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Abstract

Synthetic aperture radar (SAR) is a method of creating images of the surface of the
Earth by emitting and receiving radar waves. Sentinel-1 is a SAR platform made by the
European Space Agency (ESA) that provides a source of SAR images open to the public
through the operation of two satellites. Due to the non-uniform radiation pattern pro-
jected from the satellite’s antenna, there are significant non-stationary noise floor intensity
patterns that distract from the desired measurements, which are particularly significant
in certain types of image modes, namely Extra Wide and Interferometric Wide modes.
While ESA provides a default noise floor estimate with each Sentinel-1 product, with the
intention that it be subtracted from the original image so the result is homogeneous, there
is clear evidence that it is miscalibrated. This Masters thesis presents two novel meth-
ods for estimating the noise floor patterns in the images that are demonstrated to be
improvements over the default noise floor. The first method presents a way to dynami-
cally construct and apply linear rescaling to the default noise floor estimate over different
sections of the images, called subswaths, by use of least squares optimization. While the
method is successful in improving image quality, it is not totally effective because the de-
fault noise floor is mis-fit in a non-linear manner. The second method constructs a new
noise floor as a power function of the radiation pattern power by using linear programming
and least squares optimization. This successfully compensates for the non-linear mis-fit,
resulting in an overall increase in image quality, albeit with greater parametric complexity.
These methods greatly improve the intrinsic value of Sentinel-1 images in scenarios where
the noise floor dominates, such as in cross-polarized images and images where the physical
materials result in lower backscatter intensity.
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Chapter 1

Introduction

Synthetic aperture radar (SAR) is a remote sensing method that can be applied to generate
images that represent the backscatter of radar waves from a remote surface. Along with
the properties of the radar waves emitted by the platform, such as the angle of incidence,
polarity, the wavelength, and the intensity, the manner in which radar waves scatter upon
hitting a target is determined by the physical properties of the target [36]. Consequently,
SAR images provide a way for geoscience and remote sensing practitioners to infer the
characteristics of different surface targets. Relevant applications include studying ocean
and ice properties [19, 29], oil-spill detection [34], mapping land features [20], and many
others [36, 49].

Sentinel-1 is a SAR mission, created by the European Space Agency, that consists of
two satellites in sun-synchronous orbit, called Sentinel-1A (launched 2014) and Sentinel-1B
(launched 2016) whose orbits are offset by half a period, that produce SAR images of the
surface of Earth. Sentinel-1 produces different types of SAR images that are designed for
different applications based on two operational parameters called the product type and sen-
sor mode, which determine the types of data recorded and the surface area and resolution
of the images respectively. As will further be clarified below, the material in this thesis
specifically targets the Ground Range Detected (GRD) product type and extra wide (EW)
and interferometric wide (IW) sensor modes.

An issue that is particularly apparent from combining product types GRD and EW or
IW sensor modes is the presence of noisy intensity patterns in the cross-polarized images.
As will be described in further detail throughout this introduction, these patterns are
caused by the varying noise floor within the images. The impact of these patterns is overt;
the non-stationary noise floor distracts from the underlying backscatter measurements
produced by the ground targets and causes difficulties in making consistent comparisons
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throughout the images. This is especially detrimental to tasks like ice [22, 50] or wind
speed [11, 35] analysis that rely on low backscatter cross-polarized images over maritime
regions. Therefore, this body of work is focused towards improving the quality

of SAR images produced by the Sentinel-1 platform by developing methods to

estimate and remove the noise floor in cross-polarized images. To pursue this
goal, two major works are presented that utilize convex optimization approaches in order
to produce better enhanced noise floors for individual images.

This thesis is laid out as follows. Within the remainder of this introduction, Section 1.1
provides additional background information on SAR and concepts from antenna theory
to give additional insight behind the noise floor in the images. In addition, Section 1.2
provides background on concepts of convex optimization that are used in the body of this
thesis. Section 1.3 provides an overview and comparison of the two works that compose
the main body of the thesis. Moving into the main body, Chapter 2 presents the first work
that improves the quality of the noise floor estimations that come with Sentinel-1 products
in EW mode by use of a linear model. The second work presented in Chapter 3 describes
an approach that models the noise floor to be an affine power function of the antenna
radiation pattern power to compensate for the non-linear errors that are unresolved from
the first work. Finally, Chapter 4 summarizes the results of the works, avenues of future
work, and closing remarks.

1.1 Synthetic aperture radar and antenna theory

Synthetic aperture radar (SAR) is an active remote sensing method that emits radar waves
to irradiate targets on the surface of the Earth and subsequently measure the resulting
backscattered radar waves. SAR utilizes antennas on a moving platform, typically either
an airplane or a satellite, to emit and receive the radar measurements, after which a
processor algorithm converts the measurements into a spatially mapped image. SAR is
differentiated from conventional radar because it uses the Doppler effect to dynamically
modify the effective size of its antenna by taking successive measurements over its flight
path or orbit [36]. As the measured resolution is inversely proportional to the size of
the antenna, this enables finer resolution to be possible without having to carry a large
antenna [36].

The Sentinel-1 satellites, which operate in the C-band portion of the spectrum with
a frequency of 5.405 GHz, specifically use an antenna array [3], which is a configuration
that is made of many individual elements. These elements are individual antennas that are
physically spaced apart whose aggregate signals are combined within the array. The array
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configuration is useful because the electrical current through each antenna element can be
individually controlled and allows the shape of the radiation pattern to be dynamically
controlled [23, 52]. These capabilities allows Sentinel-1 to steer the antenna pattern to
focus on different look angles during observation.

Next, several items of SAR terminology will be defined. In terms of direction, the
range refers to the surface direction that is perpendicular to the satellite’s orbit and az-
imuth refers to the direction parallel to the satellite’s orbit. Elevation angle refers to
the angle between the target and the satellite and the point directly below the satellite.
Azimuth angle refers to the azimuth component of the angle between the target and the
satellite. SAR platforms have to make considerations regarding the polarity of radiation.
Sentinel-1 is designed to operate in dual-pol mode, where the satellite can emit or receive
combinations of horizontally or vertically polarized radiation. Sentinel-1 can then produce
either/both co-polarized images, called HH or VV, or cross-polarized images, called HV
or VH. Co-polarized images result in much higher recorded intensity than cross-polarized
images because generally most of the backscatter radiation will retain its original polar-
ity [36]. As a result, the noise floor patterns that are the focus of this paper are much
more prominent in cross-polarized images due to the lower backscatter intensity and lower
signal to noise ratio.

Sentinel-1 has a total of four different sensor modes that are called stripmap (SM),
interferometric wide (IW), extra wide (EW), and wave (WV). The two relevant modes to
this thesis are IW mode, with three subswaths that altogether cover a range of 250 km with
an average resolution of 5 m by 20 m [2], and EWmode, with five subswaths that altogether
cover a range of 410 km with an average resolution of 20 m by 40 m [1]. Depending
on application, the desired imaging mode determines a trade-off between resolution, and
surface area. Sentinel-1 also has a selection of product types, that are called single look
complex (SLC), ground range detected (GRD), and ocean (OCN) that determine the types
of values that are returned in the image. The types of images this thesis focuses on are GRD
product types, which discards phase information and only returns intensity information,
and the sensor modes that are acquired with the Terrain Observation By Progressive Scans
(TOPSAR) method [59], which are EW and IW modes. TOPSAR is a SAR acquisition
method that breaks the image into different sections along the range called subswaths,
which are acquired by steering the antenna array to different range angles. During orbit,
TOPSAR concurrently switches focus between each subswath, while sweeping a radar burst
along a section of the azimuth, by steering along the azimuth angle. After processing, the
raw signals for each burst are transformed to intensity values over the surface area by the
processing pipeline. The bursts are then concatenated within each subswath along the
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azimuth, which are then concatenated together to form the entirety of the image [45, 59].1

The main issue this thesis aims to resolve are the noisy intensity patterns that occur
in the Sentinel-1 images. The underlying cause of the patterns is the manner in which the
radiation pattern varies with respect to the azimuth and elevation angles. By definition,
the strength of a signal received by an antenna will scale based on the overall strength of
the antenna pattern [52]. The noise floor is defined as the sum of noise sources present
within a system that serves as a lower-bound of its measured signals [24]. In the SAR
system, the origin of the noise floor arises from the thermal noise that is present within
the circuitry [48]. Even if the total power of the noise floor did not change as a result of
the changing radiation pattern, the ratio between the noise floor and the signal received
by backscatter certainly will, since the strength of the measured backscattered signal will
vary based on the radiation pattern [52]. Consequently, when the intensity measurements
are normalized by the pipeline [3], regions that have lower antenna power will have its
signal boosted more in order for the backscatter intensity measurements to be comparable
throughout the image. A consequence of this is that the noise floor becomes amplified
in a manner that is negatively related to the antenna pattern power, which is how the
aforementioned noisy intensity patterns are imposed on the images. Therefore, if one
wants to correct the SAR image to only represent backscatter information, this noise floor
must be subtracted.

1.2 Convex optimization

Convex optimization is a field of optimization that pertains to choosing variables in order
to either minimize or maximize convex objective functions. A convex function is any
function where a local minimum or local maximum is also the global minimum or global
maximum [9]. Convex functions are convenient to optimize because it is clear when the
optimal solution has been reached and there are many available algorithms available for
solving them with theoretical guarantees included.

The two works in this thesis incorporate two types of convex optimization problems.
The first type of problem is the least squares problem. The least squares problem attempts
to find parameters to a linear function,

∑M

j ci,jxj, that estimates a series of reference
values, mi, through minimizing the sum of squared differences between the estimates and

1The author of this thesis has created two animations to help visualize the scanning process. 1. https:
//youtu.be/l0r1Ek6gJko provides a 3D approximation of the scanning process over the ground. 2. https:
//youtu.be/56iqka1wAQo shows how the different sections of the image are generated over time.
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the reference values. Generally, this is modelled as

min
x1,x2,··· ,xM

N∑

i

[
(

M∑

j

ci,jxj)−mi

]2

, (1.1)

where x1, x2 · · · xM are the optimization variables, c1,1, · · · , cN,M are the multiplicative co-
efficients to the linear function, and m1,m2, · · · ,mN are the reference values. The solution
to this lies in solving a system of equations where each of the partial derivatives of the
objective function with respect to the variables is equal to zero. Ultimately, this reduces
to solving a system of linear equations [9]. For convenience, the problem (1.1) can be
reformulated in matrix notation

min
x

(Cx−m)⊤(Cx−m), (1.2)

where x ∈ R
M is the vector of optimization variables, C ∈ R

N×M is the matrix of multi-
plicative coefficients, and m ∈ R

N is the vector of reference values. The solution to (1.2)
can then be aptly written as

x = (C⊤C)
−1
C⊤m. (1.3)

An important note for this is that the matrix C⊤C must be full rank else the problem
is ill-posed. As a result, many of the least squared problems in this thesis will contain
regularization terms that are designed to ensure that the matrix is full-rank.

The second type of optimization problem this thesis utilizes is linear programming.
Linear programming is a form of constrained convex optimization that aims to choose
variables that maximizes or minimizes a linear function subject to a set of linear constraints.
Generally this takes the form of

max
x

c⊤x

such that Ax ≤ m,
(1.4)

where x ∈ R
M is the vector of optimization variables, c ∈ R

M is the cost vector, and
matrix A ∈ R

N×M and vector m ∈ R
N encapsulate the set of N linear constraints. A

linear program can result in one of three outcomes: infeasible, unbounded, or feasible [9].
Infeasible linear programs occurs when the linear constraints interact in such a way that
there exists no choice of x that satisfies all of them. Unbounded linear programs occur
when c⊤x can be maximized in such a way that none of the linear constraints are met to
equality and therefore c⊤x would diverge to infinity. A feasible linear program is therefore
a linear program that is neither infeasible nor unbounded and therefore there exists an
optimal solution of x. Being a well studied type of problem, there exists a plethora of
existing algorithms for solving linear programs [4, 13]; often the most involved part of the
optimization process is translating the desired task into the form of a linear program.
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1.3 Overview of work

As previously mentioned, this thesis consists of two main works that aim to improve the
noise floor estimation in Sentinel-1 images. As first described in Sections 2.2 and 3.2,
default noise floors are provided in Sentinel-1 products that are designed to be subtracted
from the original measurements to improve the appearance of the images. However, there
are clear issues with the overall fit of the default noise floors that motivate the efforts of
the two works. The method in Chapter 2 specifically proposes a linear scaling model using
the default noise floor to compensate for the linear mis-fit for each of the subswaths in the
images. This is robust in the sense that it optimizes a least squares objective function to
estimate very few parameters for each image; only one for each subswath. However, as
indicated in Section 2.5 it is apparent that the noise floor is mis-fit in a non-linear manner,
which prevents complete compensation with a linear model. In contrast, the second method
in Chapter 3 attempts to compensate for the non-linear mis-fit by disregarding the default
noise floor and modelling a new noise floor as an affine power function of the antenna
radiation power. The method makes use of linear programming to estimate parameters
for power functions over different sections of the range, while also computing affine offsets
for the different subswaths using least squares. Overall, this results in a solution that can
directly compensate for the non-linear mis-fit issues. A caveat is the significant increase
in parametric complexity over the linear model, thus making parameter estimation less
robust (cf. Section 3.5) than in Chapter 2.

In this thesis, both methods adopt similar experiments for validation. The first pair
of experiments (Section 2.4.1 and 3.4.1) simulate applying and removing the modelled
noise floor on a set of RADARSAT-2 images that do not contain significant noise floor
patterns in their original form. The advantage of this type of analysis is that it allows
standard image quality metrics to be computed since the clean original image is known
and is therefore a good way to determine the efficacy of the parameter estimation proce-
dures. However, these simulations assume that the noise floor encountered in Sentinel-1
images follow the assumptions made by the two respective methods and cannot account for
the unknown differences between the model and reality. The second pair of experiments
(Section 2.4.2 and 3.4.2) determine the effectiveness of the noise floor estimation directly
on Sentinel-1 images by exploiting the backscatter characteristics of open-water. Since
open-water typically results in low measured backscatter, such regions are good for deter-
mining the remnants of unsubtracted noise floor left over by a correction method. This
was quantified by examining the variation of the intensity values over open-water segments
with respect to the range, where noise floor varies with the greatest strength. In terms of
data used, Chapter 2 uses EW cross-polarized images from IPF version 2.9, while Chap-
ter 3 uses EW and IW cross-polarized images from IPF version 3.1 or above. Source code
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of the implemented algorithms can be found at https://github.com/PeterQLee/https:
//github.com/PeterQLee/sentinel1_denoise_rs.
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Chapter 2

Sentinel-1 Additive Noise Removal

from Cross-Polarization Extra-Wide

TOPSAR with Dynamic

Least-Squares

The following article has been published in the journal Remote Sensing of Environment,
with the full reference being: P. Q. Lee, L. Xu, and D. A. Clausi. Sentinel-1 additive noise
removal from cross-polarization extra-wide topsar with dynamic least-squares. Remote
Sensing of Environment, 248:111982, October 2020. https://doi.org/10.1016/j.rse.

