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Abstract

We consider a multi-round prediction market in which two agents, Alice and
Bob, are trading on an event which they may both take actions to influence
its outcome. Existing literature assumes that when external incentives exist,
there is no net difference between the cost of different actions agents may
take outside of the prediction market. For example, it is the same cost for
either Alice to work hard to complete the project, as it is for her to “loaf”
and not work hard. In this work we consider a 2-round and later a 4-round
setting in which agents’ costs of external actions differ for each action. We
show that when external action costs differ but are within a proper range,
a prediction market is incentive compatible regardless of the initial market
estimate, something that currently is not shown in the existing literature.

Keywords: prediction markets, external incentives, costly-actions,
incentive compatibility, Decision making

1. Background Introduction

A prediction market is created to aggregate information from individuals
about uncertain events of interest. For example, a prediction market like
mechanism is known to better predict the financial value of soccer players
in transfer markets Peeters (2018) than other standard forecasting meth-
ods. However, some decision makers are suspicious about using prediction
markets in all settings, such as corporate settings. In corporate settings
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managers are concerned that workers may be incentivized to take adverse
actions within the workplace when a prediction market is present as op-
posed to when it is not present. One public event where external actions
may influence a traded event is an election. Depending on the stakes within
a prediction market, some voters may change their vote to maximize their
total return both within and without the prediction market. The preceding
argument, though theoretically valid, is yet to be shown to hold any merit
in practice. In fact, prediction markets are used extensively to elicit and ag-
gregate opinions on political events (Graefe et al., 2014; Hanea et al., 2017;
Rothschild, 2015). It is generally assumed that agents who participate in a
prediction market by trading may have superior information about the rele-
vant event, but no direct control over the event outcome (e.g., one individual
vote is likely to not sway an entire election). However, prediction markets
are often used in situations where this assumption is violated (Chakraborty
and Das, 2016) (e.g., student evaluations). In this study we consider the
impact of external incentives on the efficacy of prediction markets, espe-
cially when acting on external incentives requires costly actions. Prediction
markets that are deployed in corporate settings consist of a market maker, a
center with whom all participants, agents, trade, that is present to facilitate
trade and boost market liquidity. In our study, the market maker, is also
the market participants’ employer, does not want agents to take undesirable
actions at work that may impact the outcome of the traded event.

There is substantial evidence that prediction markets can help produce
forecasts on event outcomes with lower prediction errors than conventional
forecast methods (Arrow et al., 2008). However, it is also possible that
agents might bluff and deceive other players by not revealing their true
beliefs, hoping to later correct the prediction probability and benefit later
in the market (Chen et al., 2010; Dimitrov and Sami, 2008). In addition
to bluffing to maximize prediction market payoff, an agent may also change
her behavior outside of the prediction market to maximize her reward within
the market as well as outside of the market. For example, employees might
have incentives to “slack off” when working on a project just because their
prediction market position is favorable to the project being delayed and
would somehow benefit more in the prediction market by working less hard
in the workplace. This may seem like a far-fetched idea, but not long ago
the U.S. congress was worried that terrorists might have a higher incentive
to actually conduct terrorist attacks if they trade in a relevant prediction
market (Looney, 2004). Eventually these proposed “terrorist markets” were
shut down by the U.S. congress due to these concerns. There are additional
canonical real-world examples showing that having agents trade in a predic-
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tion market distorts the same agents’ incentives within and outside of the
prediction market (Chakraborty and Das, 2014), such as instructor predic-
tion markets (Chakraborty et al., 2013). In fact, there is no ex post way
to determine how the presence of a prediction market changes agents’ prob-
ability estimates, without considering the equilibrium strategies of agents
within prediction markets. In this study, we use equilibrium analysis to see
if prediction markets may indeed cause deviant agent behavior when agents’
external actions to the market are costly.

In conducting equilibrium analysis with the presence of external incen-
tives in prediction markets, we find that when external actions have asym-
metric costs, one action costs more or less than another, then these asym-
metries may actually lead agents to behave truthfully. Specifically, we de-
termine the equilibrium strategies for two agents in a 2-round and later a 4-
round setting where the agents trade in a prediction market with a final value
contingent on an event that the same two agents have a direct impact on
the likelihood of the traded event. We prove that the final equilibrium strat-
egy shows that participants will always take desirable actions/undesirable
actions related to the project (work hard or “loaf”) and be truthful when
reporting in the prediction market, as they would have had the prediction
market not existed. Our result is important in the face of concern decision
makers have regarding a prediction market potentially inducing undesirable
actions.

In the remainder of this document we introduce related work in Section 2
and define our general model in Section 3. We next show that when the cost
of exerting high effort is positive, agents do not work hard, but are truthful
in the prediction market in Section 4.2; similarly we show that when the cost
of exerting high effort is negative, agents work hard and are sill truthful in
the prediction market in Section 4.3. However, we show in Section 4.4 that
when there is no cost for efforts, there is possibility that agents do not always
work hard and they do not report truthfully in the prediction market. In
Section 4.5 we extend our 2-round setting to 4 rounds and prove that our
conclusion still holds. In Section 5 we conclude and discuss future research
directions.

2. Literature Review

A large portion of research on prediction markets and scoring rules, a
building block of the prediction markets we consider in our paper, does not
consider outside incentives. Brier (1950) defines the quadratic scoring rule
and implicitly assumes agents cannot influence the outcome of the predicted
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event (tomorrow’s weather). Bickel (2007) compares three commonly used
strictly proper scoring rules: quadratic, spherical and logarithmic scoring
rules showing the logarithmic scoring rule is preferred when accounting for
non-linear utilities and rank ordering. Merkle and Steyvers (2013) demon-
strate that different strictly proper scoring rules yield considerably different
rankings of forecasters based on their scoring rule scores. We, however, as-
sume agents interact in a market scoring rule market proposed by Hanson
(2002), derived from the difference of sequential scoring rules. Hanson’s
market scoring rule (MSR) incentivizes risk-neutral and myopic agents to
truthfully reveal their probabilistic estimates by ensuring that truthful re-
porting maximizes an agent’s expected payoffs, and is thereby said to be
incentive compatible. Das (2008) implies that market making can serve as
an effective trading strategy for individual agents who do not possess supe-
rior information but are willing to learn from prices. Unlike the work of Das
(2008), we consider MSR prediction markets in which forward-looking agents
may take costly external actions outside of the market to influence the like-
lihood of the traded event (for example, not work hard or vote for another
candidate in an election). The agents in our setting are informed and do
not simply learn from the traded prices.

It is generally assumed that the agents who participate in a prediction
market by trading may have superior information about the traded event,
but no direct control over the outcome as noted by Chakraborty and Das
(2016). In their paper Chakraborty and Das (2016) show that if an agent
does not participate in a prediction market, then they behave truthfully
outside of the prediction market, but may change their outside actions as
a function of their earlier prediction market report. The authors consider
a voting game, in which the voting actions have equal costs and voting
occurs after all agents concluded interacting in the prediction market. Un-
like Chakraborty and Das (2016), we consider iterative interactions between
agents, outside actions, and actions, reports, within the prediction market.
In addition, and this is perhaps the most important difference we assume
asymmetric cost of external actions, for example not voting is preferred to
voting (there may be effort involved in voting that is saved when not voting
in practice). Using the taxonomy of Chakraborty and Das (2016) one can
say we consider both price manipulation (altering market price due to ex-
ternal rewards) and outcome manipulation (altering external actions based
on market prices) in our study. As such we discuss both of these form
of prediction market manipulation now. Similar to Chakraborty and Das
(2016), other papers assume agents may influence the outcome of events
traded in a prediction market or have some other incentive outside of the
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prediction market (Chakraborty and Das, 2014; Dimitrov and Sami, 2010;
Huang and Shoham, 2014; Shi et al., 2009). Shi et al. (2009) indicate a po-
tential downside of prediction markets is that they may incentivize agents to
take undesirable actions, and prove that there exist principle-aligned predic-
tion mechanisms that do not incentivize undesirable actions with an ‘over-
payment result.’ In particular, unlike our work, Shi et al. (2009) do not use
a market scoring rule mechanism, instead uses sequential scoring rules, and
have linear subsidy (in the number of agents). Chakraborty and Das (2014)
give a two-round example to understand when markets may be prone to
manipulation due to different outside incentives and how much to trust the
resulting prediction probabilities. However, Chakraborty and Das (2014),
unlike our work, do not consider costly actions. Huang and Shoham (2014)
assume profit-indifferent manipulators and propose a modification to mar-
ket scoring rules in the form of trade limits, in order to reduce the extent
of manipulation of prediction markets due to external incentives. However,
the limitation of trade amounts may also interfere with eliciting agents’ true
beliefs (depending on a market’s liquidity, bounded budgets may lead to
agents not revealing all of their information in a market), a limitation we
do not have in our work as we do not bound agents’ budgets. Chen et al.
(2014) employ a two-player market scoring rule setting where a manipulator
with outside incentives trade first, followed by a truthful trader. We also
have the two-player market setting but the two agents in our model are
both strategic traders with outside incentives. Unlike the papers cited in
this paragraph, we show that when non-myopic agents’ expected payoffs not
only consist of payoffs from the prediction market, but also include the costs
of their related actions which decide the outcome of the market, then the
quadratic scoring rule, used as the market reward mechanism, incentivizes
agents to report truthfully in the prediction market and to take actions as
if the prediction market was not present. We realize that the claims made
regarding our contribution are very broad and as with any analytical result
there are assumptions and inherent limitations regarding the generalizability
of the result. We explicitly discuss the limitations and shortcoming of our
result in Section 3, after presenting our model. We further discuss limita-
tions of our result in Section 5. These discussions are presented not only for
researchers to consider these limitations when deciding to apply our model
and results, but also to identify future research directions.
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3. Model Description

In this section, we propose and describe our setting formally. In a com-
pany C, two employees are assigned to complete a time-limited project E
together, and we call them Alice and Bob. We consider each week as a
round from the beginning of this project and the scheduled time for com-
pleting this project is T weeks. As our model is in a multi-round setting,
the number of rounds should be equal or larger than 2. In every round,
Alice and Bob will separately decide whether to give high, later denoted as
1, or low, later denoted as 0, effort to project E during each week. After
T rounds, Alice and Bob’s total efforts will determine the likelihood of the
project’s success (e.g., meeting its scheduled delivery date). The project E
has binary outcome as E occurs or E does not occur. If the project succeeds
by the end of T rounds, we say E occurs; if the project fails by the end of T
rounds, we say E does not occur. At the end of every round, every high ef-
fort will bring some payoff scores (negative scores are equivalent to net costs
and positive scores are equivalent to net rewards) to the player who exerted
this effort; low efforts will not bring any payoff scores to the players.1 In our
model effort is rewarded immediately after each round. This is a simplifying
assumption, and need not necessarily hold in practice. In fact, in practice, a
manager can tell if an employee is not working hard over time, and for ease
of modeling, we assume this observation is immediate, but may not be so in
practice. If reward is delayed, then this reward is appropriately discounted.

At the same time, in a prediction market, Alice and Bob also trade in
security F whose ultimate value is contingent on the outcome of E. We
assume that the prediction market is a market scoring rule market, as we
find is used in practice (PredictIt, 2014). If there is no related prediction
market in C, then employees will be inspired to always devote high/low
efforts to E in order to gain maximal expected payoffs. However, when
a prediction market contingent on E exists, the employer may worry that
employees will change their effort levels in order to benefit more through the
rewards procured in the prediction market.

For every round i (i = 1, ..., T ), Alice and Bob devote efforts e
(i)
A and

1Payoff scores need not be linear in effort and the constant α is used to convert the
functional form of effort to payoff scores, in order to be compared with scores earned in the
prediction market. When payoff score is negative, high efforts bring net costs to agents;
when payoff score is positive, high efforts bring net rewards to agents. The total scores
earned from exerting efforts and reporting in the prediction market could be converted to
some financial costs or rewards that will be given to the agents.
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e
(i)
B to project E and report prediction probabilities as r

(i)
A and r

(i)
B in the

prediction market, respectively. When E occurs, a report of r
(i)
A earns

Alice a net score ρ
(i)
s (r

(i)
A ) = s(E, r

(i)
A ) − s(E, r

(i−1)
B ), where s is a proper

scoring rule; when E does not occur, the report earns Alice a net score

ρ
(i)
f (r

(i)
A ) = s(E, r

(i)
A ) − s(E, r(i−1)

B ) instead (ρ
(i)
s (r

(i)
B ) and ρ

(i)
f (r

(i)
B ) are simi-

larly defined). Note that r
(i)
A = 1− r(i)

A . In the remainder of this document
we will analogously define w = 1−w for any variable w. In addition, s(·) is
said to be a proper scoring rule if for a risk-neutral agent with belief p and
report r on an event, then:

d

dr
(ps(r) + ps(r))

∣∣
r=p

= 0, (1)

and
d2

dr2
(ps(r) + ps(r)) ≤ 0. (2)

When an agent’s score maximizing report is equal to her true belief, a
proper scoring rule, and in turn a market scoring rule, is said to be in-
centive compatible. Here we assume that Alice (Bob) assumes the other
player is myopic when she (he) sees his (her) previous prediction in the
market. We also use νA (0 < νA < 1) to describe Alice’s impact on the

likelihood of success of project E. We denote h
(i)
A (h

(i)
B ) as the accumu-

lated number of high efforts exerted by Alice (Bob) by the end of round

i. p
(i)
A (p

(i)
B ) is the belief on the likelihood of E occurring held by Alice

(Bob) in round i before she (he) takes any actions in round i. π
(i)
A (π

(i)
B )

is the payoff earned from the current round, i, to the final round T by
Alice (Bob) from exerting efforts towards E and from making reports in the

prediction market in all rounds i through T . I
(i)
A (I

(i)
B ) is the system state

that Alice (Bob) has formed in round i after she (he) observes the most re-
cent prediction probability and before she (he) takes any actions in round i.

