). Therefore
V̇ becomes

V̇ (t) = sTYrΘ̃− sTKds+
˙̂
ΘTΓ−1Θ̃ . (3.23)

Selecting the adaptive parameter estimation law as

˙̂
Θ = −ΓY T

r s , (3.24)

results in V̇ (t) = −sTKds ≤ 0. The sliding condition is satisfied again, ensuring the
convergence of the states to the surface s and hence showing that q̃ and ˙̃q are tending to
zero as t approaches infinity.

The block diagram for the overall system can be seen in Figure 3.2.

trajectory

qd q̇d

sliding surface
qr

q̇r

regressor matrix

Y

s

parameter
estimation

Θ̂

torque

calculation

τ
plant

q

qd

Figure 3.2: Block diagram for the adaptive joint space controller.

3.2 Numerical Simulation of Joint Space Adaptive Con-

troller

To validate the controller developed in Section 3.1, we consider the trajectories
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qd1 = 30◦ sin(πt) ,

qd2 = 45◦ sin(πt) , (3.25)

in a simulation of the planar arm shown in Figure 3.1 with properties given in Table 3.1.

Table 3.1: Parameter values of a planar manipulator with two revolute joints.

Parameter Description Value Unit
l1 Length of link 1 1 m
lc1 Length of centre of mass of link 1 0.5 m
m1 Mass of link 1 1 kg

I1 Moment of inertia of link 1 .12 kg
m2

l2 Length of link 2 1.2 m
lc2 Length of centre of mass of link 2 0.6 m
m2 Mass of link 2 2 kg

I2 Moment of inertia of link 2 .25 kg
m2

The design parameters of the simulation are selected as:

Λ =

[
200 0
0 200

]
,

Γ =

0.03 0 0
0 0.05 0
0 0 0.1

 ,

Kd =

[
800 0
0 800

]
. (3.26)

It is assumed that there is no prior knowledge on the system parameters, i.e. the initial
estimate is set to Θ̂(0) = 0. The actual joint angle qi and the desired angle qdi for i = 1, 2
are plotted in Figures 3.3 and 3.4 respectively. Even without any knowledge of the system
parameters, the controller effectively tracks the desired trajectory. The lack of assumed
knowledge on the link masses and inertias also implies that this controller is able to perform
the same if an unknown object was attached to the end effector.
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Figure 3.3: The actual and desired joint angles of link 1 of the adaptive joint space con-
troller.
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Figure 3.4: The actual and desired joint angles of link 2 of the adaptive joint space con-
troller.

The root mean square error (RMSE) of the joint positions, q̃1 and q̃2, are tabulated in
Table 3.2. Excluding the first few seconds of the motion decreases the RMSE since the
estimation of unknown system parameters have not converged to satisfactory values by
then. Even with the beginning of the motion included, the RMSE is less than a degree,
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showcasing the effectiveness of the control design.

Table 3.2: The root mean square errors of joint position of the adaptive joint space con-
troller simulation.

Parameter RMSE RMSE After 1s RMSE After 2s
q̃1 0.9907◦ 0.0357◦ 0.0333◦

q̃2 0.2566◦ 0.0185◦ 0.0176◦

The parameter estimation is shown in Figure 3.5. The actual parameter vector of the

system is Θ =
[
4.98 0.97 1.2

]T
and as such it is clear that the parameter estimates

are not converging to the actual parameter values. However, this is expected since the
controller is designed to follow the trajectory, not to estimate the parameters accurately
as seen in the Lyapunov analysis.
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15

20

25
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Figure 3.5: Parameter estimation of the adaptive joint space controller.
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3.3 Task Space Adaptive Controller

Following the kinematic relation ẋ = Jq̇ [4], where x denotes the end effector position
vector, the surface defined in Equation (3.1) can be written in the task space by expressing
reference velocity and accelerations in terms of end effector positions, as

q̇r = J−1 [ẋd − Λx̃] , (3.27)

q̈r = J−1
[
ẍd − Λ ˙̃x− J̇ q̇r

]
, (3.28)

where x̃ = x− xd for the reference position xd therefore, the sliding surface becomes

s = J−1 [Jq̇ − ẋd + Λx̃] . (3.29)

The controller design is essentially identical to the joint space controller except the way
the surface is calculated. As such, the Lyapunov analysis that was carried out in Section
3.1 holds true for the task space controller. The desired joint angles (qd) are not needed as
seen from Equation (3.28). Hence, inverse kinematics calculations are not necessary. The
only extra step is to calculate the real end effector positions using forward kinematics once
the joint angles are read through the encoders.