2020.111982. Note that the text was reformatted to fit the thesis format. I completed
this work by myself under supervision from my supervisors Linlin Xu and David Clausi.
This article documents a method to improve the noise-floor estimation in Sentinel-1 EW
images that were generated with versions of the Sentinel-1 Instrument Processing Facility
Software (IPF) prior to version 3.1. This corresponds to Sentinel-1 images that were
acquired prior to June 2019. The method poses a least squares problem to estimate linear
scaling parameters for each of the subswaths. While effective in correcting for the majority
of the mis-calibration of the noise-floor, there are still non-linear errors in the overall shape
of the noise-floor where it is apparent it cannot be corrected by linear scaling parameters.
Note that within this article the term “additive noise” is used and is synonymous with
“noise-floor”.
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Sentinel-1 Additive Noise Removal from

Cross-Polarization Extra-Wide TOPSAR

with Dynamic Least-Squares

Peter Q. Lee, Linlin Xu, and David A. Clausi

Abstract

Sentinel-1 is a synthetic aperture radar (SAR) platform with an operational mode called
extra wide (EW) that offers large regions of ocean areas to be observed. A major issue with
EW images is that the cross-polarized HV and VH channels have prominent additive noise
patterns relative to low backscatter intensity, which disrupts tasks that require manual
or automated interpretation. The European Space Agency (ESA) provides a method for
removing the additive noise pattern by means of lookup tables, but applying them directly
produces unsatisfactory results because characteristics of the noise still remain. Further-
more, evidence suggests that the magnitude of the additive noise dynamically depends on
factors that are not considered by the ESA estimated noise field.

To address these issues we propose a quadratic objective function to model the mis-
scale of the provided noise field on an image. We consider a linear denoising model that
re-scales the noise field for each subswath, whose parameters are found from a least-squares
solution over the objective function. This method greatly reduces the presence of additive
noise while not requiring a set of training images, is robust to heterogeneity in images,
dynamically estimates parameters for each image, and finds parameters using a closed-
form solution.

Two experiments were performed to validate the proposed method. The first experi-
ment simulated noise removal on a set of RADARSAT-2 images with noise fields artificially
imposed on them. The second experiment conducted noise removal on a set of Sentinel-1
images taken over the five oceans. Afterwards, quality of the noise removal was evaluated
based on the appearance of open-water. The two experiments indicate that the proposed
method marks an improvement both visually and through numerical measures.
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2.1 Introduction

Synthetic aperture radar (SAR) is method of remote sensing that is useful for monitor-
ing the surface of the planet while being insensitive to atmospheric conditions. Appli-
cations include topographical mapping through SAR interferometry [8, 42], sea ice map-
ping/classification [22, 50, 53, 56, 58], oil spill detection [51, 57], ship detection [31, 41],
and others [15, 28]. Consequently, SAR imagery is an essential tool for global monitoring.
The Sentinel-1 program, which was created and is administered by the European Space
Agency (ESA), operates two SAR satellites, Sentinel-1A (launched 2014) and Sentinel-1B
(launched 2016), and acquires and distributes SAR images taken over Earth. The diverse
set of applications for SAR and the fact that the Sentinel program provides open-data
solidifies the potential for research and commercial products.

Sentinel-1 operates in a number of acquisition modes. This paper focuses on the
Sentinel-1 extra-wide (EW) mode, which is mainly used over ocean regions, with the
images acquired using a method called TOPSAR [59]. Sentinel-1 satellites emit bursts
of horizontally or vertically polarized radiation and receives polarized backscatter to form
co-polarized images, where the polarization of the emission is the same as the polarization
of the received signal, or cross-polarized images, where the polarization of the emission is
orthogonal to the polarization of the received signal. A caveat of EW mode for Sentinel-1 is
that there are prominent additive noise patterns present in the cross polarization channels
with respect to lower backscatter intensity [39, 44, 50]. These are sometimes called banding
or scalloping effects in the literature [53, 55]. These noise patterns can cause major issues
for interpretation-based tasks because the added intensity corrupts the true backscattered
signal of the target [44]. ESA currently provides lookup tables to estimate the additive
noise in terms of azimuth and range components as detailed in their Instrument Processing
Facility (IPF) product [44], and disseminated through noise calibration eXtensible Markup
Language (XML) files that are distributed with each Sentinel-1 scene. By interpolating
the lookup tables, an estimated additive noise field can be derived for the original image.
This paper focuses specifically on data using IPF version 2.91, however as of writing IPF
version 3.20 is the latest version that presents improvements in computing the additive
noise field. Working with data from IPF versions less than or equal to 2.91 is problematic,
however, as subtracting the noise field from the image directly is insufficient as shown by
others [27, 39, 50] and ourselves in Section 2.3. The problem is severe enough that some
practitioners prefer to discard the first subswath to make modeling easier [50, 22].

While there is a significant body of work aiming to reduce speckle noise [5, 17, 32,
33, 40, 46, 47], there are considerably fewer published methods on reducing the additive
noise in SAR Iqbal et al. [26] modeled the additive noise field of ScanSAR images with
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gain and offset parameters and implemented a Kalman filter to estimate the parameters
for the azimuth and range in a decoupled manner. However, it is not immediately clear
how this could be extended to Sentinel-1 EW where the magnitude of the additive noise
varies greatly between adjacent subswaths. Specific to Sentinel-1 EW, Karvonen [27] used
an approach with a finite impulse response filter to reduce the scalloping in the azimuth
direction selectively over ocean regions. However, this has the computationally expensive
requirement of computing texture features, with the possibility of incorrectly modifying
the intensity of the intended target within the image. Park et al. [39] created an approach
for Sentinel-1 EW that modifies the estimated noise field with linear scaling and intercept
parameters in an attempt to eliminate the additive noise in the image. The values of the
parameters were estimated with an iterative grid search regression approach using a large
sample of Sentinel-1 ocean scenes, with the mean-estimates of the parameters used for
evaluation. A few drawbacks of this approach include the requirement of selecting samples
of images across uniform ocean areas, a priori. The method also makes the assumption
that the ideal scaling parameters are the same for every scene, an assumption that we
found to not always be valid, with an example of this shown in Fig. 2.4. Finally, if one
wanted to adapt the method to dynamically estimate the parameters for individual scenes,
it would be limited because of the aforementioned uniform ocean requirement.

The method proposed in this paper builds upon the approach of scaling the noise
field for each subswath as proposed by Park et al. [39]. Our contribution is based both on
creating an objective function that incorporates the characteristics of the additive noise and
simultaneously choosing scaling parameters for each subswath to minimize the objective
function. Our method leads to four main aspects of improvement:

1. Parameters may be estimated on images with heterogeneous features (e.g. containing
open-water and sea-ice, cyclones, etc.).

2. No training set of images is needed; the method can be applied for each individual
image without prior knowledge of the scenes.

3. Parameters are dynamically estimated for each image. This is significant because the
ideal scaling is different for each image, which makes using static parameter estimates
suboptimal.

4. The method has a closed-form solution that can be solved exactly without iterative
methods.

Ultimately our approach reduces to estimating the parameters of a linear function based
on a quadratic objective function using a least-squares solution.
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Two experiments were performed to evaluate the effectiveness of the proposed denoising
method. The first experiment simulated denoising by applying randomly scaled noise fields
to non-SAR Sentinel-2 images and then denoising them with the proposed method. The
second experiment used a sample of HV and VH polarized Sentinel-1 EW images from all
five oceans and evaluated the proposed method in terms of the flatness of the result over
selected subregions that were expected to be flat. These experiments ultimately indicated
that the proposed method was a significant improvement over the baseline method provided
by ESA and also that estimating parameters for each image independently is beneficial
compared to a static estimation approach. We also perform a small experiment on data
processed with an IPF above 3 that resulted in some modest improvement. Therefore,
this work is useful for any application that uses EW cross-polarized Sentinel-1, such as
ice analysis, as the method provides significantly better denoising and does not require
expensive computation or large amounts of prior information or training sets.

2.2 SAR noise background

Before details on the mechanics of the noise are provided, a brief background of TOPSAR
will first be given. TOPSAR is a type of SAR acquisition that captures a wide swath area
without the typical loss of resolution or scalloping [59]. The method works by simulta-
neously acquiring subswaths that cover different elevation angles (the angle between the
ground target and the satellite) by steering the antenna aperture to focus at different ele-
vation angles while continuously rotating along the azimuth angle. Sentinel-1 incorporates
TOPSAR in two modes, interferometric wide (IW) swath mode, and extra wide (EW)
swath mode. EW mode has subswaths enumerated as EW1, EW2, EW3, EW4, and EW5
that are ordered by increasing elevation angle along the range. During the observation
period, the satellite sweeps a number of radar bursts along the azimuth and observes the
backscattered radiation for each of the five subswaths. The received signals from each of
the bursts are stitched along the azimuth direction (the direction of the satellite’s orbital
velocity) to form the rows of the image, while the signal corresponding to the five sub-
swaths along the range (the direction perpendicular to the satellite’s orbital velocity and
tangent to the Earth’s surface) are stitched together to form the columns of the image.
In the supplementary materials we provide an animation that approximates the TOPSAR
process.

ESA provides a forward model for estimating the additive noise induced by TOPSAR
as a function of a number of factors

ya(i, j) =
D(i)P (a, i)

E(a, i, j)R(j)
f, (2.1)
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for azimuth index i, range index j that are within a subswath a [43]. P (a, i) is the power
gain term that is used for drift correction while orbiting. R(j) is the range spreading loss
term used to correct errors from the range compression algorithm. Scalar f is calibration
parameter determined by the noise and the processor. The remaining two terms are based
on the radiation pattern of the antennas, with D(i), the descalloping gain, being inversely
proportional to the antenna array pattern with respect to the azimuth, and E(a, i, j), the
elevation antenna pattern gain, being proportional to the antenna pattern with respect to
the range. The reader is referred to [43] for additional details. In antenna theory, the
power of the radiation pattern for an antenna is directly related to the strength of the
received signal at the corresponding angle from the receiving antenna [52]. Consequently,
the radiation pattern is a fundamental variable for the shape of the additive noise.

As Sentinel-1 uses an array antenna, the observed signal in the azimuth direction will
naturally be an aggregate function of the radiation patterns for each element in the array as
they are rotated along the azimuth [43, 52]. Fig. 2.1a shows an example of the relationship
between the average antenna element pattern for the burst along the azimuth, derived from
the Sentinel-1 calibration XML file, and azimuth component of the estimated noise. As the
bursts are stitched along the azimuth [59], the aggregate pattern appears as U-shaped and
symmetric. The corresponding angles closer to the burst centre have higher gain, which
reduces the magnitude of additive noise compensation needed. Angles further from the
centre have less antenna-gain and require more noise compensation.

The negative relationship between the noise and radiation pattern is apparent in the
range direction as well. Fig. 2.1b shows a comparison between the range noise and the
radiation pattern for each subswath. When the antenna is steered to acquire a different
elevation angle, and hence different subswath, the subsequent radiation pattern changes.
This is most notable in the first subswath, where the radiation pattern has two main lobes
(local maxima of the gain). The remaining subswaths only have one main lobe, but have
different relative magnitudes of radiation power.
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(a) Top: The estimated noise contribution in
the azimuth direction (descalloping gain).
Bottom: Average radiation pattern power gain
with respect to azimuth.
The vertical demarcations indicate the begin-
ning and end of observations obtained from a
burst. Only a portion of the azimuth is shown
for brevity.
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(b) Top: The estimated noise contribution in
the range direction.
Bottom: Radiation pattern power gain with
respect to range.
The vertical demarcations indicate the begin-
ning and end of subswaths.

Figure 2.1: Comparison between the estimated noise contributed by the azimuth and range
with respect to radiation pattern for EW TOPSAR. The measurements for the antenna
pattern were initially given in angles and were converted to the corresponding range and
azimuth indices in order to show the negative relationship between noise and radiation
pattern. The measurements correspond to the noise field as shown in Fig. 2.2.

Within the noise calibration XML files in every Sentinel-1 EW product, as of IPF 2.9,
the information to compute the noise field ya(i, j) is provided within two different lookup
tables labelled as the noiseRangeVector, which models ya(i, j)/D(i), and the noiseAz-
imuthVector, which models D(i). By performing linear interpolation between entries in the
lookup tables and multiplying the two results together, the estimated noise field ya(i, j) can
be constructed. Given x as the square of the digital pixel values in the original image, ESA
recommends denoising the measurements by subtracting the noise field from the image

φa(i, j) = xa(i, j)− ya(i, j), (2.2)

where the square root of φ returns the result to the original linear units / digital values [44].
As this step is performed prior to any other calibration procedures, which differ based on
application, we will continue to operate in terms of linear units throughout this paper.
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Further, for a given subswath a ∈ A = {EW1,EW2,EW3,EW4,EW5}, let the azimuth
row and range column be (i, j) ∈ a. Then 2.2 is represented more succinctly as

φa = xa − ya. (2.3)

However, applying (2.3) directly is insufficient. Fig. 2.2 provides a visualization of the
process of constructing the noise field and the result of subtracting it from the original
image. The subtraction results in subswaths being under or over compensated. For exam-
ple, Fig. 2.3 shows the values along the azimuth and range directions of an open-water
area, where the result has noise patterns still present. This implies that the strength of
the noise field needs to be scaled differently for each subswath. Park et al. [39] proposed
a method that chooses vectors for scaling coefficients k̄ = [k̄EW1, k̄EW2, k̄EW3, k̄EW4, k̄EW5]
and intercepts ō = [ōEW1, ōEW2, ōEW3, ōEW4, ōEW5] such that

φ̄a = xa − k̄aya + ōa (2.4)

where k̄ and ō were statically estimated using a training set of several hundred images.

Figure 2.2: Visualization of the construction and application of the noise field using the
noise vectors. Overall, the final denoising is unsatisfactory, most prominently in EW1
where patterns of the noise field are blatant in the result image.
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(a) Mean intensity of measurement, noise, and
their difference over ocean area with respect to
Range.

(b) Mean intensity of measurement, noise, and
their difference over ocean area with respect to
Azimuth for EW1.

Figure 2.3: Plots of mean intensities of measurements in sections of ocean with respect
to each direction. Ideally the subtraction would produce a flat profile, but aspects of the
noise are still present in both directions.

Another element to consider is whether the ideal scaling parameters are dependent on
factors other than the sensor. Fig. 2.4 shows that single values of k do not universally fit
between different images. Therefore, it would be ideal for scaling factors to be estimated
dynamically for each image.
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Figure 2.4: A comparison of the mean measurement of EW1 over ocean regions of two
different scenes after noise removal with two different scaling factors (k). At k = 1.2350
the left scene has noise patterns present while the right scene has a flat profile. However,
at k = 1.4886 the left scene as the noise patterns better compensated, but results in the
right scene being overcompensated. This indicates that no single scaling factor will fit
every scene.