E
[
π

(i)
A (I

(i)
A , a

(i)
A )
]

(E
[
π

(i)
B (I

(i)
B , a

(i)
B )
]
) is the expected payoff given the current

system state I
(i)
A (I

(i)
B ) and the action set a

(i)
A (a

(i)
B ) that Alice (Bob) would

take in round i; while E
[
π

(i)∗
A (I

(i)
A )
]

(E
[
π

(i)∗
B (I

(i)
B )
]
) is the corresponding

maximal expected payoff score for a given state I
(i)
A (I

(i)
B ) for Alice (Bob).

a
(i)∗
A = (e

(i)∗
A , r

(i)∗
A ) (a

(i)∗
B = (e

(i)∗
B , r

(i)∗
B )) is the optimal action set Alice (Bob)

takes in round i in order to receive E
[
π

(i)∗
A (I

(i)
A )
]

(E
[
π

(i)∗
B (I

(i)
B )
]
).

Figure 1 shows the dynamics of our model. We assume that in each

round Alice first determines her effort level, e
(i)
A , then she makes a report
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in the prediction market, r
(i)
A ; next, Bob determines the effort level he ex-

erts in this round, e
(i)
B , and finally the round concludes by Bob reporting in

the prediction market, r
(i)
B . However, during each round, each agent deter-

mines her (his) effort level and reported belief for this round simultaneously,
though the actions exerted towards the project and belief reported in the
prediction market are conducted sequentially. Alice’s and Bob’s reports in
the prediction market are always common knowledge to both agents in all
cases. Effort levels, however, are not common knowledge.

round

actions e
(1)
A r

(1)
A e

(1)
B

1

r
(1)
B e

(T )
A r

(T )
A e

(T )
B

T

r
(T )
B

Figure 1: Model dynamics timeline

Given that in each round two risk-neutral forward-looking agents are
maximizing their expected profits from the current round to the end of the
project horizon, T , we can write down the Bellman equation to determine the
payoff for each round, for each agent. Before we write down the equations
for each round, we first define the payoffs each agent will receive in each

round. In round i, Alice (Bob) will receive ρ
(i)
e (e

(i)
A ) (ρ

(i)
e (e

(i)
B )) from devoting

effort e
(i)
A (e

(i)
B ) to the project, and receive p

(i)
A · ρ

(i)
s (r

(i)
A ) + p

(i)
A · ρ

(i)
f (r

(i)
A )

(p
(i)
A ·ρ

(i)
s (r

(i)
B ) +p

(i)
B ·ρ

(i)
f (r

(i)
B )) from reporting probability estimate r

(i)
A (r

(i)
B )

in the prediction market. As previously introduced, the value of the payoff

function of exerted efforts, ρ
(i)
e (e

(i)
A ) (ρ

(i)
e (e

(i)
B )), is negative when high efforts

bring net costs, and positive when high efforts bring net rewards. In our
model we assume that the likelihood of E occurring is determined by the
total number of high efforts of all rounds, weighed by each of the agents’
impact on determining the likelihood of E:

νA

T∑
n=1

e
(n)
A + (1− νA)

T∑
n=1

e
(n)
B

T

(3)

For Alice in round i before she takes any actions in this round, the
number of accumulated high efforts exerted by her and by the end of round

i−1 (h
(i−1)
A ) is known to herself, but the number of accumulated high efforts

exerted by Bob and by the end of round i − 1 (h
(i−1)
B ) is not observed by

her directly. However,
∑T

n=i+1 ẽ
(n)
A and

∑T
n=i ẽ

(n)
B are all future efforts, and
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e
(i)
A is the effort level decision she needs to make in the current round, i.

For Bob, before he takes any actions in round i, the situation is slightly
different. Because Alice has already taken her actions in this round, the

number of accumulated high efforts exerted by her is h
(i)
A instead. To be

more specific, we can write down the definitions of p
(i)
A and p

(i)
B as:

p
(i)
A =

νA

(
h

(i−1)
A + e

(i)
A +

T∑
n=i+1

ẽ
(n)
A

)
+ (1− νA)

(
h

(i−1)
B +

T∑
n=i

ẽ
(n)
B

)
T

, (4a)

p
(i)
B =

νA

(
h

(i)
A +

T∑
n=i+1

ẽ
(n)
A

)
+ (1− νA)

(
h

(i−1)
B + e

(i)
B +

T∑
n=i+1

ẽ
(n)
B

)
T

. (4b)

In equation (4a) we see the formal definition of p
(i)
A as the total efforts of

Alice, past and future, h
(i−1)
A +

∑T
n=i ẽ

(n)
A , plus the total efforts of Bob, past

and future, h
(i−1)
B +

∑T
n=i ẽ

(n)
B , all weighted by νA. From Alice’s perspective,

she knows her past effort levels, thus h
(i−1)
A is known and is some natural

number between 0 and i− 1. Similarly, as we will see in our analysis, Alice
may infer Bob’s effort levels from his reports in the prediction market, and

again h
(i−1)
B is known to Alice. The ẽ

(n)
A and ẽ

(n)
B effort values, for n ≥ i+ 1,

are not necessarily binary, and are instead real numbers over [0, 1] to account
for the fact that Alice’s and Bob’s equilibrium effort strategies are mixed.
As effort levels are not common knowledge, we have to define how each
agent interprets the reported probability of the other agent. One way to
interpret reported probabilities is to use Bayesian updating, given current
prior beliefs. However, as the probability of E is dependent not only on
market estimates but current and future effort levels, defining the Bayesian
updating policy is quite convoluted. To simplify our analysis, we define
rB(A)(i) as Bob’s estimate on the likelihood of E up to and including round
i after observing Alice’s last report. However, when Alice makes the report
in round i, Bob has not yet taken actions in this round, the expectation of

his effort value of round i perceived by Alice is denoted as EA
[
ẽ

(i)
B

]
. We

similarly define rA(B)(i) as Alice’s estimate of the likelihood of E’s occurring
up to and including round i after observing Bob’s last report. We formally

9



define the two notations below as:

rB(A)(i) =
νAh

(i)
A + (1− νA)

(
h

(i−1)
B + EA(ẽ

(i)
B )
)

i
, (5a)

rA(B)(i) =
νAh

(i)
A + (1− νA)h

(i)
B

i
. (5b)

Here we assume that at the beginning of round i, Alice has no informa-
tion she may use to predict Bob’s effort level of this round, which implies

EA(ẽ
(i)
B ) = 0.5 for any round i. Then the notations of rB(A)(i) and rA(B)(i)

can be further defined as:

rB(A)(i) =
νAh

(i)
A + (1− νA)(h

(i−1)
B + 0.5)

i
, (6a)

rA(B)(i) =
νAh

(i)
A + (1− νA)h

(i)
B

i
. (6b)

Note that rB(A)(i) = r
(i)
A and rA(B)(i) = r

(i−1)
B , as we are simply presenting

how each of the agents interprets the observed prediction market probabili-

ties of the other agent. In (4a) Alice’s number of previous high efforts, h
(i−1)
A ,

is known to herself; and the number of Bob’s previous high efforts, h
(i−1)
B ,

could not be observed directly but could be inferred using his last prediction

probability r
(i−1)
B as h

(i−1)
B =

(i−1)·r(i−1)
B −νAh

(i−1)
A

1−νA . For (4b) the unobservable
number of previous high efforts exerted by Alice could also be inferred using

r
(i)
A as h

(i)
A =

ir
(i)
A −(1−νA)(h

(i−1)
B +0.5)

νA
. By inserting h

(i−1)
B =

(i−1)r
(i−1)
B −νAh

(i−1)
A

1−νA

and h
(i)
A =

ir
(i)
A −(1−νA)(h

(i−1)
B +0.5)

νA
into (4a) and (4b) separately, we can get a

further expression of the agents’ beliefs on the likelihood of E’s occurrence
during any round i as:

p
(i)
A =

(i− 1)r
(i−1)
B + νA

(
e

(i)
A +

T∑
n=i+1

ẽ
(n)
A

)
+ (1− νA)

T∑
n=i

ẽ
(n)
B

T
, (7a)

p
(i)
B =

ir
(i)
A + νA

T∑
n=i+1

ẽ
(n)
A + (1− νA)

(
e

(i)
B +

T∑
n=i+1

ẽ
(n)
B − 0.5

)
T

. (7b)

With the payoff scores collected in each round, each agent maximizes
the current round’s payoff scores plus the discounted future rounds’ payoff
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scores.

E
[
π

(i)∗
A (I

(i)
A )
]

= max
(e

(i)
A ,r

(i)
A )

{ δ E[π
(i+1)∗
A ]︸ ︷︷ ︸

discounted future payoff

+ ρ(i)
e (e

(i)
A )︸ ︷︷ ︸

effort payoff

+ p
(i)
A ρ

(i)
s (r

(i)
A ) + p

(i)
A ρ

(i)
f (r

(i)
A )︸ ︷︷ ︸

prediction market payoff

},

E
[
π

(i)∗
B (I

(i)
B )
]

= max
(e

(i)
B ,r

(i)
B )

{
δ E
[
π

(i+1)∗
B

]
+ ρ(i)

e (e
(i)
B )

+ p
(i)
B ρ

(i)
s (r

(i)
B ) + p

(i)
B ρ

(i)
f (r

(i)
B )
}
.

(8)

Applicability of Developed Model

Before moving to determining agents’ equilibrium decisions in various
settings, we will now discuss the applicability of the developed model. Recall
that our paper is motivated by the fact prediction market agents participat-
ing in a market at work are paid for “doing their job,” e.g., exerting high
effort at work. Due to agents receiving compensation for exerting high effort,
accounting for this compensation when determining an agent’s equilibrium
actions in a prediction market is necessary, and the purpose of this paper.
However, as with most analytical work there are shortcomings not only with
our model, which we will now discuss, but in turn with the conclusions which
we discuss in Section 5.

One clear shortcoming with the developed model is that we are only
considering two agents trading on a binary event (E either occurs or does not
occur). As is noted in other research in prediction markets, results that hold
for binary events do not always map to the n-nary outcome space (Karimi
and Dimitrov, 2018). The reason binary events behave differently is change
in one report is equivalent to a change in the opposite direction of the
other report. With three or more outcomes, a change in one report, does
not necessarily imply equal and opposite change in any other one report,
instead change in aggregate multiple other reports.

Another clear shortcoming of the developed model is the agents. The
agents are risk-neutral, something known not to be true in practice (Carlsson
et al., 2005; Holt and Laury, 2002; Rosati and Hare, 2016). It is not clear
how/if risk-attitudes impact agent’s actions when exposed to external in-
centives. There is still scant research in risk-aversion in prediction markets
without external incentives (Dimitrov et al., 2015; Karimi and Dimitrov,
2018; Ottaviani and Sørensen, 2007) let alone any research we are aware of
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on risk-aversion in the presence of external incentives. In addition to risk-
neutral agents, we also assume agents are homogeneous, in that they both
either receive positive or negative cost for exerting high effort. In practice,
the relative magnitude of agents’ costs may impact their actions, especially
when they have different signs.

The final significant shortcoming to our presented model is the stylized
learning model for agents. The learning model allows us to have a tractable
model, but results in agents not accounting for all of the other agent’s future
actions. This may not happen in practice, and may skew our results.

Even with all of the above shortcomings we think that the work pre-
sented in this paper is a necessary first step in further addressing external
incentives in prediction markets. It is clear that agents participating in cor-
porate prediction markets are paid for taking certain external actions while
penalized for taking others. If this situation is not considered and modeled,
then managers may still think that using prediction markets within a work-
place is a bad idea. Granted we make multiple simplifying assumptions that
lead to shortcomings in our model, but the results, as we will soon see, show
that costly actions to act on external incentives may restore incentive com-
patibility in prediction markets. The results, are promising, and in addition
to addressing the shortcoming outlined above as future work, our findings
lend themselves to field or laboratory experiments to verify if costly actions
do indeed restore incentive compatibility in prediction markets.

In the remainder of this document, we will determine the values of

E
[
π

(i)∗
A (I

(i)
A )
]

and E
[
π

(i)∗
B (I

(i)
B )
]

and the equilibrium strategies of both agents.

4. Result and Analysis

This section first introduces one of the most commonly used scoring
rules, the quadratic scoring rule, that will be used in all following cases.
Then we give mathematical analysis of case 1, high efforts bring net cost to
agents, case 2, high efforts bring net reward instead, and case 3, external
incentives do not exist. We assume T = 2 for the first three cases, however
we discuss results for T = 4 in case 4.

In this work, we show that with external incentives (net payoff scores
are given to exerted efforts), the quadratic scoring applied in the prediction
market is incentive-compatible (agents will report truthfully in the predic-
tion market). In fact, we prove that in a 2-round setting, agents will not take
desirable actions (always exert high efforts) when high efforts bring net costs
in case 1; and agents will take desirable actions (always exert high efforts)
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when high efforts bring net rewards in case 2. When external incentives
exist, agents will behave as if the prediction market was not present, which
indicates that the prediction market will not change agents’ incentives out-
side of the market. However, when external incentives do not exist, we prove
in case 3 that agents will have incentives to bluff (report untruthfully) in the
prediction market when they are forward-looking. This result is aligned with
the conclusion from previous work (Chen et al., 2010; Dimitrov and Sami,
2008). Finally we recreate case 2 in case 4 for the 4-round setting.