There are two major implications of this definition of the surface in the task space.

1. The Jacobian and forward kinematics of the system must be known.

2. Since the inverse of Jacobian is utilized, the determinant of the Jacobian cannot be
zero (ie. singularities must be avoided).

As seen in Equation (3.5), and Equation (3.4) the Jacobian and the forward kinematics
only require the knowledge of link lengths and joint angles. It is reasonable to assume that
the link length of a robot will be known to the controller designer. However, if the arm is
picking up an object of an unknown length, the length of the last link becomes unknown
as well. Because of this, it is assumed in this controller design that the object being picked
up is not of a significant length to affect the controller stability.

The desired trajectory must be designed to avoid singularities. In the case of a planar
arm, the determinant of the Jacobian given by Equation (3.8) necessitates that the joint
angle of link 2 cannot be zero during the trajectory execution.
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3.4 Numerical Simulation of Task Space Adaptive Con-

troller

The effectiveness of this controller is demonstrated with a simulation for the same planar
arm depicted in Figure 3.1 with parameters given in Table 3.1. For the purpose of the
simulation, the desired trajectory is designed to be a third order polynomial, so that it
generates smooth velocities and accelerations.

xd(t) = At3 +Bt2 + Ct (3.30)

where A, B and C are 2× 1 coefficient matrices that needs to be calculated according to
initial (x(0)) and final (x(tf )) desired positions and the time it takes to complete the tra-
jectory (tf ). When the initial and final velocity and accelerations are zero, the coefficients
can be calculated as

[
Ai
Bi

]
=

[
t3f t2f
3t2f 2tf

]−1 [
xdi(tf )− xdi(0)

0

]
(3.31)

Ci = xdi(0) . (3.32)

where i = 1, 2 for the planar arm. For xd(0) =
[
0.594 0.078

]T
, xd(tf ) =

[
0.246 0.472

]T
and tf = 10, the trajectory has the properties shown in Figure 3.6. Both joint and effector
positions and velocities are smooth. The singularities avoided since q2 is never zero. The
design parameters are chosen the same as the joint space controller parameters given in
Equation (3.26).

The simulation is conducted assuming no knowledge of the system parameters, i.e.
initial Θ̂ = 0. The error (x̃) between desired (xd) and the actual (x) end effector positions
are plotted in Figure 3.7 and 3.8. Even without any knowledge of system parameters, the
controller tracked the desired trajectory satisfactorily.

The root mean square error (RMSE) of the end effector position in x (x̃1) and in y (x̃2)
are tabulated in Table 3.3. As it was the case in the joint space adaptive controller, the
RMSE decreases when the first few seconds of the motion is excluded due to uncertainty of
the system parameters. Regardless, the RMSE is less than a millimeter during the whole
motion.
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Figure 3.6: The desired trajectory for the task space controller simulation.
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Figure 3.7: Position error in x of the end effector of the adaptive task space controller.
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Figure 3.8: Position error in y of the end effector of the adaptive task space controller.

The parameter estimation is shown in Figure 3.9. The real parameters of the system

are Θ =
[
4.98 0.97 1.2

]T
and the estimated values are not converging to the real values

as was the case for the joint space adaptive controller.
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Table 3.3: The root mean square of the end effector position errors of the adaptive task
space controller.

Parameter RMSE RMSE After 1s RMSE After 2s
x̃1 8.231× 10−5 m 7.572× 10−5 m 7.531× 10−5 m
x̃2 2.519× 10−4 m 8.994× 10−5 m 7.988× 10−5 m
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Figure 3.9: Parameter estimation of the adaptive task space controller.

The torques applied to the joints are shown in Figure 3.10. The maximum torque
applied is less than 100 [Nm] which is a reasonable amount.
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Figure 3.10: Applied torques of the adaptive task space controller.