2.3 Methods

The goal of this work is to estimate appropriate scaling parameters for each image individ-
ually. We make a similar assumption to Park et al. [39] that the estimated noise in each
subswath needs to be linearly re-scaled. Our dynamic model uses a set of dynamically
estimated scaling parameters k̂ = [k̂EW1, k̂EW2, k̂EW3, k̂EW4, k̂EW5] such that

φ̂a = xa − k̂aya (2.5)

Our model is distinct from (2.4) because the scaling parameters, k̂, are estimated for each
image independently. We also considered using a set of intercepts ô but found that includ-
ing these did not make a significant impact on the end results. To estimate parameters for
each image independently, an objective function, L, is defined based on the characteristics
of the estimated additive noise present within each image. The values of k̂ are thereby
chosen to minimize L such that k̂ = argmin

k̂

L.
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Throughout the remainder of this section we describe the main components of the
objective function (L) based on the noise characteristics in both the azimuth and range
directions. Thus, L is defined as the sum of terms based on the noise-characteristics in the
azimuth direction (LA), the range direction (LR and LB that correspond to effects within
and between subswaths respectively), and a term for regularization (Lr). Each of these
terms involve summing the square difference between different pairs of samples within the
images. These terms are defined with more detail in the remainder of this section, but Fig.
2.5 provides a high-level visual overview of how L is computed.
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Figure 2.5: High level overview of the objective function for the first two subswaths, for
simplicity. The noise field is overlaid with abridged annotations relating to the azimuth
noise loss (LA), range noise loss (LR and LB), and regularization loss (Lr). While the
annotations are overlaid on the noise field to convey the indices of the points used in the
terms, note that the loss is a function of the measured SAR image, the estimated noise
field, and the scaling parameters. Best viewed in colour.
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2.3.1 Objective: Azimuth

A prominent attribute of the azimuth component of the noise is its periodic pattern. As
explained previously, the pattern is caused by the U-shaped antenna pattern gain and
the concatenation of bursts along the azimuth. Thus, the period of the azimuth noise is
equivalent to the number of azimuth lines between the bursts, such that the troughs (local
minima) of the azimuth noise correspond to centre of bursts (azimuth angle is 0) and are
each one period apart. Also, since the gain is U-shaped, each peak (local maxima) of the
azimuth noise is located half a period away from a trough. Therefore, we assert that if the
amplitude of the noise is high, then the difference between the adjacent peaks and troughs
will be high.

More generally, since the estimated noise within each burst is U-shaped and symmetric,
we assume that the squared difference in the image between any pair of points along the
azimuth will be proportional to the amplitude of the noise. Therefore, the pairs are selected
as all possible points along the azimuth within each subswath paired with the points offset
by half a period. Fig. 2.6a graphically shows this layout with respect to the azimuth.

Given the denoising model for subswath a as φ̂a, let φ̂A
a (i) be the average value of

all pixels for azimuth line i in φ̂a. Then the azimuth component of the loss function is
composed as

LA =
∑

a∈A

Naz(a)∑

i

[wA
a (i)[φ̂

A
a (i)− φ̂A

a (i+ ρ(a))]]2, (2.6)

where ρ(a) is the number of azimuth lines per half a burst period, computed as

ρ(a) =
Nburst(a)

2Naz(a)
(2.7)

and Nburst(a) is the number of bursts used to construct subswath a and Naz(a) is the
total number of azimuth lines in the subswath. Unfortunately, information containing
Nburst(a) is not explicitly included in the current IPF version (2.9). However, it can be
derived as Nburst(a) = Nap(a) + 1, where Nap is the number of antennaPattern items for
subswath a within the annotation XML file. The term wA

a (i) is a weighting term introduced
for subswath a and azimuth line i based on the realization that the change in intensity
between pairs of lines separated by half a burst is influenced by the backscatter of the
ground targets. If the two targets have fundamentally different backscattering properties,
for example where one line is dominated by ice and the other is dominated by water,
then their squared difference will not be representative of the scale of the noise field in
the measurement. Given xA

a and yAa as the average values on an azimuth line that are
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Figure 2.6: Peaks and troughs of the estimated noise with respect to azimuth and range.

used in φ̂A
a , the term xA

a (i)−xA
a (i+ρ(a))

yAa (i)−yAa (i+ρ(a))
is used to determine whether a sample’s difference is

dominated by the change in intensity from the backscattering of the targets. We determined
an acceptable range as 0 to 2.5. The lower bound was zero because a negative ratio cannot
be created from the additive noise, assuming the noise model is correct. A liberal upper
bound was chosen as 2.5 based on experimentation. Thus, the weighting term is defined
as

wA
a (i) =

{
1 if 0 < xA

a (i)−xA
a (i+ρ(a))

yAa (i)−yAa (i+ρ(a))
< 2.5

0 otherwise

}
(2.8)

to remove the outlying pairs from the loss function.

As proven in the appendix, (2.6) can be represented using an inner product formulation

LA = [vA −CAk̂]⊤[vA −CAk̂]. (2.9)

2.3.2 Objective: Range

As noted previously, the noise pattern in the range direction is unique for each subswath.
Thus, two objective function terms, LR and LB, are proposed to compensate the noise
within the subswaths (intra-subswath) and between the subswaths (inter-subswath).
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Intra-subswath

First we examine the intra-subswath loss term that describes the noise pattern within each
subswath. Like the azimuth loss term, the intra-subswath loss term is constructed by
taking the squared difference between peaks and troughs but within the range component.
The range noise pattern is neither periodic nor symmetric; instead the true scale of the
noise is indirectly measured from taking the squared difference between peaks and troughs
exclusively. Fig. 2.6b shows the samples used with respect to the range direction. The
samples used in the intra-subswath term are based on the rectangular subregions divided
along the azimuth of a subswath that are dictated by the swathBoundList field in the noise
calibration XML file, as depicted in Fig. 2.7. The intra-subswath loss is based on the
difference between adjacent peaks and troughs over each of the subregions. Let pb(z) and
tb(z) be the zth peak and trough respectively within rectangular subregion b in subswath
a. Now let φ̂R

b (s) be the mean average of values predicted by the denoising model φ̂ within
rectangular subregion b in subswath a that have a range index within s− ǫ to s+ ǫ, with
a padding constant ǫ and s being either pb(z) or tb(z). Since the range noise pattern is
unimodal in EW2, EW3, EW4, and EW5 (loss term M), while multi-modal in EW1 (loss
term N), the intra-subswath loss is composed as the sum of two terms

LR =M +N, (2.10)

where
M =

∑

a∈M

∑

b∈a

[
[wR

b (1)[φ̂
R
b (pb(1))− φ̂R

b (tb(1))]]
2

+ [wR
b (2)[φ̂

R
b (tb(1))− φ̂R

b (pb(2))]]
2
]

such that M = {EW2, EW3, EW4, EW5}

(2.11)

and
N =

∑

b∈EW1

[
[wR

b (1)[φ̂
R
b (pb(1))− φ̂R

b (tb(1))]]
2

+ [wR
b (2)[φ̂

R
b (tb(1))− φ̂R

b (pb(2))]]
2

+ [wR
b (3)[φ̂

R
b (pb(2))− φ̂R

b (tb(2))]]
2

+ [wR
b (4)[φ̂

R
b (tb(2))− φ̂R

b (pb(3))]]
2
]

(2.12)

As in the azimuth noise component, weighting terms wR were introduced to account
for instances where the difference is dominated by the difference in land targets (e.g. land
vs ice). In this case the weighting term is defined as

wR
b (o) =

{
µ if 0 <

xR1
b

−xR2
b

yR1
b

−yR2
b

< 2.5

0 otherwise

}
, (2.13)
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where φ̂R
b (pb(o + q)) − φ̂R2

b (tb(o)) = [xR1
b − kay

R1
b ] − [xR2 − kay

R2
b ] with o ∈ {1, 2} and

q ∈ {0, 1} such that they correspond with the difference terms in (2.11) and (2.12). The
value µ balances the trade-off between LA, which is summed over a larger number of terms.
From experimentation we chose µ = 1.79.

Finally, the proposed error for the intra-subswath range noise can be rewritten as an
inner product

LR = [vR −CRk̂]⊤[vR −CRk̂], (2.14)

as shown in the appendix.

Figure 2.7: Layout of the rectangular subregions b in red overlaid with the estimated noise
pattern for reference.

Inter-subswath

As the radiation pattern changes when the antenna switches between subswaths, we must
consider that this will cause discontinuities between adjacent subswaths. Intuitively, the
range columns of adjacent subswaths are spatially correlated and should have similar values
in an ideal denoised image. We introduce another loss term to represent the difference of
intensity between the columns of adjacent subswaths to handle these considerations.
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Let φ̂B1
b be the average predicted value of the last ǫ range columns that are within

subrectangle b in subswath a and let φ̂B2
b be the average of the ǫ range columns after the

last column in subrectangle b. Then the inter-subswath loss term is determined by

LB =
∑

a∈B

∑

b∈a

[φ̂B1
b − φ̂B2

b ]2

= [vB −CBk̂]⊤[vB −CBk̂]

such that B = {EW1, EW2, EW3, EW4}

(2.15)

2.3.3 Regularization

Even with weight terms in the loss function, using each of the aforementioned loss terms
can result in unstable estimates k̂. To resolve this, a prior assumption is made that each
value of k̂ should be close to 1. Thus a regularization term is introduced to penalize
estimates of k̂ that diverge from 1

Lr =
∑

a

[λa[1− k̂a]]
2

= [1−Crk̂]⊤[1−Crk̂],

(2.16)

where Cr is the diagonal matrix containing the hyper-parameter vector λ. By applying
the Golden section search algorithm in a block-wise manner, we found appropriate values
of λ = [0.1, 0.1, 6.75124, 2.78253, 10], used for all images. Now that we have introduced
the loss terms, we now detail the implementation for estimating the scaling parameters for
each subswath.

2.3.4 Implementation

Recall that the standard denoising method proposed by ESA recommends denoising as

φa = xa − ya. (2.17)

As it is apparent that this is not sufficient in some scenarios, the desired model scales the
noise factor according to each subswath a with k̂a

φ̂a = xa − k̂aya (2.18)
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Through matrix and vector concatenation the final loss term is defined as the sum of all
the previously derived terms in a single inner product

L = LA + LR + LB + Lr

= [v −Ck̂]⊤[v −Ck̂]
(2.19)

and the solution for argmin
k̂

L is well known [9, 16] to be the least-squares solution

k̂ = [C⊤C]−1C⊤v. (2.20)

2.4 Experiments

To evaluate the effectiveness of our method, two experiments were considered. The first
experiment is a simulation where a set of RADARSAT SAR images without significant
additive noise patterns are selected to demonstrate the abilities of the proposed method
in a setting where the characteristics of the noise are directly controlled. The second
experiment considers denoising Sentinel-1 EW images in both HV and VH polarization
and evaluates the effectiveness by examining sub-regions of open-water.

2.4.1 Parameter re-estimation simulation on RADARSAT

The simulation experiment can be summarized by the following: first RADARSAT images
were selected, a scaled noise field was added to the images, scaling parameters were re-
estimated on the noisy image, followed by denoising the noisy image with the model and
comparing the result with original ground truth images. The RADARSAT images were
selected to ensure that a ground truth reference image was available and independent of
the additive noise patterns specific to Sentinel-1 EW. The goal of this experiment is to test
if the proposed method can accurately estimate the optimal scaling parameters and verify
the quality of the denoised image compared to a true original.

The set of images used for the experiments were 20 RADARSAT HV images taken in
the Beaufort Sea during 2010. A template SAR noise field was selected from a sample
Sentinel-1 scene1. To ensure comparability, the values of the RADARSAT scene prior
to adding noise were re-scaled to have a comparable signal to noise ratio as the original
Sentinel-1 scene after denoising with the proposed method. The RADARSAT scene was

1The sample scene was from S1A EW GRDM 1SDH 20180902T164932 20180902T165032 023522 028FAA 5A8B
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also spatially re-scaled with linear interpolation to have the same number of rows and
columns as the Sentinel-1 scene.

For each image, 10 different noisy versions were constructed with scaling factors ran-
domly selected from uniform distributions within the ranges kEW1 : [1.2, 1.6], kEW2 : [0.8, 1.0], kEW3 :
[0.92, 1.02], kEW4 : [0.95, 1.05], kEW5 : [0.98, 1.02], resulting in a total of 110 noisy im-
ages. These ranges for k were selected as they were representative of the range of es-
timated parameters encountered in the sample of true SAR images discussed in the fol-
lowing subsection. The noisy images were created by multiplying the noise field with
the scaling parameters and adding it with the original image. Then, using (2.20), the
parameters were estimated, with the scaled subtraction labelled as the proposed denois-
ing. As a baseline, we perform the aforementioned procedure using scaling estimates as
k̄ = [1.4, 0.925, 0.985, 1.0, 1.0], which are the central values of the distributions. In addition,
a visual comparison is shown in Fig. 2.8.
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Original Original+Noise Baseline Proposed

Figure 2.8: Comparison of images within the simulation experiment with k̂ =
[1.55, 0.833, 1.01, 1.01, 1.01]. The proposed method is almost identical to the original im-
age, while the image from the baseline method is scaled improperly between the simulated
first and second subswaths.

Three metrics, the normalized root mean squared error (NRMSE), peak signal to noise
ratio (PSNR), and structural similarity index (SSIM) [54], were computed with respect
to the original image to determine the effectiveness of denoising. NRMSE computes the
square root of the aggregate sum of pixel-wise squared differences, with a lower-bound
of 0 indicating a perfect comparison. In contrast to root mean squared error, NRMSE
is normalized by dividing the root sum of squares by the range of input values for each
image, which helps ground the metric against a comparison that vary in scale [6]. We use
a common variant of NRMSE as

NRMSE(d, l) =

√
MSE(d, l)

max(l)−min(l)
, (2.21)
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whereMSE(s, l) is the mean squared error between prediction vector d and baseline vector
l. PSNR computes the logarithmic ratio of power of the original image to the power of the
noise within the modified image. PSNR is commonly used in applications that result in
distortion of the original image in denoising or compression applications [21, 25]. Finally,
SSIM is a metric bounded between 0 and 1, with 1 indicating the two images are identical,
and is commonly used for evaluating denoising and reconstruction methods by quantifying
the similarity of structural features within an image [54]. Each of these metrics make use
of the available ground truth reference image. The summary of the metrics with respect
to the denoising procedures over the distribution of images are shown in Table 2.1, with
the metrics for the applying no denoising (noisy) included for context.

To compare the generated distributions between the proposed and baseline methods for
each of the metrics, we employed a one-tailed paired t-tests using a critical value α = 0.05.
We found our method had significantly higher SSIM and PSNR and lower NRMSE than the
baseline method (p < α), indicating it is significantly better in terms of all three metrics.

Table 2.1: Mean ± standard deviation for the normalized root mean squared error
(NRMSE), peak signal to noise ratio (PSNR), and structural similarity index (SSIM) over
all the images with 10 iterations of sampling values for k. P-values from the one-tailed
t-test comparing the proposed method to the other methods are also shown.