4.1. Application of the quadratic scoring rule

In this section, we use a popular scoring rules, the quadratic scoring
rule, as the reward mechanism in the prediction market. As we consider
extreme reports in our results, agents report probability estimates of 0 or
1; we cannot use another, perhaps more popular, scoring rule, such as the
logarithmic scoring rule. Then s(E, r) introduced in Section 3 is defined as:

s(E, r) = 2r − r2 − r2 = −2r2 + 4r − 1

s(E, r) = 2r − r2 − r2 = −2r2 + 1
(9)

s(E, r) is a proper scoring rule as (1) and (2) are satisfied. We have
already defined the scores earned by reporting in the prediction market in
Section 3 as:

ρs

(
r

(i)
A

)
= s

(
E, r

(i)
A

)
− s

(
E, r

(i−1)
B

)
ρf

(
r

(i)
A

)
= s

(
E, r

(i)
A

)
− s

(
E, r

(i−1)
B

)
ρs

(
r

(i)
B

)
= s

(
E, r

(i)
B

)
− s

(
E, r

(i)
A

)
ρf

(
r

(i)
B

)
= s

(
E, r

(i)
B

)
− s

(
E, r

(i)
A

)
(10)

Using s(E, r) defined in (9), we can further write the scores as:

ρs

(
r

(i)
A

)
= 4r

(i)
A − 2

(
r

(i)
A

)2
− 4r

(i−1)
B + 2

(
r

(i−1)
B

)2

ρf

(
r

(i)
A

)
= −2

(
r

(i)
A

)2
+ 2

(
r

(i−1)
B

)2

ρs

(
r

(i)
B

)
= 4r

(i)
B − 2

(
r

(i)
B

)2
− 4r

(i)
A + 2

(
r

(i)
A

)2

ρf

(
r

(i)
B

)
= −2

(
r

(i)
B

)2
+ 2

(
r

(i)
A

)2

(11)
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4.2. Case 1: High efforts bring net costs to agents

In case 1 we assume that the two agents’ efforts together decide the
outcome of E and the ultimate value of security F but high efforts will
bring net costs to the agents who exert them. In this setting, we assume the
payoff function of exerted efforts to be ρe(e) = −αe2 (α > 0):

ρe

(
e

(i)
A

)
= −α

(
e

(i)
A

)2
, (12a)

ρe

(
e

(i)
B

)
= −α

(
e

(i)
B

)2
. (12b)

In this section we use the definition of Alice’s (Bob’s) belief on the likeli-
hood E’s final occurrence in each round when maximizing her (his) expected
total payoff from Section 3, and apply the quadratic scoring rule introduced

in section 4.1. From equations (12), (7) and (11), we know that I
(i)
A = r

(i−1)
B

and I
(i)
B = r

(i)
A when deciding the values of E

[
π

(i)∗
A (I

(i)
A )
]

and E
[
π

(i)∗
B (I

(i)
B )
]
,

respectively. After inserting the payoff functions of exerted efforts (12), the
belief on the likelihood of E’s occurring (7), and the payoff functions in the
prediction market (11) into the maximization equations (8) from the first
round to the final round, we get the following maximization equations for
Alice and Bob separately when T = 2.

For agent Alice, based on equations (7), (8), and (11), we obtain

E
[
π

(1)∗
A (r

(0)
B )
]

= max
(e

(1)
A ,r

(1)
A )

{
δ E
[
π

(2)∗
A (r̃

(1)
B )
]
− α

(
e

(1)
A

)2
(13a)

+ 2

(
νA

(
e

(1)
A + ẽ

(2)
A

)
+ (1− νA)

2∑
n=1

ẽ
(n)
B

)(
r

(1)
A − r

(0)
B

)
+ 2

((
r

(0)
B

)2
−
(
r

(1)
A

)2
)}

,

E
[
π

(2)∗
A (r

(1)
B )
]

= max
(e

(2)
A ,r

(2)
A )

{
−α

(
e

(2)
A

)2
(13b)

+ 2
(
r

(1)
B + νAe

(2)
A + (1− νA)ẽ

(2)
B

)(
r

(2)
A − r

(1)
B

)
+ 2

((
r

(1)
B

)2
−
(
r

(2)
A

)2
)}

.
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For agent Bob, similarly, we obtain

E
[
π

(1)∗
B (r

(1)
A )
]

= max
(e

(1)
B ,r

(1)
B )

{
δ E
[
π

(2)∗
B (r̃

(2)
A )
]
− α

(
e

(1)
B

)2
(14a)

+ 2
(
r

(1)
A + νAẽ

(2)
A + (1− νA)(e

(1)
B + ẽ

(2)
B − 0.5)

)
·
(
r

(1)
B − r

(1)
A

)
+ 2

((
r

(1)
A

)2
−
(
r

(1)
B

)2
)}

,

E
[
π

(2)∗
B (r

(2)
A )
]

= max
(e

(2)
B ,r

(2)
B )

{
−α

(
e

(2)
B

)2
(14b)

+ 2
(

2r
(2)
A + (1− νA)(e

(2)
B − 0.5)

)(
r

(2)
B − r

(2)
A

)
+2

((
r

(2)
A

)2
−
(
r

(2)
B

)2
)}

.

From the time-line we know that Alice is the first agent to take actions in

round 1. Although for Alice in round 1, r̃
(1)
B , ẽ

(2)
A , ẽ

(1)
B and ẽ

(2)
B are values for

future actions, which are not known to Alice now, but could be inferred by
her, for agents are assumed to be rational, forward-looking and strategic in
our model. To be more specific, Alice can play the whole game in her mind
knowing that both agents want to maximize the expected scores earned
from the current round to the final round in any round, and infer future

optimal actions after exerting effort e
(1)
A and making report r

(1)
A in round 1.

Following this logic, we can use backwards induction to solve this problem,
i.e., determine the values of (13) and (14).

Define f
(i)
B (f

(i)
A ) as the function of Bob’s (Alice’s) expected payoff scores

earned from the current round i and f
(i)∗
B (f

(i)∗
A ) is the corresponding optimal

function value. First, we consider agent Bob in round 2. For given r
(2)
A

by Alice in the second round (which is known to Bob), if Bob’s action is

a
(2)
B = (e

(2)
B , r

(2)
B ), then we have f

(2)
B = E

[
π

(2)
B (r

(2)
A , a

(2)
B )
]

as:

f
(2)
B = −α

(
e

(2)
B

)2
− 2

(
r

(2)
B

)2
+ 2

(
r

(2)
A

)2

+2
(

(1− νA)(e
(2)
B − 0.5) + 2r

(2)
A

)(
r

(2)
B − r

(2)
A

)
.

(15)

To find Bob’s optimal action a
(2)∗
B = (e

(2)∗
B , r

(2)∗
B ), which maximizes f

(2)
B ,

in the feasible region 0 ≤ e(2)
B , r

(2)
B ≤ 1, we first find all the feasible Karush-

Kuhn-Tucker (KKT) points of f
(2)
B and then find the optimal solution.
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Lemma 1. Assume that α > (1−νA)2

2 . Then f
(2)
B has one feasible KKT

point:

(e
(2)
B , r

(2)
B ) =

{
(0, 0) if r

(2)
A ≤ (1− νA)/4

(0, r
(2)
A − (1− νA)/4) if r

(2)
A > (1− νA)/4

,

equivalently we write: (e
(2)
B , r

(2)
B ) = (0,max{0, r(2)

A −
1
4(1− νA)}).

16



C
a
se

(e
(2

)
B
,
r(2

)
B

)
f

(2
)

B
K

K
T

or
n

ot

i)
(0
,0

)
(1
−
ν A
−

2
r(2

)
A

)r
(2

)
A

F
ea

si
b

le
K

K
T

if
r(2

)
A
≤

(1
−
ν
A

)
4

ii
)

(1
,0

)
−
α
−

2(
r(2

)
A

)2
−

(1
−
ν A

)r
(2

)
A

<
0

N
ot

K
K

T
(µ

3
<

0)

ii
i)

(0
,1

)
−

(1
−
r(2

)
A

)(
3
−

2r
(2

)
A
−
ν A

)
<

0
N

ot
K

K
T

(µ
4
<

0)

iv
)

(1
,1

)
(1
−
r(2

)
A

)(
2
r(2

)
A
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1
−
ν A

)
−
α
<

0
N

ot
K

K
T
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A
≥
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v
)
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1 α
r(2

)
A

(1
−
ν A

),
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ot
fe

as
ib

le
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K
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<

0
)

v
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1 α
(1
−
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)
A

)(
1
−
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),
1)
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−
r(2

)
A

)2
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−

(1
−
ν
A

)2

α
+

1
−
ν
A

1
−
r
(2

)
A
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0

N
ot

K
K

T
(µ
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<
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v
ii

)
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,r
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)
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−
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−
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)2
K

K
T
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r(2

)
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≥

(1
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ν
A

)
4

v
ii

i)
(1
,r

(2
)

A
+

1 4
(1
−
ν A

))
−
α

+
1 8
(1
−
ν A

)2
<

0
N

ot
K

K
T

(µ
2
<

0)

ix
)

e(2
)

B
=

4
r
(2

)
A

−
r
(2

)
A

(1
−
ν
A

)2
−

(1
−
ν
A

)

2
α
−

(1
−
ν
A

)2
,

r(2
)

B
=

α
(1
−
ν
A

)−
2
r
(2

)
A

(1
−
ν
A

)2
−

4
α
r
(2

)
A

4
α
−

2
(1
−
ν
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-
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ib
le

K
K

T
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<

0
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)
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Proof. For notational convenience, in this proof, we let x = e
(2)
B and y = r

(2)
B .

The equations for the KKT points can be derived based on the function f
(2)
B

and the constraints 0 ≤ x, y ≤ 1, which can be written explicitly as four
inequality: −x ≤ 0, x−1 ≤ 0, −y ≤ 0, and y−1 ≤ 0. Correspondingly, four
Lagrangian multipliers µ1, µ2, µ3, and µ4 are defined. By equation (4a) and
routine calculations, the equations for KKT points are:

−2αx+ 2y(1− νA)− 2r
(2)
A (1− νA) + µ1 − µ2 = 0;

−4y + 2x(1− νA) + 2
(

2r
(2)
A − 0.5(1− νA)

)
+ µ3 − µ4 = 0;

xµ1 = (x− 1)µ2 = yµ3 = (y − 1)µ4 = 0;
0 ≤ x ≤ 1, 0 ≤ y ≤ 1;µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, µ4 ≥ 0.

(16)

To find all the KKT points, we have and only have to consider the following
nine cases: i) x = y = 0; ii) x = 1 and y = 0; iii) x = 0 and y = 1; iv)
x = y = 1; v) 0 < x < 1 and y = 0; vi) 0 < x < 1 and y = 1; vii) x = 0 and
0 < y < 1; viii) x = 1 and 0 < y < 1; and ix) 0 < x, y < 1. For each case,
we find {x, y, µ1, µ2, µ3, µ4} satisfying the above equations. In the end, only
cases i) and vii) give feasible KKT points. Results are presented in Table
1. Reasons for why some cases do not have a KKT point are presented in
the last column in Table 1. We also note that for non-feasible KKT points,

the function f
(2)
B is not given in Table 1, since it is not used. Details are

omitted.

We note that it is reasonable to assume α > (1−νA)2

2 . As νA will likely be
some value around 1

2 assuming Alice and Bob have new equal attribution to
the project then the amount paid for the effort is greater than 1

8 per round.

For the case with r
(2)
A > 1

4(1− νA), we have the following results.

Lemma 2. If α > (1−νA)2

2 and r
(2)
A > 1

4(1−νA), then (e
(2)∗
B , r

(2)∗
B ) = (0, r

(2)
A −

1
4(1− νA)) and E[π

(2)∗
B (r

(2)
A )] = 1

8(1− νA)2.

Proof. The proof is similar to that of Lemma 1. If 1
4(1 − νA) 6 r

(2)
A , by

comparing the values of f
(2)
B of feasible KKT points in Table 1, we find that

f
(2)∗
B is attained as f

(2)∗
B = 1

8(1−νA)2 when (e
(2)∗
B , r

(2)∗
B ) = (0, r

(2)
A −

1
4(1−νA)).

So Lemma 2 is true.

Based on Lemma 1 and Lemma 2, we find the optimal action for Bob in
the second round.
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Theorem 1. If high efforts bring net costs and α > (1−νA)2

2 , then

(e
(2)∗
B , r

(2)∗
B ) =

{
(0, 0), if r

(2)
A 6 1

4(1− νA);

(0, r
(2)
A −

1
4(1− νA)), if r

(2)
A > 1

4(1− νA),

f
(2)∗
B =

{
−2(r

(2)
A )2 + (1− νA)r

(2)
A , if 0 6 r

(2)
A 6 1

4(1− νA);
1
8(1− νA)2, if 1

4(1− νA) 6 r
(2)
A 6 1.

Proof. First, we show that the function f
(2)
B is concave in (e

(2)
B , r

(2)
B ). By

routine calculations, we obtain the Hessian matrix of f
(2)
B as:

∇2f
(2)
B (e

(2)
B , r

(2)
B ) =


∂2f

(2)
B

∂(e
(2)
B )2

∂2f
(2)
B

∂e
(2)
B ∂r

(2)
B

∂2f
(2)
B

∂r
(2)
B ∂e

(2)
B

∂2f
(2)
B

∂(r
(2)
B )2

 =

[
− 2α 2(1− νA)

2(1− νA) −4

]
.