3.5 Summary

In this chapter, two adaptive controllers, one in the joint and one in the task space, for a
single manipulator that is capable of tracking a desired trajectory without any knowledge
on system parameters, such as link masses and inertias, were developed and validated
through simulations. Since the system parameters are assumed to be unknown, these
controllers are also capable of manipulating an object of unknown mass and inertia, granted
that the said object’s length is not large. The task space adaptive controller is the basis
of the adaptive synchronous controller presented in Chapter 4 that extends this design to
dual manipulator systems.
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Chapter 4

Adaptive Synchronous Controller
Design

In this chapter, the controller developed in Chapter 3 will be improved to handle collabo-
rative tasks with dual manipulators such as:

1. Manipulating an object together.

2. Accomplishing a coordinated motion where there are kinematic constraints between
two end effectors.

The goal of this controller is to ensure both manipulators track their desired trajectories
while ensuring that position errors between the two are minimized in the presence of
parameter uncertainty. The joint space synchronization error between the manipulators i
and j is defined as

εi,j = x̃(i) − x̃(j) . (4.1)

The superscripts denote the indices of the manipulators. For synchronized tracking,
the controller design must guarantee that all the x̃(i) and εi,j terms tend to zero as time, t,
tends to infinity.

The kinematics and dynamics of each manipulator in the system is the same as the
single manipulator case given in Chapter 3 since the controller developed in this chapter
consists of decentralized and coupled individual controllers for each manipulator. This
design was first presented in [19] and [17] which expand on the adaptive control design for
a single manipulator developed in [36] and [7].
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4.1 Adaptive Sliding Controller Design

When determining the sliding surface for the adaptive sliding controller for a single manip-
ulator, the difference between the desired and actual positions were considered. Similarly,
for synchronization of the motions, the difference between the synchronization errors in
Equation (4.1) need to be encoded along side the trajectory errors. Hence, e is defined to
encapsulate this idea in Equation (4.2).

e1(t) = x̃(1)(t) + β

∫ t

0

ε1,2(w)dw

e2(t) = x̃(2)(t) + β

∫ t

0

ε2,1(w)dw (4.2)

Similar to virtual velocity concept introduced in the previous chapter, u is defined to be
the virtual command signal that consists of desired velocities shifted by the accumulated
synchronization error scaled by a positive-definite matrix β:

u1 = ẋ
(1)
d + βε1,2 + Λe1

u2 = ẋ
(2)
d + βε2,1 + Λe2 (4.3)

Then, the sliding surface for each manipulator i = 1, 2 is defined as

si = ėi + Λei = ui − ẋ(i) = 0 . (4.4)

Λ is a positive-definite design matrix to be chosen. A pair of input torques for the
system to slide on the surface (4.4) are given by

τ1 = D̂1u̇1 + Ĉ1u1 +Kds1 +Kεε1,2

= Y1 (x1, ẋ1, u1, u̇1) Θ̂1 +Kds1 +Kεε1,2 ,

τ2 = D̂2u̇2 + Ĉ2u2 +Kds2 +Kεε2,1

= Y2 (x2, ẋ2, u2, u̇2) Θ̂2 +Kds2 +Kεε2,1 . (4.5)
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where Kd and Kε are positive definite matrices that need to be chosen as well. The
adaptation parameter estimation law is chosen, similarly to Chapter 3, as

˙̂
Θi = −ΓY T

i si . (4.6)

where Γ is a positive definite gain matrix. Note that the regressor matrix Yi is defined in
terms of x(i), ẋ(i), ui, and u̇i. Substituting (4.5) into the system dynamics results in

D1ṡ1 + C1s1 = Y1
(
x(1), ẋ(1), u1, u̇1

)
Θ̃1 ,

D2ṡ1 + C2s2 = Y2
(
x(2), ẋ(2), u2, u̇2

)
Θ̃2 . (4.7)

Reference velocities and accelerations can be calculated using the following equations
so that the same regressor matrix shown in Equation (3.13) can be utilized.

q̈ri = J−1
i

(
u̇i − J̇iJ−1

i ui

)
(4.8)

q̇ri = J−1
i ui (4.9)

4.2 Lyapunov Analysis

First, a positive definite Lyapunov like function is defined as

V =

[
1

2
sT1D1s1 +

1

2
Θ̃T

1 Γ−1
1 Θ̃1 +

1

2
εT1,2Kεε1,2

]
+

[
1

2
sT2D2s2 +

1

2
Θ̃T

2 Γ−1
2 Θ̃2 +

1

2
εT2,1Kεε2,1

]
+

1

2

(∫ t

0

ε1,2(w)Tdw

)
KεΛβ

∫ t

0

ε1,2(w)dw

+
1

2

(∫ t

0

ε2,1(w)Tdw

)
KεΛβ

∫ t

0

ε2,1(w)dw . (4.10)

Taking the time derivative of the Lyapunov functions yields
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V̇ = sT1D1ṡ1 +
1