Method NRMSE p-value PSNR p-value SSIM p-value
Noisy 0.514 ± 0.028 ≈ 0.0 20.9 ± 2.0 ≈ 0.0 0.913 ± 0.009 ≈ 0.0

Baseline k̄ 0.061 ± 0.031 1.5× 10−47 41.4 ± 5.6 3.8× 10−57 0.993 ± 0.005 9.8× 10−23

Proposed 0.017 ± 0.008 N/A 51.4 ± 3.8 N/A 0.997 ± 0.001 N/A

2.4.2 Denoising Sentinel-1 SAR

For the second experiment, a set of 41 Sentinel-1 GRDM SAR images was selected to
include 13 images from the Arctic Ocean, 6 from the Antarctic Ocean, 8 from the Atlantic
Ocean, 6 from the Pacific Ocean, and 8 from the Indian Onnncean. The images were
selected from all five oceans to ensure our evaluation would not be biased towards a single
environment. The images from the Arctic and Antarctic oceans have HV polarization
while the images from the Atlantic, Pacific, and Indian oceans have VH polarization. The
polarization of the images is determined by the Sentinel-1 observational scenario [12]. In
the remainder of this section we provide both a visual and a quantitative comparison of
the proposed and baseline denoising procedures.
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Fig. 2.10 and Fig. 2.11 visually present a subset of co-polarized images from all five
major ocean divisions. Three types of images are shown: the original image, the scene
with ESA denoising, and the scene with a scaled noise field scaled and subtracted via the
proposed method. For display purposes only, the images were linearly scaled from 0 to
255 for each scene based on the 2.5 to 97.5 percentile of the distribution of intensities
for all versions of the scene in order to maximize the contrast in each image. Visually,
the proposed method greatly reduces the noise characteristics from each of the images,
although there are still some discontinuities in some of the images. This is not an error
in the parameter estimation, but rather in the assumption that the noise field is linearly
mis-scaled. More detail regarding this is provided in Section 2.5.

For the quantitative comparison of the experiment, we selected rectangular sub-regions
in the image that spanned the entire range (all five subswaths) and were over open-water
without major textural features. We make the assumption that the intensity over such
sub-regions will not vary significantly with respect to range when the image is ideally
denoised. A similar method of evaluation was also used in Park et al. [39]. Consequently,
we assume that the mean intensity of these sub-regions should follow a linear relationship,
with deviation from a linear relationship implying the presence of noise. Let ξ(j) be the
mean value along the azimuth on range index j for a denoised image. Let ξ̂(j) be the
linear fit for ξ(j), which as previously mentioned, should be a reasonable estimate for ξ(j).
Fig. 2.9 shows an example of this process. The NRMSE between ξ(j) and ξ̂(j) was then
compared for the ESA denoising method and our proposed denoising method. The mean
and standard deviation of NRMSE over all images are shown in Table 2.2. Using a one-
tailed paired t-test, we found that our method had significantly lower NRMSE than the
ESA method (p = 9.8× 10−11 < 0.05).
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(a) Ocean value selection process

(b) Corresponding linear regression for the ESA method (top) and our method (bottom) using
the mean values selected from Fig. 2.9a.

Figure 2.9: Visualization of the quantitative experiment detailed in section 2.4.2
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Table 2.2: Normalized root mean squared error for each image over selected ocean sub-
images along with p-values generated from a one-tailed T-test comparing the proposed
method to the others. The table is divided into comparing data from IPF 2.91 specific to
sections 2.4.2 and 2.4.2, and 3+ that is specific to section 2.4.2

IPF 2.91 IPF 3+
Method NRMSE p-value NRMSE p-value
ESA 1.85 ± 0.941 9.8× 10−11 0.685 ± 0.278 0.017

Static k̄ 0.814 ± 0.674 0.0058 N/A N/A
Proposed 0.568 ± 0.274 N/A 0.592 ± 0.295 N/A
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Ocean
div.

Original Unscaled (ESA) Proposed

Arctic
(73.5◦N,
141.2◦W)

Arctic
(73.6◦N,
136.9◦W)

Antarctic
(65.4◦S,
138.7◦W)

Antarctic
(71.8◦S,
128.7◦W)

Atlantic
(41.4◦N,
28.5◦W)

Figure 2.10: Part 1 gallery of SAR images showing the effect of the baseline and the proposed
noise removal methods in reference to the original image. Given coordinates correspond to
the center of the image.
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Ocean
div.

Original Unscaled (ESA) Proposed

Atlantic
(37.8◦N,
26.8◦W)

Pacific
(16.5◦N,
150.9◦E)

Pacific
(19.7◦N,
174.7◦W)

Indian
(21.1◦S,
74.8◦E)

Indian
(21.3◦S,
76.9◦E)

Figure 2.11: Part 2 gallery of SAR images showing the effect of the baseline and the proposed
noise removal methods in reference to the original image. Given coordinates correspond to
the center of the image.
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Static versus dynamic analysis

While the overall effectiveness of the proposed method for denoising the SAR images has
been demonstrated, there still remains the hypothesis that the ideal scaling parameters
are different for each image. This hypothesis was tested by computing the aggregate mean
values of k̂ with the proposed method for HV (k̄ = [1.438, 0.942, 0.980, 1.010, 0.999]) and
VH (k̄ = [1.37, 0.932, 0.969, 0.993, 1.000]) and comparing the effect of scaling the noise field
with k̄ versus scaling the noise field by dynamically estimating k̂ for each image. Fig. 2.12
shows an example of how using a static estimate (k̄) can provide sub-optimal denoising
compared to using a dynamic estimate (k̂).

(a) Static scaling (b) Proposed dynamic scaling

Figure 2.12: An example of the importance of dynamically estimating scaling parameters
for each image. In this case, the static scaling in this case overcompensates the true noise
present in the image within the first swath.

To test the significance of this effect, the same quantitative experiment in section 2.4.2,
which compared the NRMSE of the linear regression with respect to the denoised measure-
ment over ocean regions between two different methods, was applied. Namely, the mean
estimates for k̄ were applied to scale the noise field as the static method versus scaling
with k̂ using the proposed method. Overall, the proposed method had significantly
lower NRMSE than the static (p = 5.8 × 10−3 < 0.05) from a one-tailed t-test, thus sup-
porting our hypothesis that the ideal scaling factors are scene independent. Once again,
these results are summarized in Table 2.2.
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IPF 3+

With the changes from IPF version 3+, the generation of noise fields changed significantly.
A new normalization scheme was added to help account for situations where the signal
to noise ratio is low [45]. To evaluate the effect of the proposed method on these new
noise fields, we collected 13, 12, 8, 14, and 9 images from the Arctic, Antarctic, Atlantic,
Pacific, and Indian oceans with sensing dates after July 2019. We repeated the quantitative
experiment with this data, while skipping the static comparison for brevity. Table 2.2
indicate that the proposed method (NRMSE = 0.592) had significantly lower NRMSE than
the ESA method (NRMSE = 0.685), with p = 0.017 < 0.05. As shown in Figure 2.13, the
improvement between the proposed method and the ESA method is milder than with IPF
2.91.

(a) Range plot and linear regression for ESA
method (top) and the proposed method(bottom)

ESA Proposed

(b) HV image results.

Figure 2.13: Brief comparison with IPF version 3+

2.5 Discussion

As mentioned in the introduction, the merit of the proposed method is based on achiev-
ing four objectives. The first three objectives are directly tied to the results of the two
experiments, while the last objective is achieved from the formulation of the method itself.

The simulation experiment is based on the ideal scenario where our assumptions of
actual additive noise are true; in other words, the noise field is linearly mis-scaled between
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subswaths and the scaling is variable among different scenes. Under these circumstances,
the proposed method provides an almost perfect denoising of the selection of Sentinel-2
scenes over coastal regions. In this scenario, the proposed method produced significantly
better denoising than the scaling from using the static expected scaling parameters. This
indicates that the proposed method can effectively adapt to the dynamic-scaling of the
noise field in an ideal environment.

While the simulation experiment was a good demonstration that the proposed method
works well in a controlled setting where the ground truth is known, obviously the character-
istics of SAR and optical images are inherently different and the experiment on SAR images
is required even if a ground truth reference is not known. Overall, the proposed method
made dramatic improvements on the visual quality of the SAR images. The method was
able to estimate parameters in a wide variety of backgrounds including those with het-
erogeneous textures, such as sea-ice or cyclones. Compared to subtracting an unscaled
noise field, the proposed method suppresses the characteristics of the noise field to a much
greater degree. Analytically, the evidence that the proposed method produces significantly
lower NRMSE over the range of ocean regions concurs to the effectiveness of the proposed
noise removal and the accomplishment of the first two objectives.

The experiment on the SAR images also revealed the impact of dynamically estimating
scaling parameters. By using the mean parameters generated by the proposed method as
the static scaling parameters, there are instances where the static parameters are unsuitable
for the subswaths. This effect was significant in terms of NRMSE over range of ocean
regions, indicating that there is a clear benefit for dynamic estimation.

Also of note is that the proposed method requires little computational overhead relative
to the size of the noise field and image. The computational complexity of constructing the
linear system is of the same order as a reduction along the azimuth, while solving the
5× 5 linear system of least-squares is trivial. The small size of the system is also beneficial
because a closed form solution can be used and no expensive iterative algorithms like the
conjugate gradient method, gradient descent, or grid search are required to estimate scaling
parameters. The low overhead is another advantage of the dynamic parameter estimation
aspect of the proposed method because the parameters can be quickly estimated for each
image and, unlike a static estimation approach, requires no preparation in the sense of
collecting a training set.

The introduction of IPF 3+ greatly improved the quality of the noise field. In sec-
tion 2.4.2, it was demonstrated that the proposed method still provided some modest
improvement, but the visual differences can be subtle. However, archived Sentinel-1 data
is not updated with the newest IPF and are still susceptible to the mis-scale from IPF
2.91 and below. Therefore, our method provides a way for improving quality that can be
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applied to both older and current Sentinel-1 data.

Despite the aforementioned success, some issues still exist in the SAR-images. As
mentioned in Section 2.4.2, some images have discontinuities between adjacent subswaths
even after denoising. These issues do not seem to be from an incorrect estimation of scaling
parameters. Rather, they seem to be caused from the shape of the ESA noise field not
always fitting to the actual shape of noise imposed on the image, particularly in the range
direction. An extreme example of this is shown in Fig. 2.14a, where the left and right
extremities of subswaths EW2, EW3, EW4, EW5 have a higher relative compensation than
the centre of the swath. Another example in Fig. 2.14b shows a different style of misfit,
where the left extremities of the subswaths have higher relative compensation compared
to the right extremity. This shows that for some images, the provided noise fields are
calibrated incorrectly in a more complex manner than linear scale. Consequently, this
misfit accounts for errors in the noise removal that cannot be compensated by scaling
individual subswaths alone. Correcting this will require correcting the shape of the noise
curves either through enhanced calibration or by creating a more flexible empirical model
to account for the shape of the curves. This is consequently an area of study for future
work. While it would be interesting to adapt these methods to co-polarized images or
images from Sentinel-1 modes such as IW, we suspect that the higher signal-to-noise ratios
from these methods would make application of our methods to these types of images less
necessary.
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(a) ID: 20180930T081301 20180930T081401 023925 029CB0

The relative difference between the measure-
ments and the noise is greater in the centre
of subswaths (purple) than the right and left
extremities (red) within the same subswath.

(b) ID: 20190322T212224 20190322T212324 015472 01CFB5:

The relative difference between the noise and
signal is different for the right (red) and
left extremities (purple) within the same
subswath.

(c) ID: 20180930T081301 20180930T081401 023925 029CB0:

Input image with evaluation range highlighted
in red.

(d) ID: 20190322T212224 20190322T212324 015472 01CFB5:

Input image with evaluation range highlighted
in red.

Figure 2.14: Mean signal and noise with respect to range over an ocean sub-region. In
both examples the noise is not fit properly for subswaths EW2, EW3, EW4, and EW5.
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2.6 Conclusion

We created a quadratic objective function to model the characteristics of the estimated
noise field in TOPSAR cross-polarized images. Our method uses this objective function to
estimate scaling parameters for each of the subswaths in a scene. The method compared
favourably to unscaled noise removal in both a simulation experiment on non-SAR im-
ages on an experiment selection of Sentinel-1 cross polarized TOPSAR images over major
ocean-divisions around the world. These experiments showed that the algorithm works on
a variety of backgrounds, has no requirements of acquiring a training data set, provides
dynamic scaling parameter estimation for each image, and has low computational require-
ments. These merits are beneficial for any practitioner who uses cross-polarized Sentinel-1
EW images, as the algorithm can be conveniently applied with little preparation required.
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Appendix: Inner Product Formulations

Claim. L∼ ∈ {LA, LB, LR} can be represented with an arbitrary inner product formulation
[v∼ −C∼k̂]⊤[v∼ −C∼k̂], using some vector v∼ and matrix C∼.

Proof. First, discard the connotations associated with the variables i, j, and n in the main

text. Without loss of generality, let L∼ =
N∑
i=1

[w(i)[φ̂2i−1
a(2i−1)− φ̂2i

a(2i)]]
2 given the linear denois-

ing model φ̂j

a(j) = xj

a(j) − k̂a(j)y
j

a(j), with xj

a(j) representing a selection of the measurement,
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yj
a(j) representing a selection of the estimated noise, and a subswath a(j) ∈ A. Then for
any i,

w(i)[φ̂2i−1
a(2i−1) − φ̂2i

a(2i)] = w(i)[x2i−1
a(2i−1) − k̂a(2i−1)y

2i−1
a(2i−1)]− [y2ia(2i) − k̂a(2i)y

2i
a(2i)]

= w(i)[x2i−1
a(2i−1) − x2i

a(2i) − [k̂a(2i−1)y
2i−1
a(2i−1) − k̂a(2i)y

2i
a(2i)]].

(2.22)

We can encode (2.22) for all i into a vector v∼ −C∼k̂ where v∼ contains the terms with
x and C∼ contains the terms with y. More precisely,

v∼ ∈ R
N =

∣∣∣∣∣∣∣∣∣∣∣∣

w(1)[x1
a(1) − x2

a(2)]
...

w(i)[x2i−1
a(2i−1) − x2i

a(2i)]
...

w(N)[x2N−1
a(2N−1) − x2N

a(2N)]

∣∣∣∣∣∣∣∣∣∣∣∣

(2.23)

and

C∼(i, n) =





w(i)[y2i−1
a(2i−1) − y2ia(2i)] if a(2i− 1) = a(2i) = n

w(i)y2i−1
a(2i−1) if a(2i− 1) = n and a(2i) 6 =n

−w(i)y2ia(2i) if a(2i) = n and a(2i− 1) 6 =n

0 otherwise





, (2.24)

with the index n representing the different subswaths ∈ A and C∼ ∈ R
N×5. Then by the

rules of matrix multiplication

N∑

i=1

[w(i)[φ̂2i−1
a(2i−1) − φ̂2i

a(2i)]]
2 = [v∼ −C∼k̂]⊤[v∼ −C∼k̂] (2.25)
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Chapter 3

Estimating Noise Floor in Sentinel-1

Images with Linear Programming

and Least Squares

The following article is slated to be submitted to IEEE Transactions in Geoscience and
Remote Sensing and modifications may be made after submission of this thesis. I completed
this work by myself under supervision from my supervisors Linlin Xu and David Clausi.
This article documents a method of estimating a best fitting noise floor for EW and IW
Sentinel-1 images with the goal of compensating for an issue presented in Chapter 2, where
the standard noise floor was mis-fit in manner that could not be compensated through linear
scaling. The method models the noise floor to be a power function of the antenna radiation
pattern power plus a correction offset for each subswath. The power function parameters
are estimated by solving linear programming problems while the offsets are estimated by
solving a least squares problem. Overall, the method matched the characteristics of the
true noise floor better than both the default noise floor estimates provided by the ESA
and linear transformations of the estimates.
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Estimating Noise Floor in Sentinel-1 Images

with Linear Programming and Least Squares

Peter Q. Lee, Linlin Xu, and David A. Clausi

Abstract

Sentinel-1 is a synthetic aperture radar platform that provides free and open source images
of the Earth. A product type of Sentinel-1 is Ground Range Detected (GRD), which records
intensity while discarding phase information from the radar backscatter. Especially in
cross-polarized GRD images, there are noticeable intensity changes throughout the image
that are caused by amplifying the noise floor of the signal, which varies due to non-uniform
radiation pattern of the satellite’s antenna. While Sentinel-1 has Instrument Processing
Facility (IPF) software to estimate the noise floor, even in the newer versions (3.1 or above)
of the IPF software there are still instances where the estimates provided do not fit to the
actual noise floor in the image, which is particularly noticeable in transitions between
adjacent subswaths.

