
Towards Human-Centered
AI-Powered Assistants for the

Visually Impaired

by

Linda Wang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2020

c© Linda Wang 2020

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

The following four papers are used in this thesis. I was co-author with major contributions
to the design, analysis, writing and editing.

L. Wang and A. Wong, ”Implications of Computer Vision Driven Assistive Technologies
Towards Individuals with Visual Impairment,” Workshop on Fairness Accountability Trans-
parency and Ethics in Computer Vision (FATE/CV), The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

This paper is incorporated in Chapter 1.

L. Wang, A. Patnaik, E. Wong, J. Wong and A. Wong, ”OLIV: An Artificial Intelligence-
Powered Assistant for Object Localization for Impaired Vision,” Computational Vision and
Imaging Systems (CVIS), vol. 4, no. 1, 2018.

This paper is incorporated in Chapter 3.

L. Wang and A. Wong, ”Enabling Computer Vision Driven Assistive Devices for the
Visually Impaired via Micro-architecture Design Exploration,” Women in Computer Vision
Workshop (WiCV), The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

This paper is incorporated in Chapter 4.

L. Wang, M. Famouri and A. Wong, ”DepthNet Nano: A Highly Compact Self-Normalizing
Neural Network for Monocular Depth Estimation,” Women in Computer Vision Workshop
(WiCV), The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

This paper is incorporated in Chapter 5.

iii

Abstract

Artificial intelligence has become ubiquitous in today’s society, aiding us in many ev-
eryday tasks. Given particular prowess of today’s AI technologies in visual perception and
speech recognition, an area where AI can have tremendous societal impact is in assistive
technologies for the visually impaired. Although assisting the visually impaired for tasks
such as environment navigation and item localization improves independence and auton-
omy, concerns over privacy arise. Taking privacy of personal data into consideration, we
present the design of a human-centered AI-powered assistant for object localization for
impaired vision (OLIV). OLIV integrates multi-modal perception (custom-designed visual
scene understanding and speech recognition and synthesis) for the purpose of assisting the
visually impaired in locating misplaced items in indoor environments.

OLIV is comprised of three main components: speech recognition, custom-designed
visual scene understanding, and synthesis. Speech recognition allows these individuals to
independently query and interact with the system, increasing their level of independence.
Visual scene understanding performs on-device object detection and depth estimation to
build up a representation of the surrounding 3D scene. Synthesis then combines the de-
tected objects along with their locations and depths with the user’s intent to construct a
verbal semantic description that is verbally conveyed via speech synthesis.

An important component of OLIV is scene understanding. Current state-of-the-art
deep neural networks for the two tasks have been shown to achieve superior performance,
but requires high computation and memory, making them cost prohibitive for on-device
operation. On-device operation is necessary to address privacy concerns related to misuse
of personal data. By performing on-device scene understanding, data captured by the
camera will remain on the device. To address the challenge of high computation and
memory requirements, two different architecture design exploration approaches, micro-
architecture exploration and human-machine collaborative design strategy, are taken to
design efficient neural networks with an optimal trade-off between accuracy, speed and size.
Micro-architecture exploration approach resulted in a highly compact single shot network
architecture for object detection. Human-machine collaborative design strategy resulted in
a highly compact densely-connected encoder-decoder network architecture for monocular
depth estimation. Through experiments on two indoor datasets to simulate environments
OLIV operates in, the object detection network and depth estimation network were able
to achieve CPU speeds of 17 FPS and 9.35 FPS, sizes of 6.99 and 3.46 million parameters,
respectively, while maintaining comparable accuracy performance. Size and speed are
important for on-device scene understanding on OLIV to provide a more private assistance
for the visually impaired.

iv

Acknowledgements

Firstly, I would like to thank my supervisor, Prof. Alexander Wong. Thank you for
being an amazing mentor and helping me grow as a researcher. Your passion for using
your expertise in computer vision to help others has truly been inspirational and I hope to
carry this forward as I begin my career in computer vision.

Secondly, I would like to thank Prof. Boger and Prof. Scott for reviewing my thesis.
Taking the time out of your busy schedules, especially during the current pandemic, to
read and revise my thesis is greatly appreciated.

I would also like to thank my family and friends for their constant support and curiosity
about my thesis and other research projects. In addition, I would like to thank my fourth
year design group (W3P), as that is where the idea for this thesis first originated. I
would also like to thank everyone in the Vision and Image Processing Lab. I’ve enjoyed
collaborating on different projects apart from my thesis, which has broaden the scope of
my research experience.

Lastly, I would like to thank Microsoft for providing Azure resources for my research
in this thesis.

v

Dedication

I would like to dedicate this thesis to my parents for being my biggest cheerleaders all
the way to the end of my educational journey (...unless I pursue a PhD in the future). I
would also like to dedicate this thesis to my grandparents, whose generation can benefit
greatly from human-centered artificial intelligence solutions.

vi

Table of Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Current Computer Vision Based Solutions 2

1.2 Privacy Concerns . 3

1.3 Proposed Framework and Thesis Contributions 3

2 Background 5

2.1 Efficient Object Detection . 5

2.1.1 Single Shot Detector . 6

2.1.2 MobileNet . 7

2.2 Monocular Depth Estimation . 8

2.2.1 Encoder-Decoder Architecture . 9

2.2.2 Skip Connections . 10

2.3 Methods to Create Efficient Neural Networks 10

2.3.1 Network Pruning . 11

2.3.2 Human-Machine Collaborative Design 12

vii

3 System Overview 14

3.1 Speech Recognition . 14

3.2 On-device Scene Understanding for Privacy 16

3.3 Synthesis . 16

3.4 Summary . 18

4 Highly Compact Single-Shot Network Architecture for Object Detection 20

4.1 Problem Formulation . 20

4.2 Micro-architecture Design Exploration . 21

4.3 Architectural Design Optimization . 23

4.4 Experimental Setup . 24

4.4.1 Dataset . 24

4.4.2 Training . 25

4.4.3 Performance Evaluation Metrics . 25

4.5 Experimental Results . 26

4.5.1 Accuracy vs. Speed . 26

4.5.2 The Effect of Width and Resolution Multiplier 27

4.5.3 Class-wise Performance Analysis . 28

4.5.4 Architecture Exploration Analysis: Balance Between Accuracy, Speed
and Size . 31

4.6 Summary . 32

5 Highly Compact Densely-Connected Encoder-Decoder Network Archi-
tecture for Monocular Depth Estimation 34

5.1 Problem Formulation . 34

5.2 Human Machine Collaborative Design Strategy 35

5.2.1 Principled Network Design Prototyping 35

5.2.2 Machine Driven Design Exploration 36

5.3 Experimental Setup . 36

viii

5.3.1 Implementation Details . 36

5.3.2 Dataset . 37

5.3.3 Performance Evaluation Metrics . 37

5.4 Architectural Design . 38

5.4.1 Self-Normalization Macroarchitecture 38

5.4.2 Densely Connected Projection BatchNorm Expansion Projection Macroar-
chitecture . 39

5.4.3 Macroarchitecture and Microarchitecture Heterogeneity 40

5.5 Experimental Results . 41

5.5.1 Quantitative Analysis . 42

5.5.2 Qualitative Analysis . 43

5.6 Summary . 43

6 Conclusion 46

6.1 Summary of Thesis and Contributions . 46

6.2 Recommendations . 47

6.3 Future Work . 48

6.3.1 Real World Testing of OLIV . 48

6.3.2 Improve Detection of Small Objects and Object Bias 48

6.3.3 Outdoor Scenes . 49

6.3.4 Temporal Information . 49

6.3.5 Federated Learning . 49

References 50

ix

List of Figures

2.1 Region proposal network vs. single shot architectures 6

2.2 Depthwise separable convolution and inverted residual structure 8

2.3 Encoder-decoder architecture with skip connections 9

3.1 OLIV system diagram . 15

3.2 Data anonymization . 17

3.3 Synthesis process for sample workplace scenario 18

4.1 Accuracy vs CPU time . 27

4.2 Effect of width and resolution multiplier on accuracy and speed 28

4.3 Class-wise trends on MSCOCO-OLIV . 30

4.4 Sample detection results on MSCOCO-OLIV using MobileNetV2-SSD-1.13 224 31

4.5 Architectural design optimization Netscore results 32

5.1 DepthNet Nano Architecture . 38

5.2 PBEP vs PBConv module . 41

5.3 Visualized results on NYU Depth V2 dataset. 44

5.4 Zoomed in view of cluttered office desk. 45

x

List of Tables

4.1 MobileNetV2 base architecture . 22

4.2 MobileNetV2-SSD hyper-parameter combinations used for experiments . . 23

4.3 Class-wise average precision results . 29

5.1 DepthNet Nano performance based on activation and module type 39

5.2 Performance on NYU Depth V2 . 42

5.3 Inference results on NYU Depth V2 . 42

xi

Chapter 1

Introduction

In recent years, the rise of artificial intelligence (AI) has made previously unsolvable tasks
possible, particularly in the areas of visual perception, speech recognition and synthesis. As
AI grows in ubiquity in society, larger issues regarding the use of AI need to be considered.
An important area to consider is AI-powered assistive technologies for the visually impaired.
With the use of deep learning, visual perception tasks, such as image classification, object
detection and monocular depth estimation, are able to be achieved and have the potential
to aid these individuals in tasks requiring the identification of objects and navigation.

Vision impairment and blindness affect 2.2 billion of the world’s population, of which 1
billion includes those with moderate or severe distance vision impairment or blindness [37].
Severe vision impairment or blindness for those individuals cause a significant amount of
burden when conducting their daily tasks [28]. AI-powered assistive technologies show the
potential to reduce some burden placed on these individuals. By assisting visually impaired
individuals with tasks they would otherwise need help in or struggle with, their level of
independence and autonomy increase.

Although there are positive aspects leveraging AI to assist the visually impaired, there
are also negative aspects that should be addressed. The use of black box AI solutions raises
many concerns such as fairness and bias of the models, which often stem from training data
sample sets that are not representative of the general population and exclude certain groups
or characteristics [34]. There are also ethical concerns related to privacy protection as many
visual perception algorithms rely on camera input. As such, it is crucial to address issues
related to the implications of AI in the development of AI-driven assistive technologies.
In this thesis, the aim is to explore the privacy concerns related to the deployment of
computer vision based assistive technologies.

1

1.1 Current Computer Vision Based Solutions

One area assistive technologies have become an integral part in the lives of those with
visual impairment is overcoming barriers faced in everyday life. These individuals face
adversity in all stages of life. For instance, severely visually impaired young people use
their information and communication technology (ICT) device as more than just a device
to overcome environmental barriers but also a means of communication for peers in their
school [47]. However, the use of ICT devices is found to symbolize restriction and difference.
In order fit in as ordinary young people, those who are capable to participate without their
device choose not to use it [47].

The ever growing presence of smartphones and advancements in computer vision are
transforming the accessibility of assistive technologies, allowing individuals to overcome
social barriers and have autonomy over when and how they access information. Smartphone
applications, such as SeeingAI and Lookout, use auditory cues to assist users in identifying
scenes, recognizing faces, reading short text, documents and currency. These assistive
technologies also allow these individuals to have a sense of safety, security and privacy by
notifying how many people are in the surroundings [23, 9].

Individuals with visual impairment also face difficulty localizing themselves in unknown
indoor and outdoor environments. Research projects are using cameras and sensors to
give directions so these individuals can navigate outdoor and indoor environments inde-
pendently. For instance, a prototype was developed for guiding the visually impaired
across streets in a straight line using a wearable computer-based orientation and wayfind-
ing aid [43]. The results showed that all the prototypes showed significant improvement
in their veering performance, with average veer reduced by 31 percent from the baseline
veer [43]. Based on the results, this prototype enabled these individuals to independently
and confidently cross the street, knowing that they will be signaled if veering off. For
indoor navigation, Tian et al. developed a proof of concept computer-vision based indoor
wayfinding aid that detects doors and elevators, as well as text on signs, to find different
rooms [50]. Using geometric door models and corner detection to detect doors, as well as
text extraction, localization and recognition for door signs, the model was able to achieve
high true-positive rates of 89.5% and 92.3% for both protruding and non-protruding ob-
ject detection respectively. The model was also able to recognize door signage with 71%
accuracy.