Since the sum of the diagonal elements of the Hessian matrix is negative
(i.e., −2α − 4 < 0) and the determinant of the Hessian matrix is positive
(i.e., 8α− 4(1− νA)2 > 0), the two eigenvalues of the Hessian matrix must
have the same sign, which has to be negative. Thus, the Hessian matrix

is strictly negative definite. Therefore, function f
(2)
B is concave. Then the

optimal solution has to be the KKT point that maximizes f
(2)
B or a boundary

point of the feasible region. To find the optimal solution, we consider two
cases, each has a unique KKT point.

If r
(2)
A ≤ (1 − νA)/4, there is only one feasible KKT point: (0, 0). Al-

though there is no other feasible KKT point to be considered for optimality,

we have to compare f
(2)
B (0, 0) with that of the all other feasible boundary

solutions listed in Table 1. By routine calculations, it can be verified that

other solutions are either infeasible or their f
(2)
B is smaller than that of (0, 0).

Therefore, (0, 0) is the optimal solution for this case.

If r
(2)
A > (1− νA)/4, there is only one KKT point: (0, r

(2)
A − (1− νA)/4).

Similar to the above case, it can be shown that (0, r
(2)
A − (1− νA)/4) is the

optimal solution for this case.

The corresponding f
(2)∗
B can be calculated accordingly and is given in

Table 1.

Now, we consider Alice’s expected payoff score in round i = 2. We

know from Theorem 1 that e
(2)∗
B = 0 no matter what value r

(2)
A is. After
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Cases (e
(2)
A , r

(2)
A ) f

(2)
A KKT or not

i) (0, 0) 0 Not KKT (µ3 < 0)

ii) (1, 0) −2νAr
(1)
B − α < 0 Not KKT (µ2 < 0)

iii) (0, 1) −(1− r(1)
B )2 < 0 Not KKT (µ1 < 0)

iv) (1, 1) 2(1− νA)(r
(1)
B − 1)− α < 0 Not KKT (µ4 < 0)

v) (−νAr
(1)
B
α , 0) - Not feasible KKT (e

(2)
A < 0)

vi) (
νA(1−r(1)B )

α , 1) 2(r
(1)
B − 1) +

ν2A(r
(1)
B −1)2

α < 0 Not KKT (µ4 < 0)

vii) (0, 1
2r

(1)
B ) 1

2(r
(1)
B )2 Feasible KKT

viii) (1, 1
2(r

(1)
B + νA)) −α+ 1

2ν
2
A − r

(1)
B νA + 1

2(r
(1)
B )2 Not KKT (µ2 < 0)

ix)
e

(2)
A =

r
(1)
B (νA−2)

2α−ν2A
< 0

r
(2)
A =

r
(1)
B (α−ν2A)

2α−ν2A

- Not Feasible KKT (e
(2)
A < 0)

Table 2: KKT points of f
(2)
A in case 1

inserting ẽ
(2)
B = e

(2)∗
B = 0 into the expression of f

(2)
A = E[π

(2)
A , r

(1)
B , a

(2)
A ],

where a
(2)
A = (e

(2)
A , r

(2)
A ), we obtain:

f
(2)
A = −α

(
e

(2)
A

)2
+2
(
r

(1)
B + νAe

(2)
A

)(
r

(2)
A − r

(1)
B

)
+2

((
r

(1)
B

)2
−
(
r

(2)
A

)2
)
.

Lemma 3. Assume that α >
ν2A
2 . Then f

(2)
A has a unique feasible KKT

point (0, 1
2r

(1)
B ).

Proof. The proof is similar to that of Lemma 1. The system of equations

used in the proof is given as follows (note: x = e
(2)
A and y = r

(2)
A ):

−2αx+ 2νA(y − r(1)
B ) + µ1 − µ2 = 0;

−4y + 2(r
(1)
B + νAx) + µ3 − µ4 = 0;

xµ1 = (x− 1)µ2 = yµ3 = (y − 1)µ4 = 0;
0 ≤ x ≤ 1, 0 ≤ y ≤ 1;µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, µ4 ≥ 0.

We find all the feasible KKT points from all the potential KKT points, which
results in only one feasible KKT point. The results are shown in Table 2.
Details are omitted.
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With Lemma 3 we introduce an additional bound with α >
ν2A
2 . As

νA ∈ (0, 1) we know that the lower bound on α is at most 1
2 , however Bob

might not be involved in the project with νA so high. As such, if we consider
more realistic values of νA ∈ [0.25, 0.75], then the lower bound drops at most
0.28125 or lower. This lower bound on α is not very restrictive as α ∈ (0, 2].

Theorem 2. If high efforts bring net costs and α >
ν2A
2 , then Alice’s optimal

action set in round 2 is (e
(2)∗
A , r

(2)∗
A ) = (0, 1

2r
(1)
B ), and her optimal expected

payoff score of round 2 is E
[
π

(2)∗
A (r

(1)
B )
]

= 1
2

(
r

(1)
B

)2
.

Proof. To find the optimal function value f
(2)∗
A , similar to Theorem 1, we

need to check the Hessian of function f
(2)
A :

∇2f
(2)
A (e

(2)
A , r

(2)
A ) =


∂2f

(2)
A

∂(e
(2)
A )2

∂2f
(2)
A

∂e
(2)
A ∂r

(2)
A

∂2f
(2)
A

∂r
(2)
A ∂e

(2)
A

∂2f
(2)
A

∂(r
(2)
A )2

 =

[
− 2α 2νA

2νA −4

]
.

We find that f
(2)
A is a concave function. By Lemma 3, there is only one

candidate for our maximization, which is (0, r
(1)
B /2). Therefore, (0, r

(1)
B )/2

is the optimal solution.

Next, we consider Bob in round 1. From Theorem 1 and Theorem 2 we

have e
(2)∗
A = e

(2)∗
B = 0. Knowing ẽ

(2)
A = ẽ

(2)
B = 0, we get the expression of

f
(1)
B , Bob’s expected cost in round 1 for action a

(1)
B = (e

(1)
B , r

(1)
B ), as:

f
(1)
B = −α · (e(1)

B )2 + 2
(
r

(1)
A + (e

(1)
B − 0.5)(1− νA)

)(
r

(1)
B − r

(1)
A

)
+ 2

(
(r

(1)
A )2 − (r

(1)
B )2

)
.

(17)

Lemma 4. If α > max{ (1−νA)2

2 ,
ν2A
2 } , then

(e
(2)∗
B , r

(2)∗
B ) =

{
(0, 0), if 0 6 r

(1)
B 6 1

2(1− νA);

(0, r
(2)
A −

1
4(1− νA)), if 1

2(1− νA) 6 r
(1)
B 6 1,

f
(2)∗
B =

{
−2(r

(2)
A )2 + (1− νA)r

(2)
A , if 0 6 r

(1)
B 6 1

2(1− νA);
1
8(νA − 1)2, if 1

2(1− νA) 6 r
(1)
B 6 1.
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Proof. According to Theorem 2, we know that r
(2)∗
A = 1

2r
(1)
B . Together with

the statement of Theorem 1, we infer Lemma 4.

We now move to Bob’s optimal actions in the first round. We find that
Bob will exert low effort and report as 0 in round 1 no matter what report
Alice makes in round 1.

Theorem 3. If high efforts bring net costs, α > max{ (1−νA)2

2 ,
ν2A
2 }, and

0 < νA <
1
3 , then Bob’s optimal action set in round 1 is (e

(1)∗
B , r

(1)∗
B ) = (0, 0),

and his expected total payoff score from this round to the final round is

E
[
π

(1)∗
B (r

(1)
A )
]

= r
(1)
A (1− νA).

Proof. According to the definitions of E[π
(1)
B (r

(1)
A , a

(1)
B )], f

(1)
B and f

(2)∗
B , we

know that
E
[
π

(1)
B (r

(1)
A , a

(1)
B )
]

= f
(1)
B + δf

(2)∗
B ,

and f
(2)∗
B is a fixed value for a given r

(2)∗
A . From Lemma 4 we know that if

r
(1)
B 6 1

2(1 − νA), then (e
(2)∗
B , r

(2)∗
B ) = (0, 0) and f

(2)∗
B = −1

2(r
(1)
B )2 + 1

2(1 −
νA)r

(1)
B ; if r

(1)
B > 1

2(1 − νA), then (e
(2)∗
B , r

(2)∗
B ) = (0, r

(2)
A −

1
4(1 − νA)) and

f
(2)∗
B = 1

8(1− νA)2.

We first consider the case in which f
(2)∗
B is a function of r

(1)
B as f

(2)∗
B =

−1
2(r

(1)
B )2 + 1

2(1− νA)r
(1)
B , if r

(1)
B 6 1

2(1− νA). Under this condition, f
(1)
B +

δf
(2)∗
B is a concave function if α > max{ (1−νA)2

2 ,
ν2A
2 }. Similar to Theorems

1 and 2, we find and compare the KKT points of f
(1)
B + δ ·f (2)∗

B . It turns out

that f
(1)
B + δf

(2)∗
B is maximized at (e

(1)
B , r

(1)
B ) = (0, 0) with value r

(1)
A (1−νA).

Details are omitted. (Note: In the rest of the paper, we will not give all
the details about KKT points in our proofs.)

Second, we discuss the case in which f
(2)∗
B is a constant as f

(2)∗
B = 1

8(νA−
1)2 if 1

2(1−νA) 6 r
(1)
B 6 1. Under this condition, f

(1)
B +δf

(2)∗
B is also a concave

function if α > max{ (1−νA)2

2 ,
ν2A
2 }. Again, similar to Theorems 1 and 2, we

identify and compare all the KKT points of the function to find the optimal

solution. It turns out that the function is maximized at (e
(1)
B , r

(1)
B ) = (0, 0)

with value r
(1)
A (1− νA), under an additional condition: 0 < νA <

1
3 .

In conclusion, the optimal value of E[π
(1)
B (r

(1)
A , a

(1)
B )] is attained as E

[
π

(1)∗
B (r

(1)
A )
]

=

r
(1)
A (1 − νA) at (e

(1)∗
B , r

(1)∗
B ) = (0, 0), under the given conditions. So Theo-

rem 3 is true.
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At last, we consider Alice in round 1. We have already proved in The-

orem 1, Theorem 2 and Theorem 3 that e
(1)∗
B = e

(2)∗
A = e

(2)∗
B = r

(1)∗
B = 0

and f
(2)∗
A = 1

2(r
(1)
B )2 = 0 no matter what effort Alice exerts and no matter

what report she makes in round 1. In this situation f
(2)∗
A = 0 and we get

the expression of f
(1)
A + δf

(2)∗
A = E

[
π

(1)
A (r

(0)
B , a

(1)
A )
]
, where a

(1)
A = (e

(1)
A , r

(1)
A ),

as:

f
(1)
A + δf

(2)∗
A = −α

(
e

(1)
A

)2
+ 2νAe

(1)
A

(
r

(1)
A − r

(0)
B

)
+ 2

(
(r

(0)
B )2 − (r

(1)
A )2

) (18)

We now move to Alice’s optimal actions in the first round. We find that
Alice will exert low effort and report as 0 in round 1 regardless of the initial
market estimate.

Theorem 4. If high efforts bring net costs and α > max{ (1−νA)2

2 ,
ν2A
2 }, then

Alice’s optimal action set in round 1 is (e
(1)∗
A , r

(1)∗
A ) = (0, 0), and her ex-

pected total payoff score from this round to the final round is E[π
(1)∗
A (r

(0)
B )] =

2(r
(0)
B )2.

Proof. Similar to previous theorems, we can show that the function f
(1)
A +δ ·

f
(2)∗
A is concave. We can also find its KKT points. By comparing the function

values of the feasible KKT points, we immediately conclude that the optimal

value of f
(1)
A + δ · f (2)∗

A is achieved as 2(r
(0)
B )2 when (e

(1)∗
A , r

(1)∗
A ) = (0, 0).

Details are omitted. So Theorem 4 is true.

Summarizing results in Theorems 1, 2, 3, and 4, we infer the set
of equilibrium strategies and payoffs for both agents of 2 rounds in table 3
(under the conditions given in the theorems).

Round i Player j a
(i)∗
j = (e

(i)∗
j , r

(i)∗
j ) E[π

(i)∗
j , .]

1 A a
(1)∗
A = (0, 0) 2(r

(0)
B )2

1 B a
(1)∗
B = (0, 0) 0

2 A a
(2)∗
A = (0, 0) 0

2 B a
(2)∗
B = (0, 0) 0

Table 3: Equilibrium strategies and payoffs in case 1

We can immediately conclude that if α > max{ (1−νA)2

2 ,
ν2A
2 } and 0 <

νA < 1
3 , then not only will all of the agents’ reports be 0, but so will all
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of their effort values. This suggests that even when agents are strategic
and external incentives exist, the proposed market scoring rule is incentive
compatible regardless of the initial market estimate, so long as we set a
proper range for α and νA. In the next section we derive the symmetric
result when the cost of high effort is negative.