In this work we propose a method that reduces the impact of the varying noise-floor
throughout the image. The method models the intensity of the noise floor to be a power
function of the radiation pattern power. The method divides the swath into several sections
depending on the location of the local minimum and maximum of the radiation pattern
power with respect to the range. The parameter estimation is portrayed as a geometric
programming problem that is transformed into a linear programming problem by logarith-
mic transformation. Affine offsets are computed for each subswath by a weighted least
squares approach.

We evaluate our method on extra wide (EW) and interferometric wide (IW) Sentinel-
1 modes with a series of three experiments. The first experiment simulates adding and
removing the proposed noise floor model on a sample of RADARSAT-2 images, which
is quantitatively evaluated with standard image quality metrics. The second experiment
evaluates the effect on relevant Sentinel-1 images, which is quantitatively gauged by the
appearance of open-water regions. The third experiment evaluates the change in radiomet-
ric bias compared to the baseline noise floor estimates The first two experiments show that
the proposed method is successful in fitting to the shape of the true noise floor in the im-
ages. The third experiment indicates that there is a significant change in radiometric bias
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compared to the baseline estimates, indicating that one must be mindful for applications
that are calibrated to the baseline estimates.

3.1 Introduction

Synthetic aperture radar (SAR) is a method of remote sensing that uses backscatter from
emitted radar pulses to infer physical characteristics about the surface. Sentinel-1 is a
mission by the European Space Agency (ESA) that uses two satellites (Sentinel-1A and
Sentinel-1B) to provide a free and open source of SAR images of the planet. Consequently,
Sentinel-1 remains an important resource for remote sensing practitioners.

One issue that is apparent in unprocessed images are the noisy intensity patterns that
disrupt the appearance of the desired backscatter intensity, which are sometimes described
as additive noise, noise equivalent sigma zero, or as scalloping and banding patterns.
Throughout this paper these noise patterns will be described as the noise floor of the
image, which is the total sum of noise sources within a signal measurement. Throughout
its lifespan, Sentinel-1 has had multiple iterations of its Instrument Processing Facility
(IPF) software, which provides a method of estimating and subtracting the noise floor
from the image in order to normalize the intensity within the image. In IPF 2.9, azimuth
vectors were added to compensate for the scalloping patterns that occur along the az-
imuth [10]. In IPF 3.1 further improvements were made to improve the consistency of the
noise floor among different subswaths [10]. In early versions of the IPF, remote sensing
practitioners had difficulty compensating for the varying noise floor, particularly in cross-
polarized images [22, 27, 39, 50]. While more recent versions have improved this, issues still
remain. The recent article by [48] evaluated the calibration of Sentinel-1 images finding
that calibration can suffer particularly in scenarios with lower backscatter. In addition to
radiometric differences between the two satellites, it was also found that the look angle
was a factor for discrepancies in intensity.

The types of images most affected by the noise floor issue are cross-polarized images
over maritime regions, due to the low backscatter of ice and water. Consequently, noise
floor removal is critical for applications that require uniform and consistent measurements
throughout the image. One such application is sea ice analysis, where the backscatter
is used to determine the physical qualities of the ice [22, 50]. Wind speed analysis also
rely on cross-polarized images, with the literature showing that wind speed algorithms
are adversely affected by the noise floor patterns in Sentinel-1 images [18, 35]. Therefore,
ensuring homogeneous intensity throughout cross-polarized images could greatly improve
visual interpretation and the performance of the models applied for these tasks.
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There are a limited number of methods in the literature that attempt to compensate
for the noise floor in Sentinel-1 images. In the work by [39], a methodology was proposed
that rescales the default ESA noise floor in an affine manner for each subswath. Previous
work [30] built onto this method by formulating a way to dynamically estimate parameters
of the noise floor specific to each image. Specifically, a least-squares approach was used to
estimate linear scaling parameters for each of the different subswaths such that applying
this re-scaled noise floor results in a more consistent intensity profile throughout the image.
However, as noted [30], the noise floor is sometimes mis-fit in a non-linear manner that
makes it impossible to choose a linear scaling parameter that satisfies all sections within a
subswath.

In this work, we attempt to compensate for this non-linear mis-fit of the noise floor in
the subswaths. We observe that the radiation pattern of the platform matches the scale of
the true noise floor much better than the ESA noise floor. We propose a novel model of the
noise floor to be a power function of the platform’s radiation pattern, whose parameters
are estimated by solving a geometric program, that is converted to a linear program in the
log transformed domain. To ensure compatibility between adjacent subswaths, offsets for
each subswath are computed using a weighted least squares formula to compensate for the
gamma distribution of backscatter.

We evaluate our method with three experiments. The first experiment evaluates the
performance of the proposed method within a simulated experiment on a selection of
RADARSAT-2 images. The second experiment evaluates the method on a selection of
Sentinel-1 images in both EW and IW mode, whose quantitative performance is determined
based on the characteristics of open-water in the images. The third experiment determines
the difference in radiometric bias compared to the default ESA method. Overall, the first
two experiments showed that the proposed method is able to substantially improve the
image quality under different conditions, particularly in its ability to correct for the non-
linear misfit in the images. The third experiment indicated that the proposed method
results in a different radiometric bias than the baseline ESA method. However, it is
unclear whether the radiometric bias change is an error, as there are some examples where
the ESA method loses significant features in images. Therefore, we recommend further
studies comparing known materials to the backscatter for calibration purposes.

3.2 Background

To understand the problem of estimating the noise floor, we first provide an abridged
overview of how the Sentinel-1 SAR platform operates in GRD mode, which records
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backscatter intensity and discards phase information. For a complete description, see [43].
The satellites emit radar pulses towards the surface of the planet and measure the varying
intensity of backscatter to construct images. The backscatter intensity depends on fac-
tors such as surface composition, incidence angle, and antenna radiation power. Ideally,
if an isotropic antenna were used, the antenna’s radiation power (P ) would be identical
in all relevant directions and thus would eliminate this variable for backscatter intensity.
However, due to the limits of manufacturing, the radiation pattern of Sentinel-1 antennas
are non-isotropic and vary depending on the look angle. To compensate for the varying
radiation pattern, the measured signals must be amplified differently according to the look
angle to ensure that the backscatter measurements are comparable throughout the image.
An impact of this amplification is that the thermal noise floor, which is the lowest possi-
ble measured signal caused by the sum of noise sources (e.g. within the circuitry of the
satellite) [24], is amplified differently according to look angle as well. This results in non-
stationary noise floor patterns throughout the images because regions that are acquired
with lower radiation power have an amplified noise floor with higher intensity and regions
that are acquired with higher radiation power have an amplified noise floor with lower
intensity. In Sentinel-1 this has been called additive noise or noise equivalent sigma zero
(NESZ) and is commonly associated with banding and scalloping patterns [53, 55].

The two Sentinel-1 modes this paper considers are extra wide (EW) and interferometric
wide (IW) modes, which have the option to produce GRD types of images. These sensor
modes use Terrain Observation with Progressive Scans SAR (TOPSAR) to scan surface
area in a compromise between resolution and surface area covered [59]. TOPSAR works
by breaking an area into different so called subswaths along the range. During orbit, it
measures all subswaths concurrently by sequentially emitting bursts rotated towards dif-
ferent elevation angles that correspond to the different subswaths. Due to the design of the
antenna, the radiation pattern is unique for each subswath. EW mode has five subswaths
and is typically applied to ocean regions with its first subswath, EW1, having a very high
magnitude noise floor with a multimodal pattern, while the remaining 4 subswaths, EW2,
EW3, EW4, and EW5 have U-shaped patterns. IW mode has three subswaths, IW1, IW2,
and IW3, all of which have U-shaped patterns. For both of these sensor modes, the later
subswaths will typically be created with higher radiation power than the earlier subswaths.
The unprocessed images have significant changes of intensity due to the varying noise floor.
The changes are particularly abrupt at boundaries between subswaths, since the radiation
patterns used are discontinuous due to the subswath merging. Fig. 3.1 shows examples
and the relationship between the estimated noise floor and the antenna radiation power.

The ESA provides noise-calibration XML files that estimate the noise floor, so that
subtracting the original image and the noise floor will result in a more consistent intensity
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Figure 3.1: Plots of the estimated noise floor (top) and the antenna radiation pattern
power (bottom) along the range direction for both EW and IW images (unit-less). Their
values show an inverse relationship. Both the ESA noise floor and antenna radiation power
values were derived from XML files from the Sentinel-1 products.

profile throughout the image. However, as shown in previous work [30], these estimations
have issues fitting to the images. While linear rescaling methods improve on this [30, 39], a
critical issue that remains is that there is non-linear mis-scaling within each subswath [30].
For instance, Fig. 3.2a shows an example where the ESA noise floor is clearly mis-fit in
a subswath. Linear rescaling will not fix this because one side of the subswath is under-
compensated, while the other is over-compensated.

The main observation that motivates our work is that the antenna pattern fits the
actual noise floor better than that provided by the ESA. In Fig. 3.2b, it can be seen that
on a log-log plot the antenna pattern matches the intensity measured over open-water
more consistently. The linear trend motivates the modelling of the noise floor as a power
function of the antenna radiation power.
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noise floor. Note that the left side of the subswath is over-compensated, while the right side is not.
This implies that there is no choice of linear scale will rescale the noise floor correctly because one
side of the subswath will always remain over- or under-compensated.
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(b) Figure showing a log-log plot comparing measurement intensity (ln(X)) to the antenna pattern
power (ln(P )) and the ESA noise floor (ln(Y ESA)) respectively. Notice that non-linear mis-fit of
the ESA noise floor shown in 3.2a is reflected by the radically different slopes in the log domain.
While the antenna pattern power graph also has two different slopes, their difference is less severe
and therefore better fit.

Figure 3.2: Non-linear mis-fit in a homogeneous section of EW4.
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3.3 Methods

Given our observations above, we wish to model noise floor as a power function of the
antenna radiation pattern

Y = ebPm + o, (3.1)

where Y is the estimated noise floor, P is the power of the antenna radiation pattern, and
m, b, and o are parameters that need to be estimated using the available data, from P
and measurements X, in each scene. These parameter serve different purposes. The power
function parameters, m and b, are used adapt to the overall shape of the noise-floor within
different sections of the subswath. The offset parameter, o, is used to correct for affine bias
that may occur between the subswaths. Values for P are derived from the antennaPattern
fields in the XML files that come with Sentinel-1 products, using the geoLocationGrid
lookup tables to convert elevation angles to range coordinates. Critically, the unit-less
values from antennaPattern were divided by an arbitrarily large number that was greater
than all pattern measurements (we chose e43.3) for numerical stability purposes. The
measurements, X, are taken from the image files in the product, with pixel values squared
to convert to intensity. [The model (3.1) differs significantly from other works because it
generates the shape of the noise floor from the antenna pattern itself and it is a non-linear
model.

As will be described in further detail below, the power function parameters, m and b,
and the offset parameter, o, are estimated in two different steps. Parameters m and b are
estimated in context of a geometric programming problem that is converted to a linear
program. The parameters m and b are estimated differently depending on the subswath,
a, and the division of the subswath along the range, s, that is based on where the local
minimum or maximum lies in P . The parameter o is estimated through a weighted least-
squares approach, with its objective being the reduction of intensity between adjacent
subswaths. This offset o is estimated on a per subswath basis. The parameters of each
power function are estimated by aggregating the values of measurements (X) and the
radiation power (P ) over all bursts (g ∈ a) within each range split (s ∈ a). The bursts
in TOPSAR correspond towards sections along the azimuth that are captured within a
radar pulse. In the unprocessed images the bursts are demarcated by a scalloping pattern
along the azimuth because the satellite’s antenna pattern also varies along the azimuth,
albeit with less magnitude than the range. A visual layout of the location of the subswaths
(a), range splits (s), and bursts (g), along with the location of relevant parameters can be
found in Fig. 3.3. A summary of the entire algorithm is given in Algorithm 1.
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Figure 3.3: Sections of an EW image divided by subswath, a (hatched), bursts, g (green),
and range divisions, s (light red). The parameter o is different for each subswath and the
parameters m and b are different for each range split, as labelled in gray braces.

49



Algorithm 1: Main procedure for noise floor estimation and subtraction in SAR
image.

1 for each subswath a ∈ A do

2 for each split s ∈ a do

3 Construct Ga,s by Algorithm 2 // Get data points for lin. prog.

4 Compute parameters m, b by solving (3.4) // Solve lin. prog.

/* With the base parameters solved, smooth out the function between

*/

/* range splits with linear interpolation for each subswath. */

5 for each split s ∈ a do

6 Determine parameter values between the adjacent range split using
Algorithm 3;

7 Compute X̃ within a and s by computing (3.5) // Compute the partial

denoised result

8 Compute o by solving (3.6);
9 Compute noise floor (3.1) and denoise by computing X − Y ;

3.3.1 Power function

The idea behind estimating the parameters of the power function is that the model should
act as a tight lower bound on the measurements (X). To this end, the problem is shaped
into the following geometric program

max
m,b

ebΓm(P,X)

such that ebPm
i ≤ Xi,

(3.2)

with the assumption that P and X vary along the range, with Pi and Xi being observed
pairs of radiation power and measurement points from the data. The intuition behind
using constrained optimization to estimate the parameters is that the noise floor has the
fundamental property of being the minimum measurable signal. Constrained optimiza-
tion offers a way to find a lower bound of the noise floor function based on the observed
measurements. To this end, the inequality constraints ensure that the parameters m, b
that are estimated result in (3.1) being a lower bound of the measurements (X). From a
typical optimization perspective, the objective function may seem unusual, as one would
typically attempt to choose m, b to minimize the distance between measured points and
the power function. However, in our case we want to specify tightness to the lower bound
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of points; minimizing the difference between points would be counter productive because
the backscatter intensity interfere with this estimation. Therefore, the objective function
ebΓm(P,X) is used to maximize the position along a moment of the curve, and allowing
the inequality constraints to bound it underneath the measurements. The scalar Γ(P,X)
is chosen to utilize all available pairs of points (P and X) to arrive at an appropriate
moment, which we abstain from defining until we convert (3.2) into a linear program.

The approach of applying log transformations to geometric programs is a prominent
strategy in geometric programming in order to make original problem easier to solve [14].
The special case of the power function is convenient as it transforms directly to a linear
function

ln(ebPm) ≡ m ln(P ) + b ≡ mp+ b. (3.3)

Given our observations in Section 3.2 pertaining to the linearity of the true noise floor in
the log-log domain, it is logical to transform the objective function to be a linear func-
tion. Optimizing parameters of a linear objective function with respect to a set of linear
inequalities is the definition of a linear program [9]. This is convenient as linear programs
are a well known class of problems with many applicable algorithms available for use.