2

1.2 Privacy Concerns

Computer vision based assistive technologies for the visually impaired allow these indi-
viduals to gain independence and autonomy over different aspects of their life. However,
these devices also pose privacy risks because of the vast amounts of personal data stored.
Although individuals with visual impairment felt that smartphones help them communi-
cate and achieve greater independence, these devices create privacy risks because of the
amount of personal data stored and shared in the cloud for processing. As well, their poor
visual acuity makes it hard to safeguard their information, such as if someone is around
and eavesdropping [1].

Home-monitoring for older adults, who represent majority of those with visual impair-
ment [37], reliefs caregivers burden and allows individuals with severe visual impairment
to live independently, but the devices for monitoring also store personal data. Studies have
found that older adults are willing to have activity monitoring shared with family mem-
bers and doctors if the collected data is useful, but expressed that the greatest concern is
exploitation and misuse of their personal health information [25].

Based on the studies, the greatest fear associated with the collection of personal data
is the concern that their collected data could end up in the wrong hands and be misused.
In addition to the fear of personal information being exploited, the use of cameras is
obtrusive and found to elicit greater fears than wearable solutions. In a comparison of four
ambient intelligent systems, the camera-based behaviour and emergency detection system
was perceived with the greatest fear and highest level of concern [25]. However, studies
have also shown that there is a tradeoff between gained autonomy and privacy costs. Older
adults with lower levels of functioning are willing to accept video cameras and tradeoff the
privacy lost if camera-based solution could prevent transfer to a long term care facility [51].

The different perceptions of privacy over the use of data, as well as the potential benefits
of using cameras for home monitoring, suggest that privacy is a complex topic. In this
thesis, the concern of personal data exploitation and privacy from camera-based solutions
are addressed.

1.3 Proposed Framework and Thesis Contributions

Artificial intelligence has the potential to impact people’s lives. However, accuracies of
computer vision models are insufficient for assistive technologies, which interact with and
around humans. Recently, the term human-centered artificial intelligence is used to refer

3

to intelligent systems that are aware of the interaction with humans and are designed
with social responsibility in mind [42]. The purpose of this thesis is to propose the design
of OLIV (object localization for impaired vision), an AI-powered assistant for assisting
the visually impaired in locating misplaced items in indoor environments, which has not
previously been explored. To design OLIV, a human-centered AI design strategy was taken
to ensure the potential privacy implications posed are considered in the design. There are
three main contributions:

1. A novel human-centered end-to-end artificial intelligence-powered assistant system
designed to aid individuals with impaired vision in their day-to-day tasks in locating
displaced objects.

2. A highly compact single-shot network architecture for on-device object detection.

3. A highly compact densely-connected encoder-decoder network architecture for on-
device monocular depth estimation.

The goal of the three main contributions in this paper aims to assist the visually im-
paired in locating displaced items while addressing privacy concerns related to the misuse
of personal data and privacy lost from cameras. By performing on-device scene under-
standing, data captured by the camera will remain on the device. In order to perform
on-device scene understanding, the neural network architectures must be compact to fit
on an edge or mobile device, which are more affordable than graphical processing units
(GPUs) and are widely adopted. In addition to size, the neural networks must also be fast
for a seamless user interaction.

In this thesis, a review of relevant background concepts are presented in Chapter 2. A
system overview of OLIV is detailed in Chapter 3. Problem formulation, methods, and
results of the designed efficient neural networks for object detection and depth estimation
are detailed in Section 4 and 5, respectively. Lastly, conclusions, recommendations, and
future works are discussed in Chapter 6.

4

Chapter 2

Background

In this chapter, background information for each proposed contribution are presented. The
background on object detection and the chosen object detection model for the OLIV system
is detailed in Section 2.1. An overview of monocular depth estimation network architecture
components are described in Section 2.2. A brief description of existing methods to create
efficient neural networks are discussed in Section 2.3. The method used to create the
efficient depth estimation network for OLIV is further explained in Section 2.3.2.

2.1 Efficient Object Detection

Deep learning has shown significant progress in the performance of computer vision tasks,
such as object detection, text recognition and image classification. However, many of the
technologies that use computer vision neural networks are internet-connected devices so
images can be processed in the cloud. This makes the technology limited and with the
increasing presence of mobile devices, users should be able to use the technology anywhere,
regardless of internet connectivity. Neural networks for object detection, such as Faster-
RCNN Inception ResNet [20], achieve high performance, however deploying for real-time
on device and edge applications are difficult due to limited computation, power and space.

Object detection contains two parts: i) the feature extractor, which extracts salient
features from the image, and ii) the meta-architecture, which makes detection predictions
based on the features. In order for the object detection network to be computationally
efficient, both the meta-architecture and feature extractor must be efficient. In this thesis,
MobileNetV2 and single-shot detector (SSD) were used as the feature extractor and meta-
architecture, respectively. These are summarized in the following subsections.

5

2.1.1 Single Shot Detector

To date, single shot detectors are the fastest compared to other meta-architectures that
use region proposal networks, such as Faster R-CNN and R-FCN [41, 11]. This is because
region proposal networks (RPN) require two shots to detect objects in an image. The first
pass generates regional proposals. The second shot then detects objects for each proposal,
as shown on the left in Fig. 2.1. To generate proposals for regions of where there may be
objects, a sliding window with k anchors is slid over a feature map. For each proposal, the
classifier determines the probability of a proposal having a target object. The regressor
then regresses the coordinate of the proposal to better fit the object [41].

Figure 2.1: Region proposal network, taken directly from Ren et al. [41], vs. single shot
meta architectures, taken directly from Liu et al. [33]. (Left) Region proposal network
architecture used in object detection networks such as Faster R-CNN [41], (right) single
shot meta architectures found in SSD (top) and YOLO (bottom) [33].

Single shot meta architectures eliminates the use of RPN and detects the image in one
shot. The right image of Fig. 2.1 shows the network architectures for two different single
shot meta architecture designs. The bottom single shot meta architecture design is YOLO.
This network divides the images into an S × S grid, where S is the number of cells, so
that a single neural network can predict bounding boxes and class probabilities in one
evaluation [40]. However, due to the image being split into grids, YOLO tends to miss
smaller objects [33], resulting in lower accuracy than the previous models.

SSD also detects objects in one shot. To make up for the loss in accuracy, SSD in-
troduces multi-scale features and default boxes [33]. As shown in the top image in Fig.
2.1, detections are based on multiple feature map layers, whereas for YOLO, detections
are only based on one layer. For certain layers, each pixel of the feature map contains

6

k bounding boxes. Each bounding box contains a different size and aspect ratio since
objects are different shapes and sizes. For each bounding box, class scores and offsets are
computed. These improvements allow SSD to run in real-time on GPU with competitive
accuracy to Faster R-CNN [33].

On three different object detection datasets, PASCAL VOC, ILSVRC DET and MSCOCO,
SSD achieved state of the art accuracy results over Faster R-CNN and YOLO. By elimi-
nating the use of RPN, SSD can process 6 times more frames per second (FPS) than Faster
R-CNN [33]. SSD has higher accuracy, as well as higher FPS, which shows promise as an
efficient object detection meta-architecture.

2.1.2 MobileNet

In order to make neural networks more efficient at extracting features, the MobileNet
family introduced depthwise separable convolution. Depthwise separable convolution is
comprised of a depthwise convolution followed by a pointwise convolution, as shown on
the left in Fig. 2.2. For depthwise convolution, convolution is performed for each channel
separately, then pointwise convolution is used to learn about the channels in order to
change the dimension [44]. For depthwise separable convolution, the computational cost
for the number of operations is:

hi · wi · di(k2 + dj) (2.1)

where k, hi, wi are the kernel and feature map height and width sizes, respectively. di and dj
are the number of input and output channels. For standard convolution, the computation
cost is:

hi · wi · di · dj · k2 (2.2)

By using depthwise separable convolutions, the reduction in computation cost is 1
dj

+ 1
k2

.

This means that if the kernel size is 3× 3, 9 times less computation is needed with only a
small drop in accuracy.

In addition to depthwise separable convolution, MobileNet also includes two additional
hyper-parameters, width and resolution multiplier to further improve the efficiency of the
network. The width multiplier, α, reduces the width of the network uniformly at each layer
by multiplying the number of input channels and output channels by α. The resolution
multiplier, ρ, reduces the representation by multiplying each feature map by ρ [44]. With
the width multiplier and resolution multiplier, the computational cost now becomes:

ρhi · ρwi · αdi(k2 + αdj) (2.3)

7

Figure 2.2: MobileNet building blocks taken directly from Sandler et al. [44]. (Left) depth-
wise separable convolution block introduced in MobileNetV1, and (right) inverted residual
structure introduced in MobileNetV2 [44].

To account for the drop in performance using depthwise separable convolutions, Mo-
bileNetV2 introduced the inverted residual structure, shown on the right in Fig. 2.2. Before
the depthwise separable convolution layer, pointwise convolution is used to expand the low-
dimensional feature map to a higher dimension by a factor t. Depthwise convolution is
then performed on the higher dimensional feature maps and then pointwise convolution is
used to project the feature maps back to the lower dimension [44]. The final computational
cost is now:

ρhi · ρwi · αdi · t(αdi + k2 + αdj) (2.4)

Compared to other compact efficient architectures, such as MobileNetV1, ShuffleNet
and NasNet-A, MobileNetv2 obtained the best results on ImageNet classification while
also achieving the fastest CPU running time [44]. ImageNet is a large scale image dataset
representing over 5247 categories [12] and is widely used as a benchmark to compare per-
formances of different architectures. The performance of MobileNetV2 was also compared
as a feature extractor for mobile and real-time meta-architectures of SSD, SSDLite and
YOLOv2, where MobileNetV2 achieved the best results with SSD [44]. In addition, Mo-
bileNetV1 with SSD has shown promising results in terms of CPU running time compared
to other network architectures in [20]. Based on the results of MobileNetV2, this network
is chosen as the feature extractor for the SSD meta-architecture.

2.2 Monocular Depth Estimation

The task of estimating depth from 2D images is crucial for applications such as 3D scene
understanding and reconstruction. In recent years, monocular depth estimation, where a
dense depth map is obtained from a single image has gained traction. Compared to depth

8

estimation from stereo images or video sequence, monocular depth estimation is an ill-
posed problem, which means there are more than one possible unique solution. To tackle
this ill-posed problem, one method that has shown promise is deep convolutional neural
networks (DCNNs).

2.2.1 Encoder-Decoder Architecture

These DCNNs learn deep features to estimate a depth for each pixel. Most of the recent
developments have focused on an encoder-decoder architecture, such as the architecture in
Fig. 2.3, with very powerful deep neural network encoder macroarchitecture designs, such
as VGG, ResNet and DenseNet [15, 2, 29], to learn deep features.

Figure 2.3: Encoder-decoder architecture with skip connections for monocular depth esti-
mation. The encoder contains densely-connected blocks to alleviate training.

The encoder layers in such an architecture are designed to learn a multitude of low to
mid level features for characterizing an input scene. Next, the decoder layers are designed
to merge and upsample the features learned from the encoder layers to recover a dense
depth map. The decoder layers consist of upsampling blocks followed by a concatenation
and two convolutional operations. Finally, the encoder-decoder architecture follows with
a convolutional layer at the end that is designed to produce the final dense depth map.

9

2.2.2 Skip Connections

In general, as the number of layers increase, the network accuracy improves because each
layer is learning deeper features. However, He et al. [18] found that in general, after a cer-
tain depth, network accuracy starts to decrease. For instance, He et al. [18] demonstrated
that a 56-layer deep convolutional neural network has higher training and test error than
a 26-layer CNN deep convolutional neural network. To alleviate training of deep neural
networks, He et al. introduced a fundamental buiding block, known as the residual block.
The residual block adds a previous layer to the current layer. By adding information from
previous layers, the network can learn residuals or errors between a previous layer and
the current one. Extending upon this idea of skip connections, densely-connected network
architectures consists of a large number of skip connections between different layers, as
shown in Fig. 2.3. More specifically, instead of adding the previous layer as an identity
function, densely-connected architectures concatenate outputs from previous layers to the
current layer. This is found to alleviate the vanishing gradient problem, strengthen fea-
ture propagation and feature reuse [19]. As such, the introduction of encoder-encoder skip
connections into a deep encoder-decoder architecture can improve the training process and
improve network performance.