4.3. Case 2: High efforts bring net rewards to agents

In case 2 we assume that two agents’ efforts together decide the out-
come of E and the ultimate value of security F but high efforts will bring
negative net costs (equivalent to positive net rewards) to the agents who
exert them. We further assume the payoff function of the exerted effort is
ρe(e) = αe2(α > 0):

ρe(e
(i)
A ) = α(e

(i)
A )2, (19a)

ρe(e
(i)
B ) = α(e

(i)
B )2. (19b)

In order to compare case 2 with case 1, we set the same range for α as

α > max{ (1−νA)2

2 ,
ν2A
2 }. In this section we set Alice’s impact on deciding the

likelihood of E as νA ∈ (0, 1) and have the same definition of Alice’s (Bob’s)
belief on the likelihood of E’s final occurring held in each round as that of
case 1. Here we continue using the quadratic scoring rule in the prediction
market. We also note that, since proofs for case 2 are similar to that of case
1, some technical details will be omitted in this subsection.

In case 2 we still have I
(i)
A = r

(i−1)
B and I

(i)
B = r

(i)
A as in case 1. After

inserting the reward functions of exerted efforts (19), the belief on the likeli-
hood of E’s occurring (7) perceived by agents, and the reward functions in
the prediction market (11) into the maximization equations (8) for Alice and
Bob separately, we get the following maximization equations when T = 2.
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For agent Alice:

E
[
π

(1)∗
A (r

(0)
B )
]

= max
(e

(1)
A ,r

(1)
A )

{
δ E
[
π

(2)∗
A (r̃

(1)
B )
]

+ α(e
(1)
A )2 (20a)

+ 2

(
νA(e

(1)
A + ẽ

(2)
A ) + (1− νA)

2∑
n=1

ẽ
(n)
B

)(
r

(1)
A − r

(0)
B

)
+2
(

(r
(0)
B )2 − (r

(1)
A )2

)}
,

E
[
π

(2)∗
A (r

(1)
B )
]

= max
(e

(2)
A ,r

(2)
A )

{
α(e

(2)
A )2 (20b)

+ 2
(
r

(1)
B + νAe

(2)
A + (1− νA)ẽ

(2)
B

)(
r

(2)
A − r

(1)
B

)
+2
(

(r
(1)
B )2 − (r

(2)
A )2

)}
.

For agent Bob:

E
[
π

(1)∗
B (r

(1)
A )
]

= max
(e

(1)
B ,r

(1)
B )

{
δ E
[
π

(2)∗
B (r̃

(2)
A )
]

+ α(e
(1)
B )2 (21a)

+ 2
(
r

(1)
A + νAẽ

(2)
A + (1− νA)(e

(1)
B + ẽ

(2)
B − 0.5)

)
·
(
r

(1)
B − r

(1)
A

)
+ 2

(
(r

(1)
A )2 − (r

(1)
B )2

)}
,

E
[
π

(2)∗
B (r

(2)
A )
]

= max
(e

(2)
B ,r

(2)
B )

{
α(e

(2)
B )2 (21b)

+ 2
(

2r
(2)
A + (1− νA)(e

(2)
B − 0.5)

)(
r

(2)
B − r

(2)
A

)
+2
(

(r
(2)
A )2 − (r

(2)
B )2

)}
.

Next, similar to case 1, we identify all KKT points of the function and
then find the optimal solutions.

In round 2, we consider Bob’s function of expected payoff scores f
(2)
B =

E
[
π

(2)
B (r

(2)
A , a

(2)
B )
]

for action a
(2)
B = (e

(2)
B , r

(2)
B ):

f
(2)
B =α(e

(2)
B )2 + 2

(
2r

(2)
A + (1− νA)(e

(2)
B − 0.5)

)(
r

(2)
B − r

(2)
A

)
+ 2

(
(r

(2)
A )2 − (r

(2)
B )2

)
.

(22)

Lemma 5. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r

(2)
A 6 3+νA

4 , then (e
(2)∗
B , r

(2)∗
B ) =

(1, r
(2)
A + 1

4(1− νA)) and E[π
(2)∗
B (r

(2)
A )] = α+ 1

8(1− νA)2.
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Proof. Similar to Lemma 1, we first find the Hessian of function f
(2)
B :

∇2f
(2)
B (e

(2)
B , r

(2)
B ) =


∂2f

(2)
B

∂(e
(2)
B )2

∂2f
(2)
B

∂e
(2)
B ∂r

(2)
B

∂2f
(2)
B

∂r
(2)
B ∂e

(2)
B

∂2f
(2)
B

∂(r
(2)
B )2

 =

[
2α 2(1− νA)

2(1− νA) −4

]

The first principle minor of∇2f
(2)
B (e

(2)
B , r

(2)
B ) is positive for det

[
∂2f

(2)
B

∂(e
(2)
B )2

]
=

2α > 0 . the second principle minor is negative because:

det


∂2f

(2)
B

∂(e
(2)
B )2

∂2f
(2)
B

∂e
(2)
B ∂r

(2)
B

∂2f
(2)
B

∂r
(2)
B ∂e

(2)
B

∂2f
(2)
B

∂(r
(2)
B )2

 = −8α− 4(1− νA)2 < 0.

We find that the Hessian of f
(2)
B is an indefinite matrix so we need to find

all KKT points and compare the corresponding values of f
(2)
B for each point,

since f
(2)∗
B must be attained in one of these KKT points. All (feasible) KKT

points of f
(2)
B and their corresponding f

(2)
B function values are presented in

Table 4. (Note: To simplify our analysis, unfeasible KKT points are not

shown in tables in this subsection.) We find that if r
(2)
A 6 3+νA

4 , f
(2)∗
B is

attained as α + 1
8(1 − νA)2 when (e

(2)
B , r

(2)
B ) = (1, r

(2)
A + 1

4(1 − νA)). So
Lemma 5 is true.

Lemma 6. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r

(2)
A > 3+νA

4 , then (e
(2)∗
B , r

(2)∗
B ) =

(1, 1) and E
[
π

(2)∗
B (r

(2)
A )
]

= −2(r
(2)
A )2 + (νA + 3)r

(2)
A + α− νA − 1.

Proof. Similar as the proof for Lemma 5, if r
(2)
A > 3+νA

4 , by comparing

the values of f
(2)
B of feasible KKT points, we find that f

(2)∗
B is attained as

f
(2)∗
B = −2(r

(2)
A )2 + (νA + 3)r

(2)
A + α − νA − 1 when (e

(2)∗
B , r

(2)∗
B ) = (1, 1).

Details are omitted. So Lemma 6 is true.

Now, we are ready to determine Bob’s round 2 decisions:
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e
(2)
B r

(2)
B f

(2)
B

0 r
(2)
A −

1
4(1− νA) 1

8(1− νA)2

1 r
(2)
A + 1

4(1− νA) α+ 1
8(1− νA)2

r
(2)
A (1−νA)

α 0 −2(r
(2)
A )2 + r

(2)
A (1− νA)− (r

(2)
A )2(1−νA)2

α

0 0 −2(r
(2)
A )2 + (1− νA)r

(2)
A

0 1 −2(r
(2)
A )2 + (5− νA)r

(2)
A + νA − 3

1 0 −2(r
(2)
A )2 + (νA − 1)r

(2)
A + α

1 1 −2(r
(2)
A )2 + (νA + 3)r

(2)
A + α− νA − 1

Table 4: KKT points of f
(2)
B in case 2

Theorem 5. If high efforts bring net rewards and α > max{ (1−νA)2

2 ,
ν2A
2 },

then

(e
(2)∗
B , r

(2)∗
B ) =

{
(1, r

(2)
A + 1

4(1− νA)), if 0 6 r
(2)
A 6 3+νA

4 ;

(1, 1), if 3+νA
4 6 r

(2)
A 6 1.

f
(2)∗
B =

{
α+ 1

8(1− νA)2, if 0 6 r
(2)
A 6 3+νA

4 ;

−2(r
(2)
A )2 + (νA + 3)r

(2)
A + α− νA − 1, if 3+νA

4 6 r
(2)
A 6 1.

Proof. With Lemma 5 and Lemma 6, Theorem 5 is true.

Then we consider Alice in round i = 2 when Bob’s future effort is ẽ
(2)
B .

We know from Theorem 5 that ẽ
(2)
B = e

(2)∗
B = 1. After inserting ẽ

(2)
B = 1 into

f
(2)
A = E

[
π

(2)
A , r

(1)
B , a

(2)
A

]
, we get:

f
(2)
A =α(e

(2)
A )2 + 2

(
r

(1)
B + νA · e(2)

A + 1− νA
)

(r
(2)
A − r

(1)
B )

+ 2
(

(r
(1)
B )2 − 2(r

(2)
A )2

)
.

(23)

For Alice’s optimal actions in round 2, we find that Alice will exert high
effort and report as 1 in round 2 no matter what Bob reports in round 1.

Theorem 6. If high efforts bring net rewards and α > max{ (1−νA)2

2 ,
ν2A
2 },

Alice’s optimal action set in round 2 is (e
(2)∗
A , r

(2)∗
A ) = (1, 1

2(r
(1)
B + 1)), and

the optimal expected payoff score of round 2 is E[π
(2)∗
A (r

(1)
B )] = α+ 1

2(r
(1)
B )2 +

1
2 − r

(1)
B .
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e
(2)
A r

(2)
A f

(2)
A

0 1
2r

(1)
B + 1

2(1− νA) 1
2(r

(1)
B )2 + 1

2(1− νA)2 − r(1)
B (1− νA)

1 1
2(r

(1)
B + 1) α+ 1

2(r
(1)
B )2 + 1

2 − r
(1)
B

νAr
(1)
B
α 0 −2r

(1)
B (1− νA)− (νAr

(1)
B )2

α

0 0 −2r
(1)
B (1− νA)

0 1 −2νA(1− r(1)
B )

1 0 −2r
(1)
B + α

1 1 α

Table 5: KKT points of f
(2)
A in case 2

Proof. To find the value of f
(2)∗
A , we find all the KKT points of f

(2)
A and

the corresponding function values (See Table 5). By routine calculations,

we find that f
(2)
A is maximized as f

(2)∗
A = α + 1

2(r
(1)
B )2 + 1

2 − r
(1)
B when

(e
(2)
A , r

(2)
A ) = (1, 1

2(r
(1)
B + 1)). So Theorem 6 is true.

Now, we consider Bob in round 1. From Theorem 5 and Theorem 6 we

know that e
(2)∗
A = e

(2)∗
B = 1. Knowing ẽ

(2)
A = ẽ

(2)
B = 1, we get the expression

of f
(1)
B as:

f
(1)
B =α · (e(1)

B )2 + 2
(
r

(1)
A + νA + (1− νA)(e

(1)
B + 0.5)

)
(r

(1)
B − r

(1)
A )

+ 2
(

(r
(1)
A )2 − 2(r

(1)
B )2

)
.

(24)

Next, we need three lemmas for the maximum value of E
[
π

(1)
B (r

(2)
A , a

(1)
B )
]

=

f
(1)
B + δf

(2)∗
B , where a

(1)
B = (e

(1)
B , r

(1)
B ).

Lemma 7. If α > max{ (1−νA)2

2 ,
ν2A
2 }, then

(e
(2)∗
B , r

(2)∗
B ) =

{
(1, r

(2)
A + 1

4(1− νA)), if 0 6 r
(1)
B 6 1

2(1 + νA);

(1, 1), if 1
2(1 + νA) 6 r

(1)
B 6 1.

f
(2)∗
B =

{
α+ 1

8(νA − 1)2, if 0 6 r
(1)
B 6 1

2(1 + νA);

−1
2(r

(1)
B )2 + 1

2r
(1)
B + 1

2r
(1)
B νA − 1

2νA + α, if 1
2(1 + νA) 6 r

(1)
B 6 1.

Proof. By Theorem 6, we know that r
(2)∗
A = 1

2(r
(1)
B + 1). Together with the

statement of Theorem 5, we infer Lemma 7.
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Lemma 8. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r

(1)
A 6 νA+1

2 , then (e
(1)∗
B , r

(1)∗
B ) =

(1, 1
2r

(1)
A + 1

4(3− νA)) and

E
[
π

(1)∗
B (r

(1)
A )
]

= 1
2r

(1)
A (r

(1)
A − 3 + νA) + α+ 1

8ν
2
A

−3
4νA + 9

8 + δ
(
α+ 1

8(1− νA)2
)
.

Proof. From Lemma 7 we know that f
(2)∗
B is attained as f

(2)∗
B = α+1

8(1−νA)2

when r
(1)
B 6 1

2(1+νA); and attained as f
(2)∗
B = −1

2(r
(1)
B )2 + 1

2r
(1)
B + 1

2r
(1)
B νA−

1
2νA + α when r

(1)
B > 1

2(1 + νA).

We first discuss the situation where f
(2)∗
B is a constant as f

(2)∗
B = α +

1
8(1 − νA)2 when r

(1)
B 6 1

2(1 + νA). We first find all the KKT points of

f
(1)
B + δ · f (2)∗

B . We find that when r
(1)
A 6 1+νA

2 , f
(1)
B + δ · f (2)∗

B is maximized

as 1
2r

(1)
A (r

(1)
A −3+νA)+α+ 1

8ν
(2)
A −

3
4νA+ 9

8 +δ(α+ 1
8(νA−1)2) at (e

(1)
B , r

(1)
B ) =

(1, 1
2r

(1)
A + 1

4(3− νA)).

Second, we discuss the situation where f
(2)∗
B is a function of r

(1)
B as f

(2)∗
B =

−1
2(r

(1)
B )2 + 1

2r
(1)
B + 1

2r
(1)
B νA − 1

2νA + α, if r
(1)
B > 1

2(1 + νA). Using the same

method, we find that f
(1)
B +δ·f (2)∗

B is maximized as (1−νA)(1−r(1)
A )+α(1+δ)

at (e
(1)
B , r

(1)
B ) = (1, 1).