2
sT1 Ḋ1s1 + Θ̃T

1 Γ−1
1

˙̃Θ1 + εT1,2Kεε̇1,2

+ sT2D1ṡ+
1

2
sT2 Ḋ2s2 + Θ̃T

2 Γ−1
2

˙̃Θ2 + εT2,1Kεε̇2,1

+ εT1,2KεΛβ

∫ t

0

ε1,2(w)dw + εT2,1KεΛβ

∫ t

0

ε2,1(w)dw . (4.11)

Multiplying both sides of Equation (4.7) by si and substituting the resulting equations
to (4.11) results in

V̇ =− sT1 kds1 + s1 + sT1 Y1 (x1, ẋ1, u1, u̇1) Θ̃1 + Θ̃T
1 Γ−1

1
˙̃Θ1 + εT1,2Kεε̇1,2

− sT2 kds2 + s2 + sT2 Y2 (x2, ẋ2, u2, u̇2) Θ̃2 + Θ̃T
2 Γ−1

2
˙̃Θ2 + εT2,1Kεε̇2,1

− (s1 − s2)T Kεε1,2 − (s2 − s1)T Kεε2,1 − εT1,2KεΛβ

∫ T

0

ε1,2(w)dw

+ εT2,1KεΛβ

∫ T

0

ε2,1(w)dw . (4.12)

The adaptation equation (4.6) can be rewritten as

sTi YiΘ̃i + Θ̃Γ−1
i

˙̃Θi = 0 . (4.13)

From Equations (4.1), (4.2), (4.4), we get

s1 − s2 = ε̇1,2 + Λε1,2 + 2βε1,2 + 2Λβ

∫ t

0

ε1,2(w)dw ,

s2 − s1 = ε̇2,1 + Λε2,1 + 2βε2,1 + 2Λβ

∫ t

0

ε2,1(w)dw . (4.14)

This results in,
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(s1 − s2)T Kεε1,2 + (s2 − s1)T Kεε2,1

= ε1,2Kεε̇1,2 + εT1,2KεΛε1,2 + ε2,1Kεε̇2,1 + εT2,1KεΛε2,1

+ 2
(
εT1,2Kεβε1,2 − εT1,2Kεβε2,1

)
+ 2

(
εT2,1Kεβε2,1 − εT2,1Kεβε1,2

)
+ 2

(
εT1,2KεΛβ

) ∫ t

0

ε1,2(w)dw + 2
(
εT2,1KεΛβ

) ∫ t

0

ε2,1(w)dw

− ε1,2KεΛβ

∫ t

0

ε2,1(w)dw − ε2,1KεΛβ

∫ t

0

ε1,2(w)dw . (4.15)

Substituting in (4.13) and (4.15) into (4.12) yields

V̇ = −sT1Kds1 − εT1,2KεΛε1,2 − sT1Kds1 − εT1,2KεΛε1,2

− (ε1,2 − ε2,1)T Kεβ (ε1,2 − ε2,1)− (ε2,1 − ε1,2)T Kεβ (ε2,1 − ε1,2) (4.16)

≤ 0 .

Hence, the input torques and the adaptation law guarantees that the derivative of the
Lyapunov function is always negative. This means that the system will tend to the sliding
surface defined in (4.4) and will stay there. This ensures that the position errors x̃(i) and
the synchronization errors ei will converge to zero as time, t, approaches infinity. This
control system is shown in the block diagram in Figure 4.1. If Kε and β are chosen to be
0, this controller effectively reduces to the adaptive task controller proposed in Chapter 3.
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Figure 4.1: Block diagram for the adaptive synchronous controller.
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4.3 Simulation and Performance Analysis

This controller design is simulated with the dual planar manipulator setup shown in Figure
4.2 with the parameters given in Table 4.1.

q1,1

q1,2l1,1

l1,2

lc1,1

lc1,2

q2,1

q2,2 l2,1

l2,2

lc2,1

lc2,2

Figure 4.2: System consisting of two planar manipulators with two links.

Table 4.1: Parameters of dual planar arm system.