Furthermore, in the case of encoder-decoder architectures, as the layers in the encoder
get deeper, higher level features are learned, however, the resolution of the feature maps
get progressively lower [6]. As such, the input to the decoder is of low resolution. Since
the purpose of the decoder network is to upsample the features learned from the encoder,
the resulting depth map image would also have low resolution.

To overcome the low resolution problem, an effective strategy is the leveraging of skip
connections between encoder and decoder layers within an encoder-decoder architecture.
Such encoder-decoder skip connections merge high resolution feature maps from the en-
coder layers to the features in the decoder layers, resulting in a more detailed decoder
output [7].

2.3 Methods to Create Efficient Neural Networks

In recent years, neural network architecture designs have been getting deeper to fit the
large amounts of data, such as ImageNet. Although these bigger networks have better
performance than networks with fewer layers, not every parameter in the network is utilized.
For many networks, low resource utilization is caused by stochastic gradient descent (SGD)
and initialization [38, 14, 17]. In addition, the network architecture may also not be suitable

10

for the given task. For instance the number of channels and depth of network may not be
properly configured for the domain. As a result, there are inefficiencies in computational
resources and the full potential of the model is not realized. In this section, two methods
to create efficient neural networks are addressed.

2.3.1 Network Pruning

Neural network pruning addresses the under utilization of network resources and introduce
methods to optimize the efficiency of neural networks without decreasing performance.

One approach by Han et al. [17], introduced a training approach to improve the effi-
ciency of the network by removing connections with small weights and neurons with zero
input or output connections. Frankle et al. [14] introduced the lottery ticket hypothesis,
where p percent of the weights with the lowest magnitude are set to 0 while the rest of the
network is set to initial random initialization to be retrained. Instead of removing neu-
rons, Qiao et al. [38], introduced an addition to the standard SGD optimization method
that re-allocates these dead neurons to different parts of the network and re-initializes the
weights for continued training in order to realize the full potential of the network.

The methods introduced follow similar procedures. First, a threshold is determined to
distinguish which connections and neurons to keep or remove. Once the weights are below
the determined threshold, the neural network architecture is modified to be more resource
efficient. After the architecture has been modified, the training scheme is also adjusted so
that the network can continue to learn with the remaining or new connections.

Based on experiments on MNIST and ImageNet, the results showed that [17] can
decrease the size and computation of various neural networks without decreasing accu-
racy. For instance, pruning LeNet-300-100 and LeNet-5 on MNIST, reduced the number of
weights by 12x and computation by 12x and 6x, respectively. Without impacting accuracy,
the number of weights and computations for AlexNet and VGG-16 on ImageNet were able
to be reduced by 9x and 3x, 12x and 5x, respectively. Pruning on VGG-16 also showed
that the largest fully-connected layers can be pruned to less than 4% of their original size.
This indicates that not all the connections in the fully-connected layers were necessary.

Similarly, [38] also trained various sizes of networks on ImageNet and CIFAR. Using
the CIFAR-10/100 datasets, neural rejuvenation can achieve the same accuracy as baseline
while maintaining half the parameters for VGG-19, ResNet-164 and DenseNet-100-40. In
addition to achieving the same accuracy as the full network, the results also showed that
by re-allocating neurons to different parts of the network, neural rejuvenation can in fact
increase accuracy. For instance, on ImageNet, VGG-16 with neural rejuvenation achieve

11

23.71% top-1 error with just 21.5M parameters, which is better than the baseline of 36.66%
top-1 error with 23.2M parameters.

2.3.2 Human-Machine Collaborative Design

Although network pruning can result in pruned subnetworks that are more efficient and
meet the original test accuracy, there lacks human intervention. As a result, the pruned
network may not fit the task at hand. The human-machine collaborative design strat-
egy combines the design requirements and constraints of the system with machine driven
network design to create efficient neural networks suited for the task. Human-machine
collaborative design strategy has shown success in designing highly compact deep neural
networks well suited for various perception tasks, such as object detection, image classifica-
tion and semantic segmentation [54, 55]. To achieve the required efficient neural networks,
human-machine collaborative design comprises of two main design stages: i) principled
network design prototyping, and ii) machine-driven design exploration [55].

Principled Network Design Prototyping

For network pruning, the base architecture depends on manual architecture selection strate-
gies. The overall architecture of the final network produced by pruning techniques is
the same as the base architecture. The only difference is that there are less nodes and
connections. For human-machine collaborative design strategy, the network design pro-
totyping stage is the initial design stage, where an initial network design prototype is
created (denoted as ϕ) based on human-driven design principles, such as the designs of an
encoder-decoder architecture and skip connections described in Sections 2.2.1 and 2.2.2,
respectively, to guide the machine-driven design exploration stage. The final macroarchi-
tecture and microarchitecture designs of the network are left to the machine-driven design
exploration stage to design in an automatic manner.

Machine-driven design exploration

The machine-driven design exploration stage takes in the given data, initial network design
prototype ϕ, and human-specified design requirements and constraints, which are designed
specifically around edge scenarios with limited computational and memory capabilities.

Using the initial network design prototype ϕ described in the previous section, as well
as human specified design requirements, a machine-driven design exploration is leveraged

12

in the form of generative synthesis [55] to determine macroarchitecture and microarchitec-
ture designs for depth estimation on edge devices. The process of generative synthesis is
capable of determining the optimal network macroarchitecture and microarchitecture de-
sign that satisfy the human-specified constraints. This is achieved by learning generative
machines that can generate deep neural networks that meet the specified constraints. To
learn the optimal generator, generative synthesis is formulated as a constrained optimiza-
tion problem, defined in Equation 2.5, where given a set of seeds S, a generator G can
generate networks {Ns|s ∈ S} that maximize a universal performance function U , while
also satisfying constraints defined in an indicator function 1r(·).

G = max
G
U(G(s)) subject to 1r(G(s)) = 1,∀s ∈ S (2.5)

The generative synthesis process is guided by both the initial prototype ϕ and human-
specified constraints. To guide the process towards learning generative machines that gen-
erate highly efficient and compact depth estimation networks for edge devices, an indicator
function 1r(·) is configured so that the generated networks are within the human-specified
constraints [55].

13

Chapter 3

System Overview

A human-centered design strategy is taken in the design of OLIV, an AI-powered assistant
that assists the visually impaired in locating displaced items. OLIV is comprised of three
main components: speech recognition, custom-designed visual scene understanding, and
synthesis, as shown in Fig. 3.1. Speech recognition allows individuals to independently
query and interact with the system, increasing their level of independence. Visual scene
understanding efficiently performs on-device object detection and depth estimation. By
performing on-device visual scene understanding, personal data does not need to be sent
to cloud-based computing resources and can stay on the user’s local device, which gives the
user control over who has access to their data. Since the personal data is not sent or stored
to a cloud-based resources, privacy concerns over malicious attacks or unauthorized use of
personal data can be avoided. Synthesis then combines the detected objects along with
their locations and depths with the user’s intent to construct a verbal semantic description
that is verbally conveyed via speech synthesis.

3.1 Speech Recognition

The speech recognition of OLIV is responsible for interpreting the verbal query from the
user as well as providing a verbal response to the user’s query to inform the user with
directions on where the displaced item is. To realize the capabilities needed for the speech
module, off-the-shelf commercial smart assistant solutions, such as Microsoft Cortana, are
leveraged as the interface and feedback to the user.

For this thesis, Microsoft Cortana, a smart voice assistant, is chosen for not only its
state-of-the-art capabilities in speech recognition and speech generation, but also based

14

Figure 3.1: Overview of OLIV. The speech recognition algorithm takes in captured verbal
speech to understand the user’s query. The scene understanding algorithms and performs
object detection and depth estimation on the captured scene. The detected objects and
their associated depths are then used to synthesize a coherent response for the user, which
is then verbally conveyed via speech synthesis.

on widespread adoption. To query OLIV for the location of an object, the user will
ask Microsoft Cortana where the object is. Using speech recognition, Microsoft Cortana
converts speech to text to get the object the user wants to locate. Microsoft Cortana will
then use speech generation to communicate to the user a description of where the object
is located.

By utilizing off-the-shelf smart assistant solutions, such as the use of Microsoft Cortana
for OLIV, the devices are not only used for this particular system but also what users
currently use them for. Home assistants are also affordable and accessible, making these
devices easy to obtain.

15

3.2 On-device Scene Understanding for Privacy

An important component of OLIV is scene understanding, which uses object detection and
depth estimation to build up a representation of the surrounding 3D scene. State-of-the art
deep neural networks for the two tasks have been shown to achieve superior performance,
but require high computation and memory, making them infeasible for on-device operation.
Alternatively, cloud-based operation leads to privacy concerns.

To address these challenges, both manual micro-architecture design exploration and
human-machine collaborative design strategy are taken to generate compact neural net-
work architectures, resulting in private, on-device scene understanding. More specifically,
for object detection, the problem of finding an optimal network architecture design is
formulated as a numerical optimization problem, with the objective function being the
NetScore [55], which quantifies the balance between accuracy, size, and speed, constrained
by human-specified requirements for on-device scenarios. The result of these design explo-
ration strategies resulted in a highly compact single-shot network architecture for object
detection, as explained in Section 4, and a highly compact densely-connected encoder-
decoder network architecture for monocular depth estimation, as described in Section 5.

In addition, by incorporating both on-device object detection and depth estimation,
the stored images can be more anonymous. In addition to the fear of personal information
being exploited, the use of cameras are also found to be obtrusive. By saving depth
maps, along with object class labels, detailed information, such as a person and personal
information, can be anonymous. Depth estimation and object detection would occur on
the local device, however, if these images need to be sent to through the cloud to family
members, caretakers or medical professionals, the anonymized images will protect personal
details in case of a malicious attack. For instance, in Fig. 3.2, the person and object details
on the monitors are replaced by depth map representations.

3.3 Synthesis

The purpose of synthesis is to interact with speech recognition and scene understanding
components to understand user intent and construct a semantic description based on intent
and scene understanding results so that a verbal response can be provided for the user.
Synthesis achieves these connections using three main functions. The first function is to
determine what the object of interest is based on the interpreted query passed in by speech
recognition. The next function is to initiate image capture so scene understanding can

16

Figure 3.2: Data anonymization. (Left) rgb image from MSCOCO dataset [32], (right)
anonymous image with detected objects. For both these images, the person, as well as
private information on the laptop screens can be protected.

determine what objects are in the scene and their locations. The third function is to build
a semantic description response based on the objects in the scene, the locations and the
user intent for what he or she is looking for.

The first and last function of synthesis uses a web-hook, which is a way for an application
to deliver data to other applications, to relay the request from the speech module and the
response to the speech module, respectively. Once the request is received, the sentence is
parsed for a word that matches one of the objects in the dataset or a synonym of it by
following the structure for WordNet, which is a large lexical database of English nouns,
verbs, adjectives and adverbs grouped into sets of cognitive synonyms, also known as
synsets [36]. For instance, if a user asks for a “bottle“, this will correspond to the “water

17

bottle“ class in the dataset. For the second function of requesting the camera to capture
the scene, the camera is connected to the system as a video source so only a command is
needed to activate the camera. Once the type and locations of all the objects are identified
by scene understanding, synthesis then identifies the target object of interest and calculates
which object is closest based on the bounding box location and depth of the object, known
as the reference object, as well as the relative position to the reference object. For instance,
in Fig. 3.3 the target object is “mouse“ and the reference object is “keyboard“. Since the
mouse is around the same depth as the keyboard, the relative location of “right“ is used
to explain the position of the mouse.

Figure 3.3: Synthesis process for a sample workplace scenario. Synthesis takes input
from speech recognition and scene understanding, then builds a description of the relative
position of the target object to the closest reference object.

3.4 Summary

A novel AI-powered assistant, OLIV, is proposed to aid individuals with visual impairment
in locating displaced objects. To design the OLIV system, a human-centered design strat-
egy was taken to ensure that personal data remains on the inference device. OLIV consists
of three main components: speech recognition, custom-designed visual scene understand-
ing and synthesis. First, speech recognition utilizes off-the-self smart assistant solutions,

18

such as home assistants, to understand and communicate with the user. Then, visual
scene understanding combines object detection and monocular depth estimation to gain
an understanding of the surrounding 3D indoor environment. Synthesis finally combines
the user’s request with the gathered 3D scene to produce a semantic description based on
locations of other objects in the scene for the user.