Returning the topic of the linearity of true log noise floor, one may wonder why the
typical least squares regression for computing lines of best fit is not used. As we expect
the noise floor to be the lower bound of intensity values, we require a line that fits to the
lower extremity of the points, rather than where the points lay on average. Therefore least
squares regression would not estimate a lower bound that is required in order to be an
estimated noise floor.

We aim to model several different functions contingent to the different subswaths (a)
and range splits (s) discussed above. We observe that on open-water regions the linear
trend changes slope at different range sections of the subswath, which we call range splits.
These changes appear at local minimum and maximum of the radiation pattern power. An
example of this is shown in Fig. 3.4. Therefore, separate power functions are modelled for
every range split s in each subswath a.
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Figure 3.4: Top figures show the range splits, based on the local-minima and local-maxima
of the antenna pattern, corresponding to measurements in the real domain. Bottom plots
show log-log graphs of the antenna pattern versus the measured intensity. The range splits
are divided in terms of colour, clearly showing that there is a linear trend that changes
each time a local min/local max is passed.

The aim for the parameter estimation problem is to tightly fit the power function to
the true noise floor as it varies along the range. To use the measurements for parameter
estimation, several preprocessing steps are needed. As we aim to model separate power
functions for every range split s, we require a method to obtain potential points of the true
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noise floor throughout s from which to estimate the power function parameters. We denote
this set of points as Ga,s, by extracting pairs of log transformed antenna pattern values and
measurements (pi, xi) over all bursts within a and s. The overall process of constructing
Ga,s is given in Algorithm 2. The method involves extracting indices that cover the overlap
between burst g and slice s ∈ a, and gathering the average measurements along the range.
Further processing is done in the form of convolution with a boxcar filter of size 51 (to
remove outliers). The minimum value produced by the ESA noise floor removal method
within each burst is subtracted so that bursts with higher backscatter can still contribute
to the lower bound that is used to shape the parameter estimation.

Algorithm 2: Construct Ga,s

1 Let Ga,s = {};
2 Let B be the baseline noise floor from the ESA method;
3 for each burst g ∈ a do

4 Let z be the range and azimuth indices in g ∩ s;
5 Let κ be the range indices in g ∩ s;
6 Let X̄ = mean reduction of X(z) along azimuth axis; // reduce to 1D array

along range

7 Let ESA = mean reduction of X(z)− B(z) along azimuth axis; // Get

equivalent signal computed by the ESA method

8 Let T = X̄ ∗ boxcar(51); // Smooth array with low pass filter

9 Let Q = T−min(ESA); // Subtract the minimum ESA value, so that Q

is closer to the true noise floor

10 Update Ga,s =⇒ Ga,s ∪ (ln(Q),P(κ)); // Concatenate points

The linear program takes the form of

max
m,b

γm+ b

such that mpi + b ≤ xi ∀ (xi, pi) ∈ Ga,s,

m ≤ −0.75, and m ≥ −1.25,

(3.4)

where m and b are optimization parameters, (xi, pi) are pairs of points obtained by Algo-
rithm 2, and γ is the objective variable. Again, note that different versions of m, b, and
γ are created for every pair of subswath a and split s, but are not annotated differently
in the formulas for visual clarity. As mentioned previously, by estimating parameters m
and b in a linear function mp + b in log space is equivalent to ebPm, which is part of the
proposed model of the noise floor.
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Because the noise floor is the lower bound signal, linear constraints mpi + b ≤ xi are
set, indicating that the noise floor estimate cannot exceed the signal measurements. We
also found it beneficial to add additional inequalities m ≤ −0.75 and m ≥ −1.25, since
occasionally the program would result in extreme slope values that were inappropriate.

The objective γm+b is designed to promote a line that is close to the constraining points
as possible. If one ignores the m ≤ −0.75 and m ≥ −1.25 constraints, mathematically
the choice of γ must be between min(p) and max(p) or else the linear program would be
unbounded and no feasible solution exists (see proof in appendix). More intuitively, γ could
be thought of the factor controlling where the line should be most tight to the constraining
points. For example, if γ is chosen as max(p) then the resulting line will be tight for points
close to max(p), but looser for points close to min(p), and vice versa. Thus, a choice of γ
should be chosen so that the resulting line is suitable for as many points as possible. While a
n̈ıave choice of γ would be the mid point of {pi ∈ Ga,s}, this would cause a bias towards lower
values due to the logarithmic transformation. To account for this, an unbiased value of γ is
determined by selecting the associated points {(xmin(p),min(p)), (xmax(p),max(p))} ∈ Ga,s

in order to compute the midpoint v = ln(
exp(xmin(p))+exp(xmax(p))

2
). The percentage scaling is

put back into the log scale as α =
v−xmin(p)

xmax(p)−xmin(p)
. Finally, γ = max(p)−α(max(p)−min(p)).

Since (3.4) and all its requisite terms have been determined, there are no further major
steps for estimation, as the desired parameters m and b can be easily determined by using
off-the-shelf solvers. We implemented the problem by using the cvxpy library[4, 13] with
the splitting conic solver [37, 38] to solve for the parameters. This process is repeated for
each division of subswaths independently. For reference, Fig. 3.5 shows an example of the
bounding line estimated from (3.4) aggregated over a series of non-homogeneous series of
bursts.
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Figure 3.5: Example of the bounding line estimated from the linear program using data
points from aggregated non-homogeneous bursts in a range split. The processed log mea-
surements, xi, in blue are bounded by the dashed orange line, mpi + b, so that all xi are
above this line.

One final consideration is the transition between different range splits. Due to the
simplicity of the parameter estimation model, there is no guarantee that the linear functions
estimated at range splits will intercept close to the measured points. If uncompensated,
this can result in discontinuities in the estimated noise-floor between adjacent range splits.
To compensate for this, m and b are transitioned between range splits by means of linear
interpolation between a boundary gap. This process is detailed in Algorithm 3. At this
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stage, we denote the partial corrected result as

X̃ = X − ebPmYazimuth, (3.5)

with Yazimuth being the azimuth noise vector taken from the ESA noise-calibration XML
files. Fig. 3.6 provides a visual example of how the parameters estimated in the log domain
of each range split are mapped to the real domain.

Algorithm 3: Smoothness interpolation of m and b between different range splits.

1 Let s0 and s1 be range splits in subswath a;
2 Let parameters m0,m1 and b0, b1 be associated with s0 and s1;
3 Let u = [u0, u1] ∈ Z be the discrete range indices dividing s0 and s1;
4 m(i) = (1− i

u1−u0
)m0 +

i
u1−u0

(m1 −m0) for i ∈ u;

5 b(i) = (1− i
u1−u0

)b0 +
i

u1−u0
(b1 − b0) for i ∈ u;

Figure 3.6: Association of how the log parameters are mapped to the real domain as the
partial estimated noise floor. The figure shows the four range splits in subswath EW1
over a region of open-water. The left graph shows the measurements (solid) and estimated
linear function (dashed) in the log domain. After exponentiation and reordering to range
indicies, the right graph shows

3.3.2 Subswath offsets

While we found that the power function would be effective at estimating the noise floor
within subswaths, an issue remains in that the overall intensity between subswaths remains
imbalanced from applying (3.5). To compensate, offsets are computed for each subswath
using a weighted least-squares approach. The core of the problem is to choose a vector of
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offset values o so that the difference between values in adjacent subswaths is minimized.
Specifically, this takes the form

min
o






∑

a∈A−max(A)

∑

g∈a

wg(l(X̃, a, g) + oa − (r(X̃, a, g) + oa+1))
2




+
∑

a∈A

λ(oa)
2

)
,

(3.6)

where we take l(X̃, a, g) as the average of the 30 rightmost pixels of subswath a along the

azimuth lines in g, , r(X̃, a, g) as the average of the 30 leftmost pixels of subswath a + 1
along the azimuth lines in g, wg is a burst specific weight, and A is the set of subswaths in
the image. In the first summation the last subswath is skipped, since there are only N-1
borders among N subswaths.

The selection of weights is based off of the statistical distribution of SAR backscatter.
SAR backscatter is distributed by the gamma distribution [7], whose variance scales with
the mean of the random variables. This means that regions with higher backscatter are less
reliable for estimating o than regions of lower backscatter and will cause poor estimations.
The variance of a gamma random variable is E2(X)/L [60], where E(X) and L are the
expectation of X and the shape parameter respectively (i.e. the number of looks). We
incorporate this knowledge by selecting the weights to be the inverse of the variance of the
subtraction of two gamma random variables

wg =
L

l2(X, a, g) + r2(X, a, g)
. (3.7)

The regularization term
∑

a λ(oa)
2 is added to ensure that the system remains well-posed.

Solving (3.6) is determined by solving a linear system [9].

3.4 Experiments

We implement three experiments to evaluate the impact of Algorithm 1, which we call the
Proposed method. The first two experiments are adapted from previous work [30] that
aim to evaluate and compare the quality of the different correctional methods. The first
experiment is a simulation experiment that takes 21 RADARSAT-2 images and adds an
artificial noise floor by adding (3.1). The second evaluates the appearance on Sentinel-1
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images, measuring improvement quantitatively by the calculating the error of the measure-
ments with respect to a linear regression over open-water regions, assuming that the ideal
intensity over these regions is flat. The third experiment aims to analyze the change in
radiometric bias that is incurred by the Proposed method on Sentinel-1 images. Where
possible, we make comparisons of the Proposed method to the unmodified images, the noise
floor provided by ESA, which we call the ESA method, and the method from [30], which
we refer to as the Previous method. However, the method from [30] was only implemented
for EW images, so it was excluded for analysis concerning IW images. Note for display
purposes the amplitude, the square root of intensity, is used to display the images.

3.4.1 RADARSAT-2: Simulation

The goal of the simulation experiment is to investigate the ability to re-estimate parameters
of an artificially applied noise floor, where the ground truth clean image is known. We follow
the approach from our previous work [30], where we selected 21 RADARSAT-2 images over
the Beaufort sea and subsequently generate and synthesize a noise floor through the power
function model (3.1). We selected a template EW image 1 and a template IW image2 with
similar characteristics of the RADARSAT-2 images for which to model the noise floors and
intensity values.

There are several key differences in this simulation experiment compared to our previous
work. First, we ran this set of experiments using both EW and IW noise floor profiles.
Second, the noise floor was simulated using the power function model, rather than the
noise floor originally provided by the ESA. Third, instead of selecting scaling parameters
by sampling random distributions as we did in [30], we took a more conservative approach.
While the previous model only had one parameter to estimate per subswath, the power
function model has many more parameters. Randomly selecting parameters in the power
function model can generate unrealistic noise floors. Instead, we found it necessary to reuse
parameters that were estimated by from the experiment in Section 3.4.2.

Before simulating the noise on the RADARSAT-2 images, several image transformation
steps were carried out to ensure that the intensity values for the RADARSAT-2 image
and the Sentinel-1 image were similar. First, the pixels in the RADARSAT-2 image were
squared to convert to intensity and spatially linearly interpolated to be the same size as the
template. A lookup table was created to map the percentiles of the recorded intensities
over all of the RADARSAT-2 images in 0.1% increments. A second lookup table was
created to map the percentiles of the intensities for the template Sentinel-1 image after it

1
S1B EW GRDM 1SDH 20200112T051555 20200112T051655 019779 02565A 2451

2
S1B IW GRDH 1SDV 20200111T232801 20200111T232836 019776 025644 396F
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was corrected by the Proposed method. These two mappings were then applied to map
the RADARSAT-2 intensities to the template Sentinel-1 image.

After the image transformation steps, the simulated noise floor was added onto the
image using the selected parameters. As in previous work [30], we used the metrics of
Structural Similarity Index (SSIM) [54], Normalized mean squared error (NRMSE), and
Peak Signal to Noise Ratio (PSNR) to compare the freshly denoised images to the ground
truth results. There were up to four different methods that would be compared, the
unprocessed noisy image, the default ESA method, the Proposed method, and optionally
the method from [30] for the EW template image.

A sample of the visual results of the simulation are shown in Fig. 3.7 (EW), Fig. 3.8
(IW), and Fig. 3.9. Many of the images, such as Figs. 3.7 and 3.8 show positive results,
however there were a few instances, like in Fig. 3.9 where the end result was less successful.
The overall metrics are shown in Table 3.1 for both EW and IW cases. In terms of statistics,
one-tailed Wilcoxon tests with a threshold of 0.05 were applied for each metric to determine
if the Proposed method was significantly better than the other methods, due to the non-
normal distribution of residuals. Overall, the Proposed method had better image quality
than the original unprocessed image, the ESA method, and the Previous method in terms
of the metrics. The improvement was within significant levels except for the Previous
method in terms of SSIM for the EW case and PSNR for the ESA method for the IW case.

Table 3.1: Quality metric comparisons for simulation experiment. P-values are taken from
a one-tailed Wilcoxon test, comparing the metrics to the Proposed method. Bold p-values
indicate significance and non-bold indicates non-significance at a threshold of 0.05.

Method NRMSE P-value PSNR P-value SSIM P-value
EW

Original 3.49 ×10−1 2.98× 10−5 19.92 2.98× 10−5 0.43 2.98× 10−5

ESA 6.73 ×10−2 2.98× 10−5 28.68 2.98× 10−5 0.79 1.85× 10−3

Previous [30] 1.88 ×10−2 4.51× 10−4 37.82 3.09× 10−4 0.91 3.58× 10−1

Proposed 5.52 ×10−3 N/A 45.21 N/A 0.94 N/A
IW

Original 4.61 ×10−1 2.98× 10−5 13.15 2.98× 10−5 0.32 2.98× 10−5

ESA 3.63 ×10−2 1.49× 10−2 29.51 1.29× 10−1 0.87 3.18× 10−3

Proposed 3.11 ×10−2 N/A 30.50 N/A 0.90 N/A
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(a) Noisy (b) ESA (c) Previous [30] (d) Proposed (e) Clean

Figure 3.7: Simulated EW correction comparison. Visually the Proposed method is able
to remove the sharp discontinuities between subswaths.

(a) Noisy (b) ESA (c) Proposed (d) Clean

Figure 3.8: Simulated IW correction comparison. The Proposed method produces cleaner
results, albeit still with some distortion at the subswath boundaries. Again, note that no
comparison was made to the Previous method due to it not being implemented for IW
images.

(a) Noisy (b) ESA (c) Proposed (d) Clean

Figure 3.9: Example of scene where the Proposed method is less successful. Although the
transitions between subswaths are continuous, the first range split in IW1 is not estimated
correctly.
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3.4.2 Sentinel-1: Appearance

To evaluate our method, samples of 40 EW and 18 IW Sentinel-1 images, with IPF version
3.1 or above, were selected to compare the Proposed method to the baseline methods. For
EW images, we attempted to select a sample from all five oceans. The selection of IW
images was less diverse, as IW mode is not specialized towards ocean regions. Thus, the
IW images were selected from a select few coastal regions in the Pacific Ocean and Hudson
Bay. Some examples of these EW and IW images are shown in Figs. 3.10, 3.11, and 3.12,
which show the visual difference between the Proposed method and the baseline methods.

Due to the unavailability of a ground truth image without noise, we could not evaluate
the effectiveness of the method using conventional pixel difference measures. A charac-
teristic we exploited for our analysis is the appearance of open-water. Due to the low
backscatter coefficient of calm water [48], one should expect that a region of calm water
would have a relatively flat intensity profile. We then expected that significant variation
along the range is a result of the changing noise floor. So if a noise floor removal method
has significant variance along a region of open-water, we assume that this is the result of
uncompensated noise-floor.