By routine calculations, we know that the first expression of f
(1)
B + δ ·

f
(2)∗
B is larger than the value of the second expression. So E

[
π

(1)∗
B (r

(1)
A )
]

is

achieved as 1
2r

(1)
A (r

(1)
A − 3 + νA) +α+ 1

8ν
2
A−

3
4νA + 9

8 + δ(α+ 1
8(νA− 1)2) at

(e
(1)∗
B , r

(1)∗
B ) = (1, 1

2r
(1)
A + 1

4(3− νA)). So Lemma 8 is true.

Lemma 9. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r

(1)
A > νA+1

2 , then (e
(1)∗
B , r

(1)∗
B ) =

(1, 1) and

E
[
π

(1)∗
B (r

(2)
A )
]

= (1− νA)(1− r(1)
A ) + α(1 + δ) + δνA(

1

2
− νA).

Proof. The proof is similar to that of Lemma 8. Details are omitted.

Given the two cases for Bob’s equilibrium decisions in round 1, we may
now determine Bob’s round 1 decisions:

Theorem 7. If high efforts bring net rewards and α > max{ (1−νA)2

2 ,
ν2A
2 },

then

(e
(1)∗
B , r

(1)∗
B ) =

{
(1, 1

2r
(1)
A + 1

4(3− νA)), if 0 6 r
(1)
A 6 νA+1

2 ;

(1, 1), if νA+1
2 6 r

(1)
A 6 1.
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E
[
π

(1)∗
B (r

(1)
A )
]

=


1
2r

(1)
A (r

(1)
A − 3 + νA) + α+ 1

8νA,

−3
4νA + 9

8 + δ
(
α+ 1

8(1− νA)2
)
, if 0 6 r

(1)
A 6 νA+1

2 ;

(1− νA)(1− r(1)
A ) + α

+δ
(
α+ νA(1

2 − νA)
)
, if νA+1

2 6 r
(1)
A 6 1.

Proof. With Lemma 8 and Lemma 9, Theorem 7 is true.

Finally, we consider Alice in round 1. We have already proved in The-

orem 5, Theorem 6 and Theorem 7 that e
(1)∗
B = e

(2)∗
A = e

(2)∗
B = 1 and

E[π
(2)∗
A (r

(1)
B )] = α+ 1

2(r
(1)
B )2 + 1

2 − r
(1)
B . After inserting ẽ

(1)
B = ẽ

(2)
A = ẽ

(2)
B = 1

and E
[
π

(2)∗
A (r̃

(1)
B )
]

into E
[
π

(1)
A (r

(0)
B , a

(1)
A )
]
, we obtain

E
[
π

(1)
A (r

(1)
B , a

(2)
A )
]

= f
(1)
A + δf

(2)∗
A

= δ

(
α+

1

2
(1)2 +

1

2
− 1

)
+ α(e

(1)
A )2

+ 2
(
νAe

(1)
A + 2− νA

)
(r

(1)
A − r

(0)
B ) + 2

(
(r

(0)
B )2 − 2(r

(1)
A )2

)
= α

(
δ + (e

(1)
A )2

)
+ 2

(
νAe

(1)
A + 2− νA

)
(r

(1)
A − r

(0)
B ) + 2

(
(r

(0)
B )2 − (r

(1)
A )2

)
(25)

We now move to Alice’s optimal actions in the first round. We find that
Alice will exert high effort and report as 1 in round 1 no matter what initial
market estimate is.

Theorem 8. If α > max{ (1−νA)2

2 ,
ν2A
2 }, then Alice’s optimal action set in

round 1 is (e
(1)∗
A , r

(1)∗
A ) = (1, 1), and her expected total payoff score from this

round to the final round is E[π
(1)∗
A (r

(0)
B )] = 2(r

(0)
B − 1)2 + (1 + δ)α.

Proof. Similar to previous theorems, we first identify all the KKT points

of f
(1)
A + δf

(2)∗
A . We then find that the optimal value of f

(1)
A + δ · f (2)∗

A is

achieved as 2(r
(0)
B − 1)2 + (1 + δ)α when (e

(1)∗
A , r

(1)∗
A ) = (1, 1). Details are

omitted. So Theorem 8 is true.

Summarizing results in Theorem 8, Theorem 7, Theorem 6, and Theo-

rem 5, we infer the set of optimal equilibrium strategies a
(i)∗
j = (e

(i)∗
j , r

(i)∗
j )

and their corresponding payoffs for both agents of 2 rounds in table 6 (under
the conditions specified in the theorems):
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Round, i Player, j a
(i)∗
j = (e

(i)∗
j , r

(i)∗
j ) E

[
π

(i)∗
j (·)

]
1 A a

(1)∗
A = (1, 1) 2(r

(0)
B − 1)2 + (1 + δ)α

1 B a
(1)∗
B = (1, 1) α(1 + δ) + δνA(1

2 − νA)

2 A a
(2)∗
A = (1, 1) α

2 B a
(2)∗
B = (1, 1) α

Table 6: Equilibrium strategies and payoffs in case 2

We can immediately conclude that if α > max{ (1−νA)2

2 ,
ν2A
2 }, then not

only will all of the agents’ reports be 1, but so will all of their effort values.
The results in sections 4.2 and 4.3 generalize to the 4 round setting, but it
is still unclear if they generalize for any value of T .

We carried out numerical simulations, via simulated annealing, for T >

4 and found that starting with random values of r
(i)
j and e

(i)
j , for player

j ∈ {A,B}, over all rounds, the final Pareto dominant solution was either
one with all players reporting truthfully and exerting high effort (referred to
as the truthful solution), or mostly exerting high effort and being truthful
with some deviation in effort and reports, called the mixed solution. The
interesting aspect of our numerical simulations, is that for the solutions we
found, the truthful solution always had a higher payoff for Alice than the
mixed solution, and Bob had a higher payoff in the mixed solution than in
the truthful solution. In addition, the values of the payoff functions tended
to differ only in the hundredths or thousandths place of the reward functions
values across the two solutions. Given our findings, we conclude that the
results of the numerical simulation are inconclusive. We say the results
are inconclusive because we started with a random set of actions for all
players across all rounds, and the Pareto dominant solution we find may be
infeasible as Alice is the first mover in the game. The first mover, Alice may
take actions to avoid ever getting to the initial state of the game (where we
started the simulation), as she is rational, she would receive a higher payoff
in the truthful solution than the mixed solution and will take actions to
avoid the initial state of the simulation. In order for a simulation to make
sense, it must take into account Alice’s first-mover advantage.

4.4. Case 3: External incentives do not exist

In case 3 we assume that two agents’ efforts together decide the outcome
of E and the ultimate value of security F but their efforts will bring no
payoffs to the agents who exert them (ρe(e) = 0). Previous work has shown
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that when external incentives do not exist outside of the prediction market,
non-myopic agents have incentives to bluff in the prediction market (Chen
et al., 2010; Dimitrov and Sami, 2008). We show in case 3 that this result
also applies for our model. We assume νA = 1

2 (Alice and Bob have the

same impact on deciding the occurring probability of E) and r
(0)
B = 3

4 (the
initial market estimate is set to be 3

4). Under the above assumptions we
then have Alice and Bob’s Bellman equations in the 2-round setting as:

For agent Alice (with r
(0)
B = 3

4):

E
[
π

(1)∗
A (r

(0)
B )
]

= max
(e

(1)
A ,r

(1)
A )

{
δ E
[
π

(2)∗
A (r̃

(1)
B )
]

(26a)

+ 2
(
νA(e

(1)
A + ẽ

(2)
A ) + (1− νA)(ẽ

(1)
B + ẽ

(2)
B )
)

(r
(1)
A − r

(0)
B )

+2
(

(r
(0)
B )2 − (r

(1)
A )2

)}
,

E
[
π

(2)∗
A (r

(1)
B )
]

= max
(e

(2)
A ,r

(2)
A )

{
2
(
r

(1)
B + νA · ẽ(2)

A + (1− νA)ẽ
(2)
B

)
(26b)

·(r(2)
A − r

(1)
B ) + 2

(
(r

(1)
B )2 − (r

(2)
A )2

)}
.

For agent Bob:

E
[
π

(1)∗
B (r

(1)
A )
]

= max
(e

(1)
B ,r

(1)
B )

{
δ E[π

(2)∗
B (r̃

(2)
A )] (27a)

+ 2
(
r

(1)
A + νA · ẽ(2)

A + (1− νA)
(
e

(1)
B + ẽ

(2)
B − 0.5

))
(27b)

·(r(1)
B − r

(1)
A ) +

(
(r

(1)
A )2 − (r

(1)
B )2

)}
,

E
[
π

(2)∗
B (r

(2)
A )
]

= max
(e

(2)
B ,r

(2)
B )

{
2
(
r

(2)
A + (1− νA)(e

(2)
B − 0.5)

)
(27c)

·(r(2)
B − r

(2)
A ) + 2

(
(r

(2)
A )2 − (r

(2)
B )2

)}
.

Using backwards induction as has been explained in detail for case 1

and case 2, we infer the set of equilibrium strategies (e
(i)∗
j , r

(i)∗
j ) and their

corresponding payoffs E
[
π

(i)∗
j (·)

]
for both agents of 2 rounds in Table 7,

under the initial condition r
(0)
B = 3

4 . Technical details are omitted.
So in case 3 where external incentives do not exist, we observe directly

from the optimal actions that agents do not necessarily exert high efforts to
E and they also do not report truthfully in the prediction market.
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Round, i Player, j a
(i)∗
j = (e

(i)∗
j , r

(i)∗
j ) E

[
π

(i)∗
j (·)

]
1 A a

(1)∗
A = (0, 1

2) 1
8

1 B a
(1)∗
B = (1, 7

8) 1
32

2 A a
(2)∗
A = (0, 11

16) 9
128 + 1

8δ

2 B a
(2)∗
B = (1, 13

16) 1
32(1 + δ)

Table 7: Equilibrium strategies in case 3

4.5. Case 4: High efforts bring net rewards to agents in a 4-round setting

In this case, similar to Case 2, we assume that high efforts will bring
negative net costs (equivalent to positive net rewards) to the agents who
exert them. We extend the number of rounds from 2 rounds to 4 rounds.
In order to properly compare case 4 with the previous cases, we assume
the payoff function of exerted effort to be ρe(e) = α · e2(α > 0) as we
have assumed for case 2 in (19), and we set the same range for α as α >

max{ (1−νA)2

2 ,
ν2A
2 }. We set Alice’s impact on deciding the likelihood of E

as νA ∈ (0, 1) and have the same definition of Alice’s (Bob’s) belief on the
likelihood of E’s final occurring held in each round as that of case 1. Here
we continue using the quadratic scoring rule in the prediction market. In

case 4 we still have I
(i)
A = r

(i−1)
B and I

(i)
B = r

(i)
A as in case 1 and case 2.

After inserting the reward functions of exerted efforts (19), the belief
on the likelihood of E’s occurring (7) perceived by agents, and the reward
functions in the prediction market (11) into the maximization equations (8)
for Alice and Bob separately, we get the following maximization equations
when T = 4:
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For agent Alice:

E[π
(1)∗
A (r

(0)
B )] = max

(e
(1)
A ,r

(1)
A )

{
δ E[π

(2)∗
A (r̃

(1)
B )] + α(e

(1)
A )2 (28a)

+

(
νA(e

(1)
A +

4∑
n=2

ẽ
(n)
A ) + (1− νA)

4∑
n=1

ẽ
(n)
B

)(
r

(1)
A − r

(0)
B

)
+2
(

(r
(0)
B )2 − (r

(1)
A )2

)}
,

E[π
(2)∗
A (r

(1)
B )] = max

(e
(2)
A ,r

(2)
A )

{
δ E[π

(3)∗
A (r̃

(2)
B )] + α(e

(2)
A )2 (28b)

+

(
r

(1)
B + νA

(
e

(2)
A +

4∑
n=3

ẽ
(n)
A

)
+ (1− νA)

4∑
n=2

ẽ
(n)
B

)(
r

(2)
A − r

(1)
B

)
+2
(

(r
(1)
B )2 − (r

(2)
A )2

)}
,

E[π
(3)∗
A (r

(2)
B )] = max

(e
(3)
A ,r

(3)
A )

{
δ E[π

(4)∗
A (r̃

(3)
B )] + α(e

(3)
A )2 (28c)

+

(
2r

(2)
B + νA

(
e

(3)
A + ẽ

(4)
A

)
+ (1− νA)

4∑
n=3

ẽ
(n)
B

)(
r

(3)
A − r

(2)
B

)
+2
(

(r
(2)
B )2 − (r

(3)
A )2

)}
,

E[π
(4)∗
A (r

(3)
B )] = max

(e
(4)
A ,r

(4)
A )

{
α(e

(4)
A )2 (28d)

+
(

3r
(3)
B + νAe

(4)
A + (1− νA)ẽ

(4)
B

)(
r

(4)
A − r

(3)
B

)
+2
(

(r
(3)
B )2 − (r

(4)
A )2

)}
,
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For agent Bob:

E[π
(1)∗
B (r

(1)
A )] = max

(e
(1)
B ,r

(1)
B )

{
δ E[π

(2)∗
B (r̃

(2)
A )] + α(e

(1)
B )2 (29a)

+

(
r

(1)
A + νA

4∑
n=2

ẽ
(n)
A + (1− νA)

(
e

(1)
B +

4∑
n=2

ẽ
(n)
B − 0.5

))
·
(
r

(1)
B − r

(1)
A

)
+ 2

(
(r

(1)
A )2 − (r

(1)
B )2

)}
,

E[π
(2)∗
B (r

(2)
A )] = max

(e
(2)
B ,r

(2)
B )

{
δ E[π

(3)∗
B (r̃

(3)
A )] + α(e

(2)
B )2 (29b)

+

(
2r

(2)
A + νA

4∑
n=3

ẽ
(n)
A + (1− νA)

(
e

(2)
B +

4∑
n=3

ẽ
(n)
B − 0.5

))
·
(
r

(2)
B − r

(2)
A

)
+ 2

(
(r

(2)
A )2 − (r

(2)
B )2

)}
,

E[π
(3)∗
B (r

(3)
A )] = max

(e
(3)
B ,r

(3)
B )

{
δ E[π

(4)∗
B (r̃

(4)
A )] + α(e

(3)
B )2 (29c)

+
(

3r
(3)
A + νAẽ

(4)
A + (1− νA)

(
e

(3)
B + ẽ

(4)
B − 0.5

))
·
(
r

(3)
B − r

(3)
A

)
+ 2

(
(r

(3)
A )2 − (r

(3)
B )2

)}
.