An important component of OLIV is data privacy. In order for both the object detection
network and monocular depth estimation network to run efficiently on a local device, two
different architectural design exploration methods are employed. The methods and results
to design the highly compact object detection and monocular depth estimation network
architectures are described in Section 4 and 5, respectively.

19

Chapter 4

Highly Compact Single-Shot Network
Architecture for Object Detection

In this chapter, the process of micro-architecture design exploration to design a highly
compact single-shot object detection network architecture for OLIV is described. The
micro-architecture design exploration and architectural design optimization to quantita-
tively find the best performance tradeoff are presented in Section 4.2 and 4.3, respectively.
Experimental setup, including the dataset used, is outlined in Section 4.4. Both visual and
quantitative experimental results are detailed in Section 4.5.

4.1 Problem Formulation

Object detection plays an integral role in OLIV, however, many object detection neural
networks are large and require powerful graphical processing units (GPUs) to increase
modeling capabilities. The increasing complexity of these deep neural networks is one of
the obstacles to widespread deployment on edge devices, where computational power and
memory capacity are significantly lower than parallel computing on GPUs. Edge devices
provide both affordability and autonomy, which are mutually exclusive for systems that
require GPUs. If the device contains a local GPU to protect autonomy over personal data,
affordability decreases. As an alternative, cloud services provide a more affordable option,
however, privacy concerns arise over who has access to personal data.

To address these challenges, this chapter investigates a network architecture exploration
approach to creating an object detection network specifically for OLIV, an AI-powered

20

assistant for object localization for impaired vision, shown in Figure 3.1. By enabling
object detection to run on edge devices and mobile devices, cost and privacy concerns are
reduced. This means that the object detection network must be able to perform on-device
object detection with low computational power in resource constrained environments.

4.2 Micro-architecture Design Exploration

Object detection contains two parts, the meta-architecture and feature extractor. To design
the appropriate micro-architecture, the meta-architecture and feature extractor must meet
the design requirements for OLIV.

For object detection to be applied in an indoor environment to assist individuals with
visual impairment, fast inference time on a local device is required in order to reduce privacy
concerns and costs, as well as to provide a more natural response time. To meet these
requirements, single shot detector (SSD) is chosen as the meta-architecture, as described
in Section 2.1.1.

For the feature extractor, MobileNetV2 is found to offer the best tradeoff between
accuracy and speed for image classification. MobilenetV2 is a neural network architecture
for image classification that is specifically tailored for mobile and resource constrained
environments [44], as described in Section 2.1.2.

Taking into account the specialized application of OLIV for indoor environments, the
design of the small and fast architecture of MobileNetV2-SSD is taken one step further.
Given the reduced number of target classes for indoor environments, an exploration of
hyper-parameters is conducted to find the hyper-parameters that offer the best trade-offs
between performance, speed and size for this specific application.

MobileNetV2 includes two additional hyper-parameters, width and resolution multi-
plier, as described in Section 2.1.2, to the MobileNetV2 base architecture in Table 4.1.
The width multiplier, α, reduces the width of the network uniformly at each layer by
multiplying the number of input channels and output channels in the MobileNetV2 base
architecture by α. For instance, with α = 0.75, the first three output channels in Table
4.1 will be 24, 12 and 18. The resolution multiplier, ρ, reduces the representation by
multiplying each feature map by ρ [44]. If ρ = 0.85, the MobileNetV2 base architecture
input resolution of 224 × 224 will by multiplied by 0.85 for an adjusted input resolution
of 192 × 192. Although reducing the width and resolution makes the model smaller and
faster, there is a cost to the accuracy, which is explored in Section 4.5.

21

Table 4.1: MobileNetV2 base architecture adapted from Sandler et al. [44]. Each line
contains 1 or more identical layers repeated n times. k represents the number of classes
for classification.

Input Type of Module Output Channels Times Repeated

224x224x3 conv2d 3x3 32 1
112x112x32 inverted residual block 16 1
112x112x16 inverted residual block 24 2
56x56x24 inverted residual block 32 3
28x28x32 inverted residual block 64 4
14x14x64 inverted residual block 96 3
14x14x96 inverted residual block 160 3
7x7x160 inverted residual block 320 1
7x7x320 conv2d 1x1 1280 1
7x7x1280 avgpool 7x7 - 1
1x1x1280 conv2d 1x1 k -

In order to select the appropriate ranges of the input resolutions and width multipliers,
the requirements of this specific application is considered. For the application to remain
affordable, the quality of the camera becomes a constraint. Taking this into account,
practical input resolutions of 300, 224, 192 and 160 pixels are used, which correspond
to resolution multipliers of ρ = 1.34, 1.0, 0.85, 0.71, respectively. To analyze the effects
of the input resolution, the width multiplier is kept constant at 1.0. Not only does the
quality of the camera affect cost, but also the amount of memory used. To keep the size
of the network small, width multipliers from 1.4 to 0.35 are explored while keeping the
input resolution constant at 224. Only width multipliers in the range from 1.4 to 0.35 are
explored based on the MobileNetV2 performance curve, which showed accuracy reaching
a plateau as the width multiplier increased past 1.4 and significant reduction in accuracy
as the width multiplier decreased past 0.35 [44]. The exploration consisted of 9 possible
models, as shown in Table 4.2, along with corresponding network architecture complexity
of the deep neural network, which were calculated using the Tensorflow profiler tool [49].

By varying one hyperparameter and keeping the other one constant and vice versa,
interpolation can be used to compute the remaining pairings. This allows for a complete
micro-architecture exploration of models that satisfy the requirements for this application.

22

Table 4.2: MobileNetV2-SSD hyper-parameter values used for the experiments and network
architecture complexity (number of parameters).

Model Name Width Multiplier Input Resolution (pixels) Parameters (M)
MobileNetV2-SSD-0.35 224 0.35 224 1.15
MobileNetV2-SSD-0.5 224 0.5 224 1.82
MobileNetV2-SSD-0.75 224 0.75 224 3.13
MobileNetV2-SSD-1.0 160 1.0 160 4.71
MobileNetV2-SSD-1.0 192 1.0 192 4.71
MobileNetV2-SSD-1.0 224 1.0 224 4.71
MobileNetV2-SSD-1.0 300 1.0 300 4.71
MobileNetV2-SSD-1.3 224 1.3 224 6.99
MobileNetV2-SSD-1.4 224 1.4 224 7.83

4.3 Architectural Design Optimization

The network architecture exploration approach is formulated as a numerical optimization
problem, where the goal is to find the set of width and resolution hyperparameter pairs,
defined as θ = {α, ρ}, that maximize a modified NetScore. NetScore is a quantitative
assessment of the balance between accuracy, computational complexity and network archi-
tecture complexity of a deep neural network [53]. For this study, the number of multiply-
accumulate operations, which represent the computational complexity, is replaced with
CPU running time, as CPUs are on edge devices and mobile devices. In terms of on-device
object detection, there is a limited amount of parallel computation, thus, speed is found
to be more representative. The modified NetScore function is defined as:

Ω(N (θ)) = 20 log
(a(N (θ))κ

p(N (θ))βr(N (θ))γ

)
(4.1)

where a(N (θ)) is the accuracy of the network, p(N (θ)) is the number of parameters in the
network in millions, r(N (θ)) is the CPU running time in seconds, and κ, β, γ control the the
influence of accuracy, architectural complexity and computational complexity, respectively.
Since the application requires the network to run on a local device, the size is constrained,
as mobile devices usually have at most 8 GB of RAM [22]. As well, in order to offer a
natural conversational system, the inference on CPU should approach real-time. While
architectural and computational complexity are important for this application, accuracy
remains as the most important metric in the objective function since accuracy shows the
potential usefulness and benefits to the user’s current lifestyle. The weighting for accuracy
is set to κ = 1. For this application, speed is also important for a smooth flow and is set to

23

β = 0.45. Since MobileNetV2-SSD is already a small network with a maximum of 7.83M
parameters in this study, the architectural complexity is set to γ = 0.2.

The formal objective function used to determine the most optimal hyper-parameters
for this application is defined as:

θ̂ = argmax
θ

Ω(N (θ)) (4.2)

where θ̂ is the width and resolution hyperparameter pair that maximizes the modified
NetScore, Ω(N (θ)). To find the most optimal hyperparameter pair for OLIV, experiments
on the different model configuration in Table 4.2 are conducted. Interpolation is then used
to determine the remaining hyperparameter pairs between width multipliers from 1.4 to
0.35 and resolution multiplier from 1.34 to 0.71.

4.4 Experimental Setup

4.4.1 Dataset

Since most daily tasks are performed in a indoor setting [3], the objects used in this
paper are ones that could be found indoors. For this study, a subset of the MSCOCO
dataset that contains indoor objects are compiled to form the MSCOCO-OLIV dataset.
Compared to ImageNet and PASCAL VOC, MSCOCO contains objects in their natural
context, allowing for more generalization in the real-world and more realistic to what is
seen in an indoor environment. In addition to non-iconic images, there are on average
7.7 instances per image in COCO, whereas ImageNet and PASCAL VOC have less than 3
instances per image [32].

Although COCO has more instances per image, the object sizes are also smaller [32]. In
the specific application environment for OLIV, the camera is placed closer to the objects,
allowing the objects to be bigger. In order to be more representative of the application
environment, the evaluation of the models on MSCOCO-OLIV is performed on large ob-
jects.

To obtain the MSCOCO-OLIV dataset, a subset of the labeled COCO2017 train and
val images that contain indoor objects were used, resulting in 21 classes. The 21 target
classes are reported in Table 4.3. Of the subset, 66674 images were used for training, 8889
images were used for validation and 13334 images were used for testing.

24

4.4.2 Training

Each model’s feature extractor architecture is initialized with the pretrained weights from
the corresponding MobileNetV2 classification model, except MobileNetV2-SSD-1.0 300,
which used mobilenet v2 1.0 224 since there are no pretrained MobileNetV2 configura-
tions with a width multiplier of 1.0 and input resolution of 300. All the MobileNetV2
classification models were trained on the ImageNet dataset and obtained from [45]. These
pretrained classification models are the feature extractors for the models in Table 4.2. The
models in Table 4.2 were then further trained end-to-end on MSCOCO-OLIV for 800000
steps using an initial learning rate of 0.004, decaying by a factors of 0.95 every 200720
steps.

4.4.3 Performance Evaluation Metrics

Each MobileNetV2-SSD network is evaluated using mean average precision (mAP) at in-
tersection over unions (IoUs) from 0.5 to 0.95 with a step size of 0.05, which is the measure
for object detection [32]. To evaluate the real-world performance of the MobileNetV2-SSD
networks, inference speed on a 2.3GHz Dual-Core Intel Core i5 CPU is performed.

Intersection over union (IoU), shown in Eq. 4.3, is used to evaluated the accuracy of
the predicted bounding boxes. IoU is calculated as the area of intersection of the ground
truth bounding box (AG) and the predicted bounding box (AP) over the area of union
between the ground truth bounding box and predicted bounding box.

IoU =
AG ∩ AP
AG ∪ AP

(4.3)

In order to compute mAP for the object detection results on the MSCOCO-OLIV dataset,
average precision (AP) is first computed across IoUs from 0.5 to 0.95 with step size of 0.05
for each object class. AP is the number of true positive predictions (TP) over the number
of true positive and false positive predictions (FP) for each class, as shown in Eq. 4.4.

AP =
TP

TP + FP
(4.4)

The mean average precision (mAP) is then computed as the average precision for all classes
averaged over all the classes. mAP is computed using Eq. 4.5 below:

mAP =

∑Q
q=1AP (q)

Q
(4.5)

25

where Q is the number of classes in a dataset and AP is the average precision for a given
class, q.

Inference speed is measured by the CPU time of how long one pass through the model
takes. Inference starts when the image is loaded into the model and stops at the output
of all detections after non-maximum suppression.

4.5 Experimental Results

To study the utility of MobileNetV2-SSD modifications on the width and resolution mul-
tiplier, the overall and class-wise mAP for MSCOCO-OLIV and average CPU times (on
a 2.3GHz Intel Core i5 processor) are examined on the test dataset. In addition, class-
wise average precision results and trends between the different model variations are also
analyzed.