To accommodate this strategy, we selected rectangular regions from the 40 EW and
18 IW images spanning the range of the image that we deemed to be open-water through
visual inspection. The mean was computed along the azimuth of each rectangular regions
so that points of measurements along the range were generated for each rectangle. This
vector was also convolved with boxcar filter of size 151 for the values in each subswath,
using valid padding, in order to remove the outliers and isolate the overall intensity changes.

The quantitative measure was derived by computing the normalized root mean squared
error (NRMSE) of the processed points, as mentioned above, with respect to a best fit linear
regression, for each method. These results are summarized in Table 3.2. Due to the non-
normal distribution of the residuals, one-tailed Wilcoxon non-parametric tests were used to
test the significance of the NRMSE difference between the Proposed method and the other
baseline methods. For EW, the Proposed method had statistically lower NRMSE than
the unmodified image, the images produced using the default ESA noise floor, and those
modified by using the Previous method. The Proposed method also had a significantly
lower median for IW images, albeit the magnitude of improvement was less. While we saw
an overall improvement, the magnitude of improvement varied for each image.
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Origin Original ESA Previous Proposed

Arctic
81.7◦N,
83.0◦E
2019-09-
11

Arctic
83.9◦N,
70.9◦E
2019-08-
23

Arctic
82.7◦N,
96.8◦E
2019-07-
17

Antarctic
63.5◦S,
51.1◦E
2020-01-
05

Antarctic
64.2◦S,
15.7◦W
2020-01-
12

Antarctic
66.7◦S,
6.1◦E
2019-12-
24

Figure 3.10: Comparison of Sentinel-1 EW images part 1. Coordinates coorespond to the center.
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Origin Original ESA Previous Proposed

Atlantic
42.3◦N,
34.9◦W
2019-10-
17

Pacific
16.6◦N,
116.6◦W
2019-09-
04

Pacific
17.4◦N,
120.8◦W
2019-09-
05

Indian
15.0◦S,
54.8◦E
2019-10-
08

Indian
14.9◦S,
55.6◦E
2019-10-
07

Figure 3.11: Comparison of Sentinel-1 EW images part 2.
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Origin Original ESA Proposed

Hudson
Bay
58.1◦N,
86.7◦W
2020-01-
11

Hudson
Bay
58.1◦N,
86.7◦W
2019-09-
25

Figure 3.12: Comparison of Sentinel-1 IW images captured within the Hudson Bay.
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Table 3.2: NRMSE values in experiment comparison for range regression over open water.
Results are listed for both EW (N=40) and IW (N=18) images as indicated. The listed
p-value is derived through a one-tailed Wilcoxon test to determine if the proposed method
has a lower NRMSE than the other methods.

Method Median NRMSE P-value (Wilcoxon)
EW (N=40)

Original 2.87 ×102 1.78 ×10−8 X

ESA 3.75 ×100 5.92 ×10−8 X

Previous [30] 3.20 ×100 1.88 ×10−6 X

Proposed 1.07 ×100 N/A
IW (N=18)

Original 2.04 ×101 9.82 ×10−5 X

ESA 9.10 ×10−1 3.21 ×10−2 X

Proposed 3.83 ×10−1 N/A

3.4.3 Sentinel-1: Intensity bias

One consideration to be aware of when designing noise floors is the effect of the overall
intensity among subswaths after subtraction. A potential undesired outcome from modi-
fying noise floors is raising or lowering the overall intensity of the SAR images so that the
backscatter intensity does not match the expected intensity of a physical ground target,
so that there is a bias of intensity away from expected radar cross section. Consequently,
this experiment aims to evaluate how the total intensity varies in subswaths for between
the Proposed and ESA correction methods. This is done by directly comparing the overall
intensity in each subswath between the methods through paired differences.

The data used in this experiment is essentially the same as the previous experiment,
but instead of attempting to measure the quality of the images, we measure overall change
in bias. For each corrected image, the mean intensity measurements were computed for
each subswath. Thus, a vector of size 40 (EW) or 18 (IW) was made for each subswath
and each of the two correction methods.

The change in bias was evaluated on a subswath-wise manner so that the paired differ-
ences were taken between the two correction method for each subswath. The significance
of its difference vector was evaluated using a two-tailed paired t-test, with the implied
null hypothesis being that the mean intensity for the subswath is the same for the two
methods. Ultimately, all intensities showed the means were significantly different, save for

65
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(b) IW original
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(c) EW regression
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(d) IW regression

Figure 3.13: Top figures show zones of open water that are pre-selected in red. Bottom
figures showing the regression along the range over sections of open-water. The Proposed
method (blue), is compared to the ESA method (red) and the Previous method from
[30] (green). In these examples, the ESA method and Previous method have noticeable
discontinuities at the start and end of each subswath, something that the Proposed method
is able to compensate.
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Table 3.3: Average intensity values of different subswaths for ESA and Proposed. The
percentage of the original measurement is also recorded below for reference. P-values from
paired two-tailed t-test are recorded comparing the distribution of intensities between
the ESA and Proposed. For reference, the percentage is reported under the values to
indicate the average ratio of the final intensity with respect to the original unprocessed
measurements (i.e. the noisy image).

Subswath ESA Proposed P-value (t-test)

EW1
862 1124

4.36 ×10−2 X
8.74% 11.39%

EW2
988 1166

3.69 ×10−4 X
27.50% 32.46%

EW3
1006 1127

1.32 ×10−3 X
34.01% 38.12%

EW4
1123 1074

3.72 ×10−1 ✗
50.37% 48.15%

EW5
1049 968

3.41 ×10−1 ✗
52.82% 48.78%

IW1
455 441

4.67 ×10−1 ✗
26.36% 25.51%

IW2
216 192

1.17 ×10−2 X
24.04% 21.33%

IW3
297 256

1.10 ×10−3 X
41.15% 35.45%

EW4, EW5, and IW1. These results are shown in Table 3.3. Overall, this indicates that
there is a significant difference in radiometric bias between the results of the two methods.

3.5 Discussion

Within the experiments, there is significant evidence that the Proposed method is able
to accomplish the goal for compensating for non-linear mis-shape in the noise floor. The
first two experiments directly support the ability of the Proposed method to improve
image quality. While the third experiment indicates that there is a significant difference in
radiometric calibration, we describe the implications of this in more detail below. We also
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discuss some other important details regarding parameter estimation and other factors on
the observed intensity.

The results from the simulation experiment also indicate that the Proposed method
is able to result in a better quality images than the alternatives under the assumptions
of the simulation pipeline. The three metrics generally support the effectiveness of the
Proposed method over the baseline methods. Statistically, the metrics showed significant
improvement except for the PSNR metric in EW and the SSIM metric in IW. There
were some examples however, as shown in Fig. 3.9, where the Proposed method was less
successful. This highlights a key assumption made by the Proposed method of there being
sufficient critical points along the line mp+ b that best fits the true noise floor. If there are
not sufficient points, then the parameters may estimate in a less successful manner, which
typically occurs when m is tightly fit to the constraints of m ≥ −0.75 or m ≤ −1.25. For
example in Fig. 3.9, m = −1.25 for the rightmost range split of IW1, where the result is
most divergent from the ground truth.

The images generated in the second experiment such as in Figures 3.10, 3.11, and 3.12
show that the Proposed method is able to compensate for the noise floor in both EW
and IW images. Visually, there was a large improvement in image quality induced by the
Proposed method over the other methods, which was particularly evident by the smooth
transitions between subswaths. To this end, this demonstrates visual evidence that the non-
linear mis-fit is compensated effectively. Quantitatively, the range regression over open-
water provides strong evidence that the Proposed method can estimate more accurate noise
floors than the alternative methods. The Proposed method had significant improvement of
normalized mean squared error with respect to the regression along the range. Specifically
for EW images, the improvement is of high impact and is successful in normalizing the
intensity changes. For IW images, there was still significant improvement, albeit with less
impact due to the higher signal-to-noise floor-ratios from the sensor mode. In terms of the
types of surfaces captured in IW images, noise floor compensation towards land surfaces is
less necessary since the measurements are dominated by backscatter intensity. Instead, the
method shows more promise towards IW images containing water or ice, and thus could
be useful towards supporting remote sensing applications over inland water or ice.

The main result from the third experiment is that there is a difference in overall in-
tensity between the Proposed method and the ESA method. This implies that there is
a significant difference in radiometric bias; an important factor depending on the remote
sensing application. Whether this is a adverse change in radiometric bias is not clear. For
example, Fig. 3.14 shows that the ESA method results in sections of the ice formation
being removed because the output results intensity values below zero. In contrast, the
Proposed method produces a suitable noise floor where the ice features can be seen fully.
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(a) ESA (b) Proposed

Figure 3.14: Close up example comparing ESA and Proposed denoised examples extracted
from the image in 64.2◦S,15.7◦W, 2020-01-12, as seen in Fig. 3.10. Notice that the ESA
method loses ice features due to the noise floor being too high at the subswath transition,
thus losing important features.

In this case, the ESA method is clearly mis-calibrated because significant features are lost,
which suggests that the ESA method may not be an ideal ground truth for radiometric
calibration. Consequently, depending on application one must be mindful of these changes
in intensity bias. It should be noted that while the change is significant, the total change
between the methods relative to the original measurements is usually only a few percent-
ages for each subswath, so if an application is specifically adapted for ESA method, then
it could probably be adapted for the Proposed method with few changes.

In terms of parameter estimation, Fig. 3.15 summarizes the parameters m, b, and o
estimated for the Sentinel-1 experiment. An interesting observation is the correlation be-
tween m and b is extremely high, with coefficients of 0.9778 for EW and 0.9777 for IW.
The plot shows that each parameter estimated is not independent, with each parameter
having a clear centre. However, the spread of estimates is still quite large. Fig. 3.16 like-
wise shows the spread of parameters for the simulation experiment. The same correlation
between m and b is clear, with coefficients of 0.9925 for EW and 0.9961 for IW. Compared
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Figure 3.15: Spread of parameter estimates for the experiment on Sentinel-1 images for m
(top), b (middle), and o (bottom). The boxplots are marked by their range split on the
horizontal axis and divided into their respective subswaths by the gray vertical lines.

to Fig. 3.15, the spread of the estimates in the simulation experiment is much smaller.
Indeed for the simulation experiment the sum of standard deviations was 0.6962 for EW
and 0.2388 for IW while for the Sentinel-1 experiment it was 1.077 for EW and 0.3787
for IW. This is an important observation that supports the importance of estimating new
parameters for every scene because if the ideal parameters were the same for each scene the
spread of both of the experiments would be more similar. Specifically for the simulation
experiment, the parameter estimates appear to be centred around the ground truth for the
EW case, especially in lower SNR subswaths (e.g. EW1), with estimates becoming more
divergent with later subswaths with higher SNR (e.g. EW5). The estimates also showed
divergence for the IW case in later subswaths. An explanation for the divergence may be
due to the over-determined nature of the model. This is especially true for subswaths with
a lower magnitude relative noise floor, where the curvature of P is less severe. Depending
on the magnitude and shape of X and P , different combinations of parameters can result
in similar results.

Another factor to consider is that the total intensity of individual bursts in a subswath
can differ due to non-local targets. Fig. 3.17 shows two examples where the intensity from
high backscatter targets bleeds over into low intensity targets within the burst, thereby
causing discontinuity between adjacent bursts. The cause for this likely lies in the signal
processing pipeline, where the observed signal components of the backscatter radiation
within the range of the subswath is transformed into the spatial intensity seen within the
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Figure 3.16: Spread of parameter estimates for the experiment on RADARSAT-2 images.
The ground truth parameters used to generate the noise floor is marked by the horizontal
dashed green lines. All remaining conventions are the same as Fig. 3.15.

image. This cannot be compensated by the current Proposed method because it assumes
that the noise floor should be calibrated in the same way for each burst throughout the
entire subswath. Correcting this on the image processing side would require estimating
parameters for each specific burst. However, this would be difficult to accomplish due to
the limited amount of data in a single burst needed to produce estimates.

A final consideration regarding image quality is the compensation for speckle. While
directly out of scope for this manuscript, it is worth mentioning its impact on the images.
Speckle in SAR is typically modelled with the Gamma distribution [7] and is described as
multiplicative noise, where its variance increases with respect to the original signal. As a
result, even when the noise floor is subtracted the increased variance remains in regions
where the noise floor was higher. If one were to combine a despeckling approach with our
method, they must bear in mind that the statistics of speckle are still linked to that of the
original measurements.

3.6 Conclusion

In this manuscript we proposed a new model for estimating the noise floor in Sentinel-1
GRD intensity images in order to account for non-linear mis-fit of the default noise floor
estimation that other methods in the literature cannot compensate for. The model con-
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Figure 3.17: Example of an IW image where high intensity targets bleed over into other
targets within the burst. This causes discontinuity between adjacent bursts, as indicated
by the burst division (red line). The division between subswaths (blue line) is identified
for reference.

siders the noise floor to be an power function of the radiation pattern power. We observed
that different trends occur at different sections of each subswath and therefore estimate
multiple power functions per subswath. Through log transformation the problem of esti-
mating parameters for the power functions is relaxed to a linear programming problem. To
account for affine imbalance between subswaths, subswath-wise offsets are computed using
a weighted least squares approach, making the entire estimation a convex optimization
problem. The method was overall successful in estimating the noise floor in both Sentinel-
1 images and simulated images. While there is a change in radiometric bias, compared to
the baseline method provided by the ESA, the impact of this will depend on the remote
sensing application.

Appendix

Claim. Linear program (3.4), without the constraints m ≤ −0.75, and m ≥ −1.25, is
unbounded for γ > max(p), γ < min(p), and γ < 0.

Proof. Assume that log antenna power vectors p < 0 and log measurement vectors x > 0.
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For the linear program to be unbounded, then for

γm+ b ≥ t, t ∈ R
+

=⇒ m ≤
t− b

γ

(3.8)

there exists a feasible choice of m and b. Given the inequalities

mpi + b ≤ xi

=⇒ m ≥
xi − b

pi

(3.9)

then there are feasible values of m ∈ [xi−b
pi

, t−b
γ
].

Case 1: γ > max(p)
Let γ = max(p)+ǫ, ǫ > 0. Thenm ∈ [xi−b

pi
, t−b
max(p)+ǫ

], which is non-empty if xi−b
pi

≤ t−b
max(p)+ǫ

.
For this to be true, b must be chosen to satisfy the constraints

(xi − b)(max(p) + ǫ) ≤ (t− b)pi

⇐⇒ xi(max(p) + ǫ)− tpi ≤ b(max(p)− pi + ǫ)

⇐⇒ − xi(|max(p) + ǫ|) + t|pi| ≤ b(|max(p)− pi + ǫ|)

⇐⇒
−xi(|max(p) + ǫ|) + t|pi|

|max(p)− pi + ǫ|
≤ b ∀ i

(3.10)

because (max(p) − pi + ǫ) > 0. Then b has a lower bound value that will satisfy all
constraints as

Ω(b) = max
i

(
−xi(|max(p) + ǫ|) + t|pi|

|max(p)− pi + ǫ|

)
(3.11)

Therefore there exists m, b for any positive t and is thus unbounded for γ > max(p).