E[π
(4)∗
B (r

(4)
A )] = max

(e
(4)
B ,r

(4)
B )

{
α(e

(4)
B )2 (29d)

+
(

4r
(4)
A + (1− νA)

(
e

(4)
B − 0.5

))
(r

(4)
B − r

(4)
A )

+2
(

(r
(4)
A )2 − (r

(4)
B )2

)}
.

Lemma 10. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r

(4)
A 6 7+νA

8 , then (e
(4)∗
B , r

(4)∗
B ) =

(1, r
(4)
A + 1

8(1− νA)) and E[π
(4)∗
B (r

(4)
A )] = α+ 1

8(1− νA)2.

Proof. When i = 4, there are no future rounds. Consider Bob’s function of

expected payoff scores in round 4 as f
(4)
B :

f
(4)
B =E[π

(4)
B (r

(4)
A , a

(4)
B )]

=α(e
(4)
B )2 +

(
4r

(4)
A + (1− νA)(e

(4)
B − 0.5)

)(
r

(4)
B − r

(4)
A

)
+ 2

(
(r

(4)
A )2 − (r

(4)
B )2

) (30)
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e
(4)
B r

(4)
B f

(4)
B

0 r
(4)
A + 1

8(νA − 1) 1
32(1− νA)2

1 r
(4)
A + 1

8(1− νA) α+ 1
8(1− νA)2

r
(4)
A (1−νA)

2α 0 −2(r
(4)
A )2 +

r
(4)
A
2 (1− νA) + (1−νA)2

4α (1− r
(4)
A
2 )

0 0 −2(r
(4)
A )2 +

r
(4)
A
2 (1− νA)

0 1 −2(r
(4)
A )2 + 4r

(4)
A − 2− (1−νA)(1−r(4)A )

2 6 0

1 0 −2(r
(4)
A )2 − (1−νA)r

(4)
A

2 + α 6 α

1 1 α− 2(1− r(4)
A )2 +

(1−νA)(1−r(4)A )
2

Table 8: KKT points of f
(4)
B in case 4

Then we obtain

∇2f
(4)
B (e

(4)
B , r

(4)
B ) =


∂2f

(4)
B

∂(e
(4)
B )2

∂2f
(4)
B

∂e
(4)
B ∂r

(4)
B

∂2f
(4)
B

∂r
(4)
B ∂e

(4)
B

∂2f
(4)
B

∂(r
(4)
B )2

 =

[
2α 1− νA
1− νA −4

]

The first principle minor of∇2f
(4)
B (e

(4)
B , r

(4)
B ) is positive because det

[
∂2f

(4)
B

∂(e
(4)
B )2

]
=

2α > 0 . the second principle minor is negative because:

det


∂2f

(4)
B

∂(e
(4)
B )2

∂2f
(4)
B

∂e
(4)
B ∂r

(4)
B

∂2f
(4)
B

∂r
(4)
B ∂e

(4)
B

∂2f
(4)
B

∂(r
(4)
B )2

 = −8α− (1− νA)2 < 0.

We find that the Hessian of f
(4)
B is an indefinite matrix so we still need

to find its KKT points and compare the corresponding values of f
(4)
B , for

the maximal value f
(4)∗
B must be attained in one of these KKT points. We

write down in table 8 the KKT points of f
(4)
B and the corresponding function

values. However, to simplify our analysis, unfeasible KKT points are not

shown in this table. We find that if r
(4)
A 6 7+νA

8 , f
(4)∗
B is attained as α +

1
8(1− νA)2 when (e

(4)
B , r

(4)
B ) = (1, r

(4)
A + 1

8(1− νA)). So Lemma 10 is true.

36



Lemma 11. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r

(4)
A > 7+νA

8 , then (e
(4)∗
B , r

(4)∗
B ) =

(1, 1) and E[π
(4)∗
B (r

(4)
A )] = α− 2(1− r(4)

A )2 +
(1−νA)(1−r(4)A )

2 .

Proof. Similar as the proof for Lemma 10, if r
(4)
A > 7+νA

8 , by comparing the

values of f
(4)
B of feasible KKT points in table 8, we find that f

(4)∗
B is attained

as f
(4)∗
B = α − 2(1 − r(4)

A )2 +
(1−νA)(1−r(4)A )

2 when (e
(4)∗
B , r

(4)∗
B ) = (1, 1). So

Lemma 11 is true.

Given the two cases for Bob’s equilibrium decisions in round 4, we may
now determine Bob’s round 4 decisions:

Theorem 9. If high efforts bring net rewards and α > max{ (1−νA)2

2 ,
ν2A
2 },

then

(e
(4)∗
B , r

(4)∗
B ) =

{
(1, r

(4)
A + 1

8(1− νA)) if 0 6 r
(4)
A 6 7+νA

8

(1, 1) if 7+νA
8 6 r

(4)
A 6 1

f
(4)∗
B =

{
α+ 1

8(νA − 1)2 if 0 6 r
(4)
A 6 7+νA

8

α− 2(1− r(4)
A )2 +

(1−νA)(1−r(4)A )
2 if 7+νA

8 6 r
(4)
A 6 1

Proof. With Lemma 10 and Lemma 11, Theorem 9 is true.

We now move to Alice’s optimal actions in round 4. By Theorem 9 we
know that Bob would always exert high effort in round 4. In other words

Alice would assume ẽ
(4)
B = 1 when calculating her maximal expected payoff

in round 4. We find that Alice will exert high effort and report as 1 in round
4 no matter what Bob reports in round 3.

Theorem 10. If high efforts bring net rewards and α > max{ (1−νA)2

2 ,
ν2A
2 },

Alice’s optimal action set in round 4 is (e
(4)∗
A , r

(4)∗
A ) = (1,

3r
(3)
B +1
4 ), and the

optimal expected payoff score of round 4 is E[π
(4)∗
A (r

(3)
B )] = α+ 1

8(r
(3)
B − 1)2.

Proof. Consider Alice’s function of expected payoff scores in round 4 as f
(4)
A :

f
(4)
A =E[π

(4)
A (r

(3)
B , a

(4)
A )]

=α(e
(4)
A )2 +

(
3 · r(3)

B + νAe
(4)
A + (1− νA)ẽ

(4)
B

)(
r

(4)
A − r

(3)
B

)
+ 2

(
(r

(3)
B )2 − (r

(4)
A )2

)
.

(31)
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e
(4)
A r

(4)
A f

(4)
A

0
3r

(3)
B +1−νA

4
1
8(r

(3)
B + νA − 1)2

1
3r

(3)
B +1
4 α+ 1

8(r
(3)
B − 1)2

νAr
(B)
B

2α 0 r
(3)
B (νA − r(3)

B − 1)− (νAr
(3)
B )2

4α

0 0 r
(3)
B (νA − 1− r(3)

B )

0 1 (1− r(3)
B )(r

(3)
B − 1− νA)

1 0 α− r(3)
B (1 + r

(3)
B )

1 1 α− (1− r(3)
B )2

Table 9: KKT points of f
(4)
A in case 4

After inserting ẽ
(4)
B = 1 into the above equation we can further get:

f
(4)
A =α(e

(4)
A )2 +

(
3 · r(3)

B + νA · e(4)
A + (1− νA)

)(
r

(4)
A − r

(3)
B

)
+ 2

(
(r

(3)
B )2 − (r

(4)
A )2

)
.

(32)

To find the value of f
(4)∗
A , we need to check the Hessian of function f

(4)
A :

∇2f
(4)
A (e

(4)
A , r

(4)
A ) =


∂2f

(4)
A

∂(e
(4)
A )2

∂2f
(4)
A

∂e
(4)
A ∂r

(4)
A

∂2f
(4)
A

∂r
(4)
A ∂e

(4)
A

∂2f
(4)
A

∂(r
(4)
A )2

 =

[
2α νA

νA −4

]

We find that the Hessian of f
(4)
A is also an indefinite matrix because the

value of its first principle minor is positive as 2α > 0, and the value of its
second principle minor is negative as −8α−ν2

A < 0. We write down in table 9

the KKT points of f
(4)
A and the corresponding function values. We find that

f
(4)
A is maximized as f

(4)∗
A = α+ 1

8(r
(3)
B − 1)2 when (e

(4)
A , r

(4)
A ) = (1,

3r
(3)
B +1
4 ).

So Theorem 10 is true.

Consider Bob in round 3. From Theorem 9 and Theorem 10 we have
e

(4)∗
A = e

(4)∗
B = 1. Knowing ẽ

(4)
A = ẽ

(4)
B = 1, we get the expression of Bob’s
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expected payoff score in round 3 as f
(3)
B :

f
(3)
B =α · (e(3)

B )2

+
(

3r
(3)
A − 0.5(1− νA) + νA + (1− νA) · (e(3)

B + 1)
)

·
(
r

(3)
B − r

(3)
A

)
+ 2

(
(r

(3)
A )2 − (r

(3)
B )2

) (33)

Lemma 12. If high efforts bring net rewards and α > max{ (1−νA)2

2 ,
ν2A
2 },

then

(e
(4)∗
B , r

(4)∗
B ) =

{
(1,

3r
(3)
B +1
4 + 1

8(1− νA)), if 0 6 r
(3)
B 6 5+νA

6

(1, 1), if 5+νA
6 6 r

(3)
B 6 1

f
(4)∗
B =

{
α+ 1

8(1− νA)2 if 0 6 r
(3)
B 6 5+νA

6

α+
3(1−r(3)B )(3r

(3)
B −νA−2)

8 if 5+νA
6 6 r

(3)
B 6 1

Proof. According to Theorem 10, we know that r
(4)∗
A =

3r
(3)
B +1
4 . Together

with the statement of Theorem 9, we infer Lemma 12.

Lemma 13. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r

(3)
A 6 7νA+11

18 , then (e
(3)∗
B , r

(3)∗
B ) =

(1, 3
4r

(3)
A + 3−νA

8 ) and

E[π
(3)∗
B (r

(3)
A )] = α+

r
(3)
A
8 (r

(3)
A + νA − 3) + (νA−3)2

32
+9

8 + δ(α+ 1
8(νA − 1)2).

Proof. From Lemma 12 we know that f
(4)∗
B is attained as f

(4)∗
B = α+ 1

8(1−

νA)2 when r
(3)
B 6 5+νA

6 ; and attained as f
(4)∗
B = α+

3(1−r(3)B )(3r
(3)
B −νA−2)

8 when

r
(3)
B > 5+νA

6 .

We first discuss the situation where f
(4)∗
B is a constant as f

(4)∗
B = α +

1
8(νA − 1)2 when r

(3)
B 6 5+νA

6 . Similarly we denote the KKT points of

f
(3)
B + δ · f (4)∗

B in table 10. We find that when r
(3)
A 6 7νA+11

18 , f
(3)
B + δ · f (4)∗

B

is maximized as α +
r
(3)
A
8 (r

(3)
A + νA − 3) + (νA−3)2

32 + 9
8 + δ(α + 1

8(νA − 1)2),

which we denote as E[π
(3)
B (r

(3)
A , a

(3)
B )], when (e

(3)
B , r

(3)
B ) = (1, 3

4r
(3)
A + 3−νA

8 ).

Second, we discuss the situation where f
(4)∗
B is a function of r

(3)
B as f

(4)∗
B =

α+
3(1−r(3)B )(3r

(3)
B −νA−2)

8 , if r
(3)
B > 5+νA

6 . Using the same method, we find that
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e
(3)
B r

(3)
B f

(3)
B + δ · f (4)∗

B

0 3
4r

(3)
A + 1

8(νA + 1) 1
8r

(3)
A (r

(3)
A − 1− νA) + 1

32(νA + 1)2

+δ(α+ 1
8(νA − 1)2)

1 3
4r

(3)
A + 3−νA

8 α+
r
(3)
A
8 (r

(3)
A + νA − 3) + (νA−3)2

32
+9

8 + δ(α+ 1
8(νA − 1)2)

r
(3)
A (1−νA)

2α 0 −(r
(3)
A )2 − r

(3)
A (νA+1)

2 − (r
(3)
A )2(1−νA)2

4α
+δ(α+ 1

8(νA − 1)2)

0 0 −r(3)
A (r

(3)
A + νA+1

2 ) + δ(α+ 1
8(νA − 1)2)

1 0 α− r(3)
A (r

(3)
A + 3−νA

2 ) + δ(α+ 1
8(νA − 1)2)

Table 10: KKT points of f
(3)
B + δ · f (4)∗

B in case 4 when r
(3)
B 6 5+νA

6

f
(3)
B + δ · f (4)∗

B is maximized as α +
r
(3)
A
2 (3 − 2r

(3)
A ) +

νA(r
(3)
A −1)−1

2 + α(1 + δ)

at (e
(3)
B , r

(3)
B ) = (1, 1).