Parameter Description Man. 1 Man. 2 Unit
l1 Length of link 1 1.0 1.0 m
lc1 Length of centre of mass of link 1 0.5 0.5 m
m1 Mass of link 1 1.0 1.0 kg

I1 Moment of inertia of link 1 0.12 0.12 kg
m2

l2 Length of link 2 1.2 2.4 m
lc2 Length of centre of mass of link 2 0.6 0.6 m
m2 Mass of link 2 2 2 kg

I2 Moment of inertia of link 2 0.25 0.50 kg
m2

The desired trajectories for each manipulator are calculated using Equation (3.30), the
same way as the adaptive task controller simulation outlined in the previous chapter. For
manipulator 1, the trajectory parameters given in Equation (4.17) are plotted in Figures
4.3 and 4.4 for task and joint positions respectively. Similarly, for manipulator 2, the
trajectory parameters given in Equation (4.18) are plotted in Figures 4.5 and 4.6 for task
and joint positions respectively.
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tf = 10

x
(1)
d (0) =

[
0.298 0.467

]T
x
(1)
d (tf ) =

[
−0.023 0.532

]T
(4.17)

tf = 10

x
(2)
d (0) =

[
0.594 0.078

]T
x
(2)
d (tf ) =

[
−0.115 0.520

]T
(4.18)
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Figure 4.3: The desired end effector trajectory for manipulator 1 for the adaptive syn-
chronous controller simulation.
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Figure 4.4: The desired joint positions for manipulator 1 for the adaptive synchronous
controller simulation.
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Figure 4.5: The desired end effector trajectory for manipulator 2 for the adaptive syn-
chronous controller simulation.
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Figure 4.6: The desired joint positions for manipulator 2 for the adaptive synchronous
controller simulation.

The design parameter choices are given in Equation (4.19).

Λ =

[
200 0
0 200

]

Γ =

0.03 0 0
0 0.05 0
0 0 0.1


Kd =

[
800 0
0 800

]
Kε =

[
800 0
0 800

]
β =

[
10 0
0 10

]
(4.19)

The actual and desired positions of the end effector of manipulator 1 and manipulator
2 are shown in Figures 4.7 and 4.8 respectively. After a few seconds of settling time, the
actual and desired trajectories are more or less identical. This shows that the synchronous
adaptive controller is as effective as the adaptive task controller when it comes to individual
trajectory tracking. Looking into the root mean square error (RMSE) of the end effector
positions given in Table 4.2 leads to the same conclusion. Two seconds into the motion,
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the RMSE is less than a millimeter except the x position of the end effector of manipulator
2. After six seconds that drops below a millimeter as well.
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Figure 4.7: The actual and desired positions of the end effector of manipulator 1 in x and
y with the adaptive synchronous controller.
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Figure 4.8: The actual and desired positions in x and y of the end effector of manipulator
2 with the adaptive synchronous controller.

The parameter estimation for both manipulators is shown in Figure 4.9. The real

parameters of the system are Θ1 =
[
4.98 0.97 1.2

]T
and Θ2 =

[
6.31 1.94 2.4

]T
for

manipulator 1 and manipulator 2 respectively. The estimated values are not converging
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Table 4.2: The root mean square error of the end effector positions of the manipulators
controlled by the adaptive synchronous controller.

Parameter RMSE RMSE After 1s RMSE After 2s RMSE After 6s

x̃
(1)
1 7.072× 10−4 m 7.022× 10−4 m 6.998× 10−4 m 5.009× 10−4 m

x̃
(1)
2 1.156× 10−4 m 1.149× 10−4 m 1.144× 10−4 m 8.26× 10−5 m

x̃
(2)
1 0.001 m 0.001 m 0.001 m 8.636× 10−4 m

x̃
(2)
2 0.002 m 0.001 m 9.378× 10−4 m 7.083× 10−4 m

to the real values as expected. Similar to joint and task space adaptive controllers, the
control design did not aim for actual parameter estimation.
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Figure 4.9: Parameter estimation of the adaptive synchronous controller.

The torques applied to the joints of each manipulator are shown in Figure 4.10. After
the unstable few seconds in the beginning, the torque values are in a reasonable bound.
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Figure 4.10: Applied torques of the adaptive synchronous controller.

The synchronization errors (e) are shown in Figures 4.11. For comparison, 4.12 demon-
strates the synchronization error when the task space controller from Chapter 3 is used.
The adaptive synchronous controller provides better performance, the synchronization er-
ror practically settles to zero in both axes. Whereas in the adaptive task space controller,
even though the synchronization error in x is negligible, it is around 2.5 [mm] in the y axis.
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Figure 4.11: Synchronization errors between the manipulators with the adaptive syn-
chronous controller.
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Figure 4.12: Synchronization errors between the manipulators with the adaptive task space
controller.