4.5.1 Accuracy vs. Speed

The performance results with respect to overall mAP and average CPU time of 9 different
SSD-MobileNetV2 models are shown in Figure 4.1. Based on the overall mAP of 22.1%
achieved by SSD-MobileNetV2-1.0 300 on the full MSCOCO dataset [33], MobileNetV2-
SSD-1.0 300, MobileNetV2-SSD-1.3 224 and MobileNetV2-SSD-1.4 224 show the most promise
on MSCOCO-OLIV. However, the most optimal object detection model for OLIV depends
on a balance between accuracy and speed as described in Section 4.3.

A number of observations can be made. First, as CPU time increases, there are di-
minishing returns to the improvement of accuracy, as shown by the trend line. Therefore,
for indoor environments where there are a less variety of objects, the largest model is not
necessarily the best choice for applications where speed and size are a constraint. Second,
MobileNetV2-SSD-1.0 160 and MobileNetV2-SSD-0.5 224, as well as MobileNetV2-SSD-
1.0 192 and MobileNetV2-SSD-0.75 224, achieve similar run-time and mAP for each pair.
However, in each pair, the number of parameters is less for the smaller width multiplier,
even though the models with a width multiplier of 1.0 have a smaller resolution. This
result shows that the input resolution has to be sufficiently large enough to resolve the
objects in the scene. As well, this result also indicates that adjusting the width multiplier
achieves the better trade-off between accuracy, speed and size. This is because changing
the input resolution does not affect the number of parameters. Based on performance

26

Figure 4.1: Accuracy vs time: how the different model configurations in Table 4.2 affect
average precision and CPU time.

results with respect of overall mAP and average CPU time, the choice of width multipli-
ers for MobileNetV2-SSD models have more influence over accuracy, speed and size than
resolution multipliers.

4.5.2 The Effect of Width and Resolution Multiplier

Figure 4.1 shows the relationship between overall mAP and run-time. To offer a more
in-depth insight into the effects of the the width multiplier and input resolution on overall
mAP and CPU running time, results for the hyperparameter pairs that were not ran during
the experiment are interpolated. The interpolated results are visualized as a heatmap in
Figure 4.2.

Based on the results, both the width multiplier and input resolution have a fairly linear
relationship with speed, as shown in the right plot in Figure 4.2. On the contrary, the width
multiplier and input resolution have a non-linear relationship with mAP, as shown in the
left plot. Referring to the overall results in Table 4.3, as the width multiplier increases from
0.35 by 42.8% to 0.5, there is a 17.9% increase in mAP. From 0.75 to 1.0, mAP increases
by 13.1% for 33% increase in width. As well, from 1.0 to 1.3, mAP increases by 17.3% for
the 30% increase in width. However, from 1.3 to 1.4, there is an decrease of 1.48% in mAP
for 7.7% increase in width.

27

Figure 4.2: Effect of width and resolution multiplier on accuracy (left) and speed (right)

Similarly, as the input resolution increases from 160 to 300, the mAP first increases
by 19.5% for 20% increase in resolution, then 17.6% for 16.7% increase in resolution, and
finally 11.5% for 33.9% increase in resolution. Although there was a significant increase in
resolution from 224 to 300, the increase in mAP is insignificant compared to the rest.

These results show that in general, as the width multiplier and input resolution increase,
the mAP and CPU running time also increase. However, there is a certain point where
there are diminishing returns in the increase of mAP. Based on the mAP heatmap, there is
little increase in mAP after the width multiplier reaches 1.15 and input resolution reaches
220. However, in the CPU time heatmap, run-time continues to increase linearly as the
width multiplier and input resolution keeps increasing from 1.15 and 220. Although the
accuracy of OLIV is important, as described in Section 4.3, the amount of additional time
required to run a model needs to be considered to maintain a balanced tradeoff between
accuracy and speed to ensure the on-device computation is providing users with a fast and
accurate description of where the object is.

4.5.3 Class-wise Performance Analysis

All 21 class precisions for each model are shown in Table 4.3. For all the different width
multipliers and input resolutions, there is a large variation between classes. This can be
expected since the number of instances for each class varies in the MSCOCO-OLIV dataset.

28

For instance, the person class has almost 10 times more instances than the fork class, which
is shown by a decrease in average precision from person class to fork class in Table 4.3.

Observing Table 4.3, the average precision remains relatively consistent for width mul-
tipliers of 1.4 and 1.3. There is a decrease when the width goes down to 1.0, but there is
only a slight decrease when the width decreases from 1.0 to 0.75. The width multipliers of
0.5 and 0.35 show another drop in average precision for all the classes. Between 1.4 and
1.3, as well as between 1.0 and 0.75, the smaller width multiplier is preferred because there
is a small decrease in accuracy but a linear decrease in CPU running time, as shown in
Figure 4.2.

Table 4.3: Class-wise average precision results by increasing number of parameters
Models

Classes
0.35, 0.5, 0.75, 1.0, 1.0, 1.0, 1.0, 1.3, 1.4,
224 224 224 160 192 224 300 224 224

Overall 0.106 0.125 0.153 0.123 0.147 0.173 0.193 0.203 0.2
Bottle 0.055 0.063 0.105 0.058 0.092 0.106 0.175 0.156 0.192
Person 0.337 0.353 0.396 0.339 0.366 0.417 0.443 0.439 0.445
Backpack 0.002 0.011 0.015 0.01 0.005 0.014 0.034 0.042 0.048
Handbag 0 0 0.007 0.009 0.003 0.021 0.013 0.016 0.016
Umbrella 0.076 0.095 0.137 0.119 0.126 0.146 0.178 0.199 0.177
Bowl 0.169 0.19 0.203 0.191 0.205 0.22 0.233 0.284 0.246
Cup 0.122 0.138 0.203 0.129 0.188 0.251 0.292 0.31 0.266
Clock 0.306 0.384 0.423 0.318 0.414 0.434 0.488 0.456 0.467
Knife 0.009 0.007 0.042 0.022 0.033 0.043 0.063 0.075 0.058
Spoon 0 0.009 0.011 0.004 0.014 0.025 0.031 0.035 0.043
Fork 0.007 0.022 0.067 0.048 0.056 0.089 0.079 0.125 0.093
Chair 0.023 0.037 0.054 0.038 0.056 0.074 0.097 0.097 0.118
Potted Plant 0.055 0.081 0.096 0.085 0.081 0.126 0.154 0.141 0.152
Dining Table 0.224 0.223 0.246 0.21 0.22 0.238 0.223 0.268 0.247
Keyboard 0.154 0.176 0.173 0.194 0.236 0.25 0.234 0.255 0.26
Mouse 0.127 0.202 0.235 0.16 0.206 0.223 0.293 0.316 0.376
Laptop 0.216 0.242 0.294 0.22 0.313 0.347 0.377 0.356 0.37
Cellphone 0.089 0.094 0.089 0.13 0.124 0.138 0.175 0.179 0.156
Scissors 0.006 0.028 0.067 0.03 0.03 0.094 0.112 0.105 0.09
Book 0.012 0.019 0.042 0.017 0.022 0.04 0.039 0.043 0.041
Monitor 0.236 0.249 0.311 0.25 0.3 0.348 0.314 0.374 0.349

29

Likewise, as the input resolution decreases, the class average precision also decrease.
Unlike how average precisions are similar for width multipliers of 1.4 and 1.3, as well as
1.0 and 0.75, the average precisions in each class decrease linearly with input resolution.

Figure 4.3: Class-wise trends for top 3 and bottom 2 classes as width and input resolution
varies.

To further analyze the class-wise relationships, Figure 4.3 shows a visualization of how
the different models, ordered by increasing number of parameters, affect average precision
of the top 3 and bottom 2 objects. All classes show an increase in average precision as
the width multiplier increases with constant input resolution. From visual inspection in
Figure 4.3, the largest jump in precision is seen between width multipliers of 0.75 and 0.5
for person, monitor and handbag and between 0.5 and 0.35 for clock and spoon.

Likewise, there is also an increase in average precision as the input resolution increases
while the width multiplier stays constant. Unlike the trend of the width multiplier, where
average precision increases with width for every class, as the input resolution increases from
224 to 300, not all the average precisions increase, as shown for monitor and handbag. For
instance, in the left most image in Fig. 4.4, the handbag covers a significant portion of
the image compared to the other objects, yet remains undetected by MobileNetV2-SSD-
1.3 224, which is the model that achieves the highest MAP. This suggests that adjusting the
width multiplier to learn more features is more important than increasing the resolution.

In terms of number of parameters, although MobileNetV2-SSD-1.0 160 and MobileNetV2-
SSD-1.0 192 have more parameters than MobileNetV2-SSD-0.75 224, MobileNetV2-SSD-
0.75 224 achieves higher average precision for most of the classes. This shows that selecting

30

Figure 4.4: Sample detection results on MSCOCO-OLIV using MobileNetV2-SSD-
1.13 224. All objects in Table 4.2 could be detected, however, left) the spoon is not
able to be detected, middle) the book and small objects like the mouse are missed, right)
even though the handbag is the largest object, it is not detected.

hyperparameter pairs is important and can result in a smaller MobileNetV2-SSD model
achieving better results than a larger model.

4.5.4 Architecture Exploration Analysis: Balance Between Ac-
curacy, Speed and Size

Although the previous analysis results offer insight on the effects of width and resolution
hyper-parameters, those results do not offer a quantitative answer as to which model offers
the best trade-offs for the case of assistive devices for the visually impaired. As such,
as mentioned in Section 4.3, we employ an architectural design optimization strategy to
identify the model with the best balance in terms of accuracy, speed and size for indoor
object detection on an edge device. To take a deeper look into this architecture design
optimization process, Figure 4.5 illustrates how the modifed NetScore objective function,
defined in Equation 4.2, changes depending on the width multiplier and input resolution.

Based on Figure 4.5, MobileNetV2-SSD-1.3 224 achieves the highest modified NetScore
of 68.7, indicating that this particular model offers the best balance between accuracy,
speed and size for this specific application. From Figure 4.1, MobileNetV2-SSD-1.3 224
achieved the highest overall mAP score, while achieving faster CPU running time than
MobileNetV2-SSD-1.4 224 and MobileNetV2-SSD-1.0 300. This result is also supported
by Figure 4.2, which illustrated that there are smaller increases in mAP than speed as the

31

Figure 4.5: Modified NetScore results shown as a heatmap (left) and surface plot (right).
The maximum modified Netscore is achieved using with hyperparameters α = 1.3 and
ρ = 224, indicated by the white arrow.

width multiplier passes 1.15 and input resolution reaches 220. By conducting an architec-
tural design optimization strategy, the most optimal model with the desired tradeoffs can
be determined.

4.6 Summary

In this section, a micro-architecture exploration approach to create an object detection
network that can run on-device specifically for OLIV is investigated. Based on the require-
ments to increase affordability and autonomy, as well as usefulness, the optimal network
needs to offer a balanced trade-off between accuracy, speed and size. To quantify the bal-
ance required for this specific application, the network architecture exploration approach
is formulated as a numerical optimization problem, where the goal is to find a set of hyper-
parameter pair, which in this case is the width and resolution multiplier, that maximizes
the modified NetScore. Based on quantitative architecture exploration analysis, the model
with the optimal trade-off between accuracy, speed, and size for this application is the
model that achieves the highest NetScore, which in this case is MobileNetV2-SSD-1.3-224.
This result is also supported by the experimental results as the width and resolution multi-
plier increase. By taking a micro-architecture exploration approach, a well-suited compact

32

object detection model that offers a balanced trade-off between accuracy, speed and size
is found for OLIV.

Although the hyper-parameter combination with width multiplier of 1.3 and input
resolution of 224 for MobileNetV2-SSD is the best model based on the objective function
given in Equation 4.2, a different modified NetScore, as well as different κ, β and γ values
will result in different model choices. For this application, accuracy, speed and size were
weighted to offer a reliable, secure and low-cost solution. This approach can also be applied
to other assistive devices to offer the user a cost-efficient and secure solution.