By routine calculations, we know that the first expression of f
(3)
B + δ ·

f
(4)∗
B is larger than the value of the second expression. So E

[
π

(3)∗
B (r

(3)
A )
]

is achieved as α +
r
(3)
A
8 (r

(3)
A + νA − 3) + (νA−3)2

32 + 9
8 + δ(α + 1

8(νA − 1)2) at

(e
(3)∗
B , r

(3)∗
B ) = (1, 3

4r
(3)
A + 3−νA

8 ). So Lemma 13 is true.

Lemma 14. If α > max{ (1−νA)2

2 ,
ν2A
2 } and r

(3)
A > 7νA+11

18 , then (e
(3)∗
B , r

(3)∗
B ) =

(1, 1) and

E
[
π

(3)∗
B (r

(3)
A )
]

= α+
r

(3)
A

2
(3− 2r

(3)
A ) +

νA(r
(3)
A − 1)− 1

2
+ α(1 + δ).

Proof. The proof is similar to that of Lemma 13. Details are omitted.

Given the two cases for Bob’s equilibrium decisions in round 3, we may
now determine Bob’s round 3 decisions:

Theorem 11. If high efforts bring net rewards and α > max{ (1−νA)2

2 ,
ν2A
2 },

then

(e
(3)∗
B , r

(3)∗
B ) =

{
(1, 3

4r
(3)
A + 3−νA

8 ), if 0 6 r
(3)
A 6 7νA+11

18

(1, 1), if 7νA+11
18 6 r

(3)
A 6 1
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f
(3)∗
B =


α+

r
(3)
A
8 (r

(3)
A + νA − 3) + (νA−3)2

32

+9
8 + δ(α+ 1

8(νA − 1)2), if 0 6 r
(3)
A 6 7νA+11

18

α+
r
(3)
A
2 (3− 2r

(3)
A ) +

νA(r
(3)
A −1)−1

2 + α(1 + δ), if 7νA+11
18 6 r

(3)
A 6 1

Proof. With Lemma 13 and Lemma 14, Theorem 11 is true.

Consider Alice in round 3. From Theorem 9, Theorem 10 and Theo-

rem 11 we have e
(3)∗
B = e

(4)∗
A = e

(4)∗
B = 1. Knowing ẽ

(3)
B = ẽ

(4)
A = ẽ

(4)
B = 1, we

get the expression of Alice’s expected payoff score in round 3 as f
(3)
A :

f
(3)
A =α

(
e

(3)
A

)2
+
(

2r
(2)
B + νA

(
e

(3)
A + 1

)
+ 2 (1− νA)

)(
r

(3)
A − r

(2)
B

)
− 2

(
r

(3)
A

)2
+ 2

(
r

(2)
B

)2

=α
(
e

(3)
A

)2
+
(

2r
(2)
B + νAe

(3)
A + 2− νA

)(
r

(3)
A − r

(2)
B

)
− 2

(
r

(3)
A

)2
+ 2

(
r

(2)
B

)2

(34)

Theorem 12. If high efforts bring net rewards and α > max{ (1−νA)2

2 ,
ν2A
2 },

then

(e
(3)∗
A , r

(3)∗
A ) =

{
(1,

9r
(3)
B +3
16 + 3−νA

8 ), if 0 6 r
(3)
A 6 7νA+11

18

(1, 1), if 7νA+11
18 6 r

(3)
A 6 1

f
(3)∗
A =

{
α+ 1

8(3
4r

(3)
A + νA−5

8 )2 if 0 6 r
(3)
A 6 7νA+11

18

α if 7νA+11
18 6 r

(3)
A 6 1

Proof. According to Theorem 11, we know that:

r
(3)∗
B =

{
3
4r

(3)
A + 3−νA

8 , if 0 6 r
(3)
A 6 7νA+11

18

1, if 7νA+11
18 6 r

(3)
A 6 1

Together with the statement of Theorem 10, we infer Lemma 12.

Algebraically finishing the proof is quite involved and lengthy, and will
not bring any further insights. As such, we will finish the four round case
using a combinatorial argument. So far we know that regardless of an agent’s
report, her action in round 3 and 4 both Alice and Bob will exert high efforts.
We now consider Bob’s actions in round 2. Being rational he deduces that
all subsequent effort levels of all other agents, including himself will be to
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exert high effort. Thus, from his perspective at the end of round 2 he has
no uncertainty regarding future effort levels, and all past effort levels are
already fixed. As such, his only trade off is to either exert low effort, lose
the reward from high effort, but make it up within in the prediction market.
If α if sufficiently high, then the reward within the prediction market will
be outweighed by the reward from exerting high effort. Assuming α is
sufficiently high, then Bob will exert high effort and report truthfully.

Rolling forward to Alice’s actions in round 2, we may apply the same
combinatorial argument to Alice. Similarly, we may again apply the same
arguments to Bob and then Alice, in round 1. We in turn deduce that for
α sufficiently high, all agents will exert high effort in all rounds and report
their beliefs truthfully.

5. Discussion and Conclusion

In this work we show that the cost actions agents take that determine the
outcome of a prediction market traded event has great influence on agents’
prediction market and external behavior. We find that in a 2-round setting
and later the 4-round setting, when agents are forward-looking and want to
maximize their total expected payoffs from exerting efforts towards realizing
the traded event as well as from trading in the prediction market, asymmet-
ric action costs results in agents avoiding taking the costliest action. This
observation implies: if a market maker rewards her preferred action more
than a less preferred action, then agents will take the desired action even
when a prediction market is present. We find that the value of the net re-
ward to each desirable action should be larger than a certain amount, which
is determined by the value of νA in our 2-round setting,2 in a sense the
reward of desirable actions have to be sufficiently large, this makes sense as
the “playing for peanuts results” are avoided (Harinck et al., 2007; Weber
and Chapman, 2005). Perhaps unexpectedly, even though agents’ actions
are influenced by external costs, agents will always report truthfully dur-
ing each prediction market round, given sufficiently high external rewards.
This observation, shows that the quadratic market scoring rule is incentive-
compatible even with external incentives present, so long as action costs are
costly and the preferred action is adequately rewarded.

In the past, decision and policy makers have expressed concern that the
existence of a prediction market will inspire undesirable actions for agents

2We did not explicitly determine the exact threshold for α in the 4-round setting. Just
as in the 2-round setting this threshold exists and is a function of νA.
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trading in the prediction market. Especially when the same agents trading
have a direct impact on deciding the likelihood of the predicted event, as
is the case in corporate settings. However, previous research does not take
into account the potential payoffs (could be net costs or net rewards) to the
agents who take such actions. We base our research on the assumption that
forward-looking agents wish to maximize their total expected payoffs not
only from the prediction market but also from their actions related to the
traded event. With our finding, a market maker who cares about the result
of the traded event can incentivize agents’ to take desirable actions. More
importantly, our results address the concern firms have regarding deploying a
prediction market within their organization as the existence of such markets
will not induce participants to change their behavior outside of the market,
assuming they are appropriately compensated. A market maker can also
gain accurate and true information about agents’ actions from the same
agents’ reports in the prediction market, as the regular market scoring rule
is incentive-compatible.

In this work we set a range for expected payoff scores of exerted efforts,
whose absolute value should be larger than a certain value in each round,
in order to incentivize desired actions and truthful reports. We do not dis-
cuss whether the prediction market will still be incentive-compatible or not
when this range is violated. However, we do show that when efforts are not
costly actions (payoff scores are 0 for exerted efforts), agents will bluff in
the prediction market, a well known existing result. More importantly, in
this work we set the number of rounds (T ) to be 2 or 4, which guarantees
our assumption that agents are forward-looking. However, we need to ex-
tend our model to a finite round setting with T being a large number to
see whether our conclusion still holds. In addition, the result we presented
only considered the quadratic market scoring rule. By the nature of our
result, the logarithmic market scoring rule cannot be used to verify our re-
sult. However, it is not clear if there are other scoring rules that may be
used, especially: what members of the large class of scoring rules introduced
by Gneiting and Raftery (2007) restore incentive compatibility when exter-
nal incentives are present? The results of our paper should not be applied
blindly, but we hope this study motivates laboratory and field experiments
to determine if incentive compatibility is restored when the cost of external
actions is considered. We view the results presented here as a first step in
incorporating costs of external actions in prediction markets that are used
within corporations today.
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i number of round, i = 1, . . . , T .

r
(i)
A the reported prediction probability of E’s occurring in round i if the

report has already been made by Alice, r
(i)
A ∈ [0, 1], r

(i)
A = 1− r(i)

A .

r
(i)
B the reported prediction probability of E’s occurring in round i if the

report has already been made by Bob, r
(i)
B ∈ [0, 1], r

(i)
B = 1− r(i)

B .

r̃
(i)
A the reported prediction probability of E’s occurring in round i if the

report has not yet been made by Alice.

r̃
(i)
B the reported prediction probability of E’s occurring in round i if the

report has not yet been made by Bob.

r
(0)
B the beginning market estimate set in the prediction market by the

market maker.

e
(i)
A value of Alice’s effort in round i if the effort action has already hap-

pened, e
(1)
A = 1 if Alice devotes high effort in round i, otherwise 0,

e
(i)
A = 1− e(i)

A .

e
(i)
B value of Bob’s effort in round i if the effort action has already hap-

pened, e
(1)
B = 1 if Bob devotes high effort in round i, otherwise 0,

e
(i)
B = 1− e(i)

B .

ẽ
(i)
A value of Alice’s future effort in round i if the effort action has not yet

taken place.

ẽ
(i)
B value of Bob’s future effort in round i if the effort action has not yet

taken place.

EA(ẽ
(i)
B ) the expectation of Bob’s future effort value of round i perceived by

Alice when she reports in round i.

a
(i)
A the action set that Alice takes in round i, a

(i)
A = (e

(i)
A , r

(i)
A ).

a
(i)∗
A the optimal action set that Alice takes in round i, a

(i)
A = (e

(i)∗
A , r

(i)∗
A ).

aA the policy that Alice takes for all rounds, aA := (a
(1)
A , ..., a

(T )
A ).

a∗A the optimal policy for Alice, a∗A := (a
(1)∗
A , ..., a

(T )∗
A ).
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A(i)
A the action set that Alice has in round i, a

(i)
A ∈ A

(i)
A .

AA the whole action set that Alice has, AA = A(1)
A ×...×A

(i)
A and aA ∈ AA.

a
(i)
B the action set that Bob takes in round i, a

(i)
B = (e

(i)
B , r

(i)
B ).

a
(i)∗
B the optimal action set that Bob takes in round i, a

(i)∗
B = (e

(i)∗
B , r

(i)∗
B ).

aB the policy that Bob takes for all rounds, aB := (a
(1)
B , . . . , a

(T )
B ).

a∗B the optimal policy for Bob, a∗B := (a
(1)∗
B , . . . , a

(T )∗
B ).

A(i)
B the action set that Bob has in round i, a

(i)
B ∈ A

(i)
B .

AB the whole action set that Bob has, AB = A(1)
B ×...×A

(i)
B and aB ∈ AB.

h
(i)
A number of high efforts Alice has exerted in total from round 1 to round

i, h
(0)
A = 0.

h
(i)
B number of high efforts Bob has exerted in total from round 1 to round

i, h
(0)
B = 0.

νA Alice’s impact on deciding the likelihood of project E’s occurring, 0 <
νA < 1.

p
(i)
A Alice’s belief on the likelihood of E’s occurring in round i after she

observes Bob’s most recent report and before she takes any actions in
that round, taking into account actions in future rounds.

p
(i)
B Bob’s belief on the likelihood of E’s occurring in round i after he

observes Alice’s most recent report and before he takes any actions in
that round, taking into account actions in future rounds.

ρ
(i)
e (·) function of payoff scores of efforts devoted in round i.

ρ
(i)
s (·) function of payoff scores earned from moving the probability in pre-

diction market in round i if E occurs (succeeds) after T rounds.

ρ
(i)
f (·) function of payoff scores earned from moving the probability in pre-

diction market in round i if E does not occur (fails) after T rounds.

δ discounting factor on the future profits, 0 < δ < 1.
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π
(i)
A payoff scores earned by Alice from round i to round T , including scores

earned in this round and discounting future scores.

π
(i)
B payoff scores earned by Bob from round i to round T , including scores

earned in this round and discounting future scores.

I
(i)
A the system state that Alice has in round i, after she observes Bob’s

most recent report in the prediction market, and before she takes any
actions in that round.

E[π
(i)
A (I

(i)
A , a

(i)
A ) ] the expected value of π

(i)
A if the current state is I

(i)
A and the current

round’s action set is a
(i)
A .

E[π
(i)∗
A (I

(i)
A , a

(i)
A ) ] the optimal expected value of π

(i)
A given the current state I

(i)
B .

I
(i)
B the system state that Bob has in round i, after he observes Alice’s

most recent report in the prediction market, and before he takes any
actions in that round.

E[π
(i)
B (I

(i)
B , a

(i)
B ) ] the expected value of π

(i)
B given if the current state is I

(i)
B and the

current round’s action set is a
(i)
B .

E[π
(i)∗
B (I

(i)
B , a

(i)
B ) ] the optimal expected value of π

(i)
B given the current state I

(i)
B .
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