4.4 Summary

In this chapter, an adaptive synchronous controller capable of driving two manipulators
with unknown system parameters, such as link masses and inertias, along each of their
desired trajectories while simultaneously minimizing the difference between their individual
tracking errors was presented and validated with a simulation. This controller allows
collaborative tasks to be accomplished by a dual manipulator system, which is further
analyzed in Section 5.2 with a more realistic simulation. Its real-life implementation details
and shortcomings are discussed in Section 5.1.
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Chapter 5

Implementation and Case Study

5.1 Implementation Details and Instrumentation

In this section, the requirements for implementing the adaptive synchronous controller
developed in Chapter 4 are discussed. The adaptive synchronous controller is a decen-
tralized coupled controller meaning each manipulator is controlled by their own controller
but utilize some information from the other manipulator, effectively coupling them. As
seen in the block diagram in Figure 4.1, synchronization error that is needed for surface
calculation requires desired and actual positions of the end effectors of both manipulators.
The desired positions are straightforward to share between the controllers but for actual
positions extra work is required. In addition to the end effector positions, the origins of the
manipulators and their relative positions are needed for meaningful trajectory generation.
The joint origin positions might also be of interest if the lengths of the links are unknown
since they are needed for jacobian and forward kinematics calculations. All these locations
of interest are indicated with blue dots in Figure 5.1.
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Figure 5.1: Locations of points of interest in a dual manipulator system.

There are several ways to obtain and share position information between the manipu-
lators. All modern manipulators are equipped with encoders in each joint providing joint
positions. These joint positions can be converted to cartesian positions with forward kine-
matics and can be exchanged with networking such as through socket messaging via ether-
net. However, this would only provide cartesian positions according to the base coordinate
frames (such as frame x1, y1 for left manipulator in Figure 5.1) and manual measurement
of relative positions between the manipulators would be needed. Also, depending on the
manufacturer of the manipulator the method of getting encoder measurements would vary
and could introduce further complexity when different manufacturers are preferred for each
manipulator. A more robust way to address this problem is to use camera systems. If the
manipulators are planar, a standard camera positioned at a distance that can detect both
manipulators could suffice. If the tasks require three dimensional manipulation a camera
capable of providing depth information, for example Intel R© RealSenseTM D435 shown in
Figure 5.2a, might be required. Regardless of the type of camera used, image processing
is required to extract the location of points of interest in the camera frame. With the
knowledge of the location and the intrinsic properties of the camera, these positions can be
converted to the origin frame. Many open source libraries, such as OpenCV, allow image
processing to be done with relative ease. Another option would be to use a motion capture
camera such as Vicon R© Vera shown in Figure 5.2b. Motion capture cameras allow direct
position measurement of trackers put on points of interest according to the origin coor-
dinate frame determined during calibration. This negates the need for developing image
processing algorithms. Regardless of the method chosen for communicating the end effec-
tor positions, there will be delays in transmitting the information as it is the case in any

43



networked system. These delays can decrease the performance of the adaptive synchronous
controller since the synchronization error used for calculating the torque input is affected
by the delays.

(a) Intel R© RealSenseTM D435 camera with
depth sensing. [37]

(b) Vicon R© Vero motion capture camera.
[38]

Figure 5.2: Camera options for implementing the adaptive synchronous controller.

The velocity of the end effector is another necessary measurement for this control
system. Encoders only provide position data, not velocity. Numerical differentiation can
be utilized as it was done in the simulations to get the velocity data from end effector
position. However, numerical methods might result in unrealistic spikes that can influence
the input torques and render the control system unstable. A low pass filter can be used to
smoothen the velocity data and avoid instabilities.

Another source of instability could stem from the inherit jitteriness of sliding mode
controllers. The inputs of sliding mode controllers, in the case of manipulators the torques,
include the surface definition in them as seen in Equations (3.22) and (4.5). In turn, the
definition of the surfaces in a tracking problem, Equations (3.1) and (4.4), contain errors
in tracking (x̃ and e) which changes sign depending on under or overshooting the target
trajectory. In an ideal setting, the controller derives the system to slide on the surface and
it does not leave the surface once it reaches there. However in reality, due to discretization
and granularity of control inputs and sensor readings, the system never slides on the surface.
It rather keeps missing the surface and changing directions. This results in chatter in the
control input. Chatter or jitteriness is undesirable since it creates many inefficiencies, such
as heat and wear, and non-smooth motion. The chatter can be avoided by introducing a
boundary layer around the surface [7], effectively thickening the surface. This is analogous
to introducing a low pass filter to the surface.
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5.2 Case Study: Manipulating a Common Object