In addition to selecting the best feature extractor and meta-architecture for an object
detection network given an application, micro-architecture exploration approach manually
explores different hyperparameter combinations for the selected object detection network.
For OLIV, the micro-architecture exploration approach manually explored different width
and resolution multiplier combinations and the resulting trade-off between accuracy, speed
and size for the highly compact single-shot object detection network architecture. In
the next chapter, both a human and machine driven design exploration approach is used
to design a highly compact densely-connected encoder-decoder network architecture for
monocular depth estimation.

33

Chapter 5

Highly Compact Densely-Connected
Encoder-Decoder Network
Architecture for Monocular Depth
Estimation

In this chapter, a human-machine collaborative design strategy is taken to design a highly
compact densely-connected encoder-decoder monocular depth estimation network archi-
tecture for OLIV. Section 5.2 provides a detailed description of the human-machine col-
laborative design strategy leveraged in this chapter. Experimental setup containing the
dataset and performance evaluation metrics are described in Section 5.3. Section 5.4 pro-
vides a detailed description and discussion of interesting characteristics of the resulting
architecture design. Section 5.5 presents and discusses the results from the quantitative
and qualitative experiments conducted to study the efficacy of the designed network when
compared to state-of-the-art depth estimation networks.

5.1 Problem Formulation

The task of estimating depth from 2D images, also known as monocular depth estimation,
is crucial for OLIV. The depth information gained from the scene enables OLIV to have
a better understanding of the object positions to give the user an enriched response and
experience. However, current state of the art methods for monocular depth estimation

34

have focused on an encoder-decoder architecture with very large and powerful deep feature
extractor macroarchitecture designs, such as VGG, ResNet and DenseNet [15, 2, 29], to
learn deep features. In addition to possessing very high network architecture complexity,
these current deep neural networks have high computation time and low energy efficiency,
which makes them difficult to deploy on mobile and edge devices to address user’s privacy
concerns.

Taking inspiration from recent work in efficient object detection, where large feature
extractor architectures are replaced with more efficient network architectures, such as Mo-
bileNetV2 [44], Wofk et al. [52] used smaller feature extractor architectures (e.g., ResNet-16
and MobileNet) in order to decrease the number of parameters and run-time necessary to
operate on embedded devices. To further reduce the network size and inference runtime,
network pruning was applied [56]. While the resulting depth estimation networks achieved
significant improvements in terms of inference speed, the depth estimation performance was
significantly lower and not comparable with current state of the art in indoor environments.

Taking a different direction than manual architecture selection strategies and network
pruning strategies, human-machine collaborative design strategy has shown recent success
in designing highly compact DCNNs by coupling principled network design prototyping
and machine-driven design exploration based on human-specified design requirements and
constraints [55]. In particular, such strategies have been demonstrated to be quite effective
at designing efficient deep neural networks well suited for various perception tasks, such as
object detection, image classification, and semantic segmentation [54, 55].

To design a highly compact architecture for monocular depth estimation, we explore a
human-machine collaborative design strategy to design highly compact deep convolutional
neural networks for the task of monocular depth estimation on the edge. More specifically,
we leverage encoder-decoder design principles that were found to be effective in current
state of the art monocular depth estimation to create DepthNet Nano, a highly compact
network with highly customized module-level macroarchitecture and microarchitecture de-
signs tailored specifically for OLIV.

5.2 Human Machine Collaborative Design Strategy

5.2.1 Principled Network Design Prototyping

For human-machine collaborative design strategy, the network design prototyping stage
is the initial design stage, as described in Section 2.3.2, where an initial network design

35

prototype is created based on human-driven design principles to guide the machine-driven
design exploration stage. To create DepthNet Nano, an initial network design prototype
was constructed based on densely-connected encoder-decoder architecture design princi-
ples [2], which has been demonstrated to be quite successful in achieving high-resolution
monocular depth estimation for indoor scenes.

A standout characteristic of the densely-connected encoder-decoder architecture is the
leveraging of a large number of direct connections between not only encoder layers, but also
between encoder and decoder layers. A detailed description is provided in Section 2.2. It
is very important to note that the actual macroarchitecture and microarchitecture designs
of the individual modules and layers in the final DepthNet Nano network architecture, as
well as the number of network modules, are left for the machine-driven design exploration
stage to decide in an automatic manner based on both human-specified design requirements
and constraints catered to edge device scenarios with limited computational and memory
capabilities.

5.2.2 Machine Driven Design Exploration

As detailed in Section 2.3.2, machine driven design exploration is leveraged in the form of
generative synthesis process to determine macroarchitecture and microarchitecture designs.
Generative synthesis process is guided by both the initial prototype ϕ and human-specified
constraints. To guide the process towards learning generative machines that generate highly
efficient and compact depth estimation networks suitable for OLIV, the indicator function
1r(·), described in Equation 2.5, was set up such that: i) δ1 accuracy ≥ 0.81 on NYU
Depth v2, which is the dataset used to train DepthNet Nano as detailed in Section 5.3.2,
and ii) network architecture complexity ≤ 5M parameters. The δ1 accuracy and network
architecture complexity conditions in the indicator function 1r(·) are set for this case such
that the δ1 accuracy of the resulting DepthNet Nano network exceeds that of Laina et
al. [29], a popular deep convolutional neural network for monocular depth estimation for
NYU Depth v2, while having more than 8× fewer parameters.

5.3 Experimental Setup

5.3.1 Implementation Details

The proposed DepthNet Nano was implemented using the TensorFlow open source platform
for machine learning. The training scheme leveraged in this study was that outlined in [2],

36

as [2] was able to achieve state of the art results for indoor monocular depth estimation.
The ADAM optimizer [24] was leveraged with a learning rate of 0.00005 and parameter
values β1 = 0.9 and β2 = 0.999.

5.3.2 Dataset

Since OLIV is designed for indoor environments, DepthNet Nano is trained on the NYU-
Depth V2 dataset. The NYU-Depth V2 dataset provides 2D images and corresponding
depth maps captured using Microsoft Kinect of 464 unique indoor scenes [46]. DepthNet
Nano is trained on 50,000 images, which is a subset of the NYU-Depth V2 dataset, and
tested on 654 images, following the procedure established in [2]. For testing, the depth
predictions for are evaluated on a pre-defined center cropping by Eigen [13].

5.3.3 Performance Evaluation Metrics

Each tested network in this chapter is evaluated using several error and accuracy metrics
that were used in prior works [2, 13, 15, 29]. More specifically, the following performance
metrics were leveraged:

• relative absolute error (Abs Rel): 1
N

∑N
i=1

|yi−ŷi|
ŷi

• root mean squared error (rmse):
√

1
N

∑N
i=1(yi − ŷi)2

• average log error (Log10): 1
N

∑N
i=1 |log(yi)− log(ŷi)|

• δi accuracy: % of yi s.t. max(yi
ŷi
, ŷi
yi

) = δ < thr for thr = 1.25, 1.252, 1.253

where yi is a pixel in predicted depth image, ŷi is a pixel in the ground-truth depth image
and N is the total number of pixels in the depth image.

Finally, evaluating the real-world performance of the proposed DepthNet Nano in a
realistic embedded scenario, inference speed and power efficiency evaluations on a Jetson
AGX embedded module at two different power budgets, 30W and 15W, are performed.
Since OLIV is also to be able to run on a CPU device, the inference speed on a 2.3 GHz
Dual-Core Intel Core i5 CPU is evaluated. For inference speed, the framerate (FPS) is
computed, while for power efficiency the number of images processes per sec per watt (i.e.,
images/sec/watt) is computed.

37

5.4 Architectural Design

The network architecture of the proposed DepthNet Nano, which is illustrated in Fig. 5.1,
has several interesting characteristics that are discussed in detail below.

Figure 5.1: DepthNet Nano Architecture. The network architecture exhibits high macroar-
chitecture heterogeneity with a mix of PBEP and EP modules, as well as individual 7×7,
3×3, and pointwise convolution layers. Furthermore, the architecture exhibits high mi-
croarchitecture heterogeneity. Finally, the network architecture possesses a very deep
densely-connected self-normalization macroarchitecture, which has not been previously ex-
plored.

5.4.1 Self-Normalization Macroarchitecture

The first interesting characteristic of the DepthNet Nano architecture is its self-normalizing
property within a very deep densely-connected encoder-decoder network architecture, which
has not been previously explored. More specifically, rather than leveraging popular acti-
vation functions such as Rectifier Linear Units (ReLU) that are more commonly found in
depth estimation networks, the proposed DepthNet Nano architecture heavily leverages
Scaled Exponential Linear Units (SELU) [26] as the only form of activation within the
network architecture, which can be defined as

38

selu(x) = λ

{
x if x > 0

αexp(x)− α if x ≤ 0
(5.1)

One of the key advantages of SELUs is their self-normalizing properties that makes
learning more robust for deep neural networks. More specifically, since the activations
in each layer of the network are close to zero mean and unit variance, as the batched
features propagate through, the distribution of the features will converge towards zero
mean and unit variance, which makes the values of different features comparable. The
self-normalizing property is achieved with SELUs by decreasing the variance for negative
inputs and increasing the variance for positive inputs. To achieve zero mean and unit
variance, the amount of decrease for very negative inputs and the amount of increase for
near zero values are greater than other inputs.

In Table 5.1, the performance of RELU and SELU activations are compared based on
accuracy and relative absolute error. For both module types, which will be further explain
in the next section, SELU achieves higher performance. The result shows that the use of
SELUs in DepthNet Nano is able to achieve higher depth estimation accuracy and lower
error than with the use of RELUs, despite high network inter-connectivity.

Table 5.1: DepthNet Nano performance on accuracy, error, computational complexity and
size based on RELU or SELU activation and PBConv or PBEP module type.
Activation Module δ1 < 1.25 (higher is better) Abs Rel (lower is better) MACs [G] Params [M]

RELU
PBConv 0.821 0.139 7.39 4.48
PBEP 0.816 0.140 4.40 3.46

SELU
PBConv 0.825 0.137 7.39 4.48
PBEP 0.816 0.139 4.40 3.46

5.4.2 Densely Connected Projection BatchNorm Expansion Pro-
jection Macroarchitecture

Another interesting characteristic of the DepthNet Nano architecture is the densely con-
nected projection batchnorm expansion projection (PBEP) module, which are leveraged
heavily in the encoding layers of the network architecture (see Fig. 5.1). Compared to
the expansion projection (EP) modules leveraged extensively in the decoding layers of the
network architecture (see Fig. 5.1), which have been seen in other literature on efficient
network architectures [44, 48, 8], PBEP has an additional projection layer that decreases

39

the number of channels of the previous layer before expanding the layer for depth-wise
convolution. PBEP macroarchitecture consists of:

1. A projection layer, where the output channels of the previous layer are projected to
a lower dimensionality in this layer using 1× 1 convolutions.

2. A batch normalization layer that normalizes the output of a previous layer to improve
the stability of the network.

3. An expansion layer, where 1× 1 convolutions are leveraged to expand the output of
the batch normalization layer to a higher dimensionality.

4. A depth-wise convolution layer, where spatial convolutions with a different filter are
applied to each of the individual output channels of the expansion layer.

5. A projection layer with 1 × 1 convolutions that projects the output channels from
the depth-wise convolution layer to a lower dimensionality.

In Table 5.1, the PBEP module is compared with the PBConv module, shown in Fig.
5.2, based on accuracy, error computational complexity and size. The PBConv module
can be found in the initial network design prototype [2] and consists of a projection layer,
followed by a batch normalization layer with a type of activation, and finally a 3× 3 con-
volutional layer. Table 5.1 shows that although the use of PBEP modules result in lower
accuracies and higher errors compared to PBConv modules, there are significantly less
multiply add accumulations, which corresponds to faster compute times. PBEP modules
also reduce the number of parameters. The use of densely connected PBEP macroar-
chitectures reduces the architectural and computational complexity of the DepthNet Nano
architecture while maintaining high model expressiveness and producing high quality depth
estimations.

5.4.3 Macroarchitecture and Microarchitecture Heterogeneity

Unlike hand-crafted architectures, the generated macroarchitecture and microarchitecture
within the network can differ greatly from layer to layer. There are a mix of different type
of modules, such as PBEP and EP modules, as well as individual 7 × 7, 3 × 3 and 1 × 1
convolution layers. In addition, the same module type has vastly different microarchitec-
tures since each module is catered specifically for the needs of the task. For instance, each
PBEP and EP module have different numbers of channels to represent the learned features
and a different multiplicity for the channel expansion layer.