Case 2: γ < min(p).
Let γ = min(p) − ǫ, ǫ < 0 By similar logic m ∈ [xi−b

pi
, t−b
min(p)−ǫ

], which is non-empty if
xi−b
pi

≤ t−b
min(p)−ǫ

. Non-emptiness is true if b is chosen to satisfy

(xi − b)(min(p)− ǫ) ≤ (t− b)pi

⇐⇒ xi(min(p)− ǫ)− tpi ≤ b(min(p)− pi − ǫ)

⇐⇒ − xi(|min(p)− ǫ|) + t|pi| ≤ −b(|min(p)− pi − ǫ|)

⇐⇒
−xi|min(p)− ǫ|+ t|pi|

−|min(p)− pi − ǫ|
≥ b ∀ i

(3.12)
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because (min(p) − pi − ǫ) < 0. Then b has an upper bound value that will satisfy all
constraints as:

O(b) = max
i

(
−xi|min(p)− ǫ|+ t|pi|

−|min(p)− pi − ǫ|

)
(3.13)

Therefore there exists m, b for any positive t and is thus unbounded for γ < min(p).
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Chapter 4

Conclusion

In summary, the subtraction of noise floor is a critical preprocessing step for Sentinel-1
image analysis. Uncorrected, the noise floor intensity patterns distract from the desired
backscatter intensity of the ground targets and make comparisons throughout the image
more difficult. In Chapter 2, it was identified that the noise floor estimations provided by
the ESA were severely miscalibrated for versions of the IPF below 3.1. To compensate, a
method of dynamically estimating linear scaling parameters for each subswath was devel-
oped, resulting in significant improvement in EW images. The method was validated with
experiments that gauged the image quality on images with added simulated noise floors
and on real Sentinel-1 EW images over open-water regions, showing significant improve-
ment over the baseline noise floors provided by the ESA. This method, however, assumes
that the noise floor is mis-fit in a linear manner, which evidently is not always true, even
for IPF versions 3.1 or above. In Chapter 3 these problems are addressed by assuming
a noise floor model as a power function of the antenna radiation pattern power. This
method showed significant improvement at compensating for the non-linear misfit within a
simulation experiment and an experiment on Sentinel-1 images. Ultimately, the method in
Chapter 3 is an improvement over the method in Chapter 2 through its ability to deal with
the non-linear mis-fit of the ESA noise floor estimation. Both works have limitations within
the methods and the analysis that motivate the following directions for future work.
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4.1 Future work

While the appearance of the images have been improved by the two works, there are still
various avenues for future work. The first avenue is a more thorough evaluation of the
impact on radiometric calibration and on specific remote sensing tasks. The second is
applying the proposed methods to other SAR acquisition modes or platforms. The third,
which is particularly relevant to the work in Chapter 3, is improving the model to ensure
robust parameter estimation.

In terms of radiometric calibration, there are still several questions that need to be
resolved. While in Chapter 3 it was established that there was a difference in radiometric
bias compared to the baseline, it was not clear whether this was a negative change (see
Section 3.5). Some very relevant work done by [48] produced an insightful analysis on
the calibration of Sentinel-1 by performing experiments that compared the backscatter
measurements in images to targets with known radar cross section values and determined
scenarios where the measurements had bias. It would be interesting to extend a similar
study to the images corrected by the proposed methods to determine the scenarios that have
been improved upon and the scenarios that still require improvement. As the number of
applicable tasks that utilize SAR are vast, the sensitivity towards radiometric calibration
will vary between different tasks. Therefore, a related area for future work would be
determining what actions are required, if any, in order to adapt the new intensity values
to different remote sensing tasks.

Although the main datasets used in the presented works were specific modes of Sentinel-
1, these methods could be conceivably adjusted to other SAR platforms. However, there
are some requirements in order for this to be feasible or necessary. To be feasible, either a
noise floor estimate or a radiation pattern must be known to apply either the methods in
Chapter 2 or Chapter 3 respectively. To be necessary, the images must have a discernible
noise floor (meaning that the signal to noise ratio must be low enough to warrant atten-
tion) and it must vary significantly throughout the acquired image. It would likely be
unnecessary to apply the methods to image modes with low changes in elevation angles,
like Stripmap mode, because the radiation pattern will not vary as significantly over the
captured area. Thus, it would be less necessary to apply advanced noise floor estimation
methods when the noise floor is stationary throughout the image. Indeed, the primary
candidate of SAR images that require compensation are those that capture wide and mul-
tiple subswaths, because this inevitably causes large changes in radiation pattern strength
due to the physical limitations of the antennas.

One avenue of future research that is particularly relevant to the method in Chapter 3
is finding ways to ensure that the estimation of parameters is robust. As mentioned in
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Section 3.5, the model in the third chapter is over-determined, meaning that there could be
multiple solutions that result in a similar final result for each individual optimization prob-
lem. The issue is that there is no communication between the individual linear programs,
which can occasionally result in undesired results like those in Figure 3.9 in Chapter 3.
Therefore, a possible avenue of improvement could be implementing regularization meth-
ods for the optimization problem so that the estimation of each power function parameter
is cognizant of those in adjacent range splits. Of course, this comes with added complexity
and it is not clear if the simple linear programming approach could be extended to accom-
modate. Over-determination is not so much an issue with the method in Chapter 2 because
of the lower number of parameters and the fact that there are constraints built directly into
the objective function to ensure compatibility between subswaths (see (2.15)). However,
applying the method in Chapter 2 leaves the non-linear mis-fit problem uncompensated.

4.2 Final remarks

The work in this thesis has presented two methods that can substantially improve the im-
age quality of various types of Sentinel-1 images that are degraded by non-stationary noise
floors. The methods are effective and their reliance on convex optimization techniques con-
tributes to accessibility in terms of computation. While these methods were evaluated for
image quality, the work in this thesis did not evaluate for any specific remote sensing tasks
due to the incredibly wide scope of applications. The level of improvement provided by the
algorithms is highly relevant for remote sensing applications using cross-polarized images
over maritime regions. In particular, there could be great benefits from incorperating the
algorithms into applications like ice analysis and wind speed analysis. As a result, I plan
to make the software of the two methods available to the remote sensing community in the
hopes that they will be useful for tasks that are hindered by the noise floor problem.

77



References

[1] Extra wide swath. Technical report, European Space Agency. Retrieved June 23,
2020. https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/

acquisition-modes/extra-wide-swath.

[2] Interferometric wide swath. Technical report, European Space Agency. Retrieved June
23, 2020. https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-

sar/acquisition-modes/interferometric-wide-swath.

[3] SAR instrument description. Technical report, European Space Agency. Re-
trieved June 23, 2020. https://earth.esa.int/web/sentinel/technical-guides/
sentinel-1-sar/sar-instrument/description.

[4] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A rewriting system for convex
optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

[5] N. Agrawal and K. Venugopalan. Speckle reduction in remote sensing images. In 2011
International Conference on Emerging Trends in Networks and Computer Communi-
cations (ETNCC), pages 195–199, April 2011.

[6] L. Alparone, B. Aiazzi, S. Baronti, and A. Garzelli. Remote Sensing Image Fusion.
CRC Press, Inc., Boca Raton, FL, USA, 2015.

[7] F. Argenti, A. Lapini, T. Bianchi, and L. Alparone. A tutorial on speckle reduction
in synthetic aperture radar images. IEEE Geoscience and Remote Sensing Magazine,
1(3):6–35, 2013.

[8] G. B. Bailey. Land Surface Topography, pages 320–325. Springer New York, New
York, NY, 2014.

[9] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

78

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/extra-wide-swath
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/extra-wide-swath
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath
https://earth.esa.int/web/sentinel/technical-guides/sentinel-1-sar/sar-instrument/description
https://earth.esa.int/web/sentinel/technical-guides/sentinel-1-sar/sar-instrument/description


[10] Sentinel-1 Quality Control. Sentinel-1 QC — IPF versions, June 2020. Retrieved June
2, 2020. https://qc.sentinel1.eo.esa.int/ipf/.

[11] C. L. V. Cooke and K. A. Scott. Estimating sea ice concentration from SAR: Training
convolutional neural networks with passive microwave data. IEEE Transactions on
Geoscience and Remote Sensing, 57(7):4735–4747, 2019.

[12] CSC Mission Management Team. Sentinel high level operations plan. 2018.
Retrieved June 23, 2020. https://earth.esa.int/documents/247904/685154/

Sentinel_High_Level_Operations_Plan.

[13] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[14] R. J. Duffin. Linearizing geometric programs. SIAM Review, 12(2):211–227, 1970.

[15] C. Elachi, T. Bicknell, R. L. Jordan, and Chialin Wu. Spaceborne synthetic-aperture
imaging radars: Applications, techniques, and technology. Proceedings of the IEEE,
70(10):1174–1209, October 1982.

[16] P. Fieguth. Statistical Image Processing and Multidimensional Modeling, pages 13–51.
Springer Science & Business Media, 2010.

[17] L. Gagnon and A. Jouan. Speckle filtering of SAR images: A comparative study
between complex-wavelet-based and standard filters. InWavelet Applications in Signal
and Image Processing V, volume 3169, pages 80–91. International Society for Optics
and Photonics, 1997.

[18] Y. Gao, C. Guan, J. Sun, and L. Xie. A wind speed retrieval model for Sentinel-1A
EW mode cross-polarization images. Remote Sensing, 11(2):153, January 2019.

[19] R. Gens. Oceanographic applications of SAR remote sensing. GIScience & Remote
Sensing, 45(3):275–305, 2008.

[20] R. Gens and J. L. Van Genderen. Review article SAR interferometry issues, tech-
niques, applications. International Journal of Remote Sensing, 17(10):1803–1835,
1996.

[21] R. C. Gonzalez and R. E. Woods. Digital Image Processing, pages 595–687. Pearson
Education, Inc., 4th edition, 2017.

79

https://qc.sentinel1.eo.esa.int/ipf/
https://earth.esa.int/documents/247904/685154/Sentinel_High_Level_Operations_Plan
https://earth.esa.int/documents/247904/685154/Sentinel_High_Level_Operations_Plan


[22] D.-B. Hong and C.-S. Yang. Automatic discrimination approach of sea ice in the Arctic
Ocean using Sentinel-1 extra wide swath dual-polarized SAR data. International
Journal of Remote Sensing, 39(13):4469–4483, 2018.

[23] S. V. Hum. Antenna arrays, 2018. Retrieved June 23, 2020. http://www.waves.
utoronto.ca/prof/svhum/ece422/notes/15-arrays2.pdf.

[24] S. V. Hum. Radio and microwave wireless systems, 2018. Retrieved June 23, 2020.
http://www.waves.utoronto.ca/prof/svhum/ece422/notes/21-noise.pdf.

[25] Q. Huynh-Thu and M. Ghanbari. Scope of validity of PSNR in image/video quality
assessment. Electronics Letters, 44(13):1–2, June 2008.

[26] M. Iqbal, J. Chen, W. Yang, P. Wang, and B. Sun. Kalman filter for removal of
scalloping and inter-scan banding in ScanSAR images. Progress In Electromagnetics
Research, 132:443–461, 2012.

[27] J. Karvonen. Baltic Sea ice concentration estimation using Sentinel-1 SAR and
AMSR2 microwave radiometer data. IEEE Transactions on Geoscience and Remote
Sensing, 55(5):2871–2883, May 2017.

[28] E. S. Kasischke, J. M. Melack, and M. C. Dobson. The use of imaging radars for
ecological applications a review. Remote Sensing of Environment, 59(2):141 – 156,
1997. Spaceborne Imaging Radar Mission.

[29] R. Kwok. Satellite remote sensing of sea-ice thickness and kinematics: A review.
56(200):11291140, 2010.

[30] P. Q. Lee, L. Xu, and D. A. Clausi. Sentinel-1 additive noise removal from cross-
polarization extra-wide TOPSAR with dynamic least-squares. Remote Sensing of
Environment, 248:111982, October 2020.

[31] B. Li, B. Liu, W. Guo, Z. Zhang, and W. Yu. Ship size extraction for Sentinel-1
images based on dual-polarization fusion and nonlinear regression: Push error under
one pixel. IEEE Transactions on Geoscience and Remote Sensing, 56(8):4887–4905,
August 2018.

[32] A. Maity, A. Pattanaik, S. Sagnika, and S. Pani. A comparative study on approaches to
speckle noise reduction in images. In 2015 International Conference on Computational
Intelligence and Networks, pages 148–155, January 2015.

80

http://www.waves.utoronto.ca/prof/svhum/ece422/notes/15-arrays2.pdf
http://www.waves.utoronto.ca/prof/svhum/ece422/notes/15-arrays2.pdf
http://www.waves.utoronto.ca/prof/svhum/ece422/notes/21-noise.pdf


[33] B. Marhaba and M. Zribi. Reduction of speckle noise in SAR images using hybrid
combination of bootstrap filtering and DWT. In 2018 International Conference on
Computer and Applications (ICCA), pages 377–382, August 2018.

[34] M. Migliaccio and M. Tranfaglia. Oil spill observation by SAR: A review. In 2004
USA-Baltic Internation Symposium, pages 1–6, 2004.

[35] F. M. Monaldo, C. Jackson, and X. Li. On the use of Sentinel-1 cross-polarization
imagery for wind speed retrieval. In 2017 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), pages 392–395, 2017.

[36] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanas-
siou. A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing
Magazine, 1(1):6–43, 2013.

[37] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator
splitting and homogeneous self-dual embedding. Journal of Optimization Theory and
Applications, 169(3):1042–1068, June 2016.

[38] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. SCS: Splitting conic solver, version
2.1.2. https://github.com/cvxgrp/scs, November 2019.

[39] J.-W. Park, A. A. Korosov, M. Babiker, S. Sandven, and J.-S. Won. Efficient thermal
noise removal for Sentinel-1 TOPSAR cross-polarization channel. IEEE Transactions
on Geoscience and Remote Sensing, 56(3):1555–1565, 2018.

[40] S. Parrilli, M. Poderico, C. V. Angelino, and L. Verdoliva. A nonlocal SAR image
denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Transactions on
Geoscience and Remote Sensing, 50(2):606–616, 2011.

[41] R. Pelich, N. Longp, G. Mercier, G. Hajduch, and R. Garello. Performance evaluation
of Sentinel-1 data in SAR ship detection. In 2015 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), pages 2103–2106, July 2015.
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Glossary

backscatter The radiation that is scattered off a ground target and measured by an
observing antenna.

co-polarization Imaging mode where the polarity of the emitted radiation is the same
to the polarity of the measurement.

cross-polarization Imaging mode where the polarity of the emitted radiation is perpen-
dicular to the polarity of the measurement.

EW Extra Wide mode. A Sentinel-1 sensor mode that is designed to cover large surface
areas and is typically applied to maritime regions.

IPF Instrument Processing Facility. The software used in the Sentinel-1 processing pipeline.

IW Interferometric Wide mode. A Sentinel-1 sensor mode with finer resolution but lower
surface area coverage than EW mode.

noise floor The lower bound of signal added to a system that is the lower bound of the
sum of noise sources.

subswath Divisions along the range that compose the image. Images acquired via the
TOPSAR scanning pattern, such as EW and IW modes, divide the range into differ-
ent subswaths.
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