5.2.1 Problem Setting

In this section the adaptive synchronous controller developed in Chapter 4 is applied to a
realistic scenario as opposed to the simulations to further validate the performance of the
previous controllers. In an automated kitchen application with two planar manipulators,
there might be many tasks that require the collaboration of the manipulators. One of these
tasks could be moving a heavy pot that is hard to grasp by a single manipulator. Such
scenario is depicted in Figure 5.3.

x1

y1

x2

y2

x0

y0

O0O1 O2

Figure 5.3: Setup for case study consisting of two planar arms in a kitchen setting.

The task is to move the pot from the heater centered at p0 to the heater with less
intensity centered at pf to simmer the food. To accomplish the task, manipulator with
its origin located at O1 will grasp the pot at point pl whereas the manipulator with its
origin located at O2 will grasp it at point pr. It is assumed that the manipulators are able
to rigidly grasp the pot at a single point. The coordinates of the aforementioned points
according to the coordinate frame O0, x0, y0 are summarized in Table 5.1.
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Table 5.1: Parameters of a planar manipulator with two revolute joints.

Point x (m) y (m)
p0 -0.5 0.4
pf 0.2 0.4
pl -0.15 0.4
pr 0.5 0.4
O1 -0.4 0
O2 0.4 0

The manipulators are modeled after the Panda arm, shown in Figure 5.4a, manufac-
tured by Franka Emika. When only joints 2 and 4 are allowed to move, the panda ma-
nipulator becomes a planar one similar to the one considered in this case study as evident
from Figure 5.4b.

(a) Panda arm. (b) Panda arm with
length information.

Figure 5.4: Panda manipulator manufactured by Franka Emika [1].
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The dynamic properties of the Panda arm are obtained from [39] and with the assump-
tion that the load of 6 [kg] equally distributed to both manipulators, the parameters of the
manipulators are calculated and presented in Table 5.2.

Table 5.2: Parameters of the manipulators for the case study.

Parameter Description Value Unit
l1 Length of link 1 0.316 m
lc1 Length of centre of mass of link 1 0.158 m
m1 Mass of link 1 3.28 kg

I1 Moment of inertia of link 1 0.014 kg
m2

l2 Length of link 2 0.384 m
lc2 Length of centre of mass of link 2 0.192 m
m2 Mass of link 2 6.6 kg

I2 Moment of inertia of link 2 0.035 kg
m2

The trajectory of the centre of the pot given in the coordinate frame O0, x0, y0 is
calculated with the same method as the trajectory generation for task space adaptive
controller outlined in Section 3.3. The initial and the final positions were given in Table
5.1, and tf = 5 seconds.

xpot = −0.004t3 + 0.03t2 − 0.05

ypot = 0.4 (5.1)

The trajectory of the end effector of manipulator 1 according to the coordinate frame
O1, x1, y1 is found utilizing Equation (5.1) and geometry.

xtraj1 = −0.004t3 + 0.03t2 + 0.25

ytraj1 = 0.4 (5.2)

The trajectory of the end effector of manipulator 2 according to the coordinate frame
O2, x2, y2 calculated in the same way as the other manipulator.
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xtraj2 = −0.004t3 + 0.03t2 − 0.35

ytraj2 = 0.4 (5.3)

This scenario is simulated with the controller developed in Chapter 4, with no prior
knowledge of system parameters (Θ̂ = 0) with the following design parameters:

Λ =

[
10 0
0 10

]
,

Γ =

0.03 0 0
0 0.05 0
0 0 0.1

 ,

Kd =

[
80 0
0 80

]
,

Kε =

[
10 0
0 10

]
β =

[
75 0
0 75

]
. (5.4)

5.2.2 Results and Discussion

The simulation is also repeated with synchronization variables turned off (ie. kε = 0 and
β = 0). In that case, the controller is basically the same as the adaptive task controller.
The synchronization error between the manipulators are plotted in Figure 5.5. The error is
around −2 [cm] at the two second mark. With that much of difference in synchronization,
it is safe to assume that the task of transporting the pot would fail since one of the
manipulators would be smashing into the pot, causing a great amount of force to be
exerted on the other. Even if this were not to cause a problem, at around four seconds in,
the error is around 2 [cm]. This would mean that one of the manipulators would lose grasp
of the pot.
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Figure 5.5: Synchronization error between the manipulators while moving the pot with
adaptive task controller.