40

Figure 5.2: PBEP vs PBConv module. a) PBEP module consists of a projection layer,
followed by a batch normalization layer with a form of activation (RELU/SELU), an ex-
pansion layer, a depth-wise convolution layer and another projection layer. b) PBConv
module consists of a projection layer, followed by a batch normalization layer with a form
of activation and a 3× 3 convolution layer.

The benefit of high macroarchitecture and microarchitecture heterogeneity in DepthNet
Nano network architecture is that it enables each component of the network architecture
to be uniquely tailored to achieve a very strong balance between architectural and com-
putation complexity while maintaining model expressiveness. The architectural diversity
in DepthNet Nano demonstrates the advantage of leveraging a human-collaborative design
strategy as it would be difficult for a human designer, or other design exploration methods
to customize a network architecture to the same level of architectural granularity.

5.5 Experimental Results

To demonstrate the efficacy of the proposed DepthNet Nano network designed using the
human-machine collaborative design strategy, its network architecture complexity, depth
estimation performance, and computational cost on the NYU-Depth V2 dataset are exam-
ined. In addition to quantitative analysis, a qualitative analysis on the predicted depth
maps is also conducted.

41

5.5.1 Quantitative Analysis

To study the efficacy of human-machine collaborative design, DepthNet Nano is evaluated
alongside state-of-the-art depth estimation networks on performance metrics defined in
Section 5.3.3, network architecture complexity, and computational complexity on the NYU
Depth V2 dataset, as shown in Table 5.2, respectively. Since this study targets high quality
depth estimation, only state-of-the-art networks in literature with δ1 accuracies greater
than 0.8 on NYU Depth v2 are compared.

DepthNet Nano has significantly lower architecture complexity and computational com-
plexity compared to the tested state-of-the-art networks. For example, DepthNet Nano
has 18 times fewer parameters and requires 9.7 times fewer MAC operations for inference
than [29], while achieving comparable δ1, δ2 and δ3 accuracies. Furthermore, it is impor-
tant to note that DepthNet Nano has achieved these significant computational complexity
improvements despite the fact that the input image size is 2 times larger, both vertically
and horizontally, compared to [29].

Table 5.2: Performance on NYU Depth V2. All networks are evaluated using a pre-defined
center cropping [13]. Best results in bold.

Model Input Size MACs [G] Params [M]
higher is better lower is better

δ1 < 1.25 δ2 < 1.252 δ3 < 1.253 Abs Rel RMSE Log10

Laina et al. [29] 228× 304 42.7 63.6 0.811 0.953 0.988 0.127 0.573 0.055
Fu et al. [15] 257× 353 60.2 110.3 0.828 0.965 0.992 0.115 0.509 0.051

Alhashim et al. [2] 480× 640 49.2 21.52 0.846 0.974 0.994 0.123 0.465 0.053

DepthNet Nano 480× 640 4.4 3.46 0.816 0.958 0.989 0.139 0.599 0.059

Table 5.3: NYU Depth V2 Inference. All networks are evaluated on a Jetson AGX Xavier
embedded module and 2.3 GHz Dual-Core Intel Core i5 CPU. Best results in bold.

Model
MACs

[G]
30W
[FPS]

15W
[FPS]

30W

[images/s
watt

]

15W

[images/s
watt

]

CPU
[FPS]

Alhashim et al. [2] (480× 640) 49.2 6.83 3.76 0.228 0.251 0.74
DepthNet Nano (480× 640) 4.4 15.8 8.8 0.527 0.587 1.8

Alhashim et al. [2] (224× 224) 8.04 – – – – 2.96
DepthNet Nano (224× 224) 0.72 – – – – 9.35

The inference speed of DepthNet Nano and [2] at the initial resolution of 480 × 640
are first compared on a Jetson AGX Xavier embedded module in Table 5.3. DepthNet
Nano is more than 2.3 times faster and more energy efficient than Alhashim et al. [2] at
both 30W and 15W power budgets. In addition, inference results at the input resolution
of 224 × 224 for OLIV on a 2.3 GHz Dual-Core Intel Core i5 CPU further indicate the

42

efficiency of DepthNet Nano. At the lower resolution of 224×224, DepthNet Nano is more
than 3 times faster compared to [2] at the same resolution. These quantitative results
demonstrate that the proposed DepthNet Nano networks, created using a human-machine
collaborative design strategy, can achieve a strong balance between accuracy, network
architecture complexity, and computational complexity that makes it very well suited for
embedded depth estimation for edge scenarios.

5.5.2 Qualitative Analysis

In additional to quantitatively evaluating the performance DepthNet Nano, a qualitative
analysis is also conducted to present areas that may be not be evaluated by the error metrics
or inference speeds. Figure 5.3 shows three examples from the NYU-Depth V2 dataset.
Each RGB image has a corresponding ground-truth dense depth map and predicted dense
depth maps from [2] and DepthNet Nano. A number of interesting observations can be
made based on the produced dense depth maps.

First of all, the dense depth maps produced by DepthNet Nano are only slightly less
detailed than that produced by [2] for NYU Depth V2, despite DepthNet Nano requiring
approximately 10 times fewer MAC operations. Another interesting observation is the first
row in Figure 5.3. In the ground-truth depth map, the shower curtain reflected in the
mirror has a different depth than the mirror. Similarly, [2] also predicted a different depth
for the reflected shower curtain. However, the proposed DepthNet Nano predicted a more
consistent depth within the mirror. In this case, although the predicted depth maps for the
mirror visually appears to be more accurate for DepthNet Nano, the result is not reflected
when calculating error since the ground-truth depth map has an inconsistent depth for
the mirror. In Fig. 5.4, the results of DepthNet Nano for the office scene with cluttered
objects that are further away are analyzed. Based on the qualitative analysis, [2] does a
better job with fine-grain edges. Since DepthNet Nano has significantly fewer parameters,
the edges of the cluttered objects are not well distinguished. Overall, visually, DepthNet
Nano produced dense depth maps comparable to state of the art.

5.6 Summary

In this chapter, DepthNet Nano, a highly compact self normalizing network that is tailored
and designed using a human machine collaborative design strategy is proposed for OLIV.

43

Figure 5.3: Visualized results on NYU Depth V2 dataset [46]. (Left to right) input RGB
image, ground truth, and depth estimations from Alhashim et al. [2] and DepthNet Nano.
DepthNet Nano was able to produce high-quality depth estimations despite requiring 10×
fewer MAC operations than Alhashim et al. [2].

By coupling human-driven principled network design prototyping and machine-driven de-
sign exploration, the resulting DepthNet Nano network architecture exhibited highly cus-
tomized macroarchitecture and microarchitecture designs, as well as self-normalizing char-
acteristics that provide a strong balance between architecture complexity, computational
complexity, and depth estimation performance. Experimental results across the NYU-
Depth V2 dataset demonstrated that the proposed DepthNet Nano possesses a signifi-
cantly more architecturally and computationally efficient network architecture compared
with state-of-the-art networks while achieving comparable performance. Furthermore, ex-
periments demonstrate that DepthNet Nano has significantly faster inference speeds and
energy efficiency on the Jetson AGX Xavier embedded module. DepthNet Nano is also
able to achieve 9.3 FPS on a 2.3 GHz Dual-Core Intel Core i5 CPU, which is more than 3
times faster than current state of the art indoor depth estimation models.

44

Figure 5.4: Zoomed in view of cluttered office desk from NYU Depth V2 dataset [46].
Comparison of ground truth depth map, and predicted depth map by [2] and DepthNet
Nano.

45

Chapter 6

Conclusion

In this chapter, a brief summary of the thesis and the key contributions are described in
Section 6.1. Recommendations of the methods are discussed in Section 6.2, and potential
future work for this research is outlined in Section 6.3.

6.1 Summary of Thesis and Contributions

In this thesis, the design of OLIV, a novel human-centered end-to-end artificial intelligence-
powered assistant system was proposed to assist individuals with impaired vision in their
day to day tasks in locating displaced object in indoor environments. To ensure privacy,
OLIV runs on local devices. However, to be able to detect and locate objects in real-
time, the object detection and monocular depth estimation networks for OLIV must be
efficient. Current deep neural networks are large and require powerful processing units,
such as GPUs, which are expensive and not widely adopted among common households.
To design efficient object detection and monocular depth estimation neural networks for
OLIV, two different architecture design exploration approaches are taken. The efficiency of
the designed object detection and monocular depth estimation networks were then tested
on two indoor datasets, MSCOCO-OLIV and NYU Depth V2, to simulate the indoor
environments where OLIV may be used.

In Chapter 4, a micro-architecture exploration approach to create an object detection
network that can run on-device specifically for OLIV is investigated. Based on quantita-
tive architecture exploration analysis in Figure 4.5, the model with the optimal trade-off
between accuracy, speed and size, as indicated by the NetScore, for the OLIV system

46

requirements is MobileNetV2-SSD-1.3-224, which has a width multiplier of 1.3 and input
resolution of 224. This result is supported by the experimental results in Figure 4.2. As the
width and resolution multiplier increase, the mAP and CPU running time also increase,
however, there is a certain point, specifically when the width multiplier passes 1.15 and
the input resolution reaches 220, where there are diminishing returns.

In Chapter 5, a human machine collaborative design strategy is taken to tailor a highly
compact self normalizing monocular depth estimation network, DepthNet Nano, specif-
ically for OLIV. By coupling human-driven principled network design prototyping and
machine-driven design exploration, the resulting network architecture exhibited highly
customized macroarchitecture and microarchitecture designs, as shown in Figure 5.1, as
well as self-normalizing characteristics that provide a strong balance between architecture
complexity, computational complexity, and depth estimation performance. Experimental
results in Table 5.2 demonstrated that DepthNet Nano possesses significantly less compu-
tational requirements while achieving comparable results on the NYU-Depth V2 dataset
with state-of-the-art networks. Furthermore, experiments in Table 5.3 demonstrated that
DepthNet Nano has significantly faster inference speeds and energy efficiency both on em-
bedded devices, such as the Jetson AGX Xavier, and on CPU, such as 2.3 GHz Dual-Core
Intel Core i5. Qualitatively, the dense depth maps produced by the proposed network in
Figure 5.3 are only slightly less detailed than the original network despite requiring fewer
MAC operations.

6.2 Recommendations

In this thesis, two different neural network design exploration methods were implemented
to design efficient neural networks. Although there is a decrease in accuracy, these efficient
neural networks are able to be deployed on device to ensure that users’ personal data
are not exploited. These neural networks also run in real time on local devices, which
can provide users with real time updates. Depending on the application, neural network
design exploration methods should be implemented to provide a trade-off between not only
accuracy, speed and size, but also the amount of data privacy the user can have.

Although having multiple neural networks require more computational and operational
costs, these networks can complement each other. Based on the experimental results, both
the object detection and depth estimation networks are limited to the type and size of
the object. For instance, MobileNet-SSD-1.3-224 does well in detecting objects such as a
monitor, laptop and clock, however are worse at detecting objects such as spoon, knife and
handbag. This is due to the fact that there are class imbalances in the dataset, leading

47

to bias towards some classes than others. Due to the reduction in number of parameters,
DepthNet Nano has a difficult time in distinguishing objects that are further away and
small. Although the object detection network is limited by the type of object and the
depth estimation network is limited by the size of the object, synthesis can allow these two
different perception tasks to complement each other.

6.3 Future Work

6.3.1 Real World Testing of OLIV

Although testing the designed object detection network and monocular depth estimation
network for OLIV on indoor datasets simulate indoor environments, these networks also
need to be tested in real world environments to ensure the robustness of the networks on
more unseen data. To ensure that OLIV is useful for the visually impaired, OLIV should
also be tested on different levels of visual acuity. [51, 47] showed that different levels of
functioning have different perceptions of a solution, as well as a diverse range of benefits
and problems.

6.3.2 Improve Detection of Small Objects and Object Bias

Both the object detection network and monocular depth estimation network have a lower
accuracy when detecting smaller objects and occluded objects. For instance, in Fig. 3.2,
small object , such as the computer mouse, cellphone and bottles, were not able to be
detected. In the left image Fig. 4.4, the person and bowl were able to be detected,
however, the occluded spoon was not detected. In Fig. 5.4, there are many occluded
objects on the desk, however, the estimated depth map was not able to distinguish the
edges.

In addition, in Fig. 4.4, the cup is detected in the middle image, however, larger objects
such as the mouse and book are not detected. In the right image of Fig. 4.4, the laptop
and mouse are detected, however, the handbag, which is larger than the laptop and mouse,
is not detected. This suggests that the dataset is imbalanced.

For future work, the goal is to incorporate methods to improve the detection of small
objects, as well as to address the inherent class imbalance in the MSCOCO-OLIV dataset.
To improve the detection of small object, methods, such as atrous convolutions [5], can

48

be experimented. To address the class imbalance problem, there are methods, such as
augmentations and class balance loss weightings [10], for classes with less samples.

6.3.3 Outdoor Scenes

Currently, both the object detection and depth estimation networks are only trained on
objects in indoor environments. However, since the OLIV system can run on mobile
devices, OLIV can be extended to outdoor scenes to help assist in a wide range of tasks.
In order to be extended to outdoor environments, future work will include training these
neural networks on outdoor environments and common objects that can be outdoors in
addition to the current MSCOCO-OLIV and NYU-Depth V2 datasets.

6.3.4 Temporal Information

In this thesis, supervised training was used to train the monocular depth estimation net-
work. In recent years, self-supervised training, where there is no labeled data, for monoc-
ular depth estimation has shown promise [16, 57]. For future work, strategies for incorpo-
rating temporal information into the DepthNet Nano architecture in a way that improves
performance while maintaining low architecture and computational complexity will be ex-
plored. By incorporating self-supervised techniques along with supervised training, the
features learned from self-supervised training can be used to improve the current training
method.

6.3.5 Federated Learning

As OLIV gets deployed on local devices, the object detection and depth estimation model
can be continuously trained and improved based on the user’s environment. In addition
to tailoring the neural network for the user’s environment, the data the user collects can
also be used to train a centralized model. Current machine learning approaches require
all training data in one centralized location to train or further improve the neural net-
work. Recently, an approach called federated learning enables individual local devices to
collaboratively learn a shared prediction model while keeping all the training data on the
device [35]. For future work, federated learning will be experimented since this approach
allows the centralized model to be continuously improved while the user’s data remains on
their local device.

49

References

[1] Tousif Ahmed, Roberto Hoyle, Kay Connelly, David Crandall, and Apu Kapadia.
Privacy concerns and behaviors of people with visual impairments. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages
3523–3532, 2015.

[2] Ibraheem Alhashim and Peter Wonka. High quality monocular depth estimation via
transfer learning. arXiv preprint arXiv:1812.11941, 2018.

[3] Margret Baltes, Ineke Maas, Hans-Ulrich Wilms, Markus Borchelt, and Todd Lit-
tle. Everyday Competence in Old and Very Old Age: Theoretical Considerations and
Empirical Findings, pages 384–402. 01 1999.

[4] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities
in commercial gender classification. In Sorelle A. Friedler and Christo Wilson, editors,
Proceedings of the 1st Conference on FAT, volume 81 of PMLR, pages 77–91, 23–24
Feb 2018.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and
machine intelligence, 40(4):834–848, 2017.

[6] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Re-
thinking atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[7] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. Encoder-decoder with atrous separable convolution for semantic image seg-
mentation. In Proceedings of the European conference on computer vision (ECCV),
pages 801–818, 2018.

50

[8] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking
evaluation fairness of weight sharing neural architecture search. arXiv preprint
arXiv:1907.01845, 2019.

[9] Patrick Clary. Lookout: an app to help blind and visually impaired people learn about
their surroundings, May 2018.

[10] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced
loss based on effective number of samples. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9268–9277, 2019.

[11] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based
fully convolutional networks. In Advances in neural information processing systems,
pages 379–387, 2016.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[13] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single
image using a multi-scale deep network. In Advances in neural information processing
systems, pages 2366–2374, 2014.

[14] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv preprint arXiv:1803.03635, 2018.

[15] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao.
Deep ordinal regression network for monocular depth estimation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2002–2011,
2018.

[16] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow. Dig-
ging into self-supervised monocular depth estimation. In Proceedings of the IEEE
International Conference on Computer Vision, pages 3828–3838, 2019.

[17] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and
connections for efficient neural network. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems 28, pages 1135–1143. Curran Associates, Inc., 2015.

51

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[19] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[20] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and
Kevin Murphy. Speed/accuracy trade-offs for modern convolutional object detectors.
CoRR, abs/1611.10012, 2016.

[21] Jonathan Huang, Vivek Rathod, Ronny Votel, Derek Chow, Chen Sun, Menglong Zhu,
Alireza Fathi, and Zhichao Lu. Tensorflow object detection api. https://github.

com/tensorflow/models/tree/master/research/object_detection, 2018.

[22] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley, and
Luc Van Gool. Ai benchmark: Running deep neural networks on android smartphones.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 0–0,
2018.

[23] Steven Kelley. Seeing ai: Artificial intelligence for blind and visually impaired users,
2019.

[24] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2017.

[25] Florian Kirchbuchner, Tobias Grosse-Puppendahl, Matthias R. Hastall, Martin Dis-
tler, and Arjan Kuijper. Ambient intelligence from senior citizens’ perspectives. In
Ambient Intelligence, pages 48–59, Cham, 2015. Springer International Publishing.

[26] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In Advances in neural information processing systems,
pages 971–980, 2017.

[27] B. F. Klare, M. J. Burge, J. C. Klontz, R. W. Vorder Bruegge, and A. K. Jain. Face
recognition performance: Role of demographic information. IEEE Transactions on
Information Forensics and Security, 7(6):1789–1801, Dec 2012.

52

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection

[28] Juliane Köberlein, Karolina Beifus, Corinna Schaffert, and Robert P Finger. The
economic burden of visual impairment and blindness: a systematic review. BMJ
Open, 3(11), 2013.

[29] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir
Navab. Deeper depth prediction with fully convolutional residual networks. In 2016
Fourth international conference on 3D vision (3DV), pages 239–248. IEEE, 2016.

[30] Chaiwoo Lee and Joseph F. Coughlin. Perspective: Older adults’ adoption of tech-
nology: An integrated approach to identifying determinants and barriers. Journal of
Product Innovation Management, 32(5):747–759, 2015.

[31] M. Leo, G. Medioni, M. Trivedi, T. Kanade, and G.M. Farinella. Computer vision for
assistive technologies. Computer Vision and Image Understanding, 154:1 – 15, 2017.

[32] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[33] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed,
Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox detector. CoRR,
abs/1512.02325, 2015.

[34] Kirsten Lloyd. Bias amplification in artificial intelligence systems. CoRR,
abs/1809.07842, 2018.

[35] Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine
learning without centralized training data. https://ai.googleblog.com/2017/04/

federated-learning-collaborative.html, 2017.

[36] George A Miller. WordNet: An electronic lexical database. MIT press, 1998.

[37] World Health Organization. Blindness and vision impairment. https://www.who.

int/news-room/fact-sheets/detail/blindness-and-visual-impairment, 2019.

[38] Siyuan Qiao, Zhe Lin, Jianming Zhang, and Alan L Yuille. Neural rejuvenation:
Improving deep network training by enhancing computational resource utilization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 61–71, 2019.

53

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment

[39] Inioluwa Deborah Raji and Joy Buolamwini. Actionable auditing: Investigating the
impact of publicly naming biased performance results of commercial ai products. In
Conference on AIES, 2019.

[40] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788, 2016.

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural in-
formation processing systems, pages 91–99, 2015.

[42] Mark O. Riedl. Human-centered artificial intelligence and machine learning. CoRR,
abs/1901.11184, 2019.

[43] D. A. Ross. Implementing assistive technology on wearable computers. IEEE Intelli-
gent Systems, 16(3):47–53, May 2001.

[44] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4510–4520,
2018.

[45] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2. https://github.com/tensorflow/models/blob/

master/research/slim/nets/mobilenet, 2018.

[46] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmen-
tation and support inference from rgbd images. In European Conference on Computer
Vision, pages 746–760. Springer, 2012.

[47] Sylvia Söderström and Borgunn Ytterhus. The use and non-use of assistive tech-
nologies from the world of information and communication technology by visually
impaired young people: a walk on the tightrope of peer inclusion. Disability & Soci-
ety, 25(3):303–315, 2010.

[48] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le.
Mnasnet: Platform-aware neural architecture search for mobile. arXiv preprint
arXiv:1807.11626, 2018.

54

https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet

[49] Tensorflow. Profile model. https://www.tensorflow.org/api_docs/python/tf/

compat/v1/profiler/profile, 2020.

[50] Yingli Tian, Xiaodong Yang, Chucai Yi, and Aries Arditi. Toward a computer vision-
based wayfinding aid for blind persons to access unfamiliar indoor environments. Ma-
chine vision and applications, 24:521–535, 04 2013.

[51] D. Townsend, F. Knoefel, and R. Goubran. Privacy versus autonomy: A tradeoff
model for smart home monitoring technologies. In 2011 IEEE EMBC, pages 4749–
4752, Aug 2011.

[52] Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze.
Fastdepth: Fast monocular depth estimation on embedded systems. arXiv preprint
arXiv:1903.03273, 2019.

[53] Alexander Wong. Netscore: Towards universal metrics for large-scale performance
analysis of deep neural networks for practical usage. CoRR, abs/1806.05512, 2018.

[54] Alexander Wong, Mahmoud Famuori, Mohammad Javad Shafiee, Francis Li, Bren-
dan Chwyl, and Jonathan Chung. Yolo nano: a highly compact you only look once
convolutional neural network for object detection. arXiv preprint arXiv:1910.01271,
2019.

[55] Alexander Wong, Mohammad Javad Shafiee, Brendan Chwyl, and Francis Li. Fer-
minets: Learning generative machines to generate efficient neural networks via gener-
ative synthesis. arXiv preprint arXiv:1809.05989, 2018.

[56] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivi-
enne Sze, and Hartwig Adam. Netadapt: Platform-aware neural network adaptation
for mobile applications. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 285–300, 2018.

[57] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera, Kejie Li, Harsh Agar-
wal, and Ian Reid. Unsupervised learning of monocular depth estimation and visual
odometry with deep feature reconstruction. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 340–349, 2018.

55

https://www.tensorflow.org/api_docs/python/tf/compat/v1/profiler/profile
https://www.tensorflow.org/api_docs/python/tf/compat/v1/profiler/profile

	List of Figures
	List of Tables
	Introduction
	Current Computer Vision Based Solutions
	Privacy Concerns
	Proposed Framework and Thesis Contributions

	Background
	Efficient Object Detection
	Single Shot Detector
	MobileNet

	Monocular Depth Estimation
	Encoder-Decoder Architecture
	Skip Connections

	Methods to Create Efficient Neural Networks
	Network Pruning
	Human-Machine Collaborative Design

	System Overview
	Speech Recognition
	On-device Scene Understanding for Privacy
	Synthesis
	Summary

	Highly Compact Single-Shot Network Architecture for Object Detection
	Problem Formulation
	Micro-architecture Design Exploration
	Architectural Design Optimization
	Experimental Setup
	Dataset
	Training
	Performance Evaluation Metrics

	Experimental Results
	Accuracy vs. Speed
	The Effect of Width and Resolution Multiplier
	Class-wise Performance Analysis
	Architecture Exploration Analysis: Balance Between Accuracy, Speed and Size

	Summary

	Highly Compact Densely-Connected Encoder-Decoder Network Architecture for Monocular Depth Estimation
	Problem Formulation
	Human Machine Collaborative Design Strategy
	Principled Network Design Prototyping
	Machine Driven Design Exploration

	Experimental Setup
	Implementation Details
	Dataset
	Performance Evaluation Metrics

	Architectural Design
	Self-Normalization Macroarchitecture
	Densely Connected Projection BatchNorm Expansion Projection Macroarchitecture
	Macroarchitecture and Microarchitecture Heterogeneity

	Experimental Results
	Quantitative Analysis
	Qualitative Analysis

	Summary

	Conclusion
	Summary of Thesis and Contributions
	Recommendations
	Future Work
	Real World Testing of OLIV
	Improve Detection of Small Objects and Object Bias
	Outdoor Scenes
	Temporal Information
	Federated Learning

	References