In contrast the synchronization error with the adaptive synchronous controller is less
than a millimeter throughout the task. This is the same magnitude as the repeatability of
the Panda manipulator. It is clear that the adaptive synchronous controller is needed for
a task like this.
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Figure 5.6: Synchronization error between the manipulators while moving the pot with
adaptive synchronous controller.

To analyze how well the task was completed, the position errors of the pot location in
both x and y are plotted in Figures 5.7 and 5.8 respectively. The greatest error is around
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1.6 cm which would not cause an issue since the heaters are large enough to accommodate
such small errors.
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Figure 5.7: Position error in the x of the object being manipulated.
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Figure 5.8: Position error in the y of the object being manipulated.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, an adaptive synchronous controller based on position data for a dual manip-
ulator system to realize collaborative tasks that involve objects with unknown properties
is studied. The development of the aforementioned controller is presented incrementally
by building on adaptive controllers in joint and task space for single manipulators. While
the joint space adaptive control design provides a good performance on trajectory track-
ing, its applications are limited due to the fact that real-life tasks usually involve the end
effector position, which is prescribed in the task space. The task space adaptive controller
overcomes this shortcoming. However, when used in a dual manipulator system, the tran-
sient period where the system parameters converge results in great synchronization errors,
which is defined as the difference between individual trajectory errors of each manipulator.
This synchronization error renders the usage of the adaptive controller in collaborative
dual manipulator systems impractical since individual trajectories are defined in such a
way that a significant deviation in synchronization could cause the task to fail. An ex-
ample of a collaborative task of this nature can be the assembly of a pin into a housing
in which each item is held by two separate manipulators. A substantial synchronization
error during trajectory execution could cause a catastrophic failure such as the pin crash-
ing into the housing. The adaptive synchronous controller is developed to minimize these
synchronization errors by involving them in the controller design. The trajectory error of
each manipulator is communicated to one another and this information is utilized in the
control input (i.e. torque) calculations. This allows the controller to guarantee that the
trajectory errors along with the synchronization errors approach to zero eventually. The

51



effectiveness of this approach is demonstrated with a simulation in which two manipula-
tors carry a heavy load together. While the adaptive task space controller fails causing one
manipulator to lose grasp, the adaptive synchronous controller is able to keep the motion
of the arms synchronized while each of them track their trajectories successfully.

The main advantage of the adaptive synchronous control design presented in this thesis
is that it requires minimal instrumentation to implement compared to other collaborative
control designs since it is only based on the position of the end effectors. A vision system
such as a camera capable of identifying and tracking the end effector of each manipulator
is enough to provide the synchronization error to each manipulator. This allows the appli-
cation of this controller design to a wide range of industrial manipulators which lack the
extra instrumentation, such as force sensors. However, one camera can be easily blocked
off by the motion of a manipulator causing the task in hand to fail. An array of cam-
eras positioned around the manipulators solves this problem, but introduces complexity
since multiple images need to be analyzed to find the position of the end effectors and
these results need to be fused appropriately. Another important implementation detail
to consider is the fact that the adaptive synchronous controller is a decentralized design,
meaning that there are individual controllers for each manipulator rather than one central
controller. The decentralized design makes it possible to use different types or configura-
tions of manipulators without changing the controller design. However, the disadvantage of
it is that the communication delays might degrade the performance since the controller of
one manipulator needs to transmit its tracking error to another. Furthermore, the inherit
jitteriness of sliding mode control design is another concern when it comes to real-life ap-
plications. The ever-changing control input due to this jitteriness may cause unacceptable
performance in some tasks and may cause rapid degradation of the motors that drive the
links of the manipulators.

6.2 Future Work

The presented adaptive synchronous control design performs satisfactorily in simulations.
However, the aforementioned implementation considerations needs to be investigated as
well. This can be accomplished by including either of the following in the simulations:

• Network delays due to information sharing between the manipulators

• The inherit jitteriness of the sliding mode controllers
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or by applying the controller design to a real dual manipulator system. In addition, the
functionality of the system is rather limited by the fact that the collaborative task trajec-
tories for each manipulator need to be prescribed and is not dynamic. Integrating visual
servoing would improve this by allowing dynamic objects to be used in the collaborative
tasks and would take advantage of the already existing vision system.
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